Merge branch 'drm-intel-fixes' into drm-intel-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 struct change_domains {
40 uint32_t invalidate_domains;
41 uint32_t flush_domains;
42 uint32_t flush_rings;
43 };
44
45 static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
46 static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
47
48 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
49 bool pipelined);
50 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
51 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
52 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
53 int write);
54 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
55 uint64_t offset,
56 uint64_t size);
57 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
58 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
59 bool interruptible);
60 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
61 unsigned alignment,
62 bool mappable,
63 bool need_fence);
64 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
65 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
66 struct drm_i915_gem_pwrite *args,
67 struct drm_file *file_priv);
68 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
69
70 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
71 int nr_to_scan,
72 gfp_t gfp_mask);
73
74
75 /* some bookkeeping */
76 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77 size_t size)
78 {
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
81 }
82
83 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85 {
86 dev_priv->mm.object_count--;
87 dev_priv->mm.object_memory -= size;
88 }
89
90 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
91 struct drm_i915_gem_object *obj)
92 {
93 dev_priv->mm.gtt_count++;
94 dev_priv->mm.gtt_memory += obj->gtt_space->size;
95 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
96 dev_priv->mm.mappable_gtt_used +=
97 min_t(size_t, obj->gtt_space->size,
98 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
99 }
100 }
101
102 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
103 struct drm_i915_gem_object *obj)
104 {
105 dev_priv->mm.gtt_count--;
106 dev_priv->mm.gtt_memory -= obj->gtt_space->size;
107 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
108 dev_priv->mm.mappable_gtt_used -=
109 min_t(size_t, obj->gtt_space->size,
110 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
111 }
112 }
113
114 /**
115 * Update the mappable working set counters. Call _only_ when there is a change
116 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
117 * @mappable: new state the changed mappable flag (either pin_ or fault_).
118 */
119 static void
120 i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
121 struct drm_i915_gem_object *obj,
122 bool mappable)
123 {
124 if (mappable) {
125 if (obj->pin_mappable && obj->fault_mappable)
126 /* Combined state was already mappable. */
127 return;
128 dev_priv->mm.gtt_mappable_count++;
129 dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
130 } else {
131 if (obj->pin_mappable || obj->fault_mappable)
132 /* Combined state still mappable. */
133 return;
134 dev_priv->mm.gtt_mappable_count--;
135 dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
136 }
137 }
138
139 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
140 struct drm_i915_gem_object *obj,
141 bool mappable)
142 {
143 dev_priv->mm.pin_count++;
144 dev_priv->mm.pin_memory += obj->gtt_space->size;
145 if (mappable) {
146 obj->pin_mappable = true;
147 i915_gem_info_update_mappable(dev_priv, obj, true);
148 }
149 }
150
151 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
152 struct drm_i915_gem_object *obj)
153 {
154 dev_priv->mm.pin_count--;
155 dev_priv->mm.pin_memory -= obj->gtt_space->size;
156 if (obj->pin_mappable) {
157 obj->pin_mappable = false;
158 i915_gem_info_update_mappable(dev_priv, obj, false);
159 }
160 }
161
162 int
163 i915_gem_check_is_wedged(struct drm_device *dev)
164 {
165 struct drm_i915_private *dev_priv = dev->dev_private;
166 struct completion *x = &dev_priv->error_completion;
167 unsigned long flags;
168 int ret;
169
170 if (!atomic_read(&dev_priv->mm.wedged))
171 return 0;
172
173 ret = wait_for_completion_interruptible(x);
174 if (ret)
175 return ret;
176
177 /* Success, we reset the GPU! */
178 if (!atomic_read(&dev_priv->mm.wedged))
179 return 0;
180
181 /* GPU is hung, bump the completion count to account for
182 * the token we just consumed so that we never hit zero and
183 * end up waiting upon a subsequent completion event that
184 * will never happen.
185 */
186 spin_lock_irqsave(&x->wait.lock, flags);
187 x->done++;
188 spin_unlock_irqrestore(&x->wait.lock, flags);
189 return -EIO;
190 }
191
192 static int i915_mutex_lock_interruptible(struct drm_device *dev)
193 {
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 int ret;
196
197 ret = i915_gem_check_is_wedged(dev);
198 if (ret)
199 return ret;
200
201 ret = mutex_lock_interruptible(&dev->struct_mutex);
202 if (ret)
203 return ret;
204
205 if (atomic_read(&dev_priv->mm.wedged)) {
206 mutex_unlock(&dev->struct_mutex);
207 return -EAGAIN;
208 }
209
210 WARN_ON(i915_verify_lists(dev));
211 return 0;
212 }
213
214 static inline bool
215 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
216 {
217 return obj_priv->gtt_space &&
218 !obj_priv->active &&
219 obj_priv->pin_count == 0;
220 }
221
222 int i915_gem_do_init(struct drm_device *dev,
223 unsigned long start,
224 unsigned long mappable_end,
225 unsigned long end)
226 {
227 drm_i915_private_t *dev_priv = dev->dev_private;
228
229 if (start >= end ||
230 (start & (PAGE_SIZE - 1)) != 0 ||
231 (end & (PAGE_SIZE - 1)) != 0) {
232 return -EINVAL;
233 }
234
235 drm_mm_init(&dev_priv->mm.gtt_space, start,
236 end - start);
237
238 dev_priv->mm.gtt_total = end - start;
239 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
240 dev_priv->mm.gtt_mappable_end = mappable_end;
241
242 return 0;
243 }
244
245 int
246 i915_gem_init_ioctl(struct drm_device *dev, void *data,
247 struct drm_file *file_priv)
248 {
249 struct drm_i915_gem_init *args = data;
250 int ret;
251
252 mutex_lock(&dev->struct_mutex);
253 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
254 mutex_unlock(&dev->struct_mutex);
255
256 return ret;
257 }
258
259 int
260 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file_priv)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 struct drm_i915_gem_get_aperture *args = data;
265
266 if (!(dev->driver->driver_features & DRIVER_GEM))
267 return -ENODEV;
268
269 mutex_lock(&dev->struct_mutex);
270 args->aper_size = dev_priv->mm.gtt_total;
271 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
272 mutex_unlock(&dev->struct_mutex);
273
274 return 0;
275 }
276
277
278 /**
279 * Creates a new mm object and returns a handle to it.
280 */
281 int
282 i915_gem_create_ioctl(struct drm_device *dev, void *data,
283 struct drm_file *file_priv)
284 {
285 struct drm_i915_gem_create *args = data;
286 struct drm_gem_object *obj;
287 int ret;
288 u32 handle;
289
290 args->size = roundup(args->size, PAGE_SIZE);
291
292 /* Allocate the new object */
293 obj = i915_gem_alloc_object(dev, args->size);
294 if (obj == NULL)
295 return -ENOMEM;
296
297 ret = drm_gem_handle_create(file_priv, obj, &handle);
298 if (ret) {
299 drm_gem_object_release(obj);
300 i915_gem_info_remove_obj(dev->dev_private, obj->size);
301 kfree(obj);
302 return ret;
303 }
304
305 /* drop reference from allocate - handle holds it now */
306 drm_gem_object_unreference(obj);
307 trace_i915_gem_object_create(obj);
308
309 args->handle = handle;
310 return 0;
311 }
312
313 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
314 {
315 drm_i915_private_t *dev_priv = obj->dev->dev_private;
316 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
317
318 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
319 obj_priv->tiling_mode != I915_TILING_NONE;
320 }
321
322 static inline void
323 slow_shmem_copy(struct page *dst_page,
324 int dst_offset,
325 struct page *src_page,
326 int src_offset,
327 int length)
328 {
329 char *dst_vaddr, *src_vaddr;
330
331 dst_vaddr = kmap(dst_page);
332 src_vaddr = kmap(src_page);
333
334 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
335
336 kunmap(src_page);
337 kunmap(dst_page);
338 }
339
340 static inline void
341 slow_shmem_bit17_copy(struct page *gpu_page,
342 int gpu_offset,
343 struct page *cpu_page,
344 int cpu_offset,
345 int length,
346 int is_read)
347 {
348 char *gpu_vaddr, *cpu_vaddr;
349
350 /* Use the unswizzled path if this page isn't affected. */
351 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
352 if (is_read)
353 return slow_shmem_copy(cpu_page, cpu_offset,
354 gpu_page, gpu_offset, length);
355 else
356 return slow_shmem_copy(gpu_page, gpu_offset,
357 cpu_page, cpu_offset, length);
358 }
359
360 gpu_vaddr = kmap(gpu_page);
361 cpu_vaddr = kmap(cpu_page);
362
363 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
364 * XORing with the other bits (A9 for Y, A9 and A10 for X)
365 */
366 while (length > 0) {
367 int cacheline_end = ALIGN(gpu_offset + 1, 64);
368 int this_length = min(cacheline_end - gpu_offset, length);
369 int swizzled_gpu_offset = gpu_offset ^ 64;
370
371 if (is_read) {
372 memcpy(cpu_vaddr + cpu_offset,
373 gpu_vaddr + swizzled_gpu_offset,
374 this_length);
375 } else {
376 memcpy(gpu_vaddr + swizzled_gpu_offset,
377 cpu_vaddr + cpu_offset,
378 this_length);
379 }
380 cpu_offset += this_length;
381 gpu_offset += this_length;
382 length -= this_length;
383 }
384
385 kunmap(cpu_page);
386 kunmap(gpu_page);
387 }
388
389 /**
390 * This is the fast shmem pread path, which attempts to copy_from_user directly
391 * from the backing pages of the object to the user's address space. On a
392 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
393 */
394 static int
395 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
396 struct drm_i915_gem_pread *args,
397 struct drm_file *file_priv)
398 {
399 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
400 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
401 ssize_t remain;
402 loff_t offset;
403 char __user *user_data;
404 int page_offset, page_length;
405
406 user_data = (char __user *) (uintptr_t) args->data_ptr;
407 remain = args->size;
408
409 obj_priv = to_intel_bo(obj);
410 offset = args->offset;
411
412 while (remain > 0) {
413 struct page *page;
414 char *vaddr;
415 int ret;
416
417 /* Operation in this page
418 *
419 * page_offset = offset within page
420 * page_length = bytes to copy for this page
421 */
422 page_offset = offset & (PAGE_SIZE-1);
423 page_length = remain;
424 if ((page_offset + remain) > PAGE_SIZE)
425 page_length = PAGE_SIZE - page_offset;
426
427 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
428 GFP_HIGHUSER | __GFP_RECLAIMABLE);
429 if (IS_ERR(page))
430 return PTR_ERR(page);
431
432 vaddr = kmap_atomic(page);
433 ret = __copy_to_user_inatomic(user_data,
434 vaddr + page_offset,
435 page_length);
436 kunmap_atomic(vaddr);
437
438 mark_page_accessed(page);
439 page_cache_release(page);
440 if (ret)
441 return -EFAULT;
442
443 remain -= page_length;
444 user_data += page_length;
445 offset += page_length;
446 }
447
448 return 0;
449 }
450
451 /**
452 * This is the fallback shmem pread path, which allocates temporary storage
453 * in kernel space to copy_to_user into outside of the struct_mutex, so we
454 * can copy out of the object's backing pages while holding the struct mutex
455 * and not take page faults.
456 */
457 static int
458 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
459 struct drm_i915_gem_pread *args,
460 struct drm_file *file_priv)
461 {
462 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
463 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
464 struct mm_struct *mm = current->mm;
465 struct page **user_pages;
466 ssize_t remain;
467 loff_t offset, pinned_pages, i;
468 loff_t first_data_page, last_data_page, num_pages;
469 int shmem_page_offset;
470 int data_page_index, data_page_offset;
471 int page_length;
472 int ret;
473 uint64_t data_ptr = args->data_ptr;
474 int do_bit17_swizzling;
475
476 remain = args->size;
477
478 /* Pin the user pages containing the data. We can't fault while
479 * holding the struct mutex, yet we want to hold it while
480 * dereferencing the user data.
481 */
482 first_data_page = data_ptr / PAGE_SIZE;
483 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
484 num_pages = last_data_page - first_data_page + 1;
485
486 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
487 if (user_pages == NULL)
488 return -ENOMEM;
489
490 mutex_unlock(&dev->struct_mutex);
491 down_read(&mm->mmap_sem);
492 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
493 num_pages, 1, 0, user_pages, NULL);
494 up_read(&mm->mmap_sem);
495 mutex_lock(&dev->struct_mutex);
496 if (pinned_pages < num_pages) {
497 ret = -EFAULT;
498 goto out;
499 }
500
501 ret = i915_gem_object_set_cpu_read_domain_range(obj,
502 args->offset,
503 args->size);
504 if (ret)
505 goto out;
506
507 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
508
509 obj_priv = to_intel_bo(obj);
510 offset = args->offset;
511
512 while (remain > 0) {
513 struct page *page;
514
515 /* Operation in this page
516 *
517 * shmem_page_offset = offset within page in shmem file
518 * data_page_index = page number in get_user_pages return
519 * data_page_offset = offset with data_page_index page.
520 * page_length = bytes to copy for this page
521 */
522 shmem_page_offset = offset & ~PAGE_MASK;
523 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
524 data_page_offset = data_ptr & ~PAGE_MASK;
525
526 page_length = remain;
527 if ((shmem_page_offset + page_length) > PAGE_SIZE)
528 page_length = PAGE_SIZE - shmem_page_offset;
529 if ((data_page_offset + page_length) > PAGE_SIZE)
530 page_length = PAGE_SIZE - data_page_offset;
531
532 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
533 GFP_HIGHUSER | __GFP_RECLAIMABLE);
534 if (IS_ERR(page))
535 return PTR_ERR(page);
536
537 if (do_bit17_swizzling) {
538 slow_shmem_bit17_copy(page,
539 shmem_page_offset,
540 user_pages[data_page_index],
541 data_page_offset,
542 page_length,
543 1);
544 } else {
545 slow_shmem_copy(user_pages[data_page_index],
546 data_page_offset,
547 page,
548 shmem_page_offset,
549 page_length);
550 }
551
552 mark_page_accessed(page);
553 page_cache_release(page);
554
555 remain -= page_length;
556 data_ptr += page_length;
557 offset += page_length;
558 }
559
560 out:
561 for (i = 0; i < pinned_pages; i++) {
562 SetPageDirty(user_pages[i]);
563 mark_page_accessed(user_pages[i]);
564 page_cache_release(user_pages[i]);
565 }
566 drm_free_large(user_pages);
567
568 return ret;
569 }
570
571 /**
572 * Reads data from the object referenced by handle.
573 *
574 * On error, the contents of *data are undefined.
575 */
576 int
577 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
578 struct drm_file *file_priv)
579 {
580 struct drm_i915_gem_pread *args = data;
581 struct drm_gem_object *obj;
582 struct drm_i915_gem_object *obj_priv;
583 int ret = 0;
584
585 ret = i915_mutex_lock_interruptible(dev);
586 if (ret)
587 return ret;
588
589 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
590 if (obj == NULL) {
591 ret = -ENOENT;
592 goto unlock;
593 }
594 obj_priv = to_intel_bo(obj);
595
596 /* Bounds check source. */
597 if (args->offset > obj->size || args->size > obj->size - args->offset) {
598 ret = -EINVAL;
599 goto out;
600 }
601
602 if (args->size == 0)
603 goto out;
604
605 if (!access_ok(VERIFY_WRITE,
606 (char __user *)(uintptr_t)args->data_ptr,
607 args->size)) {
608 ret = -EFAULT;
609 goto out;
610 }
611
612 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
613 args->size);
614 if (ret) {
615 ret = -EFAULT;
616 goto out;
617 }
618
619 ret = i915_gem_object_set_cpu_read_domain_range(obj,
620 args->offset,
621 args->size);
622 if (ret)
623 goto out;
624
625 ret = -EFAULT;
626 if (!i915_gem_object_needs_bit17_swizzle(obj))
627 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
628 if (ret == -EFAULT)
629 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
630
631 out:
632 drm_gem_object_unreference(obj);
633 unlock:
634 mutex_unlock(&dev->struct_mutex);
635 return ret;
636 }
637
638 /* This is the fast write path which cannot handle
639 * page faults in the source data
640 */
641
642 static inline int
643 fast_user_write(struct io_mapping *mapping,
644 loff_t page_base, int page_offset,
645 char __user *user_data,
646 int length)
647 {
648 char *vaddr_atomic;
649 unsigned long unwritten;
650
651 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
652 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
653 user_data, length);
654 io_mapping_unmap_atomic(vaddr_atomic);
655 return unwritten;
656 }
657
658 /* Here's the write path which can sleep for
659 * page faults
660 */
661
662 static inline void
663 slow_kernel_write(struct io_mapping *mapping,
664 loff_t gtt_base, int gtt_offset,
665 struct page *user_page, int user_offset,
666 int length)
667 {
668 char __iomem *dst_vaddr;
669 char *src_vaddr;
670
671 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
672 src_vaddr = kmap(user_page);
673
674 memcpy_toio(dst_vaddr + gtt_offset,
675 src_vaddr + user_offset,
676 length);
677
678 kunmap(user_page);
679 io_mapping_unmap(dst_vaddr);
680 }
681
682 /**
683 * This is the fast pwrite path, where we copy the data directly from the
684 * user into the GTT, uncached.
685 */
686 static int
687 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
688 struct drm_i915_gem_pwrite *args,
689 struct drm_file *file_priv)
690 {
691 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
692 drm_i915_private_t *dev_priv = dev->dev_private;
693 ssize_t remain;
694 loff_t offset, page_base;
695 char __user *user_data;
696 int page_offset, page_length;
697
698 user_data = (char __user *) (uintptr_t) args->data_ptr;
699 remain = args->size;
700
701 obj_priv = to_intel_bo(obj);
702 offset = obj_priv->gtt_offset + args->offset;
703
704 while (remain > 0) {
705 /* Operation in this page
706 *
707 * page_base = page offset within aperture
708 * page_offset = offset within page
709 * page_length = bytes to copy for this page
710 */
711 page_base = (offset & ~(PAGE_SIZE-1));
712 page_offset = offset & (PAGE_SIZE-1);
713 page_length = remain;
714 if ((page_offset + remain) > PAGE_SIZE)
715 page_length = PAGE_SIZE - page_offset;
716
717 /* If we get a fault while copying data, then (presumably) our
718 * source page isn't available. Return the error and we'll
719 * retry in the slow path.
720 */
721 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
722 page_offset, user_data, page_length))
723
724 return -EFAULT;
725
726 remain -= page_length;
727 user_data += page_length;
728 offset += page_length;
729 }
730
731 return 0;
732 }
733
734 /**
735 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
736 * the memory and maps it using kmap_atomic for copying.
737 *
738 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
739 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
740 */
741 static int
742 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
743 struct drm_i915_gem_pwrite *args,
744 struct drm_file *file_priv)
745 {
746 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
747 drm_i915_private_t *dev_priv = dev->dev_private;
748 ssize_t remain;
749 loff_t gtt_page_base, offset;
750 loff_t first_data_page, last_data_page, num_pages;
751 loff_t pinned_pages, i;
752 struct page **user_pages;
753 struct mm_struct *mm = current->mm;
754 int gtt_page_offset, data_page_offset, data_page_index, page_length;
755 int ret;
756 uint64_t data_ptr = args->data_ptr;
757
758 remain = args->size;
759
760 /* Pin the user pages containing the data. We can't fault while
761 * holding the struct mutex, and all of the pwrite implementations
762 * want to hold it while dereferencing the user data.
763 */
764 first_data_page = data_ptr / PAGE_SIZE;
765 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
766 num_pages = last_data_page - first_data_page + 1;
767
768 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
769 if (user_pages == NULL)
770 return -ENOMEM;
771
772 mutex_unlock(&dev->struct_mutex);
773 down_read(&mm->mmap_sem);
774 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
775 num_pages, 0, 0, user_pages, NULL);
776 up_read(&mm->mmap_sem);
777 mutex_lock(&dev->struct_mutex);
778 if (pinned_pages < num_pages) {
779 ret = -EFAULT;
780 goto out_unpin_pages;
781 }
782
783 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
784 if (ret)
785 goto out_unpin_pages;
786
787 obj_priv = to_intel_bo(obj);
788 offset = obj_priv->gtt_offset + args->offset;
789
790 while (remain > 0) {
791 /* Operation in this page
792 *
793 * gtt_page_base = page offset within aperture
794 * gtt_page_offset = offset within page in aperture
795 * data_page_index = page number in get_user_pages return
796 * data_page_offset = offset with data_page_index page.
797 * page_length = bytes to copy for this page
798 */
799 gtt_page_base = offset & PAGE_MASK;
800 gtt_page_offset = offset & ~PAGE_MASK;
801 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
802 data_page_offset = data_ptr & ~PAGE_MASK;
803
804 page_length = remain;
805 if ((gtt_page_offset + page_length) > PAGE_SIZE)
806 page_length = PAGE_SIZE - gtt_page_offset;
807 if ((data_page_offset + page_length) > PAGE_SIZE)
808 page_length = PAGE_SIZE - data_page_offset;
809
810 slow_kernel_write(dev_priv->mm.gtt_mapping,
811 gtt_page_base, gtt_page_offset,
812 user_pages[data_page_index],
813 data_page_offset,
814 page_length);
815
816 remain -= page_length;
817 offset += page_length;
818 data_ptr += page_length;
819 }
820
821 out_unpin_pages:
822 for (i = 0; i < pinned_pages; i++)
823 page_cache_release(user_pages[i]);
824 drm_free_large(user_pages);
825
826 return ret;
827 }
828
829 /**
830 * This is the fast shmem pwrite path, which attempts to directly
831 * copy_from_user into the kmapped pages backing the object.
832 */
833 static int
834 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
835 struct drm_i915_gem_pwrite *args,
836 struct drm_file *file_priv)
837 {
838 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
839 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
840 ssize_t remain;
841 loff_t offset;
842 char __user *user_data;
843 int page_offset, page_length;
844
845 user_data = (char __user *) (uintptr_t) args->data_ptr;
846 remain = args->size;
847
848 obj_priv = to_intel_bo(obj);
849 offset = args->offset;
850 obj_priv->dirty = 1;
851
852 while (remain > 0) {
853 struct page *page;
854 char *vaddr;
855 int ret;
856
857 /* Operation in this page
858 *
859 * page_offset = offset within page
860 * page_length = bytes to copy for this page
861 */
862 page_offset = offset & (PAGE_SIZE-1);
863 page_length = remain;
864 if ((page_offset + remain) > PAGE_SIZE)
865 page_length = PAGE_SIZE - page_offset;
866
867 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
868 GFP_HIGHUSER | __GFP_RECLAIMABLE);
869 if (IS_ERR(page))
870 return PTR_ERR(page);
871
872 vaddr = kmap_atomic(page, KM_USER0);
873 ret = __copy_from_user_inatomic(vaddr + page_offset,
874 user_data,
875 page_length);
876 kunmap_atomic(vaddr, KM_USER0);
877
878 set_page_dirty(page);
879 mark_page_accessed(page);
880 page_cache_release(page);
881
882 /* If we get a fault while copying data, then (presumably) our
883 * source page isn't available. Return the error and we'll
884 * retry in the slow path.
885 */
886 if (ret)
887 return -EFAULT;
888
889 remain -= page_length;
890 user_data += page_length;
891 offset += page_length;
892 }
893
894 return 0;
895 }
896
897 /**
898 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
899 * the memory and maps it using kmap_atomic for copying.
900 *
901 * This avoids taking mmap_sem for faulting on the user's address while the
902 * struct_mutex is held.
903 */
904 static int
905 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
906 struct drm_i915_gem_pwrite *args,
907 struct drm_file *file_priv)
908 {
909 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
910 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
911 struct mm_struct *mm = current->mm;
912 struct page **user_pages;
913 ssize_t remain;
914 loff_t offset, pinned_pages, i;
915 loff_t first_data_page, last_data_page, num_pages;
916 int shmem_page_offset;
917 int data_page_index, data_page_offset;
918 int page_length;
919 int ret;
920 uint64_t data_ptr = args->data_ptr;
921 int do_bit17_swizzling;
922
923 remain = args->size;
924
925 /* Pin the user pages containing the data. We can't fault while
926 * holding the struct mutex, and all of the pwrite implementations
927 * want to hold it while dereferencing the user data.
928 */
929 first_data_page = data_ptr / PAGE_SIZE;
930 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
931 num_pages = last_data_page - first_data_page + 1;
932
933 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
934 if (user_pages == NULL)
935 return -ENOMEM;
936
937 mutex_unlock(&dev->struct_mutex);
938 down_read(&mm->mmap_sem);
939 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
940 num_pages, 0, 0, user_pages, NULL);
941 up_read(&mm->mmap_sem);
942 mutex_lock(&dev->struct_mutex);
943 if (pinned_pages < num_pages) {
944 ret = -EFAULT;
945 goto out;
946 }
947
948 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
949 if (ret)
950 goto out;
951
952 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
953
954 obj_priv = to_intel_bo(obj);
955 offset = args->offset;
956 obj_priv->dirty = 1;
957
958 while (remain > 0) {
959 struct page *page;
960
961 /* Operation in this page
962 *
963 * shmem_page_offset = offset within page in shmem file
964 * data_page_index = page number in get_user_pages return
965 * data_page_offset = offset with data_page_index page.
966 * page_length = bytes to copy for this page
967 */
968 shmem_page_offset = offset & ~PAGE_MASK;
969 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
970 data_page_offset = data_ptr & ~PAGE_MASK;
971
972 page_length = remain;
973 if ((shmem_page_offset + page_length) > PAGE_SIZE)
974 page_length = PAGE_SIZE - shmem_page_offset;
975 if ((data_page_offset + page_length) > PAGE_SIZE)
976 page_length = PAGE_SIZE - data_page_offset;
977
978 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
979 GFP_HIGHUSER | __GFP_RECLAIMABLE);
980 if (IS_ERR(page)) {
981 ret = PTR_ERR(page);
982 goto out;
983 }
984
985 if (do_bit17_swizzling) {
986 slow_shmem_bit17_copy(page,
987 shmem_page_offset,
988 user_pages[data_page_index],
989 data_page_offset,
990 page_length,
991 0);
992 } else {
993 slow_shmem_copy(page,
994 shmem_page_offset,
995 user_pages[data_page_index],
996 data_page_offset,
997 page_length);
998 }
999
1000 set_page_dirty(page);
1001 mark_page_accessed(page);
1002 page_cache_release(page);
1003
1004 remain -= page_length;
1005 data_ptr += page_length;
1006 offset += page_length;
1007 }
1008
1009 out:
1010 for (i = 0; i < pinned_pages; i++)
1011 page_cache_release(user_pages[i]);
1012 drm_free_large(user_pages);
1013
1014 return ret;
1015 }
1016
1017 /**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022 int
1023 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024 struct drm_file *file)
1025 {
1026 struct drm_i915_gem_pwrite *args = data;
1027 struct drm_gem_object *obj;
1028 struct drm_i915_gem_object *obj_priv;
1029 int ret = 0;
1030
1031 ret = i915_mutex_lock_interruptible(dev);
1032 if (ret)
1033 return ret;
1034
1035 obj = drm_gem_object_lookup(dev, file, args->handle);
1036 if (obj == NULL) {
1037 ret = -ENOENT;
1038 goto unlock;
1039 }
1040 obj_priv = to_intel_bo(obj);
1041
1042
1043 /* Bounds check destination. */
1044 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1045 ret = -EINVAL;
1046 goto out;
1047 }
1048
1049 if (args->size == 0)
1050 goto out;
1051
1052 if (!access_ok(VERIFY_READ,
1053 (char __user *)(uintptr_t)args->data_ptr,
1054 args->size)) {
1055 ret = -EFAULT;
1056 goto out;
1057 }
1058
1059 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1060 args->size);
1061 if (ret) {
1062 ret = -EFAULT;
1063 goto out;
1064 }
1065
1066 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1067 * it would end up going through the fenced access, and we'll get
1068 * different detiling behavior between reading and writing.
1069 * pread/pwrite currently are reading and writing from the CPU
1070 * perspective, requiring manual detiling by the client.
1071 */
1072 if (obj_priv->phys_obj)
1073 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1074 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1075 obj_priv->gtt_space &&
1076 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1077 ret = i915_gem_object_pin(obj, 0, true, false);
1078 if (ret)
1079 goto out;
1080
1081 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1082 if (ret)
1083 goto out_unpin;
1084
1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1086 if (ret == -EFAULT)
1087 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1088
1089 out_unpin:
1090 i915_gem_object_unpin(obj);
1091 } else {
1092 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1093 if (ret)
1094 goto out;
1095
1096 ret = -EFAULT;
1097 if (!i915_gem_object_needs_bit17_swizzle(obj))
1098 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1099 if (ret == -EFAULT)
1100 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1101 }
1102
1103 out:
1104 drm_gem_object_unreference(obj);
1105 unlock:
1106 mutex_unlock(&dev->struct_mutex);
1107 return ret;
1108 }
1109
1110 /**
1111 * Called when user space prepares to use an object with the CPU, either
1112 * through the mmap ioctl's mapping or a GTT mapping.
1113 */
1114 int
1115 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1116 struct drm_file *file_priv)
1117 {
1118 struct drm_i915_private *dev_priv = dev->dev_private;
1119 struct drm_i915_gem_set_domain *args = data;
1120 struct drm_gem_object *obj;
1121 struct drm_i915_gem_object *obj_priv;
1122 uint32_t read_domains = args->read_domains;
1123 uint32_t write_domain = args->write_domain;
1124 int ret;
1125
1126 if (!(dev->driver->driver_features & DRIVER_GEM))
1127 return -ENODEV;
1128
1129 /* Only handle setting domains to types used by the CPU. */
1130 if (write_domain & I915_GEM_GPU_DOMAINS)
1131 return -EINVAL;
1132
1133 if (read_domains & I915_GEM_GPU_DOMAINS)
1134 return -EINVAL;
1135
1136 /* Having something in the write domain implies it's in the read
1137 * domain, and only that read domain. Enforce that in the request.
1138 */
1139 if (write_domain != 0 && read_domains != write_domain)
1140 return -EINVAL;
1141
1142 ret = i915_mutex_lock_interruptible(dev);
1143 if (ret)
1144 return ret;
1145
1146 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147 if (obj == NULL) {
1148 ret = -ENOENT;
1149 goto unlock;
1150 }
1151 obj_priv = to_intel_bo(obj);
1152
1153 intel_mark_busy(dev, obj);
1154
1155 if (read_domains & I915_GEM_DOMAIN_GTT) {
1156 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1157
1158 /* Update the LRU on the fence for the CPU access that's
1159 * about to occur.
1160 */
1161 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1162 struct drm_i915_fence_reg *reg =
1163 &dev_priv->fence_regs[obj_priv->fence_reg];
1164 list_move_tail(&reg->lru_list,
1165 &dev_priv->mm.fence_list);
1166 }
1167
1168 /* Silently promote "you're not bound, there was nothing to do"
1169 * to success, since the client was just asking us to
1170 * make sure everything was done.
1171 */
1172 if (ret == -EINVAL)
1173 ret = 0;
1174 } else {
1175 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1176 }
1177
1178 /* Maintain LRU order of "inactive" objects */
1179 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1180 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1181
1182 drm_gem_object_unreference(obj);
1183 unlock:
1184 mutex_unlock(&dev->struct_mutex);
1185 return ret;
1186 }
1187
1188 /**
1189 * Called when user space has done writes to this buffer
1190 */
1191 int
1192 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1193 struct drm_file *file_priv)
1194 {
1195 struct drm_i915_gem_sw_finish *args = data;
1196 struct drm_gem_object *obj;
1197 int ret = 0;
1198
1199 if (!(dev->driver->driver_features & DRIVER_GEM))
1200 return -ENODEV;
1201
1202 ret = i915_mutex_lock_interruptible(dev);
1203 if (ret)
1204 return ret;
1205
1206 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1207 if (obj == NULL) {
1208 ret = -ENOENT;
1209 goto unlock;
1210 }
1211
1212 /* Pinned buffers may be scanout, so flush the cache */
1213 if (to_intel_bo(obj)->pin_count)
1214 i915_gem_object_flush_cpu_write_domain(obj);
1215
1216 drm_gem_object_unreference(obj);
1217 unlock:
1218 mutex_unlock(&dev->struct_mutex);
1219 return ret;
1220 }
1221
1222 /**
1223 * Maps the contents of an object, returning the address it is mapped
1224 * into.
1225 *
1226 * While the mapping holds a reference on the contents of the object, it doesn't
1227 * imply a ref on the object itself.
1228 */
1229 int
1230 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1231 struct drm_file *file_priv)
1232 {
1233 struct drm_i915_private *dev_priv = dev->dev_private;
1234 struct drm_i915_gem_mmap *args = data;
1235 struct drm_gem_object *obj;
1236 loff_t offset;
1237 unsigned long addr;
1238
1239 if (!(dev->driver->driver_features & DRIVER_GEM))
1240 return -ENODEV;
1241
1242 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1243 if (obj == NULL)
1244 return -ENOENT;
1245
1246 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1247 drm_gem_object_unreference_unlocked(obj);
1248 return -E2BIG;
1249 }
1250
1251 offset = args->offset;
1252
1253 down_write(&current->mm->mmap_sem);
1254 addr = do_mmap(obj->filp, 0, args->size,
1255 PROT_READ | PROT_WRITE, MAP_SHARED,
1256 args->offset);
1257 up_write(&current->mm->mmap_sem);
1258 drm_gem_object_unreference_unlocked(obj);
1259 if (IS_ERR((void *)addr))
1260 return addr;
1261
1262 args->addr_ptr = (uint64_t) addr;
1263
1264 return 0;
1265 }
1266
1267 /**
1268 * i915_gem_fault - fault a page into the GTT
1269 * vma: VMA in question
1270 * vmf: fault info
1271 *
1272 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1273 * from userspace. The fault handler takes care of binding the object to
1274 * the GTT (if needed), allocating and programming a fence register (again,
1275 * only if needed based on whether the old reg is still valid or the object
1276 * is tiled) and inserting a new PTE into the faulting process.
1277 *
1278 * Note that the faulting process may involve evicting existing objects
1279 * from the GTT and/or fence registers to make room. So performance may
1280 * suffer if the GTT working set is large or there are few fence registers
1281 * left.
1282 */
1283 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1284 {
1285 struct drm_gem_object *obj = vma->vm_private_data;
1286 struct drm_device *dev = obj->dev;
1287 drm_i915_private_t *dev_priv = dev->dev_private;
1288 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1289 pgoff_t page_offset;
1290 unsigned long pfn;
1291 int ret = 0;
1292 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1293
1294 /* We don't use vmf->pgoff since that has the fake offset */
1295 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1296 PAGE_SHIFT;
1297
1298 /* Now bind it into the GTT if needed */
1299 mutex_lock(&dev->struct_mutex);
1300 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
1301
1302 if (obj_priv->gtt_space) {
1303 if (!obj_priv->mappable ||
1304 (obj_priv->tiling_mode && !obj_priv->fenceable)) {
1305 ret = i915_gem_object_unbind(obj);
1306 if (ret)
1307 goto unlock;
1308 }
1309 }
1310
1311 if (!obj_priv->gtt_space) {
1312 ret = i915_gem_object_bind_to_gtt(obj, 0,
1313 true, obj_priv->tiling_mode);
1314 if (ret)
1315 goto unlock;
1316 }
1317
1318 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1319 if (ret)
1320 goto unlock;
1321
1322 if (!obj_priv->fault_mappable) {
1323 obj_priv->fault_mappable = true;
1324 i915_gem_info_update_mappable(dev_priv, obj_priv, true);
1325 }
1326
1327 /* Need a new fence register? */
1328 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1329 ret = i915_gem_object_get_fence_reg(obj, true);
1330 if (ret)
1331 goto unlock;
1332 }
1333
1334 if (i915_gem_object_is_inactive(obj_priv))
1335 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1336
1337 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1338 page_offset;
1339
1340 /* Finally, remap it using the new GTT offset */
1341 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1342 unlock:
1343 mutex_unlock(&dev->struct_mutex);
1344
1345 switch (ret) {
1346 case 0:
1347 case -ERESTARTSYS:
1348 return VM_FAULT_NOPAGE;
1349 case -ENOMEM:
1350 case -EAGAIN:
1351 return VM_FAULT_OOM;
1352 default:
1353 return VM_FAULT_SIGBUS;
1354 }
1355 }
1356
1357 /**
1358 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1359 * @obj: obj in question
1360 *
1361 * GEM memory mapping works by handing back to userspace a fake mmap offset
1362 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1363 * up the object based on the offset and sets up the various memory mapping
1364 * structures.
1365 *
1366 * This routine allocates and attaches a fake offset for @obj.
1367 */
1368 static int
1369 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1370 {
1371 struct drm_device *dev = obj->dev;
1372 struct drm_gem_mm *mm = dev->mm_private;
1373 struct drm_map_list *list;
1374 struct drm_local_map *map;
1375 int ret = 0;
1376
1377 /* Set the object up for mmap'ing */
1378 list = &obj->map_list;
1379 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1380 if (!list->map)
1381 return -ENOMEM;
1382
1383 map = list->map;
1384 map->type = _DRM_GEM;
1385 map->size = obj->size;
1386 map->handle = obj;
1387
1388 /* Get a DRM GEM mmap offset allocated... */
1389 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1390 obj->size / PAGE_SIZE, 0, 0);
1391 if (!list->file_offset_node) {
1392 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1393 ret = -ENOSPC;
1394 goto out_free_list;
1395 }
1396
1397 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1398 obj->size / PAGE_SIZE, 0);
1399 if (!list->file_offset_node) {
1400 ret = -ENOMEM;
1401 goto out_free_list;
1402 }
1403
1404 list->hash.key = list->file_offset_node->start;
1405 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1406 if (ret) {
1407 DRM_ERROR("failed to add to map hash\n");
1408 goto out_free_mm;
1409 }
1410
1411 return 0;
1412
1413 out_free_mm:
1414 drm_mm_put_block(list->file_offset_node);
1415 out_free_list:
1416 kfree(list->map);
1417 list->map = NULL;
1418
1419 return ret;
1420 }
1421
1422 /**
1423 * i915_gem_release_mmap - remove physical page mappings
1424 * @obj: obj in question
1425 *
1426 * Preserve the reservation of the mmapping with the DRM core code, but
1427 * relinquish ownership of the pages back to the system.
1428 *
1429 * It is vital that we remove the page mapping if we have mapped a tiled
1430 * object through the GTT and then lose the fence register due to
1431 * resource pressure. Similarly if the object has been moved out of the
1432 * aperture, than pages mapped into userspace must be revoked. Removing the
1433 * mapping will then trigger a page fault on the next user access, allowing
1434 * fixup by i915_gem_fault().
1435 */
1436 void
1437 i915_gem_release_mmap(struct drm_gem_object *obj)
1438 {
1439 struct drm_device *dev = obj->dev;
1440 struct drm_i915_private *dev_priv = dev->dev_private;
1441 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1442
1443 if (unlikely(obj->map_list.map && dev->dev_mapping))
1444 unmap_mapping_range(dev->dev_mapping,
1445 (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
1446 obj->size, 1);
1447
1448 if (obj_priv->fault_mappable) {
1449 obj_priv->fault_mappable = false;
1450 i915_gem_info_update_mappable(dev_priv, obj_priv, false);
1451 }
1452 }
1453
1454 static void
1455 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1456 {
1457 struct drm_device *dev = obj->dev;
1458 struct drm_gem_mm *mm = dev->mm_private;
1459 struct drm_map_list *list = &obj->map_list;
1460
1461 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1462 drm_mm_put_block(list->file_offset_node);
1463 kfree(list->map);
1464 list->map = NULL;
1465 }
1466
1467 /**
1468 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1469 * @obj: object to check
1470 *
1471 * Return the required GTT alignment for an object, taking into account
1472 * potential fence register mapping if needed.
1473 */
1474 static uint32_t
1475 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
1476 {
1477 struct drm_device *dev = obj_priv->base.dev;
1478
1479 /*
1480 * Minimum alignment is 4k (GTT page size), but might be greater
1481 * if a fence register is needed for the object.
1482 */
1483 if (INTEL_INFO(dev)->gen >= 4 ||
1484 obj_priv->tiling_mode == I915_TILING_NONE)
1485 return 4096;
1486
1487 /*
1488 * Previous chips need to be aligned to the size of the smallest
1489 * fence register that can contain the object.
1490 */
1491 return i915_gem_get_gtt_size(obj_priv);
1492 }
1493
1494 static uint32_t
1495 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
1496 {
1497 struct drm_device *dev = obj_priv->base.dev;
1498 uint32_t size;
1499
1500 /*
1501 * Minimum alignment is 4k (GTT page size), but might be greater
1502 * if a fence register is needed for the object.
1503 */
1504 if (INTEL_INFO(dev)->gen >= 4)
1505 return obj_priv->base.size;
1506
1507 /*
1508 * Previous chips need to be aligned to the size of the smallest
1509 * fence register that can contain the object.
1510 */
1511 if (INTEL_INFO(dev)->gen == 3)
1512 size = 1024*1024;
1513 else
1514 size = 512*1024;
1515
1516 while (size < obj_priv->base.size)
1517 size <<= 1;
1518
1519 return size;
1520 }
1521
1522 /**
1523 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1524 * @dev: DRM device
1525 * @data: GTT mapping ioctl data
1526 * @file_priv: GEM object info
1527 *
1528 * Simply returns the fake offset to userspace so it can mmap it.
1529 * The mmap call will end up in drm_gem_mmap(), which will set things
1530 * up so we can get faults in the handler above.
1531 *
1532 * The fault handler will take care of binding the object into the GTT
1533 * (since it may have been evicted to make room for something), allocating
1534 * a fence register, and mapping the appropriate aperture address into
1535 * userspace.
1536 */
1537 int
1538 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1539 struct drm_file *file_priv)
1540 {
1541 struct drm_i915_private *dev_priv = dev->dev_private;
1542 struct drm_i915_gem_mmap_gtt *args = data;
1543 struct drm_gem_object *obj;
1544 struct drm_i915_gem_object *obj_priv;
1545 int ret;
1546
1547 if (!(dev->driver->driver_features & DRIVER_GEM))
1548 return -ENODEV;
1549
1550 ret = i915_mutex_lock_interruptible(dev);
1551 if (ret)
1552 return ret;
1553
1554 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1555 if (obj == NULL) {
1556 ret = -ENOENT;
1557 goto unlock;
1558 }
1559 obj_priv = to_intel_bo(obj);
1560
1561 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1562 ret = -E2BIG;
1563 goto unlock;
1564 }
1565
1566 if (obj_priv->madv != I915_MADV_WILLNEED) {
1567 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1568 ret = -EINVAL;
1569 goto out;
1570 }
1571
1572 if (!obj->map_list.map) {
1573 ret = i915_gem_create_mmap_offset(obj);
1574 if (ret)
1575 goto out;
1576 }
1577
1578 args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
1579
1580 out:
1581 drm_gem_object_unreference(obj);
1582 unlock:
1583 mutex_unlock(&dev->struct_mutex);
1584 return ret;
1585 }
1586
1587 static int
1588 i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
1589 gfp_t gfpmask)
1590 {
1591 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1592 int page_count, i;
1593 struct address_space *mapping;
1594 struct inode *inode;
1595 struct page *page;
1596
1597 /* Get the list of pages out of our struct file. They'll be pinned
1598 * at this point until we release them.
1599 */
1600 page_count = obj->size / PAGE_SIZE;
1601 BUG_ON(obj_priv->pages != NULL);
1602 obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1603 if (obj_priv->pages == NULL)
1604 return -ENOMEM;
1605
1606 inode = obj->filp->f_path.dentry->d_inode;
1607 mapping = inode->i_mapping;
1608 for (i = 0; i < page_count; i++) {
1609 page = read_cache_page_gfp(mapping, i,
1610 GFP_HIGHUSER |
1611 __GFP_COLD |
1612 __GFP_RECLAIMABLE |
1613 gfpmask);
1614 if (IS_ERR(page))
1615 goto err_pages;
1616
1617 obj_priv->pages[i] = page;
1618 }
1619
1620 if (obj_priv->tiling_mode != I915_TILING_NONE)
1621 i915_gem_object_do_bit_17_swizzle(obj);
1622
1623 return 0;
1624
1625 err_pages:
1626 while (i--)
1627 page_cache_release(obj_priv->pages[i]);
1628
1629 drm_free_large(obj_priv->pages);
1630 obj_priv->pages = NULL;
1631 return PTR_ERR(page);
1632 }
1633
1634 static void
1635 i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
1636 {
1637 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1638 int page_count = obj->size / PAGE_SIZE;
1639 int i;
1640
1641 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1642
1643 if (obj_priv->tiling_mode != I915_TILING_NONE)
1644 i915_gem_object_save_bit_17_swizzle(obj);
1645
1646 if (obj_priv->madv == I915_MADV_DONTNEED)
1647 obj_priv->dirty = 0;
1648
1649 for (i = 0; i < page_count; i++) {
1650 if (obj_priv->dirty)
1651 set_page_dirty(obj_priv->pages[i]);
1652
1653 if (obj_priv->madv == I915_MADV_WILLNEED)
1654 mark_page_accessed(obj_priv->pages[i]);
1655
1656 page_cache_release(obj_priv->pages[i]);
1657 }
1658 obj_priv->dirty = 0;
1659
1660 drm_free_large(obj_priv->pages);
1661 obj_priv->pages = NULL;
1662 }
1663
1664 static uint32_t
1665 i915_gem_next_request_seqno(struct drm_device *dev,
1666 struct intel_ring_buffer *ring)
1667 {
1668 drm_i915_private_t *dev_priv = dev->dev_private;
1669
1670 ring->outstanding_lazy_request = true;
1671 return dev_priv->next_seqno;
1672 }
1673
1674 static void
1675 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1676 struct intel_ring_buffer *ring)
1677 {
1678 struct drm_device *dev = obj->dev;
1679 struct drm_i915_private *dev_priv = dev->dev_private;
1680 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1681 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1682
1683 BUG_ON(ring == NULL);
1684 obj_priv->ring = ring;
1685
1686 /* Add a reference if we're newly entering the active list. */
1687 if (!obj_priv->active) {
1688 drm_gem_object_reference(obj);
1689 obj_priv->active = 1;
1690 }
1691
1692 /* Move from whatever list we were on to the tail of execution. */
1693 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1694 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1695 obj_priv->last_rendering_seqno = seqno;
1696 }
1697
1698 static void
1699 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1700 {
1701 struct drm_device *dev = obj->dev;
1702 drm_i915_private_t *dev_priv = dev->dev_private;
1703 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1704
1705 BUG_ON(!obj_priv->active);
1706 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1707 list_del_init(&obj_priv->ring_list);
1708 obj_priv->last_rendering_seqno = 0;
1709 }
1710
1711 /* Immediately discard the backing storage */
1712 static void
1713 i915_gem_object_truncate(struct drm_gem_object *obj)
1714 {
1715 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1716 struct inode *inode;
1717
1718 /* Our goal here is to return as much of the memory as
1719 * is possible back to the system as we are called from OOM.
1720 * To do this we must instruct the shmfs to drop all of its
1721 * backing pages, *now*. Here we mirror the actions taken
1722 * when by shmem_delete_inode() to release the backing store.
1723 */
1724 inode = obj->filp->f_path.dentry->d_inode;
1725 truncate_inode_pages(inode->i_mapping, 0);
1726 if (inode->i_op->truncate_range)
1727 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1728
1729 obj_priv->madv = __I915_MADV_PURGED;
1730 }
1731
1732 static inline int
1733 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1734 {
1735 return obj_priv->madv == I915_MADV_DONTNEED;
1736 }
1737
1738 static void
1739 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1740 {
1741 struct drm_device *dev = obj->dev;
1742 drm_i915_private_t *dev_priv = dev->dev_private;
1743 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1744
1745 if (obj_priv->pin_count != 0)
1746 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1747 else
1748 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1749 list_del_init(&obj_priv->ring_list);
1750
1751 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1752
1753 obj_priv->last_rendering_seqno = 0;
1754 obj_priv->ring = NULL;
1755 if (obj_priv->active) {
1756 obj_priv->active = 0;
1757 drm_gem_object_unreference(obj);
1758 }
1759 WARN_ON(i915_verify_lists(dev));
1760 }
1761
1762 static void
1763 i915_gem_process_flushing_list(struct drm_device *dev,
1764 uint32_t flush_domains,
1765 struct intel_ring_buffer *ring)
1766 {
1767 drm_i915_private_t *dev_priv = dev->dev_private;
1768 struct drm_i915_gem_object *obj_priv, *next;
1769
1770 list_for_each_entry_safe(obj_priv, next,
1771 &ring->gpu_write_list,
1772 gpu_write_list) {
1773 struct drm_gem_object *obj = &obj_priv->base;
1774
1775 if (obj->write_domain & flush_domains) {
1776 uint32_t old_write_domain = obj->write_domain;
1777
1778 obj->write_domain = 0;
1779 list_del_init(&obj_priv->gpu_write_list);
1780 i915_gem_object_move_to_active(obj, ring);
1781
1782 /* update the fence lru list */
1783 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1784 struct drm_i915_fence_reg *reg =
1785 &dev_priv->fence_regs[obj_priv->fence_reg];
1786 list_move_tail(&reg->lru_list,
1787 &dev_priv->mm.fence_list);
1788 }
1789
1790 trace_i915_gem_object_change_domain(obj,
1791 obj->read_domains,
1792 old_write_domain);
1793 }
1794 }
1795 }
1796
1797 int
1798 i915_add_request(struct drm_device *dev,
1799 struct drm_file *file,
1800 struct drm_i915_gem_request *request,
1801 struct intel_ring_buffer *ring)
1802 {
1803 drm_i915_private_t *dev_priv = dev->dev_private;
1804 struct drm_i915_file_private *file_priv = NULL;
1805 uint32_t seqno;
1806 int was_empty;
1807 int ret;
1808
1809 BUG_ON(request == NULL);
1810
1811 if (file != NULL)
1812 file_priv = file->driver_priv;
1813
1814 ret = ring->add_request(ring, &seqno);
1815 if (ret)
1816 return ret;
1817
1818 ring->outstanding_lazy_request = false;
1819
1820 request->seqno = seqno;
1821 request->ring = ring;
1822 request->emitted_jiffies = jiffies;
1823 was_empty = list_empty(&ring->request_list);
1824 list_add_tail(&request->list, &ring->request_list);
1825
1826 if (file_priv) {
1827 spin_lock(&file_priv->mm.lock);
1828 request->file_priv = file_priv;
1829 list_add_tail(&request->client_list,
1830 &file_priv->mm.request_list);
1831 spin_unlock(&file_priv->mm.lock);
1832 }
1833
1834 if (!dev_priv->mm.suspended) {
1835 mod_timer(&dev_priv->hangcheck_timer,
1836 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1837 if (was_empty)
1838 queue_delayed_work(dev_priv->wq,
1839 &dev_priv->mm.retire_work, HZ);
1840 }
1841 return 0;
1842 }
1843
1844 /**
1845 * Command execution barrier
1846 *
1847 * Ensures that all commands in the ring are finished
1848 * before signalling the CPU
1849 */
1850 static void
1851 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1852 {
1853 uint32_t flush_domains = 0;
1854
1855 /* The sampler always gets flushed on i965 (sigh) */
1856 if (INTEL_INFO(dev)->gen >= 4)
1857 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1858
1859 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1860 }
1861
1862 static inline void
1863 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1864 {
1865 struct drm_i915_file_private *file_priv = request->file_priv;
1866
1867 if (!file_priv)
1868 return;
1869
1870 spin_lock(&file_priv->mm.lock);
1871 list_del(&request->client_list);
1872 request->file_priv = NULL;
1873 spin_unlock(&file_priv->mm.lock);
1874 }
1875
1876 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1877 struct intel_ring_buffer *ring)
1878 {
1879 while (!list_empty(&ring->request_list)) {
1880 struct drm_i915_gem_request *request;
1881
1882 request = list_first_entry(&ring->request_list,
1883 struct drm_i915_gem_request,
1884 list);
1885
1886 list_del(&request->list);
1887 i915_gem_request_remove_from_client(request);
1888 kfree(request);
1889 }
1890
1891 while (!list_empty(&ring->active_list)) {
1892 struct drm_i915_gem_object *obj_priv;
1893
1894 obj_priv = list_first_entry(&ring->active_list,
1895 struct drm_i915_gem_object,
1896 ring_list);
1897
1898 obj_priv->base.write_domain = 0;
1899 list_del_init(&obj_priv->gpu_write_list);
1900 i915_gem_object_move_to_inactive(&obj_priv->base);
1901 }
1902 }
1903
1904 void i915_gem_reset(struct drm_device *dev)
1905 {
1906 struct drm_i915_private *dev_priv = dev->dev_private;
1907 struct drm_i915_gem_object *obj_priv;
1908 int i;
1909
1910 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1911 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1912 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1913
1914 /* Remove anything from the flushing lists. The GPU cache is likely
1915 * to be lost on reset along with the data, so simply move the
1916 * lost bo to the inactive list.
1917 */
1918 while (!list_empty(&dev_priv->mm.flushing_list)) {
1919 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1920 struct drm_i915_gem_object,
1921 mm_list);
1922
1923 obj_priv->base.write_domain = 0;
1924 list_del_init(&obj_priv->gpu_write_list);
1925 i915_gem_object_move_to_inactive(&obj_priv->base);
1926 }
1927
1928 /* Move everything out of the GPU domains to ensure we do any
1929 * necessary invalidation upon reuse.
1930 */
1931 list_for_each_entry(obj_priv,
1932 &dev_priv->mm.inactive_list,
1933 mm_list)
1934 {
1935 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1936 }
1937
1938 /* The fence registers are invalidated so clear them out */
1939 for (i = 0; i < 16; i++) {
1940 struct drm_i915_fence_reg *reg;
1941
1942 reg = &dev_priv->fence_regs[i];
1943 if (!reg->obj)
1944 continue;
1945
1946 i915_gem_clear_fence_reg(reg->obj);
1947 }
1948 }
1949
1950 /**
1951 * This function clears the request list as sequence numbers are passed.
1952 */
1953 static void
1954 i915_gem_retire_requests_ring(struct drm_device *dev,
1955 struct intel_ring_buffer *ring)
1956 {
1957 drm_i915_private_t *dev_priv = dev->dev_private;
1958 uint32_t seqno;
1959
1960 if (!ring->status_page.page_addr ||
1961 list_empty(&ring->request_list))
1962 return;
1963
1964 WARN_ON(i915_verify_lists(dev));
1965
1966 seqno = ring->get_seqno(ring);
1967 while (!list_empty(&ring->request_list)) {
1968 struct drm_i915_gem_request *request;
1969
1970 request = list_first_entry(&ring->request_list,
1971 struct drm_i915_gem_request,
1972 list);
1973
1974 if (!i915_seqno_passed(seqno, request->seqno))
1975 break;
1976
1977 trace_i915_gem_request_retire(dev, request->seqno);
1978
1979 list_del(&request->list);
1980 i915_gem_request_remove_from_client(request);
1981 kfree(request);
1982 }
1983
1984 /* Move any buffers on the active list that are no longer referenced
1985 * by the ringbuffer to the flushing/inactive lists as appropriate.
1986 */
1987 while (!list_empty(&ring->active_list)) {
1988 struct drm_gem_object *obj;
1989 struct drm_i915_gem_object *obj_priv;
1990
1991 obj_priv = list_first_entry(&ring->active_list,
1992 struct drm_i915_gem_object,
1993 ring_list);
1994
1995 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1996 break;
1997
1998 obj = &obj_priv->base;
1999 if (obj->write_domain != 0)
2000 i915_gem_object_move_to_flushing(obj);
2001 else
2002 i915_gem_object_move_to_inactive(obj);
2003 }
2004
2005 if (unlikely (dev_priv->trace_irq_seqno &&
2006 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
2007 ring->user_irq_put(ring);
2008 dev_priv->trace_irq_seqno = 0;
2009 }
2010
2011 WARN_ON(i915_verify_lists(dev));
2012 }
2013
2014 void
2015 i915_gem_retire_requests(struct drm_device *dev)
2016 {
2017 drm_i915_private_t *dev_priv = dev->dev_private;
2018
2019 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
2020 struct drm_i915_gem_object *obj_priv, *tmp;
2021
2022 /* We must be careful that during unbind() we do not
2023 * accidentally infinitely recurse into retire requests.
2024 * Currently:
2025 * retire -> free -> unbind -> wait -> retire_ring
2026 */
2027 list_for_each_entry_safe(obj_priv, tmp,
2028 &dev_priv->mm.deferred_free_list,
2029 mm_list)
2030 i915_gem_free_object_tail(&obj_priv->base);
2031 }
2032
2033 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
2034 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
2035 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
2036 }
2037
2038 static void
2039 i915_gem_retire_work_handler(struct work_struct *work)
2040 {
2041 drm_i915_private_t *dev_priv;
2042 struct drm_device *dev;
2043
2044 dev_priv = container_of(work, drm_i915_private_t,
2045 mm.retire_work.work);
2046 dev = dev_priv->dev;
2047
2048 /* Come back later if the device is busy... */
2049 if (!mutex_trylock(&dev->struct_mutex)) {
2050 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2051 return;
2052 }
2053
2054 i915_gem_retire_requests(dev);
2055
2056 if (!dev_priv->mm.suspended &&
2057 (!list_empty(&dev_priv->render_ring.request_list) ||
2058 !list_empty(&dev_priv->bsd_ring.request_list) ||
2059 !list_empty(&dev_priv->blt_ring.request_list)))
2060 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2061 mutex_unlock(&dev->struct_mutex);
2062 }
2063
2064 int
2065 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2066 bool interruptible, struct intel_ring_buffer *ring)
2067 {
2068 drm_i915_private_t *dev_priv = dev->dev_private;
2069 u32 ier;
2070 int ret = 0;
2071
2072 BUG_ON(seqno == 0);
2073
2074 if (atomic_read(&dev_priv->mm.wedged))
2075 return -EAGAIN;
2076
2077 if (ring->outstanding_lazy_request) {
2078 struct drm_i915_gem_request *request;
2079
2080 request = kzalloc(sizeof(*request), GFP_KERNEL);
2081 if (request == NULL)
2082 return -ENOMEM;
2083
2084 ret = i915_add_request(dev, NULL, request, ring);
2085 if (ret) {
2086 kfree(request);
2087 return ret;
2088 }
2089
2090 seqno = request->seqno;
2091 }
2092 BUG_ON(seqno == dev_priv->next_seqno);
2093
2094 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2095 if (HAS_PCH_SPLIT(dev))
2096 ier = I915_READ(DEIER) | I915_READ(GTIER);
2097 else
2098 ier = I915_READ(IER);
2099 if (!ier) {
2100 DRM_ERROR("something (likely vbetool) disabled "
2101 "interrupts, re-enabling\n");
2102 i915_driver_irq_preinstall(dev);
2103 i915_driver_irq_postinstall(dev);
2104 }
2105
2106 trace_i915_gem_request_wait_begin(dev, seqno);
2107
2108 ring->waiting_seqno = seqno;
2109 ring->user_irq_get(ring);
2110 if (interruptible)
2111 ret = wait_event_interruptible(ring->irq_queue,
2112 i915_seqno_passed(ring->get_seqno(ring), seqno)
2113 || atomic_read(&dev_priv->mm.wedged));
2114 else
2115 wait_event(ring->irq_queue,
2116 i915_seqno_passed(ring->get_seqno(ring), seqno)
2117 || atomic_read(&dev_priv->mm.wedged));
2118
2119 ring->user_irq_put(ring);
2120 ring->waiting_seqno = 0;
2121
2122 trace_i915_gem_request_wait_end(dev, seqno);
2123 }
2124 if (atomic_read(&dev_priv->mm.wedged))
2125 ret = -EAGAIN;
2126
2127 if (ret && ret != -ERESTARTSYS)
2128 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2129 __func__, ret, seqno, ring->get_seqno(ring),
2130 dev_priv->next_seqno);
2131
2132 /* Directly dispatch request retiring. While we have the work queue
2133 * to handle this, the waiter on a request often wants an associated
2134 * buffer to have made it to the inactive list, and we would need
2135 * a separate wait queue to handle that.
2136 */
2137 if (ret == 0)
2138 i915_gem_retire_requests_ring(dev, ring);
2139
2140 return ret;
2141 }
2142
2143 /**
2144 * Waits for a sequence number to be signaled, and cleans up the
2145 * request and object lists appropriately for that event.
2146 */
2147 static int
2148 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2149 struct intel_ring_buffer *ring)
2150 {
2151 return i915_do_wait_request(dev, seqno, 1, ring);
2152 }
2153
2154 static void
2155 i915_gem_flush_ring(struct drm_device *dev,
2156 struct drm_file *file_priv,
2157 struct intel_ring_buffer *ring,
2158 uint32_t invalidate_domains,
2159 uint32_t flush_domains)
2160 {
2161 ring->flush(ring, invalidate_domains, flush_domains);
2162 i915_gem_process_flushing_list(dev, flush_domains, ring);
2163 }
2164
2165 static void
2166 i915_gem_flush(struct drm_device *dev,
2167 struct drm_file *file_priv,
2168 uint32_t invalidate_domains,
2169 uint32_t flush_domains,
2170 uint32_t flush_rings)
2171 {
2172 drm_i915_private_t *dev_priv = dev->dev_private;
2173
2174 if (flush_domains & I915_GEM_DOMAIN_CPU)
2175 drm_agp_chipset_flush(dev);
2176
2177 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2178 if (flush_rings & RING_RENDER)
2179 i915_gem_flush_ring(dev, file_priv,
2180 &dev_priv->render_ring,
2181 invalidate_domains, flush_domains);
2182 if (flush_rings & RING_BSD)
2183 i915_gem_flush_ring(dev, file_priv,
2184 &dev_priv->bsd_ring,
2185 invalidate_domains, flush_domains);
2186 if (flush_rings & RING_BLT)
2187 i915_gem_flush_ring(dev, file_priv,
2188 &dev_priv->blt_ring,
2189 invalidate_domains, flush_domains);
2190 }
2191 }
2192
2193 /**
2194 * Ensures that all rendering to the object has completed and the object is
2195 * safe to unbind from the GTT or access from the CPU.
2196 */
2197 static int
2198 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2199 bool interruptible)
2200 {
2201 struct drm_device *dev = obj->dev;
2202 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2203 int ret;
2204
2205 /* This function only exists to support waiting for existing rendering,
2206 * not for emitting required flushes.
2207 */
2208 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2209
2210 /* If there is rendering queued on the buffer being evicted, wait for
2211 * it.
2212 */
2213 if (obj_priv->active) {
2214 ret = i915_do_wait_request(dev,
2215 obj_priv->last_rendering_seqno,
2216 interruptible,
2217 obj_priv->ring);
2218 if (ret)
2219 return ret;
2220 }
2221
2222 return 0;
2223 }
2224
2225 /**
2226 * Unbinds an object from the GTT aperture.
2227 */
2228 int
2229 i915_gem_object_unbind(struct drm_gem_object *obj)
2230 {
2231 struct drm_device *dev = obj->dev;
2232 struct drm_i915_private *dev_priv = dev->dev_private;
2233 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2234 int ret = 0;
2235
2236 if (obj_priv->gtt_space == NULL)
2237 return 0;
2238
2239 if (obj_priv->pin_count != 0) {
2240 DRM_ERROR("Attempting to unbind pinned buffer\n");
2241 return -EINVAL;
2242 }
2243
2244 /* blow away mappings if mapped through GTT */
2245 i915_gem_release_mmap(obj);
2246
2247 /* Move the object to the CPU domain to ensure that
2248 * any possible CPU writes while it's not in the GTT
2249 * are flushed when we go to remap it. This will
2250 * also ensure that all pending GPU writes are finished
2251 * before we unbind.
2252 */
2253 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2254 if (ret == -ERESTARTSYS)
2255 return ret;
2256 /* Continue on if we fail due to EIO, the GPU is hung so we
2257 * should be safe and we need to cleanup or else we might
2258 * cause memory corruption through use-after-free.
2259 */
2260 if (ret) {
2261 i915_gem_clflush_object(obj);
2262 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2263 }
2264
2265 /* release the fence reg _after_ flushing */
2266 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2267 i915_gem_clear_fence_reg(obj);
2268
2269 drm_unbind_agp(obj_priv->agp_mem);
2270 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2271
2272 i915_gem_object_put_pages_gtt(obj);
2273
2274 i915_gem_info_remove_gtt(dev_priv, obj_priv);
2275 list_del_init(&obj_priv->mm_list);
2276 obj_priv->fenceable = true;
2277 obj_priv->mappable = true;
2278
2279 drm_mm_put_block(obj_priv->gtt_space);
2280 obj_priv->gtt_space = NULL;
2281 obj_priv->gtt_offset = 0;
2282
2283 if (i915_gem_object_is_purgeable(obj_priv))
2284 i915_gem_object_truncate(obj);
2285
2286 trace_i915_gem_object_unbind(obj);
2287
2288 return ret;
2289 }
2290
2291 static int i915_ring_idle(struct drm_device *dev,
2292 struct intel_ring_buffer *ring)
2293 {
2294 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2295 return 0;
2296
2297 i915_gem_flush_ring(dev, NULL, ring,
2298 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2299 return i915_wait_request(dev,
2300 i915_gem_next_request_seqno(dev, ring),
2301 ring);
2302 }
2303
2304 int
2305 i915_gpu_idle(struct drm_device *dev)
2306 {
2307 drm_i915_private_t *dev_priv = dev->dev_private;
2308 bool lists_empty;
2309 int ret;
2310
2311 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2312 list_empty(&dev_priv->mm.active_list));
2313 if (lists_empty)
2314 return 0;
2315
2316 /* Flush everything onto the inactive list. */
2317 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2318 if (ret)
2319 return ret;
2320
2321 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2322 if (ret)
2323 return ret;
2324
2325 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2326 if (ret)
2327 return ret;
2328
2329 return 0;
2330 }
2331
2332 static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
2333 {
2334 struct drm_device *dev = obj->dev;
2335 drm_i915_private_t *dev_priv = dev->dev_private;
2336 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2337 u32 size = i915_gem_get_gtt_size(obj_priv);
2338 int regnum = obj_priv->fence_reg;
2339 uint64_t val;
2340
2341 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2342 0xfffff000) << 32;
2343 val |= obj_priv->gtt_offset & 0xfffff000;
2344 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2345 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2346
2347 if (obj_priv->tiling_mode == I915_TILING_Y)
2348 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2349 val |= I965_FENCE_REG_VALID;
2350
2351 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2352 }
2353
2354 static void i965_write_fence_reg(struct drm_gem_object *obj)
2355 {
2356 struct drm_device *dev = obj->dev;
2357 drm_i915_private_t *dev_priv = dev->dev_private;
2358 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2359 u32 size = i915_gem_get_gtt_size(obj_priv);
2360 int regnum = obj_priv->fence_reg;
2361 uint64_t val;
2362
2363 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2364 0xfffff000) << 32;
2365 val |= obj_priv->gtt_offset & 0xfffff000;
2366 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2367 if (obj_priv->tiling_mode == I915_TILING_Y)
2368 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2369 val |= I965_FENCE_REG_VALID;
2370
2371 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2372 }
2373
2374 static void i915_write_fence_reg(struct drm_gem_object *obj)
2375 {
2376 struct drm_device *dev = obj->dev;
2377 drm_i915_private_t *dev_priv = dev->dev_private;
2378 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2379 u32 size = i915_gem_get_gtt_size(obj_priv);
2380 uint32_t fence_reg, val, pitch_val;
2381 int tile_width;
2382
2383 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2384 (obj_priv->gtt_offset & (size - 1))) {
2385 WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
2386 __func__, obj_priv->gtt_offset, obj_priv->fenceable, size,
2387 obj_priv->gtt_space->start, obj_priv->gtt_space->size);
2388 return;
2389 }
2390
2391 if (obj_priv->tiling_mode == I915_TILING_Y &&
2392 HAS_128_BYTE_Y_TILING(dev))
2393 tile_width = 128;
2394 else
2395 tile_width = 512;
2396
2397 /* Note: pitch better be a power of two tile widths */
2398 pitch_val = obj_priv->stride / tile_width;
2399 pitch_val = ffs(pitch_val) - 1;
2400
2401 if (obj_priv->tiling_mode == I915_TILING_Y &&
2402 HAS_128_BYTE_Y_TILING(dev))
2403 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2404 else
2405 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2406
2407 val = obj_priv->gtt_offset;
2408 if (obj_priv->tiling_mode == I915_TILING_Y)
2409 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2410 val |= I915_FENCE_SIZE_BITS(size);
2411 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2412 val |= I830_FENCE_REG_VALID;
2413
2414 fence_reg = obj_priv->fence_reg;
2415 if (fence_reg < 8)
2416 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2417 else
2418 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2419 I915_WRITE(fence_reg, val);
2420 }
2421
2422 static void i830_write_fence_reg(struct drm_gem_object *obj)
2423 {
2424 struct drm_device *dev = obj->dev;
2425 drm_i915_private_t *dev_priv = dev->dev_private;
2426 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2427 u32 size = i915_gem_get_gtt_size(obj_priv);
2428 int regnum = obj_priv->fence_reg;
2429 uint32_t val;
2430 uint32_t pitch_val;
2431 uint32_t fence_size_bits;
2432
2433 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2434 (obj_priv->gtt_offset & (obj->size - 1))) {
2435 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2436 __func__, obj_priv->gtt_offset);
2437 return;
2438 }
2439
2440 pitch_val = obj_priv->stride / 128;
2441 pitch_val = ffs(pitch_val) - 1;
2442 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2443
2444 val = obj_priv->gtt_offset;
2445 if (obj_priv->tiling_mode == I915_TILING_Y)
2446 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2447 fence_size_bits = I830_FENCE_SIZE_BITS(size);
2448 WARN_ON(fence_size_bits & ~0x00000f00);
2449 val |= fence_size_bits;
2450 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2451 val |= I830_FENCE_REG_VALID;
2452
2453 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2454 }
2455
2456 static int i915_find_fence_reg(struct drm_device *dev,
2457 bool interruptible)
2458 {
2459 struct drm_i915_private *dev_priv = dev->dev_private;
2460 struct drm_i915_fence_reg *reg;
2461 struct drm_i915_gem_object *obj_priv = NULL;
2462 int i, avail, ret;
2463
2464 /* First try to find a free reg */
2465 avail = 0;
2466 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2467 reg = &dev_priv->fence_regs[i];
2468 if (!reg->obj)
2469 return i;
2470
2471 obj_priv = to_intel_bo(reg->obj);
2472 if (!obj_priv->pin_count)
2473 avail++;
2474 }
2475
2476 if (avail == 0)
2477 return -ENOSPC;
2478
2479 /* None available, try to steal one or wait for a user to finish */
2480 avail = I915_FENCE_REG_NONE;
2481 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2482 lru_list) {
2483 obj_priv = to_intel_bo(reg->obj);
2484 if (obj_priv->pin_count)
2485 continue;
2486
2487 /* found one! */
2488 avail = obj_priv->fence_reg;
2489 break;
2490 }
2491
2492 BUG_ON(avail == I915_FENCE_REG_NONE);
2493
2494 /* We only have a reference on obj from the active list. put_fence_reg
2495 * might drop that one, causing a use-after-free in it. So hold a
2496 * private reference to obj like the other callers of put_fence_reg
2497 * (set_tiling ioctl) do. */
2498 drm_gem_object_reference(&obj_priv->base);
2499 ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
2500 drm_gem_object_unreference(&obj_priv->base);
2501 if (ret != 0)
2502 return ret;
2503
2504 return avail;
2505 }
2506
2507 /**
2508 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2509 * @obj: object to map through a fence reg
2510 *
2511 * When mapping objects through the GTT, userspace wants to be able to write
2512 * to them without having to worry about swizzling if the object is tiled.
2513 *
2514 * This function walks the fence regs looking for a free one for @obj,
2515 * stealing one if it can't find any.
2516 *
2517 * It then sets up the reg based on the object's properties: address, pitch
2518 * and tiling format.
2519 */
2520 int
2521 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2522 bool interruptible)
2523 {
2524 struct drm_device *dev = obj->dev;
2525 struct drm_i915_private *dev_priv = dev->dev_private;
2526 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2527 struct drm_i915_fence_reg *reg = NULL;
2528 int ret;
2529
2530 /* Just update our place in the LRU if our fence is getting used. */
2531 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2532 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2533 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2534 return 0;
2535 }
2536
2537 switch (obj_priv->tiling_mode) {
2538 case I915_TILING_NONE:
2539 WARN(1, "allocating a fence for non-tiled object?\n");
2540 break;
2541 case I915_TILING_X:
2542 if (!obj_priv->stride)
2543 return -EINVAL;
2544 WARN((obj_priv->stride & (512 - 1)),
2545 "object 0x%08x is X tiled but has non-512B pitch\n",
2546 obj_priv->gtt_offset);
2547 break;
2548 case I915_TILING_Y:
2549 if (!obj_priv->stride)
2550 return -EINVAL;
2551 WARN((obj_priv->stride & (128 - 1)),
2552 "object 0x%08x is Y tiled but has non-128B pitch\n",
2553 obj_priv->gtt_offset);
2554 break;
2555 }
2556
2557 ret = i915_find_fence_reg(dev, interruptible);
2558 if (ret < 0)
2559 return ret;
2560
2561 obj_priv->fence_reg = ret;
2562 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2563 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2564
2565 reg->obj = obj;
2566
2567 switch (INTEL_INFO(dev)->gen) {
2568 case 6:
2569 sandybridge_write_fence_reg(obj);
2570 break;
2571 case 5:
2572 case 4:
2573 i965_write_fence_reg(obj);
2574 break;
2575 case 3:
2576 i915_write_fence_reg(obj);
2577 break;
2578 case 2:
2579 i830_write_fence_reg(obj);
2580 break;
2581 }
2582
2583 trace_i915_gem_object_get_fence(obj,
2584 obj_priv->fence_reg,
2585 obj_priv->tiling_mode);
2586
2587 return 0;
2588 }
2589
2590 /**
2591 * i915_gem_clear_fence_reg - clear out fence register info
2592 * @obj: object to clear
2593 *
2594 * Zeroes out the fence register itself and clears out the associated
2595 * data structures in dev_priv and obj_priv.
2596 */
2597 static void
2598 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2599 {
2600 struct drm_device *dev = obj->dev;
2601 drm_i915_private_t *dev_priv = dev->dev_private;
2602 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2603 struct drm_i915_fence_reg *reg =
2604 &dev_priv->fence_regs[obj_priv->fence_reg];
2605 uint32_t fence_reg;
2606
2607 switch (INTEL_INFO(dev)->gen) {
2608 case 6:
2609 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2610 (obj_priv->fence_reg * 8), 0);
2611 break;
2612 case 5:
2613 case 4:
2614 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2615 break;
2616 case 3:
2617 if (obj_priv->fence_reg >= 8)
2618 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2619 else
2620 case 2:
2621 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2622
2623 I915_WRITE(fence_reg, 0);
2624 break;
2625 }
2626
2627 reg->obj = NULL;
2628 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2629 list_del_init(&reg->lru_list);
2630 }
2631
2632 /**
2633 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2634 * to the buffer to finish, and then resets the fence register.
2635 * @obj: tiled object holding a fence register.
2636 * @bool: whether the wait upon the fence is interruptible
2637 *
2638 * Zeroes out the fence register itself and clears out the associated
2639 * data structures in dev_priv and obj_priv.
2640 */
2641 int
2642 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2643 bool interruptible)
2644 {
2645 struct drm_device *dev = obj->dev;
2646 struct drm_i915_private *dev_priv = dev->dev_private;
2647 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2648 struct drm_i915_fence_reg *reg;
2649
2650 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2651 return 0;
2652
2653 /* If we've changed tiling, GTT-mappings of the object
2654 * need to re-fault to ensure that the correct fence register
2655 * setup is in place.
2656 */
2657 i915_gem_release_mmap(obj);
2658
2659 /* On the i915, GPU access to tiled buffers is via a fence,
2660 * therefore we must wait for any outstanding access to complete
2661 * before clearing the fence.
2662 */
2663 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2664 if (reg->gpu) {
2665 int ret;
2666
2667 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2668 if (ret)
2669 return ret;
2670
2671 ret = i915_gem_object_wait_rendering(obj, interruptible);
2672 if (ret)
2673 return ret;
2674
2675 reg->gpu = false;
2676 }
2677
2678 i915_gem_object_flush_gtt_write_domain(obj);
2679 i915_gem_clear_fence_reg(obj);
2680
2681 return 0;
2682 }
2683
2684 /**
2685 * Finds free space in the GTT aperture and binds the object there.
2686 */
2687 static int
2688 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2689 unsigned alignment,
2690 bool mappable,
2691 bool need_fence)
2692 {
2693 struct drm_device *dev = obj->dev;
2694 drm_i915_private_t *dev_priv = dev->dev_private;
2695 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2696 struct drm_mm_node *free_space;
2697 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2698 u32 size, fence_size, fence_alignment;
2699 int ret;
2700
2701 if (obj_priv->madv != I915_MADV_WILLNEED) {
2702 DRM_ERROR("Attempting to bind a purgeable object\n");
2703 return -EINVAL;
2704 }
2705
2706 fence_size = i915_gem_get_gtt_size(obj_priv);
2707 fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
2708
2709 if (alignment == 0)
2710 alignment = need_fence ? fence_alignment : 4096;
2711 if (need_fence && alignment & (fence_alignment - 1)) {
2712 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2713 return -EINVAL;
2714 }
2715
2716 size = need_fence ? fence_size : obj->size;
2717
2718 /* If the object is bigger than the entire aperture, reject it early
2719 * before evicting everything in a vain attempt to find space.
2720 */
2721 if (obj->size >
2722 (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2723 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2724 return -E2BIG;
2725 }
2726
2727 search_free:
2728 if (mappable)
2729 free_space =
2730 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2731 size, alignment, 0,
2732 dev_priv->mm.gtt_mappable_end,
2733 0);
2734 else
2735 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2736 size, alignment, 0);
2737
2738 if (free_space != NULL) {
2739 if (mappable)
2740 obj_priv->gtt_space =
2741 drm_mm_get_block_range_generic(free_space,
2742 size, alignment, 0,
2743 dev_priv->mm.gtt_mappable_end,
2744 0);
2745 else
2746 obj_priv->gtt_space =
2747 drm_mm_get_block(free_space, size, alignment);
2748 }
2749 if (obj_priv->gtt_space == NULL) {
2750 /* If the gtt is empty and we're still having trouble
2751 * fitting our object in, we're out of memory.
2752 */
2753 ret = i915_gem_evict_something(dev, size, alignment, mappable);
2754 if (ret)
2755 return ret;
2756
2757 goto search_free;
2758 }
2759
2760 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2761 if (ret) {
2762 drm_mm_put_block(obj_priv->gtt_space);
2763 obj_priv->gtt_space = NULL;
2764
2765 if (ret == -ENOMEM) {
2766 /* first try to clear up some space from the GTT */
2767 ret = i915_gem_evict_something(dev, size,
2768 alignment, mappable);
2769 if (ret) {
2770 /* now try to shrink everyone else */
2771 if (gfpmask) {
2772 gfpmask = 0;
2773 goto search_free;
2774 }
2775
2776 return ret;
2777 }
2778
2779 goto search_free;
2780 }
2781
2782 return ret;
2783 }
2784
2785 /* Create an AGP memory structure pointing at our pages, and bind it
2786 * into the GTT.
2787 */
2788 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2789 obj_priv->pages,
2790 obj->size >> PAGE_SHIFT,
2791 obj_priv->gtt_space->start,
2792 obj_priv->agp_type);
2793 if (obj_priv->agp_mem == NULL) {
2794 i915_gem_object_put_pages_gtt(obj);
2795 drm_mm_put_block(obj_priv->gtt_space);
2796 obj_priv->gtt_space = NULL;
2797
2798 ret = i915_gem_evict_something(dev, size,
2799 alignment, mappable);
2800 if (ret)
2801 return ret;
2802
2803 goto search_free;
2804 }
2805
2806 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2807
2808 /* keep track of bounds object by adding it to the inactive list */
2809 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2810 i915_gem_info_add_gtt(dev_priv, obj_priv);
2811
2812 /* Assert that the object is not currently in any GPU domain. As it
2813 * wasn't in the GTT, there shouldn't be any way it could have been in
2814 * a GPU cache
2815 */
2816 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2817 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2818
2819 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
2820
2821 obj_priv->fenceable =
2822 obj_priv->gtt_space->size == fence_size &&
2823 (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
2824
2825 obj_priv->mappable =
2826 obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
2827
2828 return 0;
2829 }
2830
2831 void
2832 i915_gem_clflush_object(struct drm_gem_object *obj)
2833 {
2834 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2835
2836 /* If we don't have a page list set up, then we're not pinned
2837 * to GPU, and we can ignore the cache flush because it'll happen
2838 * again at bind time.
2839 */
2840 if (obj_priv->pages == NULL)
2841 return;
2842
2843 trace_i915_gem_object_clflush(obj);
2844
2845 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2846 }
2847
2848 /** Flushes any GPU write domain for the object if it's dirty. */
2849 static int
2850 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2851 bool pipelined)
2852 {
2853 struct drm_device *dev = obj->dev;
2854
2855 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2856 return 0;
2857
2858 /* Queue the GPU write cache flushing we need. */
2859 i915_gem_flush_ring(dev, NULL,
2860 to_intel_bo(obj)->ring,
2861 0, obj->write_domain);
2862 BUG_ON(obj->write_domain);
2863
2864 if (pipelined)
2865 return 0;
2866
2867 return i915_gem_object_wait_rendering(obj, true);
2868 }
2869
2870 /** Flushes the GTT write domain for the object if it's dirty. */
2871 static void
2872 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2873 {
2874 uint32_t old_write_domain;
2875
2876 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2877 return;
2878
2879 /* No actual flushing is required for the GTT write domain. Writes
2880 * to it immediately go to main memory as far as we know, so there's
2881 * no chipset flush. It also doesn't land in render cache.
2882 */
2883 i915_gem_release_mmap(obj);
2884
2885 old_write_domain = obj->write_domain;
2886 obj->write_domain = 0;
2887
2888 trace_i915_gem_object_change_domain(obj,
2889 obj->read_domains,
2890 old_write_domain);
2891 }
2892
2893 /** Flushes the CPU write domain for the object if it's dirty. */
2894 static void
2895 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2896 {
2897 struct drm_device *dev = obj->dev;
2898 uint32_t old_write_domain;
2899
2900 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2901 return;
2902
2903 i915_gem_clflush_object(obj);
2904 drm_agp_chipset_flush(dev);
2905 old_write_domain = obj->write_domain;
2906 obj->write_domain = 0;
2907
2908 trace_i915_gem_object_change_domain(obj,
2909 obj->read_domains,
2910 old_write_domain);
2911 }
2912
2913 /**
2914 * Moves a single object to the GTT read, and possibly write domain.
2915 *
2916 * This function returns when the move is complete, including waiting on
2917 * flushes to occur.
2918 */
2919 int
2920 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2921 {
2922 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2923 uint32_t old_write_domain, old_read_domains;
2924 int ret;
2925
2926 /* Not valid to be called on unbound objects. */
2927 if (obj_priv->gtt_space == NULL)
2928 return -EINVAL;
2929
2930 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2931 if (ret != 0)
2932 return ret;
2933
2934 i915_gem_object_flush_cpu_write_domain(obj);
2935
2936 if (write) {
2937 ret = i915_gem_object_wait_rendering(obj, true);
2938 if (ret)
2939 return ret;
2940 }
2941
2942 old_write_domain = obj->write_domain;
2943 old_read_domains = obj->read_domains;
2944
2945 /* It should now be out of any other write domains, and we can update
2946 * the domain values for our changes.
2947 */
2948 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2949 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2950 if (write) {
2951 obj->read_domains = I915_GEM_DOMAIN_GTT;
2952 obj->write_domain = I915_GEM_DOMAIN_GTT;
2953 obj_priv->dirty = 1;
2954 }
2955
2956 trace_i915_gem_object_change_domain(obj,
2957 old_read_domains,
2958 old_write_domain);
2959
2960 return 0;
2961 }
2962
2963 /*
2964 * Prepare buffer for display plane. Use uninterruptible for possible flush
2965 * wait, as in modesetting process we're not supposed to be interrupted.
2966 */
2967 int
2968 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2969 bool pipelined)
2970 {
2971 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2972 uint32_t old_read_domains;
2973 int ret;
2974
2975 /* Not valid to be called on unbound objects. */
2976 if (obj_priv->gtt_space == NULL)
2977 return -EINVAL;
2978
2979 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2980 if (ret)
2981 return ret;
2982
2983 /* Currently, we are always called from an non-interruptible context. */
2984 if (!pipelined) {
2985 ret = i915_gem_object_wait_rendering(obj, false);
2986 if (ret)
2987 return ret;
2988 }
2989
2990 i915_gem_object_flush_cpu_write_domain(obj);
2991
2992 old_read_domains = obj->read_domains;
2993 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2994
2995 trace_i915_gem_object_change_domain(obj,
2996 old_read_domains,
2997 obj->write_domain);
2998
2999 return 0;
3000 }
3001
3002 /**
3003 * Moves a single object to the CPU read, and possibly write domain.
3004 *
3005 * This function returns when the move is complete, including waiting on
3006 * flushes to occur.
3007 */
3008 static int
3009 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3010 {
3011 uint32_t old_write_domain, old_read_domains;
3012 int ret;
3013
3014 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3015 if (ret != 0)
3016 return ret;
3017
3018 i915_gem_object_flush_gtt_write_domain(obj);
3019
3020 /* If we have a partially-valid cache of the object in the CPU,
3021 * finish invalidating it and free the per-page flags.
3022 */
3023 i915_gem_object_set_to_full_cpu_read_domain(obj);
3024
3025 if (write) {
3026 ret = i915_gem_object_wait_rendering(obj, true);
3027 if (ret)
3028 return ret;
3029 }
3030
3031 old_write_domain = obj->write_domain;
3032 old_read_domains = obj->read_domains;
3033
3034 /* Flush the CPU cache if it's still invalid. */
3035 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3036 i915_gem_clflush_object(obj);
3037
3038 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3039 }
3040
3041 /* It should now be out of any other write domains, and we can update
3042 * the domain values for our changes.
3043 */
3044 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3045
3046 /* If we're writing through the CPU, then the GPU read domains will
3047 * need to be invalidated at next use.
3048 */
3049 if (write) {
3050 obj->read_domains = I915_GEM_DOMAIN_CPU;
3051 obj->write_domain = I915_GEM_DOMAIN_CPU;
3052 }
3053
3054 trace_i915_gem_object_change_domain(obj,
3055 old_read_domains,
3056 old_write_domain);
3057
3058 return 0;
3059 }
3060
3061 /*
3062 * Set the next domain for the specified object. This
3063 * may not actually perform the necessary flushing/invaliding though,
3064 * as that may want to be batched with other set_domain operations
3065 *
3066 * This is (we hope) the only really tricky part of gem. The goal
3067 * is fairly simple -- track which caches hold bits of the object
3068 * and make sure they remain coherent. A few concrete examples may
3069 * help to explain how it works. For shorthand, we use the notation
3070 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3071 * a pair of read and write domain masks.
3072 *
3073 * Case 1: the batch buffer
3074 *
3075 * 1. Allocated
3076 * 2. Written by CPU
3077 * 3. Mapped to GTT
3078 * 4. Read by GPU
3079 * 5. Unmapped from GTT
3080 * 6. Freed
3081 *
3082 * Let's take these a step at a time
3083 *
3084 * 1. Allocated
3085 * Pages allocated from the kernel may still have
3086 * cache contents, so we set them to (CPU, CPU) always.
3087 * 2. Written by CPU (using pwrite)
3088 * The pwrite function calls set_domain (CPU, CPU) and
3089 * this function does nothing (as nothing changes)
3090 * 3. Mapped by GTT
3091 * This function asserts that the object is not
3092 * currently in any GPU-based read or write domains
3093 * 4. Read by GPU
3094 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3095 * As write_domain is zero, this function adds in the
3096 * current read domains (CPU+COMMAND, 0).
3097 * flush_domains is set to CPU.
3098 * invalidate_domains is set to COMMAND
3099 * clflush is run to get data out of the CPU caches
3100 * then i915_dev_set_domain calls i915_gem_flush to
3101 * emit an MI_FLUSH and drm_agp_chipset_flush
3102 * 5. Unmapped from GTT
3103 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3104 * flush_domains and invalidate_domains end up both zero
3105 * so no flushing/invalidating happens
3106 * 6. Freed
3107 * yay, done
3108 *
3109 * Case 2: The shared render buffer
3110 *
3111 * 1. Allocated
3112 * 2. Mapped to GTT
3113 * 3. Read/written by GPU
3114 * 4. set_domain to (CPU,CPU)
3115 * 5. Read/written by CPU
3116 * 6. Read/written by GPU
3117 *
3118 * 1. Allocated
3119 * Same as last example, (CPU, CPU)
3120 * 2. Mapped to GTT
3121 * Nothing changes (assertions find that it is not in the GPU)
3122 * 3. Read/written by GPU
3123 * execbuffer calls set_domain (RENDER, RENDER)
3124 * flush_domains gets CPU
3125 * invalidate_domains gets GPU
3126 * clflush (obj)
3127 * MI_FLUSH and drm_agp_chipset_flush
3128 * 4. set_domain (CPU, CPU)
3129 * flush_domains gets GPU
3130 * invalidate_domains gets CPU
3131 * wait_rendering (obj) to make sure all drawing is complete.
3132 * This will include an MI_FLUSH to get the data from GPU
3133 * to memory
3134 * clflush (obj) to invalidate the CPU cache
3135 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3136 * 5. Read/written by CPU
3137 * cache lines are loaded and dirtied
3138 * 6. Read written by GPU
3139 * Same as last GPU access
3140 *
3141 * Case 3: The constant buffer
3142 *
3143 * 1. Allocated
3144 * 2. Written by CPU
3145 * 3. Read by GPU
3146 * 4. Updated (written) by CPU again
3147 * 5. Read by GPU
3148 *
3149 * 1. Allocated
3150 * (CPU, CPU)
3151 * 2. Written by CPU
3152 * (CPU, CPU)
3153 * 3. Read by GPU
3154 * (CPU+RENDER, 0)
3155 * flush_domains = CPU
3156 * invalidate_domains = RENDER
3157 * clflush (obj)
3158 * MI_FLUSH
3159 * drm_agp_chipset_flush
3160 * 4. Updated (written) by CPU again
3161 * (CPU, CPU)
3162 * flush_domains = 0 (no previous write domain)
3163 * invalidate_domains = 0 (no new read domains)
3164 * 5. Read by GPU
3165 * (CPU+RENDER, 0)
3166 * flush_domains = CPU
3167 * invalidate_domains = RENDER
3168 * clflush (obj)
3169 * MI_FLUSH
3170 * drm_agp_chipset_flush
3171 */
3172 static void
3173 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3174 struct intel_ring_buffer *ring,
3175 struct change_domains *cd)
3176 {
3177 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3178 uint32_t invalidate_domains = 0;
3179 uint32_t flush_domains = 0;
3180
3181 /*
3182 * If the object isn't moving to a new write domain,
3183 * let the object stay in multiple read domains
3184 */
3185 if (obj->pending_write_domain == 0)
3186 obj->pending_read_domains |= obj->read_domains;
3187
3188 /*
3189 * Flush the current write domain if
3190 * the new read domains don't match. Invalidate
3191 * any read domains which differ from the old
3192 * write domain
3193 */
3194 if (obj->write_domain &&
3195 (obj->write_domain != obj->pending_read_domains ||
3196 obj_priv->ring != ring)) {
3197 flush_domains |= obj->write_domain;
3198 invalidate_domains |=
3199 obj->pending_read_domains & ~obj->write_domain;
3200 }
3201 /*
3202 * Invalidate any read caches which may have
3203 * stale data. That is, any new read domains.
3204 */
3205 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3206 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3207 i915_gem_clflush_object(obj);
3208
3209 /* blow away mappings if mapped through GTT */
3210 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
3211 i915_gem_release_mmap(obj);
3212
3213 /* The actual obj->write_domain will be updated with
3214 * pending_write_domain after we emit the accumulated flush for all
3215 * of our domain changes in execbuffers (which clears objects'
3216 * write_domains). So if we have a current write domain that we
3217 * aren't changing, set pending_write_domain to that.
3218 */
3219 if (flush_domains == 0 && obj->pending_write_domain == 0)
3220 obj->pending_write_domain = obj->write_domain;
3221
3222 cd->invalidate_domains |= invalidate_domains;
3223 cd->flush_domains |= flush_domains;
3224 if (flush_domains & I915_GEM_GPU_DOMAINS)
3225 cd->flush_rings |= obj_priv->ring->id;
3226 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3227 cd->flush_rings |= ring->id;
3228 }
3229
3230 /**
3231 * Moves the object from a partially CPU read to a full one.
3232 *
3233 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3234 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3235 */
3236 static void
3237 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3238 {
3239 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3240
3241 if (!obj_priv->page_cpu_valid)
3242 return;
3243
3244 /* If we're partially in the CPU read domain, finish moving it in.
3245 */
3246 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3247 int i;
3248
3249 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3250 if (obj_priv->page_cpu_valid[i])
3251 continue;
3252 drm_clflush_pages(obj_priv->pages + i, 1);
3253 }
3254 }
3255
3256 /* Free the page_cpu_valid mappings which are now stale, whether
3257 * or not we've got I915_GEM_DOMAIN_CPU.
3258 */
3259 kfree(obj_priv->page_cpu_valid);
3260 obj_priv->page_cpu_valid = NULL;
3261 }
3262
3263 /**
3264 * Set the CPU read domain on a range of the object.
3265 *
3266 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3267 * not entirely valid. The page_cpu_valid member of the object flags which
3268 * pages have been flushed, and will be respected by
3269 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3270 * of the whole object.
3271 *
3272 * This function returns when the move is complete, including waiting on
3273 * flushes to occur.
3274 */
3275 static int
3276 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3277 uint64_t offset, uint64_t size)
3278 {
3279 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3280 uint32_t old_read_domains;
3281 int i, ret;
3282
3283 if (offset == 0 && size == obj->size)
3284 return i915_gem_object_set_to_cpu_domain(obj, 0);
3285
3286 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3287 if (ret != 0)
3288 return ret;
3289 i915_gem_object_flush_gtt_write_domain(obj);
3290
3291 /* If we're already fully in the CPU read domain, we're done. */
3292 if (obj_priv->page_cpu_valid == NULL &&
3293 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3294 return 0;
3295
3296 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3297 * newly adding I915_GEM_DOMAIN_CPU
3298 */
3299 if (obj_priv->page_cpu_valid == NULL) {
3300 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3301 GFP_KERNEL);
3302 if (obj_priv->page_cpu_valid == NULL)
3303 return -ENOMEM;
3304 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3305 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3306
3307 /* Flush the cache on any pages that are still invalid from the CPU's
3308 * perspective.
3309 */
3310 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3311 i++) {
3312 if (obj_priv->page_cpu_valid[i])
3313 continue;
3314
3315 drm_clflush_pages(obj_priv->pages + i, 1);
3316
3317 obj_priv->page_cpu_valid[i] = 1;
3318 }
3319
3320 /* It should now be out of any other write domains, and we can update
3321 * the domain values for our changes.
3322 */
3323 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3324
3325 old_read_domains = obj->read_domains;
3326 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3327
3328 trace_i915_gem_object_change_domain(obj,
3329 old_read_domains,
3330 obj->write_domain);
3331
3332 return 0;
3333 }
3334
3335 /**
3336 * Pin an object to the GTT and evaluate the relocations landing in it.
3337 */
3338 static int
3339 i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3340 struct drm_file *file_priv,
3341 struct drm_i915_gem_exec_object2 *entry)
3342 {
3343 struct drm_device *dev = obj->base.dev;
3344 drm_i915_private_t *dev_priv = dev->dev_private;
3345 struct drm_i915_gem_relocation_entry __user *user_relocs;
3346 struct drm_gem_object *target_obj = NULL;
3347 uint32_t target_handle = 0;
3348 int i, ret = 0;
3349
3350 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3351 for (i = 0; i < entry->relocation_count; i++) {
3352 struct drm_i915_gem_relocation_entry reloc;
3353 uint32_t target_offset;
3354
3355 if (__copy_from_user_inatomic(&reloc,
3356 user_relocs+i,
3357 sizeof(reloc))) {
3358 ret = -EFAULT;
3359 break;
3360 }
3361
3362 if (reloc.target_handle != target_handle) {
3363 drm_gem_object_unreference(target_obj);
3364
3365 target_obj = drm_gem_object_lookup(dev, file_priv,
3366 reloc.target_handle);
3367 if (target_obj == NULL) {
3368 ret = -ENOENT;
3369 break;
3370 }
3371
3372 target_handle = reloc.target_handle;
3373 }
3374 target_offset = to_intel_bo(target_obj)->gtt_offset;
3375
3376 #if WATCH_RELOC
3377 DRM_INFO("%s: obj %p offset %08x target %d "
3378 "read %08x write %08x gtt %08x "
3379 "presumed %08x delta %08x\n",
3380 __func__,
3381 obj,
3382 (int) reloc.offset,
3383 (int) reloc.target_handle,
3384 (int) reloc.read_domains,
3385 (int) reloc.write_domain,
3386 (int) target_offset,
3387 (int) reloc.presumed_offset,
3388 reloc.delta);
3389 #endif
3390
3391 /* The target buffer should have appeared before us in the
3392 * exec_object list, so it should have a GTT space bound by now.
3393 */
3394 if (target_offset == 0) {
3395 DRM_ERROR("No GTT space found for object %d\n",
3396 reloc.target_handle);
3397 ret = -EINVAL;
3398 break;
3399 }
3400
3401 /* Validate that the target is in a valid r/w GPU domain */
3402 if (reloc.write_domain & (reloc.write_domain - 1)) {
3403 DRM_ERROR("reloc with multiple write domains: "
3404 "obj %p target %d offset %d "
3405 "read %08x write %08x",
3406 obj, reloc.target_handle,
3407 (int) reloc.offset,
3408 reloc.read_domains,
3409 reloc.write_domain);
3410 ret = -EINVAL;
3411 break;
3412 }
3413 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3414 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3415 DRM_ERROR("reloc with read/write CPU domains: "
3416 "obj %p target %d offset %d "
3417 "read %08x write %08x",
3418 obj, reloc.target_handle,
3419 (int) reloc.offset,
3420 reloc.read_domains,
3421 reloc.write_domain);
3422 ret = -EINVAL;
3423 break;
3424 }
3425 if (reloc.write_domain && target_obj->pending_write_domain &&
3426 reloc.write_domain != target_obj->pending_write_domain) {
3427 DRM_ERROR("Write domain conflict: "
3428 "obj %p target %d offset %d "
3429 "new %08x old %08x\n",
3430 obj, reloc.target_handle,
3431 (int) reloc.offset,
3432 reloc.write_domain,
3433 target_obj->pending_write_domain);
3434 ret = -EINVAL;
3435 break;
3436 }
3437
3438 target_obj->pending_read_domains |= reloc.read_domains;
3439 target_obj->pending_write_domain |= reloc.write_domain;
3440
3441 /* If the relocation already has the right value in it, no
3442 * more work needs to be done.
3443 */
3444 if (target_offset == reloc.presumed_offset)
3445 continue;
3446
3447 /* Check that the relocation address is valid... */
3448 if (reloc.offset > obj->base.size - 4) {
3449 DRM_ERROR("Relocation beyond object bounds: "
3450 "obj %p target %d offset %d size %d.\n",
3451 obj, reloc.target_handle,
3452 (int) reloc.offset, (int) obj->base.size);
3453 ret = -EINVAL;
3454 break;
3455 }
3456 if (reloc.offset & 3) {
3457 DRM_ERROR("Relocation not 4-byte aligned: "
3458 "obj %p target %d offset %d.\n",
3459 obj, reloc.target_handle,
3460 (int) reloc.offset);
3461 ret = -EINVAL;
3462 break;
3463 }
3464
3465 /* and points to somewhere within the target object. */
3466 if (reloc.delta >= target_obj->size) {
3467 DRM_ERROR("Relocation beyond target object bounds: "
3468 "obj %p target %d delta %d size %d.\n",
3469 obj, reloc.target_handle,
3470 (int) reloc.delta, (int) target_obj->size);
3471 ret = -EINVAL;
3472 break;
3473 }
3474
3475 reloc.delta += target_offset;
3476 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3477 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3478 char *vaddr;
3479
3480 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3481 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3482 kunmap_atomic(vaddr);
3483 } else {
3484 uint32_t __iomem *reloc_entry;
3485 void __iomem *reloc_page;
3486
3487 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3488 if (ret)
3489 break;
3490
3491 /* Map the page containing the relocation we're going to perform. */
3492 reloc.offset += obj->gtt_offset;
3493 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3494 reloc.offset & PAGE_MASK);
3495 reloc_entry = (uint32_t __iomem *)
3496 (reloc_page + (reloc.offset & ~PAGE_MASK));
3497 iowrite32(reloc.delta, reloc_entry);
3498 io_mapping_unmap_atomic(reloc_page);
3499 }
3500
3501 /* and update the user's relocation entry */
3502 reloc.presumed_offset = target_offset;
3503 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3504 &reloc.presumed_offset,
3505 sizeof(reloc.presumed_offset))) {
3506 ret = -EFAULT;
3507 break;
3508 }
3509 }
3510
3511 drm_gem_object_unreference(target_obj);
3512 return ret;
3513 }
3514
3515 static int
3516 i915_gem_execbuffer_pin(struct drm_device *dev,
3517 struct drm_file *file,
3518 struct drm_gem_object **object_list,
3519 struct drm_i915_gem_exec_object2 *exec_list,
3520 int count)
3521 {
3522 struct drm_i915_private *dev_priv = dev->dev_private;
3523 int ret, i, retry;
3524
3525 /* attempt to pin all of the buffers into the GTT */
3526 retry = 0;
3527 do {
3528 ret = 0;
3529 for (i = 0; i < count; i++) {
3530 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3531 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3532 bool need_fence =
3533 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3534 obj->tiling_mode != I915_TILING_NONE;
3535
3536 /* g33/pnv can't fence buffers in the unmappable part */
3537 bool need_mappable =
3538 entry->relocation_count ? true : need_fence;
3539
3540 /* Check fence reg constraints and rebind if necessary */
3541 if ((need_fence && !obj->fenceable) ||
3542 (need_mappable && !obj->mappable)) {
3543 ret = i915_gem_object_unbind(&obj->base);
3544 if (ret)
3545 break;
3546 }
3547
3548 ret = i915_gem_object_pin(&obj->base,
3549 entry->alignment,
3550 need_mappable,
3551 need_fence);
3552 if (ret)
3553 break;
3554
3555 /*
3556 * Pre-965 chips need a fence register set up in order
3557 * to properly handle blits to/from tiled surfaces.
3558 */
3559 if (need_fence) {
3560 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3561 if (ret) {
3562 i915_gem_object_unpin(&obj->base);
3563 break;
3564 }
3565
3566 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3567 }
3568
3569 entry->offset = obj->gtt_offset;
3570 }
3571
3572 while (i--)
3573 i915_gem_object_unpin(object_list[i]);
3574
3575 if (ret != -ENOSPC || retry > 1)
3576 return ret;
3577
3578 /* First attempt, just clear anything that is purgeable.
3579 * Second attempt, clear the entire GTT.
3580 */
3581 ret = i915_gem_evict_everything(dev, retry == 0);
3582 if (ret)
3583 return ret;
3584
3585 retry++;
3586 } while (1);
3587 }
3588
3589 static int
3590 i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3591 struct drm_file *file,
3592 struct intel_ring_buffer *ring,
3593 struct drm_gem_object **objects,
3594 int count)
3595 {
3596 struct change_domains cd;
3597 int ret, i;
3598
3599 cd.invalidate_domains = 0;
3600 cd.flush_domains = 0;
3601 cd.flush_rings = 0;
3602 for (i = 0; i < count; i++)
3603 i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
3604
3605 if (cd.invalidate_domains | cd.flush_domains) {
3606 #if WATCH_EXEC
3607 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3608 __func__,
3609 cd.invalidate_domains,
3610 cd.flush_domains);
3611 #endif
3612 i915_gem_flush(dev, file,
3613 cd.invalidate_domains,
3614 cd.flush_domains,
3615 cd.flush_rings);
3616 }
3617
3618 for (i = 0; i < count; i++) {
3619 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3620 /* XXX replace with semaphores */
3621 if (obj->ring && ring != obj->ring) {
3622 ret = i915_gem_object_wait_rendering(&obj->base, true);
3623 if (ret)
3624 return ret;
3625 }
3626 }
3627
3628 return 0;
3629 }
3630
3631 /* Throttle our rendering by waiting until the ring has completed our requests
3632 * emitted over 20 msec ago.
3633 *
3634 * Note that if we were to use the current jiffies each time around the loop,
3635 * we wouldn't escape the function with any frames outstanding if the time to
3636 * render a frame was over 20ms.
3637 *
3638 * This should get us reasonable parallelism between CPU and GPU but also
3639 * relatively low latency when blocking on a particular request to finish.
3640 */
3641 static int
3642 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3643 {
3644 struct drm_i915_private *dev_priv = dev->dev_private;
3645 struct drm_i915_file_private *file_priv = file->driver_priv;
3646 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3647 struct drm_i915_gem_request *request;
3648 struct intel_ring_buffer *ring = NULL;
3649 u32 seqno = 0;
3650 int ret;
3651
3652 spin_lock(&file_priv->mm.lock);
3653 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3654 if (time_after_eq(request->emitted_jiffies, recent_enough))
3655 break;
3656
3657 ring = request->ring;
3658 seqno = request->seqno;
3659 }
3660 spin_unlock(&file_priv->mm.lock);
3661
3662 if (seqno == 0)
3663 return 0;
3664
3665 ret = 0;
3666 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3667 /* And wait for the seqno passing without holding any locks and
3668 * causing extra latency for others. This is safe as the irq
3669 * generation is designed to be run atomically and so is
3670 * lockless.
3671 */
3672 ring->user_irq_get(ring);
3673 ret = wait_event_interruptible(ring->irq_queue,
3674 i915_seqno_passed(ring->get_seqno(ring), seqno)
3675 || atomic_read(&dev_priv->mm.wedged));
3676 ring->user_irq_put(ring);
3677
3678 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3679 ret = -EIO;
3680 }
3681
3682 if (ret == 0)
3683 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3684
3685 return ret;
3686 }
3687
3688 static int
3689 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3690 uint64_t exec_offset)
3691 {
3692 uint32_t exec_start, exec_len;
3693
3694 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3695 exec_len = (uint32_t) exec->batch_len;
3696
3697 if ((exec_start | exec_len) & 0x7)
3698 return -EINVAL;
3699
3700 if (!exec_start)
3701 return -EINVAL;
3702
3703 return 0;
3704 }
3705
3706 static int
3707 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3708 int count)
3709 {
3710 int i;
3711
3712 for (i = 0; i < count; i++) {
3713 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3714 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3715
3716 if (!access_ok(VERIFY_READ, ptr, length))
3717 return -EFAULT;
3718
3719 /* we may also need to update the presumed offsets */
3720 if (!access_ok(VERIFY_WRITE, ptr, length))
3721 return -EFAULT;
3722
3723 if (fault_in_pages_readable(ptr, length))
3724 return -EFAULT;
3725 }
3726
3727 return 0;
3728 }
3729
3730 static int
3731 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3732 struct drm_file *file,
3733 struct drm_i915_gem_execbuffer2 *args,
3734 struct drm_i915_gem_exec_object2 *exec_list)
3735 {
3736 drm_i915_private_t *dev_priv = dev->dev_private;
3737 struct drm_gem_object **object_list = NULL;
3738 struct drm_gem_object *batch_obj;
3739 struct drm_clip_rect *cliprects = NULL;
3740 struct drm_i915_gem_request *request = NULL;
3741 int ret, i, flips;
3742 uint64_t exec_offset;
3743
3744 struct intel_ring_buffer *ring = NULL;
3745
3746 ret = i915_gem_check_is_wedged(dev);
3747 if (ret)
3748 return ret;
3749
3750 ret = validate_exec_list(exec_list, args->buffer_count);
3751 if (ret)
3752 return ret;
3753
3754 #if WATCH_EXEC
3755 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3756 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3757 #endif
3758 switch (args->flags & I915_EXEC_RING_MASK) {
3759 case I915_EXEC_DEFAULT:
3760 case I915_EXEC_RENDER:
3761 ring = &dev_priv->render_ring;
3762 break;
3763 case I915_EXEC_BSD:
3764 if (!HAS_BSD(dev)) {
3765 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3766 return -EINVAL;
3767 }
3768 ring = &dev_priv->bsd_ring;
3769 break;
3770 case I915_EXEC_BLT:
3771 if (!HAS_BLT(dev)) {
3772 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3773 return -EINVAL;
3774 }
3775 ring = &dev_priv->blt_ring;
3776 break;
3777 default:
3778 DRM_ERROR("execbuf with unknown ring: %d\n",
3779 (int)(args->flags & I915_EXEC_RING_MASK));
3780 return -EINVAL;
3781 }
3782
3783 if (args->buffer_count < 1) {
3784 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3785 return -EINVAL;
3786 }
3787 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3788 if (object_list == NULL) {
3789 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3790 args->buffer_count);
3791 ret = -ENOMEM;
3792 goto pre_mutex_err;
3793 }
3794
3795 if (args->num_cliprects != 0) {
3796 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3797 GFP_KERNEL);
3798 if (cliprects == NULL) {
3799 ret = -ENOMEM;
3800 goto pre_mutex_err;
3801 }
3802
3803 ret = copy_from_user(cliprects,
3804 (struct drm_clip_rect __user *)
3805 (uintptr_t) args->cliprects_ptr,
3806 sizeof(*cliprects) * args->num_cliprects);
3807 if (ret != 0) {
3808 DRM_ERROR("copy %d cliprects failed: %d\n",
3809 args->num_cliprects, ret);
3810 ret = -EFAULT;
3811 goto pre_mutex_err;
3812 }
3813 }
3814
3815 request = kzalloc(sizeof(*request), GFP_KERNEL);
3816 if (request == NULL) {
3817 ret = -ENOMEM;
3818 goto pre_mutex_err;
3819 }
3820
3821 ret = i915_mutex_lock_interruptible(dev);
3822 if (ret)
3823 goto pre_mutex_err;
3824
3825 if (dev_priv->mm.suspended) {
3826 mutex_unlock(&dev->struct_mutex);
3827 ret = -EBUSY;
3828 goto pre_mutex_err;
3829 }
3830
3831 /* Look up object handles */
3832 for (i = 0; i < args->buffer_count; i++) {
3833 struct drm_i915_gem_object *obj_priv;
3834
3835 object_list[i] = drm_gem_object_lookup(dev, file,
3836 exec_list[i].handle);
3837 if (object_list[i] == NULL) {
3838 DRM_ERROR("Invalid object handle %d at index %d\n",
3839 exec_list[i].handle, i);
3840 /* prevent error path from reading uninitialized data */
3841 args->buffer_count = i + 1;
3842 ret = -ENOENT;
3843 goto err;
3844 }
3845
3846 obj_priv = to_intel_bo(object_list[i]);
3847 if (obj_priv->in_execbuffer) {
3848 DRM_ERROR("Object %p appears more than once in object list\n",
3849 object_list[i]);
3850 /* prevent error path from reading uninitialized data */
3851 args->buffer_count = i + 1;
3852 ret = -EINVAL;
3853 goto err;
3854 }
3855 obj_priv->in_execbuffer = true;
3856 }
3857
3858 /* Move the objects en-masse into the GTT, evicting if necessary. */
3859 ret = i915_gem_execbuffer_pin(dev, file,
3860 object_list, exec_list,
3861 args->buffer_count);
3862 if (ret)
3863 goto err;
3864
3865 /* The objects are in their final locations, apply the relocations. */
3866 for (i = 0; i < args->buffer_count; i++) {
3867 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3868 obj->base.pending_read_domains = 0;
3869 obj->base.pending_write_domain = 0;
3870 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3871 if (ret)
3872 goto err;
3873 }
3874
3875 /* Set the pending read domains for the batch buffer to COMMAND */
3876 batch_obj = object_list[args->buffer_count-1];
3877 if (batch_obj->pending_write_domain) {
3878 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3879 ret = -EINVAL;
3880 goto err;
3881 }
3882 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3883
3884 /* Sanity check the batch buffer */
3885 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3886 ret = i915_gem_check_execbuffer(args, exec_offset);
3887 if (ret != 0) {
3888 DRM_ERROR("execbuf with invalid offset/length\n");
3889 goto err;
3890 }
3891
3892 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
3893 object_list, args->buffer_count);
3894 if (ret)
3895 goto err;
3896
3897 #if WATCH_COHERENCY
3898 for (i = 0; i < args->buffer_count; i++) {
3899 i915_gem_object_check_coherency(object_list[i],
3900 exec_list[i].handle);
3901 }
3902 #endif
3903
3904 #if WATCH_EXEC
3905 i915_gem_dump_object(batch_obj,
3906 args->batch_len,
3907 __func__,
3908 ~0);
3909 #endif
3910
3911 /* Check for any pending flips. As we only maintain a flip queue depth
3912 * of 1, we can simply insert a WAIT for the next display flip prior
3913 * to executing the batch and avoid stalling the CPU.
3914 */
3915 flips = 0;
3916 for (i = 0; i < args->buffer_count; i++) {
3917 if (object_list[i]->write_domain)
3918 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3919 }
3920 if (flips) {
3921 int plane, flip_mask;
3922
3923 for (plane = 0; flips >> plane; plane++) {
3924 if (((flips >> plane) & 1) == 0)
3925 continue;
3926
3927 if (plane)
3928 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3929 else
3930 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3931
3932 ret = intel_ring_begin(ring, 2);
3933 if (ret)
3934 goto err;
3935
3936 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3937 intel_ring_emit(ring, MI_NOOP);
3938 intel_ring_advance(ring);
3939 }
3940 }
3941
3942 /* Exec the batchbuffer */
3943 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
3944 if (ret) {
3945 DRM_ERROR("dispatch failed %d\n", ret);
3946 goto err;
3947 }
3948
3949 for (i = 0; i < args->buffer_count; i++) {
3950 struct drm_gem_object *obj = object_list[i];
3951
3952 obj->read_domains = obj->pending_read_domains;
3953 obj->write_domain = obj->pending_write_domain;
3954
3955 i915_gem_object_move_to_active(obj, ring);
3956 if (obj->write_domain) {
3957 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3958 obj_priv->dirty = 1;
3959 list_move_tail(&obj_priv->gpu_write_list,
3960 &ring->gpu_write_list);
3961 intel_mark_busy(dev, obj);
3962 }
3963
3964 trace_i915_gem_object_change_domain(obj,
3965 obj->read_domains,
3966 obj->write_domain);
3967 }
3968
3969 /*
3970 * Ensure that the commands in the batch buffer are
3971 * finished before the interrupt fires
3972 */
3973 i915_retire_commands(dev, ring);
3974
3975 if (i915_add_request(dev, file, request, ring))
3976 ring->outstanding_lazy_request = true;
3977 else
3978 request = NULL;
3979
3980 err:
3981 for (i = 0; i < args->buffer_count; i++) {
3982 if (object_list[i] == NULL)
3983 break;
3984
3985 to_intel_bo(object_list[i])->in_execbuffer = false;
3986 drm_gem_object_unreference(object_list[i]);
3987 }
3988
3989 mutex_unlock(&dev->struct_mutex);
3990
3991 pre_mutex_err:
3992 drm_free_large(object_list);
3993 kfree(cliprects);
3994 kfree(request);
3995
3996 return ret;
3997 }
3998
3999 /*
4000 * Legacy execbuffer just creates an exec2 list from the original exec object
4001 * list array and passes it to the real function.
4002 */
4003 int
4004 i915_gem_execbuffer(struct drm_device *dev, void *data,
4005 struct drm_file *file_priv)
4006 {
4007 struct drm_i915_gem_execbuffer *args = data;
4008 struct drm_i915_gem_execbuffer2 exec2;
4009 struct drm_i915_gem_exec_object *exec_list = NULL;
4010 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4011 int ret, i;
4012
4013 #if WATCH_EXEC
4014 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4015 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4016 #endif
4017
4018 if (args->buffer_count < 1) {
4019 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4020 return -EINVAL;
4021 }
4022
4023 /* Copy in the exec list from userland */
4024 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4025 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4026 if (exec_list == NULL || exec2_list == NULL) {
4027 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4028 args->buffer_count);
4029 drm_free_large(exec_list);
4030 drm_free_large(exec2_list);
4031 return -ENOMEM;
4032 }
4033 ret = copy_from_user(exec_list,
4034 (struct drm_i915_relocation_entry __user *)
4035 (uintptr_t) args->buffers_ptr,
4036 sizeof(*exec_list) * args->buffer_count);
4037 if (ret != 0) {
4038 DRM_ERROR("copy %d exec entries failed %d\n",
4039 args->buffer_count, ret);
4040 drm_free_large(exec_list);
4041 drm_free_large(exec2_list);
4042 return -EFAULT;
4043 }
4044
4045 for (i = 0; i < args->buffer_count; i++) {
4046 exec2_list[i].handle = exec_list[i].handle;
4047 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4048 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4049 exec2_list[i].alignment = exec_list[i].alignment;
4050 exec2_list[i].offset = exec_list[i].offset;
4051 if (INTEL_INFO(dev)->gen < 4)
4052 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4053 else
4054 exec2_list[i].flags = 0;
4055 }
4056
4057 exec2.buffers_ptr = args->buffers_ptr;
4058 exec2.buffer_count = args->buffer_count;
4059 exec2.batch_start_offset = args->batch_start_offset;
4060 exec2.batch_len = args->batch_len;
4061 exec2.DR1 = args->DR1;
4062 exec2.DR4 = args->DR4;
4063 exec2.num_cliprects = args->num_cliprects;
4064 exec2.cliprects_ptr = args->cliprects_ptr;
4065 exec2.flags = I915_EXEC_RENDER;
4066
4067 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4068 if (!ret) {
4069 /* Copy the new buffer offsets back to the user's exec list. */
4070 for (i = 0; i < args->buffer_count; i++)
4071 exec_list[i].offset = exec2_list[i].offset;
4072 /* ... and back out to userspace */
4073 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4074 (uintptr_t) args->buffers_ptr,
4075 exec_list,
4076 sizeof(*exec_list) * args->buffer_count);
4077 if (ret) {
4078 ret = -EFAULT;
4079 DRM_ERROR("failed to copy %d exec entries "
4080 "back to user (%d)\n",
4081 args->buffer_count, ret);
4082 }
4083 }
4084
4085 drm_free_large(exec_list);
4086 drm_free_large(exec2_list);
4087 return ret;
4088 }
4089
4090 int
4091 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4092 struct drm_file *file_priv)
4093 {
4094 struct drm_i915_gem_execbuffer2 *args = data;
4095 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4096 int ret;
4097
4098 #if WATCH_EXEC
4099 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4100 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4101 #endif
4102
4103 if (args->buffer_count < 1) {
4104 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4105 return -EINVAL;
4106 }
4107
4108 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4109 if (exec2_list == NULL) {
4110 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4111 args->buffer_count);
4112 return -ENOMEM;
4113 }
4114 ret = copy_from_user(exec2_list,
4115 (struct drm_i915_relocation_entry __user *)
4116 (uintptr_t) args->buffers_ptr,
4117 sizeof(*exec2_list) * args->buffer_count);
4118 if (ret != 0) {
4119 DRM_ERROR("copy %d exec entries failed %d\n",
4120 args->buffer_count, ret);
4121 drm_free_large(exec2_list);
4122 return -EFAULT;
4123 }
4124
4125 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4126 if (!ret) {
4127 /* Copy the new buffer offsets back to the user's exec list. */
4128 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4129 (uintptr_t) args->buffers_ptr,
4130 exec2_list,
4131 sizeof(*exec2_list) * args->buffer_count);
4132 if (ret) {
4133 ret = -EFAULT;
4134 DRM_ERROR("failed to copy %d exec entries "
4135 "back to user (%d)\n",
4136 args->buffer_count, ret);
4137 }
4138 }
4139
4140 drm_free_large(exec2_list);
4141 return ret;
4142 }
4143
4144 int
4145 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4146 bool mappable, bool need_fence)
4147 {
4148 struct drm_device *dev = obj->dev;
4149 struct drm_i915_private *dev_priv = dev->dev_private;
4150 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4151 int ret;
4152
4153 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4154 BUG_ON(need_fence && !mappable);
4155 WARN_ON(i915_verify_lists(dev));
4156
4157 if (obj_priv->gtt_space != NULL) {
4158 if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
4159 (need_fence && !obj_priv->fenceable) ||
4160 (mappable && !obj_priv->mappable)) {
4161 WARN(obj_priv->pin_count,
4162 "bo is already pinned with incorrect alignment:"
4163 " offset=%x, req.alignment=%x, need_fence=%d, fenceable=%d, mappable=%d, cpu_accessible=%d\n",
4164 obj_priv->gtt_offset, alignment,
4165 need_fence, obj_priv->fenceable,
4166 mappable, obj_priv->mappable);
4167 ret = i915_gem_object_unbind(obj);
4168 if (ret)
4169 return ret;
4170 }
4171 }
4172
4173 if (obj_priv->gtt_space == NULL) {
4174 ret = i915_gem_object_bind_to_gtt(obj, alignment,
4175 mappable, need_fence);
4176 if (ret)
4177 return ret;
4178 }
4179
4180 if (obj_priv->pin_count++ == 0) {
4181 i915_gem_info_add_pin(dev_priv, obj_priv, mappable);
4182 if (!obj_priv->active)
4183 list_move_tail(&obj_priv->mm_list,
4184 &dev_priv->mm.pinned_list);
4185 }
4186 BUG_ON(!obj_priv->pin_mappable && mappable);
4187
4188 WARN_ON(i915_verify_lists(dev));
4189 return 0;
4190 }
4191
4192 void
4193 i915_gem_object_unpin(struct drm_gem_object *obj)
4194 {
4195 struct drm_device *dev = obj->dev;
4196 drm_i915_private_t *dev_priv = dev->dev_private;
4197 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4198
4199 WARN_ON(i915_verify_lists(dev));
4200 BUG_ON(obj_priv->pin_count == 0);
4201 BUG_ON(obj_priv->gtt_space == NULL);
4202
4203 if (--obj_priv->pin_count == 0) {
4204 if (!obj_priv->active)
4205 list_move_tail(&obj_priv->mm_list,
4206 &dev_priv->mm.inactive_list);
4207 i915_gem_info_remove_pin(dev_priv, obj_priv);
4208 }
4209 WARN_ON(i915_verify_lists(dev));
4210 }
4211
4212 int
4213 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4214 struct drm_file *file_priv)
4215 {
4216 struct drm_i915_gem_pin *args = data;
4217 struct drm_gem_object *obj;
4218 struct drm_i915_gem_object *obj_priv;
4219 int ret;
4220
4221 ret = i915_mutex_lock_interruptible(dev);
4222 if (ret)
4223 return ret;
4224
4225 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4226 if (obj == NULL) {
4227 ret = -ENOENT;
4228 goto unlock;
4229 }
4230 obj_priv = to_intel_bo(obj);
4231
4232 if (obj_priv->madv != I915_MADV_WILLNEED) {
4233 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4234 ret = -EINVAL;
4235 goto out;
4236 }
4237
4238 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4239 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4240 args->handle);
4241 ret = -EINVAL;
4242 goto out;
4243 }
4244
4245 obj_priv->user_pin_count++;
4246 obj_priv->pin_filp = file_priv;
4247 if (obj_priv->user_pin_count == 1) {
4248 ret = i915_gem_object_pin(obj, args->alignment,
4249 true, obj_priv->tiling_mode);
4250 if (ret)
4251 goto out;
4252 }
4253
4254 /* XXX - flush the CPU caches for pinned objects
4255 * as the X server doesn't manage domains yet
4256 */
4257 i915_gem_object_flush_cpu_write_domain(obj);
4258 args->offset = obj_priv->gtt_offset;
4259 out:
4260 drm_gem_object_unreference(obj);
4261 unlock:
4262 mutex_unlock(&dev->struct_mutex);
4263 return ret;
4264 }
4265
4266 int
4267 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4268 struct drm_file *file_priv)
4269 {
4270 struct drm_i915_gem_pin *args = data;
4271 struct drm_gem_object *obj;
4272 struct drm_i915_gem_object *obj_priv;
4273 int ret;
4274
4275 ret = i915_mutex_lock_interruptible(dev);
4276 if (ret)
4277 return ret;
4278
4279 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4280 if (obj == NULL) {
4281 ret = -ENOENT;
4282 goto unlock;
4283 }
4284 obj_priv = to_intel_bo(obj);
4285
4286 if (obj_priv->pin_filp != file_priv) {
4287 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4288 args->handle);
4289 ret = -EINVAL;
4290 goto out;
4291 }
4292 obj_priv->user_pin_count--;
4293 if (obj_priv->user_pin_count == 0) {
4294 obj_priv->pin_filp = NULL;
4295 i915_gem_object_unpin(obj);
4296 }
4297
4298 out:
4299 drm_gem_object_unreference(obj);
4300 unlock:
4301 mutex_unlock(&dev->struct_mutex);
4302 return ret;
4303 }
4304
4305 int
4306 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4307 struct drm_file *file_priv)
4308 {
4309 struct drm_i915_gem_busy *args = data;
4310 struct drm_gem_object *obj;
4311 struct drm_i915_gem_object *obj_priv;
4312 int ret;
4313
4314 ret = i915_mutex_lock_interruptible(dev);
4315 if (ret)
4316 return ret;
4317
4318 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4319 if (obj == NULL) {
4320 ret = -ENOENT;
4321 goto unlock;
4322 }
4323 obj_priv = to_intel_bo(obj);
4324
4325 /* Count all active objects as busy, even if they are currently not used
4326 * by the gpu. Users of this interface expect objects to eventually
4327 * become non-busy without any further actions, therefore emit any
4328 * necessary flushes here.
4329 */
4330 args->busy = obj_priv->active;
4331 if (args->busy) {
4332 /* Unconditionally flush objects, even when the gpu still uses this
4333 * object. Userspace calling this function indicates that it wants to
4334 * use this buffer rather sooner than later, so issuing the required
4335 * flush earlier is beneficial.
4336 */
4337 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4338 i915_gem_flush_ring(dev, file_priv,
4339 obj_priv->ring,
4340 0, obj->write_domain);
4341
4342 /* Update the active list for the hardware's current position.
4343 * Otherwise this only updates on a delayed timer or when irqs
4344 * are actually unmasked, and our working set ends up being
4345 * larger than required.
4346 */
4347 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4348
4349 args->busy = obj_priv->active;
4350 }
4351
4352 drm_gem_object_unreference(obj);
4353 unlock:
4354 mutex_unlock(&dev->struct_mutex);
4355 return ret;
4356 }
4357
4358 int
4359 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4360 struct drm_file *file_priv)
4361 {
4362 return i915_gem_ring_throttle(dev, file_priv);
4363 }
4364
4365 int
4366 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4367 struct drm_file *file_priv)
4368 {
4369 struct drm_i915_gem_madvise *args = data;
4370 struct drm_gem_object *obj;
4371 struct drm_i915_gem_object *obj_priv;
4372 int ret;
4373
4374 switch (args->madv) {
4375 case I915_MADV_DONTNEED:
4376 case I915_MADV_WILLNEED:
4377 break;
4378 default:
4379 return -EINVAL;
4380 }
4381
4382 ret = i915_mutex_lock_interruptible(dev);
4383 if (ret)
4384 return ret;
4385
4386 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4387 if (obj == NULL) {
4388 ret = -ENOENT;
4389 goto unlock;
4390 }
4391 obj_priv = to_intel_bo(obj);
4392
4393 if (obj_priv->pin_count) {
4394 ret = -EINVAL;
4395 goto out;
4396 }
4397
4398 if (obj_priv->madv != __I915_MADV_PURGED)
4399 obj_priv->madv = args->madv;
4400
4401 /* if the object is no longer bound, discard its backing storage */
4402 if (i915_gem_object_is_purgeable(obj_priv) &&
4403 obj_priv->gtt_space == NULL)
4404 i915_gem_object_truncate(obj);
4405
4406 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4407
4408 out:
4409 drm_gem_object_unreference(obj);
4410 unlock:
4411 mutex_unlock(&dev->struct_mutex);
4412 return ret;
4413 }
4414
4415 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4416 size_t size)
4417 {
4418 struct drm_i915_private *dev_priv = dev->dev_private;
4419 struct drm_i915_gem_object *obj;
4420
4421 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4422 if (obj == NULL)
4423 return NULL;
4424
4425 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4426 kfree(obj);
4427 return NULL;
4428 }
4429
4430 i915_gem_info_add_obj(dev_priv, size);
4431
4432 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4433 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4434
4435 obj->agp_type = AGP_USER_MEMORY;
4436 obj->base.driver_private = NULL;
4437 obj->fence_reg = I915_FENCE_REG_NONE;
4438 INIT_LIST_HEAD(&obj->mm_list);
4439 INIT_LIST_HEAD(&obj->ring_list);
4440 INIT_LIST_HEAD(&obj->gpu_write_list);
4441 obj->madv = I915_MADV_WILLNEED;
4442 obj->fenceable = true;
4443 obj->mappable = true;
4444
4445 return &obj->base;
4446 }
4447
4448 int i915_gem_init_object(struct drm_gem_object *obj)
4449 {
4450 BUG();
4451
4452 return 0;
4453 }
4454
4455 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4456 {
4457 struct drm_device *dev = obj->dev;
4458 drm_i915_private_t *dev_priv = dev->dev_private;
4459 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4460 int ret;
4461
4462 ret = i915_gem_object_unbind(obj);
4463 if (ret == -ERESTARTSYS) {
4464 list_move(&obj_priv->mm_list,
4465 &dev_priv->mm.deferred_free_list);
4466 return;
4467 }
4468
4469 if (obj->map_list.map)
4470 i915_gem_free_mmap_offset(obj);
4471
4472 drm_gem_object_release(obj);
4473 i915_gem_info_remove_obj(dev_priv, obj->size);
4474
4475 kfree(obj_priv->page_cpu_valid);
4476 kfree(obj_priv->bit_17);
4477 kfree(obj_priv);
4478 }
4479
4480 void i915_gem_free_object(struct drm_gem_object *obj)
4481 {
4482 struct drm_device *dev = obj->dev;
4483 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4484
4485 trace_i915_gem_object_destroy(obj);
4486
4487 while (obj_priv->pin_count > 0)
4488 i915_gem_object_unpin(obj);
4489
4490 if (obj_priv->phys_obj)
4491 i915_gem_detach_phys_object(dev, obj);
4492
4493 i915_gem_free_object_tail(obj);
4494 }
4495
4496 int
4497 i915_gem_idle(struct drm_device *dev)
4498 {
4499 drm_i915_private_t *dev_priv = dev->dev_private;
4500 int ret;
4501
4502 mutex_lock(&dev->struct_mutex);
4503
4504 if (dev_priv->mm.suspended) {
4505 mutex_unlock(&dev->struct_mutex);
4506 return 0;
4507 }
4508
4509 ret = i915_gpu_idle(dev);
4510 if (ret) {
4511 mutex_unlock(&dev->struct_mutex);
4512 return ret;
4513 }
4514
4515 /* Under UMS, be paranoid and evict. */
4516 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4517 ret = i915_gem_evict_inactive(dev, false);
4518 if (ret) {
4519 mutex_unlock(&dev->struct_mutex);
4520 return ret;
4521 }
4522 }
4523
4524 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4525 * We need to replace this with a semaphore, or something.
4526 * And not confound mm.suspended!
4527 */
4528 dev_priv->mm.suspended = 1;
4529 del_timer_sync(&dev_priv->hangcheck_timer);
4530
4531 i915_kernel_lost_context(dev);
4532 i915_gem_cleanup_ringbuffer(dev);
4533
4534 mutex_unlock(&dev->struct_mutex);
4535
4536 /* Cancel the retire work handler, which should be idle now. */
4537 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4538
4539 return 0;
4540 }
4541
4542 /*
4543 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4544 * over cache flushing.
4545 */
4546 static int
4547 i915_gem_init_pipe_control(struct drm_device *dev)
4548 {
4549 drm_i915_private_t *dev_priv = dev->dev_private;
4550 struct drm_gem_object *obj;
4551 struct drm_i915_gem_object *obj_priv;
4552 int ret;
4553
4554 obj = i915_gem_alloc_object(dev, 4096);
4555 if (obj == NULL) {
4556 DRM_ERROR("Failed to allocate seqno page\n");
4557 ret = -ENOMEM;
4558 goto err;
4559 }
4560 obj_priv = to_intel_bo(obj);
4561 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4562
4563 ret = i915_gem_object_pin(obj, 4096, true, false);
4564 if (ret)
4565 goto err_unref;
4566
4567 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4568 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4569 if (dev_priv->seqno_page == NULL)
4570 goto err_unpin;
4571
4572 dev_priv->seqno_obj = obj;
4573 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4574
4575 return 0;
4576
4577 err_unpin:
4578 i915_gem_object_unpin(obj);
4579 err_unref:
4580 drm_gem_object_unreference(obj);
4581 err:
4582 return ret;
4583 }
4584
4585
4586 static void
4587 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4588 {
4589 drm_i915_private_t *dev_priv = dev->dev_private;
4590 struct drm_gem_object *obj;
4591 struct drm_i915_gem_object *obj_priv;
4592
4593 obj = dev_priv->seqno_obj;
4594 obj_priv = to_intel_bo(obj);
4595 kunmap(obj_priv->pages[0]);
4596 i915_gem_object_unpin(obj);
4597 drm_gem_object_unreference(obj);
4598 dev_priv->seqno_obj = NULL;
4599
4600 dev_priv->seqno_page = NULL;
4601 }
4602
4603 int
4604 i915_gem_init_ringbuffer(struct drm_device *dev)
4605 {
4606 drm_i915_private_t *dev_priv = dev->dev_private;
4607 int ret;
4608
4609 if (HAS_PIPE_CONTROL(dev)) {
4610 ret = i915_gem_init_pipe_control(dev);
4611 if (ret)
4612 return ret;
4613 }
4614
4615 ret = intel_init_render_ring_buffer(dev);
4616 if (ret)
4617 goto cleanup_pipe_control;
4618
4619 if (HAS_BSD(dev)) {
4620 ret = intel_init_bsd_ring_buffer(dev);
4621 if (ret)
4622 goto cleanup_render_ring;
4623 }
4624
4625 if (HAS_BLT(dev)) {
4626 ret = intel_init_blt_ring_buffer(dev);
4627 if (ret)
4628 goto cleanup_bsd_ring;
4629 }
4630
4631 dev_priv->next_seqno = 1;
4632
4633 return 0;
4634
4635 cleanup_bsd_ring:
4636 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4637 cleanup_render_ring:
4638 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4639 cleanup_pipe_control:
4640 if (HAS_PIPE_CONTROL(dev))
4641 i915_gem_cleanup_pipe_control(dev);
4642 return ret;
4643 }
4644
4645 void
4646 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4647 {
4648 drm_i915_private_t *dev_priv = dev->dev_private;
4649
4650 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4651 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4652 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4653 if (HAS_PIPE_CONTROL(dev))
4654 i915_gem_cleanup_pipe_control(dev);
4655 }
4656
4657 int
4658 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4659 struct drm_file *file_priv)
4660 {
4661 drm_i915_private_t *dev_priv = dev->dev_private;
4662 int ret;
4663
4664 if (drm_core_check_feature(dev, DRIVER_MODESET))
4665 return 0;
4666
4667 if (atomic_read(&dev_priv->mm.wedged)) {
4668 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4669 atomic_set(&dev_priv->mm.wedged, 0);
4670 }
4671
4672 mutex_lock(&dev->struct_mutex);
4673 dev_priv->mm.suspended = 0;
4674
4675 ret = i915_gem_init_ringbuffer(dev);
4676 if (ret != 0) {
4677 mutex_unlock(&dev->struct_mutex);
4678 return ret;
4679 }
4680
4681 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4682 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4683 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4684 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4685 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4686 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4687 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4688 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4689 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4690 mutex_unlock(&dev->struct_mutex);
4691
4692 ret = drm_irq_install(dev);
4693 if (ret)
4694 goto cleanup_ringbuffer;
4695
4696 return 0;
4697
4698 cleanup_ringbuffer:
4699 mutex_lock(&dev->struct_mutex);
4700 i915_gem_cleanup_ringbuffer(dev);
4701 dev_priv->mm.suspended = 1;
4702 mutex_unlock(&dev->struct_mutex);
4703
4704 return ret;
4705 }
4706
4707 int
4708 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4709 struct drm_file *file_priv)
4710 {
4711 if (drm_core_check_feature(dev, DRIVER_MODESET))
4712 return 0;
4713
4714 drm_irq_uninstall(dev);
4715 return i915_gem_idle(dev);
4716 }
4717
4718 void
4719 i915_gem_lastclose(struct drm_device *dev)
4720 {
4721 int ret;
4722
4723 if (drm_core_check_feature(dev, DRIVER_MODESET))
4724 return;
4725
4726 ret = i915_gem_idle(dev);
4727 if (ret)
4728 DRM_ERROR("failed to idle hardware: %d\n", ret);
4729 }
4730
4731 static void
4732 init_ring_lists(struct intel_ring_buffer *ring)
4733 {
4734 INIT_LIST_HEAD(&ring->active_list);
4735 INIT_LIST_HEAD(&ring->request_list);
4736 INIT_LIST_HEAD(&ring->gpu_write_list);
4737 }
4738
4739 void
4740 i915_gem_load(struct drm_device *dev)
4741 {
4742 int i;
4743 drm_i915_private_t *dev_priv = dev->dev_private;
4744
4745 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4746 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4747 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4748 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4749 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4750 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4751 init_ring_lists(&dev_priv->render_ring);
4752 init_ring_lists(&dev_priv->bsd_ring);
4753 init_ring_lists(&dev_priv->blt_ring);
4754 for (i = 0; i < 16; i++)
4755 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4756 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4757 i915_gem_retire_work_handler);
4758 init_completion(&dev_priv->error_completion);
4759
4760 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4761 if (IS_GEN3(dev)) {
4762 u32 tmp = I915_READ(MI_ARB_STATE);
4763 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4764 /* arb state is a masked write, so set bit + bit in mask */
4765 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4766 I915_WRITE(MI_ARB_STATE, tmp);
4767 }
4768 }
4769
4770 /* Old X drivers will take 0-2 for front, back, depth buffers */
4771 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4772 dev_priv->fence_reg_start = 3;
4773
4774 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4775 dev_priv->num_fence_regs = 16;
4776 else
4777 dev_priv->num_fence_regs = 8;
4778
4779 /* Initialize fence registers to zero */
4780 switch (INTEL_INFO(dev)->gen) {
4781 case 6:
4782 for (i = 0; i < 16; i++)
4783 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4784 break;
4785 case 5:
4786 case 4:
4787 for (i = 0; i < 16; i++)
4788 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4789 break;
4790 case 3:
4791 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4792 for (i = 0; i < 8; i++)
4793 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4794 case 2:
4795 for (i = 0; i < 8; i++)
4796 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4797 break;
4798 }
4799 i915_gem_detect_bit_6_swizzle(dev);
4800 init_waitqueue_head(&dev_priv->pending_flip_queue);
4801
4802 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4803 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4804 register_shrinker(&dev_priv->mm.inactive_shrinker);
4805 }
4806
4807 /*
4808 * Create a physically contiguous memory object for this object
4809 * e.g. for cursor + overlay regs
4810 */
4811 static int i915_gem_init_phys_object(struct drm_device *dev,
4812 int id, int size, int align)
4813 {
4814 drm_i915_private_t *dev_priv = dev->dev_private;
4815 struct drm_i915_gem_phys_object *phys_obj;
4816 int ret;
4817
4818 if (dev_priv->mm.phys_objs[id - 1] || !size)
4819 return 0;
4820
4821 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4822 if (!phys_obj)
4823 return -ENOMEM;
4824
4825 phys_obj->id = id;
4826
4827 phys_obj->handle = drm_pci_alloc(dev, size, align);
4828 if (!phys_obj->handle) {
4829 ret = -ENOMEM;
4830 goto kfree_obj;
4831 }
4832 #ifdef CONFIG_X86
4833 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4834 #endif
4835
4836 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4837
4838 return 0;
4839 kfree_obj:
4840 kfree(phys_obj);
4841 return ret;
4842 }
4843
4844 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4845 {
4846 drm_i915_private_t *dev_priv = dev->dev_private;
4847 struct drm_i915_gem_phys_object *phys_obj;
4848
4849 if (!dev_priv->mm.phys_objs[id - 1])
4850 return;
4851
4852 phys_obj = dev_priv->mm.phys_objs[id - 1];
4853 if (phys_obj->cur_obj) {
4854 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4855 }
4856
4857 #ifdef CONFIG_X86
4858 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4859 #endif
4860 drm_pci_free(dev, phys_obj->handle);
4861 kfree(phys_obj);
4862 dev_priv->mm.phys_objs[id - 1] = NULL;
4863 }
4864
4865 void i915_gem_free_all_phys_object(struct drm_device *dev)
4866 {
4867 int i;
4868
4869 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4870 i915_gem_free_phys_object(dev, i);
4871 }
4872
4873 void i915_gem_detach_phys_object(struct drm_device *dev,
4874 struct drm_gem_object *obj)
4875 {
4876 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4877 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4878 char *vaddr;
4879 int i;
4880 int page_count;
4881
4882 if (!obj_priv->phys_obj)
4883 return;
4884 vaddr = obj_priv->phys_obj->handle->vaddr;
4885
4886 page_count = obj->size / PAGE_SIZE;
4887
4888 for (i = 0; i < page_count; i++) {
4889 struct page *page = read_cache_page_gfp(mapping, i,
4890 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4891 if (!IS_ERR(page)) {
4892 char *dst = kmap_atomic(page);
4893 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4894 kunmap_atomic(dst);
4895
4896 drm_clflush_pages(&page, 1);
4897
4898 set_page_dirty(page);
4899 mark_page_accessed(page);
4900 page_cache_release(page);
4901 }
4902 }
4903 drm_agp_chipset_flush(dev);
4904
4905 obj_priv->phys_obj->cur_obj = NULL;
4906 obj_priv->phys_obj = NULL;
4907 }
4908
4909 int
4910 i915_gem_attach_phys_object(struct drm_device *dev,
4911 struct drm_gem_object *obj,
4912 int id,
4913 int align)
4914 {
4915 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4916 drm_i915_private_t *dev_priv = dev->dev_private;
4917 struct drm_i915_gem_object *obj_priv;
4918 int ret = 0;
4919 int page_count;
4920 int i;
4921
4922 if (id > I915_MAX_PHYS_OBJECT)
4923 return -EINVAL;
4924
4925 obj_priv = to_intel_bo(obj);
4926
4927 if (obj_priv->phys_obj) {
4928 if (obj_priv->phys_obj->id == id)
4929 return 0;
4930 i915_gem_detach_phys_object(dev, obj);
4931 }
4932
4933 /* create a new object */
4934 if (!dev_priv->mm.phys_objs[id - 1]) {
4935 ret = i915_gem_init_phys_object(dev, id,
4936 obj->size, align);
4937 if (ret) {
4938 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4939 return ret;
4940 }
4941 }
4942
4943 /* bind to the object */
4944 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4945 obj_priv->phys_obj->cur_obj = obj;
4946
4947 page_count = obj->size / PAGE_SIZE;
4948
4949 for (i = 0; i < page_count; i++) {
4950 struct page *page;
4951 char *dst, *src;
4952
4953 page = read_cache_page_gfp(mapping, i,
4954 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4955 if (IS_ERR(page))
4956 return PTR_ERR(page);
4957
4958 src = kmap_atomic(page);
4959 dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4960 memcpy(dst, src, PAGE_SIZE);
4961 kunmap_atomic(src);
4962
4963 mark_page_accessed(page);
4964 page_cache_release(page);
4965 }
4966
4967 return 0;
4968 }
4969
4970 static int
4971 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4972 struct drm_i915_gem_pwrite *args,
4973 struct drm_file *file_priv)
4974 {
4975 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4976 void *obj_addr;
4977 int ret;
4978 char __user *user_data;
4979
4980 user_data = (char __user *) (uintptr_t) args->data_ptr;
4981 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4982
4983 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4984 ret = copy_from_user(obj_addr, user_data, args->size);
4985 if (ret)
4986 return -EFAULT;
4987
4988 drm_agp_chipset_flush(dev);
4989 return 0;
4990 }
4991
4992 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4993 {
4994 struct drm_i915_file_private *file_priv = file->driver_priv;
4995
4996 /* Clean up our request list when the client is going away, so that
4997 * later retire_requests won't dereference our soon-to-be-gone
4998 * file_priv.
4999 */
5000 spin_lock(&file_priv->mm.lock);
5001 while (!list_empty(&file_priv->mm.request_list)) {
5002 struct drm_i915_gem_request *request;
5003
5004 request = list_first_entry(&file_priv->mm.request_list,
5005 struct drm_i915_gem_request,
5006 client_list);
5007 list_del(&request->client_list);
5008 request->file_priv = NULL;
5009 }
5010 spin_unlock(&file_priv->mm.lock);
5011 }
5012
5013 static int
5014 i915_gpu_is_active(struct drm_device *dev)
5015 {
5016 drm_i915_private_t *dev_priv = dev->dev_private;
5017 int lists_empty;
5018
5019 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5020 list_empty(&dev_priv->mm.active_list);
5021
5022 return !lists_empty;
5023 }
5024
5025 static int
5026 i915_gem_inactive_shrink(struct shrinker *shrinker,
5027 int nr_to_scan,
5028 gfp_t gfp_mask)
5029 {
5030 struct drm_i915_private *dev_priv =
5031 container_of(shrinker,
5032 struct drm_i915_private,
5033 mm.inactive_shrinker);
5034 struct drm_device *dev = dev_priv->dev;
5035 struct drm_i915_gem_object *obj, *next;
5036 int cnt;
5037
5038 if (!mutex_trylock(&dev->struct_mutex))
5039 return 0;
5040
5041 /* "fast-path" to count number of available objects */
5042 if (nr_to_scan == 0) {
5043 cnt = 0;
5044 list_for_each_entry(obj,
5045 &dev_priv->mm.inactive_list,
5046 mm_list)
5047 cnt++;
5048 mutex_unlock(&dev->struct_mutex);
5049 return cnt / 100 * sysctl_vfs_cache_pressure;
5050 }
5051
5052 rescan:
5053 /* first scan for clean buffers */
5054 i915_gem_retire_requests(dev);
5055
5056 list_for_each_entry_safe(obj, next,
5057 &dev_priv->mm.inactive_list,
5058 mm_list) {
5059 if (i915_gem_object_is_purgeable(obj)) {
5060 i915_gem_object_unbind(&obj->base);
5061 if (--nr_to_scan == 0)
5062 break;
5063 }
5064 }
5065
5066 /* second pass, evict/count anything still on the inactive list */
5067 cnt = 0;
5068 list_for_each_entry_safe(obj, next,
5069 &dev_priv->mm.inactive_list,
5070 mm_list) {
5071 if (nr_to_scan) {
5072 i915_gem_object_unbind(&obj->base);
5073 nr_to_scan--;
5074 } else
5075 cnt++;
5076 }
5077
5078 if (nr_to_scan && i915_gpu_is_active(dev)) {
5079 /*
5080 * We are desperate for pages, so as a last resort, wait
5081 * for the GPU to finish and discard whatever we can.
5082 * This has a dramatic impact to reduce the number of
5083 * OOM-killer events whilst running the GPU aggressively.
5084 */
5085 if (i915_gpu_idle(dev) == 0)
5086 goto rescan;
5087 }
5088 mutex_unlock(&dev->struct_mutex);
5089 return cnt / 100 * sysctl_vfs_cache_pressure;
5090 }
This page took 0.200935 seconds and 6 git commands to generate.