drm/i915/gtt: call chipset flush directly
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 struct change_domains {
39 uint32_t invalidate_domains;
40 uint32_t flush_domains;
41 uint32_t flush_rings;
42 };
43
44 static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
45 static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
46
47 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
48 bool pipelined);
49 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
50 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
52 int write);
53 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
54 uint64_t offset,
55 uint64_t size);
56 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
57 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
58 bool interruptible);
59 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
60 unsigned alignment,
61 bool map_and_fenceable);
62 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
63 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
64 struct drm_i915_gem_pwrite *args,
65 struct drm_file *file_priv);
66 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
67
68 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
69 int nr_to_scan,
70 gfp_t gfp_mask);
71
72
73 /* some bookkeeping */
74 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79 }
80
81 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83 {
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86 }
87
88 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
89 struct drm_i915_gem_object *obj)
90 {
91 dev_priv->mm.gtt_count++;
92 dev_priv->mm.gtt_memory += obj->gtt_space->size;
93 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
94 dev_priv->mm.mappable_gtt_used +=
95 min_t(size_t, obj->gtt_space->size,
96 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
97 }
98 }
99
100 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
101 struct drm_i915_gem_object *obj)
102 {
103 dev_priv->mm.gtt_count--;
104 dev_priv->mm.gtt_memory -= obj->gtt_space->size;
105 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
106 dev_priv->mm.mappable_gtt_used -=
107 min_t(size_t, obj->gtt_space->size,
108 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
109 }
110 }
111
112 /**
113 * Update the mappable working set counters. Call _only_ when there is a change
114 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
115 * @mappable: new state the changed mappable flag (either pin_ or fault_).
116 */
117 static void
118 i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
119 struct drm_i915_gem_object *obj,
120 bool mappable)
121 {
122 if (mappable) {
123 if (obj->pin_mappable && obj->fault_mappable)
124 /* Combined state was already mappable. */
125 return;
126 dev_priv->mm.gtt_mappable_count++;
127 dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
128 } else {
129 if (obj->pin_mappable || obj->fault_mappable)
130 /* Combined state still mappable. */
131 return;
132 dev_priv->mm.gtt_mappable_count--;
133 dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
134 }
135 }
136
137 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
138 struct drm_i915_gem_object *obj,
139 bool mappable)
140 {
141 dev_priv->mm.pin_count++;
142 dev_priv->mm.pin_memory += obj->gtt_space->size;
143 if (mappable) {
144 obj->pin_mappable = true;
145 i915_gem_info_update_mappable(dev_priv, obj, true);
146 }
147 }
148
149 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
150 struct drm_i915_gem_object *obj)
151 {
152 dev_priv->mm.pin_count--;
153 dev_priv->mm.pin_memory -= obj->gtt_space->size;
154 if (obj->pin_mappable) {
155 obj->pin_mappable = false;
156 i915_gem_info_update_mappable(dev_priv, obj, false);
157 }
158 }
159
160 int
161 i915_gem_check_is_wedged(struct drm_device *dev)
162 {
163 struct drm_i915_private *dev_priv = dev->dev_private;
164 struct completion *x = &dev_priv->error_completion;
165 unsigned long flags;
166 int ret;
167
168 if (!atomic_read(&dev_priv->mm.wedged))
169 return 0;
170
171 ret = wait_for_completion_interruptible(x);
172 if (ret)
173 return ret;
174
175 /* Success, we reset the GPU! */
176 if (!atomic_read(&dev_priv->mm.wedged))
177 return 0;
178
179 /* GPU is hung, bump the completion count to account for
180 * the token we just consumed so that we never hit zero and
181 * end up waiting upon a subsequent completion event that
182 * will never happen.
183 */
184 spin_lock_irqsave(&x->wait.lock, flags);
185 x->done++;
186 spin_unlock_irqrestore(&x->wait.lock, flags);
187 return -EIO;
188 }
189
190 static int i915_mutex_lock_interruptible(struct drm_device *dev)
191 {
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 int ret;
194
195 ret = i915_gem_check_is_wedged(dev);
196 if (ret)
197 return ret;
198
199 ret = mutex_lock_interruptible(&dev->struct_mutex);
200 if (ret)
201 return ret;
202
203 if (atomic_read(&dev_priv->mm.wedged)) {
204 mutex_unlock(&dev->struct_mutex);
205 return -EAGAIN;
206 }
207
208 WARN_ON(i915_verify_lists(dev));
209 return 0;
210 }
211
212 static inline bool
213 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
214 {
215 return obj_priv->gtt_space &&
216 !obj_priv->active &&
217 obj_priv->pin_count == 0;
218 }
219
220 int i915_gem_do_init(struct drm_device *dev,
221 unsigned long start,
222 unsigned long mappable_end,
223 unsigned long end)
224 {
225 drm_i915_private_t *dev_priv = dev->dev_private;
226
227 if (start >= end ||
228 (start & (PAGE_SIZE - 1)) != 0 ||
229 (end & (PAGE_SIZE - 1)) != 0) {
230 return -EINVAL;
231 }
232
233 drm_mm_init(&dev_priv->mm.gtt_space, start,
234 end - start);
235
236 dev_priv->mm.gtt_total = end - start;
237 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
238 dev_priv->mm.gtt_mappable_end = mappable_end;
239
240 return 0;
241 }
242
243 int
244 i915_gem_init_ioctl(struct drm_device *dev, void *data,
245 struct drm_file *file_priv)
246 {
247 struct drm_i915_gem_init *args = data;
248 int ret;
249
250 mutex_lock(&dev->struct_mutex);
251 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
252 mutex_unlock(&dev->struct_mutex);
253
254 return ret;
255 }
256
257 int
258 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
259 struct drm_file *file_priv)
260 {
261 struct drm_i915_private *dev_priv = dev->dev_private;
262 struct drm_i915_gem_get_aperture *args = data;
263
264 if (!(dev->driver->driver_features & DRIVER_GEM))
265 return -ENODEV;
266
267 mutex_lock(&dev->struct_mutex);
268 args->aper_size = dev_priv->mm.gtt_total;
269 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
270 mutex_unlock(&dev->struct_mutex);
271
272 return 0;
273 }
274
275
276 /**
277 * Creates a new mm object and returns a handle to it.
278 */
279 int
280 i915_gem_create_ioctl(struct drm_device *dev, void *data,
281 struct drm_file *file_priv)
282 {
283 struct drm_i915_gem_create *args = data;
284 struct drm_gem_object *obj;
285 int ret;
286 u32 handle;
287
288 args->size = roundup(args->size, PAGE_SIZE);
289
290 /* Allocate the new object */
291 obj = i915_gem_alloc_object(dev, args->size);
292 if (obj == NULL)
293 return -ENOMEM;
294
295 ret = drm_gem_handle_create(file_priv, obj, &handle);
296 if (ret) {
297 drm_gem_object_release(obj);
298 i915_gem_info_remove_obj(dev->dev_private, obj->size);
299 kfree(obj);
300 return ret;
301 }
302
303 /* drop reference from allocate - handle holds it now */
304 drm_gem_object_unreference(obj);
305 trace_i915_gem_object_create(obj);
306
307 args->handle = handle;
308 return 0;
309 }
310
311 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
312 {
313 drm_i915_private_t *dev_priv = obj->dev->dev_private;
314 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
315
316 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
317 obj_priv->tiling_mode != I915_TILING_NONE;
318 }
319
320 static inline void
321 slow_shmem_copy(struct page *dst_page,
322 int dst_offset,
323 struct page *src_page,
324 int src_offset,
325 int length)
326 {
327 char *dst_vaddr, *src_vaddr;
328
329 dst_vaddr = kmap(dst_page);
330 src_vaddr = kmap(src_page);
331
332 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
333
334 kunmap(src_page);
335 kunmap(dst_page);
336 }
337
338 static inline void
339 slow_shmem_bit17_copy(struct page *gpu_page,
340 int gpu_offset,
341 struct page *cpu_page,
342 int cpu_offset,
343 int length,
344 int is_read)
345 {
346 char *gpu_vaddr, *cpu_vaddr;
347
348 /* Use the unswizzled path if this page isn't affected. */
349 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
350 if (is_read)
351 return slow_shmem_copy(cpu_page, cpu_offset,
352 gpu_page, gpu_offset, length);
353 else
354 return slow_shmem_copy(gpu_page, gpu_offset,
355 cpu_page, cpu_offset, length);
356 }
357
358 gpu_vaddr = kmap(gpu_page);
359 cpu_vaddr = kmap(cpu_page);
360
361 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
362 * XORing with the other bits (A9 for Y, A9 and A10 for X)
363 */
364 while (length > 0) {
365 int cacheline_end = ALIGN(gpu_offset + 1, 64);
366 int this_length = min(cacheline_end - gpu_offset, length);
367 int swizzled_gpu_offset = gpu_offset ^ 64;
368
369 if (is_read) {
370 memcpy(cpu_vaddr + cpu_offset,
371 gpu_vaddr + swizzled_gpu_offset,
372 this_length);
373 } else {
374 memcpy(gpu_vaddr + swizzled_gpu_offset,
375 cpu_vaddr + cpu_offset,
376 this_length);
377 }
378 cpu_offset += this_length;
379 gpu_offset += this_length;
380 length -= this_length;
381 }
382
383 kunmap(cpu_page);
384 kunmap(gpu_page);
385 }
386
387 /**
388 * This is the fast shmem pread path, which attempts to copy_from_user directly
389 * from the backing pages of the object to the user's address space. On a
390 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
391 */
392 static int
393 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
394 struct drm_i915_gem_pread *args,
395 struct drm_file *file_priv)
396 {
397 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
398 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
399 ssize_t remain;
400 loff_t offset;
401 char __user *user_data;
402 int page_offset, page_length;
403
404 user_data = (char __user *) (uintptr_t) args->data_ptr;
405 remain = args->size;
406
407 obj_priv = to_intel_bo(obj);
408 offset = args->offset;
409
410 while (remain > 0) {
411 struct page *page;
412 char *vaddr;
413 int ret;
414
415 /* Operation in this page
416 *
417 * page_offset = offset within page
418 * page_length = bytes to copy for this page
419 */
420 page_offset = offset & (PAGE_SIZE-1);
421 page_length = remain;
422 if ((page_offset + remain) > PAGE_SIZE)
423 page_length = PAGE_SIZE - page_offset;
424
425 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
426 GFP_HIGHUSER | __GFP_RECLAIMABLE);
427 if (IS_ERR(page))
428 return PTR_ERR(page);
429
430 vaddr = kmap_atomic(page);
431 ret = __copy_to_user_inatomic(user_data,
432 vaddr + page_offset,
433 page_length);
434 kunmap_atomic(vaddr);
435
436 mark_page_accessed(page);
437 page_cache_release(page);
438 if (ret)
439 return -EFAULT;
440
441 remain -= page_length;
442 user_data += page_length;
443 offset += page_length;
444 }
445
446 return 0;
447 }
448
449 /**
450 * This is the fallback shmem pread path, which allocates temporary storage
451 * in kernel space to copy_to_user into outside of the struct_mutex, so we
452 * can copy out of the object's backing pages while holding the struct mutex
453 * and not take page faults.
454 */
455 static int
456 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
457 struct drm_i915_gem_pread *args,
458 struct drm_file *file_priv)
459 {
460 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
461 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
462 struct mm_struct *mm = current->mm;
463 struct page **user_pages;
464 ssize_t remain;
465 loff_t offset, pinned_pages, i;
466 loff_t first_data_page, last_data_page, num_pages;
467 int shmem_page_offset;
468 int data_page_index, data_page_offset;
469 int page_length;
470 int ret;
471 uint64_t data_ptr = args->data_ptr;
472 int do_bit17_swizzling;
473
474 remain = args->size;
475
476 /* Pin the user pages containing the data. We can't fault while
477 * holding the struct mutex, yet we want to hold it while
478 * dereferencing the user data.
479 */
480 first_data_page = data_ptr / PAGE_SIZE;
481 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
482 num_pages = last_data_page - first_data_page + 1;
483
484 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
485 if (user_pages == NULL)
486 return -ENOMEM;
487
488 mutex_unlock(&dev->struct_mutex);
489 down_read(&mm->mmap_sem);
490 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
491 num_pages, 1, 0, user_pages, NULL);
492 up_read(&mm->mmap_sem);
493 mutex_lock(&dev->struct_mutex);
494 if (pinned_pages < num_pages) {
495 ret = -EFAULT;
496 goto out;
497 }
498
499 ret = i915_gem_object_set_cpu_read_domain_range(obj,
500 args->offset,
501 args->size);
502 if (ret)
503 goto out;
504
505 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
506
507 obj_priv = to_intel_bo(obj);
508 offset = args->offset;
509
510 while (remain > 0) {
511 struct page *page;
512
513 /* Operation in this page
514 *
515 * shmem_page_offset = offset within page in shmem file
516 * data_page_index = page number in get_user_pages return
517 * data_page_offset = offset with data_page_index page.
518 * page_length = bytes to copy for this page
519 */
520 shmem_page_offset = offset & ~PAGE_MASK;
521 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
522 data_page_offset = data_ptr & ~PAGE_MASK;
523
524 page_length = remain;
525 if ((shmem_page_offset + page_length) > PAGE_SIZE)
526 page_length = PAGE_SIZE - shmem_page_offset;
527 if ((data_page_offset + page_length) > PAGE_SIZE)
528 page_length = PAGE_SIZE - data_page_offset;
529
530 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
531 GFP_HIGHUSER | __GFP_RECLAIMABLE);
532 if (IS_ERR(page))
533 return PTR_ERR(page);
534
535 if (do_bit17_swizzling) {
536 slow_shmem_bit17_copy(page,
537 shmem_page_offset,
538 user_pages[data_page_index],
539 data_page_offset,
540 page_length,
541 1);
542 } else {
543 slow_shmem_copy(user_pages[data_page_index],
544 data_page_offset,
545 page,
546 shmem_page_offset,
547 page_length);
548 }
549
550 mark_page_accessed(page);
551 page_cache_release(page);
552
553 remain -= page_length;
554 data_ptr += page_length;
555 offset += page_length;
556 }
557
558 out:
559 for (i = 0; i < pinned_pages; i++) {
560 SetPageDirty(user_pages[i]);
561 mark_page_accessed(user_pages[i]);
562 page_cache_release(user_pages[i]);
563 }
564 drm_free_large(user_pages);
565
566 return ret;
567 }
568
569 /**
570 * Reads data from the object referenced by handle.
571 *
572 * On error, the contents of *data are undefined.
573 */
574 int
575 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
576 struct drm_file *file_priv)
577 {
578 struct drm_i915_gem_pread *args = data;
579 struct drm_gem_object *obj;
580 struct drm_i915_gem_object *obj_priv;
581 int ret = 0;
582
583 if (args->size == 0)
584 return 0;
585
586 if (!access_ok(VERIFY_WRITE,
587 (char __user *)(uintptr_t)args->data_ptr,
588 args->size))
589 return -EFAULT;
590
591 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
592 args->size);
593 if (ret)
594 return -EFAULT;
595
596 ret = i915_mutex_lock_interruptible(dev);
597 if (ret)
598 return ret;
599
600 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
601 if (obj == NULL) {
602 ret = -ENOENT;
603 goto unlock;
604 }
605 obj_priv = to_intel_bo(obj);
606
607 /* Bounds check source. */
608 if (args->offset > obj->size || args->size > obj->size - args->offset) {
609 ret = -EINVAL;
610 goto out;
611 }
612
613 ret = i915_gem_object_set_cpu_read_domain_range(obj,
614 args->offset,
615 args->size);
616 if (ret)
617 goto out;
618
619 ret = -EFAULT;
620 if (!i915_gem_object_needs_bit17_swizzle(obj))
621 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
622 if (ret == -EFAULT)
623 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
624
625 out:
626 drm_gem_object_unreference(obj);
627 unlock:
628 mutex_unlock(&dev->struct_mutex);
629 return ret;
630 }
631
632 /* This is the fast write path which cannot handle
633 * page faults in the source data
634 */
635
636 static inline int
637 fast_user_write(struct io_mapping *mapping,
638 loff_t page_base, int page_offset,
639 char __user *user_data,
640 int length)
641 {
642 char *vaddr_atomic;
643 unsigned long unwritten;
644
645 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
646 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
647 user_data, length);
648 io_mapping_unmap_atomic(vaddr_atomic);
649 return unwritten;
650 }
651
652 /* Here's the write path which can sleep for
653 * page faults
654 */
655
656 static inline void
657 slow_kernel_write(struct io_mapping *mapping,
658 loff_t gtt_base, int gtt_offset,
659 struct page *user_page, int user_offset,
660 int length)
661 {
662 char __iomem *dst_vaddr;
663 char *src_vaddr;
664
665 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
666 src_vaddr = kmap(user_page);
667
668 memcpy_toio(dst_vaddr + gtt_offset,
669 src_vaddr + user_offset,
670 length);
671
672 kunmap(user_page);
673 io_mapping_unmap(dst_vaddr);
674 }
675
676 /**
677 * This is the fast pwrite path, where we copy the data directly from the
678 * user into the GTT, uncached.
679 */
680 static int
681 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
682 struct drm_i915_gem_pwrite *args,
683 struct drm_file *file_priv)
684 {
685 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
686 drm_i915_private_t *dev_priv = dev->dev_private;
687 ssize_t remain;
688 loff_t offset, page_base;
689 char __user *user_data;
690 int page_offset, page_length;
691
692 user_data = (char __user *) (uintptr_t) args->data_ptr;
693 remain = args->size;
694
695 obj_priv = to_intel_bo(obj);
696 offset = obj_priv->gtt_offset + args->offset;
697
698 while (remain > 0) {
699 /* Operation in this page
700 *
701 * page_base = page offset within aperture
702 * page_offset = offset within page
703 * page_length = bytes to copy for this page
704 */
705 page_base = (offset & ~(PAGE_SIZE-1));
706 page_offset = offset & (PAGE_SIZE-1);
707 page_length = remain;
708 if ((page_offset + remain) > PAGE_SIZE)
709 page_length = PAGE_SIZE - page_offset;
710
711 /* If we get a fault while copying data, then (presumably) our
712 * source page isn't available. Return the error and we'll
713 * retry in the slow path.
714 */
715 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
716 page_offset, user_data, page_length))
717
718 return -EFAULT;
719
720 remain -= page_length;
721 user_data += page_length;
722 offset += page_length;
723 }
724
725 return 0;
726 }
727
728 /**
729 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
730 * the memory and maps it using kmap_atomic for copying.
731 *
732 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
733 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
734 */
735 static int
736 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
737 struct drm_i915_gem_pwrite *args,
738 struct drm_file *file_priv)
739 {
740 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
741 drm_i915_private_t *dev_priv = dev->dev_private;
742 ssize_t remain;
743 loff_t gtt_page_base, offset;
744 loff_t first_data_page, last_data_page, num_pages;
745 loff_t pinned_pages, i;
746 struct page **user_pages;
747 struct mm_struct *mm = current->mm;
748 int gtt_page_offset, data_page_offset, data_page_index, page_length;
749 int ret;
750 uint64_t data_ptr = args->data_ptr;
751
752 remain = args->size;
753
754 /* Pin the user pages containing the data. We can't fault while
755 * holding the struct mutex, and all of the pwrite implementations
756 * want to hold it while dereferencing the user data.
757 */
758 first_data_page = data_ptr / PAGE_SIZE;
759 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
760 num_pages = last_data_page - first_data_page + 1;
761
762 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
763 if (user_pages == NULL)
764 return -ENOMEM;
765
766 mutex_unlock(&dev->struct_mutex);
767 down_read(&mm->mmap_sem);
768 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
769 num_pages, 0, 0, user_pages, NULL);
770 up_read(&mm->mmap_sem);
771 mutex_lock(&dev->struct_mutex);
772 if (pinned_pages < num_pages) {
773 ret = -EFAULT;
774 goto out_unpin_pages;
775 }
776
777 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
778 if (ret)
779 goto out_unpin_pages;
780
781 obj_priv = to_intel_bo(obj);
782 offset = obj_priv->gtt_offset + args->offset;
783
784 while (remain > 0) {
785 /* Operation in this page
786 *
787 * gtt_page_base = page offset within aperture
788 * gtt_page_offset = offset within page in aperture
789 * data_page_index = page number in get_user_pages return
790 * data_page_offset = offset with data_page_index page.
791 * page_length = bytes to copy for this page
792 */
793 gtt_page_base = offset & PAGE_MASK;
794 gtt_page_offset = offset & ~PAGE_MASK;
795 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
796 data_page_offset = data_ptr & ~PAGE_MASK;
797
798 page_length = remain;
799 if ((gtt_page_offset + page_length) > PAGE_SIZE)
800 page_length = PAGE_SIZE - gtt_page_offset;
801 if ((data_page_offset + page_length) > PAGE_SIZE)
802 page_length = PAGE_SIZE - data_page_offset;
803
804 slow_kernel_write(dev_priv->mm.gtt_mapping,
805 gtt_page_base, gtt_page_offset,
806 user_pages[data_page_index],
807 data_page_offset,
808 page_length);
809
810 remain -= page_length;
811 offset += page_length;
812 data_ptr += page_length;
813 }
814
815 out_unpin_pages:
816 for (i = 0; i < pinned_pages; i++)
817 page_cache_release(user_pages[i]);
818 drm_free_large(user_pages);
819
820 return ret;
821 }
822
823 /**
824 * This is the fast shmem pwrite path, which attempts to directly
825 * copy_from_user into the kmapped pages backing the object.
826 */
827 static int
828 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
829 struct drm_i915_gem_pwrite *args,
830 struct drm_file *file_priv)
831 {
832 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
833 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
834 ssize_t remain;
835 loff_t offset;
836 char __user *user_data;
837 int page_offset, page_length;
838
839 user_data = (char __user *) (uintptr_t) args->data_ptr;
840 remain = args->size;
841
842 obj_priv = to_intel_bo(obj);
843 offset = args->offset;
844 obj_priv->dirty = 1;
845
846 while (remain > 0) {
847 struct page *page;
848 char *vaddr;
849 int ret;
850
851 /* Operation in this page
852 *
853 * page_offset = offset within page
854 * page_length = bytes to copy for this page
855 */
856 page_offset = offset & (PAGE_SIZE-1);
857 page_length = remain;
858 if ((page_offset + remain) > PAGE_SIZE)
859 page_length = PAGE_SIZE - page_offset;
860
861 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
862 GFP_HIGHUSER | __GFP_RECLAIMABLE);
863 if (IS_ERR(page))
864 return PTR_ERR(page);
865
866 vaddr = kmap_atomic(page, KM_USER0);
867 ret = __copy_from_user_inatomic(vaddr + page_offset,
868 user_data,
869 page_length);
870 kunmap_atomic(vaddr, KM_USER0);
871
872 set_page_dirty(page);
873 mark_page_accessed(page);
874 page_cache_release(page);
875
876 /* If we get a fault while copying data, then (presumably) our
877 * source page isn't available. Return the error and we'll
878 * retry in the slow path.
879 */
880 if (ret)
881 return -EFAULT;
882
883 remain -= page_length;
884 user_data += page_length;
885 offset += page_length;
886 }
887
888 return 0;
889 }
890
891 /**
892 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
893 * the memory and maps it using kmap_atomic for copying.
894 *
895 * This avoids taking mmap_sem for faulting on the user's address while the
896 * struct_mutex is held.
897 */
898 static int
899 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
900 struct drm_i915_gem_pwrite *args,
901 struct drm_file *file_priv)
902 {
903 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
904 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
905 struct mm_struct *mm = current->mm;
906 struct page **user_pages;
907 ssize_t remain;
908 loff_t offset, pinned_pages, i;
909 loff_t first_data_page, last_data_page, num_pages;
910 int shmem_page_offset;
911 int data_page_index, data_page_offset;
912 int page_length;
913 int ret;
914 uint64_t data_ptr = args->data_ptr;
915 int do_bit17_swizzling;
916
917 remain = args->size;
918
919 /* Pin the user pages containing the data. We can't fault while
920 * holding the struct mutex, and all of the pwrite implementations
921 * want to hold it while dereferencing the user data.
922 */
923 first_data_page = data_ptr / PAGE_SIZE;
924 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
925 num_pages = last_data_page - first_data_page + 1;
926
927 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
928 if (user_pages == NULL)
929 return -ENOMEM;
930
931 mutex_unlock(&dev->struct_mutex);
932 down_read(&mm->mmap_sem);
933 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
934 num_pages, 0, 0, user_pages, NULL);
935 up_read(&mm->mmap_sem);
936 mutex_lock(&dev->struct_mutex);
937 if (pinned_pages < num_pages) {
938 ret = -EFAULT;
939 goto out;
940 }
941
942 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
943 if (ret)
944 goto out;
945
946 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
947
948 obj_priv = to_intel_bo(obj);
949 offset = args->offset;
950 obj_priv->dirty = 1;
951
952 while (remain > 0) {
953 struct page *page;
954
955 /* Operation in this page
956 *
957 * shmem_page_offset = offset within page in shmem file
958 * data_page_index = page number in get_user_pages return
959 * data_page_offset = offset with data_page_index page.
960 * page_length = bytes to copy for this page
961 */
962 shmem_page_offset = offset & ~PAGE_MASK;
963 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
964 data_page_offset = data_ptr & ~PAGE_MASK;
965
966 page_length = remain;
967 if ((shmem_page_offset + page_length) > PAGE_SIZE)
968 page_length = PAGE_SIZE - shmem_page_offset;
969 if ((data_page_offset + page_length) > PAGE_SIZE)
970 page_length = PAGE_SIZE - data_page_offset;
971
972 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
973 GFP_HIGHUSER | __GFP_RECLAIMABLE);
974 if (IS_ERR(page)) {
975 ret = PTR_ERR(page);
976 goto out;
977 }
978
979 if (do_bit17_swizzling) {
980 slow_shmem_bit17_copy(page,
981 shmem_page_offset,
982 user_pages[data_page_index],
983 data_page_offset,
984 page_length,
985 0);
986 } else {
987 slow_shmem_copy(page,
988 shmem_page_offset,
989 user_pages[data_page_index],
990 data_page_offset,
991 page_length);
992 }
993
994 set_page_dirty(page);
995 mark_page_accessed(page);
996 page_cache_release(page);
997
998 remain -= page_length;
999 data_ptr += page_length;
1000 offset += page_length;
1001 }
1002
1003 out:
1004 for (i = 0; i < pinned_pages; i++)
1005 page_cache_release(user_pages[i]);
1006 drm_free_large(user_pages);
1007
1008 return ret;
1009 }
1010
1011 /**
1012 * Writes data to the object referenced by handle.
1013 *
1014 * On error, the contents of the buffer that were to be modified are undefined.
1015 */
1016 int
1017 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1018 struct drm_file *file)
1019 {
1020 struct drm_i915_gem_pwrite *args = data;
1021 struct drm_gem_object *obj;
1022 struct drm_i915_gem_object *obj_priv;
1023 int ret;
1024
1025 if (args->size == 0)
1026 return 0;
1027
1028 if (!access_ok(VERIFY_READ,
1029 (char __user *)(uintptr_t)args->data_ptr,
1030 args->size))
1031 return -EFAULT;
1032
1033 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1034 args->size);
1035 if (ret)
1036 return -EFAULT;
1037
1038 ret = i915_mutex_lock_interruptible(dev);
1039 if (ret)
1040 return ret;
1041
1042 obj = drm_gem_object_lookup(dev, file, args->handle);
1043 if (obj == NULL) {
1044 ret = -ENOENT;
1045 goto unlock;
1046 }
1047 obj_priv = to_intel_bo(obj);
1048
1049 /* Bounds check destination. */
1050 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1051 ret = -EINVAL;
1052 goto out;
1053 }
1054
1055 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1056 * it would end up going through the fenced access, and we'll get
1057 * different detiling behavior between reading and writing.
1058 * pread/pwrite currently are reading and writing from the CPU
1059 * perspective, requiring manual detiling by the client.
1060 */
1061 if (obj_priv->phys_obj)
1062 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1063 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1064 obj_priv->gtt_space &&
1065 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1066 ret = i915_gem_object_pin(obj, 0, true);
1067 if (ret)
1068 goto out;
1069
1070 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1071 if (ret)
1072 goto out_unpin;
1073
1074 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1075 if (ret == -EFAULT)
1076 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1077
1078 out_unpin:
1079 i915_gem_object_unpin(obj);
1080 } else {
1081 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1082 if (ret)
1083 goto out;
1084
1085 ret = -EFAULT;
1086 if (!i915_gem_object_needs_bit17_swizzle(obj))
1087 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1088 if (ret == -EFAULT)
1089 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1090 }
1091
1092 out:
1093 drm_gem_object_unreference(obj);
1094 unlock:
1095 mutex_unlock(&dev->struct_mutex);
1096 return ret;
1097 }
1098
1099 /**
1100 * Called when user space prepares to use an object with the CPU, either
1101 * through the mmap ioctl's mapping or a GTT mapping.
1102 */
1103 int
1104 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1105 struct drm_file *file_priv)
1106 {
1107 struct drm_i915_private *dev_priv = dev->dev_private;
1108 struct drm_i915_gem_set_domain *args = data;
1109 struct drm_gem_object *obj;
1110 struct drm_i915_gem_object *obj_priv;
1111 uint32_t read_domains = args->read_domains;
1112 uint32_t write_domain = args->write_domain;
1113 int ret;
1114
1115 if (!(dev->driver->driver_features & DRIVER_GEM))
1116 return -ENODEV;
1117
1118 /* Only handle setting domains to types used by the CPU. */
1119 if (write_domain & I915_GEM_GPU_DOMAINS)
1120 return -EINVAL;
1121
1122 if (read_domains & I915_GEM_GPU_DOMAINS)
1123 return -EINVAL;
1124
1125 /* Having something in the write domain implies it's in the read
1126 * domain, and only that read domain. Enforce that in the request.
1127 */
1128 if (write_domain != 0 && read_domains != write_domain)
1129 return -EINVAL;
1130
1131 ret = i915_mutex_lock_interruptible(dev);
1132 if (ret)
1133 return ret;
1134
1135 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1136 if (obj == NULL) {
1137 ret = -ENOENT;
1138 goto unlock;
1139 }
1140 obj_priv = to_intel_bo(obj);
1141
1142 intel_mark_busy(dev, obj);
1143
1144 if (read_domains & I915_GEM_DOMAIN_GTT) {
1145 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1146
1147 /* Update the LRU on the fence for the CPU access that's
1148 * about to occur.
1149 */
1150 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1151 struct drm_i915_fence_reg *reg =
1152 &dev_priv->fence_regs[obj_priv->fence_reg];
1153 list_move_tail(&reg->lru_list,
1154 &dev_priv->mm.fence_list);
1155 }
1156
1157 /* Silently promote "you're not bound, there was nothing to do"
1158 * to success, since the client was just asking us to
1159 * make sure everything was done.
1160 */
1161 if (ret == -EINVAL)
1162 ret = 0;
1163 } else {
1164 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1165 }
1166
1167 /* Maintain LRU order of "inactive" objects */
1168 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1169 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1170
1171 drm_gem_object_unreference(obj);
1172 unlock:
1173 mutex_unlock(&dev->struct_mutex);
1174 return ret;
1175 }
1176
1177 /**
1178 * Called when user space has done writes to this buffer
1179 */
1180 int
1181 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1182 struct drm_file *file_priv)
1183 {
1184 struct drm_i915_gem_sw_finish *args = data;
1185 struct drm_gem_object *obj;
1186 int ret = 0;
1187
1188 if (!(dev->driver->driver_features & DRIVER_GEM))
1189 return -ENODEV;
1190
1191 ret = i915_mutex_lock_interruptible(dev);
1192 if (ret)
1193 return ret;
1194
1195 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1196 if (obj == NULL) {
1197 ret = -ENOENT;
1198 goto unlock;
1199 }
1200
1201 /* Pinned buffers may be scanout, so flush the cache */
1202 if (to_intel_bo(obj)->pin_count)
1203 i915_gem_object_flush_cpu_write_domain(obj);
1204
1205 drm_gem_object_unreference(obj);
1206 unlock:
1207 mutex_unlock(&dev->struct_mutex);
1208 return ret;
1209 }
1210
1211 /**
1212 * Maps the contents of an object, returning the address it is mapped
1213 * into.
1214 *
1215 * While the mapping holds a reference on the contents of the object, it doesn't
1216 * imply a ref on the object itself.
1217 */
1218 int
1219 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1220 struct drm_file *file_priv)
1221 {
1222 struct drm_i915_private *dev_priv = dev->dev_private;
1223 struct drm_i915_gem_mmap *args = data;
1224 struct drm_gem_object *obj;
1225 loff_t offset;
1226 unsigned long addr;
1227
1228 if (!(dev->driver->driver_features & DRIVER_GEM))
1229 return -ENODEV;
1230
1231 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1232 if (obj == NULL)
1233 return -ENOENT;
1234
1235 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1236 drm_gem_object_unreference_unlocked(obj);
1237 return -E2BIG;
1238 }
1239
1240 offset = args->offset;
1241
1242 down_write(&current->mm->mmap_sem);
1243 addr = do_mmap(obj->filp, 0, args->size,
1244 PROT_READ | PROT_WRITE, MAP_SHARED,
1245 args->offset);
1246 up_write(&current->mm->mmap_sem);
1247 drm_gem_object_unreference_unlocked(obj);
1248 if (IS_ERR((void *)addr))
1249 return addr;
1250
1251 args->addr_ptr = (uint64_t) addr;
1252
1253 return 0;
1254 }
1255
1256 /**
1257 * i915_gem_fault - fault a page into the GTT
1258 * vma: VMA in question
1259 * vmf: fault info
1260 *
1261 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1262 * from userspace. The fault handler takes care of binding the object to
1263 * the GTT (if needed), allocating and programming a fence register (again,
1264 * only if needed based on whether the old reg is still valid or the object
1265 * is tiled) and inserting a new PTE into the faulting process.
1266 *
1267 * Note that the faulting process may involve evicting existing objects
1268 * from the GTT and/or fence registers to make room. So performance may
1269 * suffer if the GTT working set is large or there are few fence registers
1270 * left.
1271 */
1272 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1273 {
1274 struct drm_gem_object *obj = vma->vm_private_data;
1275 struct drm_device *dev = obj->dev;
1276 drm_i915_private_t *dev_priv = dev->dev_private;
1277 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1278 pgoff_t page_offset;
1279 unsigned long pfn;
1280 int ret = 0;
1281 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1282
1283 /* We don't use vmf->pgoff since that has the fake offset */
1284 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1285 PAGE_SHIFT;
1286
1287 /* Now bind it into the GTT if needed */
1288 mutex_lock(&dev->struct_mutex);
1289 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
1290
1291 if (obj_priv->gtt_space) {
1292 if (!obj_priv->map_and_fenceable) {
1293 ret = i915_gem_object_unbind(obj);
1294 if (ret)
1295 goto unlock;
1296 }
1297 }
1298
1299 if (!obj_priv->gtt_space) {
1300 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1301 if (ret)
1302 goto unlock;
1303 }
1304
1305 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1306 if (ret)
1307 goto unlock;
1308
1309 if (!obj_priv->fault_mappable) {
1310 obj_priv->fault_mappable = true;
1311 i915_gem_info_update_mappable(dev_priv, obj_priv, true);
1312 }
1313
1314 /* Need a new fence register? */
1315 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1316 ret = i915_gem_object_get_fence_reg(obj, true);
1317 if (ret)
1318 goto unlock;
1319 }
1320
1321 if (i915_gem_object_is_inactive(obj_priv))
1322 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1323
1324 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1325 page_offset;
1326
1327 /* Finally, remap it using the new GTT offset */
1328 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1329 unlock:
1330 mutex_unlock(&dev->struct_mutex);
1331
1332 switch (ret) {
1333 case -EAGAIN:
1334 set_need_resched();
1335 case 0:
1336 case -ERESTARTSYS:
1337 return VM_FAULT_NOPAGE;
1338 case -ENOMEM:
1339 return VM_FAULT_OOM;
1340 default:
1341 return VM_FAULT_SIGBUS;
1342 }
1343 }
1344
1345 /**
1346 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1347 * @obj: obj in question
1348 *
1349 * GEM memory mapping works by handing back to userspace a fake mmap offset
1350 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1351 * up the object based on the offset and sets up the various memory mapping
1352 * structures.
1353 *
1354 * This routine allocates and attaches a fake offset for @obj.
1355 */
1356 static int
1357 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1358 {
1359 struct drm_device *dev = obj->dev;
1360 struct drm_gem_mm *mm = dev->mm_private;
1361 struct drm_map_list *list;
1362 struct drm_local_map *map;
1363 int ret = 0;
1364
1365 /* Set the object up for mmap'ing */
1366 list = &obj->map_list;
1367 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1368 if (!list->map)
1369 return -ENOMEM;
1370
1371 map = list->map;
1372 map->type = _DRM_GEM;
1373 map->size = obj->size;
1374 map->handle = obj;
1375
1376 /* Get a DRM GEM mmap offset allocated... */
1377 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1378 obj->size / PAGE_SIZE, 0, 0);
1379 if (!list->file_offset_node) {
1380 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1381 ret = -ENOSPC;
1382 goto out_free_list;
1383 }
1384
1385 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1386 obj->size / PAGE_SIZE, 0);
1387 if (!list->file_offset_node) {
1388 ret = -ENOMEM;
1389 goto out_free_list;
1390 }
1391
1392 list->hash.key = list->file_offset_node->start;
1393 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1394 if (ret) {
1395 DRM_ERROR("failed to add to map hash\n");
1396 goto out_free_mm;
1397 }
1398
1399 return 0;
1400
1401 out_free_mm:
1402 drm_mm_put_block(list->file_offset_node);
1403 out_free_list:
1404 kfree(list->map);
1405 list->map = NULL;
1406
1407 return ret;
1408 }
1409
1410 /**
1411 * i915_gem_release_mmap - remove physical page mappings
1412 * @obj: obj in question
1413 *
1414 * Preserve the reservation of the mmapping with the DRM core code, but
1415 * relinquish ownership of the pages back to the system.
1416 *
1417 * It is vital that we remove the page mapping if we have mapped a tiled
1418 * object through the GTT and then lose the fence register due to
1419 * resource pressure. Similarly if the object has been moved out of the
1420 * aperture, than pages mapped into userspace must be revoked. Removing the
1421 * mapping will then trigger a page fault on the next user access, allowing
1422 * fixup by i915_gem_fault().
1423 */
1424 void
1425 i915_gem_release_mmap(struct drm_gem_object *obj)
1426 {
1427 struct drm_device *dev = obj->dev;
1428 struct drm_i915_private *dev_priv = dev->dev_private;
1429 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1430
1431 if (unlikely(obj->map_list.map && dev->dev_mapping))
1432 unmap_mapping_range(dev->dev_mapping,
1433 (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
1434 obj->size, 1);
1435
1436 if (obj_priv->fault_mappable) {
1437 obj_priv->fault_mappable = false;
1438 i915_gem_info_update_mappable(dev_priv, obj_priv, false);
1439 }
1440 }
1441
1442 static void
1443 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1444 {
1445 struct drm_device *dev = obj->dev;
1446 struct drm_gem_mm *mm = dev->mm_private;
1447 struct drm_map_list *list = &obj->map_list;
1448
1449 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1450 drm_mm_put_block(list->file_offset_node);
1451 kfree(list->map);
1452 list->map = NULL;
1453 }
1454
1455 /**
1456 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1457 * @obj: object to check
1458 *
1459 * Return the required GTT alignment for an object, taking into account
1460 * potential fence register mapping.
1461 */
1462 static uint32_t
1463 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
1464 {
1465 struct drm_device *dev = obj_priv->base.dev;
1466
1467 /*
1468 * Minimum alignment is 4k (GTT page size), but might be greater
1469 * if a fence register is needed for the object.
1470 */
1471 if (INTEL_INFO(dev)->gen >= 4 ||
1472 obj_priv->tiling_mode == I915_TILING_NONE)
1473 return 4096;
1474
1475 /*
1476 * Previous chips need to be aligned to the size of the smallest
1477 * fence register that can contain the object.
1478 */
1479 return i915_gem_get_gtt_size(obj_priv);
1480 }
1481
1482 /**
1483 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1484 * unfenced object
1485 * @obj: object to check
1486 *
1487 * Return the required GTT alignment for an object, only taking into account
1488 * unfenced tiled surface requirements.
1489 */
1490 static uint32_t
1491 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj_priv)
1492 {
1493 struct drm_device *dev = obj_priv->base.dev;
1494 int tile_height;
1495
1496 /*
1497 * Minimum alignment is 4k (GTT page size) for sane hw.
1498 */
1499 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1500 obj_priv->tiling_mode == I915_TILING_NONE)
1501 return 4096;
1502
1503 /*
1504 * Older chips need unfenced tiled buffers to be aligned to the left
1505 * edge of an even tile row (where tile rows are counted as if the bo is
1506 * placed in a fenced gtt region).
1507 */
1508 if (IS_GEN2(dev) ||
1509 (obj_priv->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1510 tile_height = 32;
1511 else
1512 tile_height = 8;
1513
1514 return tile_height * obj_priv->stride * 2;
1515 }
1516
1517 static uint32_t
1518 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
1519 {
1520 struct drm_device *dev = obj_priv->base.dev;
1521 uint32_t size;
1522
1523 /*
1524 * Minimum alignment is 4k (GTT page size), but might be greater
1525 * if a fence register is needed for the object.
1526 */
1527 if (INTEL_INFO(dev)->gen >= 4)
1528 return obj_priv->base.size;
1529
1530 /*
1531 * Previous chips need to be aligned to the size of the smallest
1532 * fence register that can contain the object.
1533 */
1534 if (INTEL_INFO(dev)->gen == 3)
1535 size = 1024*1024;
1536 else
1537 size = 512*1024;
1538
1539 while (size < obj_priv->base.size)
1540 size <<= 1;
1541
1542 return size;
1543 }
1544
1545 /**
1546 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1547 * @dev: DRM device
1548 * @data: GTT mapping ioctl data
1549 * @file_priv: GEM object info
1550 *
1551 * Simply returns the fake offset to userspace so it can mmap it.
1552 * The mmap call will end up in drm_gem_mmap(), which will set things
1553 * up so we can get faults in the handler above.
1554 *
1555 * The fault handler will take care of binding the object into the GTT
1556 * (since it may have been evicted to make room for something), allocating
1557 * a fence register, and mapping the appropriate aperture address into
1558 * userspace.
1559 */
1560 int
1561 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1562 struct drm_file *file_priv)
1563 {
1564 struct drm_i915_private *dev_priv = dev->dev_private;
1565 struct drm_i915_gem_mmap_gtt *args = data;
1566 struct drm_gem_object *obj;
1567 struct drm_i915_gem_object *obj_priv;
1568 int ret;
1569
1570 if (!(dev->driver->driver_features & DRIVER_GEM))
1571 return -ENODEV;
1572
1573 ret = i915_mutex_lock_interruptible(dev);
1574 if (ret)
1575 return ret;
1576
1577 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1578 if (obj == NULL) {
1579 ret = -ENOENT;
1580 goto unlock;
1581 }
1582 obj_priv = to_intel_bo(obj);
1583
1584 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1585 ret = -E2BIG;
1586 goto unlock;
1587 }
1588
1589 if (obj_priv->madv != I915_MADV_WILLNEED) {
1590 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1591 ret = -EINVAL;
1592 goto out;
1593 }
1594
1595 if (!obj->map_list.map) {
1596 ret = i915_gem_create_mmap_offset(obj);
1597 if (ret)
1598 goto out;
1599 }
1600
1601 args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
1602
1603 out:
1604 drm_gem_object_unreference(obj);
1605 unlock:
1606 mutex_unlock(&dev->struct_mutex);
1607 return ret;
1608 }
1609
1610 static int
1611 i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
1612 gfp_t gfpmask)
1613 {
1614 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1615 int page_count, i;
1616 struct address_space *mapping;
1617 struct inode *inode;
1618 struct page *page;
1619
1620 /* Get the list of pages out of our struct file. They'll be pinned
1621 * at this point until we release them.
1622 */
1623 page_count = obj->size / PAGE_SIZE;
1624 BUG_ON(obj_priv->pages != NULL);
1625 obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1626 if (obj_priv->pages == NULL)
1627 return -ENOMEM;
1628
1629 inode = obj->filp->f_path.dentry->d_inode;
1630 mapping = inode->i_mapping;
1631 for (i = 0; i < page_count; i++) {
1632 page = read_cache_page_gfp(mapping, i,
1633 GFP_HIGHUSER |
1634 __GFP_COLD |
1635 __GFP_RECLAIMABLE |
1636 gfpmask);
1637 if (IS_ERR(page))
1638 goto err_pages;
1639
1640 obj_priv->pages[i] = page;
1641 }
1642
1643 if (obj_priv->tiling_mode != I915_TILING_NONE)
1644 i915_gem_object_do_bit_17_swizzle(obj);
1645
1646 return 0;
1647
1648 err_pages:
1649 while (i--)
1650 page_cache_release(obj_priv->pages[i]);
1651
1652 drm_free_large(obj_priv->pages);
1653 obj_priv->pages = NULL;
1654 return PTR_ERR(page);
1655 }
1656
1657 static void
1658 i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
1659 {
1660 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1661 int page_count = obj->size / PAGE_SIZE;
1662 int i;
1663
1664 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1665
1666 if (obj_priv->tiling_mode != I915_TILING_NONE)
1667 i915_gem_object_save_bit_17_swizzle(obj);
1668
1669 if (obj_priv->madv == I915_MADV_DONTNEED)
1670 obj_priv->dirty = 0;
1671
1672 for (i = 0; i < page_count; i++) {
1673 if (obj_priv->dirty)
1674 set_page_dirty(obj_priv->pages[i]);
1675
1676 if (obj_priv->madv == I915_MADV_WILLNEED)
1677 mark_page_accessed(obj_priv->pages[i]);
1678
1679 page_cache_release(obj_priv->pages[i]);
1680 }
1681 obj_priv->dirty = 0;
1682
1683 drm_free_large(obj_priv->pages);
1684 obj_priv->pages = NULL;
1685 }
1686
1687 static uint32_t
1688 i915_gem_next_request_seqno(struct drm_device *dev,
1689 struct intel_ring_buffer *ring)
1690 {
1691 drm_i915_private_t *dev_priv = dev->dev_private;
1692 return ring->outstanding_lazy_request = dev_priv->next_seqno;
1693 }
1694
1695 static void
1696 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1697 struct intel_ring_buffer *ring)
1698 {
1699 struct drm_device *dev = obj->dev;
1700 struct drm_i915_private *dev_priv = dev->dev_private;
1701 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1702 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1703
1704 BUG_ON(ring == NULL);
1705 obj_priv->ring = ring;
1706
1707 /* Add a reference if we're newly entering the active list. */
1708 if (!obj_priv->active) {
1709 drm_gem_object_reference(obj);
1710 obj_priv->active = 1;
1711 }
1712
1713 /* Move from whatever list we were on to the tail of execution. */
1714 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1715 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1716 obj_priv->last_rendering_seqno = seqno;
1717 }
1718
1719 static void
1720 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1721 {
1722 struct drm_device *dev = obj->dev;
1723 drm_i915_private_t *dev_priv = dev->dev_private;
1724 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1725
1726 BUG_ON(!obj_priv->active);
1727 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1728 list_del_init(&obj_priv->ring_list);
1729 obj_priv->last_rendering_seqno = 0;
1730 }
1731
1732 /* Immediately discard the backing storage */
1733 static void
1734 i915_gem_object_truncate(struct drm_gem_object *obj)
1735 {
1736 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1737 struct inode *inode;
1738
1739 /* Our goal here is to return as much of the memory as
1740 * is possible back to the system as we are called from OOM.
1741 * To do this we must instruct the shmfs to drop all of its
1742 * backing pages, *now*. Here we mirror the actions taken
1743 * when by shmem_delete_inode() to release the backing store.
1744 */
1745 inode = obj->filp->f_path.dentry->d_inode;
1746 truncate_inode_pages(inode->i_mapping, 0);
1747 if (inode->i_op->truncate_range)
1748 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1749
1750 obj_priv->madv = __I915_MADV_PURGED;
1751 }
1752
1753 static inline int
1754 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1755 {
1756 return obj_priv->madv == I915_MADV_DONTNEED;
1757 }
1758
1759 static void
1760 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1761 {
1762 struct drm_device *dev = obj->dev;
1763 drm_i915_private_t *dev_priv = dev->dev_private;
1764 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1765
1766 if (obj_priv->pin_count != 0)
1767 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1768 else
1769 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1770 list_del_init(&obj_priv->ring_list);
1771
1772 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1773
1774 obj_priv->last_rendering_seqno = 0;
1775 obj_priv->ring = NULL;
1776 if (obj_priv->active) {
1777 obj_priv->active = 0;
1778 drm_gem_object_unreference(obj);
1779 }
1780 WARN_ON(i915_verify_lists(dev));
1781 }
1782
1783 static void
1784 i915_gem_process_flushing_list(struct drm_device *dev,
1785 uint32_t flush_domains,
1786 struct intel_ring_buffer *ring)
1787 {
1788 drm_i915_private_t *dev_priv = dev->dev_private;
1789 struct drm_i915_gem_object *obj_priv, *next;
1790
1791 list_for_each_entry_safe(obj_priv, next,
1792 &ring->gpu_write_list,
1793 gpu_write_list) {
1794 struct drm_gem_object *obj = &obj_priv->base;
1795
1796 if (obj->write_domain & flush_domains) {
1797 uint32_t old_write_domain = obj->write_domain;
1798
1799 obj->write_domain = 0;
1800 list_del_init(&obj_priv->gpu_write_list);
1801 i915_gem_object_move_to_active(obj, ring);
1802
1803 /* update the fence lru list */
1804 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1805 struct drm_i915_fence_reg *reg =
1806 &dev_priv->fence_regs[obj_priv->fence_reg];
1807 list_move_tail(&reg->lru_list,
1808 &dev_priv->mm.fence_list);
1809 }
1810
1811 trace_i915_gem_object_change_domain(obj,
1812 obj->read_domains,
1813 old_write_domain);
1814 }
1815 }
1816 }
1817
1818 int
1819 i915_add_request(struct drm_device *dev,
1820 struct drm_file *file,
1821 struct drm_i915_gem_request *request,
1822 struct intel_ring_buffer *ring)
1823 {
1824 drm_i915_private_t *dev_priv = dev->dev_private;
1825 struct drm_i915_file_private *file_priv = NULL;
1826 uint32_t seqno;
1827 int was_empty;
1828 int ret;
1829
1830 BUG_ON(request == NULL);
1831
1832 if (file != NULL)
1833 file_priv = file->driver_priv;
1834
1835 ret = ring->add_request(ring, &seqno);
1836 if (ret)
1837 return ret;
1838
1839 ring->outstanding_lazy_request = false;
1840
1841 request->seqno = seqno;
1842 request->ring = ring;
1843 request->emitted_jiffies = jiffies;
1844 was_empty = list_empty(&ring->request_list);
1845 list_add_tail(&request->list, &ring->request_list);
1846
1847 if (file_priv) {
1848 spin_lock(&file_priv->mm.lock);
1849 request->file_priv = file_priv;
1850 list_add_tail(&request->client_list,
1851 &file_priv->mm.request_list);
1852 spin_unlock(&file_priv->mm.lock);
1853 }
1854
1855 if (!dev_priv->mm.suspended) {
1856 mod_timer(&dev_priv->hangcheck_timer,
1857 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1858 if (was_empty)
1859 queue_delayed_work(dev_priv->wq,
1860 &dev_priv->mm.retire_work, HZ);
1861 }
1862 return 0;
1863 }
1864
1865 /**
1866 * Command execution barrier
1867 *
1868 * Ensures that all commands in the ring are finished
1869 * before signalling the CPU
1870 */
1871 static void
1872 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1873 {
1874 uint32_t flush_domains = 0;
1875
1876 /* The sampler always gets flushed on i965 (sigh) */
1877 if (INTEL_INFO(dev)->gen >= 4)
1878 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1879
1880 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1881 }
1882
1883 static inline void
1884 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1885 {
1886 struct drm_i915_file_private *file_priv = request->file_priv;
1887
1888 if (!file_priv)
1889 return;
1890
1891 spin_lock(&file_priv->mm.lock);
1892 list_del(&request->client_list);
1893 request->file_priv = NULL;
1894 spin_unlock(&file_priv->mm.lock);
1895 }
1896
1897 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1898 struct intel_ring_buffer *ring)
1899 {
1900 while (!list_empty(&ring->request_list)) {
1901 struct drm_i915_gem_request *request;
1902
1903 request = list_first_entry(&ring->request_list,
1904 struct drm_i915_gem_request,
1905 list);
1906
1907 list_del(&request->list);
1908 i915_gem_request_remove_from_client(request);
1909 kfree(request);
1910 }
1911
1912 while (!list_empty(&ring->active_list)) {
1913 struct drm_i915_gem_object *obj_priv;
1914
1915 obj_priv = list_first_entry(&ring->active_list,
1916 struct drm_i915_gem_object,
1917 ring_list);
1918
1919 obj_priv->base.write_domain = 0;
1920 list_del_init(&obj_priv->gpu_write_list);
1921 i915_gem_object_move_to_inactive(&obj_priv->base);
1922 }
1923 }
1924
1925 void i915_gem_reset(struct drm_device *dev)
1926 {
1927 struct drm_i915_private *dev_priv = dev->dev_private;
1928 struct drm_i915_gem_object *obj_priv;
1929 int i;
1930
1931 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1932 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1933 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1934
1935 /* Remove anything from the flushing lists. The GPU cache is likely
1936 * to be lost on reset along with the data, so simply move the
1937 * lost bo to the inactive list.
1938 */
1939 while (!list_empty(&dev_priv->mm.flushing_list)) {
1940 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1941 struct drm_i915_gem_object,
1942 mm_list);
1943
1944 obj_priv->base.write_domain = 0;
1945 list_del_init(&obj_priv->gpu_write_list);
1946 i915_gem_object_move_to_inactive(&obj_priv->base);
1947 }
1948
1949 /* Move everything out of the GPU domains to ensure we do any
1950 * necessary invalidation upon reuse.
1951 */
1952 list_for_each_entry(obj_priv,
1953 &dev_priv->mm.inactive_list,
1954 mm_list)
1955 {
1956 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1957 }
1958
1959 /* The fence registers are invalidated so clear them out */
1960 for (i = 0; i < 16; i++) {
1961 struct drm_i915_fence_reg *reg;
1962
1963 reg = &dev_priv->fence_regs[i];
1964 if (!reg->obj)
1965 continue;
1966
1967 i915_gem_clear_fence_reg(reg->obj);
1968 }
1969 }
1970
1971 /**
1972 * This function clears the request list as sequence numbers are passed.
1973 */
1974 static void
1975 i915_gem_retire_requests_ring(struct drm_device *dev,
1976 struct intel_ring_buffer *ring)
1977 {
1978 drm_i915_private_t *dev_priv = dev->dev_private;
1979 uint32_t seqno;
1980
1981 if (!ring->status_page.page_addr ||
1982 list_empty(&ring->request_list))
1983 return;
1984
1985 WARN_ON(i915_verify_lists(dev));
1986
1987 seqno = ring->get_seqno(ring);
1988 while (!list_empty(&ring->request_list)) {
1989 struct drm_i915_gem_request *request;
1990
1991 request = list_first_entry(&ring->request_list,
1992 struct drm_i915_gem_request,
1993 list);
1994
1995 if (!i915_seqno_passed(seqno, request->seqno))
1996 break;
1997
1998 trace_i915_gem_request_retire(dev, request->seqno);
1999
2000 list_del(&request->list);
2001 i915_gem_request_remove_from_client(request);
2002 kfree(request);
2003 }
2004
2005 /* Move any buffers on the active list that are no longer referenced
2006 * by the ringbuffer to the flushing/inactive lists as appropriate.
2007 */
2008 while (!list_empty(&ring->active_list)) {
2009 struct drm_gem_object *obj;
2010 struct drm_i915_gem_object *obj_priv;
2011
2012 obj_priv = list_first_entry(&ring->active_list,
2013 struct drm_i915_gem_object,
2014 ring_list);
2015
2016 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
2017 break;
2018
2019 obj = &obj_priv->base;
2020 if (obj->write_domain != 0)
2021 i915_gem_object_move_to_flushing(obj);
2022 else
2023 i915_gem_object_move_to_inactive(obj);
2024 }
2025
2026 if (unlikely (dev_priv->trace_irq_seqno &&
2027 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
2028 ring->user_irq_put(ring);
2029 dev_priv->trace_irq_seqno = 0;
2030 }
2031
2032 WARN_ON(i915_verify_lists(dev));
2033 }
2034
2035 void
2036 i915_gem_retire_requests(struct drm_device *dev)
2037 {
2038 drm_i915_private_t *dev_priv = dev->dev_private;
2039
2040 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
2041 struct drm_i915_gem_object *obj_priv, *tmp;
2042
2043 /* We must be careful that during unbind() we do not
2044 * accidentally infinitely recurse into retire requests.
2045 * Currently:
2046 * retire -> free -> unbind -> wait -> retire_ring
2047 */
2048 list_for_each_entry_safe(obj_priv, tmp,
2049 &dev_priv->mm.deferred_free_list,
2050 mm_list)
2051 i915_gem_free_object_tail(&obj_priv->base);
2052 }
2053
2054 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
2055 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
2056 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
2057 }
2058
2059 static void
2060 i915_gem_retire_work_handler(struct work_struct *work)
2061 {
2062 drm_i915_private_t *dev_priv;
2063 struct drm_device *dev;
2064
2065 dev_priv = container_of(work, drm_i915_private_t,
2066 mm.retire_work.work);
2067 dev = dev_priv->dev;
2068
2069 /* Come back later if the device is busy... */
2070 if (!mutex_trylock(&dev->struct_mutex)) {
2071 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2072 return;
2073 }
2074
2075 i915_gem_retire_requests(dev);
2076
2077 if (!dev_priv->mm.suspended &&
2078 (!list_empty(&dev_priv->render_ring.request_list) ||
2079 !list_empty(&dev_priv->bsd_ring.request_list) ||
2080 !list_empty(&dev_priv->blt_ring.request_list)))
2081 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2082 mutex_unlock(&dev->struct_mutex);
2083 }
2084
2085 int
2086 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2087 bool interruptible, struct intel_ring_buffer *ring)
2088 {
2089 drm_i915_private_t *dev_priv = dev->dev_private;
2090 u32 ier;
2091 int ret = 0;
2092
2093 BUG_ON(seqno == 0);
2094
2095 if (atomic_read(&dev_priv->mm.wedged))
2096 return -EAGAIN;
2097
2098 if (seqno == ring->outstanding_lazy_request) {
2099 struct drm_i915_gem_request *request;
2100
2101 request = kzalloc(sizeof(*request), GFP_KERNEL);
2102 if (request == NULL)
2103 return -ENOMEM;
2104
2105 ret = i915_add_request(dev, NULL, request, ring);
2106 if (ret) {
2107 kfree(request);
2108 return ret;
2109 }
2110
2111 seqno = request->seqno;
2112 }
2113
2114 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2115 if (HAS_PCH_SPLIT(dev))
2116 ier = I915_READ(DEIER) | I915_READ(GTIER);
2117 else
2118 ier = I915_READ(IER);
2119 if (!ier) {
2120 DRM_ERROR("something (likely vbetool) disabled "
2121 "interrupts, re-enabling\n");
2122 i915_driver_irq_preinstall(dev);
2123 i915_driver_irq_postinstall(dev);
2124 }
2125
2126 trace_i915_gem_request_wait_begin(dev, seqno);
2127
2128 ring->waiting_seqno = seqno;
2129 ring->user_irq_get(ring);
2130 if (interruptible)
2131 ret = wait_event_interruptible(ring->irq_queue,
2132 i915_seqno_passed(ring->get_seqno(ring), seqno)
2133 || atomic_read(&dev_priv->mm.wedged));
2134 else
2135 wait_event(ring->irq_queue,
2136 i915_seqno_passed(ring->get_seqno(ring), seqno)
2137 || atomic_read(&dev_priv->mm.wedged));
2138
2139 ring->user_irq_put(ring);
2140 ring->waiting_seqno = 0;
2141
2142 trace_i915_gem_request_wait_end(dev, seqno);
2143 }
2144 if (atomic_read(&dev_priv->mm.wedged))
2145 ret = -EAGAIN;
2146
2147 if (ret && ret != -ERESTARTSYS)
2148 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2149 __func__, ret, seqno, ring->get_seqno(ring),
2150 dev_priv->next_seqno);
2151
2152 /* Directly dispatch request retiring. While we have the work queue
2153 * to handle this, the waiter on a request often wants an associated
2154 * buffer to have made it to the inactive list, and we would need
2155 * a separate wait queue to handle that.
2156 */
2157 if (ret == 0)
2158 i915_gem_retire_requests_ring(dev, ring);
2159
2160 return ret;
2161 }
2162
2163 /**
2164 * Waits for a sequence number to be signaled, and cleans up the
2165 * request and object lists appropriately for that event.
2166 */
2167 static int
2168 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2169 struct intel_ring_buffer *ring)
2170 {
2171 return i915_do_wait_request(dev, seqno, 1, ring);
2172 }
2173
2174 static void
2175 i915_gem_flush_ring(struct drm_device *dev,
2176 struct drm_file *file_priv,
2177 struct intel_ring_buffer *ring,
2178 uint32_t invalidate_domains,
2179 uint32_t flush_domains)
2180 {
2181 ring->flush(ring, invalidate_domains, flush_domains);
2182 i915_gem_process_flushing_list(dev, flush_domains, ring);
2183 }
2184
2185 static void
2186 i915_gem_flush(struct drm_device *dev,
2187 struct drm_file *file_priv,
2188 uint32_t invalidate_domains,
2189 uint32_t flush_domains,
2190 uint32_t flush_rings)
2191 {
2192 drm_i915_private_t *dev_priv = dev->dev_private;
2193
2194 if (flush_domains & I915_GEM_DOMAIN_CPU)
2195 intel_gtt_chipset_flush();
2196
2197 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2198 if (flush_rings & RING_RENDER)
2199 i915_gem_flush_ring(dev, file_priv,
2200 &dev_priv->render_ring,
2201 invalidate_domains, flush_domains);
2202 if (flush_rings & RING_BSD)
2203 i915_gem_flush_ring(dev, file_priv,
2204 &dev_priv->bsd_ring,
2205 invalidate_domains, flush_domains);
2206 if (flush_rings & RING_BLT)
2207 i915_gem_flush_ring(dev, file_priv,
2208 &dev_priv->blt_ring,
2209 invalidate_domains, flush_domains);
2210 }
2211 }
2212
2213 /**
2214 * Ensures that all rendering to the object has completed and the object is
2215 * safe to unbind from the GTT or access from the CPU.
2216 */
2217 static int
2218 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2219 bool interruptible)
2220 {
2221 struct drm_device *dev = obj->dev;
2222 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2223 int ret;
2224
2225 /* This function only exists to support waiting for existing rendering,
2226 * not for emitting required flushes.
2227 */
2228 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2229
2230 /* If there is rendering queued on the buffer being evicted, wait for
2231 * it.
2232 */
2233 if (obj_priv->active) {
2234 ret = i915_do_wait_request(dev,
2235 obj_priv->last_rendering_seqno,
2236 interruptible,
2237 obj_priv->ring);
2238 if (ret)
2239 return ret;
2240 }
2241
2242 return 0;
2243 }
2244
2245 /**
2246 * Unbinds an object from the GTT aperture.
2247 */
2248 int
2249 i915_gem_object_unbind(struct drm_gem_object *obj)
2250 {
2251 struct drm_device *dev = obj->dev;
2252 struct drm_i915_private *dev_priv = dev->dev_private;
2253 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2254 int ret = 0;
2255
2256 if (obj_priv->gtt_space == NULL)
2257 return 0;
2258
2259 if (obj_priv->pin_count != 0) {
2260 DRM_ERROR("Attempting to unbind pinned buffer\n");
2261 return -EINVAL;
2262 }
2263
2264 /* blow away mappings if mapped through GTT */
2265 i915_gem_release_mmap(obj);
2266
2267 /* Move the object to the CPU domain to ensure that
2268 * any possible CPU writes while it's not in the GTT
2269 * are flushed when we go to remap it. This will
2270 * also ensure that all pending GPU writes are finished
2271 * before we unbind.
2272 */
2273 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2274 if (ret == -ERESTARTSYS)
2275 return ret;
2276 /* Continue on if we fail due to EIO, the GPU is hung so we
2277 * should be safe and we need to cleanup or else we might
2278 * cause memory corruption through use-after-free.
2279 */
2280 if (ret) {
2281 i915_gem_clflush_object(obj);
2282 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2283 }
2284
2285 /* release the fence reg _after_ flushing */
2286 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2287 i915_gem_clear_fence_reg(obj);
2288
2289 drm_unbind_agp(obj_priv->agp_mem);
2290 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2291
2292 i915_gem_object_put_pages_gtt(obj);
2293
2294 i915_gem_info_remove_gtt(dev_priv, obj_priv);
2295 list_del_init(&obj_priv->mm_list);
2296 /* Avoid an unnecessary call to unbind on rebind. */
2297 obj_priv->map_and_fenceable = true;
2298
2299 drm_mm_put_block(obj_priv->gtt_space);
2300 obj_priv->gtt_space = NULL;
2301 obj_priv->gtt_offset = 0;
2302
2303 if (i915_gem_object_is_purgeable(obj_priv))
2304 i915_gem_object_truncate(obj);
2305
2306 trace_i915_gem_object_unbind(obj);
2307
2308 return ret;
2309 }
2310
2311 static int i915_ring_idle(struct drm_device *dev,
2312 struct intel_ring_buffer *ring)
2313 {
2314 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2315 return 0;
2316
2317 i915_gem_flush_ring(dev, NULL, ring,
2318 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2319 return i915_wait_request(dev,
2320 i915_gem_next_request_seqno(dev, ring),
2321 ring);
2322 }
2323
2324 int
2325 i915_gpu_idle(struct drm_device *dev)
2326 {
2327 drm_i915_private_t *dev_priv = dev->dev_private;
2328 bool lists_empty;
2329 int ret;
2330
2331 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2332 list_empty(&dev_priv->mm.active_list));
2333 if (lists_empty)
2334 return 0;
2335
2336 /* Flush everything onto the inactive list. */
2337 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2338 if (ret)
2339 return ret;
2340
2341 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2342 if (ret)
2343 return ret;
2344
2345 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2346 if (ret)
2347 return ret;
2348
2349 return 0;
2350 }
2351
2352 static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
2353 {
2354 struct drm_device *dev = obj->dev;
2355 drm_i915_private_t *dev_priv = dev->dev_private;
2356 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2357 u32 size = i915_gem_get_gtt_size(obj_priv);
2358 int regnum = obj_priv->fence_reg;
2359 uint64_t val;
2360
2361 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2362 0xfffff000) << 32;
2363 val |= obj_priv->gtt_offset & 0xfffff000;
2364 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2365 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2366
2367 if (obj_priv->tiling_mode == I915_TILING_Y)
2368 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2369 val |= I965_FENCE_REG_VALID;
2370
2371 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2372 }
2373
2374 static void i965_write_fence_reg(struct drm_gem_object *obj)
2375 {
2376 struct drm_device *dev = obj->dev;
2377 drm_i915_private_t *dev_priv = dev->dev_private;
2378 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2379 u32 size = i915_gem_get_gtt_size(obj_priv);
2380 int regnum = obj_priv->fence_reg;
2381 uint64_t val;
2382
2383 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2384 0xfffff000) << 32;
2385 val |= obj_priv->gtt_offset & 0xfffff000;
2386 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2387 if (obj_priv->tiling_mode == I915_TILING_Y)
2388 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2389 val |= I965_FENCE_REG_VALID;
2390
2391 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2392 }
2393
2394 static void i915_write_fence_reg(struct drm_gem_object *obj)
2395 {
2396 struct drm_device *dev = obj->dev;
2397 drm_i915_private_t *dev_priv = dev->dev_private;
2398 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2399 u32 size = i915_gem_get_gtt_size(obj_priv);
2400 uint32_t fence_reg, val, pitch_val;
2401 int tile_width;
2402
2403 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2404 (obj_priv->gtt_offset & (size - 1))) {
2405 WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
2406 __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
2407 obj_priv->gtt_space->start, obj_priv->gtt_space->size);
2408 return;
2409 }
2410
2411 if (obj_priv->tiling_mode == I915_TILING_Y &&
2412 HAS_128_BYTE_Y_TILING(dev))
2413 tile_width = 128;
2414 else
2415 tile_width = 512;
2416
2417 /* Note: pitch better be a power of two tile widths */
2418 pitch_val = obj_priv->stride / tile_width;
2419 pitch_val = ffs(pitch_val) - 1;
2420
2421 if (obj_priv->tiling_mode == I915_TILING_Y &&
2422 HAS_128_BYTE_Y_TILING(dev))
2423 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2424 else
2425 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2426
2427 val = obj_priv->gtt_offset;
2428 if (obj_priv->tiling_mode == I915_TILING_Y)
2429 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2430 val |= I915_FENCE_SIZE_BITS(size);
2431 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2432 val |= I830_FENCE_REG_VALID;
2433
2434 fence_reg = obj_priv->fence_reg;
2435 if (fence_reg < 8)
2436 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2437 else
2438 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2439 I915_WRITE(fence_reg, val);
2440 }
2441
2442 static void i830_write_fence_reg(struct drm_gem_object *obj)
2443 {
2444 struct drm_device *dev = obj->dev;
2445 drm_i915_private_t *dev_priv = dev->dev_private;
2446 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2447 u32 size = i915_gem_get_gtt_size(obj_priv);
2448 int regnum = obj_priv->fence_reg;
2449 uint32_t val;
2450 uint32_t pitch_val;
2451 uint32_t fence_size_bits;
2452
2453 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2454 (obj_priv->gtt_offset & (obj->size - 1))) {
2455 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2456 __func__, obj_priv->gtt_offset);
2457 return;
2458 }
2459
2460 pitch_val = obj_priv->stride / 128;
2461 pitch_val = ffs(pitch_val) - 1;
2462 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2463
2464 val = obj_priv->gtt_offset;
2465 if (obj_priv->tiling_mode == I915_TILING_Y)
2466 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2467 fence_size_bits = I830_FENCE_SIZE_BITS(size);
2468 WARN_ON(fence_size_bits & ~0x00000f00);
2469 val |= fence_size_bits;
2470 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2471 val |= I830_FENCE_REG_VALID;
2472
2473 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2474 }
2475
2476 static int i915_find_fence_reg(struct drm_device *dev,
2477 bool interruptible)
2478 {
2479 struct drm_i915_private *dev_priv = dev->dev_private;
2480 struct drm_i915_fence_reg *reg;
2481 struct drm_i915_gem_object *obj_priv = NULL;
2482 int i, avail, ret;
2483
2484 /* First try to find a free reg */
2485 avail = 0;
2486 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2487 reg = &dev_priv->fence_regs[i];
2488 if (!reg->obj)
2489 return i;
2490
2491 obj_priv = to_intel_bo(reg->obj);
2492 if (!obj_priv->pin_count)
2493 avail++;
2494 }
2495
2496 if (avail == 0)
2497 return -ENOSPC;
2498
2499 /* None available, try to steal one or wait for a user to finish */
2500 avail = I915_FENCE_REG_NONE;
2501 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2502 lru_list) {
2503 obj_priv = to_intel_bo(reg->obj);
2504 if (obj_priv->pin_count)
2505 continue;
2506
2507 /* found one! */
2508 avail = obj_priv->fence_reg;
2509 break;
2510 }
2511
2512 BUG_ON(avail == I915_FENCE_REG_NONE);
2513
2514 /* We only have a reference on obj from the active list. put_fence_reg
2515 * might drop that one, causing a use-after-free in it. So hold a
2516 * private reference to obj like the other callers of put_fence_reg
2517 * (set_tiling ioctl) do. */
2518 drm_gem_object_reference(&obj_priv->base);
2519 ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
2520 drm_gem_object_unreference(&obj_priv->base);
2521 if (ret != 0)
2522 return ret;
2523
2524 return avail;
2525 }
2526
2527 /**
2528 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2529 * @obj: object to map through a fence reg
2530 *
2531 * When mapping objects through the GTT, userspace wants to be able to write
2532 * to them without having to worry about swizzling if the object is tiled.
2533 *
2534 * This function walks the fence regs looking for a free one for @obj,
2535 * stealing one if it can't find any.
2536 *
2537 * It then sets up the reg based on the object's properties: address, pitch
2538 * and tiling format.
2539 */
2540 int
2541 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2542 bool interruptible)
2543 {
2544 struct drm_device *dev = obj->dev;
2545 struct drm_i915_private *dev_priv = dev->dev_private;
2546 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2547 struct drm_i915_fence_reg *reg = NULL;
2548 int ret;
2549
2550 /* Just update our place in the LRU if our fence is getting used. */
2551 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2552 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2553 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2554 return 0;
2555 }
2556
2557 switch (obj_priv->tiling_mode) {
2558 case I915_TILING_NONE:
2559 WARN(1, "allocating a fence for non-tiled object?\n");
2560 break;
2561 case I915_TILING_X:
2562 if (!obj_priv->stride)
2563 return -EINVAL;
2564 WARN((obj_priv->stride & (512 - 1)),
2565 "object 0x%08x is X tiled but has non-512B pitch\n",
2566 obj_priv->gtt_offset);
2567 break;
2568 case I915_TILING_Y:
2569 if (!obj_priv->stride)
2570 return -EINVAL;
2571 WARN((obj_priv->stride & (128 - 1)),
2572 "object 0x%08x is Y tiled but has non-128B pitch\n",
2573 obj_priv->gtt_offset);
2574 break;
2575 }
2576
2577 ret = i915_find_fence_reg(dev, interruptible);
2578 if (ret < 0)
2579 return ret;
2580
2581 obj_priv->fence_reg = ret;
2582 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2583 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2584
2585 reg->obj = obj;
2586
2587 switch (INTEL_INFO(dev)->gen) {
2588 case 6:
2589 sandybridge_write_fence_reg(obj);
2590 break;
2591 case 5:
2592 case 4:
2593 i965_write_fence_reg(obj);
2594 break;
2595 case 3:
2596 i915_write_fence_reg(obj);
2597 break;
2598 case 2:
2599 i830_write_fence_reg(obj);
2600 break;
2601 }
2602
2603 trace_i915_gem_object_get_fence(obj,
2604 obj_priv->fence_reg,
2605 obj_priv->tiling_mode);
2606
2607 return 0;
2608 }
2609
2610 /**
2611 * i915_gem_clear_fence_reg - clear out fence register info
2612 * @obj: object to clear
2613 *
2614 * Zeroes out the fence register itself and clears out the associated
2615 * data structures in dev_priv and obj_priv.
2616 */
2617 static void
2618 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2619 {
2620 struct drm_device *dev = obj->dev;
2621 drm_i915_private_t *dev_priv = dev->dev_private;
2622 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2623 struct drm_i915_fence_reg *reg =
2624 &dev_priv->fence_regs[obj_priv->fence_reg];
2625 uint32_t fence_reg;
2626
2627 switch (INTEL_INFO(dev)->gen) {
2628 case 6:
2629 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2630 (obj_priv->fence_reg * 8), 0);
2631 break;
2632 case 5:
2633 case 4:
2634 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2635 break;
2636 case 3:
2637 if (obj_priv->fence_reg >= 8)
2638 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2639 else
2640 case 2:
2641 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2642
2643 I915_WRITE(fence_reg, 0);
2644 break;
2645 }
2646
2647 reg->obj = NULL;
2648 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2649 list_del_init(&reg->lru_list);
2650 }
2651
2652 /**
2653 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2654 * to the buffer to finish, and then resets the fence register.
2655 * @obj: tiled object holding a fence register.
2656 * @bool: whether the wait upon the fence is interruptible
2657 *
2658 * Zeroes out the fence register itself and clears out the associated
2659 * data structures in dev_priv and obj_priv.
2660 */
2661 int
2662 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2663 bool interruptible)
2664 {
2665 struct drm_device *dev = obj->dev;
2666 struct drm_i915_private *dev_priv = dev->dev_private;
2667 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2668 struct drm_i915_fence_reg *reg;
2669
2670 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2671 return 0;
2672
2673 /* If we've changed tiling, GTT-mappings of the object
2674 * need to re-fault to ensure that the correct fence register
2675 * setup is in place.
2676 */
2677 i915_gem_release_mmap(obj);
2678
2679 /* On the i915, GPU access to tiled buffers is via a fence,
2680 * therefore we must wait for any outstanding access to complete
2681 * before clearing the fence.
2682 */
2683 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2684 if (reg->gpu) {
2685 int ret;
2686
2687 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2688 if (ret)
2689 return ret;
2690
2691 ret = i915_gem_object_wait_rendering(obj, interruptible);
2692 if (ret)
2693 return ret;
2694
2695 reg->gpu = false;
2696 }
2697
2698 i915_gem_object_flush_gtt_write_domain(obj);
2699 i915_gem_clear_fence_reg(obj);
2700
2701 return 0;
2702 }
2703
2704 /**
2705 * Finds free space in the GTT aperture and binds the object there.
2706 */
2707 static int
2708 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2709 unsigned alignment,
2710 bool map_and_fenceable)
2711 {
2712 struct drm_device *dev = obj->dev;
2713 drm_i915_private_t *dev_priv = dev->dev_private;
2714 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2715 struct drm_mm_node *free_space;
2716 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2717 u32 size, fence_size, fence_alignment, unfenced_alignment;
2718 bool mappable, fenceable;
2719 int ret;
2720
2721 if (obj_priv->madv != I915_MADV_WILLNEED) {
2722 DRM_ERROR("Attempting to bind a purgeable object\n");
2723 return -EINVAL;
2724 }
2725
2726 fence_size = i915_gem_get_gtt_size(obj_priv);
2727 fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
2728 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj_priv);
2729
2730 if (alignment == 0)
2731 alignment = map_and_fenceable ? fence_alignment :
2732 unfenced_alignment;
2733 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2734 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2735 return -EINVAL;
2736 }
2737
2738 size = map_and_fenceable ? fence_size : obj->size;
2739
2740 /* If the object is bigger than the entire aperture, reject it early
2741 * before evicting everything in a vain attempt to find space.
2742 */
2743 if (obj->size >
2744 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2745 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2746 return -E2BIG;
2747 }
2748
2749 search_free:
2750 if (map_and_fenceable)
2751 free_space =
2752 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2753 size, alignment, 0,
2754 dev_priv->mm.gtt_mappable_end,
2755 0);
2756 else
2757 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2758 size, alignment, 0);
2759
2760 if (free_space != NULL) {
2761 if (map_and_fenceable)
2762 obj_priv->gtt_space =
2763 drm_mm_get_block_range_generic(free_space,
2764 size, alignment, 0,
2765 dev_priv->mm.gtt_mappable_end,
2766 0);
2767 else
2768 obj_priv->gtt_space =
2769 drm_mm_get_block(free_space, size, alignment);
2770 }
2771 if (obj_priv->gtt_space == NULL) {
2772 /* If the gtt is empty and we're still having trouble
2773 * fitting our object in, we're out of memory.
2774 */
2775 ret = i915_gem_evict_something(dev, size, alignment,
2776 map_and_fenceable);
2777 if (ret)
2778 return ret;
2779
2780 goto search_free;
2781 }
2782
2783 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2784 if (ret) {
2785 drm_mm_put_block(obj_priv->gtt_space);
2786 obj_priv->gtt_space = NULL;
2787
2788 if (ret == -ENOMEM) {
2789 /* first try to clear up some space from the GTT */
2790 ret = i915_gem_evict_something(dev, size,
2791 alignment,
2792 map_and_fenceable);
2793 if (ret) {
2794 /* now try to shrink everyone else */
2795 if (gfpmask) {
2796 gfpmask = 0;
2797 goto search_free;
2798 }
2799
2800 return ret;
2801 }
2802
2803 goto search_free;
2804 }
2805
2806 return ret;
2807 }
2808
2809 /* Create an AGP memory structure pointing at our pages, and bind it
2810 * into the GTT.
2811 */
2812 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2813 obj_priv->pages,
2814 obj->size >> PAGE_SHIFT,
2815 obj_priv->gtt_space->start,
2816 obj_priv->agp_type);
2817 if (obj_priv->agp_mem == NULL) {
2818 i915_gem_object_put_pages_gtt(obj);
2819 drm_mm_put_block(obj_priv->gtt_space);
2820 obj_priv->gtt_space = NULL;
2821
2822 ret = i915_gem_evict_something(dev, size,
2823 alignment, map_and_fenceable);
2824 if (ret)
2825 return ret;
2826
2827 goto search_free;
2828 }
2829
2830 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2831
2832 /* keep track of bounds object by adding it to the inactive list */
2833 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2834 i915_gem_info_add_gtt(dev_priv, obj_priv);
2835
2836 /* Assert that the object is not currently in any GPU domain. As it
2837 * wasn't in the GTT, there shouldn't be any way it could have been in
2838 * a GPU cache
2839 */
2840 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2841 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2842
2843 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
2844
2845 fenceable =
2846 obj_priv->gtt_space->size == fence_size &&
2847 (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
2848
2849 mappable =
2850 obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
2851
2852 obj_priv->map_and_fenceable = mappable && fenceable;
2853
2854 return 0;
2855 }
2856
2857 void
2858 i915_gem_clflush_object(struct drm_gem_object *obj)
2859 {
2860 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2861
2862 /* If we don't have a page list set up, then we're not pinned
2863 * to GPU, and we can ignore the cache flush because it'll happen
2864 * again at bind time.
2865 */
2866 if (obj_priv->pages == NULL)
2867 return;
2868
2869 trace_i915_gem_object_clflush(obj);
2870
2871 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2872 }
2873
2874 /** Flushes any GPU write domain for the object if it's dirty. */
2875 static int
2876 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2877 bool pipelined)
2878 {
2879 struct drm_device *dev = obj->dev;
2880
2881 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2882 return 0;
2883
2884 /* Queue the GPU write cache flushing we need. */
2885 i915_gem_flush_ring(dev, NULL,
2886 to_intel_bo(obj)->ring,
2887 0, obj->write_domain);
2888 BUG_ON(obj->write_domain);
2889
2890 if (pipelined)
2891 return 0;
2892
2893 return i915_gem_object_wait_rendering(obj, true);
2894 }
2895
2896 /** Flushes the GTT write domain for the object if it's dirty. */
2897 static void
2898 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2899 {
2900 uint32_t old_write_domain;
2901
2902 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2903 return;
2904
2905 /* No actual flushing is required for the GTT write domain. Writes
2906 * to it immediately go to main memory as far as we know, so there's
2907 * no chipset flush. It also doesn't land in render cache.
2908 */
2909 i915_gem_release_mmap(obj);
2910
2911 old_write_domain = obj->write_domain;
2912 obj->write_domain = 0;
2913
2914 trace_i915_gem_object_change_domain(obj,
2915 obj->read_domains,
2916 old_write_domain);
2917 }
2918
2919 /** Flushes the CPU write domain for the object if it's dirty. */
2920 static void
2921 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2922 {
2923 uint32_t old_write_domain;
2924
2925 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2926 return;
2927
2928 i915_gem_clflush_object(obj);
2929 intel_gtt_chipset_flush();
2930 old_write_domain = obj->write_domain;
2931 obj->write_domain = 0;
2932
2933 trace_i915_gem_object_change_domain(obj,
2934 obj->read_domains,
2935 old_write_domain);
2936 }
2937
2938 /**
2939 * Moves a single object to the GTT read, and possibly write domain.
2940 *
2941 * This function returns when the move is complete, including waiting on
2942 * flushes to occur.
2943 */
2944 int
2945 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2946 {
2947 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2948 uint32_t old_write_domain, old_read_domains;
2949 int ret;
2950
2951 /* Not valid to be called on unbound objects. */
2952 if (obj_priv->gtt_space == NULL)
2953 return -EINVAL;
2954
2955 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2956 if (ret != 0)
2957 return ret;
2958
2959 i915_gem_object_flush_cpu_write_domain(obj);
2960
2961 if (write) {
2962 ret = i915_gem_object_wait_rendering(obj, true);
2963 if (ret)
2964 return ret;
2965 }
2966
2967 old_write_domain = obj->write_domain;
2968 old_read_domains = obj->read_domains;
2969
2970 /* It should now be out of any other write domains, and we can update
2971 * the domain values for our changes.
2972 */
2973 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2974 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2975 if (write) {
2976 obj->read_domains = I915_GEM_DOMAIN_GTT;
2977 obj->write_domain = I915_GEM_DOMAIN_GTT;
2978 obj_priv->dirty = 1;
2979 }
2980
2981 trace_i915_gem_object_change_domain(obj,
2982 old_read_domains,
2983 old_write_domain);
2984
2985 return 0;
2986 }
2987
2988 /*
2989 * Prepare buffer for display plane. Use uninterruptible for possible flush
2990 * wait, as in modesetting process we're not supposed to be interrupted.
2991 */
2992 int
2993 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2994 bool pipelined)
2995 {
2996 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2997 uint32_t old_read_domains;
2998 int ret;
2999
3000 /* Not valid to be called on unbound objects. */
3001 if (obj_priv->gtt_space == NULL)
3002 return -EINVAL;
3003
3004 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
3005 if (ret)
3006 return ret;
3007
3008 /* Currently, we are always called from an non-interruptible context. */
3009 if (!pipelined) {
3010 ret = i915_gem_object_wait_rendering(obj, false);
3011 if (ret)
3012 return ret;
3013 }
3014
3015 i915_gem_object_flush_cpu_write_domain(obj);
3016
3017 old_read_domains = obj->read_domains;
3018 obj->read_domains |= I915_GEM_DOMAIN_GTT;
3019
3020 trace_i915_gem_object_change_domain(obj,
3021 old_read_domains,
3022 obj->write_domain);
3023
3024 return 0;
3025 }
3026
3027 int
3028 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
3029 bool interruptible)
3030 {
3031 if (!obj->active)
3032 return 0;
3033
3034 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
3035 i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
3036 0, obj->base.write_domain);
3037
3038 return i915_gem_object_wait_rendering(&obj->base, interruptible);
3039 }
3040
3041 /**
3042 * Moves a single object to the CPU read, and possibly write domain.
3043 *
3044 * This function returns when the move is complete, including waiting on
3045 * flushes to occur.
3046 */
3047 static int
3048 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3049 {
3050 uint32_t old_write_domain, old_read_domains;
3051 int ret;
3052
3053 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3054 if (ret != 0)
3055 return ret;
3056
3057 i915_gem_object_flush_gtt_write_domain(obj);
3058
3059 /* If we have a partially-valid cache of the object in the CPU,
3060 * finish invalidating it and free the per-page flags.
3061 */
3062 i915_gem_object_set_to_full_cpu_read_domain(obj);
3063
3064 if (write) {
3065 ret = i915_gem_object_wait_rendering(obj, true);
3066 if (ret)
3067 return ret;
3068 }
3069
3070 old_write_domain = obj->write_domain;
3071 old_read_domains = obj->read_domains;
3072
3073 /* Flush the CPU cache if it's still invalid. */
3074 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3075 i915_gem_clflush_object(obj);
3076
3077 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3078 }
3079
3080 /* It should now be out of any other write domains, and we can update
3081 * the domain values for our changes.
3082 */
3083 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3084
3085 /* If we're writing through the CPU, then the GPU read domains will
3086 * need to be invalidated at next use.
3087 */
3088 if (write) {
3089 obj->read_domains = I915_GEM_DOMAIN_CPU;
3090 obj->write_domain = I915_GEM_DOMAIN_CPU;
3091 }
3092
3093 trace_i915_gem_object_change_domain(obj,
3094 old_read_domains,
3095 old_write_domain);
3096
3097 return 0;
3098 }
3099
3100 /*
3101 * Set the next domain for the specified object. This
3102 * may not actually perform the necessary flushing/invaliding though,
3103 * as that may want to be batched with other set_domain operations
3104 *
3105 * This is (we hope) the only really tricky part of gem. The goal
3106 * is fairly simple -- track which caches hold bits of the object
3107 * and make sure they remain coherent. A few concrete examples may
3108 * help to explain how it works. For shorthand, we use the notation
3109 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3110 * a pair of read and write domain masks.
3111 *
3112 * Case 1: the batch buffer
3113 *
3114 * 1. Allocated
3115 * 2. Written by CPU
3116 * 3. Mapped to GTT
3117 * 4. Read by GPU
3118 * 5. Unmapped from GTT
3119 * 6. Freed
3120 *
3121 * Let's take these a step at a time
3122 *
3123 * 1. Allocated
3124 * Pages allocated from the kernel may still have
3125 * cache contents, so we set them to (CPU, CPU) always.
3126 * 2. Written by CPU (using pwrite)
3127 * The pwrite function calls set_domain (CPU, CPU) and
3128 * this function does nothing (as nothing changes)
3129 * 3. Mapped by GTT
3130 * This function asserts that the object is not
3131 * currently in any GPU-based read or write domains
3132 * 4. Read by GPU
3133 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3134 * As write_domain is zero, this function adds in the
3135 * current read domains (CPU+COMMAND, 0).
3136 * flush_domains is set to CPU.
3137 * invalidate_domains is set to COMMAND
3138 * clflush is run to get data out of the CPU caches
3139 * then i915_dev_set_domain calls i915_gem_flush to
3140 * emit an MI_FLUSH and drm_agp_chipset_flush
3141 * 5. Unmapped from GTT
3142 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3143 * flush_domains and invalidate_domains end up both zero
3144 * so no flushing/invalidating happens
3145 * 6. Freed
3146 * yay, done
3147 *
3148 * Case 2: The shared render buffer
3149 *
3150 * 1. Allocated
3151 * 2. Mapped to GTT
3152 * 3. Read/written by GPU
3153 * 4. set_domain to (CPU,CPU)
3154 * 5. Read/written by CPU
3155 * 6. Read/written by GPU
3156 *
3157 * 1. Allocated
3158 * Same as last example, (CPU, CPU)
3159 * 2. Mapped to GTT
3160 * Nothing changes (assertions find that it is not in the GPU)
3161 * 3. Read/written by GPU
3162 * execbuffer calls set_domain (RENDER, RENDER)
3163 * flush_domains gets CPU
3164 * invalidate_domains gets GPU
3165 * clflush (obj)
3166 * MI_FLUSH and drm_agp_chipset_flush
3167 * 4. set_domain (CPU, CPU)
3168 * flush_domains gets GPU
3169 * invalidate_domains gets CPU
3170 * wait_rendering (obj) to make sure all drawing is complete.
3171 * This will include an MI_FLUSH to get the data from GPU
3172 * to memory
3173 * clflush (obj) to invalidate the CPU cache
3174 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3175 * 5. Read/written by CPU
3176 * cache lines are loaded and dirtied
3177 * 6. Read written by GPU
3178 * Same as last GPU access
3179 *
3180 * Case 3: The constant buffer
3181 *
3182 * 1. Allocated
3183 * 2. Written by CPU
3184 * 3. Read by GPU
3185 * 4. Updated (written) by CPU again
3186 * 5. Read by GPU
3187 *
3188 * 1. Allocated
3189 * (CPU, CPU)
3190 * 2. Written by CPU
3191 * (CPU, CPU)
3192 * 3. Read by GPU
3193 * (CPU+RENDER, 0)
3194 * flush_domains = CPU
3195 * invalidate_domains = RENDER
3196 * clflush (obj)
3197 * MI_FLUSH
3198 * drm_agp_chipset_flush
3199 * 4. Updated (written) by CPU again
3200 * (CPU, CPU)
3201 * flush_domains = 0 (no previous write domain)
3202 * invalidate_domains = 0 (no new read domains)
3203 * 5. Read by GPU
3204 * (CPU+RENDER, 0)
3205 * flush_domains = CPU
3206 * invalidate_domains = RENDER
3207 * clflush (obj)
3208 * MI_FLUSH
3209 * drm_agp_chipset_flush
3210 */
3211 static void
3212 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3213 struct intel_ring_buffer *ring,
3214 struct change_domains *cd)
3215 {
3216 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3217 uint32_t invalidate_domains = 0;
3218 uint32_t flush_domains = 0;
3219
3220 /*
3221 * If the object isn't moving to a new write domain,
3222 * let the object stay in multiple read domains
3223 */
3224 if (obj->pending_write_domain == 0)
3225 obj->pending_read_domains |= obj->read_domains;
3226
3227 /*
3228 * Flush the current write domain if
3229 * the new read domains don't match. Invalidate
3230 * any read domains which differ from the old
3231 * write domain
3232 */
3233 if (obj->write_domain &&
3234 (obj->write_domain != obj->pending_read_domains ||
3235 obj_priv->ring != ring)) {
3236 flush_domains |= obj->write_domain;
3237 invalidate_domains |=
3238 obj->pending_read_domains & ~obj->write_domain;
3239 }
3240 /*
3241 * Invalidate any read caches which may have
3242 * stale data. That is, any new read domains.
3243 */
3244 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3245 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3246 i915_gem_clflush_object(obj);
3247
3248 /* blow away mappings if mapped through GTT */
3249 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
3250 i915_gem_release_mmap(obj);
3251
3252 /* The actual obj->write_domain will be updated with
3253 * pending_write_domain after we emit the accumulated flush for all
3254 * of our domain changes in execbuffers (which clears objects'
3255 * write_domains). So if we have a current write domain that we
3256 * aren't changing, set pending_write_domain to that.
3257 */
3258 if (flush_domains == 0 && obj->pending_write_domain == 0)
3259 obj->pending_write_domain = obj->write_domain;
3260
3261 cd->invalidate_domains |= invalidate_domains;
3262 cd->flush_domains |= flush_domains;
3263 if (flush_domains & I915_GEM_GPU_DOMAINS)
3264 cd->flush_rings |= obj_priv->ring->id;
3265 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3266 cd->flush_rings |= ring->id;
3267 }
3268
3269 /**
3270 * Moves the object from a partially CPU read to a full one.
3271 *
3272 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3273 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3274 */
3275 static void
3276 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3277 {
3278 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3279
3280 if (!obj_priv->page_cpu_valid)
3281 return;
3282
3283 /* If we're partially in the CPU read domain, finish moving it in.
3284 */
3285 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3286 int i;
3287
3288 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3289 if (obj_priv->page_cpu_valid[i])
3290 continue;
3291 drm_clflush_pages(obj_priv->pages + i, 1);
3292 }
3293 }
3294
3295 /* Free the page_cpu_valid mappings which are now stale, whether
3296 * or not we've got I915_GEM_DOMAIN_CPU.
3297 */
3298 kfree(obj_priv->page_cpu_valid);
3299 obj_priv->page_cpu_valid = NULL;
3300 }
3301
3302 /**
3303 * Set the CPU read domain on a range of the object.
3304 *
3305 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3306 * not entirely valid. The page_cpu_valid member of the object flags which
3307 * pages have been flushed, and will be respected by
3308 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3309 * of the whole object.
3310 *
3311 * This function returns when the move is complete, including waiting on
3312 * flushes to occur.
3313 */
3314 static int
3315 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3316 uint64_t offset, uint64_t size)
3317 {
3318 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3319 uint32_t old_read_domains;
3320 int i, ret;
3321
3322 if (offset == 0 && size == obj->size)
3323 return i915_gem_object_set_to_cpu_domain(obj, 0);
3324
3325 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3326 if (ret != 0)
3327 return ret;
3328 i915_gem_object_flush_gtt_write_domain(obj);
3329
3330 /* If we're already fully in the CPU read domain, we're done. */
3331 if (obj_priv->page_cpu_valid == NULL &&
3332 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3333 return 0;
3334
3335 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3336 * newly adding I915_GEM_DOMAIN_CPU
3337 */
3338 if (obj_priv->page_cpu_valid == NULL) {
3339 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3340 GFP_KERNEL);
3341 if (obj_priv->page_cpu_valid == NULL)
3342 return -ENOMEM;
3343 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3344 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3345
3346 /* Flush the cache on any pages that are still invalid from the CPU's
3347 * perspective.
3348 */
3349 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3350 i++) {
3351 if (obj_priv->page_cpu_valid[i])
3352 continue;
3353
3354 drm_clflush_pages(obj_priv->pages + i, 1);
3355
3356 obj_priv->page_cpu_valid[i] = 1;
3357 }
3358
3359 /* It should now be out of any other write domains, and we can update
3360 * the domain values for our changes.
3361 */
3362 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3363
3364 old_read_domains = obj->read_domains;
3365 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3366
3367 trace_i915_gem_object_change_domain(obj,
3368 old_read_domains,
3369 obj->write_domain);
3370
3371 return 0;
3372 }
3373
3374 static int
3375 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
3376 struct drm_file *file_priv,
3377 struct drm_i915_gem_exec_object2 *entry,
3378 struct drm_i915_gem_relocation_entry *reloc)
3379 {
3380 struct drm_device *dev = obj->base.dev;
3381 struct drm_gem_object *target_obj;
3382 uint32_t target_offset;
3383 int ret = -EINVAL;
3384
3385 target_obj = drm_gem_object_lookup(dev, file_priv,
3386 reloc->target_handle);
3387 if (target_obj == NULL)
3388 return -ENOENT;
3389
3390 target_offset = to_intel_bo(target_obj)->gtt_offset;
3391
3392 #if WATCH_RELOC
3393 DRM_INFO("%s: obj %p offset %08x target %d "
3394 "read %08x write %08x gtt %08x "
3395 "presumed %08x delta %08x\n",
3396 __func__,
3397 obj,
3398 (int) reloc->offset,
3399 (int) reloc->target_handle,
3400 (int) reloc->read_domains,
3401 (int) reloc->write_domain,
3402 (int) target_offset,
3403 (int) reloc->presumed_offset,
3404 reloc->delta);
3405 #endif
3406
3407 /* The target buffer should have appeared before us in the
3408 * exec_object list, so it should have a GTT space bound by now.
3409 */
3410 if (target_offset == 0) {
3411 DRM_ERROR("No GTT space found for object %d\n",
3412 reloc->target_handle);
3413 goto err;
3414 }
3415
3416 /* Validate that the target is in a valid r/w GPU domain */
3417 if (reloc->write_domain & (reloc->write_domain - 1)) {
3418 DRM_ERROR("reloc with multiple write domains: "
3419 "obj %p target %d offset %d "
3420 "read %08x write %08x",
3421 obj, reloc->target_handle,
3422 (int) reloc->offset,
3423 reloc->read_domains,
3424 reloc->write_domain);
3425 goto err;
3426 }
3427 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3428 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3429 DRM_ERROR("reloc with read/write CPU domains: "
3430 "obj %p target %d offset %d "
3431 "read %08x write %08x",
3432 obj, reloc->target_handle,
3433 (int) reloc->offset,
3434 reloc->read_domains,
3435 reloc->write_domain);
3436 goto err;
3437 }
3438 if (reloc->write_domain && target_obj->pending_write_domain &&
3439 reloc->write_domain != target_obj->pending_write_domain) {
3440 DRM_ERROR("Write domain conflict: "
3441 "obj %p target %d offset %d "
3442 "new %08x old %08x\n",
3443 obj, reloc->target_handle,
3444 (int) reloc->offset,
3445 reloc->write_domain,
3446 target_obj->pending_write_domain);
3447 goto err;
3448 }
3449
3450 target_obj->pending_read_domains |= reloc->read_domains;
3451 target_obj->pending_write_domain |= reloc->write_domain;
3452
3453 /* If the relocation already has the right value in it, no
3454 * more work needs to be done.
3455 */
3456 if (target_offset == reloc->presumed_offset)
3457 goto out;
3458
3459 /* Check that the relocation address is valid... */
3460 if (reloc->offset > obj->base.size - 4) {
3461 DRM_ERROR("Relocation beyond object bounds: "
3462 "obj %p target %d offset %d size %d.\n",
3463 obj, reloc->target_handle,
3464 (int) reloc->offset,
3465 (int) obj->base.size);
3466 goto err;
3467 }
3468 if (reloc->offset & 3) {
3469 DRM_ERROR("Relocation not 4-byte aligned: "
3470 "obj %p target %d offset %d.\n",
3471 obj, reloc->target_handle,
3472 (int) reloc->offset);
3473 goto err;
3474 }
3475
3476 /* and points to somewhere within the target object. */
3477 if (reloc->delta >= target_obj->size) {
3478 DRM_ERROR("Relocation beyond target object bounds: "
3479 "obj %p target %d delta %d size %d.\n",
3480 obj, reloc->target_handle,
3481 (int) reloc->delta,
3482 (int) target_obj->size);
3483 goto err;
3484 }
3485
3486 reloc->delta += target_offset;
3487 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3488 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
3489 char *vaddr;
3490
3491 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
3492 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
3493 kunmap_atomic(vaddr);
3494 } else {
3495 struct drm_i915_private *dev_priv = dev->dev_private;
3496 uint32_t __iomem *reloc_entry;
3497 void __iomem *reloc_page;
3498
3499 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3500 if (ret)
3501 goto err;
3502
3503 /* Map the page containing the relocation we're going to perform. */
3504 reloc->offset += obj->gtt_offset;
3505 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3506 reloc->offset & PAGE_MASK);
3507 reloc_entry = (uint32_t __iomem *)
3508 (reloc_page + (reloc->offset & ~PAGE_MASK));
3509 iowrite32(reloc->delta, reloc_entry);
3510 io_mapping_unmap_atomic(reloc_page);
3511 }
3512
3513 /* and update the user's relocation entry */
3514 reloc->presumed_offset = target_offset;
3515
3516 out:
3517 ret = 0;
3518 err:
3519 drm_gem_object_unreference(target_obj);
3520 return ret;
3521 }
3522
3523 static int
3524 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
3525 struct drm_file *file_priv,
3526 struct drm_i915_gem_exec_object2 *entry)
3527 {
3528 struct drm_i915_gem_relocation_entry __user *user_relocs;
3529 int i, ret;
3530
3531 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3532 for (i = 0; i < entry->relocation_count; i++) {
3533 struct drm_i915_gem_relocation_entry reloc;
3534
3535 if (__copy_from_user_inatomic(&reloc,
3536 user_relocs+i,
3537 sizeof(reloc)))
3538 return -EFAULT;
3539
3540 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
3541 if (ret)
3542 return ret;
3543
3544 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3545 &reloc.presumed_offset,
3546 sizeof(reloc.presumed_offset)))
3547 return -EFAULT;
3548 }
3549
3550 return 0;
3551 }
3552
3553 static int
3554 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
3555 struct drm_file *file_priv,
3556 struct drm_i915_gem_exec_object2 *entry,
3557 struct drm_i915_gem_relocation_entry *relocs)
3558 {
3559 int i, ret;
3560
3561 for (i = 0; i < entry->relocation_count; i++) {
3562 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
3563 if (ret)
3564 return ret;
3565 }
3566
3567 return 0;
3568 }
3569
3570 static int
3571 i915_gem_execbuffer_relocate(struct drm_device *dev,
3572 struct drm_file *file,
3573 struct drm_gem_object **object_list,
3574 struct drm_i915_gem_exec_object2 *exec_list,
3575 int count)
3576 {
3577 int i, ret;
3578
3579 for (i = 0; i < count; i++) {
3580 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3581 obj->base.pending_read_domains = 0;
3582 obj->base.pending_write_domain = 0;
3583 ret = i915_gem_execbuffer_relocate_object(obj, file,
3584 &exec_list[i]);
3585 if (ret)
3586 return ret;
3587 }
3588
3589 return 0;
3590 }
3591
3592 static int
3593 i915_gem_execbuffer_reserve(struct drm_device *dev,
3594 struct drm_file *file,
3595 struct drm_gem_object **object_list,
3596 struct drm_i915_gem_exec_object2 *exec_list,
3597 int count)
3598 {
3599 struct drm_i915_private *dev_priv = dev->dev_private;
3600 int ret, i, retry;
3601
3602 /* attempt to pin all of the buffers into the GTT */
3603 retry = 0;
3604 do {
3605 ret = 0;
3606 for (i = 0; i < count; i++) {
3607 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3608 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3609 bool need_fence =
3610 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3611 obj->tiling_mode != I915_TILING_NONE;
3612
3613 /* g33/pnv can't fence buffers in the unmappable part */
3614 bool need_mappable =
3615 entry->relocation_count ? true : need_fence;
3616
3617 /* Check fence reg constraints and rebind if necessary */
3618 if (need_mappable && !obj->map_and_fenceable) {
3619 ret = i915_gem_object_unbind(&obj->base);
3620 if (ret)
3621 break;
3622 }
3623
3624 ret = i915_gem_object_pin(&obj->base,
3625 entry->alignment,
3626 need_mappable);
3627 if (ret)
3628 break;
3629
3630 /*
3631 * Pre-965 chips need a fence register set up in order
3632 * to properly handle blits to/from tiled surfaces.
3633 */
3634 if (need_fence) {
3635 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3636 if (ret) {
3637 i915_gem_object_unpin(&obj->base);
3638 break;
3639 }
3640
3641 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3642 }
3643
3644 entry->offset = obj->gtt_offset;
3645 }
3646
3647 while (i--)
3648 i915_gem_object_unpin(object_list[i]);
3649
3650 if (ret != -ENOSPC || retry > 1)
3651 return ret;
3652
3653 /* First attempt, just clear anything that is purgeable.
3654 * Second attempt, clear the entire GTT.
3655 */
3656 ret = i915_gem_evict_everything(dev, retry == 0);
3657 if (ret)
3658 return ret;
3659
3660 retry++;
3661 } while (1);
3662 }
3663
3664 static int
3665 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
3666 struct drm_file *file,
3667 struct drm_gem_object **object_list,
3668 struct drm_i915_gem_exec_object2 *exec_list,
3669 int count)
3670 {
3671 struct drm_i915_gem_relocation_entry *reloc;
3672 int i, total, ret;
3673
3674 for (i = 0; i < count; i++) {
3675 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3676 obj->in_execbuffer = false;
3677 }
3678
3679 mutex_unlock(&dev->struct_mutex);
3680
3681 total = 0;
3682 for (i = 0; i < count; i++)
3683 total += exec_list[i].relocation_count;
3684
3685 reloc = drm_malloc_ab(total, sizeof(*reloc));
3686 if (reloc == NULL) {
3687 mutex_lock(&dev->struct_mutex);
3688 return -ENOMEM;
3689 }
3690
3691 total = 0;
3692 for (i = 0; i < count; i++) {
3693 struct drm_i915_gem_relocation_entry __user *user_relocs;
3694
3695 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3696
3697 if (copy_from_user(reloc+total, user_relocs,
3698 exec_list[i].relocation_count *
3699 sizeof(*reloc))) {
3700 ret = -EFAULT;
3701 mutex_lock(&dev->struct_mutex);
3702 goto err;
3703 }
3704
3705 total += exec_list[i].relocation_count;
3706 }
3707
3708 ret = i915_mutex_lock_interruptible(dev);
3709 if (ret) {
3710 mutex_lock(&dev->struct_mutex);
3711 goto err;
3712 }
3713
3714 ret = i915_gem_execbuffer_reserve(dev, file,
3715 object_list, exec_list,
3716 count);
3717 if (ret)
3718 goto err;
3719
3720 total = 0;
3721 for (i = 0; i < count; i++) {
3722 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3723 obj->base.pending_read_domains = 0;
3724 obj->base.pending_write_domain = 0;
3725 ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
3726 &exec_list[i],
3727 reloc + total);
3728 if (ret)
3729 goto err;
3730
3731 total += exec_list[i].relocation_count;
3732 }
3733
3734 /* Leave the user relocations as are, this is the painfully slow path,
3735 * and we want to avoid the complication of dropping the lock whilst
3736 * having buffers reserved in the aperture and so causing spurious
3737 * ENOSPC for random operations.
3738 */
3739
3740 err:
3741 drm_free_large(reloc);
3742 return ret;
3743 }
3744
3745 static int
3746 i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3747 struct drm_file *file,
3748 struct intel_ring_buffer *ring,
3749 struct drm_gem_object **objects,
3750 int count)
3751 {
3752 struct change_domains cd;
3753 int ret, i;
3754
3755 cd.invalidate_domains = 0;
3756 cd.flush_domains = 0;
3757 cd.flush_rings = 0;
3758 for (i = 0; i < count; i++)
3759 i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
3760
3761 if (cd.invalidate_domains | cd.flush_domains) {
3762 #if WATCH_EXEC
3763 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3764 __func__,
3765 cd.invalidate_domains,
3766 cd.flush_domains);
3767 #endif
3768 i915_gem_flush(dev, file,
3769 cd.invalidate_domains,
3770 cd.flush_domains,
3771 cd.flush_rings);
3772 }
3773
3774 for (i = 0; i < count; i++) {
3775 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3776 /* XXX replace with semaphores */
3777 if (obj->ring && ring != obj->ring) {
3778 ret = i915_gem_object_wait_rendering(&obj->base, true);
3779 if (ret)
3780 return ret;
3781 }
3782 }
3783
3784 return 0;
3785 }
3786
3787 /* Throttle our rendering by waiting until the ring has completed our requests
3788 * emitted over 20 msec ago.
3789 *
3790 * Note that if we were to use the current jiffies each time around the loop,
3791 * we wouldn't escape the function with any frames outstanding if the time to
3792 * render a frame was over 20ms.
3793 *
3794 * This should get us reasonable parallelism between CPU and GPU but also
3795 * relatively low latency when blocking on a particular request to finish.
3796 */
3797 static int
3798 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3799 {
3800 struct drm_i915_private *dev_priv = dev->dev_private;
3801 struct drm_i915_file_private *file_priv = file->driver_priv;
3802 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3803 struct drm_i915_gem_request *request;
3804 struct intel_ring_buffer *ring = NULL;
3805 u32 seqno = 0;
3806 int ret;
3807
3808 spin_lock(&file_priv->mm.lock);
3809 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3810 if (time_after_eq(request->emitted_jiffies, recent_enough))
3811 break;
3812
3813 ring = request->ring;
3814 seqno = request->seqno;
3815 }
3816 spin_unlock(&file_priv->mm.lock);
3817
3818 if (seqno == 0)
3819 return 0;
3820
3821 ret = 0;
3822 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3823 /* And wait for the seqno passing without holding any locks and
3824 * causing extra latency for others. This is safe as the irq
3825 * generation is designed to be run atomically and so is
3826 * lockless.
3827 */
3828 ring->user_irq_get(ring);
3829 ret = wait_event_interruptible(ring->irq_queue,
3830 i915_seqno_passed(ring->get_seqno(ring), seqno)
3831 || atomic_read(&dev_priv->mm.wedged));
3832 ring->user_irq_put(ring);
3833
3834 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3835 ret = -EIO;
3836 }
3837
3838 if (ret == 0)
3839 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3840
3841 return ret;
3842 }
3843
3844 static int
3845 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3846 uint64_t exec_offset)
3847 {
3848 uint32_t exec_start, exec_len;
3849
3850 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3851 exec_len = (uint32_t) exec->batch_len;
3852
3853 if ((exec_start | exec_len) & 0x7)
3854 return -EINVAL;
3855
3856 if (!exec_start)
3857 return -EINVAL;
3858
3859 return 0;
3860 }
3861
3862 static int
3863 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3864 int count)
3865 {
3866 int i;
3867
3868 for (i = 0; i < count; i++) {
3869 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3870 int length; /* limited by fault_in_pages_readable() */
3871
3872 /* First check for malicious input causing overflow */
3873 if (exec[i].relocation_count >
3874 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
3875 return -EINVAL;
3876
3877 length = exec[i].relocation_count *
3878 sizeof(struct drm_i915_gem_relocation_entry);
3879 if (!access_ok(VERIFY_READ, ptr, length))
3880 return -EFAULT;
3881
3882 /* we may also need to update the presumed offsets */
3883 if (!access_ok(VERIFY_WRITE, ptr, length))
3884 return -EFAULT;
3885
3886 if (fault_in_pages_readable(ptr, length))
3887 return -EFAULT;
3888 }
3889
3890 return 0;
3891 }
3892
3893 static int
3894 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3895 struct drm_file *file,
3896 struct drm_i915_gem_execbuffer2 *args,
3897 struct drm_i915_gem_exec_object2 *exec_list)
3898 {
3899 drm_i915_private_t *dev_priv = dev->dev_private;
3900 struct drm_gem_object **object_list = NULL;
3901 struct drm_gem_object *batch_obj;
3902 struct drm_clip_rect *cliprects = NULL;
3903 struct drm_i915_gem_request *request = NULL;
3904 int ret, i, flips;
3905 uint64_t exec_offset;
3906
3907 struct intel_ring_buffer *ring = NULL;
3908
3909 ret = i915_gem_check_is_wedged(dev);
3910 if (ret)
3911 return ret;
3912
3913 ret = validate_exec_list(exec_list, args->buffer_count);
3914 if (ret)
3915 return ret;
3916
3917 #if WATCH_EXEC
3918 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3919 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3920 #endif
3921 switch (args->flags & I915_EXEC_RING_MASK) {
3922 case I915_EXEC_DEFAULT:
3923 case I915_EXEC_RENDER:
3924 ring = &dev_priv->render_ring;
3925 break;
3926 case I915_EXEC_BSD:
3927 if (!HAS_BSD(dev)) {
3928 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3929 return -EINVAL;
3930 }
3931 ring = &dev_priv->bsd_ring;
3932 break;
3933 case I915_EXEC_BLT:
3934 if (!HAS_BLT(dev)) {
3935 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3936 return -EINVAL;
3937 }
3938 ring = &dev_priv->blt_ring;
3939 break;
3940 default:
3941 DRM_ERROR("execbuf with unknown ring: %d\n",
3942 (int)(args->flags & I915_EXEC_RING_MASK));
3943 return -EINVAL;
3944 }
3945
3946 if (args->buffer_count < 1) {
3947 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3948 return -EINVAL;
3949 }
3950 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3951 if (object_list == NULL) {
3952 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3953 args->buffer_count);
3954 ret = -ENOMEM;
3955 goto pre_mutex_err;
3956 }
3957
3958 if (args->num_cliprects != 0) {
3959 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3960 GFP_KERNEL);
3961 if (cliprects == NULL) {
3962 ret = -ENOMEM;
3963 goto pre_mutex_err;
3964 }
3965
3966 ret = copy_from_user(cliprects,
3967 (struct drm_clip_rect __user *)
3968 (uintptr_t) args->cliprects_ptr,
3969 sizeof(*cliprects) * args->num_cliprects);
3970 if (ret != 0) {
3971 DRM_ERROR("copy %d cliprects failed: %d\n",
3972 args->num_cliprects, ret);
3973 ret = -EFAULT;
3974 goto pre_mutex_err;
3975 }
3976 }
3977
3978 request = kzalloc(sizeof(*request), GFP_KERNEL);
3979 if (request == NULL) {
3980 ret = -ENOMEM;
3981 goto pre_mutex_err;
3982 }
3983
3984 ret = i915_mutex_lock_interruptible(dev);
3985 if (ret)
3986 goto pre_mutex_err;
3987
3988 if (dev_priv->mm.suspended) {
3989 mutex_unlock(&dev->struct_mutex);
3990 ret = -EBUSY;
3991 goto pre_mutex_err;
3992 }
3993
3994 /* Look up object handles */
3995 for (i = 0; i < args->buffer_count; i++) {
3996 struct drm_i915_gem_object *obj_priv;
3997
3998 object_list[i] = drm_gem_object_lookup(dev, file,
3999 exec_list[i].handle);
4000 if (object_list[i] == NULL) {
4001 DRM_ERROR("Invalid object handle %d at index %d\n",
4002 exec_list[i].handle, i);
4003 /* prevent error path from reading uninitialized data */
4004 args->buffer_count = i + 1;
4005 ret = -ENOENT;
4006 goto err;
4007 }
4008
4009 obj_priv = to_intel_bo(object_list[i]);
4010 if (obj_priv->in_execbuffer) {
4011 DRM_ERROR("Object %p appears more than once in object list\n",
4012 object_list[i]);
4013 /* prevent error path from reading uninitialized data */
4014 args->buffer_count = i + 1;
4015 ret = -EINVAL;
4016 goto err;
4017 }
4018 obj_priv->in_execbuffer = true;
4019 }
4020
4021 /* Move the objects en-masse into the GTT, evicting if necessary. */
4022 ret = i915_gem_execbuffer_reserve(dev, file,
4023 object_list, exec_list,
4024 args->buffer_count);
4025 if (ret)
4026 goto err;
4027
4028 /* The objects are in their final locations, apply the relocations. */
4029 ret = i915_gem_execbuffer_relocate(dev, file,
4030 object_list, exec_list,
4031 args->buffer_count);
4032 if (ret) {
4033 if (ret == -EFAULT) {
4034 ret = i915_gem_execbuffer_relocate_slow(dev, file,
4035 object_list,
4036 exec_list,
4037 args->buffer_count);
4038 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
4039 }
4040 if (ret)
4041 goto err;
4042 }
4043
4044 /* Set the pending read domains for the batch buffer to COMMAND */
4045 batch_obj = object_list[args->buffer_count-1];
4046 if (batch_obj->pending_write_domain) {
4047 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
4048 ret = -EINVAL;
4049 goto err;
4050 }
4051 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
4052
4053 /* Sanity check the batch buffer */
4054 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
4055 ret = i915_gem_check_execbuffer(args, exec_offset);
4056 if (ret != 0) {
4057 DRM_ERROR("execbuf with invalid offset/length\n");
4058 goto err;
4059 }
4060
4061 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
4062 object_list, args->buffer_count);
4063 if (ret)
4064 goto err;
4065
4066 #if WATCH_COHERENCY
4067 for (i = 0; i < args->buffer_count; i++) {
4068 i915_gem_object_check_coherency(object_list[i],
4069 exec_list[i].handle);
4070 }
4071 #endif
4072
4073 #if WATCH_EXEC
4074 i915_gem_dump_object(batch_obj,
4075 args->batch_len,
4076 __func__,
4077 ~0);
4078 #endif
4079
4080 /* Check for any pending flips. As we only maintain a flip queue depth
4081 * of 1, we can simply insert a WAIT for the next display flip prior
4082 * to executing the batch and avoid stalling the CPU.
4083 */
4084 flips = 0;
4085 for (i = 0; i < args->buffer_count; i++) {
4086 if (object_list[i]->write_domain)
4087 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
4088 }
4089 if (flips) {
4090 int plane, flip_mask;
4091
4092 for (plane = 0; flips >> plane; plane++) {
4093 if (((flips >> plane) & 1) == 0)
4094 continue;
4095
4096 if (plane)
4097 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
4098 else
4099 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
4100
4101 ret = intel_ring_begin(ring, 2);
4102 if (ret)
4103 goto err;
4104
4105 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
4106 intel_ring_emit(ring, MI_NOOP);
4107 intel_ring_advance(ring);
4108 }
4109 }
4110
4111 /* Exec the batchbuffer */
4112 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
4113 if (ret) {
4114 DRM_ERROR("dispatch failed %d\n", ret);
4115 goto err;
4116 }
4117
4118 for (i = 0; i < args->buffer_count; i++) {
4119 struct drm_gem_object *obj = object_list[i];
4120
4121 obj->read_domains = obj->pending_read_domains;
4122 obj->write_domain = obj->pending_write_domain;
4123
4124 i915_gem_object_move_to_active(obj, ring);
4125 if (obj->write_domain) {
4126 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4127 obj_priv->dirty = 1;
4128 list_move_tail(&obj_priv->gpu_write_list,
4129 &ring->gpu_write_list);
4130 intel_mark_busy(dev, obj);
4131 }
4132
4133 trace_i915_gem_object_change_domain(obj,
4134 obj->read_domains,
4135 obj->write_domain);
4136 }
4137
4138 /*
4139 * Ensure that the commands in the batch buffer are
4140 * finished before the interrupt fires
4141 */
4142 i915_retire_commands(dev, ring);
4143
4144 if (i915_add_request(dev, file, request, ring))
4145 i915_gem_next_request_seqno(dev, ring);
4146 else
4147 request = NULL;
4148
4149 err:
4150 for (i = 0; i < args->buffer_count; i++) {
4151 if (object_list[i] == NULL)
4152 break;
4153
4154 to_intel_bo(object_list[i])->in_execbuffer = false;
4155 drm_gem_object_unreference(object_list[i]);
4156 }
4157
4158 mutex_unlock(&dev->struct_mutex);
4159
4160 pre_mutex_err:
4161 drm_free_large(object_list);
4162 kfree(cliprects);
4163 kfree(request);
4164
4165 return ret;
4166 }
4167
4168 /*
4169 * Legacy execbuffer just creates an exec2 list from the original exec object
4170 * list array and passes it to the real function.
4171 */
4172 int
4173 i915_gem_execbuffer(struct drm_device *dev, void *data,
4174 struct drm_file *file_priv)
4175 {
4176 struct drm_i915_gem_execbuffer *args = data;
4177 struct drm_i915_gem_execbuffer2 exec2;
4178 struct drm_i915_gem_exec_object *exec_list = NULL;
4179 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4180 int ret, i;
4181
4182 #if WATCH_EXEC
4183 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4184 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4185 #endif
4186
4187 if (args->buffer_count < 1) {
4188 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4189 return -EINVAL;
4190 }
4191
4192 /* Copy in the exec list from userland */
4193 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4194 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4195 if (exec_list == NULL || exec2_list == NULL) {
4196 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4197 args->buffer_count);
4198 drm_free_large(exec_list);
4199 drm_free_large(exec2_list);
4200 return -ENOMEM;
4201 }
4202 ret = copy_from_user(exec_list,
4203 (struct drm_i915_relocation_entry __user *)
4204 (uintptr_t) args->buffers_ptr,
4205 sizeof(*exec_list) * args->buffer_count);
4206 if (ret != 0) {
4207 DRM_ERROR("copy %d exec entries failed %d\n",
4208 args->buffer_count, ret);
4209 drm_free_large(exec_list);
4210 drm_free_large(exec2_list);
4211 return -EFAULT;
4212 }
4213
4214 for (i = 0; i < args->buffer_count; i++) {
4215 exec2_list[i].handle = exec_list[i].handle;
4216 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4217 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4218 exec2_list[i].alignment = exec_list[i].alignment;
4219 exec2_list[i].offset = exec_list[i].offset;
4220 if (INTEL_INFO(dev)->gen < 4)
4221 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4222 else
4223 exec2_list[i].flags = 0;
4224 }
4225
4226 exec2.buffers_ptr = args->buffers_ptr;
4227 exec2.buffer_count = args->buffer_count;
4228 exec2.batch_start_offset = args->batch_start_offset;
4229 exec2.batch_len = args->batch_len;
4230 exec2.DR1 = args->DR1;
4231 exec2.DR4 = args->DR4;
4232 exec2.num_cliprects = args->num_cliprects;
4233 exec2.cliprects_ptr = args->cliprects_ptr;
4234 exec2.flags = I915_EXEC_RENDER;
4235
4236 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4237 if (!ret) {
4238 /* Copy the new buffer offsets back to the user's exec list. */
4239 for (i = 0; i < args->buffer_count; i++)
4240 exec_list[i].offset = exec2_list[i].offset;
4241 /* ... and back out to userspace */
4242 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4243 (uintptr_t) args->buffers_ptr,
4244 exec_list,
4245 sizeof(*exec_list) * args->buffer_count);
4246 if (ret) {
4247 ret = -EFAULT;
4248 DRM_ERROR("failed to copy %d exec entries "
4249 "back to user (%d)\n",
4250 args->buffer_count, ret);
4251 }
4252 }
4253
4254 drm_free_large(exec_list);
4255 drm_free_large(exec2_list);
4256 return ret;
4257 }
4258
4259 int
4260 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4261 struct drm_file *file_priv)
4262 {
4263 struct drm_i915_gem_execbuffer2 *args = data;
4264 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4265 int ret;
4266
4267 #if WATCH_EXEC
4268 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4269 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4270 #endif
4271
4272 if (args->buffer_count < 1) {
4273 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4274 return -EINVAL;
4275 }
4276
4277 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4278 if (exec2_list == NULL) {
4279 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4280 args->buffer_count);
4281 return -ENOMEM;
4282 }
4283 ret = copy_from_user(exec2_list,
4284 (struct drm_i915_relocation_entry __user *)
4285 (uintptr_t) args->buffers_ptr,
4286 sizeof(*exec2_list) * args->buffer_count);
4287 if (ret != 0) {
4288 DRM_ERROR("copy %d exec entries failed %d\n",
4289 args->buffer_count, ret);
4290 drm_free_large(exec2_list);
4291 return -EFAULT;
4292 }
4293
4294 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4295 if (!ret) {
4296 /* Copy the new buffer offsets back to the user's exec list. */
4297 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4298 (uintptr_t) args->buffers_ptr,
4299 exec2_list,
4300 sizeof(*exec2_list) * args->buffer_count);
4301 if (ret) {
4302 ret = -EFAULT;
4303 DRM_ERROR("failed to copy %d exec entries "
4304 "back to user (%d)\n",
4305 args->buffer_count, ret);
4306 }
4307 }
4308
4309 drm_free_large(exec2_list);
4310 return ret;
4311 }
4312
4313 int
4314 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4315 bool map_and_fenceable)
4316 {
4317 struct drm_device *dev = obj->dev;
4318 struct drm_i915_private *dev_priv = dev->dev_private;
4319 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4320 int ret;
4321
4322 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4323 BUG_ON(map_and_fenceable && !map_and_fenceable);
4324 WARN_ON(i915_verify_lists(dev));
4325
4326 if (obj_priv->gtt_space != NULL) {
4327 if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
4328 (map_and_fenceable && !obj_priv->map_and_fenceable)) {
4329 WARN(obj_priv->pin_count,
4330 "bo is already pinned with incorrect alignment:"
4331 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
4332 " obj->map_and_fenceable=%d\n",
4333 obj_priv->gtt_offset, alignment,
4334 map_and_fenceable,
4335 obj_priv->map_and_fenceable);
4336 ret = i915_gem_object_unbind(obj);
4337 if (ret)
4338 return ret;
4339 }
4340 }
4341
4342 if (obj_priv->gtt_space == NULL) {
4343 ret = i915_gem_object_bind_to_gtt(obj, alignment,
4344 map_and_fenceable);
4345 if (ret)
4346 return ret;
4347 }
4348
4349 if (obj_priv->pin_count++ == 0) {
4350 i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
4351 if (!obj_priv->active)
4352 list_move_tail(&obj_priv->mm_list,
4353 &dev_priv->mm.pinned_list);
4354 }
4355 BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
4356
4357 WARN_ON(i915_verify_lists(dev));
4358 return 0;
4359 }
4360
4361 void
4362 i915_gem_object_unpin(struct drm_gem_object *obj)
4363 {
4364 struct drm_device *dev = obj->dev;
4365 drm_i915_private_t *dev_priv = dev->dev_private;
4366 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4367
4368 WARN_ON(i915_verify_lists(dev));
4369 BUG_ON(obj_priv->pin_count == 0);
4370 BUG_ON(obj_priv->gtt_space == NULL);
4371
4372 if (--obj_priv->pin_count == 0) {
4373 if (!obj_priv->active)
4374 list_move_tail(&obj_priv->mm_list,
4375 &dev_priv->mm.inactive_list);
4376 i915_gem_info_remove_pin(dev_priv, obj_priv);
4377 }
4378 WARN_ON(i915_verify_lists(dev));
4379 }
4380
4381 int
4382 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4383 struct drm_file *file_priv)
4384 {
4385 struct drm_i915_gem_pin *args = data;
4386 struct drm_gem_object *obj;
4387 struct drm_i915_gem_object *obj_priv;
4388 int ret;
4389
4390 ret = i915_mutex_lock_interruptible(dev);
4391 if (ret)
4392 return ret;
4393
4394 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4395 if (obj == NULL) {
4396 ret = -ENOENT;
4397 goto unlock;
4398 }
4399 obj_priv = to_intel_bo(obj);
4400
4401 if (obj_priv->madv != I915_MADV_WILLNEED) {
4402 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4403 ret = -EINVAL;
4404 goto out;
4405 }
4406
4407 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4408 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4409 args->handle);
4410 ret = -EINVAL;
4411 goto out;
4412 }
4413
4414 obj_priv->user_pin_count++;
4415 obj_priv->pin_filp = file_priv;
4416 if (obj_priv->user_pin_count == 1) {
4417 ret = i915_gem_object_pin(obj, args->alignment, true);
4418 if (ret)
4419 goto out;
4420 }
4421
4422 /* XXX - flush the CPU caches for pinned objects
4423 * as the X server doesn't manage domains yet
4424 */
4425 i915_gem_object_flush_cpu_write_domain(obj);
4426 args->offset = obj_priv->gtt_offset;
4427 out:
4428 drm_gem_object_unreference(obj);
4429 unlock:
4430 mutex_unlock(&dev->struct_mutex);
4431 return ret;
4432 }
4433
4434 int
4435 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4436 struct drm_file *file_priv)
4437 {
4438 struct drm_i915_gem_pin *args = data;
4439 struct drm_gem_object *obj;
4440 struct drm_i915_gem_object *obj_priv;
4441 int ret;
4442
4443 ret = i915_mutex_lock_interruptible(dev);
4444 if (ret)
4445 return ret;
4446
4447 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4448 if (obj == NULL) {
4449 ret = -ENOENT;
4450 goto unlock;
4451 }
4452 obj_priv = to_intel_bo(obj);
4453
4454 if (obj_priv->pin_filp != file_priv) {
4455 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4456 args->handle);
4457 ret = -EINVAL;
4458 goto out;
4459 }
4460 obj_priv->user_pin_count--;
4461 if (obj_priv->user_pin_count == 0) {
4462 obj_priv->pin_filp = NULL;
4463 i915_gem_object_unpin(obj);
4464 }
4465
4466 out:
4467 drm_gem_object_unreference(obj);
4468 unlock:
4469 mutex_unlock(&dev->struct_mutex);
4470 return ret;
4471 }
4472
4473 int
4474 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4475 struct drm_file *file_priv)
4476 {
4477 struct drm_i915_gem_busy *args = data;
4478 struct drm_gem_object *obj;
4479 struct drm_i915_gem_object *obj_priv;
4480 int ret;
4481
4482 ret = i915_mutex_lock_interruptible(dev);
4483 if (ret)
4484 return ret;
4485
4486 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4487 if (obj == NULL) {
4488 ret = -ENOENT;
4489 goto unlock;
4490 }
4491 obj_priv = to_intel_bo(obj);
4492
4493 /* Count all active objects as busy, even if they are currently not used
4494 * by the gpu. Users of this interface expect objects to eventually
4495 * become non-busy without any further actions, therefore emit any
4496 * necessary flushes here.
4497 */
4498 args->busy = obj_priv->active;
4499 if (args->busy) {
4500 /* Unconditionally flush objects, even when the gpu still uses this
4501 * object. Userspace calling this function indicates that it wants to
4502 * use this buffer rather sooner than later, so issuing the required
4503 * flush earlier is beneficial.
4504 */
4505 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4506 i915_gem_flush_ring(dev, file_priv,
4507 obj_priv->ring,
4508 0, obj->write_domain);
4509
4510 /* Update the active list for the hardware's current position.
4511 * Otherwise this only updates on a delayed timer or when irqs
4512 * are actually unmasked, and our working set ends up being
4513 * larger than required.
4514 */
4515 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4516
4517 args->busy = obj_priv->active;
4518 }
4519
4520 drm_gem_object_unreference(obj);
4521 unlock:
4522 mutex_unlock(&dev->struct_mutex);
4523 return ret;
4524 }
4525
4526 int
4527 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4528 struct drm_file *file_priv)
4529 {
4530 return i915_gem_ring_throttle(dev, file_priv);
4531 }
4532
4533 int
4534 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4535 struct drm_file *file_priv)
4536 {
4537 struct drm_i915_gem_madvise *args = data;
4538 struct drm_gem_object *obj;
4539 struct drm_i915_gem_object *obj_priv;
4540 int ret;
4541
4542 switch (args->madv) {
4543 case I915_MADV_DONTNEED:
4544 case I915_MADV_WILLNEED:
4545 break;
4546 default:
4547 return -EINVAL;
4548 }
4549
4550 ret = i915_mutex_lock_interruptible(dev);
4551 if (ret)
4552 return ret;
4553
4554 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4555 if (obj == NULL) {
4556 ret = -ENOENT;
4557 goto unlock;
4558 }
4559 obj_priv = to_intel_bo(obj);
4560
4561 if (obj_priv->pin_count) {
4562 ret = -EINVAL;
4563 goto out;
4564 }
4565
4566 if (obj_priv->madv != __I915_MADV_PURGED)
4567 obj_priv->madv = args->madv;
4568
4569 /* if the object is no longer bound, discard its backing storage */
4570 if (i915_gem_object_is_purgeable(obj_priv) &&
4571 obj_priv->gtt_space == NULL)
4572 i915_gem_object_truncate(obj);
4573
4574 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4575
4576 out:
4577 drm_gem_object_unreference(obj);
4578 unlock:
4579 mutex_unlock(&dev->struct_mutex);
4580 return ret;
4581 }
4582
4583 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4584 size_t size)
4585 {
4586 struct drm_i915_private *dev_priv = dev->dev_private;
4587 struct drm_i915_gem_object *obj;
4588
4589 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4590 if (obj == NULL)
4591 return NULL;
4592
4593 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4594 kfree(obj);
4595 return NULL;
4596 }
4597
4598 i915_gem_info_add_obj(dev_priv, size);
4599
4600 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4601 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4602
4603 obj->agp_type = AGP_USER_MEMORY;
4604 obj->base.driver_private = NULL;
4605 obj->fence_reg = I915_FENCE_REG_NONE;
4606 INIT_LIST_HEAD(&obj->mm_list);
4607 INIT_LIST_HEAD(&obj->ring_list);
4608 INIT_LIST_HEAD(&obj->gpu_write_list);
4609 obj->madv = I915_MADV_WILLNEED;
4610 /* Avoid an unnecessary call to unbind on the first bind. */
4611 obj->map_and_fenceable = true;
4612
4613 return &obj->base;
4614 }
4615
4616 int i915_gem_init_object(struct drm_gem_object *obj)
4617 {
4618 BUG();
4619
4620 return 0;
4621 }
4622
4623 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4624 {
4625 struct drm_device *dev = obj->dev;
4626 drm_i915_private_t *dev_priv = dev->dev_private;
4627 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4628 int ret;
4629
4630 ret = i915_gem_object_unbind(obj);
4631 if (ret == -ERESTARTSYS) {
4632 list_move(&obj_priv->mm_list,
4633 &dev_priv->mm.deferred_free_list);
4634 return;
4635 }
4636
4637 if (obj->map_list.map)
4638 i915_gem_free_mmap_offset(obj);
4639
4640 drm_gem_object_release(obj);
4641 i915_gem_info_remove_obj(dev_priv, obj->size);
4642
4643 kfree(obj_priv->page_cpu_valid);
4644 kfree(obj_priv->bit_17);
4645 kfree(obj_priv);
4646 }
4647
4648 void i915_gem_free_object(struct drm_gem_object *obj)
4649 {
4650 struct drm_device *dev = obj->dev;
4651 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4652
4653 trace_i915_gem_object_destroy(obj);
4654
4655 while (obj_priv->pin_count > 0)
4656 i915_gem_object_unpin(obj);
4657
4658 if (obj_priv->phys_obj)
4659 i915_gem_detach_phys_object(dev, obj);
4660
4661 i915_gem_free_object_tail(obj);
4662 }
4663
4664 int
4665 i915_gem_idle(struct drm_device *dev)
4666 {
4667 drm_i915_private_t *dev_priv = dev->dev_private;
4668 int ret;
4669
4670 mutex_lock(&dev->struct_mutex);
4671
4672 if (dev_priv->mm.suspended) {
4673 mutex_unlock(&dev->struct_mutex);
4674 return 0;
4675 }
4676
4677 ret = i915_gpu_idle(dev);
4678 if (ret) {
4679 mutex_unlock(&dev->struct_mutex);
4680 return ret;
4681 }
4682
4683 /* Under UMS, be paranoid and evict. */
4684 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4685 ret = i915_gem_evict_inactive(dev, false);
4686 if (ret) {
4687 mutex_unlock(&dev->struct_mutex);
4688 return ret;
4689 }
4690 }
4691
4692 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4693 * We need to replace this with a semaphore, or something.
4694 * And not confound mm.suspended!
4695 */
4696 dev_priv->mm.suspended = 1;
4697 del_timer_sync(&dev_priv->hangcheck_timer);
4698
4699 i915_kernel_lost_context(dev);
4700 i915_gem_cleanup_ringbuffer(dev);
4701
4702 mutex_unlock(&dev->struct_mutex);
4703
4704 /* Cancel the retire work handler, which should be idle now. */
4705 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4706
4707 return 0;
4708 }
4709
4710 /*
4711 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4712 * over cache flushing.
4713 */
4714 static int
4715 i915_gem_init_pipe_control(struct drm_device *dev)
4716 {
4717 drm_i915_private_t *dev_priv = dev->dev_private;
4718 struct drm_gem_object *obj;
4719 struct drm_i915_gem_object *obj_priv;
4720 int ret;
4721
4722 obj = i915_gem_alloc_object(dev, 4096);
4723 if (obj == NULL) {
4724 DRM_ERROR("Failed to allocate seqno page\n");
4725 ret = -ENOMEM;
4726 goto err;
4727 }
4728 obj_priv = to_intel_bo(obj);
4729 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4730
4731 ret = i915_gem_object_pin(obj, 4096, true);
4732 if (ret)
4733 goto err_unref;
4734
4735 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4736 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4737 if (dev_priv->seqno_page == NULL)
4738 goto err_unpin;
4739
4740 dev_priv->seqno_obj = obj;
4741 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4742
4743 return 0;
4744
4745 err_unpin:
4746 i915_gem_object_unpin(obj);
4747 err_unref:
4748 drm_gem_object_unreference(obj);
4749 err:
4750 return ret;
4751 }
4752
4753
4754 static void
4755 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4756 {
4757 drm_i915_private_t *dev_priv = dev->dev_private;
4758 struct drm_gem_object *obj;
4759 struct drm_i915_gem_object *obj_priv;
4760
4761 obj = dev_priv->seqno_obj;
4762 obj_priv = to_intel_bo(obj);
4763 kunmap(obj_priv->pages[0]);
4764 i915_gem_object_unpin(obj);
4765 drm_gem_object_unreference(obj);
4766 dev_priv->seqno_obj = NULL;
4767
4768 dev_priv->seqno_page = NULL;
4769 }
4770
4771 int
4772 i915_gem_init_ringbuffer(struct drm_device *dev)
4773 {
4774 drm_i915_private_t *dev_priv = dev->dev_private;
4775 int ret;
4776
4777 if (HAS_PIPE_CONTROL(dev)) {
4778 ret = i915_gem_init_pipe_control(dev);
4779 if (ret)
4780 return ret;
4781 }
4782
4783 ret = intel_init_render_ring_buffer(dev);
4784 if (ret)
4785 goto cleanup_pipe_control;
4786
4787 if (HAS_BSD(dev)) {
4788 ret = intel_init_bsd_ring_buffer(dev);
4789 if (ret)
4790 goto cleanup_render_ring;
4791 }
4792
4793 if (HAS_BLT(dev)) {
4794 ret = intel_init_blt_ring_buffer(dev);
4795 if (ret)
4796 goto cleanup_bsd_ring;
4797 }
4798
4799 dev_priv->next_seqno = 1;
4800
4801 return 0;
4802
4803 cleanup_bsd_ring:
4804 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4805 cleanup_render_ring:
4806 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4807 cleanup_pipe_control:
4808 if (HAS_PIPE_CONTROL(dev))
4809 i915_gem_cleanup_pipe_control(dev);
4810 return ret;
4811 }
4812
4813 void
4814 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4815 {
4816 drm_i915_private_t *dev_priv = dev->dev_private;
4817
4818 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4819 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4820 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4821 if (HAS_PIPE_CONTROL(dev))
4822 i915_gem_cleanup_pipe_control(dev);
4823 }
4824
4825 int
4826 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4827 struct drm_file *file_priv)
4828 {
4829 drm_i915_private_t *dev_priv = dev->dev_private;
4830 int ret;
4831
4832 if (drm_core_check_feature(dev, DRIVER_MODESET))
4833 return 0;
4834
4835 if (atomic_read(&dev_priv->mm.wedged)) {
4836 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4837 atomic_set(&dev_priv->mm.wedged, 0);
4838 }
4839
4840 mutex_lock(&dev->struct_mutex);
4841 dev_priv->mm.suspended = 0;
4842
4843 ret = i915_gem_init_ringbuffer(dev);
4844 if (ret != 0) {
4845 mutex_unlock(&dev->struct_mutex);
4846 return ret;
4847 }
4848
4849 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4850 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4851 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4852 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4853 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4854 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4855 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4856 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4857 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4858 mutex_unlock(&dev->struct_mutex);
4859
4860 ret = drm_irq_install(dev);
4861 if (ret)
4862 goto cleanup_ringbuffer;
4863
4864 return 0;
4865
4866 cleanup_ringbuffer:
4867 mutex_lock(&dev->struct_mutex);
4868 i915_gem_cleanup_ringbuffer(dev);
4869 dev_priv->mm.suspended = 1;
4870 mutex_unlock(&dev->struct_mutex);
4871
4872 return ret;
4873 }
4874
4875 int
4876 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4877 struct drm_file *file_priv)
4878 {
4879 if (drm_core_check_feature(dev, DRIVER_MODESET))
4880 return 0;
4881
4882 drm_irq_uninstall(dev);
4883 return i915_gem_idle(dev);
4884 }
4885
4886 void
4887 i915_gem_lastclose(struct drm_device *dev)
4888 {
4889 int ret;
4890
4891 if (drm_core_check_feature(dev, DRIVER_MODESET))
4892 return;
4893
4894 ret = i915_gem_idle(dev);
4895 if (ret)
4896 DRM_ERROR("failed to idle hardware: %d\n", ret);
4897 }
4898
4899 static void
4900 init_ring_lists(struct intel_ring_buffer *ring)
4901 {
4902 INIT_LIST_HEAD(&ring->active_list);
4903 INIT_LIST_HEAD(&ring->request_list);
4904 INIT_LIST_HEAD(&ring->gpu_write_list);
4905 }
4906
4907 void
4908 i915_gem_load(struct drm_device *dev)
4909 {
4910 int i;
4911 drm_i915_private_t *dev_priv = dev->dev_private;
4912
4913 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4914 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4915 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4916 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4917 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4918 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4919 init_ring_lists(&dev_priv->render_ring);
4920 init_ring_lists(&dev_priv->bsd_ring);
4921 init_ring_lists(&dev_priv->blt_ring);
4922 for (i = 0; i < 16; i++)
4923 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4924 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4925 i915_gem_retire_work_handler);
4926 init_completion(&dev_priv->error_completion);
4927
4928 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4929 if (IS_GEN3(dev)) {
4930 u32 tmp = I915_READ(MI_ARB_STATE);
4931 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4932 /* arb state is a masked write, so set bit + bit in mask */
4933 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4934 I915_WRITE(MI_ARB_STATE, tmp);
4935 }
4936 }
4937
4938 /* Old X drivers will take 0-2 for front, back, depth buffers */
4939 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4940 dev_priv->fence_reg_start = 3;
4941
4942 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4943 dev_priv->num_fence_regs = 16;
4944 else
4945 dev_priv->num_fence_regs = 8;
4946
4947 /* Initialize fence registers to zero */
4948 switch (INTEL_INFO(dev)->gen) {
4949 case 6:
4950 for (i = 0; i < 16; i++)
4951 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4952 break;
4953 case 5:
4954 case 4:
4955 for (i = 0; i < 16; i++)
4956 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4957 break;
4958 case 3:
4959 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4960 for (i = 0; i < 8; i++)
4961 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4962 case 2:
4963 for (i = 0; i < 8; i++)
4964 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4965 break;
4966 }
4967 i915_gem_detect_bit_6_swizzle(dev);
4968 init_waitqueue_head(&dev_priv->pending_flip_queue);
4969
4970 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4971 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4972 register_shrinker(&dev_priv->mm.inactive_shrinker);
4973 }
4974
4975 /*
4976 * Create a physically contiguous memory object for this object
4977 * e.g. for cursor + overlay regs
4978 */
4979 static int i915_gem_init_phys_object(struct drm_device *dev,
4980 int id, int size, int align)
4981 {
4982 drm_i915_private_t *dev_priv = dev->dev_private;
4983 struct drm_i915_gem_phys_object *phys_obj;
4984 int ret;
4985
4986 if (dev_priv->mm.phys_objs[id - 1] || !size)
4987 return 0;
4988
4989 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4990 if (!phys_obj)
4991 return -ENOMEM;
4992
4993 phys_obj->id = id;
4994
4995 phys_obj->handle = drm_pci_alloc(dev, size, align);
4996 if (!phys_obj->handle) {
4997 ret = -ENOMEM;
4998 goto kfree_obj;
4999 }
5000 #ifdef CONFIG_X86
5001 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
5002 #endif
5003
5004 dev_priv->mm.phys_objs[id - 1] = phys_obj;
5005
5006 return 0;
5007 kfree_obj:
5008 kfree(phys_obj);
5009 return ret;
5010 }
5011
5012 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
5013 {
5014 drm_i915_private_t *dev_priv = dev->dev_private;
5015 struct drm_i915_gem_phys_object *phys_obj;
5016
5017 if (!dev_priv->mm.phys_objs[id - 1])
5018 return;
5019
5020 phys_obj = dev_priv->mm.phys_objs[id - 1];
5021 if (phys_obj->cur_obj) {
5022 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
5023 }
5024
5025 #ifdef CONFIG_X86
5026 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
5027 #endif
5028 drm_pci_free(dev, phys_obj->handle);
5029 kfree(phys_obj);
5030 dev_priv->mm.phys_objs[id - 1] = NULL;
5031 }
5032
5033 void i915_gem_free_all_phys_object(struct drm_device *dev)
5034 {
5035 int i;
5036
5037 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
5038 i915_gem_free_phys_object(dev, i);
5039 }
5040
5041 void i915_gem_detach_phys_object(struct drm_device *dev,
5042 struct drm_gem_object *obj)
5043 {
5044 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
5045 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5046 char *vaddr;
5047 int i;
5048 int page_count;
5049
5050 if (!obj_priv->phys_obj)
5051 return;
5052 vaddr = obj_priv->phys_obj->handle->vaddr;
5053
5054 page_count = obj->size / PAGE_SIZE;
5055
5056 for (i = 0; i < page_count; i++) {
5057 struct page *page = read_cache_page_gfp(mapping, i,
5058 GFP_HIGHUSER | __GFP_RECLAIMABLE);
5059 if (!IS_ERR(page)) {
5060 char *dst = kmap_atomic(page);
5061 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
5062 kunmap_atomic(dst);
5063
5064 drm_clflush_pages(&page, 1);
5065
5066 set_page_dirty(page);
5067 mark_page_accessed(page);
5068 page_cache_release(page);
5069 }
5070 }
5071 intel_gtt_chipset_flush();
5072
5073 obj_priv->phys_obj->cur_obj = NULL;
5074 obj_priv->phys_obj = NULL;
5075 }
5076
5077 int
5078 i915_gem_attach_phys_object(struct drm_device *dev,
5079 struct drm_gem_object *obj,
5080 int id,
5081 int align)
5082 {
5083 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
5084 drm_i915_private_t *dev_priv = dev->dev_private;
5085 struct drm_i915_gem_object *obj_priv;
5086 int ret = 0;
5087 int page_count;
5088 int i;
5089
5090 if (id > I915_MAX_PHYS_OBJECT)
5091 return -EINVAL;
5092
5093 obj_priv = to_intel_bo(obj);
5094
5095 if (obj_priv->phys_obj) {
5096 if (obj_priv->phys_obj->id == id)
5097 return 0;
5098 i915_gem_detach_phys_object(dev, obj);
5099 }
5100
5101 /* create a new object */
5102 if (!dev_priv->mm.phys_objs[id - 1]) {
5103 ret = i915_gem_init_phys_object(dev, id,
5104 obj->size, align);
5105 if (ret) {
5106 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
5107 return ret;
5108 }
5109 }
5110
5111 /* bind to the object */
5112 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
5113 obj_priv->phys_obj->cur_obj = obj;
5114
5115 page_count = obj->size / PAGE_SIZE;
5116
5117 for (i = 0; i < page_count; i++) {
5118 struct page *page;
5119 char *dst, *src;
5120
5121 page = read_cache_page_gfp(mapping, i,
5122 GFP_HIGHUSER | __GFP_RECLAIMABLE);
5123 if (IS_ERR(page))
5124 return PTR_ERR(page);
5125
5126 src = kmap_atomic(page);
5127 dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5128 memcpy(dst, src, PAGE_SIZE);
5129 kunmap_atomic(src);
5130
5131 mark_page_accessed(page);
5132 page_cache_release(page);
5133 }
5134
5135 return 0;
5136 }
5137
5138 static int
5139 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5140 struct drm_i915_gem_pwrite *args,
5141 struct drm_file *file_priv)
5142 {
5143 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5144 void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
5145 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
5146
5147 DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
5148
5149 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
5150 unsigned long unwritten;
5151
5152 /* The physical object once assigned is fixed for the lifetime
5153 * of the obj, so we can safely drop the lock and continue
5154 * to access vaddr.
5155 */
5156 mutex_unlock(&dev->struct_mutex);
5157 unwritten = copy_from_user(vaddr, user_data, args->size);
5158 mutex_lock(&dev->struct_mutex);
5159 if (unwritten)
5160 return -EFAULT;
5161 }
5162
5163 intel_gtt_chipset_flush();
5164 return 0;
5165 }
5166
5167 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5168 {
5169 struct drm_i915_file_private *file_priv = file->driver_priv;
5170
5171 /* Clean up our request list when the client is going away, so that
5172 * later retire_requests won't dereference our soon-to-be-gone
5173 * file_priv.
5174 */
5175 spin_lock(&file_priv->mm.lock);
5176 while (!list_empty(&file_priv->mm.request_list)) {
5177 struct drm_i915_gem_request *request;
5178
5179 request = list_first_entry(&file_priv->mm.request_list,
5180 struct drm_i915_gem_request,
5181 client_list);
5182 list_del(&request->client_list);
5183 request->file_priv = NULL;
5184 }
5185 spin_unlock(&file_priv->mm.lock);
5186 }
5187
5188 static int
5189 i915_gpu_is_active(struct drm_device *dev)
5190 {
5191 drm_i915_private_t *dev_priv = dev->dev_private;
5192 int lists_empty;
5193
5194 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5195 list_empty(&dev_priv->mm.active_list);
5196
5197 return !lists_empty;
5198 }
5199
5200 static int
5201 i915_gem_inactive_shrink(struct shrinker *shrinker,
5202 int nr_to_scan,
5203 gfp_t gfp_mask)
5204 {
5205 struct drm_i915_private *dev_priv =
5206 container_of(shrinker,
5207 struct drm_i915_private,
5208 mm.inactive_shrinker);
5209 struct drm_device *dev = dev_priv->dev;
5210 struct drm_i915_gem_object *obj, *next;
5211 int cnt;
5212
5213 if (!mutex_trylock(&dev->struct_mutex))
5214 return 0;
5215
5216 /* "fast-path" to count number of available objects */
5217 if (nr_to_scan == 0) {
5218 cnt = 0;
5219 list_for_each_entry(obj,
5220 &dev_priv->mm.inactive_list,
5221 mm_list)
5222 cnt++;
5223 mutex_unlock(&dev->struct_mutex);
5224 return cnt / 100 * sysctl_vfs_cache_pressure;
5225 }
5226
5227 rescan:
5228 /* first scan for clean buffers */
5229 i915_gem_retire_requests(dev);
5230
5231 list_for_each_entry_safe(obj, next,
5232 &dev_priv->mm.inactive_list,
5233 mm_list) {
5234 if (i915_gem_object_is_purgeable(obj)) {
5235 i915_gem_object_unbind(&obj->base);
5236 if (--nr_to_scan == 0)
5237 break;
5238 }
5239 }
5240
5241 /* second pass, evict/count anything still on the inactive list */
5242 cnt = 0;
5243 list_for_each_entry_safe(obj, next,
5244 &dev_priv->mm.inactive_list,
5245 mm_list) {
5246 if (nr_to_scan) {
5247 i915_gem_object_unbind(&obj->base);
5248 nr_to_scan--;
5249 } else
5250 cnt++;
5251 }
5252
5253 if (nr_to_scan && i915_gpu_is_active(dev)) {
5254 /*
5255 * We are desperate for pages, so as a last resort, wait
5256 * for the GPU to finish and discard whatever we can.
5257 * This has a dramatic impact to reduce the number of
5258 * OOM-killer events whilst running the GPU aggressively.
5259 */
5260 if (i915_gpu_idle(dev) == 0)
5261 goto rescan;
5262 }
5263 mutex_unlock(&dev->struct_mutex);
5264 return cnt / 100 * sysctl_vfs_cache_pressure;
5265 }
This page took 0.131991 seconds and 6 git commands to generate.