Merge branch 'omap-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
63 {
64 drm_i915_private_t *dev_priv = dev->dev_private;
65
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
69 return -EINVAL;
70 }
71
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
74
75 dev->gtt_total = (uint32_t) (end - start);
76
77 return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
83 {
84 struct drm_i915_gem_init *args = data;
85 int ret;
86
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 mutex_unlock(&dev->struct_mutex);
90
91 return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
97 {
98 struct drm_i915_gem_get_aperture *args = data;
99
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
102
103 args->aper_size = dev->gtt_total;
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
106
107 return 0;
108 }
109
110
111 /**
112 * Creates a new mm object and returns a handle to it.
113 */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
117 {
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
120 int ret;
121 u32 handle;
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 mutex_lock(&dev->struct_mutex);
132 drm_gem_object_handle_unreference(obj);
133 mutex_unlock(&dev->struct_mutex);
134
135 if (ret)
136 return ret;
137
138 args->handle = handle;
139
140 return 0;
141 }
142
143 static inline int
144 fast_shmem_read(struct page **pages,
145 loff_t page_base, int page_offset,
146 char __user *data,
147 int length)
148 {
149 char __iomem *vaddr;
150 int unwritten;
151
152 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153 if (vaddr == NULL)
154 return -ENOMEM;
155 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156 kunmap_atomic(vaddr, KM_USER0);
157
158 if (unwritten)
159 return -EFAULT;
160
161 return 0;
162 }
163
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
165 {
166 drm_i915_private_t *dev_priv = obj->dev->dev_private;
167 struct drm_i915_gem_object *obj_priv = obj->driver_private;
168
169 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170 obj_priv->tiling_mode != I915_TILING_NONE;
171 }
172
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175 int dst_offset,
176 struct page *src_page,
177 int src_offset,
178 int length)
179 {
180 char *dst_vaddr, *src_vaddr;
181
182 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183 if (dst_vaddr == NULL)
184 return -ENOMEM;
185
186 src_vaddr = kmap_atomic(src_page, KM_USER1);
187 if (src_vaddr == NULL) {
188 kunmap_atomic(dst_vaddr, KM_USER0);
189 return -ENOMEM;
190 }
191
192 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
193
194 kunmap_atomic(src_vaddr, KM_USER1);
195 kunmap_atomic(dst_vaddr, KM_USER0);
196
197 return 0;
198 }
199
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202 int gpu_offset,
203 struct page *cpu_page,
204 int cpu_offset,
205 int length,
206 int is_read)
207 {
208 char *gpu_vaddr, *cpu_vaddr;
209
210 /* Use the unswizzled path if this page isn't affected. */
211 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212 if (is_read)
213 return slow_shmem_copy(cpu_page, cpu_offset,
214 gpu_page, gpu_offset, length);
215 else
216 return slow_shmem_copy(gpu_page, gpu_offset,
217 cpu_page, cpu_offset, length);
218 }
219
220 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221 if (gpu_vaddr == NULL)
222 return -ENOMEM;
223
224 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225 if (cpu_vaddr == NULL) {
226 kunmap_atomic(gpu_vaddr, KM_USER0);
227 return -ENOMEM;
228 }
229
230 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231 * XORing with the other bits (A9 for Y, A9 and A10 for X)
232 */
233 while (length > 0) {
234 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235 int this_length = min(cacheline_end - gpu_offset, length);
236 int swizzled_gpu_offset = gpu_offset ^ 64;
237
238 if (is_read) {
239 memcpy(cpu_vaddr + cpu_offset,
240 gpu_vaddr + swizzled_gpu_offset,
241 this_length);
242 } else {
243 memcpy(gpu_vaddr + swizzled_gpu_offset,
244 cpu_vaddr + cpu_offset,
245 this_length);
246 }
247 cpu_offset += this_length;
248 gpu_offset += this_length;
249 length -= this_length;
250 }
251
252 kunmap_atomic(cpu_vaddr, KM_USER1);
253 kunmap_atomic(gpu_vaddr, KM_USER0);
254
255 return 0;
256 }
257
258 /**
259 * This is the fast shmem pread path, which attempts to copy_from_user directly
260 * from the backing pages of the object to the user's address space. On a
261 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
262 */
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265 struct drm_i915_gem_pread *args,
266 struct drm_file *file_priv)
267 {
268 struct drm_i915_gem_object *obj_priv = obj->driver_private;
269 ssize_t remain;
270 loff_t offset, page_base;
271 char __user *user_data;
272 int page_offset, page_length;
273 int ret;
274
275 user_data = (char __user *) (uintptr_t) args->data_ptr;
276 remain = args->size;
277
278 mutex_lock(&dev->struct_mutex);
279
280 ret = i915_gem_object_get_pages(obj);
281 if (ret != 0)
282 goto fail_unlock;
283
284 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285 args->size);
286 if (ret != 0)
287 goto fail_put_pages;
288
289 obj_priv = obj->driver_private;
290 offset = args->offset;
291
292 while (remain > 0) {
293 /* Operation in this page
294 *
295 * page_base = page offset within aperture
296 * page_offset = offset within page
297 * page_length = bytes to copy for this page
298 */
299 page_base = (offset & ~(PAGE_SIZE-1));
300 page_offset = offset & (PAGE_SIZE-1);
301 page_length = remain;
302 if ((page_offset + remain) > PAGE_SIZE)
303 page_length = PAGE_SIZE - page_offset;
304
305 ret = fast_shmem_read(obj_priv->pages,
306 page_base, page_offset,
307 user_data, page_length);
308 if (ret)
309 goto fail_put_pages;
310
311 remain -= page_length;
312 user_data += page_length;
313 offset += page_length;
314 }
315
316 fail_put_pages:
317 i915_gem_object_put_pages(obj);
318 fail_unlock:
319 mutex_unlock(&dev->struct_mutex);
320
321 return ret;
322 }
323
324 static inline gfp_t
325 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
326 {
327 return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
328 }
329
330 static inline void
331 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
332 {
333 mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
334 }
335
336 static int
337 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
338 {
339 int ret;
340
341 ret = i915_gem_object_get_pages(obj);
342
343 /* If we've insufficient memory to map in the pages, attempt
344 * to make some space by throwing out some old buffers.
345 */
346 if (ret == -ENOMEM) {
347 struct drm_device *dev = obj->dev;
348 gfp_t gfp;
349
350 ret = i915_gem_evict_something(dev, obj->size);
351 if (ret)
352 return ret;
353
354 gfp = i915_gem_object_get_page_gfp_mask(obj);
355 i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
356 ret = i915_gem_object_get_pages(obj);
357 i915_gem_object_set_page_gfp_mask (obj, gfp);
358 }
359
360 return ret;
361 }
362
363 /**
364 * This is the fallback shmem pread path, which allocates temporary storage
365 * in kernel space to copy_to_user into outside of the struct_mutex, so we
366 * can copy out of the object's backing pages while holding the struct mutex
367 * and not take page faults.
368 */
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
371 struct drm_i915_gem_pread *args,
372 struct drm_file *file_priv)
373 {
374 struct drm_i915_gem_object *obj_priv = obj->driver_private;
375 struct mm_struct *mm = current->mm;
376 struct page **user_pages;
377 ssize_t remain;
378 loff_t offset, pinned_pages, i;
379 loff_t first_data_page, last_data_page, num_pages;
380 int shmem_page_index, shmem_page_offset;
381 int data_page_index, data_page_offset;
382 int page_length;
383 int ret;
384 uint64_t data_ptr = args->data_ptr;
385 int do_bit17_swizzling;
386
387 remain = args->size;
388
389 /* Pin the user pages containing the data. We can't fault while
390 * holding the struct mutex, yet we want to hold it while
391 * dereferencing the user data.
392 */
393 first_data_page = data_ptr / PAGE_SIZE;
394 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
395 num_pages = last_data_page - first_data_page + 1;
396
397 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398 if (user_pages == NULL)
399 return -ENOMEM;
400
401 down_read(&mm->mmap_sem);
402 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403 num_pages, 1, 0, user_pages, NULL);
404 up_read(&mm->mmap_sem);
405 if (pinned_pages < num_pages) {
406 ret = -EFAULT;
407 goto fail_put_user_pages;
408 }
409
410 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
411
412 mutex_lock(&dev->struct_mutex);
413
414 ret = i915_gem_object_get_pages_or_evict(obj);
415 if (ret)
416 goto fail_unlock;
417
418 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
419 args->size);
420 if (ret != 0)
421 goto fail_put_pages;
422
423 obj_priv = obj->driver_private;
424 offset = args->offset;
425
426 while (remain > 0) {
427 /* Operation in this page
428 *
429 * shmem_page_index = page number within shmem file
430 * shmem_page_offset = offset within page in shmem file
431 * data_page_index = page number in get_user_pages return
432 * data_page_offset = offset with data_page_index page.
433 * page_length = bytes to copy for this page
434 */
435 shmem_page_index = offset / PAGE_SIZE;
436 shmem_page_offset = offset & ~PAGE_MASK;
437 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
438 data_page_offset = data_ptr & ~PAGE_MASK;
439
440 page_length = remain;
441 if ((shmem_page_offset + page_length) > PAGE_SIZE)
442 page_length = PAGE_SIZE - shmem_page_offset;
443 if ((data_page_offset + page_length) > PAGE_SIZE)
444 page_length = PAGE_SIZE - data_page_offset;
445
446 if (do_bit17_swizzling) {
447 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
448 shmem_page_offset,
449 user_pages[data_page_index],
450 data_page_offset,
451 page_length,
452 1);
453 } else {
454 ret = slow_shmem_copy(user_pages[data_page_index],
455 data_page_offset,
456 obj_priv->pages[shmem_page_index],
457 shmem_page_offset,
458 page_length);
459 }
460 if (ret)
461 goto fail_put_pages;
462
463 remain -= page_length;
464 data_ptr += page_length;
465 offset += page_length;
466 }
467
468 fail_put_pages:
469 i915_gem_object_put_pages(obj);
470 fail_unlock:
471 mutex_unlock(&dev->struct_mutex);
472 fail_put_user_pages:
473 for (i = 0; i < pinned_pages; i++) {
474 SetPageDirty(user_pages[i]);
475 page_cache_release(user_pages[i]);
476 }
477 drm_free_large(user_pages);
478
479 return ret;
480 }
481
482 /**
483 * Reads data from the object referenced by handle.
484 *
485 * On error, the contents of *data are undefined.
486 */
487 int
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489 struct drm_file *file_priv)
490 {
491 struct drm_i915_gem_pread *args = data;
492 struct drm_gem_object *obj;
493 struct drm_i915_gem_object *obj_priv;
494 int ret;
495
496 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
497 if (obj == NULL)
498 return -EBADF;
499 obj_priv = obj->driver_private;
500
501 /* Bounds check source.
502 *
503 * XXX: This could use review for overflow issues...
504 */
505 if (args->offset > obj->size || args->size > obj->size ||
506 args->offset + args->size > obj->size) {
507 drm_gem_object_unreference(obj);
508 return -EINVAL;
509 }
510
511 if (i915_gem_object_needs_bit17_swizzle(obj)) {
512 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513 } else {
514 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
515 if (ret != 0)
516 ret = i915_gem_shmem_pread_slow(dev, obj, args,
517 file_priv);
518 }
519
520 drm_gem_object_unreference(obj);
521
522 return ret;
523 }
524
525 /* This is the fast write path which cannot handle
526 * page faults in the source data
527 */
528
529 static inline int
530 fast_user_write(struct io_mapping *mapping,
531 loff_t page_base, int page_offset,
532 char __user *user_data,
533 int length)
534 {
535 char *vaddr_atomic;
536 unsigned long unwritten;
537
538 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
539 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
540 user_data, length);
541 io_mapping_unmap_atomic(vaddr_atomic);
542 if (unwritten)
543 return -EFAULT;
544 return 0;
545 }
546
547 /* Here's the write path which can sleep for
548 * page faults
549 */
550
551 static inline int
552 slow_kernel_write(struct io_mapping *mapping,
553 loff_t gtt_base, int gtt_offset,
554 struct page *user_page, int user_offset,
555 int length)
556 {
557 char *src_vaddr, *dst_vaddr;
558 unsigned long unwritten;
559
560 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
561 src_vaddr = kmap_atomic(user_page, KM_USER1);
562 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
563 src_vaddr + user_offset,
564 length);
565 kunmap_atomic(src_vaddr, KM_USER1);
566 io_mapping_unmap_atomic(dst_vaddr);
567 if (unwritten)
568 return -EFAULT;
569 return 0;
570 }
571
572 static inline int
573 fast_shmem_write(struct page **pages,
574 loff_t page_base, int page_offset,
575 char __user *data,
576 int length)
577 {
578 char __iomem *vaddr;
579 unsigned long unwritten;
580
581 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
582 if (vaddr == NULL)
583 return -ENOMEM;
584 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585 kunmap_atomic(vaddr, KM_USER0);
586
587 if (unwritten)
588 return -EFAULT;
589 return 0;
590 }
591
592 /**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
598 struct drm_i915_gem_pwrite *args,
599 struct drm_file *file_priv)
600 {
601 struct drm_i915_gem_object *obj_priv = obj->driver_private;
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length;
607 int ret;
608
609 user_data = (char __user *) (uintptr_t) args->data_ptr;
610 remain = args->size;
611 if (!access_ok(VERIFY_READ, user_data, remain))
612 return -EFAULT;
613
614
615 mutex_lock(&dev->struct_mutex);
616 ret = i915_gem_object_pin(obj, 0);
617 if (ret) {
618 mutex_unlock(&dev->struct_mutex);
619 return ret;
620 }
621 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622 if (ret)
623 goto fail;
624
625 obj_priv = obj->driver_private;
626 offset = obj_priv->gtt_offset + args->offset;
627
628 while (remain > 0) {
629 /* Operation in this page
630 *
631 * page_base = page offset within aperture
632 * page_offset = offset within page
633 * page_length = bytes to copy for this page
634 */
635 page_base = (offset & ~(PAGE_SIZE-1));
636 page_offset = offset & (PAGE_SIZE-1);
637 page_length = remain;
638 if ((page_offset + remain) > PAGE_SIZE)
639 page_length = PAGE_SIZE - page_offset;
640
641 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
642 page_offset, user_data, page_length);
643
644 /* If we get a fault while copying data, then (presumably) our
645 * source page isn't available. Return the error and we'll
646 * retry in the slow path.
647 */
648 if (ret)
649 goto fail;
650
651 remain -= page_length;
652 user_data += page_length;
653 offset += page_length;
654 }
655
656 fail:
657 i915_gem_object_unpin(obj);
658 mutex_unlock(&dev->struct_mutex);
659
660 return ret;
661 }
662
663 /**
664 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665 * the memory and maps it using kmap_atomic for copying.
666 *
667 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
669 */
670 static int
671 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
672 struct drm_i915_gem_pwrite *args,
673 struct drm_file *file_priv)
674 {
675 struct drm_i915_gem_object *obj_priv = obj->driver_private;
676 drm_i915_private_t *dev_priv = dev->dev_private;
677 ssize_t remain;
678 loff_t gtt_page_base, offset;
679 loff_t first_data_page, last_data_page, num_pages;
680 loff_t pinned_pages, i;
681 struct page **user_pages;
682 struct mm_struct *mm = current->mm;
683 int gtt_page_offset, data_page_offset, data_page_index, page_length;
684 int ret;
685 uint64_t data_ptr = args->data_ptr;
686
687 remain = args->size;
688
689 /* Pin the user pages containing the data. We can't fault while
690 * holding the struct mutex, and all of the pwrite implementations
691 * want to hold it while dereferencing the user data.
692 */
693 first_data_page = data_ptr / PAGE_SIZE;
694 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695 num_pages = last_data_page - first_data_page + 1;
696
697 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698 if (user_pages == NULL)
699 return -ENOMEM;
700
701 down_read(&mm->mmap_sem);
702 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
703 num_pages, 0, 0, user_pages, NULL);
704 up_read(&mm->mmap_sem);
705 if (pinned_pages < num_pages) {
706 ret = -EFAULT;
707 goto out_unpin_pages;
708 }
709
710 mutex_lock(&dev->struct_mutex);
711 ret = i915_gem_object_pin(obj, 0);
712 if (ret)
713 goto out_unlock;
714
715 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
716 if (ret)
717 goto out_unpin_object;
718
719 obj_priv = obj->driver_private;
720 offset = obj_priv->gtt_offset + args->offset;
721
722 while (remain > 0) {
723 /* Operation in this page
724 *
725 * gtt_page_base = page offset within aperture
726 * gtt_page_offset = offset within page in aperture
727 * data_page_index = page number in get_user_pages return
728 * data_page_offset = offset with data_page_index page.
729 * page_length = bytes to copy for this page
730 */
731 gtt_page_base = offset & PAGE_MASK;
732 gtt_page_offset = offset & ~PAGE_MASK;
733 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734 data_page_offset = data_ptr & ~PAGE_MASK;
735
736 page_length = remain;
737 if ((gtt_page_offset + page_length) > PAGE_SIZE)
738 page_length = PAGE_SIZE - gtt_page_offset;
739 if ((data_page_offset + page_length) > PAGE_SIZE)
740 page_length = PAGE_SIZE - data_page_offset;
741
742 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
743 gtt_page_base, gtt_page_offset,
744 user_pages[data_page_index],
745 data_page_offset,
746 page_length);
747
748 /* If we get a fault while copying data, then (presumably) our
749 * source page isn't available. Return the error and we'll
750 * retry in the slow path.
751 */
752 if (ret)
753 goto out_unpin_object;
754
755 remain -= page_length;
756 offset += page_length;
757 data_ptr += page_length;
758 }
759
760 out_unpin_object:
761 i915_gem_object_unpin(obj);
762 out_unlock:
763 mutex_unlock(&dev->struct_mutex);
764 out_unpin_pages:
765 for (i = 0; i < pinned_pages; i++)
766 page_cache_release(user_pages[i]);
767 drm_free_large(user_pages);
768
769 return ret;
770 }
771
772 /**
773 * This is the fast shmem pwrite path, which attempts to directly
774 * copy_from_user into the kmapped pages backing the object.
775 */
776 static int
777 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
778 struct drm_i915_gem_pwrite *args,
779 struct drm_file *file_priv)
780 {
781 struct drm_i915_gem_object *obj_priv = obj->driver_private;
782 ssize_t remain;
783 loff_t offset, page_base;
784 char __user *user_data;
785 int page_offset, page_length;
786 int ret;
787
788 user_data = (char __user *) (uintptr_t) args->data_ptr;
789 remain = args->size;
790
791 mutex_lock(&dev->struct_mutex);
792
793 ret = i915_gem_object_get_pages(obj);
794 if (ret != 0)
795 goto fail_unlock;
796
797 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798 if (ret != 0)
799 goto fail_put_pages;
800
801 obj_priv = obj->driver_private;
802 offset = args->offset;
803 obj_priv->dirty = 1;
804
805 while (remain > 0) {
806 /* Operation in this page
807 *
808 * page_base = page offset within aperture
809 * page_offset = offset within page
810 * page_length = bytes to copy for this page
811 */
812 page_base = (offset & ~(PAGE_SIZE-1));
813 page_offset = offset & (PAGE_SIZE-1);
814 page_length = remain;
815 if ((page_offset + remain) > PAGE_SIZE)
816 page_length = PAGE_SIZE - page_offset;
817
818 ret = fast_shmem_write(obj_priv->pages,
819 page_base, page_offset,
820 user_data, page_length);
821 if (ret)
822 goto fail_put_pages;
823
824 remain -= page_length;
825 user_data += page_length;
826 offset += page_length;
827 }
828
829 fail_put_pages:
830 i915_gem_object_put_pages(obj);
831 fail_unlock:
832 mutex_unlock(&dev->struct_mutex);
833
834 return ret;
835 }
836
837 /**
838 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
839 * the memory and maps it using kmap_atomic for copying.
840 *
841 * This avoids taking mmap_sem for faulting on the user's address while the
842 * struct_mutex is held.
843 */
844 static int
845 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
846 struct drm_i915_gem_pwrite *args,
847 struct drm_file *file_priv)
848 {
849 struct drm_i915_gem_object *obj_priv = obj->driver_private;
850 struct mm_struct *mm = current->mm;
851 struct page **user_pages;
852 ssize_t remain;
853 loff_t offset, pinned_pages, i;
854 loff_t first_data_page, last_data_page, num_pages;
855 int shmem_page_index, shmem_page_offset;
856 int data_page_index, data_page_offset;
857 int page_length;
858 int ret;
859 uint64_t data_ptr = args->data_ptr;
860 int do_bit17_swizzling;
861
862 remain = args->size;
863
864 /* Pin the user pages containing the data. We can't fault while
865 * holding the struct mutex, and all of the pwrite implementations
866 * want to hold it while dereferencing the user data.
867 */
868 first_data_page = data_ptr / PAGE_SIZE;
869 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
870 num_pages = last_data_page - first_data_page + 1;
871
872 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873 if (user_pages == NULL)
874 return -ENOMEM;
875
876 down_read(&mm->mmap_sem);
877 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
878 num_pages, 0, 0, user_pages, NULL);
879 up_read(&mm->mmap_sem);
880 if (pinned_pages < num_pages) {
881 ret = -EFAULT;
882 goto fail_put_user_pages;
883 }
884
885 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
886
887 mutex_lock(&dev->struct_mutex);
888
889 ret = i915_gem_object_get_pages_or_evict(obj);
890 if (ret)
891 goto fail_unlock;
892
893 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
894 if (ret != 0)
895 goto fail_put_pages;
896
897 obj_priv = obj->driver_private;
898 offset = args->offset;
899 obj_priv->dirty = 1;
900
901 while (remain > 0) {
902 /* Operation in this page
903 *
904 * shmem_page_index = page number within shmem file
905 * shmem_page_offset = offset within page in shmem file
906 * data_page_index = page number in get_user_pages return
907 * data_page_offset = offset with data_page_index page.
908 * page_length = bytes to copy for this page
909 */
910 shmem_page_index = offset / PAGE_SIZE;
911 shmem_page_offset = offset & ~PAGE_MASK;
912 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
913 data_page_offset = data_ptr & ~PAGE_MASK;
914
915 page_length = remain;
916 if ((shmem_page_offset + page_length) > PAGE_SIZE)
917 page_length = PAGE_SIZE - shmem_page_offset;
918 if ((data_page_offset + page_length) > PAGE_SIZE)
919 page_length = PAGE_SIZE - data_page_offset;
920
921 if (do_bit17_swizzling) {
922 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
923 shmem_page_offset,
924 user_pages[data_page_index],
925 data_page_offset,
926 page_length,
927 0);
928 } else {
929 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
930 shmem_page_offset,
931 user_pages[data_page_index],
932 data_page_offset,
933 page_length);
934 }
935 if (ret)
936 goto fail_put_pages;
937
938 remain -= page_length;
939 data_ptr += page_length;
940 offset += page_length;
941 }
942
943 fail_put_pages:
944 i915_gem_object_put_pages(obj);
945 fail_unlock:
946 mutex_unlock(&dev->struct_mutex);
947 fail_put_user_pages:
948 for (i = 0; i < pinned_pages; i++)
949 page_cache_release(user_pages[i]);
950 drm_free_large(user_pages);
951
952 return ret;
953 }
954
955 /**
956 * Writes data to the object referenced by handle.
957 *
958 * On error, the contents of the buffer that were to be modified are undefined.
959 */
960 int
961 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
962 struct drm_file *file_priv)
963 {
964 struct drm_i915_gem_pwrite *args = data;
965 struct drm_gem_object *obj;
966 struct drm_i915_gem_object *obj_priv;
967 int ret = 0;
968
969 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
970 if (obj == NULL)
971 return -EBADF;
972 obj_priv = obj->driver_private;
973
974 /* Bounds check destination.
975 *
976 * XXX: This could use review for overflow issues...
977 */
978 if (args->offset > obj->size || args->size > obj->size ||
979 args->offset + args->size > obj->size) {
980 drm_gem_object_unreference(obj);
981 return -EINVAL;
982 }
983
984 /* We can only do the GTT pwrite on untiled buffers, as otherwise
985 * it would end up going through the fenced access, and we'll get
986 * different detiling behavior between reading and writing.
987 * pread/pwrite currently are reading and writing from the CPU
988 * perspective, requiring manual detiling by the client.
989 */
990 if (obj_priv->phys_obj)
991 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
992 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993 dev->gtt_total != 0) {
994 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
995 if (ret == -EFAULT) {
996 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
997 file_priv);
998 }
999 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1000 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001 } else {
1002 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1003 if (ret == -EFAULT) {
1004 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1005 file_priv);
1006 }
1007 }
1008
1009 #if WATCH_PWRITE
1010 if (ret)
1011 DRM_INFO("pwrite failed %d\n", ret);
1012 #endif
1013
1014 drm_gem_object_unreference(obj);
1015
1016 return ret;
1017 }
1018
1019 /**
1020 * Called when user space prepares to use an object with the CPU, either
1021 * through the mmap ioctl's mapping or a GTT mapping.
1022 */
1023 int
1024 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1025 struct drm_file *file_priv)
1026 {
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1028 struct drm_i915_gem_set_domain *args = data;
1029 struct drm_gem_object *obj;
1030 struct drm_i915_gem_object *obj_priv;
1031 uint32_t read_domains = args->read_domains;
1032 uint32_t write_domain = args->write_domain;
1033 int ret;
1034
1035 if (!(dev->driver->driver_features & DRIVER_GEM))
1036 return -ENODEV;
1037
1038 /* Only handle setting domains to types used by the CPU. */
1039 if (write_domain & I915_GEM_GPU_DOMAINS)
1040 return -EINVAL;
1041
1042 if (read_domains & I915_GEM_GPU_DOMAINS)
1043 return -EINVAL;
1044
1045 /* Having something in the write domain implies it's in the read
1046 * domain, and only that read domain. Enforce that in the request.
1047 */
1048 if (write_domain != 0 && read_domains != write_domain)
1049 return -EINVAL;
1050
1051 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1052 if (obj == NULL)
1053 return -EBADF;
1054 obj_priv = obj->driver_private;
1055
1056 mutex_lock(&dev->struct_mutex);
1057
1058 intel_mark_busy(dev, obj);
1059
1060 #if WATCH_BUF
1061 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062 obj, obj->size, read_domains, write_domain);
1063 #endif
1064 if (read_domains & I915_GEM_DOMAIN_GTT) {
1065 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1066
1067 /* Update the LRU on the fence for the CPU access that's
1068 * about to occur.
1069 */
1070 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1071 list_move_tail(&obj_priv->fence_list,
1072 &dev_priv->mm.fence_list);
1073 }
1074
1075 /* Silently promote "you're not bound, there was nothing to do"
1076 * to success, since the client was just asking us to
1077 * make sure everything was done.
1078 */
1079 if (ret == -EINVAL)
1080 ret = 0;
1081 } else {
1082 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1083 }
1084
1085 drm_gem_object_unreference(obj);
1086 mutex_unlock(&dev->struct_mutex);
1087 return ret;
1088 }
1089
1090 /**
1091 * Called when user space has done writes to this buffer
1092 */
1093 int
1094 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1095 struct drm_file *file_priv)
1096 {
1097 struct drm_i915_gem_sw_finish *args = data;
1098 struct drm_gem_object *obj;
1099 struct drm_i915_gem_object *obj_priv;
1100 int ret = 0;
1101
1102 if (!(dev->driver->driver_features & DRIVER_GEM))
1103 return -ENODEV;
1104
1105 mutex_lock(&dev->struct_mutex);
1106 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1107 if (obj == NULL) {
1108 mutex_unlock(&dev->struct_mutex);
1109 return -EBADF;
1110 }
1111
1112 #if WATCH_BUF
1113 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114 __func__, args->handle, obj, obj->size);
1115 #endif
1116 obj_priv = obj->driver_private;
1117
1118 /* Pinned buffers may be scanout, so flush the cache */
1119 if (obj_priv->pin_count)
1120 i915_gem_object_flush_cpu_write_domain(obj);
1121
1122 drm_gem_object_unreference(obj);
1123 mutex_unlock(&dev->struct_mutex);
1124 return ret;
1125 }
1126
1127 /**
1128 * Maps the contents of an object, returning the address it is mapped
1129 * into.
1130 *
1131 * While the mapping holds a reference on the contents of the object, it doesn't
1132 * imply a ref on the object itself.
1133 */
1134 int
1135 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1136 struct drm_file *file_priv)
1137 {
1138 struct drm_i915_gem_mmap *args = data;
1139 struct drm_gem_object *obj;
1140 loff_t offset;
1141 unsigned long addr;
1142
1143 if (!(dev->driver->driver_features & DRIVER_GEM))
1144 return -ENODEV;
1145
1146 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147 if (obj == NULL)
1148 return -EBADF;
1149
1150 offset = args->offset;
1151
1152 down_write(&current->mm->mmap_sem);
1153 addr = do_mmap(obj->filp, 0, args->size,
1154 PROT_READ | PROT_WRITE, MAP_SHARED,
1155 args->offset);
1156 up_write(&current->mm->mmap_sem);
1157 mutex_lock(&dev->struct_mutex);
1158 drm_gem_object_unreference(obj);
1159 mutex_unlock(&dev->struct_mutex);
1160 if (IS_ERR((void *)addr))
1161 return addr;
1162
1163 args->addr_ptr = (uint64_t) addr;
1164
1165 return 0;
1166 }
1167
1168 /**
1169 * i915_gem_fault - fault a page into the GTT
1170 * vma: VMA in question
1171 * vmf: fault info
1172 *
1173 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1174 * from userspace. The fault handler takes care of binding the object to
1175 * the GTT (if needed), allocating and programming a fence register (again,
1176 * only if needed based on whether the old reg is still valid or the object
1177 * is tiled) and inserting a new PTE into the faulting process.
1178 *
1179 * Note that the faulting process may involve evicting existing objects
1180 * from the GTT and/or fence registers to make room. So performance may
1181 * suffer if the GTT working set is large or there are few fence registers
1182 * left.
1183 */
1184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1185 {
1186 struct drm_gem_object *obj = vma->vm_private_data;
1187 struct drm_device *dev = obj->dev;
1188 struct drm_i915_private *dev_priv = dev->dev_private;
1189 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1190 pgoff_t page_offset;
1191 unsigned long pfn;
1192 int ret = 0;
1193 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1194
1195 /* We don't use vmf->pgoff since that has the fake offset */
1196 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1197 PAGE_SHIFT;
1198
1199 /* Now bind it into the GTT if needed */
1200 mutex_lock(&dev->struct_mutex);
1201 if (!obj_priv->gtt_space) {
1202 ret = i915_gem_object_bind_to_gtt(obj, 0);
1203 if (ret)
1204 goto unlock;
1205
1206 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1207
1208 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1209 if (ret)
1210 goto unlock;
1211 }
1212
1213 /* Need a new fence register? */
1214 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1215 ret = i915_gem_object_get_fence_reg(obj);
1216 if (ret)
1217 goto unlock;
1218 }
1219
1220 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1221 page_offset;
1222
1223 /* Finally, remap it using the new GTT offset */
1224 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1225 unlock:
1226 mutex_unlock(&dev->struct_mutex);
1227
1228 switch (ret) {
1229 case 0:
1230 case -ERESTARTSYS:
1231 return VM_FAULT_NOPAGE;
1232 case -ENOMEM:
1233 case -EAGAIN:
1234 return VM_FAULT_OOM;
1235 default:
1236 return VM_FAULT_SIGBUS;
1237 }
1238 }
1239
1240 /**
1241 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1242 * @obj: obj in question
1243 *
1244 * GEM memory mapping works by handing back to userspace a fake mmap offset
1245 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1246 * up the object based on the offset and sets up the various memory mapping
1247 * structures.
1248 *
1249 * This routine allocates and attaches a fake offset for @obj.
1250 */
1251 static int
1252 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1253 {
1254 struct drm_device *dev = obj->dev;
1255 struct drm_gem_mm *mm = dev->mm_private;
1256 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1257 struct drm_map_list *list;
1258 struct drm_local_map *map;
1259 int ret = 0;
1260
1261 /* Set the object up for mmap'ing */
1262 list = &obj->map_list;
1263 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1264 if (!list->map)
1265 return -ENOMEM;
1266
1267 map = list->map;
1268 map->type = _DRM_GEM;
1269 map->size = obj->size;
1270 map->handle = obj;
1271
1272 /* Get a DRM GEM mmap offset allocated... */
1273 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1274 obj->size / PAGE_SIZE, 0, 0);
1275 if (!list->file_offset_node) {
1276 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1277 ret = -ENOMEM;
1278 goto out_free_list;
1279 }
1280
1281 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1282 obj->size / PAGE_SIZE, 0);
1283 if (!list->file_offset_node) {
1284 ret = -ENOMEM;
1285 goto out_free_list;
1286 }
1287
1288 list->hash.key = list->file_offset_node->start;
1289 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1290 DRM_ERROR("failed to add to map hash\n");
1291 ret = -ENOMEM;
1292 goto out_free_mm;
1293 }
1294
1295 /* By now we should be all set, any drm_mmap request on the offset
1296 * below will get to our mmap & fault handler */
1297 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1298
1299 return 0;
1300
1301 out_free_mm:
1302 drm_mm_put_block(list->file_offset_node);
1303 out_free_list:
1304 kfree(list->map);
1305
1306 return ret;
1307 }
1308
1309 /**
1310 * i915_gem_release_mmap - remove physical page mappings
1311 * @obj: obj in question
1312 *
1313 * Preserve the reservation of the mmapping with the DRM core code, but
1314 * relinquish ownership of the pages back to the system.
1315 *
1316 * It is vital that we remove the page mapping if we have mapped a tiled
1317 * object through the GTT and then lose the fence register due to
1318 * resource pressure. Similarly if the object has been moved out of the
1319 * aperture, than pages mapped into userspace must be revoked. Removing the
1320 * mapping will then trigger a page fault on the next user access, allowing
1321 * fixup by i915_gem_fault().
1322 */
1323 void
1324 i915_gem_release_mmap(struct drm_gem_object *obj)
1325 {
1326 struct drm_device *dev = obj->dev;
1327 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1328
1329 if (dev->dev_mapping)
1330 unmap_mapping_range(dev->dev_mapping,
1331 obj_priv->mmap_offset, obj->size, 1);
1332 }
1333
1334 static void
1335 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1336 {
1337 struct drm_device *dev = obj->dev;
1338 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1339 struct drm_gem_mm *mm = dev->mm_private;
1340 struct drm_map_list *list;
1341
1342 list = &obj->map_list;
1343 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1344
1345 if (list->file_offset_node) {
1346 drm_mm_put_block(list->file_offset_node);
1347 list->file_offset_node = NULL;
1348 }
1349
1350 if (list->map) {
1351 kfree(list->map);
1352 list->map = NULL;
1353 }
1354
1355 obj_priv->mmap_offset = 0;
1356 }
1357
1358 /**
1359 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1360 * @obj: object to check
1361 *
1362 * Return the required GTT alignment for an object, taking into account
1363 * potential fence register mapping if needed.
1364 */
1365 static uint32_t
1366 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1367 {
1368 struct drm_device *dev = obj->dev;
1369 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1370 int start, i;
1371
1372 /*
1373 * Minimum alignment is 4k (GTT page size), but might be greater
1374 * if a fence register is needed for the object.
1375 */
1376 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1377 return 4096;
1378
1379 /*
1380 * Previous chips need to be aligned to the size of the smallest
1381 * fence register that can contain the object.
1382 */
1383 if (IS_I9XX(dev))
1384 start = 1024*1024;
1385 else
1386 start = 512*1024;
1387
1388 for (i = start; i < obj->size; i <<= 1)
1389 ;
1390
1391 return i;
1392 }
1393
1394 /**
1395 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1396 * @dev: DRM device
1397 * @data: GTT mapping ioctl data
1398 * @file_priv: GEM object info
1399 *
1400 * Simply returns the fake offset to userspace so it can mmap it.
1401 * The mmap call will end up in drm_gem_mmap(), which will set things
1402 * up so we can get faults in the handler above.
1403 *
1404 * The fault handler will take care of binding the object into the GTT
1405 * (since it may have been evicted to make room for something), allocating
1406 * a fence register, and mapping the appropriate aperture address into
1407 * userspace.
1408 */
1409 int
1410 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1411 struct drm_file *file_priv)
1412 {
1413 struct drm_i915_gem_mmap_gtt *args = data;
1414 struct drm_i915_private *dev_priv = dev->dev_private;
1415 struct drm_gem_object *obj;
1416 struct drm_i915_gem_object *obj_priv;
1417 int ret;
1418
1419 if (!(dev->driver->driver_features & DRIVER_GEM))
1420 return -ENODEV;
1421
1422 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1423 if (obj == NULL)
1424 return -EBADF;
1425
1426 mutex_lock(&dev->struct_mutex);
1427
1428 obj_priv = obj->driver_private;
1429
1430 if (obj_priv->madv != I915_MADV_WILLNEED) {
1431 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1432 drm_gem_object_unreference(obj);
1433 mutex_unlock(&dev->struct_mutex);
1434 return -EINVAL;
1435 }
1436
1437
1438 if (!obj_priv->mmap_offset) {
1439 ret = i915_gem_create_mmap_offset(obj);
1440 if (ret) {
1441 drm_gem_object_unreference(obj);
1442 mutex_unlock(&dev->struct_mutex);
1443 return ret;
1444 }
1445 }
1446
1447 args->offset = obj_priv->mmap_offset;
1448
1449 /*
1450 * Pull it into the GTT so that we have a page list (makes the
1451 * initial fault faster and any subsequent flushing possible).
1452 */
1453 if (!obj_priv->agp_mem) {
1454 ret = i915_gem_object_bind_to_gtt(obj, 0);
1455 if (ret) {
1456 drm_gem_object_unreference(obj);
1457 mutex_unlock(&dev->struct_mutex);
1458 return ret;
1459 }
1460 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1461 }
1462
1463 drm_gem_object_unreference(obj);
1464 mutex_unlock(&dev->struct_mutex);
1465
1466 return 0;
1467 }
1468
1469 void
1470 i915_gem_object_put_pages(struct drm_gem_object *obj)
1471 {
1472 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1473 int page_count = obj->size / PAGE_SIZE;
1474 int i;
1475
1476 BUG_ON(obj_priv->pages_refcount == 0);
1477 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1478
1479 if (--obj_priv->pages_refcount != 0)
1480 return;
1481
1482 if (obj_priv->tiling_mode != I915_TILING_NONE)
1483 i915_gem_object_save_bit_17_swizzle(obj);
1484
1485 if (obj_priv->madv == I915_MADV_DONTNEED)
1486 obj_priv->dirty = 0;
1487
1488 for (i = 0; i < page_count; i++) {
1489 if (obj_priv->pages[i] == NULL)
1490 break;
1491
1492 if (obj_priv->dirty)
1493 set_page_dirty(obj_priv->pages[i]);
1494
1495 if (obj_priv->madv == I915_MADV_WILLNEED)
1496 mark_page_accessed(obj_priv->pages[i]);
1497
1498 page_cache_release(obj_priv->pages[i]);
1499 }
1500 obj_priv->dirty = 0;
1501
1502 drm_free_large(obj_priv->pages);
1503 obj_priv->pages = NULL;
1504 }
1505
1506 static void
1507 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1508 {
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
1511 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512
1513 /* Add a reference if we're newly entering the active list. */
1514 if (!obj_priv->active) {
1515 drm_gem_object_reference(obj);
1516 obj_priv->active = 1;
1517 }
1518 /* Move from whatever list we were on to the tail of execution. */
1519 spin_lock(&dev_priv->mm.active_list_lock);
1520 list_move_tail(&obj_priv->list,
1521 &dev_priv->mm.active_list);
1522 spin_unlock(&dev_priv->mm.active_list_lock);
1523 obj_priv->last_rendering_seqno = seqno;
1524 }
1525
1526 static void
1527 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1528 {
1529 struct drm_device *dev = obj->dev;
1530 drm_i915_private_t *dev_priv = dev->dev_private;
1531 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1532
1533 BUG_ON(!obj_priv->active);
1534 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1535 obj_priv->last_rendering_seqno = 0;
1536 }
1537
1538 /* Immediately discard the backing storage */
1539 static void
1540 i915_gem_object_truncate(struct drm_gem_object *obj)
1541 {
1542 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1543 struct inode *inode;
1544
1545 inode = obj->filp->f_path.dentry->d_inode;
1546 if (inode->i_op->truncate)
1547 inode->i_op->truncate (inode);
1548
1549 obj_priv->madv = __I915_MADV_PURGED;
1550 }
1551
1552 static inline int
1553 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1554 {
1555 return obj_priv->madv == I915_MADV_DONTNEED;
1556 }
1557
1558 static void
1559 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1560 {
1561 struct drm_device *dev = obj->dev;
1562 drm_i915_private_t *dev_priv = dev->dev_private;
1563 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1564
1565 i915_verify_inactive(dev, __FILE__, __LINE__);
1566 if (obj_priv->pin_count != 0)
1567 list_del_init(&obj_priv->list);
1568 else
1569 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1570
1571 obj_priv->last_rendering_seqno = 0;
1572 if (obj_priv->active) {
1573 obj_priv->active = 0;
1574 drm_gem_object_unreference(obj);
1575 }
1576 i915_verify_inactive(dev, __FILE__, __LINE__);
1577 }
1578
1579 /**
1580 * Creates a new sequence number, emitting a write of it to the status page
1581 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1582 *
1583 * Must be called with struct_lock held.
1584 *
1585 * Returned sequence numbers are nonzero on success.
1586 */
1587 uint32_t
1588 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1589 uint32_t flush_domains)
1590 {
1591 drm_i915_private_t *dev_priv = dev->dev_private;
1592 struct drm_i915_file_private *i915_file_priv = NULL;
1593 struct drm_i915_gem_request *request;
1594 uint32_t seqno;
1595 int was_empty;
1596 RING_LOCALS;
1597
1598 if (file_priv != NULL)
1599 i915_file_priv = file_priv->driver_priv;
1600
1601 request = kzalloc(sizeof(*request), GFP_KERNEL);
1602 if (request == NULL)
1603 return 0;
1604
1605 /* Grab the seqno we're going to make this request be, and bump the
1606 * next (skipping 0 so it can be the reserved no-seqno value).
1607 */
1608 seqno = dev_priv->mm.next_gem_seqno;
1609 dev_priv->mm.next_gem_seqno++;
1610 if (dev_priv->mm.next_gem_seqno == 0)
1611 dev_priv->mm.next_gem_seqno++;
1612
1613 BEGIN_LP_RING(4);
1614 OUT_RING(MI_STORE_DWORD_INDEX);
1615 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1616 OUT_RING(seqno);
1617
1618 OUT_RING(MI_USER_INTERRUPT);
1619 ADVANCE_LP_RING();
1620
1621 DRM_DEBUG_DRIVER("%d\n", seqno);
1622
1623 request->seqno = seqno;
1624 request->emitted_jiffies = jiffies;
1625 was_empty = list_empty(&dev_priv->mm.request_list);
1626 list_add_tail(&request->list, &dev_priv->mm.request_list);
1627 if (i915_file_priv) {
1628 list_add_tail(&request->client_list,
1629 &i915_file_priv->mm.request_list);
1630 } else {
1631 INIT_LIST_HEAD(&request->client_list);
1632 }
1633
1634 /* Associate any objects on the flushing list matching the write
1635 * domain we're flushing with our flush.
1636 */
1637 if (flush_domains != 0) {
1638 struct drm_i915_gem_object *obj_priv, *next;
1639
1640 list_for_each_entry_safe(obj_priv, next,
1641 &dev_priv->mm.flushing_list, list) {
1642 struct drm_gem_object *obj = obj_priv->obj;
1643
1644 if ((obj->write_domain & flush_domains) ==
1645 obj->write_domain) {
1646 uint32_t old_write_domain = obj->write_domain;
1647
1648 obj->write_domain = 0;
1649 i915_gem_object_move_to_active(obj, seqno);
1650
1651 trace_i915_gem_object_change_domain(obj,
1652 obj->read_domains,
1653 old_write_domain);
1654 }
1655 }
1656
1657 }
1658
1659 if (!dev_priv->mm.suspended) {
1660 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1661 if (was_empty)
1662 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1663 }
1664 return seqno;
1665 }
1666
1667 /**
1668 * Command execution barrier
1669 *
1670 * Ensures that all commands in the ring are finished
1671 * before signalling the CPU
1672 */
1673 static uint32_t
1674 i915_retire_commands(struct drm_device *dev)
1675 {
1676 drm_i915_private_t *dev_priv = dev->dev_private;
1677 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1678 uint32_t flush_domains = 0;
1679 RING_LOCALS;
1680
1681 /* The sampler always gets flushed on i965 (sigh) */
1682 if (IS_I965G(dev))
1683 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1684 BEGIN_LP_RING(2);
1685 OUT_RING(cmd);
1686 OUT_RING(0); /* noop */
1687 ADVANCE_LP_RING();
1688 return flush_domains;
1689 }
1690
1691 /**
1692 * Moves buffers associated only with the given active seqno from the active
1693 * to inactive list, potentially freeing them.
1694 */
1695 static void
1696 i915_gem_retire_request(struct drm_device *dev,
1697 struct drm_i915_gem_request *request)
1698 {
1699 drm_i915_private_t *dev_priv = dev->dev_private;
1700
1701 trace_i915_gem_request_retire(dev, request->seqno);
1702
1703 /* Move any buffers on the active list that are no longer referenced
1704 * by the ringbuffer to the flushing/inactive lists as appropriate.
1705 */
1706 spin_lock(&dev_priv->mm.active_list_lock);
1707 while (!list_empty(&dev_priv->mm.active_list)) {
1708 struct drm_gem_object *obj;
1709 struct drm_i915_gem_object *obj_priv;
1710
1711 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1712 struct drm_i915_gem_object,
1713 list);
1714 obj = obj_priv->obj;
1715
1716 /* If the seqno being retired doesn't match the oldest in the
1717 * list, then the oldest in the list must still be newer than
1718 * this seqno.
1719 */
1720 if (obj_priv->last_rendering_seqno != request->seqno)
1721 goto out;
1722
1723 #if WATCH_LRU
1724 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1725 __func__, request->seqno, obj);
1726 #endif
1727
1728 if (obj->write_domain != 0)
1729 i915_gem_object_move_to_flushing(obj);
1730 else {
1731 /* Take a reference on the object so it won't be
1732 * freed while the spinlock is held. The list
1733 * protection for this spinlock is safe when breaking
1734 * the lock like this since the next thing we do
1735 * is just get the head of the list again.
1736 */
1737 drm_gem_object_reference(obj);
1738 i915_gem_object_move_to_inactive(obj);
1739 spin_unlock(&dev_priv->mm.active_list_lock);
1740 drm_gem_object_unreference(obj);
1741 spin_lock(&dev_priv->mm.active_list_lock);
1742 }
1743 }
1744 out:
1745 spin_unlock(&dev_priv->mm.active_list_lock);
1746 }
1747
1748 /**
1749 * Returns true if seq1 is later than seq2.
1750 */
1751 bool
1752 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1753 {
1754 return (int32_t)(seq1 - seq2) >= 0;
1755 }
1756
1757 uint32_t
1758 i915_get_gem_seqno(struct drm_device *dev)
1759 {
1760 drm_i915_private_t *dev_priv = dev->dev_private;
1761
1762 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1763 }
1764
1765 /**
1766 * This function clears the request list as sequence numbers are passed.
1767 */
1768 void
1769 i915_gem_retire_requests(struct drm_device *dev)
1770 {
1771 drm_i915_private_t *dev_priv = dev->dev_private;
1772 uint32_t seqno;
1773
1774 if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1775 return;
1776
1777 seqno = i915_get_gem_seqno(dev);
1778
1779 while (!list_empty(&dev_priv->mm.request_list)) {
1780 struct drm_i915_gem_request *request;
1781 uint32_t retiring_seqno;
1782
1783 request = list_first_entry(&dev_priv->mm.request_list,
1784 struct drm_i915_gem_request,
1785 list);
1786 retiring_seqno = request->seqno;
1787
1788 if (i915_seqno_passed(seqno, retiring_seqno) ||
1789 atomic_read(&dev_priv->mm.wedged)) {
1790 i915_gem_retire_request(dev, request);
1791
1792 list_del(&request->list);
1793 list_del(&request->client_list);
1794 kfree(request);
1795 } else
1796 break;
1797 }
1798
1799 if (unlikely (dev_priv->trace_irq_seqno &&
1800 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1801 i915_user_irq_put(dev);
1802 dev_priv->trace_irq_seqno = 0;
1803 }
1804 }
1805
1806 void
1807 i915_gem_retire_work_handler(struct work_struct *work)
1808 {
1809 drm_i915_private_t *dev_priv;
1810 struct drm_device *dev;
1811
1812 dev_priv = container_of(work, drm_i915_private_t,
1813 mm.retire_work.work);
1814 dev = dev_priv->dev;
1815
1816 mutex_lock(&dev->struct_mutex);
1817 i915_gem_retire_requests(dev);
1818 if (!dev_priv->mm.suspended &&
1819 !list_empty(&dev_priv->mm.request_list))
1820 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1821 mutex_unlock(&dev->struct_mutex);
1822 }
1823
1824 int
1825 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1826 {
1827 drm_i915_private_t *dev_priv = dev->dev_private;
1828 u32 ier;
1829 int ret = 0;
1830
1831 BUG_ON(seqno == 0);
1832
1833 if (atomic_read(&dev_priv->mm.wedged))
1834 return -EIO;
1835
1836 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1837 if (IS_IRONLAKE(dev))
1838 ier = I915_READ(DEIER) | I915_READ(GTIER);
1839 else
1840 ier = I915_READ(IER);
1841 if (!ier) {
1842 DRM_ERROR("something (likely vbetool) disabled "
1843 "interrupts, re-enabling\n");
1844 i915_driver_irq_preinstall(dev);
1845 i915_driver_irq_postinstall(dev);
1846 }
1847
1848 trace_i915_gem_request_wait_begin(dev, seqno);
1849
1850 dev_priv->mm.waiting_gem_seqno = seqno;
1851 i915_user_irq_get(dev);
1852 if (interruptible)
1853 ret = wait_event_interruptible(dev_priv->irq_queue,
1854 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1855 atomic_read(&dev_priv->mm.wedged));
1856 else
1857 wait_event(dev_priv->irq_queue,
1858 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1859 atomic_read(&dev_priv->mm.wedged));
1860
1861 i915_user_irq_put(dev);
1862 dev_priv->mm.waiting_gem_seqno = 0;
1863
1864 trace_i915_gem_request_wait_end(dev, seqno);
1865 }
1866 if (atomic_read(&dev_priv->mm.wedged))
1867 ret = -EIO;
1868
1869 if (ret && ret != -ERESTARTSYS)
1870 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1871 __func__, ret, seqno, i915_get_gem_seqno(dev));
1872
1873 /* Directly dispatch request retiring. While we have the work queue
1874 * to handle this, the waiter on a request often wants an associated
1875 * buffer to have made it to the inactive list, and we would need
1876 * a separate wait queue to handle that.
1877 */
1878 if (ret == 0)
1879 i915_gem_retire_requests(dev);
1880
1881 return ret;
1882 }
1883
1884 /**
1885 * Waits for a sequence number to be signaled, and cleans up the
1886 * request and object lists appropriately for that event.
1887 */
1888 static int
1889 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1890 {
1891 return i915_do_wait_request(dev, seqno, 1);
1892 }
1893
1894 static void
1895 i915_gem_flush(struct drm_device *dev,
1896 uint32_t invalidate_domains,
1897 uint32_t flush_domains)
1898 {
1899 drm_i915_private_t *dev_priv = dev->dev_private;
1900 uint32_t cmd;
1901 RING_LOCALS;
1902
1903 #if WATCH_EXEC
1904 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1905 invalidate_domains, flush_domains);
1906 #endif
1907 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1908 invalidate_domains, flush_domains);
1909
1910 if (flush_domains & I915_GEM_DOMAIN_CPU)
1911 drm_agp_chipset_flush(dev);
1912
1913 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1914 /*
1915 * read/write caches:
1916 *
1917 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1918 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1919 * also flushed at 2d versus 3d pipeline switches.
1920 *
1921 * read-only caches:
1922 *
1923 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1924 * MI_READ_FLUSH is set, and is always flushed on 965.
1925 *
1926 * I915_GEM_DOMAIN_COMMAND may not exist?
1927 *
1928 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1929 * invalidated when MI_EXE_FLUSH is set.
1930 *
1931 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1932 * invalidated with every MI_FLUSH.
1933 *
1934 * TLBs:
1935 *
1936 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1937 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1938 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1939 * are flushed at any MI_FLUSH.
1940 */
1941
1942 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1943 if ((invalidate_domains|flush_domains) &
1944 I915_GEM_DOMAIN_RENDER)
1945 cmd &= ~MI_NO_WRITE_FLUSH;
1946 if (!IS_I965G(dev)) {
1947 /*
1948 * On the 965, the sampler cache always gets flushed
1949 * and this bit is reserved.
1950 */
1951 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1952 cmd |= MI_READ_FLUSH;
1953 }
1954 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1955 cmd |= MI_EXE_FLUSH;
1956
1957 #if WATCH_EXEC
1958 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1959 #endif
1960 BEGIN_LP_RING(2);
1961 OUT_RING(cmd);
1962 OUT_RING(MI_NOOP);
1963 ADVANCE_LP_RING();
1964 }
1965 }
1966
1967 /**
1968 * Ensures that all rendering to the object has completed and the object is
1969 * safe to unbind from the GTT or access from the CPU.
1970 */
1971 static int
1972 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1973 {
1974 struct drm_device *dev = obj->dev;
1975 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1976 int ret;
1977
1978 /* This function only exists to support waiting for existing rendering,
1979 * not for emitting required flushes.
1980 */
1981 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1982
1983 /* If there is rendering queued on the buffer being evicted, wait for
1984 * it.
1985 */
1986 if (obj_priv->active) {
1987 #if WATCH_BUF
1988 DRM_INFO("%s: object %p wait for seqno %08x\n",
1989 __func__, obj, obj_priv->last_rendering_seqno);
1990 #endif
1991 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1992 if (ret != 0)
1993 return ret;
1994 }
1995
1996 return 0;
1997 }
1998
1999 /**
2000 * Unbinds an object from the GTT aperture.
2001 */
2002 int
2003 i915_gem_object_unbind(struct drm_gem_object *obj)
2004 {
2005 struct drm_device *dev = obj->dev;
2006 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2007 int ret = 0;
2008
2009 #if WATCH_BUF
2010 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2011 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2012 #endif
2013 if (obj_priv->gtt_space == NULL)
2014 return 0;
2015
2016 if (obj_priv->pin_count != 0) {
2017 DRM_ERROR("Attempting to unbind pinned buffer\n");
2018 return -EINVAL;
2019 }
2020
2021 /* blow away mappings if mapped through GTT */
2022 i915_gem_release_mmap(obj);
2023
2024 /* Move the object to the CPU domain to ensure that
2025 * any possible CPU writes while it's not in the GTT
2026 * are flushed when we go to remap it. This will
2027 * also ensure that all pending GPU writes are finished
2028 * before we unbind.
2029 */
2030 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2031 if (ret) {
2032 if (ret != -ERESTARTSYS)
2033 DRM_ERROR("set_domain failed: %d\n", ret);
2034 return ret;
2035 }
2036
2037 BUG_ON(obj_priv->active);
2038
2039 /* release the fence reg _after_ flushing */
2040 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2041 i915_gem_clear_fence_reg(obj);
2042
2043 if (obj_priv->agp_mem != NULL) {
2044 drm_unbind_agp(obj_priv->agp_mem);
2045 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2046 obj_priv->agp_mem = NULL;
2047 }
2048
2049 i915_gem_object_put_pages(obj);
2050 BUG_ON(obj_priv->pages_refcount);
2051
2052 if (obj_priv->gtt_space) {
2053 atomic_dec(&dev->gtt_count);
2054 atomic_sub(obj->size, &dev->gtt_memory);
2055
2056 drm_mm_put_block(obj_priv->gtt_space);
2057 obj_priv->gtt_space = NULL;
2058 }
2059
2060 /* Remove ourselves from the LRU list if present. */
2061 if (!list_empty(&obj_priv->list))
2062 list_del_init(&obj_priv->list);
2063
2064 if (i915_gem_object_is_purgeable(obj_priv))
2065 i915_gem_object_truncate(obj);
2066
2067 trace_i915_gem_object_unbind(obj);
2068
2069 return 0;
2070 }
2071
2072 static struct drm_gem_object *
2073 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2074 {
2075 drm_i915_private_t *dev_priv = dev->dev_private;
2076 struct drm_i915_gem_object *obj_priv;
2077 struct drm_gem_object *best = NULL;
2078 struct drm_gem_object *first = NULL;
2079
2080 /* Try to find the smallest clean object */
2081 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2082 struct drm_gem_object *obj = obj_priv->obj;
2083 if (obj->size >= min_size) {
2084 if ((!obj_priv->dirty ||
2085 i915_gem_object_is_purgeable(obj_priv)) &&
2086 (!best || obj->size < best->size)) {
2087 best = obj;
2088 if (best->size == min_size)
2089 return best;
2090 }
2091 if (!first)
2092 first = obj;
2093 }
2094 }
2095
2096 return best ? best : first;
2097 }
2098
2099 static int
2100 i915_gem_evict_everything(struct drm_device *dev)
2101 {
2102 drm_i915_private_t *dev_priv = dev->dev_private;
2103 uint32_t seqno;
2104 int ret;
2105 bool lists_empty;
2106
2107 spin_lock(&dev_priv->mm.active_list_lock);
2108 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2109 list_empty(&dev_priv->mm.flushing_list) &&
2110 list_empty(&dev_priv->mm.active_list));
2111 spin_unlock(&dev_priv->mm.active_list_lock);
2112
2113 if (lists_empty)
2114 return -ENOSPC;
2115
2116 /* Flush everything (on to the inactive lists) and evict */
2117 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2118 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2119 if (seqno == 0)
2120 return -ENOMEM;
2121
2122 ret = i915_wait_request(dev, seqno);
2123 if (ret)
2124 return ret;
2125
2126 ret = i915_gem_evict_from_inactive_list(dev);
2127 if (ret)
2128 return ret;
2129
2130 spin_lock(&dev_priv->mm.active_list_lock);
2131 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2132 list_empty(&dev_priv->mm.flushing_list) &&
2133 list_empty(&dev_priv->mm.active_list));
2134 spin_unlock(&dev_priv->mm.active_list_lock);
2135 BUG_ON(!lists_empty);
2136
2137 return 0;
2138 }
2139
2140 static int
2141 i915_gem_evict_something(struct drm_device *dev, int min_size)
2142 {
2143 drm_i915_private_t *dev_priv = dev->dev_private;
2144 struct drm_gem_object *obj;
2145 int ret;
2146
2147 for (;;) {
2148 i915_gem_retire_requests(dev);
2149
2150 /* If there's an inactive buffer available now, grab it
2151 * and be done.
2152 */
2153 obj = i915_gem_find_inactive_object(dev, min_size);
2154 if (obj) {
2155 struct drm_i915_gem_object *obj_priv;
2156
2157 #if WATCH_LRU
2158 DRM_INFO("%s: evicting %p\n", __func__, obj);
2159 #endif
2160 obj_priv = obj->driver_private;
2161 BUG_ON(obj_priv->pin_count != 0);
2162 BUG_ON(obj_priv->active);
2163
2164 /* Wait on the rendering and unbind the buffer. */
2165 return i915_gem_object_unbind(obj);
2166 }
2167
2168 /* If we didn't get anything, but the ring is still processing
2169 * things, wait for the next to finish and hopefully leave us
2170 * a buffer to evict.
2171 */
2172 if (!list_empty(&dev_priv->mm.request_list)) {
2173 struct drm_i915_gem_request *request;
2174
2175 request = list_first_entry(&dev_priv->mm.request_list,
2176 struct drm_i915_gem_request,
2177 list);
2178
2179 ret = i915_wait_request(dev, request->seqno);
2180 if (ret)
2181 return ret;
2182
2183 continue;
2184 }
2185
2186 /* If we didn't have anything on the request list but there
2187 * are buffers awaiting a flush, emit one and try again.
2188 * When we wait on it, those buffers waiting for that flush
2189 * will get moved to inactive.
2190 */
2191 if (!list_empty(&dev_priv->mm.flushing_list)) {
2192 struct drm_i915_gem_object *obj_priv;
2193
2194 /* Find an object that we can immediately reuse */
2195 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2196 obj = obj_priv->obj;
2197 if (obj->size >= min_size)
2198 break;
2199
2200 obj = NULL;
2201 }
2202
2203 if (obj != NULL) {
2204 uint32_t seqno;
2205
2206 i915_gem_flush(dev,
2207 obj->write_domain,
2208 obj->write_domain);
2209 seqno = i915_add_request(dev, NULL, obj->write_domain);
2210 if (seqno == 0)
2211 return -ENOMEM;
2212
2213 ret = i915_wait_request(dev, seqno);
2214 if (ret)
2215 return ret;
2216
2217 continue;
2218 }
2219 }
2220
2221 /* If we didn't do any of the above, there's no single buffer
2222 * large enough to swap out for the new one, so just evict
2223 * everything and start again. (This should be rare.)
2224 */
2225 if (!list_empty (&dev_priv->mm.inactive_list))
2226 return i915_gem_evict_from_inactive_list(dev);
2227 else
2228 return i915_gem_evict_everything(dev);
2229 }
2230 }
2231
2232 int
2233 i915_gem_object_get_pages(struct drm_gem_object *obj)
2234 {
2235 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2236 int page_count, i;
2237 struct address_space *mapping;
2238 struct inode *inode;
2239 struct page *page;
2240 int ret;
2241
2242 if (obj_priv->pages_refcount++ != 0)
2243 return 0;
2244
2245 /* Get the list of pages out of our struct file. They'll be pinned
2246 * at this point until we release them.
2247 */
2248 page_count = obj->size / PAGE_SIZE;
2249 BUG_ON(obj_priv->pages != NULL);
2250 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2251 if (obj_priv->pages == NULL) {
2252 obj_priv->pages_refcount--;
2253 return -ENOMEM;
2254 }
2255
2256 inode = obj->filp->f_path.dentry->d_inode;
2257 mapping = inode->i_mapping;
2258 for (i = 0; i < page_count; i++) {
2259 page = read_mapping_page(mapping, i, NULL);
2260 if (IS_ERR(page)) {
2261 ret = PTR_ERR(page);
2262 i915_gem_object_put_pages(obj);
2263 return ret;
2264 }
2265 obj_priv->pages[i] = page;
2266 }
2267
2268 if (obj_priv->tiling_mode != I915_TILING_NONE)
2269 i915_gem_object_do_bit_17_swizzle(obj);
2270
2271 return 0;
2272 }
2273
2274 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2275 {
2276 struct drm_gem_object *obj = reg->obj;
2277 struct drm_device *dev = obj->dev;
2278 drm_i915_private_t *dev_priv = dev->dev_private;
2279 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2280 int regnum = obj_priv->fence_reg;
2281 uint64_t val;
2282
2283 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2284 0xfffff000) << 32;
2285 val |= obj_priv->gtt_offset & 0xfffff000;
2286 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2287 if (obj_priv->tiling_mode == I915_TILING_Y)
2288 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2289 val |= I965_FENCE_REG_VALID;
2290
2291 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2292 }
2293
2294 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2295 {
2296 struct drm_gem_object *obj = reg->obj;
2297 struct drm_device *dev = obj->dev;
2298 drm_i915_private_t *dev_priv = dev->dev_private;
2299 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2300 int regnum = obj_priv->fence_reg;
2301 int tile_width;
2302 uint32_t fence_reg, val;
2303 uint32_t pitch_val;
2304
2305 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2306 (obj_priv->gtt_offset & (obj->size - 1))) {
2307 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2308 __func__, obj_priv->gtt_offset, obj->size);
2309 return;
2310 }
2311
2312 if (obj_priv->tiling_mode == I915_TILING_Y &&
2313 HAS_128_BYTE_Y_TILING(dev))
2314 tile_width = 128;
2315 else
2316 tile_width = 512;
2317
2318 /* Note: pitch better be a power of two tile widths */
2319 pitch_val = obj_priv->stride / tile_width;
2320 pitch_val = ffs(pitch_val) - 1;
2321
2322 val = obj_priv->gtt_offset;
2323 if (obj_priv->tiling_mode == I915_TILING_Y)
2324 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2325 val |= I915_FENCE_SIZE_BITS(obj->size);
2326 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2327 val |= I830_FENCE_REG_VALID;
2328
2329 if (regnum < 8)
2330 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2331 else
2332 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2333 I915_WRITE(fence_reg, val);
2334 }
2335
2336 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2337 {
2338 struct drm_gem_object *obj = reg->obj;
2339 struct drm_device *dev = obj->dev;
2340 drm_i915_private_t *dev_priv = dev->dev_private;
2341 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2342 int regnum = obj_priv->fence_reg;
2343 uint32_t val;
2344 uint32_t pitch_val;
2345 uint32_t fence_size_bits;
2346
2347 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2348 (obj_priv->gtt_offset & (obj->size - 1))) {
2349 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2350 __func__, obj_priv->gtt_offset);
2351 return;
2352 }
2353
2354 pitch_val = obj_priv->stride / 128;
2355 pitch_val = ffs(pitch_val) - 1;
2356 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2357
2358 val = obj_priv->gtt_offset;
2359 if (obj_priv->tiling_mode == I915_TILING_Y)
2360 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2361 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2362 WARN_ON(fence_size_bits & ~0x00000f00);
2363 val |= fence_size_bits;
2364 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2365 val |= I830_FENCE_REG_VALID;
2366
2367 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2368 }
2369
2370 /**
2371 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2372 * @obj: object to map through a fence reg
2373 *
2374 * When mapping objects through the GTT, userspace wants to be able to write
2375 * to them without having to worry about swizzling if the object is tiled.
2376 *
2377 * This function walks the fence regs looking for a free one for @obj,
2378 * stealing one if it can't find any.
2379 *
2380 * It then sets up the reg based on the object's properties: address, pitch
2381 * and tiling format.
2382 */
2383 int
2384 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2385 {
2386 struct drm_device *dev = obj->dev;
2387 struct drm_i915_private *dev_priv = dev->dev_private;
2388 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2389 struct drm_i915_fence_reg *reg = NULL;
2390 struct drm_i915_gem_object *old_obj_priv = NULL;
2391 int i, ret, avail;
2392
2393 /* Just update our place in the LRU if our fence is getting used. */
2394 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2395 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2396 return 0;
2397 }
2398
2399 switch (obj_priv->tiling_mode) {
2400 case I915_TILING_NONE:
2401 WARN(1, "allocating a fence for non-tiled object?\n");
2402 break;
2403 case I915_TILING_X:
2404 if (!obj_priv->stride)
2405 return -EINVAL;
2406 WARN((obj_priv->stride & (512 - 1)),
2407 "object 0x%08x is X tiled but has non-512B pitch\n",
2408 obj_priv->gtt_offset);
2409 break;
2410 case I915_TILING_Y:
2411 if (!obj_priv->stride)
2412 return -EINVAL;
2413 WARN((obj_priv->stride & (128 - 1)),
2414 "object 0x%08x is Y tiled but has non-128B pitch\n",
2415 obj_priv->gtt_offset);
2416 break;
2417 }
2418
2419 /* First try to find a free reg */
2420 avail = 0;
2421 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2422 reg = &dev_priv->fence_regs[i];
2423 if (!reg->obj)
2424 break;
2425
2426 old_obj_priv = reg->obj->driver_private;
2427 if (!old_obj_priv->pin_count)
2428 avail++;
2429 }
2430
2431 /* None available, try to steal one or wait for a user to finish */
2432 if (i == dev_priv->num_fence_regs) {
2433 struct drm_gem_object *old_obj = NULL;
2434
2435 if (avail == 0)
2436 return -ENOSPC;
2437
2438 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2439 fence_list) {
2440 old_obj = old_obj_priv->obj;
2441
2442 if (old_obj_priv->pin_count)
2443 continue;
2444
2445 /* Take a reference, as otherwise the wait_rendering
2446 * below may cause the object to get freed out from
2447 * under us.
2448 */
2449 drm_gem_object_reference(old_obj);
2450
2451 /* i915 uses fences for GPU access to tiled buffers */
2452 if (IS_I965G(dev) || !old_obj_priv->active)
2453 break;
2454
2455 /* This brings the object to the head of the LRU if it
2456 * had been written to. The only way this should
2457 * result in us waiting longer than the expected
2458 * optimal amount of time is if there was a
2459 * fence-using buffer later that was read-only.
2460 */
2461 i915_gem_object_flush_gpu_write_domain(old_obj);
2462 ret = i915_gem_object_wait_rendering(old_obj);
2463 if (ret != 0) {
2464 drm_gem_object_unreference(old_obj);
2465 return ret;
2466 }
2467
2468 break;
2469 }
2470
2471 /*
2472 * Zap this virtual mapping so we can set up a fence again
2473 * for this object next time we need it.
2474 */
2475 i915_gem_release_mmap(old_obj);
2476
2477 i = old_obj_priv->fence_reg;
2478 reg = &dev_priv->fence_regs[i];
2479
2480 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2481 list_del_init(&old_obj_priv->fence_list);
2482
2483 drm_gem_object_unreference(old_obj);
2484 }
2485
2486 obj_priv->fence_reg = i;
2487 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2488
2489 reg->obj = obj;
2490
2491 if (IS_I965G(dev))
2492 i965_write_fence_reg(reg);
2493 else if (IS_I9XX(dev))
2494 i915_write_fence_reg(reg);
2495 else
2496 i830_write_fence_reg(reg);
2497
2498 trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2499
2500 return 0;
2501 }
2502
2503 /**
2504 * i915_gem_clear_fence_reg - clear out fence register info
2505 * @obj: object to clear
2506 *
2507 * Zeroes out the fence register itself and clears out the associated
2508 * data structures in dev_priv and obj_priv.
2509 */
2510 static void
2511 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2512 {
2513 struct drm_device *dev = obj->dev;
2514 drm_i915_private_t *dev_priv = dev->dev_private;
2515 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2516
2517 if (IS_I965G(dev))
2518 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2519 else {
2520 uint32_t fence_reg;
2521
2522 if (obj_priv->fence_reg < 8)
2523 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2524 else
2525 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2526 8) * 4;
2527
2528 I915_WRITE(fence_reg, 0);
2529 }
2530
2531 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2532 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2533 list_del_init(&obj_priv->fence_list);
2534 }
2535
2536 /**
2537 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2538 * to the buffer to finish, and then resets the fence register.
2539 * @obj: tiled object holding a fence register.
2540 *
2541 * Zeroes out the fence register itself and clears out the associated
2542 * data structures in dev_priv and obj_priv.
2543 */
2544 int
2545 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2546 {
2547 struct drm_device *dev = obj->dev;
2548 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2549
2550 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2551 return 0;
2552
2553 /* On the i915, GPU access to tiled buffers is via a fence,
2554 * therefore we must wait for any outstanding access to complete
2555 * before clearing the fence.
2556 */
2557 if (!IS_I965G(dev)) {
2558 int ret;
2559
2560 i915_gem_object_flush_gpu_write_domain(obj);
2561 i915_gem_object_flush_gtt_write_domain(obj);
2562 ret = i915_gem_object_wait_rendering(obj);
2563 if (ret != 0)
2564 return ret;
2565 }
2566
2567 i915_gem_clear_fence_reg (obj);
2568
2569 return 0;
2570 }
2571
2572 /**
2573 * Finds free space in the GTT aperture and binds the object there.
2574 */
2575 static int
2576 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2577 {
2578 struct drm_device *dev = obj->dev;
2579 drm_i915_private_t *dev_priv = dev->dev_private;
2580 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2581 struct drm_mm_node *free_space;
2582 bool retry_alloc = false;
2583 int ret;
2584
2585 if (obj_priv->madv != I915_MADV_WILLNEED) {
2586 DRM_ERROR("Attempting to bind a purgeable object\n");
2587 return -EINVAL;
2588 }
2589
2590 if (alignment == 0)
2591 alignment = i915_gem_get_gtt_alignment(obj);
2592 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2593 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2594 return -EINVAL;
2595 }
2596
2597 search_free:
2598 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2599 obj->size, alignment, 0);
2600 if (free_space != NULL) {
2601 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2602 alignment);
2603 if (obj_priv->gtt_space != NULL) {
2604 obj_priv->gtt_space->private = obj;
2605 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2606 }
2607 }
2608 if (obj_priv->gtt_space == NULL) {
2609 /* If the gtt is empty and we're still having trouble
2610 * fitting our object in, we're out of memory.
2611 */
2612 #if WATCH_LRU
2613 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2614 #endif
2615 ret = i915_gem_evict_something(dev, obj->size);
2616 if (ret)
2617 return ret;
2618
2619 goto search_free;
2620 }
2621
2622 #if WATCH_BUF
2623 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2624 obj->size, obj_priv->gtt_offset);
2625 #endif
2626 if (retry_alloc) {
2627 i915_gem_object_set_page_gfp_mask (obj,
2628 i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2629 }
2630 ret = i915_gem_object_get_pages(obj);
2631 if (retry_alloc) {
2632 i915_gem_object_set_page_gfp_mask (obj,
2633 i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2634 }
2635 if (ret) {
2636 drm_mm_put_block(obj_priv->gtt_space);
2637 obj_priv->gtt_space = NULL;
2638
2639 if (ret == -ENOMEM) {
2640 /* first try to clear up some space from the GTT */
2641 ret = i915_gem_evict_something(dev, obj->size);
2642 if (ret) {
2643 /* now try to shrink everyone else */
2644 if (! retry_alloc) {
2645 retry_alloc = true;
2646 goto search_free;
2647 }
2648
2649 return ret;
2650 }
2651
2652 goto search_free;
2653 }
2654
2655 return ret;
2656 }
2657
2658 /* Create an AGP memory structure pointing at our pages, and bind it
2659 * into the GTT.
2660 */
2661 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2662 obj_priv->pages,
2663 obj->size >> PAGE_SHIFT,
2664 obj_priv->gtt_offset,
2665 obj_priv->agp_type);
2666 if (obj_priv->agp_mem == NULL) {
2667 i915_gem_object_put_pages(obj);
2668 drm_mm_put_block(obj_priv->gtt_space);
2669 obj_priv->gtt_space = NULL;
2670
2671 ret = i915_gem_evict_something(dev, obj->size);
2672 if (ret)
2673 return ret;
2674
2675 goto search_free;
2676 }
2677 atomic_inc(&dev->gtt_count);
2678 atomic_add(obj->size, &dev->gtt_memory);
2679
2680 /* Assert that the object is not currently in any GPU domain. As it
2681 * wasn't in the GTT, there shouldn't be any way it could have been in
2682 * a GPU cache
2683 */
2684 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2685 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2686
2687 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2688
2689 return 0;
2690 }
2691
2692 void
2693 i915_gem_clflush_object(struct drm_gem_object *obj)
2694 {
2695 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2696
2697 /* If we don't have a page list set up, then we're not pinned
2698 * to GPU, and we can ignore the cache flush because it'll happen
2699 * again at bind time.
2700 */
2701 if (obj_priv->pages == NULL)
2702 return;
2703
2704 trace_i915_gem_object_clflush(obj);
2705
2706 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2707 }
2708
2709 /** Flushes any GPU write domain for the object if it's dirty. */
2710 static void
2711 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2712 {
2713 struct drm_device *dev = obj->dev;
2714 uint32_t seqno;
2715 uint32_t old_write_domain;
2716
2717 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2718 return;
2719
2720 /* Queue the GPU write cache flushing we need. */
2721 old_write_domain = obj->write_domain;
2722 i915_gem_flush(dev, 0, obj->write_domain);
2723 seqno = i915_add_request(dev, NULL, obj->write_domain);
2724 obj->write_domain = 0;
2725 i915_gem_object_move_to_active(obj, seqno);
2726
2727 trace_i915_gem_object_change_domain(obj,
2728 obj->read_domains,
2729 old_write_domain);
2730 }
2731
2732 /** Flushes the GTT write domain for the object if it's dirty. */
2733 static void
2734 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2735 {
2736 uint32_t old_write_domain;
2737
2738 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2739 return;
2740
2741 /* No actual flushing is required for the GTT write domain. Writes
2742 * to it immediately go to main memory as far as we know, so there's
2743 * no chipset flush. It also doesn't land in render cache.
2744 */
2745 old_write_domain = obj->write_domain;
2746 obj->write_domain = 0;
2747
2748 trace_i915_gem_object_change_domain(obj,
2749 obj->read_domains,
2750 old_write_domain);
2751 }
2752
2753 /** Flushes the CPU write domain for the object if it's dirty. */
2754 static void
2755 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2756 {
2757 struct drm_device *dev = obj->dev;
2758 uint32_t old_write_domain;
2759
2760 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2761 return;
2762
2763 i915_gem_clflush_object(obj);
2764 drm_agp_chipset_flush(dev);
2765 old_write_domain = obj->write_domain;
2766 obj->write_domain = 0;
2767
2768 trace_i915_gem_object_change_domain(obj,
2769 obj->read_domains,
2770 old_write_domain);
2771 }
2772
2773 void
2774 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2775 {
2776 switch (obj->write_domain) {
2777 case I915_GEM_DOMAIN_GTT:
2778 i915_gem_object_flush_gtt_write_domain(obj);
2779 break;
2780 case I915_GEM_DOMAIN_CPU:
2781 i915_gem_object_flush_cpu_write_domain(obj);
2782 break;
2783 default:
2784 i915_gem_object_flush_gpu_write_domain(obj);
2785 break;
2786 }
2787 }
2788
2789 /**
2790 * Moves a single object to the GTT read, and possibly write domain.
2791 *
2792 * This function returns when the move is complete, including waiting on
2793 * flushes to occur.
2794 */
2795 int
2796 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2797 {
2798 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2799 uint32_t old_write_domain, old_read_domains;
2800 int ret;
2801
2802 /* Not valid to be called on unbound objects. */
2803 if (obj_priv->gtt_space == NULL)
2804 return -EINVAL;
2805
2806 i915_gem_object_flush_gpu_write_domain(obj);
2807 /* Wait on any GPU rendering and flushing to occur. */
2808 ret = i915_gem_object_wait_rendering(obj);
2809 if (ret != 0)
2810 return ret;
2811
2812 old_write_domain = obj->write_domain;
2813 old_read_domains = obj->read_domains;
2814
2815 /* If we're writing through the GTT domain, then CPU and GPU caches
2816 * will need to be invalidated at next use.
2817 */
2818 if (write)
2819 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2820
2821 i915_gem_object_flush_cpu_write_domain(obj);
2822
2823 /* It should now be out of any other write domains, and we can update
2824 * the domain values for our changes.
2825 */
2826 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2827 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2828 if (write) {
2829 obj->write_domain = I915_GEM_DOMAIN_GTT;
2830 obj_priv->dirty = 1;
2831 }
2832
2833 trace_i915_gem_object_change_domain(obj,
2834 old_read_domains,
2835 old_write_domain);
2836
2837 return 0;
2838 }
2839
2840 /*
2841 * Prepare buffer for display plane. Use uninterruptible for possible flush
2842 * wait, as in modesetting process we're not supposed to be interrupted.
2843 */
2844 int
2845 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2846 {
2847 struct drm_device *dev = obj->dev;
2848 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2849 uint32_t old_write_domain, old_read_domains;
2850 int ret;
2851
2852 /* Not valid to be called on unbound objects. */
2853 if (obj_priv->gtt_space == NULL)
2854 return -EINVAL;
2855
2856 i915_gem_object_flush_gpu_write_domain(obj);
2857
2858 /* Wait on any GPU rendering and flushing to occur. */
2859 if (obj_priv->active) {
2860 #if WATCH_BUF
2861 DRM_INFO("%s: object %p wait for seqno %08x\n",
2862 __func__, obj, obj_priv->last_rendering_seqno);
2863 #endif
2864 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2865 if (ret != 0)
2866 return ret;
2867 }
2868
2869 old_write_domain = obj->write_domain;
2870 old_read_domains = obj->read_domains;
2871
2872 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2873
2874 i915_gem_object_flush_cpu_write_domain(obj);
2875
2876 /* It should now be out of any other write domains, and we can update
2877 * the domain values for our changes.
2878 */
2879 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2880 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2881 obj->write_domain = I915_GEM_DOMAIN_GTT;
2882 obj_priv->dirty = 1;
2883
2884 trace_i915_gem_object_change_domain(obj,
2885 old_read_domains,
2886 old_write_domain);
2887
2888 return 0;
2889 }
2890
2891 /**
2892 * Moves a single object to the CPU read, and possibly write domain.
2893 *
2894 * This function returns when the move is complete, including waiting on
2895 * flushes to occur.
2896 */
2897 static int
2898 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2899 {
2900 uint32_t old_write_domain, old_read_domains;
2901 int ret;
2902
2903 i915_gem_object_flush_gpu_write_domain(obj);
2904 /* Wait on any GPU rendering and flushing to occur. */
2905 ret = i915_gem_object_wait_rendering(obj);
2906 if (ret != 0)
2907 return ret;
2908
2909 i915_gem_object_flush_gtt_write_domain(obj);
2910
2911 /* If we have a partially-valid cache of the object in the CPU,
2912 * finish invalidating it and free the per-page flags.
2913 */
2914 i915_gem_object_set_to_full_cpu_read_domain(obj);
2915
2916 old_write_domain = obj->write_domain;
2917 old_read_domains = obj->read_domains;
2918
2919 /* Flush the CPU cache if it's still invalid. */
2920 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2921 i915_gem_clflush_object(obj);
2922
2923 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2924 }
2925
2926 /* It should now be out of any other write domains, and we can update
2927 * the domain values for our changes.
2928 */
2929 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2930
2931 /* If we're writing through the CPU, then the GPU read domains will
2932 * need to be invalidated at next use.
2933 */
2934 if (write) {
2935 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2936 obj->write_domain = I915_GEM_DOMAIN_CPU;
2937 }
2938
2939 trace_i915_gem_object_change_domain(obj,
2940 old_read_domains,
2941 old_write_domain);
2942
2943 return 0;
2944 }
2945
2946 /*
2947 * Set the next domain for the specified object. This
2948 * may not actually perform the necessary flushing/invaliding though,
2949 * as that may want to be batched with other set_domain operations
2950 *
2951 * This is (we hope) the only really tricky part of gem. The goal
2952 * is fairly simple -- track which caches hold bits of the object
2953 * and make sure they remain coherent. A few concrete examples may
2954 * help to explain how it works. For shorthand, we use the notation
2955 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2956 * a pair of read and write domain masks.
2957 *
2958 * Case 1: the batch buffer
2959 *
2960 * 1. Allocated
2961 * 2. Written by CPU
2962 * 3. Mapped to GTT
2963 * 4. Read by GPU
2964 * 5. Unmapped from GTT
2965 * 6. Freed
2966 *
2967 * Let's take these a step at a time
2968 *
2969 * 1. Allocated
2970 * Pages allocated from the kernel may still have
2971 * cache contents, so we set them to (CPU, CPU) always.
2972 * 2. Written by CPU (using pwrite)
2973 * The pwrite function calls set_domain (CPU, CPU) and
2974 * this function does nothing (as nothing changes)
2975 * 3. Mapped by GTT
2976 * This function asserts that the object is not
2977 * currently in any GPU-based read or write domains
2978 * 4. Read by GPU
2979 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2980 * As write_domain is zero, this function adds in the
2981 * current read domains (CPU+COMMAND, 0).
2982 * flush_domains is set to CPU.
2983 * invalidate_domains is set to COMMAND
2984 * clflush is run to get data out of the CPU caches
2985 * then i915_dev_set_domain calls i915_gem_flush to
2986 * emit an MI_FLUSH and drm_agp_chipset_flush
2987 * 5. Unmapped from GTT
2988 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2989 * flush_domains and invalidate_domains end up both zero
2990 * so no flushing/invalidating happens
2991 * 6. Freed
2992 * yay, done
2993 *
2994 * Case 2: The shared render buffer
2995 *
2996 * 1. Allocated
2997 * 2. Mapped to GTT
2998 * 3. Read/written by GPU
2999 * 4. set_domain to (CPU,CPU)
3000 * 5. Read/written by CPU
3001 * 6. Read/written by GPU
3002 *
3003 * 1. Allocated
3004 * Same as last example, (CPU, CPU)
3005 * 2. Mapped to GTT
3006 * Nothing changes (assertions find that it is not in the GPU)
3007 * 3. Read/written by GPU
3008 * execbuffer calls set_domain (RENDER, RENDER)
3009 * flush_domains gets CPU
3010 * invalidate_domains gets GPU
3011 * clflush (obj)
3012 * MI_FLUSH and drm_agp_chipset_flush
3013 * 4. set_domain (CPU, CPU)
3014 * flush_domains gets GPU
3015 * invalidate_domains gets CPU
3016 * wait_rendering (obj) to make sure all drawing is complete.
3017 * This will include an MI_FLUSH to get the data from GPU
3018 * to memory
3019 * clflush (obj) to invalidate the CPU cache
3020 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3021 * 5. Read/written by CPU
3022 * cache lines are loaded and dirtied
3023 * 6. Read written by GPU
3024 * Same as last GPU access
3025 *
3026 * Case 3: The constant buffer
3027 *
3028 * 1. Allocated
3029 * 2. Written by CPU
3030 * 3. Read by GPU
3031 * 4. Updated (written) by CPU again
3032 * 5. Read by GPU
3033 *
3034 * 1. Allocated
3035 * (CPU, CPU)
3036 * 2. Written by CPU
3037 * (CPU, CPU)
3038 * 3. Read by GPU
3039 * (CPU+RENDER, 0)
3040 * flush_domains = CPU
3041 * invalidate_domains = RENDER
3042 * clflush (obj)
3043 * MI_FLUSH
3044 * drm_agp_chipset_flush
3045 * 4. Updated (written) by CPU again
3046 * (CPU, CPU)
3047 * flush_domains = 0 (no previous write domain)
3048 * invalidate_domains = 0 (no new read domains)
3049 * 5. Read by GPU
3050 * (CPU+RENDER, 0)
3051 * flush_domains = CPU
3052 * invalidate_domains = RENDER
3053 * clflush (obj)
3054 * MI_FLUSH
3055 * drm_agp_chipset_flush
3056 */
3057 static void
3058 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3059 {
3060 struct drm_device *dev = obj->dev;
3061 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3062 uint32_t invalidate_domains = 0;
3063 uint32_t flush_domains = 0;
3064 uint32_t old_read_domains;
3065
3066 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3067 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3068
3069 intel_mark_busy(dev, obj);
3070
3071 #if WATCH_BUF
3072 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3073 __func__, obj,
3074 obj->read_domains, obj->pending_read_domains,
3075 obj->write_domain, obj->pending_write_domain);
3076 #endif
3077 /*
3078 * If the object isn't moving to a new write domain,
3079 * let the object stay in multiple read domains
3080 */
3081 if (obj->pending_write_domain == 0)
3082 obj->pending_read_domains |= obj->read_domains;
3083 else
3084 obj_priv->dirty = 1;
3085
3086 /*
3087 * Flush the current write domain if
3088 * the new read domains don't match. Invalidate
3089 * any read domains which differ from the old
3090 * write domain
3091 */
3092 if (obj->write_domain &&
3093 obj->write_domain != obj->pending_read_domains) {
3094 flush_domains |= obj->write_domain;
3095 invalidate_domains |=
3096 obj->pending_read_domains & ~obj->write_domain;
3097 }
3098 /*
3099 * Invalidate any read caches which may have
3100 * stale data. That is, any new read domains.
3101 */
3102 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3103 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3104 #if WATCH_BUF
3105 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3106 __func__, flush_domains, invalidate_domains);
3107 #endif
3108 i915_gem_clflush_object(obj);
3109 }
3110
3111 old_read_domains = obj->read_domains;
3112
3113 /* The actual obj->write_domain will be updated with
3114 * pending_write_domain after we emit the accumulated flush for all
3115 * of our domain changes in execbuffers (which clears objects'
3116 * write_domains). So if we have a current write domain that we
3117 * aren't changing, set pending_write_domain to that.
3118 */
3119 if (flush_domains == 0 && obj->pending_write_domain == 0)
3120 obj->pending_write_domain = obj->write_domain;
3121 obj->read_domains = obj->pending_read_domains;
3122
3123 dev->invalidate_domains |= invalidate_domains;
3124 dev->flush_domains |= flush_domains;
3125 #if WATCH_BUF
3126 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3127 __func__,
3128 obj->read_domains, obj->write_domain,
3129 dev->invalidate_domains, dev->flush_domains);
3130 #endif
3131
3132 trace_i915_gem_object_change_domain(obj,
3133 old_read_domains,
3134 obj->write_domain);
3135 }
3136
3137 /**
3138 * Moves the object from a partially CPU read to a full one.
3139 *
3140 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3141 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3142 */
3143 static void
3144 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3145 {
3146 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3147
3148 if (!obj_priv->page_cpu_valid)
3149 return;
3150
3151 /* If we're partially in the CPU read domain, finish moving it in.
3152 */
3153 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3154 int i;
3155
3156 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3157 if (obj_priv->page_cpu_valid[i])
3158 continue;
3159 drm_clflush_pages(obj_priv->pages + i, 1);
3160 }
3161 }
3162
3163 /* Free the page_cpu_valid mappings which are now stale, whether
3164 * or not we've got I915_GEM_DOMAIN_CPU.
3165 */
3166 kfree(obj_priv->page_cpu_valid);
3167 obj_priv->page_cpu_valid = NULL;
3168 }
3169
3170 /**
3171 * Set the CPU read domain on a range of the object.
3172 *
3173 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3174 * not entirely valid. The page_cpu_valid member of the object flags which
3175 * pages have been flushed, and will be respected by
3176 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3177 * of the whole object.
3178 *
3179 * This function returns when the move is complete, including waiting on
3180 * flushes to occur.
3181 */
3182 static int
3183 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3184 uint64_t offset, uint64_t size)
3185 {
3186 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3187 uint32_t old_read_domains;
3188 int i, ret;
3189
3190 if (offset == 0 && size == obj->size)
3191 return i915_gem_object_set_to_cpu_domain(obj, 0);
3192
3193 i915_gem_object_flush_gpu_write_domain(obj);
3194 /* Wait on any GPU rendering and flushing to occur. */
3195 ret = i915_gem_object_wait_rendering(obj);
3196 if (ret != 0)
3197 return ret;
3198 i915_gem_object_flush_gtt_write_domain(obj);
3199
3200 /* If we're already fully in the CPU read domain, we're done. */
3201 if (obj_priv->page_cpu_valid == NULL &&
3202 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3203 return 0;
3204
3205 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3206 * newly adding I915_GEM_DOMAIN_CPU
3207 */
3208 if (obj_priv->page_cpu_valid == NULL) {
3209 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3210 GFP_KERNEL);
3211 if (obj_priv->page_cpu_valid == NULL)
3212 return -ENOMEM;
3213 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3214 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3215
3216 /* Flush the cache on any pages that are still invalid from the CPU's
3217 * perspective.
3218 */
3219 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3220 i++) {
3221 if (obj_priv->page_cpu_valid[i])
3222 continue;
3223
3224 drm_clflush_pages(obj_priv->pages + i, 1);
3225
3226 obj_priv->page_cpu_valid[i] = 1;
3227 }
3228
3229 /* It should now be out of any other write domains, and we can update
3230 * the domain values for our changes.
3231 */
3232 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3233
3234 old_read_domains = obj->read_domains;
3235 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3236
3237 trace_i915_gem_object_change_domain(obj,
3238 old_read_domains,
3239 obj->write_domain);
3240
3241 return 0;
3242 }
3243
3244 /**
3245 * Pin an object to the GTT and evaluate the relocations landing in it.
3246 */
3247 static int
3248 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3249 struct drm_file *file_priv,
3250 struct drm_i915_gem_exec_object2 *entry,
3251 struct drm_i915_gem_relocation_entry *relocs)
3252 {
3253 struct drm_device *dev = obj->dev;
3254 drm_i915_private_t *dev_priv = dev->dev_private;
3255 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3256 int i, ret;
3257 void __iomem *reloc_page;
3258 bool need_fence;
3259
3260 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3261 obj_priv->tiling_mode != I915_TILING_NONE;
3262
3263 /* Check fence reg constraints and rebind if necessary */
3264 if (need_fence && !i915_obj_fenceable(dev, obj))
3265 i915_gem_object_unbind(obj);
3266
3267 /* Choose the GTT offset for our buffer and put it there. */
3268 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3269 if (ret)
3270 return ret;
3271
3272 /*
3273 * Pre-965 chips need a fence register set up in order to
3274 * properly handle blits to/from tiled surfaces.
3275 */
3276 if (need_fence) {
3277 ret = i915_gem_object_get_fence_reg(obj);
3278 if (ret != 0) {
3279 if (ret != -EBUSY && ret != -ERESTARTSYS)
3280 DRM_ERROR("Failure to install fence: %d\n",
3281 ret);
3282 i915_gem_object_unpin(obj);
3283 return ret;
3284 }
3285 }
3286
3287 entry->offset = obj_priv->gtt_offset;
3288
3289 /* Apply the relocations, using the GTT aperture to avoid cache
3290 * flushing requirements.
3291 */
3292 for (i = 0; i < entry->relocation_count; i++) {
3293 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3294 struct drm_gem_object *target_obj;
3295 struct drm_i915_gem_object *target_obj_priv;
3296 uint32_t reloc_val, reloc_offset;
3297 uint32_t __iomem *reloc_entry;
3298
3299 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3300 reloc->target_handle);
3301 if (target_obj == NULL) {
3302 i915_gem_object_unpin(obj);
3303 return -EBADF;
3304 }
3305 target_obj_priv = target_obj->driver_private;
3306
3307 #if WATCH_RELOC
3308 DRM_INFO("%s: obj %p offset %08x target %d "
3309 "read %08x write %08x gtt %08x "
3310 "presumed %08x delta %08x\n",
3311 __func__,
3312 obj,
3313 (int) reloc->offset,
3314 (int) reloc->target_handle,
3315 (int) reloc->read_domains,
3316 (int) reloc->write_domain,
3317 (int) target_obj_priv->gtt_offset,
3318 (int) reloc->presumed_offset,
3319 reloc->delta);
3320 #endif
3321
3322 /* The target buffer should have appeared before us in the
3323 * exec_object list, so it should have a GTT space bound by now.
3324 */
3325 if (target_obj_priv->gtt_space == NULL) {
3326 DRM_ERROR("No GTT space found for object %d\n",
3327 reloc->target_handle);
3328 drm_gem_object_unreference(target_obj);
3329 i915_gem_object_unpin(obj);
3330 return -EINVAL;
3331 }
3332
3333 /* Validate that the target is in a valid r/w GPU domain */
3334 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3335 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3336 DRM_ERROR("reloc with read/write CPU domains: "
3337 "obj %p target %d offset %d "
3338 "read %08x write %08x",
3339 obj, reloc->target_handle,
3340 (int) reloc->offset,
3341 reloc->read_domains,
3342 reloc->write_domain);
3343 drm_gem_object_unreference(target_obj);
3344 i915_gem_object_unpin(obj);
3345 return -EINVAL;
3346 }
3347 if (reloc->write_domain && target_obj->pending_write_domain &&
3348 reloc->write_domain != target_obj->pending_write_domain) {
3349 DRM_ERROR("Write domain conflict: "
3350 "obj %p target %d offset %d "
3351 "new %08x old %08x\n",
3352 obj, reloc->target_handle,
3353 (int) reloc->offset,
3354 reloc->write_domain,
3355 target_obj->pending_write_domain);
3356 drm_gem_object_unreference(target_obj);
3357 i915_gem_object_unpin(obj);
3358 return -EINVAL;
3359 }
3360
3361 target_obj->pending_read_domains |= reloc->read_domains;
3362 target_obj->pending_write_domain |= reloc->write_domain;
3363
3364 /* If the relocation already has the right value in it, no
3365 * more work needs to be done.
3366 */
3367 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3368 drm_gem_object_unreference(target_obj);
3369 continue;
3370 }
3371
3372 /* Check that the relocation address is valid... */
3373 if (reloc->offset > obj->size - 4) {
3374 DRM_ERROR("Relocation beyond object bounds: "
3375 "obj %p target %d offset %d size %d.\n",
3376 obj, reloc->target_handle,
3377 (int) reloc->offset, (int) obj->size);
3378 drm_gem_object_unreference(target_obj);
3379 i915_gem_object_unpin(obj);
3380 return -EINVAL;
3381 }
3382 if (reloc->offset & 3) {
3383 DRM_ERROR("Relocation not 4-byte aligned: "
3384 "obj %p target %d offset %d.\n",
3385 obj, reloc->target_handle,
3386 (int) reloc->offset);
3387 drm_gem_object_unreference(target_obj);
3388 i915_gem_object_unpin(obj);
3389 return -EINVAL;
3390 }
3391
3392 /* and points to somewhere within the target object. */
3393 if (reloc->delta >= target_obj->size) {
3394 DRM_ERROR("Relocation beyond target object bounds: "
3395 "obj %p target %d delta %d size %d.\n",
3396 obj, reloc->target_handle,
3397 (int) reloc->delta, (int) target_obj->size);
3398 drm_gem_object_unreference(target_obj);
3399 i915_gem_object_unpin(obj);
3400 return -EINVAL;
3401 }
3402
3403 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3404 if (ret != 0) {
3405 drm_gem_object_unreference(target_obj);
3406 i915_gem_object_unpin(obj);
3407 return -EINVAL;
3408 }
3409
3410 /* Map the page containing the relocation we're going to
3411 * perform.
3412 */
3413 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3414 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3415 (reloc_offset &
3416 ~(PAGE_SIZE - 1)));
3417 reloc_entry = (uint32_t __iomem *)(reloc_page +
3418 (reloc_offset & (PAGE_SIZE - 1)));
3419 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3420
3421 #if WATCH_BUF
3422 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3423 obj, (unsigned int) reloc->offset,
3424 readl(reloc_entry), reloc_val);
3425 #endif
3426 writel(reloc_val, reloc_entry);
3427 io_mapping_unmap_atomic(reloc_page);
3428
3429 /* The updated presumed offset for this entry will be
3430 * copied back out to the user.
3431 */
3432 reloc->presumed_offset = target_obj_priv->gtt_offset;
3433
3434 drm_gem_object_unreference(target_obj);
3435 }
3436
3437 #if WATCH_BUF
3438 if (0)
3439 i915_gem_dump_object(obj, 128, __func__, ~0);
3440 #endif
3441 return 0;
3442 }
3443
3444 /** Dispatch a batchbuffer to the ring
3445 */
3446 static int
3447 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3448 struct drm_i915_gem_execbuffer2 *exec,
3449 struct drm_clip_rect *cliprects,
3450 uint64_t exec_offset)
3451 {
3452 drm_i915_private_t *dev_priv = dev->dev_private;
3453 int nbox = exec->num_cliprects;
3454 int i = 0, count;
3455 uint32_t exec_start, exec_len;
3456 RING_LOCALS;
3457
3458 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3459 exec_len = (uint32_t) exec->batch_len;
3460
3461 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3462
3463 count = nbox ? nbox : 1;
3464
3465 for (i = 0; i < count; i++) {
3466 if (i < nbox) {
3467 int ret = i915_emit_box(dev, cliprects, i,
3468 exec->DR1, exec->DR4);
3469 if (ret)
3470 return ret;
3471 }
3472
3473 if (IS_I830(dev) || IS_845G(dev)) {
3474 BEGIN_LP_RING(4);
3475 OUT_RING(MI_BATCH_BUFFER);
3476 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3477 OUT_RING(exec_start + exec_len - 4);
3478 OUT_RING(0);
3479 ADVANCE_LP_RING();
3480 } else {
3481 BEGIN_LP_RING(2);
3482 if (IS_I965G(dev)) {
3483 OUT_RING(MI_BATCH_BUFFER_START |
3484 (2 << 6) |
3485 MI_BATCH_NON_SECURE_I965);
3486 OUT_RING(exec_start);
3487 } else {
3488 OUT_RING(MI_BATCH_BUFFER_START |
3489 (2 << 6));
3490 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3491 }
3492 ADVANCE_LP_RING();
3493 }
3494 }
3495
3496 /* XXX breadcrumb */
3497 return 0;
3498 }
3499
3500 /* Throttle our rendering by waiting until the ring has completed our requests
3501 * emitted over 20 msec ago.
3502 *
3503 * Note that if we were to use the current jiffies each time around the loop,
3504 * we wouldn't escape the function with any frames outstanding if the time to
3505 * render a frame was over 20ms.
3506 *
3507 * This should get us reasonable parallelism between CPU and GPU but also
3508 * relatively low latency when blocking on a particular request to finish.
3509 */
3510 static int
3511 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3512 {
3513 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3514 int ret = 0;
3515 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3516
3517 mutex_lock(&dev->struct_mutex);
3518 while (!list_empty(&i915_file_priv->mm.request_list)) {
3519 struct drm_i915_gem_request *request;
3520
3521 request = list_first_entry(&i915_file_priv->mm.request_list,
3522 struct drm_i915_gem_request,
3523 client_list);
3524
3525 if (time_after_eq(request->emitted_jiffies, recent_enough))
3526 break;
3527
3528 ret = i915_wait_request(dev, request->seqno);
3529 if (ret != 0)
3530 break;
3531 }
3532 mutex_unlock(&dev->struct_mutex);
3533
3534 return ret;
3535 }
3536
3537 static int
3538 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3539 uint32_t buffer_count,
3540 struct drm_i915_gem_relocation_entry **relocs)
3541 {
3542 uint32_t reloc_count = 0, reloc_index = 0, i;
3543 int ret;
3544
3545 *relocs = NULL;
3546 for (i = 0; i < buffer_count; i++) {
3547 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3548 return -EINVAL;
3549 reloc_count += exec_list[i].relocation_count;
3550 }
3551
3552 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3553 if (*relocs == NULL) {
3554 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3555 return -ENOMEM;
3556 }
3557
3558 for (i = 0; i < buffer_count; i++) {
3559 struct drm_i915_gem_relocation_entry __user *user_relocs;
3560
3561 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3562
3563 ret = copy_from_user(&(*relocs)[reloc_index],
3564 user_relocs,
3565 exec_list[i].relocation_count *
3566 sizeof(**relocs));
3567 if (ret != 0) {
3568 drm_free_large(*relocs);
3569 *relocs = NULL;
3570 return -EFAULT;
3571 }
3572
3573 reloc_index += exec_list[i].relocation_count;
3574 }
3575
3576 return 0;
3577 }
3578
3579 static int
3580 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3581 uint32_t buffer_count,
3582 struct drm_i915_gem_relocation_entry *relocs)
3583 {
3584 uint32_t reloc_count = 0, i;
3585 int ret = 0;
3586
3587 for (i = 0; i < buffer_count; i++) {
3588 struct drm_i915_gem_relocation_entry __user *user_relocs;
3589 int unwritten;
3590
3591 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3592
3593 unwritten = copy_to_user(user_relocs,
3594 &relocs[reloc_count],
3595 exec_list[i].relocation_count *
3596 sizeof(*relocs));
3597
3598 if (unwritten) {
3599 ret = -EFAULT;
3600 goto err;
3601 }
3602
3603 reloc_count += exec_list[i].relocation_count;
3604 }
3605
3606 err:
3607 drm_free_large(relocs);
3608
3609 return ret;
3610 }
3611
3612 static int
3613 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3614 uint64_t exec_offset)
3615 {
3616 uint32_t exec_start, exec_len;
3617
3618 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3619 exec_len = (uint32_t) exec->batch_len;
3620
3621 if ((exec_start | exec_len) & 0x7)
3622 return -EINVAL;
3623
3624 if (!exec_start)
3625 return -EINVAL;
3626
3627 return 0;
3628 }
3629
3630 static int
3631 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3632 struct drm_gem_object **object_list,
3633 int count)
3634 {
3635 drm_i915_private_t *dev_priv = dev->dev_private;
3636 struct drm_i915_gem_object *obj_priv;
3637 DEFINE_WAIT(wait);
3638 int i, ret = 0;
3639
3640 for (;;) {
3641 prepare_to_wait(&dev_priv->pending_flip_queue,
3642 &wait, TASK_INTERRUPTIBLE);
3643 for (i = 0; i < count; i++) {
3644 obj_priv = object_list[i]->driver_private;
3645 if (atomic_read(&obj_priv->pending_flip) > 0)
3646 break;
3647 }
3648 if (i == count)
3649 break;
3650
3651 if (!signal_pending(current)) {
3652 mutex_unlock(&dev->struct_mutex);
3653 schedule();
3654 mutex_lock(&dev->struct_mutex);
3655 continue;
3656 }
3657 ret = -ERESTARTSYS;
3658 break;
3659 }
3660 finish_wait(&dev_priv->pending_flip_queue, &wait);
3661
3662 return ret;
3663 }
3664
3665 int
3666 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3667 struct drm_file *file_priv,
3668 struct drm_i915_gem_execbuffer2 *args,
3669 struct drm_i915_gem_exec_object2 *exec_list)
3670 {
3671 drm_i915_private_t *dev_priv = dev->dev_private;
3672 struct drm_gem_object **object_list = NULL;
3673 struct drm_gem_object *batch_obj;
3674 struct drm_i915_gem_object *obj_priv;
3675 struct drm_clip_rect *cliprects = NULL;
3676 struct drm_i915_gem_relocation_entry *relocs;
3677 int ret = 0, ret2, i, pinned = 0;
3678 uint64_t exec_offset;
3679 uint32_t seqno, flush_domains, reloc_index;
3680 int pin_tries, flips;
3681
3682 #if WATCH_EXEC
3683 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3684 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3685 #endif
3686
3687 if (args->buffer_count < 1) {
3688 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3689 return -EINVAL;
3690 }
3691 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3692 if (object_list == NULL) {
3693 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3694 args->buffer_count);
3695 ret = -ENOMEM;
3696 goto pre_mutex_err;
3697 }
3698
3699 if (args->num_cliprects != 0) {
3700 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3701 GFP_KERNEL);
3702 if (cliprects == NULL)
3703 goto pre_mutex_err;
3704
3705 ret = copy_from_user(cliprects,
3706 (struct drm_clip_rect __user *)
3707 (uintptr_t) args->cliprects_ptr,
3708 sizeof(*cliprects) * args->num_cliprects);
3709 if (ret != 0) {
3710 DRM_ERROR("copy %d cliprects failed: %d\n",
3711 args->num_cliprects, ret);
3712 goto pre_mutex_err;
3713 }
3714 }
3715
3716 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3717 &relocs);
3718 if (ret != 0)
3719 goto pre_mutex_err;
3720
3721 mutex_lock(&dev->struct_mutex);
3722
3723 i915_verify_inactive(dev, __FILE__, __LINE__);
3724
3725 if (atomic_read(&dev_priv->mm.wedged)) {
3726 mutex_unlock(&dev->struct_mutex);
3727 ret = -EIO;
3728 goto pre_mutex_err;
3729 }
3730
3731 if (dev_priv->mm.suspended) {
3732 mutex_unlock(&dev->struct_mutex);
3733 ret = -EBUSY;
3734 goto pre_mutex_err;
3735 }
3736
3737 /* Look up object handles */
3738 flips = 0;
3739 for (i = 0; i < args->buffer_count; i++) {
3740 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3741 exec_list[i].handle);
3742 if (object_list[i] == NULL) {
3743 DRM_ERROR("Invalid object handle %d at index %d\n",
3744 exec_list[i].handle, i);
3745 ret = -EBADF;
3746 goto err;
3747 }
3748
3749 obj_priv = object_list[i]->driver_private;
3750 if (obj_priv->in_execbuffer) {
3751 DRM_ERROR("Object %p appears more than once in object list\n",
3752 object_list[i]);
3753 ret = -EBADF;
3754 goto err;
3755 }
3756 obj_priv->in_execbuffer = true;
3757 flips += atomic_read(&obj_priv->pending_flip);
3758 }
3759
3760 if (flips > 0) {
3761 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3762 args->buffer_count);
3763 if (ret)
3764 goto err;
3765 }
3766
3767 /* Pin and relocate */
3768 for (pin_tries = 0; ; pin_tries++) {
3769 ret = 0;
3770 reloc_index = 0;
3771
3772 for (i = 0; i < args->buffer_count; i++) {
3773 object_list[i]->pending_read_domains = 0;
3774 object_list[i]->pending_write_domain = 0;
3775 ret = i915_gem_object_pin_and_relocate(object_list[i],
3776 file_priv,
3777 &exec_list[i],
3778 &relocs[reloc_index]);
3779 if (ret)
3780 break;
3781 pinned = i + 1;
3782 reloc_index += exec_list[i].relocation_count;
3783 }
3784 /* success */
3785 if (ret == 0)
3786 break;
3787
3788 /* error other than GTT full, or we've already tried again */
3789 if (ret != -ENOSPC || pin_tries >= 1) {
3790 if (ret != -ERESTARTSYS) {
3791 unsigned long long total_size = 0;
3792 for (i = 0; i < args->buffer_count; i++)
3793 total_size += object_list[i]->size;
3794 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3795 pinned+1, args->buffer_count,
3796 total_size, ret);
3797 DRM_ERROR("%d objects [%d pinned], "
3798 "%d object bytes [%d pinned], "
3799 "%d/%d gtt bytes\n",
3800 atomic_read(&dev->object_count),
3801 atomic_read(&dev->pin_count),
3802 atomic_read(&dev->object_memory),
3803 atomic_read(&dev->pin_memory),
3804 atomic_read(&dev->gtt_memory),
3805 dev->gtt_total);
3806 }
3807 goto err;
3808 }
3809
3810 /* unpin all of our buffers */
3811 for (i = 0; i < pinned; i++)
3812 i915_gem_object_unpin(object_list[i]);
3813 pinned = 0;
3814
3815 /* evict everyone we can from the aperture */
3816 ret = i915_gem_evict_everything(dev);
3817 if (ret && ret != -ENOSPC)
3818 goto err;
3819 }
3820
3821 /* Set the pending read domains for the batch buffer to COMMAND */
3822 batch_obj = object_list[args->buffer_count-1];
3823 if (batch_obj->pending_write_domain) {
3824 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3825 ret = -EINVAL;
3826 goto err;
3827 }
3828 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3829
3830 /* Sanity check the batch buffer, prior to moving objects */
3831 exec_offset = exec_list[args->buffer_count - 1].offset;
3832 ret = i915_gem_check_execbuffer (args, exec_offset);
3833 if (ret != 0) {
3834 DRM_ERROR("execbuf with invalid offset/length\n");
3835 goto err;
3836 }
3837
3838 i915_verify_inactive(dev, __FILE__, __LINE__);
3839
3840 /* Zero the global flush/invalidate flags. These
3841 * will be modified as new domains are computed
3842 * for each object
3843 */
3844 dev->invalidate_domains = 0;
3845 dev->flush_domains = 0;
3846
3847 for (i = 0; i < args->buffer_count; i++) {
3848 struct drm_gem_object *obj = object_list[i];
3849
3850 /* Compute new gpu domains and update invalidate/flush */
3851 i915_gem_object_set_to_gpu_domain(obj);
3852 }
3853
3854 i915_verify_inactive(dev, __FILE__, __LINE__);
3855
3856 if (dev->invalidate_domains | dev->flush_domains) {
3857 #if WATCH_EXEC
3858 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3859 __func__,
3860 dev->invalidate_domains,
3861 dev->flush_domains);
3862 #endif
3863 i915_gem_flush(dev,
3864 dev->invalidate_domains,
3865 dev->flush_domains);
3866 if (dev->flush_domains)
3867 (void)i915_add_request(dev, file_priv,
3868 dev->flush_domains);
3869 }
3870
3871 for (i = 0; i < args->buffer_count; i++) {
3872 struct drm_gem_object *obj = object_list[i];
3873 uint32_t old_write_domain = obj->write_domain;
3874
3875 obj->write_domain = obj->pending_write_domain;
3876 trace_i915_gem_object_change_domain(obj,
3877 obj->read_domains,
3878 old_write_domain);
3879 }
3880
3881 i915_verify_inactive(dev, __FILE__, __LINE__);
3882
3883 #if WATCH_COHERENCY
3884 for (i = 0; i < args->buffer_count; i++) {
3885 i915_gem_object_check_coherency(object_list[i],
3886 exec_list[i].handle);
3887 }
3888 #endif
3889
3890 #if WATCH_EXEC
3891 i915_gem_dump_object(batch_obj,
3892 args->batch_len,
3893 __func__,
3894 ~0);
3895 #endif
3896
3897 /* Exec the batchbuffer */
3898 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3899 if (ret) {
3900 DRM_ERROR("dispatch failed %d\n", ret);
3901 goto err;
3902 }
3903
3904 /*
3905 * Ensure that the commands in the batch buffer are
3906 * finished before the interrupt fires
3907 */
3908 flush_domains = i915_retire_commands(dev);
3909
3910 i915_verify_inactive(dev, __FILE__, __LINE__);
3911
3912 /*
3913 * Get a seqno representing the execution of the current buffer,
3914 * which we can wait on. We would like to mitigate these interrupts,
3915 * likely by only creating seqnos occasionally (so that we have
3916 * *some* interrupts representing completion of buffers that we can
3917 * wait on when trying to clear up gtt space).
3918 */
3919 seqno = i915_add_request(dev, file_priv, flush_domains);
3920 BUG_ON(seqno == 0);
3921 for (i = 0; i < args->buffer_count; i++) {
3922 struct drm_gem_object *obj = object_list[i];
3923
3924 i915_gem_object_move_to_active(obj, seqno);
3925 #if WATCH_LRU
3926 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3927 #endif
3928 }
3929 #if WATCH_LRU
3930 i915_dump_lru(dev, __func__);
3931 #endif
3932
3933 i915_verify_inactive(dev, __FILE__, __LINE__);
3934
3935 err:
3936 for (i = 0; i < pinned; i++)
3937 i915_gem_object_unpin(object_list[i]);
3938
3939 for (i = 0; i < args->buffer_count; i++) {
3940 if (object_list[i]) {
3941 obj_priv = object_list[i]->driver_private;
3942 obj_priv->in_execbuffer = false;
3943 }
3944 drm_gem_object_unreference(object_list[i]);
3945 }
3946
3947 mutex_unlock(&dev->struct_mutex);
3948
3949 /* Copy the updated relocations out regardless of current error
3950 * state. Failure to update the relocs would mean that the next
3951 * time userland calls execbuf, it would do so with presumed offset
3952 * state that didn't match the actual object state.
3953 */
3954 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3955 relocs);
3956 if (ret2 != 0) {
3957 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3958
3959 if (ret == 0)
3960 ret = ret2;
3961 }
3962
3963 pre_mutex_err:
3964 drm_free_large(object_list);
3965 kfree(cliprects);
3966
3967 return ret;
3968 }
3969
3970 /*
3971 * Legacy execbuffer just creates an exec2 list from the original exec object
3972 * list array and passes it to the real function.
3973 */
3974 int
3975 i915_gem_execbuffer(struct drm_device *dev, void *data,
3976 struct drm_file *file_priv)
3977 {
3978 struct drm_i915_gem_execbuffer *args = data;
3979 struct drm_i915_gem_execbuffer2 exec2;
3980 struct drm_i915_gem_exec_object *exec_list = NULL;
3981 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3982 int ret, i;
3983
3984 #if WATCH_EXEC
3985 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3986 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3987 #endif
3988
3989 if (args->buffer_count < 1) {
3990 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3991 return -EINVAL;
3992 }
3993
3994 /* Copy in the exec list from userland */
3995 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3996 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3997 if (exec_list == NULL || exec2_list == NULL) {
3998 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3999 args->buffer_count);
4000 drm_free_large(exec_list);
4001 drm_free_large(exec2_list);
4002 return -ENOMEM;
4003 }
4004 ret = copy_from_user(exec_list,
4005 (struct drm_i915_relocation_entry __user *)
4006 (uintptr_t) args->buffers_ptr,
4007 sizeof(*exec_list) * args->buffer_count);
4008 if (ret != 0) {
4009 DRM_ERROR("copy %d exec entries failed %d\n",
4010 args->buffer_count, ret);
4011 drm_free_large(exec_list);
4012 drm_free_large(exec2_list);
4013 return -EFAULT;
4014 }
4015
4016 for (i = 0; i < args->buffer_count; i++) {
4017 exec2_list[i].handle = exec_list[i].handle;
4018 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4019 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4020 exec2_list[i].alignment = exec_list[i].alignment;
4021 exec2_list[i].offset = exec_list[i].offset;
4022 if (!IS_I965G(dev))
4023 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4024 else
4025 exec2_list[i].flags = 0;
4026 }
4027
4028 exec2.buffers_ptr = args->buffers_ptr;
4029 exec2.buffer_count = args->buffer_count;
4030 exec2.batch_start_offset = args->batch_start_offset;
4031 exec2.batch_len = args->batch_len;
4032 exec2.DR1 = args->DR1;
4033 exec2.DR4 = args->DR4;
4034 exec2.num_cliprects = args->num_cliprects;
4035 exec2.cliprects_ptr = args->cliprects_ptr;
4036 exec2.flags = 0;
4037
4038 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4039 if (!ret) {
4040 /* Copy the new buffer offsets back to the user's exec list. */
4041 for (i = 0; i < args->buffer_count; i++)
4042 exec_list[i].offset = exec2_list[i].offset;
4043 /* ... and back out to userspace */
4044 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4045 (uintptr_t) args->buffers_ptr,
4046 exec_list,
4047 sizeof(*exec_list) * args->buffer_count);
4048 if (ret) {
4049 ret = -EFAULT;
4050 DRM_ERROR("failed to copy %d exec entries "
4051 "back to user (%d)\n",
4052 args->buffer_count, ret);
4053 }
4054 }
4055
4056 drm_free_large(exec_list);
4057 drm_free_large(exec2_list);
4058 return ret;
4059 }
4060
4061 int
4062 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4063 struct drm_file *file_priv)
4064 {
4065 struct drm_i915_gem_execbuffer2 *args = data;
4066 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4067 int ret;
4068
4069 #if WATCH_EXEC
4070 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4071 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4072 #endif
4073
4074 if (args->buffer_count < 1) {
4075 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4076 return -EINVAL;
4077 }
4078
4079 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4080 if (exec2_list == NULL) {
4081 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4082 args->buffer_count);
4083 return -ENOMEM;
4084 }
4085 ret = copy_from_user(exec2_list,
4086 (struct drm_i915_relocation_entry __user *)
4087 (uintptr_t) args->buffers_ptr,
4088 sizeof(*exec2_list) * args->buffer_count);
4089 if (ret != 0) {
4090 DRM_ERROR("copy %d exec entries failed %d\n",
4091 args->buffer_count, ret);
4092 drm_free_large(exec2_list);
4093 return -EFAULT;
4094 }
4095
4096 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4097 if (!ret) {
4098 /* Copy the new buffer offsets back to the user's exec list. */
4099 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4100 (uintptr_t) args->buffers_ptr,
4101 exec2_list,
4102 sizeof(*exec2_list) * args->buffer_count);
4103 if (ret) {
4104 ret = -EFAULT;
4105 DRM_ERROR("failed to copy %d exec entries "
4106 "back to user (%d)\n",
4107 args->buffer_count, ret);
4108 }
4109 }
4110
4111 drm_free_large(exec2_list);
4112 return ret;
4113 }
4114
4115 int
4116 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4117 {
4118 struct drm_device *dev = obj->dev;
4119 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4120 int ret;
4121
4122 i915_verify_inactive(dev, __FILE__, __LINE__);
4123 if (obj_priv->gtt_space == NULL) {
4124 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4125 if (ret)
4126 return ret;
4127 }
4128
4129 obj_priv->pin_count++;
4130
4131 /* If the object is not active and not pending a flush,
4132 * remove it from the inactive list
4133 */
4134 if (obj_priv->pin_count == 1) {
4135 atomic_inc(&dev->pin_count);
4136 atomic_add(obj->size, &dev->pin_memory);
4137 if (!obj_priv->active &&
4138 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4139 !list_empty(&obj_priv->list))
4140 list_del_init(&obj_priv->list);
4141 }
4142 i915_verify_inactive(dev, __FILE__, __LINE__);
4143
4144 return 0;
4145 }
4146
4147 void
4148 i915_gem_object_unpin(struct drm_gem_object *obj)
4149 {
4150 struct drm_device *dev = obj->dev;
4151 drm_i915_private_t *dev_priv = dev->dev_private;
4152 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4153
4154 i915_verify_inactive(dev, __FILE__, __LINE__);
4155 obj_priv->pin_count--;
4156 BUG_ON(obj_priv->pin_count < 0);
4157 BUG_ON(obj_priv->gtt_space == NULL);
4158
4159 /* If the object is no longer pinned, and is
4160 * neither active nor being flushed, then stick it on
4161 * the inactive list
4162 */
4163 if (obj_priv->pin_count == 0) {
4164 if (!obj_priv->active &&
4165 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4166 list_move_tail(&obj_priv->list,
4167 &dev_priv->mm.inactive_list);
4168 atomic_dec(&dev->pin_count);
4169 atomic_sub(obj->size, &dev->pin_memory);
4170 }
4171 i915_verify_inactive(dev, __FILE__, __LINE__);
4172 }
4173
4174 int
4175 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4176 struct drm_file *file_priv)
4177 {
4178 struct drm_i915_gem_pin *args = data;
4179 struct drm_gem_object *obj;
4180 struct drm_i915_gem_object *obj_priv;
4181 int ret;
4182
4183 mutex_lock(&dev->struct_mutex);
4184
4185 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4186 if (obj == NULL) {
4187 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4188 args->handle);
4189 mutex_unlock(&dev->struct_mutex);
4190 return -EBADF;
4191 }
4192 obj_priv = obj->driver_private;
4193
4194 if (obj_priv->madv != I915_MADV_WILLNEED) {
4195 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4196 drm_gem_object_unreference(obj);
4197 mutex_unlock(&dev->struct_mutex);
4198 return -EINVAL;
4199 }
4200
4201 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4202 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4203 args->handle);
4204 drm_gem_object_unreference(obj);
4205 mutex_unlock(&dev->struct_mutex);
4206 return -EINVAL;
4207 }
4208
4209 obj_priv->user_pin_count++;
4210 obj_priv->pin_filp = file_priv;
4211 if (obj_priv->user_pin_count == 1) {
4212 ret = i915_gem_object_pin(obj, args->alignment);
4213 if (ret != 0) {
4214 drm_gem_object_unreference(obj);
4215 mutex_unlock(&dev->struct_mutex);
4216 return ret;
4217 }
4218 }
4219
4220 /* XXX - flush the CPU caches for pinned objects
4221 * as the X server doesn't manage domains yet
4222 */
4223 i915_gem_object_flush_cpu_write_domain(obj);
4224 args->offset = obj_priv->gtt_offset;
4225 drm_gem_object_unreference(obj);
4226 mutex_unlock(&dev->struct_mutex);
4227
4228 return 0;
4229 }
4230
4231 int
4232 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4233 struct drm_file *file_priv)
4234 {
4235 struct drm_i915_gem_pin *args = data;
4236 struct drm_gem_object *obj;
4237 struct drm_i915_gem_object *obj_priv;
4238
4239 mutex_lock(&dev->struct_mutex);
4240
4241 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4242 if (obj == NULL) {
4243 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4244 args->handle);
4245 mutex_unlock(&dev->struct_mutex);
4246 return -EBADF;
4247 }
4248
4249 obj_priv = obj->driver_private;
4250 if (obj_priv->pin_filp != file_priv) {
4251 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4252 args->handle);
4253 drm_gem_object_unreference(obj);
4254 mutex_unlock(&dev->struct_mutex);
4255 return -EINVAL;
4256 }
4257 obj_priv->user_pin_count--;
4258 if (obj_priv->user_pin_count == 0) {
4259 obj_priv->pin_filp = NULL;
4260 i915_gem_object_unpin(obj);
4261 }
4262
4263 drm_gem_object_unreference(obj);
4264 mutex_unlock(&dev->struct_mutex);
4265 return 0;
4266 }
4267
4268 int
4269 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4270 struct drm_file *file_priv)
4271 {
4272 struct drm_i915_gem_busy *args = data;
4273 struct drm_gem_object *obj;
4274 struct drm_i915_gem_object *obj_priv;
4275
4276 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4277 if (obj == NULL) {
4278 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4279 args->handle);
4280 return -EBADF;
4281 }
4282
4283 mutex_lock(&dev->struct_mutex);
4284 /* Update the active list for the hardware's current position.
4285 * Otherwise this only updates on a delayed timer or when irqs are
4286 * actually unmasked, and our working set ends up being larger than
4287 * required.
4288 */
4289 i915_gem_retire_requests(dev);
4290
4291 obj_priv = obj->driver_private;
4292 /* Don't count being on the flushing list against the object being
4293 * done. Otherwise, a buffer left on the flushing list but not getting
4294 * flushed (because nobody's flushing that domain) won't ever return
4295 * unbusy and get reused by libdrm's bo cache. The other expected
4296 * consumer of this interface, OpenGL's occlusion queries, also specs
4297 * that the objects get unbusy "eventually" without any interference.
4298 */
4299 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4300
4301 drm_gem_object_unreference(obj);
4302 mutex_unlock(&dev->struct_mutex);
4303 return 0;
4304 }
4305
4306 int
4307 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4308 struct drm_file *file_priv)
4309 {
4310 return i915_gem_ring_throttle(dev, file_priv);
4311 }
4312
4313 int
4314 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4315 struct drm_file *file_priv)
4316 {
4317 struct drm_i915_gem_madvise *args = data;
4318 struct drm_gem_object *obj;
4319 struct drm_i915_gem_object *obj_priv;
4320
4321 switch (args->madv) {
4322 case I915_MADV_DONTNEED:
4323 case I915_MADV_WILLNEED:
4324 break;
4325 default:
4326 return -EINVAL;
4327 }
4328
4329 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4330 if (obj == NULL) {
4331 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4332 args->handle);
4333 return -EBADF;
4334 }
4335
4336 mutex_lock(&dev->struct_mutex);
4337 obj_priv = obj->driver_private;
4338
4339 if (obj_priv->pin_count) {
4340 drm_gem_object_unreference(obj);
4341 mutex_unlock(&dev->struct_mutex);
4342
4343 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4344 return -EINVAL;
4345 }
4346
4347 if (obj_priv->madv != __I915_MADV_PURGED)
4348 obj_priv->madv = args->madv;
4349
4350 /* if the object is no longer bound, discard its backing storage */
4351 if (i915_gem_object_is_purgeable(obj_priv) &&
4352 obj_priv->gtt_space == NULL)
4353 i915_gem_object_truncate(obj);
4354
4355 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4356
4357 drm_gem_object_unreference(obj);
4358 mutex_unlock(&dev->struct_mutex);
4359
4360 return 0;
4361 }
4362
4363 int i915_gem_init_object(struct drm_gem_object *obj)
4364 {
4365 struct drm_i915_gem_object *obj_priv;
4366
4367 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4368 if (obj_priv == NULL)
4369 return -ENOMEM;
4370
4371 /*
4372 * We've just allocated pages from the kernel,
4373 * so they've just been written by the CPU with
4374 * zeros. They'll need to be clflushed before we
4375 * use them with the GPU.
4376 */
4377 obj->write_domain = I915_GEM_DOMAIN_CPU;
4378 obj->read_domains = I915_GEM_DOMAIN_CPU;
4379
4380 obj_priv->agp_type = AGP_USER_MEMORY;
4381
4382 obj->driver_private = obj_priv;
4383 obj_priv->obj = obj;
4384 obj_priv->fence_reg = I915_FENCE_REG_NONE;
4385 INIT_LIST_HEAD(&obj_priv->list);
4386 INIT_LIST_HEAD(&obj_priv->fence_list);
4387 obj_priv->madv = I915_MADV_WILLNEED;
4388
4389 trace_i915_gem_object_create(obj);
4390
4391 return 0;
4392 }
4393
4394 void i915_gem_free_object(struct drm_gem_object *obj)
4395 {
4396 struct drm_device *dev = obj->dev;
4397 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4398
4399 trace_i915_gem_object_destroy(obj);
4400
4401 while (obj_priv->pin_count > 0)
4402 i915_gem_object_unpin(obj);
4403
4404 if (obj_priv->phys_obj)
4405 i915_gem_detach_phys_object(dev, obj);
4406
4407 i915_gem_object_unbind(obj);
4408
4409 if (obj_priv->mmap_offset)
4410 i915_gem_free_mmap_offset(obj);
4411
4412 kfree(obj_priv->page_cpu_valid);
4413 kfree(obj_priv->bit_17);
4414 kfree(obj->driver_private);
4415 }
4416
4417 /** Unbinds all inactive objects. */
4418 static int
4419 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4420 {
4421 drm_i915_private_t *dev_priv = dev->dev_private;
4422
4423 while (!list_empty(&dev_priv->mm.inactive_list)) {
4424 struct drm_gem_object *obj;
4425 int ret;
4426
4427 obj = list_first_entry(&dev_priv->mm.inactive_list,
4428 struct drm_i915_gem_object,
4429 list)->obj;
4430
4431 ret = i915_gem_object_unbind(obj);
4432 if (ret != 0) {
4433 DRM_ERROR("Error unbinding object: %d\n", ret);
4434 return ret;
4435 }
4436 }
4437
4438 return 0;
4439 }
4440
4441 int
4442 i915_gem_idle(struct drm_device *dev)
4443 {
4444 drm_i915_private_t *dev_priv = dev->dev_private;
4445 uint32_t seqno, cur_seqno, last_seqno;
4446 int stuck, ret;
4447
4448 mutex_lock(&dev->struct_mutex);
4449
4450 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4451 mutex_unlock(&dev->struct_mutex);
4452 return 0;
4453 }
4454
4455 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4456 * We need to replace this with a semaphore, or something.
4457 */
4458 dev_priv->mm.suspended = 1;
4459 del_timer(&dev_priv->hangcheck_timer);
4460
4461 /* Cancel the retire work handler, wait for it to finish if running
4462 */
4463 mutex_unlock(&dev->struct_mutex);
4464 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4465 mutex_lock(&dev->struct_mutex);
4466
4467 i915_kernel_lost_context(dev);
4468
4469 /* Flush the GPU along with all non-CPU write domains
4470 */
4471 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4472 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4473
4474 if (seqno == 0) {
4475 mutex_unlock(&dev->struct_mutex);
4476 return -ENOMEM;
4477 }
4478
4479 dev_priv->mm.waiting_gem_seqno = seqno;
4480 last_seqno = 0;
4481 stuck = 0;
4482 for (;;) {
4483 cur_seqno = i915_get_gem_seqno(dev);
4484 if (i915_seqno_passed(cur_seqno, seqno))
4485 break;
4486 if (last_seqno == cur_seqno) {
4487 if (stuck++ > 100) {
4488 DRM_ERROR("hardware wedged\n");
4489 atomic_set(&dev_priv->mm.wedged, 1);
4490 DRM_WAKEUP(&dev_priv->irq_queue);
4491 break;
4492 }
4493 }
4494 msleep(10);
4495 last_seqno = cur_seqno;
4496 }
4497 dev_priv->mm.waiting_gem_seqno = 0;
4498
4499 i915_gem_retire_requests(dev);
4500
4501 spin_lock(&dev_priv->mm.active_list_lock);
4502 if (!atomic_read(&dev_priv->mm.wedged)) {
4503 /* Active and flushing should now be empty as we've
4504 * waited for a sequence higher than any pending execbuffer
4505 */
4506 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4507 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4508 /* Request should now be empty as we've also waited
4509 * for the last request in the list
4510 */
4511 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4512 }
4513
4514 /* Empty the active and flushing lists to inactive. If there's
4515 * anything left at this point, it means that we're wedged and
4516 * nothing good's going to happen by leaving them there. So strip
4517 * the GPU domains and just stuff them onto inactive.
4518 */
4519 while (!list_empty(&dev_priv->mm.active_list)) {
4520 struct drm_gem_object *obj;
4521 uint32_t old_write_domain;
4522
4523 obj = list_first_entry(&dev_priv->mm.active_list,
4524 struct drm_i915_gem_object,
4525 list)->obj;
4526 old_write_domain = obj->write_domain;
4527 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4528 i915_gem_object_move_to_inactive(obj);
4529
4530 trace_i915_gem_object_change_domain(obj,
4531 obj->read_domains,
4532 old_write_domain);
4533 }
4534 spin_unlock(&dev_priv->mm.active_list_lock);
4535
4536 while (!list_empty(&dev_priv->mm.flushing_list)) {
4537 struct drm_gem_object *obj;
4538 uint32_t old_write_domain;
4539
4540 obj = list_first_entry(&dev_priv->mm.flushing_list,
4541 struct drm_i915_gem_object,
4542 list)->obj;
4543 old_write_domain = obj->write_domain;
4544 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4545 i915_gem_object_move_to_inactive(obj);
4546
4547 trace_i915_gem_object_change_domain(obj,
4548 obj->read_domains,
4549 old_write_domain);
4550 }
4551
4552
4553 /* Move all inactive buffers out of the GTT. */
4554 ret = i915_gem_evict_from_inactive_list(dev);
4555 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4556 if (ret) {
4557 mutex_unlock(&dev->struct_mutex);
4558 return ret;
4559 }
4560
4561 i915_gem_cleanup_ringbuffer(dev);
4562 mutex_unlock(&dev->struct_mutex);
4563
4564 return 0;
4565 }
4566
4567 static int
4568 i915_gem_init_hws(struct drm_device *dev)
4569 {
4570 drm_i915_private_t *dev_priv = dev->dev_private;
4571 struct drm_gem_object *obj;
4572 struct drm_i915_gem_object *obj_priv;
4573 int ret;
4574
4575 /* If we need a physical address for the status page, it's already
4576 * initialized at driver load time.
4577 */
4578 if (!I915_NEED_GFX_HWS(dev))
4579 return 0;
4580
4581 obj = drm_gem_object_alloc(dev, 4096);
4582 if (obj == NULL) {
4583 DRM_ERROR("Failed to allocate status page\n");
4584 return -ENOMEM;
4585 }
4586 obj_priv = obj->driver_private;
4587 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4588
4589 ret = i915_gem_object_pin(obj, 4096);
4590 if (ret != 0) {
4591 drm_gem_object_unreference(obj);
4592 return ret;
4593 }
4594
4595 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4596
4597 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4598 if (dev_priv->hw_status_page == NULL) {
4599 DRM_ERROR("Failed to map status page.\n");
4600 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4601 i915_gem_object_unpin(obj);
4602 drm_gem_object_unreference(obj);
4603 return -EINVAL;
4604 }
4605 dev_priv->hws_obj = obj;
4606 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4607 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4608 I915_READ(HWS_PGA); /* posting read */
4609 DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4610
4611 return 0;
4612 }
4613
4614 static void
4615 i915_gem_cleanup_hws(struct drm_device *dev)
4616 {
4617 drm_i915_private_t *dev_priv = dev->dev_private;
4618 struct drm_gem_object *obj;
4619 struct drm_i915_gem_object *obj_priv;
4620
4621 if (dev_priv->hws_obj == NULL)
4622 return;
4623
4624 obj = dev_priv->hws_obj;
4625 obj_priv = obj->driver_private;
4626
4627 kunmap(obj_priv->pages[0]);
4628 i915_gem_object_unpin(obj);
4629 drm_gem_object_unreference(obj);
4630 dev_priv->hws_obj = NULL;
4631
4632 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4633 dev_priv->hw_status_page = NULL;
4634
4635 /* Write high address into HWS_PGA when disabling. */
4636 I915_WRITE(HWS_PGA, 0x1ffff000);
4637 }
4638
4639 int
4640 i915_gem_init_ringbuffer(struct drm_device *dev)
4641 {
4642 drm_i915_private_t *dev_priv = dev->dev_private;
4643 struct drm_gem_object *obj;
4644 struct drm_i915_gem_object *obj_priv;
4645 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4646 int ret;
4647 u32 head;
4648
4649 ret = i915_gem_init_hws(dev);
4650 if (ret != 0)
4651 return ret;
4652
4653 obj = drm_gem_object_alloc(dev, 128 * 1024);
4654 if (obj == NULL) {
4655 DRM_ERROR("Failed to allocate ringbuffer\n");
4656 i915_gem_cleanup_hws(dev);
4657 return -ENOMEM;
4658 }
4659 obj_priv = obj->driver_private;
4660
4661 ret = i915_gem_object_pin(obj, 4096);
4662 if (ret != 0) {
4663 drm_gem_object_unreference(obj);
4664 i915_gem_cleanup_hws(dev);
4665 return ret;
4666 }
4667
4668 /* Set up the kernel mapping for the ring. */
4669 ring->Size = obj->size;
4670
4671 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4672 ring->map.size = obj->size;
4673 ring->map.type = 0;
4674 ring->map.flags = 0;
4675 ring->map.mtrr = 0;
4676
4677 drm_core_ioremap_wc(&ring->map, dev);
4678 if (ring->map.handle == NULL) {
4679 DRM_ERROR("Failed to map ringbuffer.\n");
4680 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4681 i915_gem_object_unpin(obj);
4682 drm_gem_object_unreference(obj);
4683 i915_gem_cleanup_hws(dev);
4684 return -EINVAL;
4685 }
4686 ring->ring_obj = obj;
4687 ring->virtual_start = ring->map.handle;
4688
4689 /* Stop the ring if it's running. */
4690 I915_WRITE(PRB0_CTL, 0);
4691 I915_WRITE(PRB0_TAIL, 0);
4692 I915_WRITE(PRB0_HEAD, 0);
4693
4694 /* Initialize the ring. */
4695 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4696 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4697
4698 /* G45 ring initialization fails to reset head to zero */
4699 if (head != 0) {
4700 DRM_ERROR("Ring head not reset to zero "
4701 "ctl %08x head %08x tail %08x start %08x\n",
4702 I915_READ(PRB0_CTL),
4703 I915_READ(PRB0_HEAD),
4704 I915_READ(PRB0_TAIL),
4705 I915_READ(PRB0_START));
4706 I915_WRITE(PRB0_HEAD, 0);
4707
4708 DRM_ERROR("Ring head forced to zero "
4709 "ctl %08x head %08x tail %08x start %08x\n",
4710 I915_READ(PRB0_CTL),
4711 I915_READ(PRB0_HEAD),
4712 I915_READ(PRB0_TAIL),
4713 I915_READ(PRB0_START));
4714 }
4715
4716 I915_WRITE(PRB0_CTL,
4717 ((obj->size - 4096) & RING_NR_PAGES) |
4718 RING_NO_REPORT |
4719 RING_VALID);
4720
4721 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4722
4723 /* If the head is still not zero, the ring is dead */
4724 if (head != 0) {
4725 DRM_ERROR("Ring initialization failed "
4726 "ctl %08x head %08x tail %08x start %08x\n",
4727 I915_READ(PRB0_CTL),
4728 I915_READ(PRB0_HEAD),
4729 I915_READ(PRB0_TAIL),
4730 I915_READ(PRB0_START));
4731 return -EIO;
4732 }
4733
4734 /* Update our cache of the ring state */
4735 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4736 i915_kernel_lost_context(dev);
4737 else {
4738 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4739 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4740 ring->space = ring->head - (ring->tail + 8);
4741 if (ring->space < 0)
4742 ring->space += ring->Size;
4743 }
4744
4745 return 0;
4746 }
4747
4748 void
4749 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4750 {
4751 drm_i915_private_t *dev_priv = dev->dev_private;
4752
4753 if (dev_priv->ring.ring_obj == NULL)
4754 return;
4755
4756 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4757
4758 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4759 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4760 dev_priv->ring.ring_obj = NULL;
4761 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4762
4763 i915_gem_cleanup_hws(dev);
4764 }
4765
4766 int
4767 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4768 struct drm_file *file_priv)
4769 {
4770 drm_i915_private_t *dev_priv = dev->dev_private;
4771 int ret;
4772
4773 if (drm_core_check_feature(dev, DRIVER_MODESET))
4774 return 0;
4775
4776 if (atomic_read(&dev_priv->mm.wedged)) {
4777 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4778 atomic_set(&dev_priv->mm.wedged, 0);
4779 }
4780
4781 mutex_lock(&dev->struct_mutex);
4782 dev_priv->mm.suspended = 0;
4783
4784 ret = i915_gem_init_ringbuffer(dev);
4785 if (ret != 0) {
4786 mutex_unlock(&dev->struct_mutex);
4787 return ret;
4788 }
4789
4790 spin_lock(&dev_priv->mm.active_list_lock);
4791 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4792 spin_unlock(&dev_priv->mm.active_list_lock);
4793
4794 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4795 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4796 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4797 mutex_unlock(&dev->struct_mutex);
4798
4799 drm_irq_install(dev);
4800
4801 return 0;
4802 }
4803
4804 int
4805 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4806 struct drm_file *file_priv)
4807 {
4808 if (drm_core_check_feature(dev, DRIVER_MODESET))
4809 return 0;
4810
4811 drm_irq_uninstall(dev);
4812 return i915_gem_idle(dev);
4813 }
4814
4815 void
4816 i915_gem_lastclose(struct drm_device *dev)
4817 {
4818 int ret;
4819
4820 if (drm_core_check_feature(dev, DRIVER_MODESET))
4821 return;
4822
4823 ret = i915_gem_idle(dev);
4824 if (ret)
4825 DRM_ERROR("failed to idle hardware: %d\n", ret);
4826 }
4827
4828 void
4829 i915_gem_load(struct drm_device *dev)
4830 {
4831 int i;
4832 drm_i915_private_t *dev_priv = dev->dev_private;
4833
4834 spin_lock_init(&dev_priv->mm.active_list_lock);
4835 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4836 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4837 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4838 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4839 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4840 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4841 i915_gem_retire_work_handler);
4842 dev_priv->mm.next_gem_seqno = 1;
4843
4844 spin_lock(&shrink_list_lock);
4845 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4846 spin_unlock(&shrink_list_lock);
4847
4848 /* Old X drivers will take 0-2 for front, back, depth buffers */
4849 dev_priv->fence_reg_start = 3;
4850
4851 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4852 dev_priv->num_fence_regs = 16;
4853 else
4854 dev_priv->num_fence_regs = 8;
4855
4856 /* Initialize fence registers to zero */
4857 if (IS_I965G(dev)) {
4858 for (i = 0; i < 16; i++)
4859 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4860 } else {
4861 for (i = 0; i < 8; i++)
4862 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4863 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4864 for (i = 0; i < 8; i++)
4865 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4866 }
4867 i915_gem_detect_bit_6_swizzle(dev);
4868 init_waitqueue_head(&dev_priv->pending_flip_queue);
4869 }
4870
4871 /*
4872 * Create a physically contiguous memory object for this object
4873 * e.g. for cursor + overlay regs
4874 */
4875 int i915_gem_init_phys_object(struct drm_device *dev,
4876 int id, int size)
4877 {
4878 drm_i915_private_t *dev_priv = dev->dev_private;
4879 struct drm_i915_gem_phys_object *phys_obj;
4880 int ret;
4881
4882 if (dev_priv->mm.phys_objs[id - 1] || !size)
4883 return 0;
4884
4885 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4886 if (!phys_obj)
4887 return -ENOMEM;
4888
4889 phys_obj->id = id;
4890
4891 phys_obj->handle = drm_pci_alloc(dev, size, 0);
4892 if (!phys_obj->handle) {
4893 ret = -ENOMEM;
4894 goto kfree_obj;
4895 }
4896 #ifdef CONFIG_X86
4897 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4898 #endif
4899
4900 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4901
4902 return 0;
4903 kfree_obj:
4904 kfree(phys_obj);
4905 return ret;
4906 }
4907
4908 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4909 {
4910 drm_i915_private_t *dev_priv = dev->dev_private;
4911 struct drm_i915_gem_phys_object *phys_obj;
4912
4913 if (!dev_priv->mm.phys_objs[id - 1])
4914 return;
4915
4916 phys_obj = dev_priv->mm.phys_objs[id - 1];
4917 if (phys_obj->cur_obj) {
4918 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4919 }
4920
4921 #ifdef CONFIG_X86
4922 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4923 #endif
4924 drm_pci_free(dev, phys_obj->handle);
4925 kfree(phys_obj);
4926 dev_priv->mm.phys_objs[id - 1] = NULL;
4927 }
4928
4929 void i915_gem_free_all_phys_object(struct drm_device *dev)
4930 {
4931 int i;
4932
4933 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4934 i915_gem_free_phys_object(dev, i);
4935 }
4936
4937 void i915_gem_detach_phys_object(struct drm_device *dev,
4938 struct drm_gem_object *obj)
4939 {
4940 struct drm_i915_gem_object *obj_priv;
4941 int i;
4942 int ret;
4943 int page_count;
4944
4945 obj_priv = obj->driver_private;
4946 if (!obj_priv->phys_obj)
4947 return;
4948
4949 ret = i915_gem_object_get_pages(obj);
4950 if (ret)
4951 goto out;
4952
4953 page_count = obj->size / PAGE_SIZE;
4954
4955 for (i = 0; i < page_count; i++) {
4956 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4957 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4958
4959 memcpy(dst, src, PAGE_SIZE);
4960 kunmap_atomic(dst, KM_USER0);
4961 }
4962 drm_clflush_pages(obj_priv->pages, page_count);
4963 drm_agp_chipset_flush(dev);
4964
4965 i915_gem_object_put_pages(obj);
4966 out:
4967 obj_priv->phys_obj->cur_obj = NULL;
4968 obj_priv->phys_obj = NULL;
4969 }
4970
4971 int
4972 i915_gem_attach_phys_object(struct drm_device *dev,
4973 struct drm_gem_object *obj, int id)
4974 {
4975 drm_i915_private_t *dev_priv = dev->dev_private;
4976 struct drm_i915_gem_object *obj_priv;
4977 int ret = 0;
4978 int page_count;
4979 int i;
4980
4981 if (id > I915_MAX_PHYS_OBJECT)
4982 return -EINVAL;
4983
4984 obj_priv = obj->driver_private;
4985
4986 if (obj_priv->phys_obj) {
4987 if (obj_priv->phys_obj->id == id)
4988 return 0;
4989 i915_gem_detach_phys_object(dev, obj);
4990 }
4991
4992
4993 /* create a new object */
4994 if (!dev_priv->mm.phys_objs[id - 1]) {
4995 ret = i915_gem_init_phys_object(dev, id,
4996 obj->size);
4997 if (ret) {
4998 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4999 goto out;
5000 }
5001 }
5002
5003 /* bind to the object */
5004 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
5005 obj_priv->phys_obj->cur_obj = obj;
5006
5007 ret = i915_gem_object_get_pages(obj);
5008 if (ret) {
5009 DRM_ERROR("failed to get page list\n");
5010 goto out;
5011 }
5012
5013 page_count = obj->size / PAGE_SIZE;
5014
5015 for (i = 0; i < page_count; i++) {
5016 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
5017 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5018
5019 memcpy(dst, src, PAGE_SIZE);
5020 kunmap_atomic(src, KM_USER0);
5021 }
5022
5023 i915_gem_object_put_pages(obj);
5024
5025 return 0;
5026 out:
5027 return ret;
5028 }
5029
5030 static int
5031 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5032 struct drm_i915_gem_pwrite *args,
5033 struct drm_file *file_priv)
5034 {
5035 struct drm_i915_gem_object *obj_priv = obj->driver_private;
5036 void *obj_addr;
5037 int ret;
5038 char __user *user_data;
5039
5040 user_data = (char __user *) (uintptr_t) args->data_ptr;
5041 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5042
5043 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5044 ret = copy_from_user(obj_addr, user_data, args->size);
5045 if (ret)
5046 return -EFAULT;
5047
5048 drm_agp_chipset_flush(dev);
5049 return 0;
5050 }
5051
5052 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5053 {
5054 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5055
5056 /* Clean up our request list when the client is going away, so that
5057 * later retire_requests won't dereference our soon-to-be-gone
5058 * file_priv.
5059 */
5060 mutex_lock(&dev->struct_mutex);
5061 while (!list_empty(&i915_file_priv->mm.request_list))
5062 list_del_init(i915_file_priv->mm.request_list.next);
5063 mutex_unlock(&dev->struct_mutex);
5064 }
5065
5066 static int
5067 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5068 {
5069 drm_i915_private_t *dev_priv, *next_dev;
5070 struct drm_i915_gem_object *obj_priv, *next_obj;
5071 int cnt = 0;
5072 int would_deadlock = 1;
5073
5074 /* "fast-path" to count number of available objects */
5075 if (nr_to_scan == 0) {
5076 spin_lock(&shrink_list_lock);
5077 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5078 struct drm_device *dev = dev_priv->dev;
5079
5080 if (mutex_trylock(&dev->struct_mutex)) {
5081 list_for_each_entry(obj_priv,
5082 &dev_priv->mm.inactive_list,
5083 list)
5084 cnt++;
5085 mutex_unlock(&dev->struct_mutex);
5086 }
5087 }
5088 spin_unlock(&shrink_list_lock);
5089
5090 return (cnt / 100) * sysctl_vfs_cache_pressure;
5091 }
5092
5093 spin_lock(&shrink_list_lock);
5094
5095 /* first scan for clean buffers */
5096 list_for_each_entry_safe(dev_priv, next_dev,
5097 &shrink_list, mm.shrink_list) {
5098 struct drm_device *dev = dev_priv->dev;
5099
5100 if (! mutex_trylock(&dev->struct_mutex))
5101 continue;
5102
5103 spin_unlock(&shrink_list_lock);
5104
5105 i915_gem_retire_requests(dev);
5106
5107 list_for_each_entry_safe(obj_priv, next_obj,
5108 &dev_priv->mm.inactive_list,
5109 list) {
5110 if (i915_gem_object_is_purgeable(obj_priv)) {
5111 i915_gem_object_unbind(obj_priv->obj);
5112 if (--nr_to_scan <= 0)
5113 break;
5114 }
5115 }
5116
5117 spin_lock(&shrink_list_lock);
5118 mutex_unlock(&dev->struct_mutex);
5119
5120 would_deadlock = 0;
5121
5122 if (nr_to_scan <= 0)
5123 break;
5124 }
5125
5126 /* second pass, evict/count anything still on the inactive list */
5127 list_for_each_entry_safe(dev_priv, next_dev,
5128 &shrink_list, mm.shrink_list) {
5129 struct drm_device *dev = dev_priv->dev;
5130
5131 if (! mutex_trylock(&dev->struct_mutex))
5132 continue;
5133
5134 spin_unlock(&shrink_list_lock);
5135
5136 list_for_each_entry_safe(obj_priv, next_obj,
5137 &dev_priv->mm.inactive_list,
5138 list) {
5139 if (nr_to_scan > 0) {
5140 i915_gem_object_unbind(obj_priv->obj);
5141 nr_to_scan--;
5142 } else
5143 cnt++;
5144 }
5145
5146 spin_lock(&shrink_list_lock);
5147 mutex_unlock(&dev->struct_mutex);
5148
5149 would_deadlock = 0;
5150 }
5151
5152 spin_unlock(&shrink_list_lock);
5153
5154 if (would_deadlock)
5155 return -1;
5156 else if (cnt > 0)
5157 return (cnt / 100) * sysctl_vfs_cache_pressure;
5158 else
5159 return 0;
5160 }
5161
5162 static struct shrinker shrinker = {
5163 .shrink = i915_gem_shrink,
5164 .seeks = DEFAULT_SEEKS,
5165 };
5166
5167 __init void
5168 i915_gem_shrinker_init(void)
5169 {
5170 register_shrinker(&shrinker);
5171 }
5172
5173 __exit void
5174 i915_gem_shrinker_exit(void)
5175 {
5176 unregister_shrinker(&shrinker);
5177 }
This page took 0.134218 seconds and 6 git commands to generate.