Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67 {
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
87 obj->fence_dirty = false;
88 obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103 {
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134 #undef EXIT_COND
135
136 return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 int ret;
143
144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
152 WARN_ON(i915_verify_lists(dev));
153 return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159 return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_init *args = data;
168
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
175
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
180 mutex_lock(&dev->struct_mutex);
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
183 dev_priv->gtt.mappable_end = args->gtt_end;
184 mutex_unlock(&dev->struct_mutex);
185
186 return 0;
187 }
188
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191 struct drm_file *file)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 struct drm_i915_gem_get_aperture *args = data;
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
197
198 pinned = 0;
199 mutex_lock(&dev->struct_mutex);
200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201 if (i915_gem_obj_is_pinned(obj))
202 pinned += i915_gem_obj_ggtt_size(obj);
203 mutex_unlock(&dev->struct_mutex);
204
205 args->aper_size = dev_priv->gtt.base.total;
206 args->aper_available_size = args->aper_size - pinned;
207
208 return 0;
209 }
210
211 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
212 {
213 drm_dma_handle_t *phys = obj->phys_handle;
214
215 if (!phys)
216 return;
217
218 if (obj->madv == I915_MADV_WILLNEED) {
219 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
220 char *vaddr = phys->vaddr;
221 int i;
222
223 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224 struct page *page = shmem_read_mapping_page(mapping, i);
225 if (!IS_ERR(page)) {
226 char *dst = kmap_atomic(page);
227 memcpy(dst, vaddr, PAGE_SIZE);
228 drm_clflush_virt_range(dst, PAGE_SIZE);
229 kunmap_atomic(dst);
230
231 set_page_dirty(page);
232 mark_page_accessed(page);
233 page_cache_release(page);
234 }
235 vaddr += PAGE_SIZE;
236 }
237 i915_gem_chipset_flush(obj->base.dev);
238 }
239
240 #ifdef CONFIG_X86
241 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
242 #endif
243 drm_pci_free(obj->base.dev, phys);
244 obj->phys_handle = NULL;
245 }
246
247 int
248 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
249 int align)
250 {
251 drm_dma_handle_t *phys;
252 struct address_space *mapping;
253 char *vaddr;
254 int i;
255
256 if (obj->phys_handle) {
257 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
258 return -EBUSY;
259
260 return 0;
261 }
262
263 if (obj->madv != I915_MADV_WILLNEED)
264 return -EFAULT;
265
266 if (obj->base.filp == NULL)
267 return -EINVAL;
268
269 /* create a new object */
270 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
271 if (!phys)
272 return -ENOMEM;
273
274 vaddr = phys->vaddr;
275 #ifdef CONFIG_X86
276 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
277 #endif
278 mapping = file_inode(obj->base.filp)->i_mapping;
279 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280 struct page *page;
281 char *src;
282
283 page = shmem_read_mapping_page(mapping, i);
284 if (IS_ERR(page)) {
285 #ifdef CONFIG_X86
286 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
287 #endif
288 drm_pci_free(obj->base.dev, phys);
289 return PTR_ERR(page);
290 }
291
292 src = kmap_atomic(page);
293 memcpy(vaddr, src, PAGE_SIZE);
294 kunmap_atomic(src);
295
296 mark_page_accessed(page);
297 page_cache_release(page);
298
299 vaddr += PAGE_SIZE;
300 }
301
302 obj->phys_handle = phys;
303 return 0;
304 }
305
306 static int
307 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
308 struct drm_i915_gem_pwrite *args,
309 struct drm_file *file_priv)
310 {
311 struct drm_device *dev = obj->base.dev;
312 void *vaddr = obj->phys_handle->vaddr + args->offset;
313 char __user *user_data = to_user_ptr(args->data_ptr);
314
315 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
316 unsigned long unwritten;
317
318 /* The physical object once assigned is fixed for the lifetime
319 * of the obj, so we can safely drop the lock and continue
320 * to access vaddr.
321 */
322 mutex_unlock(&dev->struct_mutex);
323 unwritten = copy_from_user(vaddr, user_data, args->size);
324 mutex_lock(&dev->struct_mutex);
325 if (unwritten)
326 return -EFAULT;
327 }
328
329 i915_gem_chipset_flush(dev);
330 return 0;
331 }
332
333 void *i915_gem_object_alloc(struct drm_device *dev)
334 {
335 struct drm_i915_private *dev_priv = dev->dev_private;
336 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
337 }
338
339 void i915_gem_object_free(struct drm_i915_gem_object *obj)
340 {
341 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
342 kmem_cache_free(dev_priv->slab, obj);
343 }
344
345 static int
346 i915_gem_create(struct drm_file *file,
347 struct drm_device *dev,
348 uint64_t size,
349 uint32_t *handle_p)
350 {
351 struct drm_i915_gem_object *obj;
352 int ret;
353 u32 handle;
354
355 size = roundup(size, PAGE_SIZE);
356 if (size == 0)
357 return -EINVAL;
358
359 /* Allocate the new object */
360 obj = i915_gem_alloc_object(dev, size);
361 if (obj == NULL)
362 return -ENOMEM;
363
364 ret = drm_gem_handle_create(file, &obj->base, &handle);
365 /* drop reference from allocate - handle holds it now */
366 drm_gem_object_unreference_unlocked(&obj->base);
367 if (ret)
368 return ret;
369
370 *handle_p = handle;
371 return 0;
372 }
373
374 int
375 i915_gem_dumb_create(struct drm_file *file,
376 struct drm_device *dev,
377 struct drm_mode_create_dumb *args)
378 {
379 /* have to work out size/pitch and return them */
380 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
381 args->size = args->pitch * args->height;
382 return i915_gem_create(file, dev,
383 args->size, &args->handle);
384 }
385
386 /**
387 * Creates a new mm object and returns a handle to it.
388 */
389 int
390 i915_gem_create_ioctl(struct drm_device *dev, void *data,
391 struct drm_file *file)
392 {
393 struct drm_i915_gem_create *args = data;
394
395 return i915_gem_create(file, dev,
396 args->size, &args->handle);
397 }
398
399 static inline int
400 __copy_to_user_swizzled(char __user *cpu_vaddr,
401 const char *gpu_vaddr, int gpu_offset,
402 int length)
403 {
404 int ret, cpu_offset = 0;
405
406 while (length > 0) {
407 int cacheline_end = ALIGN(gpu_offset + 1, 64);
408 int this_length = min(cacheline_end - gpu_offset, length);
409 int swizzled_gpu_offset = gpu_offset ^ 64;
410
411 ret = __copy_to_user(cpu_vaddr + cpu_offset,
412 gpu_vaddr + swizzled_gpu_offset,
413 this_length);
414 if (ret)
415 return ret + length;
416
417 cpu_offset += this_length;
418 gpu_offset += this_length;
419 length -= this_length;
420 }
421
422 return 0;
423 }
424
425 static inline int
426 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
427 const char __user *cpu_vaddr,
428 int length)
429 {
430 int ret, cpu_offset = 0;
431
432 while (length > 0) {
433 int cacheline_end = ALIGN(gpu_offset + 1, 64);
434 int this_length = min(cacheline_end - gpu_offset, length);
435 int swizzled_gpu_offset = gpu_offset ^ 64;
436
437 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
438 cpu_vaddr + cpu_offset,
439 this_length);
440 if (ret)
441 return ret + length;
442
443 cpu_offset += this_length;
444 gpu_offset += this_length;
445 length -= this_length;
446 }
447
448 return 0;
449 }
450
451 /*
452 * Pins the specified object's pages and synchronizes the object with
453 * GPU accesses. Sets needs_clflush to non-zero if the caller should
454 * flush the object from the CPU cache.
455 */
456 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
457 int *needs_clflush)
458 {
459 int ret;
460
461 *needs_clflush = 0;
462
463 if (!obj->base.filp)
464 return -EINVAL;
465
466 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
467 /* If we're not in the cpu read domain, set ourself into the gtt
468 * read domain and manually flush cachelines (if required). This
469 * optimizes for the case when the gpu will dirty the data
470 * anyway again before the next pread happens. */
471 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
472 obj->cache_level);
473 ret = i915_gem_object_wait_rendering(obj, true);
474 if (ret)
475 return ret;
476
477 i915_gem_object_retire(obj);
478 }
479
480 ret = i915_gem_object_get_pages(obj);
481 if (ret)
482 return ret;
483
484 i915_gem_object_pin_pages(obj);
485
486 return ret;
487 }
488
489 /* Per-page copy function for the shmem pread fastpath.
490 * Flushes invalid cachelines before reading the target if
491 * needs_clflush is set. */
492 static int
493 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
494 char __user *user_data,
495 bool page_do_bit17_swizzling, bool needs_clflush)
496 {
497 char *vaddr;
498 int ret;
499
500 if (unlikely(page_do_bit17_swizzling))
501 return -EINVAL;
502
503 vaddr = kmap_atomic(page);
504 if (needs_clflush)
505 drm_clflush_virt_range(vaddr + shmem_page_offset,
506 page_length);
507 ret = __copy_to_user_inatomic(user_data,
508 vaddr + shmem_page_offset,
509 page_length);
510 kunmap_atomic(vaddr);
511
512 return ret ? -EFAULT : 0;
513 }
514
515 static void
516 shmem_clflush_swizzled_range(char *addr, unsigned long length,
517 bool swizzled)
518 {
519 if (unlikely(swizzled)) {
520 unsigned long start = (unsigned long) addr;
521 unsigned long end = (unsigned long) addr + length;
522
523 /* For swizzling simply ensure that we always flush both
524 * channels. Lame, but simple and it works. Swizzled
525 * pwrite/pread is far from a hotpath - current userspace
526 * doesn't use it at all. */
527 start = round_down(start, 128);
528 end = round_up(end, 128);
529
530 drm_clflush_virt_range((void *)start, end - start);
531 } else {
532 drm_clflush_virt_range(addr, length);
533 }
534
535 }
536
537 /* Only difference to the fast-path function is that this can handle bit17
538 * and uses non-atomic copy and kmap functions. */
539 static int
540 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
541 char __user *user_data,
542 bool page_do_bit17_swizzling, bool needs_clflush)
543 {
544 char *vaddr;
545 int ret;
546
547 vaddr = kmap(page);
548 if (needs_clflush)
549 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
550 page_length,
551 page_do_bit17_swizzling);
552
553 if (page_do_bit17_swizzling)
554 ret = __copy_to_user_swizzled(user_data,
555 vaddr, shmem_page_offset,
556 page_length);
557 else
558 ret = __copy_to_user(user_data,
559 vaddr + shmem_page_offset,
560 page_length);
561 kunmap(page);
562
563 return ret ? - EFAULT : 0;
564 }
565
566 static int
567 i915_gem_shmem_pread(struct drm_device *dev,
568 struct drm_i915_gem_object *obj,
569 struct drm_i915_gem_pread *args,
570 struct drm_file *file)
571 {
572 char __user *user_data;
573 ssize_t remain;
574 loff_t offset;
575 int shmem_page_offset, page_length, ret = 0;
576 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
577 int prefaulted = 0;
578 int needs_clflush = 0;
579 struct sg_page_iter sg_iter;
580
581 user_data = to_user_ptr(args->data_ptr);
582 remain = args->size;
583
584 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
585
586 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
587 if (ret)
588 return ret;
589
590 offset = args->offset;
591
592 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
593 offset >> PAGE_SHIFT) {
594 struct page *page = sg_page_iter_page(&sg_iter);
595
596 if (remain <= 0)
597 break;
598
599 /* Operation in this page
600 *
601 * shmem_page_offset = offset within page in shmem file
602 * page_length = bytes to copy for this page
603 */
604 shmem_page_offset = offset_in_page(offset);
605 page_length = remain;
606 if ((shmem_page_offset + page_length) > PAGE_SIZE)
607 page_length = PAGE_SIZE - shmem_page_offset;
608
609 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
610 (page_to_phys(page) & (1 << 17)) != 0;
611
612 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
613 user_data, page_do_bit17_swizzling,
614 needs_clflush);
615 if (ret == 0)
616 goto next_page;
617
618 mutex_unlock(&dev->struct_mutex);
619
620 if (likely(!i915.prefault_disable) && !prefaulted) {
621 ret = fault_in_multipages_writeable(user_data, remain);
622 /* Userspace is tricking us, but we've already clobbered
623 * its pages with the prefault and promised to write the
624 * data up to the first fault. Hence ignore any errors
625 * and just continue. */
626 (void)ret;
627 prefaulted = 1;
628 }
629
630 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
631 user_data, page_do_bit17_swizzling,
632 needs_clflush);
633
634 mutex_lock(&dev->struct_mutex);
635
636 if (ret)
637 goto out;
638
639 next_page:
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
643 }
644
645 out:
646 i915_gem_object_unpin_pages(obj);
647
648 return ret;
649 }
650
651 /**
652 * Reads data from the object referenced by handle.
653 *
654 * On error, the contents of *data are undefined.
655 */
656 int
657 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
658 struct drm_file *file)
659 {
660 struct drm_i915_gem_pread *args = data;
661 struct drm_i915_gem_object *obj;
662 int ret = 0;
663
664 if (args->size == 0)
665 return 0;
666
667 if (!access_ok(VERIFY_WRITE,
668 to_user_ptr(args->data_ptr),
669 args->size))
670 return -EFAULT;
671
672 ret = i915_mutex_lock_interruptible(dev);
673 if (ret)
674 return ret;
675
676 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
677 if (&obj->base == NULL) {
678 ret = -ENOENT;
679 goto unlock;
680 }
681
682 /* Bounds check source. */
683 if (args->offset > obj->base.size ||
684 args->size > obj->base.size - args->offset) {
685 ret = -EINVAL;
686 goto out;
687 }
688
689 /* prime objects have no backing filp to GEM pread/pwrite
690 * pages from.
691 */
692 if (!obj->base.filp) {
693 ret = -EINVAL;
694 goto out;
695 }
696
697 trace_i915_gem_object_pread(obj, args->offset, args->size);
698
699 ret = i915_gem_shmem_pread(dev, obj, args, file);
700
701 out:
702 drm_gem_object_unreference(&obj->base);
703 unlock:
704 mutex_unlock(&dev->struct_mutex);
705 return ret;
706 }
707
708 /* This is the fast write path which cannot handle
709 * page faults in the source data
710 */
711
712 static inline int
713 fast_user_write(struct io_mapping *mapping,
714 loff_t page_base, int page_offset,
715 char __user *user_data,
716 int length)
717 {
718 void __iomem *vaddr_atomic;
719 void *vaddr;
720 unsigned long unwritten;
721
722 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
723 /* We can use the cpu mem copy function because this is X86. */
724 vaddr = (void __force*)vaddr_atomic + page_offset;
725 unwritten = __copy_from_user_inatomic_nocache(vaddr,
726 user_data, length);
727 io_mapping_unmap_atomic(vaddr_atomic);
728 return unwritten;
729 }
730
731 /**
732 * This is the fast pwrite path, where we copy the data directly from the
733 * user into the GTT, uncached.
734 */
735 static int
736 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
737 struct drm_i915_gem_object *obj,
738 struct drm_i915_gem_pwrite *args,
739 struct drm_file *file)
740 {
741 struct drm_i915_private *dev_priv = dev->dev_private;
742 ssize_t remain;
743 loff_t offset, page_base;
744 char __user *user_data;
745 int page_offset, page_length, ret;
746
747 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
748 if (ret)
749 goto out;
750
751 ret = i915_gem_object_set_to_gtt_domain(obj, true);
752 if (ret)
753 goto out_unpin;
754
755 ret = i915_gem_object_put_fence(obj);
756 if (ret)
757 goto out_unpin;
758
759 user_data = to_user_ptr(args->data_ptr);
760 remain = args->size;
761
762 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
763
764 while (remain > 0) {
765 /* Operation in this page
766 *
767 * page_base = page offset within aperture
768 * page_offset = offset within page
769 * page_length = bytes to copy for this page
770 */
771 page_base = offset & PAGE_MASK;
772 page_offset = offset_in_page(offset);
773 page_length = remain;
774 if ((page_offset + remain) > PAGE_SIZE)
775 page_length = PAGE_SIZE - page_offset;
776
777 /* If we get a fault while copying data, then (presumably) our
778 * source page isn't available. Return the error and we'll
779 * retry in the slow path.
780 */
781 if (fast_user_write(dev_priv->gtt.mappable, page_base,
782 page_offset, user_data, page_length)) {
783 ret = -EFAULT;
784 goto out_unpin;
785 }
786
787 remain -= page_length;
788 user_data += page_length;
789 offset += page_length;
790 }
791
792 out_unpin:
793 i915_gem_object_ggtt_unpin(obj);
794 out:
795 return ret;
796 }
797
798 /* Per-page copy function for the shmem pwrite fastpath.
799 * Flushes invalid cachelines before writing to the target if
800 * needs_clflush_before is set and flushes out any written cachelines after
801 * writing if needs_clflush is set. */
802 static int
803 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
804 char __user *user_data,
805 bool page_do_bit17_swizzling,
806 bool needs_clflush_before,
807 bool needs_clflush_after)
808 {
809 char *vaddr;
810 int ret;
811
812 if (unlikely(page_do_bit17_swizzling))
813 return -EINVAL;
814
815 vaddr = kmap_atomic(page);
816 if (needs_clflush_before)
817 drm_clflush_virt_range(vaddr + shmem_page_offset,
818 page_length);
819 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
820 user_data, page_length);
821 if (needs_clflush_after)
822 drm_clflush_virt_range(vaddr + shmem_page_offset,
823 page_length);
824 kunmap_atomic(vaddr);
825
826 return ret ? -EFAULT : 0;
827 }
828
829 /* Only difference to the fast-path function is that this can handle bit17
830 * and uses non-atomic copy and kmap functions. */
831 static int
832 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
833 char __user *user_data,
834 bool page_do_bit17_swizzling,
835 bool needs_clflush_before,
836 bool needs_clflush_after)
837 {
838 char *vaddr;
839 int ret;
840
841 vaddr = kmap(page);
842 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
843 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
844 page_length,
845 page_do_bit17_swizzling);
846 if (page_do_bit17_swizzling)
847 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
848 user_data,
849 page_length);
850 else
851 ret = __copy_from_user(vaddr + shmem_page_offset,
852 user_data,
853 page_length);
854 if (needs_clflush_after)
855 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
856 page_length,
857 page_do_bit17_swizzling);
858 kunmap(page);
859
860 return ret ? -EFAULT : 0;
861 }
862
863 static int
864 i915_gem_shmem_pwrite(struct drm_device *dev,
865 struct drm_i915_gem_object *obj,
866 struct drm_i915_gem_pwrite *args,
867 struct drm_file *file)
868 {
869 ssize_t remain;
870 loff_t offset;
871 char __user *user_data;
872 int shmem_page_offset, page_length, ret = 0;
873 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
874 int hit_slowpath = 0;
875 int needs_clflush_after = 0;
876 int needs_clflush_before = 0;
877 struct sg_page_iter sg_iter;
878
879 user_data = to_user_ptr(args->data_ptr);
880 remain = args->size;
881
882 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
883
884 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
885 /* If we're not in the cpu write domain, set ourself into the gtt
886 * write domain and manually flush cachelines (if required). This
887 * optimizes for the case when the gpu will use the data
888 * right away and we therefore have to clflush anyway. */
889 needs_clflush_after = cpu_write_needs_clflush(obj);
890 ret = i915_gem_object_wait_rendering(obj, false);
891 if (ret)
892 return ret;
893
894 i915_gem_object_retire(obj);
895 }
896 /* Same trick applies to invalidate partially written cachelines read
897 * before writing. */
898 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
899 needs_clflush_before =
900 !cpu_cache_is_coherent(dev, obj->cache_level);
901
902 ret = i915_gem_object_get_pages(obj);
903 if (ret)
904 return ret;
905
906 i915_gem_object_pin_pages(obj);
907
908 offset = args->offset;
909 obj->dirty = 1;
910
911 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
912 offset >> PAGE_SHIFT) {
913 struct page *page = sg_page_iter_page(&sg_iter);
914 int partial_cacheline_write;
915
916 if (remain <= 0)
917 break;
918
919 /* Operation in this page
920 *
921 * shmem_page_offset = offset within page in shmem file
922 * page_length = bytes to copy for this page
923 */
924 shmem_page_offset = offset_in_page(offset);
925
926 page_length = remain;
927 if ((shmem_page_offset + page_length) > PAGE_SIZE)
928 page_length = PAGE_SIZE - shmem_page_offset;
929
930 /* If we don't overwrite a cacheline completely we need to be
931 * careful to have up-to-date data by first clflushing. Don't
932 * overcomplicate things and flush the entire patch. */
933 partial_cacheline_write = needs_clflush_before &&
934 ((shmem_page_offset | page_length)
935 & (boot_cpu_data.x86_clflush_size - 1));
936
937 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
938 (page_to_phys(page) & (1 << 17)) != 0;
939
940 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
941 user_data, page_do_bit17_swizzling,
942 partial_cacheline_write,
943 needs_clflush_after);
944 if (ret == 0)
945 goto next_page;
946
947 hit_slowpath = 1;
948 mutex_unlock(&dev->struct_mutex);
949 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
950 user_data, page_do_bit17_swizzling,
951 partial_cacheline_write,
952 needs_clflush_after);
953
954 mutex_lock(&dev->struct_mutex);
955
956 if (ret)
957 goto out;
958
959 next_page:
960 remain -= page_length;
961 user_data += page_length;
962 offset += page_length;
963 }
964
965 out:
966 i915_gem_object_unpin_pages(obj);
967
968 if (hit_slowpath) {
969 /*
970 * Fixup: Flush cpu caches in case we didn't flush the dirty
971 * cachelines in-line while writing and the object moved
972 * out of the cpu write domain while we've dropped the lock.
973 */
974 if (!needs_clflush_after &&
975 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
976 if (i915_gem_clflush_object(obj, obj->pin_display))
977 i915_gem_chipset_flush(dev);
978 }
979 }
980
981 if (needs_clflush_after)
982 i915_gem_chipset_flush(dev);
983
984 return ret;
985 }
986
987 /**
988 * Writes data to the object referenced by handle.
989 *
990 * On error, the contents of the buffer that were to be modified are undefined.
991 */
992 int
993 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
994 struct drm_file *file)
995 {
996 struct drm_i915_gem_pwrite *args = data;
997 struct drm_i915_gem_object *obj;
998 int ret;
999
1000 if (args->size == 0)
1001 return 0;
1002
1003 if (!access_ok(VERIFY_READ,
1004 to_user_ptr(args->data_ptr),
1005 args->size))
1006 return -EFAULT;
1007
1008 if (likely(!i915.prefault_disable)) {
1009 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1010 args->size);
1011 if (ret)
1012 return -EFAULT;
1013 }
1014
1015 ret = i915_mutex_lock_interruptible(dev);
1016 if (ret)
1017 return ret;
1018
1019 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1020 if (&obj->base == NULL) {
1021 ret = -ENOENT;
1022 goto unlock;
1023 }
1024
1025 /* Bounds check destination. */
1026 if (args->offset > obj->base.size ||
1027 args->size > obj->base.size - args->offset) {
1028 ret = -EINVAL;
1029 goto out;
1030 }
1031
1032 /* prime objects have no backing filp to GEM pread/pwrite
1033 * pages from.
1034 */
1035 if (!obj->base.filp) {
1036 ret = -EINVAL;
1037 goto out;
1038 }
1039
1040 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1041
1042 ret = -EFAULT;
1043 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1044 * it would end up going through the fenced access, and we'll get
1045 * different detiling behavior between reading and writing.
1046 * pread/pwrite currently are reading and writing from the CPU
1047 * perspective, requiring manual detiling by the client.
1048 */
1049 if (obj->phys_handle) {
1050 ret = i915_gem_phys_pwrite(obj, args, file);
1051 goto out;
1052 }
1053
1054 if (obj->tiling_mode == I915_TILING_NONE &&
1055 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1056 cpu_write_needs_clflush(obj)) {
1057 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1058 /* Note that the gtt paths might fail with non-page-backed user
1059 * pointers (e.g. gtt mappings when moving data between
1060 * textures). Fallback to the shmem path in that case. */
1061 }
1062
1063 if (ret == -EFAULT || ret == -ENOSPC)
1064 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1065
1066 out:
1067 drm_gem_object_unreference(&obj->base);
1068 unlock:
1069 mutex_unlock(&dev->struct_mutex);
1070 return ret;
1071 }
1072
1073 int
1074 i915_gem_check_wedge(struct i915_gpu_error *error,
1075 bool interruptible)
1076 {
1077 if (i915_reset_in_progress(error)) {
1078 /* Non-interruptible callers can't handle -EAGAIN, hence return
1079 * -EIO unconditionally for these. */
1080 if (!interruptible)
1081 return -EIO;
1082
1083 /* Recovery complete, but the reset failed ... */
1084 if (i915_terminally_wedged(error))
1085 return -EIO;
1086
1087 /*
1088 * Check if GPU Reset is in progress - we need intel_ring_begin
1089 * to work properly to reinit the hw state while the gpu is
1090 * still marked as reset-in-progress. Handle this with a flag.
1091 */
1092 if (!error->reload_in_reset)
1093 return -EAGAIN;
1094 }
1095
1096 return 0;
1097 }
1098
1099 /*
1100 * Compare seqno against outstanding lazy request. Emit a request if they are
1101 * equal.
1102 */
1103 int
1104 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1105 {
1106 int ret;
1107
1108 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1109
1110 ret = 0;
1111 if (seqno == ring->outstanding_lazy_seqno)
1112 ret = i915_add_request(ring, NULL);
1113
1114 return ret;
1115 }
1116
1117 static void fake_irq(unsigned long data)
1118 {
1119 wake_up_process((struct task_struct *)data);
1120 }
1121
1122 static bool missed_irq(struct drm_i915_private *dev_priv,
1123 struct intel_engine_cs *ring)
1124 {
1125 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1126 }
1127
1128 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1129 {
1130 if (file_priv == NULL)
1131 return true;
1132
1133 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1134 }
1135
1136 /**
1137 * __wait_seqno - wait until execution of seqno has finished
1138 * @ring: the ring expected to report seqno
1139 * @seqno: duh!
1140 * @reset_counter: reset sequence associated with the given seqno
1141 * @interruptible: do an interruptible wait (normally yes)
1142 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1143 *
1144 * Note: It is of utmost importance that the passed in seqno and reset_counter
1145 * values have been read by the caller in an smp safe manner. Where read-side
1146 * locks are involved, it is sufficient to read the reset_counter before
1147 * unlocking the lock that protects the seqno. For lockless tricks, the
1148 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1149 * inserted.
1150 *
1151 * Returns 0 if the seqno was found within the alloted time. Else returns the
1152 * errno with remaining time filled in timeout argument.
1153 */
1154 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1155 unsigned reset_counter,
1156 bool interruptible,
1157 s64 *timeout,
1158 struct drm_i915_file_private *file_priv)
1159 {
1160 struct drm_device *dev = ring->dev;
1161 struct drm_i915_private *dev_priv = dev->dev_private;
1162 const bool irq_test_in_progress =
1163 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1164 DEFINE_WAIT(wait);
1165 unsigned long timeout_expire;
1166 s64 before, now;
1167 int ret;
1168
1169 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1170
1171 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1172 return 0;
1173
1174 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1175
1176 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1177 gen6_rps_boost(dev_priv);
1178 if (file_priv)
1179 mod_delayed_work(dev_priv->wq,
1180 &file_priv->mm.idle_work,
1181 msecs_to_jiffies(100));
1182 }
1183
1184 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1185 return -ENODEV;
1186
1187 /* Record current time in case interrupted by signal, or wedged */
1188 trace_i915_gem_request_wait_begin(ring, seqno);
1189 before = ktime_get_raw_ns();
1190 for (;;) {
1191 struct timer_list timer;
1192
1193 prepare_to_wait(&ring->irq_queue, &wait,
1194 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1195
1196 /* We need to check whether any gpu reset happened in between
1197 * the caller grabbing the seqno and now ... */
1198 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1199 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1200 * is truely gone. */
1201 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1202 if (ret == 0)
1203 ret = -EAGAIN;
1204 break;
1205 }
1206
1207 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1208 ret = 0;
1209 break;
1210 }
1211
1212 if (interruptible && signal_pending(current)) {
1213 ret = -ERESTARTSYS;
1214 break;
1215 }
1216
1217 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1218 ret = -ETIME;
1219 break;
1220 }
1221
1222 timer.function = NULL;
1223 if (timeout || missed_irq(dev_priv, ring)) {
1224 unsigned long expire;
1225
1226 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1227 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1228 mod_timer(&timer, expire);
1229 }
1230
1231 io_schedule();
1232
1233 if (timer.function) {
1234 del_singleshot_timer_sync(&timer);
1235 destroy_timer_on_stack(&timer);
1236 }
1237 }
1238 now = ktime_get_raw_ns();
1239 trace_i915_gem_request_wait_end(ring, seqno);
1240
1241 if (!irq_test_in_progress)
1242 ring->irq_put(ring);
1243
1244 finish_wait(&ring->irq_queue, &wait);
1245
1246 if (timeout) {
1247 s64 tres = *timeout - (now - before);
1248
1249 *timeout = tres < 0 ? 0 : tres;
1250 }
1251
1252 return ret;
1253 }
1254
1255 /**
1256 * Waits for a sequence number to be signaled, and cleans up the
1257 * request and object lists appropriately for that event.
1258 */
1259 int
1260 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1261 {
1262 struct drm_device *dev = ring->dev;
1263 struct drm_i915_private *dev_priv = dev->dev_private;
1264 bool interruptible = dev_priv->mm.interruptible;
1265 int ret;
1266
1267 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1268 BUG_ON(seqno == 0);
1269
1270 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1271 if (ret)
1272 return ret;
1273
1274 ret = i915_gem_check_olr(ring, seqno);
1275 if (ret)
1276 return ret;
1277
1278 return __wait_seqno(ring, seqno,
1279 atomic_read(&dev_priv->gpu_error.reset_counter),
1280 interruptible, NULL, NULL);
1281 }
1282
1283 static int
1284 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1285 struct intel_engine_cs *ring)
1286 {
1287 if (!obj->active)
1288 return 0;
1289
1290 /* Manually manage the write flush as we may have not yet
1291 * retired the buffer.
1292 *
1293 * Note that the last_write_seqno is always the earlier of
1294 * the two (read/write) seqno, so if we haved successfully waited,
1295 * we know we have passed the last write.
1296 */
1297 obj->last_write_seqno = 0;
1298
1299 return 0;
1300 }
1301
1302 /**
1303 * Ensures that all rendering to the object has completed and the object is
1304 * safe to unbind from the GTT or access from the CPU.
1305 */
1306 static __must_check int
1307 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1308 bool readonly)
1309 {
1310 struct intel_engine_cs *ring = obj->ring;
1311 u32 seqno;
1312 int ret;
1313
1314 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1315 if (seqno == 0)
1316 return 0;
1317
1318 ret = i915_wait_seqno(ring, seqno);
1319 if (ret)
1320 return ret;
1321
1322 return i915_gem_object_wait_rendering__tail(obj, ring);
1323 }
1324
1325 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1326 * as the object state may change during this call.
1327 */
1328 static __must_check int
1329 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1330 struct drm_i915_file_private *file_priv,
1331 bool readonly)
1332 {
1333 struct drm_device *dev = obj->base.dev;
1334 struct drm_i915_private *dev_priv = dev->dev_private;
1335 struct intel_engine_cs *ring = obj->ring;
1336 unsigned reset_counter;
1337 u32 seqno;
1338 int ret;
1339
1340 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1341 BUG_ON(!dev_priv->mm.interruptible);
1342
1343 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1344 if (seqno == 0)
1345 return 0;
1346
1347 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1348 if (ret)
1349 return ret;
1350
1351 ret = i915_gem_check_olr(ring, seqno);
1352 if (ret)
1353 return ret;
1354
1355 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1356 mutex_unlock(&dev->struct_mutex);
1357 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1358 mutex_lock(&dev->struct_mutex);
1359 if (ret)
1360 return ret;
1361
1362 return i915_gem_object_wait_rendering__tail(obj, ring);
1363 }
1364
1365 /**
1366 * Called when user space prepares to use an object with the CPU, either
1367 * through the mmap ioctl's mapping or a GTT mapping.
1368 */
1369 int
1370 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1371 struct drm_file *file)
1372 {
1373 struct drm_i915_gem_set_domain *args = data;
1374 struct drm_i915_gem_object *obj;
1375 uint32_t read_domains = args->read_domains;
1376 uint32_t write_domain = args->write_domain;
1377 int ret;
1378
1379 /* Only handle setting domains to types used by the CPU. */
1380 if (write_domain & I915_GEM_GPU_DOMAINS)
1381 return -EINVAL;
1382
1383 if (read_domains & I915_GEM_GPU_DOMAINS)
1384 return -EINVAL;
1385
1386 /* Having something in the write domain implies it's in the read
1387 * domain, and only that read domain. Enforce that in the request.
1388 */
1389 if (write_domain != 0 && read_domains != write_domain)
1390 return -EINVAL;
1391
1392 ret = i915_mutex_lock_interruptible(dev);
1393 if (ret)
1394 return ret;
1395
1396 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1397 if (&obj->base == NULL) {
1398 ret = -ENOENT;
1399 goto unlock;
1400 }
1401
1402 /* Try to flush the object off the GPU without holding the lock.
1403 * We will repeat the flush holding the lock in the normal manner
1404 * to catch cases where we are gazumped.
1405 */
1406 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1407 file->driver_priv,
1408 !write_domain);
1409 if (ret)
1410 goto unref;
1411
1412 if (read_domains & I915_GEM_DOMAIN_GTT) {
1413 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1414
1415 /* Silently promote "you're not bound, there was nothing to do"
1416 * to success, since the client was just asking us to
1417 * make sure everything was done.
1418 */
1419 if (ret == -EINVAL)
1420 ret = 0;
1421 } else {
1422 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1423 }
1424
1425 unref:
1426 drm_gem_object_unreference(&obj->base);
1427 unlock:
1428 mutex_unlock(&dev->struct_mutex);
1429 return ret;
1430 }
1431
1432 /**
1433 * Called when user space has done writes to this buffer
1434 */
1435 int
1436 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1437 struct drm_file *file)
1438 {
1439 struct drm_i915_gem_sw_finish *args = data;
1440 struct drm_i915_gem_object *obj;
1441 int ret = 0;
1442
1443 ret = i915_mutex_lock_interruptible(dev);
1444 if (ret)
1445 return ret;
1446
1447 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1448 if (&obj->base == NULL) {
1449 ret = -ENOENT;
1450 goto unlock;
1451 }
1452
1453 /* Pinned buffers may be scanout, so flush the cache */
1454 if (obj->pin_display)
1455 i915_gem_object_flush_cpu_write_domain(obj, true);
1456
1457 drm_gem_object_unreference(&obj->base);
1458 unlock:
1459 mutex_unlock(&dev->struct_mutex);
1460 return ret;
1461 }
1462
1463 /**
1464 * Maps the contents of an object, returning the address it is mapped
1465 * into.
1466 *
1467 * While the mapping holds a reference on the contents of the object, it doesn't
1468 * imply a ref on the object itself.
1469 */
1470 int
1471 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1472 struct drm_file *file)
1473 {
1474 struct drm_i915_gem_mmap *args = data;
1475 struct drm_gem_object *obj;
1476 unsigned long addr;
1477
1478 obj = drm_gem_object_lookup(dev, file, args->handle);
1479 if (obj == NULL)
1480 return -ENOENT;
1481
1482 /* prime objects have no backing filp to GEM mmap
1483 * pages from.
1484 */
1485 if (!obj->filp) {
1486 drm_gem_object_unreference_unlocked(obj);
1487 return -EINVAL;
1488 }
1489
1490 addr = vm_mmap(obj->filp, 0, args->size,
1491 PROT_READ | PROT_WRITE, MAP_SHARED,
1492 args->offset);
1493 drm_gem_object_unreference_unlocked(obj);
1494 if (IS_ERR((void *)addr))
1495 return addr;
1496
1497 args->addr_ptr = (uint64_t) addr;
1498
1499 return 0;
1500 }
1501
1502 /**
1503 * i915_gem_fault - fault a page into the GTT
1504 * vma: VMA in question
1505 * vmf: fault info
1506 *
1507 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1508 * from userspace. The fault handler takes care of binding the object to
1509 * the GTT (if needed), allocating and programming a fence register (again,
1510 * only if needed based on whether the old reg is still valid or the object
1511 * is tiled) and inserting a new PTE into the faulting process.
1512 *
1513 * Note that the faulting process may involve evicting existing objects
1514 * from the GTT and/or fence registers to make room. So performance may
1515 * suffer if the GTT working set is large or there are few fence registers
1516 * left.
1517 */
1518 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1519 {
1520 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1521 struct drm_device *dev = obj->base.dev;
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 pgoff_t page_offset;
1524 unsigned long pfn;
1525 int ret = 0;
1526 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1527
1528 intel_runtime_pm_get(dev_priv);
1529
1530 /* We don't use vmf->pgoff since that has the fake offset */
1531 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1532 PAGE_SHIFT;
1533
1534 ret = i915_mutex_lock_interruptible(dev);
1535 if (ret)
1536 goto out;
1537
1538 trace_i915_gem_object_fault(obj, page_offset, true, write);
1539
1540 /* Try to flush the object off the GPU first without holding the lock.
1541 * Upon reacquiring the lock, we will perform our sanity checks and then
1542 * repeat the flush holding the lock in the normal manner to catch cases
1543 * where we are gazumped.
1544 */
1545 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1546 if (ret)
1547 goto unlock;
1548
1549 /* Access to snoopable pages through the GTT is incoherent. */
1550 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1551 ret = -EFAULT;
1552 goto unlock;
1553 }
1554
1555 /* Now bind it into the GTT if needed */
1556 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1557 if (ret)
1558 goto unlock;
1559
1560 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1561 if (ret)
1562 goto unpin;
1563
1564 ret = i915_gem_object_get_fence(obj);
1565 if (ret)
1566 goto unpin;
1567
1568 /* Finally, remap it using the new GTT offset */
1569 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1570 pfn >>= PAGE_SHIFT;
1571
1572 if (!obj->fault_mappable) {
1573 unsigned long size = min_t(unsigned long,
1574 vma->vm_end - vma->vm_start,
1575 obj->base.size);
1576 int i;
1577
1578 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1579 ret = vm_insert_pfn(vma,
1580 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1581 pfn + i);
1582 if (ret)
1583 break;
1584 }
1585
1586 obj->fault_mappable = true;
1587 } else
1588 ret = vm_insert_pfn(vma,
1589 (unsigned long)vmf->virtual_address,
1590 pfn + page_offset);
1591 unpin:
1592 i915_gem_object_ggtt_unpin(obj);
1593 unlock:
1594 mutex_unlock(&dev->struct_mutex);
1595 out:
1596 switch (ret) {
1597 case -EIO:
1598 /*
1599 * We eat errors when the gpu is terminally wedged to avoid
1600 * userspace unduly crashing (gl has no provisions for mmaps to
1601 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1602 * and so needs to be reported.
1603 */
1604 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1605 ret = VM_FAULT_SIGBUS;
1606 break;
1607 }
1608 case -EAGAIN:
1609 /*
1610 * EAGAIN means the gpu is hung and we'll wait for the error
1611 * handler to reset everything when re-faulting in
1612 * i915_mutex_lock_interruptible.
1613 */
1614 case 0:
1615 case -ERESTARTSYS:
1616 case -EINTR:
1617 case -EBUSY:
1618 /*
1619 * EBUSY is ok: this just means that another thread
1620 * already did the job.
1621 */
1622 ret = VM_FAULT_NOPAGE;
1623 break;
1624 case -ENOMEM:
1625 ret = VM_FAULT_OOM;
1626 break;
1627 case -ENOSPC:
1628 case -EFAULT:
1629 ret = VM_FAULT_SIGBUS;
1630 break;
1631 default:
1632 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1633 ret = VM_FAULT_SIGBUS;
1634 break;
1635 }
1636
1637 intel_runtime_pm_put(dev_priv);
1638 return ret;
1639 }
1640
1641 /**
1642 * i915_gem_release_mmap - remove physical page mappings
1643 * @obj: obj in question
1644 *
1645 * Preserve the reservation of the mmapping with the DRM core code, but
1646 * relinquish ownership of the pages back to the system.
1647 *
1648 * It is vital that we remove the page mapping if we have mapped a tiled
1649 * object through the GTT and then lose the fence register due to
1650 * resource pressure. Similarly if the object has been moved out of the
1651 * aperture, than pages mapped into userspace must be revoked. Removing the
1652 * mapping will then trigger a page fault on the next user access, allowing
1653 * fixup by i915_gem_fault().
1654 */
1655 void
1656 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1657 {
1658 if (!obj->fault_mappable)
1659 return;
1660
1661 drm_vma_node_unmap(&obj->base.vma_node,
1662 obj->base.dev->anon_inode->i_mapping);
1663 obj->fault_mappable = false;
1664 }
1665
1666 void
1667 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1668 {
1669 struct drm_i915_gem_object *obj;
1670
1671 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1672 i915_gem_release_mmap(obj);
1673 }
1674
1675 uint32_t
1676 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1677 {
1678 uint32_t gtt_size;
1679
1680 if (INTEL_INFO(dev)->gen >= 4 ||
1681 tiling_mode == I915_TILING_NONE)
1682 return size;
1683
1684 /* Previous chips need a power-of-two fence region when tiling */
1685 if (INTEL_INFO(dev)->gen == 3)
1686 gtt_size = 1024*1024;
1687 else
1688 gtt_size = 512*1024;
1689
1690 while (gtt_size < size)
1691 gtt_size <<= 1;
1692
1693 return gtt_size;
1694 }
1695
1696 /**
1697 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1698 * @obj: object to check
1699 *
1700 * Return the required GTT alignment for an object, taking into account
1701 * potential fence register mapping.
1702 */
1703 uint32_t
1704 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1705 int tiling_mode, bool fenced)
1706 {
1707 /*
1708 * Minimum alignment is 4k (GTT page size), but might be greater
1709 * if a fence register is needed for the object.
1710 */
1711 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1712 tiling_mode == I915_TILING_NONE)
1713 return 4096;
1714
1715 /*
1716 * Previous chips need to be aligned to the size of the smallest
1717 * fence register that can contain the object.
1718 */
1719 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1720 }
1721
1722 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1723 {
1724 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1725 int ret;
1726
1727 if (drm_vma_node_has_offset(&obj->base.vma_node))
1728 return 0;
1729
1730 dev_priv->mm.shrinker_no_lock_stealing = true;
1731
1732 ret = drm_gem_create_mmap_offset(&obj->base);
1733 if (ret != -ENOSPC)
1734 goto out;
1735
1736 /* Badly fragmented mmap space? The only way we can recover
1737 * space is by destroying unwanted objects. We can't randomly release
1738 * mmap_offsets as userspace expects them to be persistent for the
1739 * lifetime of the objects. The closest we can is to release the
1740 * offsets on purgeable objects by truncating it and marking it purged,
1741 * which prevents userspace from ever using that object again.
1742 */
1743 i915_gem_shrink(dev_priv,
1744 obj->base.size >> PAGE_SHIFT,
1745 I915_SHRINK_BOUND |
1746 I915_SHRINK_UNBOUND |
1747 I915_SHRINK_PURGEABLE);
1748 ret = drm_gem_create_mmap_offset(&obj->base);
1749 if (ret != -ENOSPC)
1750 goto out;
1751
1752 i915_gem_shrink_all(dev_priv);
1753 ret = drm_gem_create_mmap_offset(&obj->base);
1754 out:
1755 dev_priv->mm.shrinker_no_lock_stealing = false;
1756
1757 return ret;
1758 }
1759
1760 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1761 {
1762 drm_gem_free_mmap_offset(&obj->base);
1763 }
1764
1765 int
1766 i915_gem_mmap_gtt(struct drm_file *file,
1767 struct drm_device *dev,
1768 uint32_t handle,
1769 uint64_t *offset)
1770 {
1771 struct drm_i915_private *dev_priv = dev->dev_private;
1772 struct drm_i915_gem_object *obj;
1773 int ret;
1774
1775 ret = i915_mutex_lock_interruptible(dev);
1776 if (ret)
1777 return ret;
1778
1779 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1780 if (&obj->base == NULL) {
1781 ret = -ENOENT;
1782 goto unlock;
1783 }
1784
1785 if (obj->base.size > dev_priv->gtt.mappable_end) {
1786 ret = -E2BIG;
1787 goto out;
1788 }
1789
1790 if (obj->madv != I915_MADV_WILLNEED) {
1791 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1792 ret = -EFAULT;
1793 goto out;
1794 }
1795
1796 ret = i915_gem_object_create_mmap_offset(obj);
1797 if (ret)
1798 goto out;
1799
1800 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1801
1802 out:
1803 drm_gem_object_unreference(&obj->base);
1804 unlock:
1805 mutex_unlock(&dev->struct_mutex);
1806 return ret;
1807 }
1808
1809 /**
1810 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1811 * @dev: DRM device
1812 * @data: GTT mapping ioctl data
1813 * @file: GEM object info
1814 *
1815 * Simply returns the fake offset to userspace so it can mmap it.
1816 * The mmap call will end up in drm_gem_mmap(), which will set things
1817 * up so we can get faults in the handler above.
1818 *
1819 * The fault handler will take care of binding the object into the GTT
1820 * (since it may have been evicted to make room for something), allocating
1821 * a fence register, and mapping the appropriate aperture address into
1822 * userspace.
1823 */
1824 int
1825 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1826 struct drm_file *file)
1827 {
1828 struct drm_i915_gem_mmap_gtt *args = data;
1829
1830 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1831 }
1832
1833 static inline int
1834 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1835 {
1836 return obj->madv == I915_MADV_DONTNEED;
1837 }
1838
1839 /* Immediately discard the backing storage */
1840 static void
1841 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1842 {
1843 i915_gem_object_free_mmap_offset(obj);
1844
1845 if (obj->base.filp == NULL)
1846 return;
1847
1848 /* Our goal here is to return as much of the memory as
1849 * is possible back to the system as we are called from OOM.
1850 * To do this we must instruct the shmfs to drop all of its
1851 * backing pages, *now*.
1852 */
1853 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1854 obj->madv = __I915_MADV_PURGED;
1855 }
1856
1857 /* Try to discard unwanted pages */
1858 static void
1859 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1860 {
1861 struct address_space *mapping;
1862
1863 switch (obj->madv) {
1864 case I915_MADV_DONTNEED:
1865 i915_gem_object_truncate(obj);
1866 case __I915_MADV_PURGED:
1867 return;
1868 }
1869
1870 if (obj->base.filp == NULL)
1871 return;
1872
1873 mapping = file_inode(obj->base.filp)->i_mapping,
1874 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1875 }
1876
1877 static void
1878 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1879 {
1880 struct sg_page_iter sg_iter;
1881 int ret;
1882
1883 BUG_ON(obj->madv == __I915_MADV_PURGED);
1884
1885 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1886 if (ret) {
1887 /* In the event of a disaster, abandon all caches and
1888 * hope for the best.
1889 */
1890 WARN_ON(ret != -EIO);
1891 i915_gem_clflush_object(obj, true);
1892 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1893 }
1894
1895 if (i915_gem_object_needs_bit17_swizzle(obj))
1896 i915_gem_object_save_bit_17_swizzle(obj);
1897
1898 if (obj->madv == I915_MADV_DONTNEED)
1899 obj->dirty = 0;
1900
1901 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1902 struct page *page = sg_page_iter_page(&sg_iter);
1903
1904 if (obj->dirty)
1905 set_page_dirty(page);
1906
1907 if (obj->madv == I915_MADV_WILLNEED)
1908 mark_page_accessed(page);
1909
1910 page_cache_release(page);
1911 }
1912 obj->dirty = 0;
1913
1914 sg_free_table(obj->pages);
1915 kfree(obj->pages);
1916 }
1917
1918 int
1919 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1920 {
1921 const struct drm_i915_gem_object_ops *ops = obj->ops;
1922
1923 if (obj->pages == NULL)
1924 return 0;
1925
1926 if (obj->pages_pin_count)
1927 return -EBUSY;
1928
1929 BUG_ON(i915_gem_obj_bound_any(obj));
1930
1931 /* ->put_pages might need to allocate memory for the bit17 swizzle
1932 * array, hence protect them from being reaped by removing them from gtt
1933 * lists early. */
1934 list_del(&obj->global_list);
1935
1936 ops->put_pages(obj);
1937 obj->pages = NULL;
1938
1939 i915_gem_object_invalidate(obj);
1940
1941 return 0;
1942 }
1943
1944 unsigned long
1945 i915_gem_shrink(struct drm_i915_private *dev_priv,
1946 long target, unsigned flags)
1947 {
1948 const bool purgeable_only = flags & I915_SHRINK_PURGEABLE;
1949 unsigned long count = 0;
1950
1951 /*
1952 * As we may completely rewrite the (un)bound list whilst unbinding
1953 * (due to retiring requests) we have to strictly process only
1954 * one element of the list at the time, and recheck the list
1955 * on every iteration.
1956 *
1957 * In particular, we must hold a reference whilst removing the
1958 * object as we may end up waiting for and/or retiring the objects.
1959 * This might release the final reference (held by the active list)
1960 * and result in the object being freed from under us. This is
1961 * similar to the precautions the eviction code must take whilst
1962 * removing objects.
1963 *
1964 * Also note that although these lists do not hold a reference to
1965 * the object we can safely grab one here: The final object
1966 * unreferencing and the bound_list are both protected by the
1967 * dev->struct_mutex and so we won't ever be able to observe an
1968 * object on the bound_list with a reference count equals 0.
1969 */
1970 if (flags & I915_SHRINK_UNBOUND) {
1971 struct list_head still_in_list;
1972
1973 INIT_LIST_HEAD(&still_in_list);
1974 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1975 struct drm_i915_gem_object *obj;
1976
1977 obj = list_first_entry(&dev_priv->mm.unbound_list,
1978 typeof(*obj), global_list);
1979 list_move_tail(&obj->global_list, &still_in_list);
1980
1981 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1982 continue;
1983
1984 drm_gem_object_reference(&obj->base);
1985
1986 if (i915_gem_object_put_pages(obj) == 0)
1987 count += obj->base.size >> PAGE_SHIFT;
1988
1989 drm_gem_object_unreference(&obj->base);
1990 }
1991 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1992 }
1993
1994 if (flags & I915_SHRINK_BOUND) {
1995 struct list_head still_in_list;
1996
1997 INIT_LIST_HEAD(&still_in_list);
1998 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1999 struct drm_i915_gem_object *obj;
2000 struct i915_vma *vma, *v;
2001
2002 obj = list_first_entry(&dev_priv->mm.bound_list,
2003 typeof(*obj), global_list);
2004 list_move_tail(&obj->global_list, &still_in_list);
2005
2006 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2007 continue;
2008
2009 drm_gem_object_reference(&obj->base);
2010
2011 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2012 if (i915_vma_unbind(vma))
2013 break;
2014
2015 if (i915_gem_object_put_pages(obj) == 0)
2016 count += obj->base.size >> PAGE_SHIFT;
2017
2018 drm_gem_object_unreference(&obj->base);
2019 }
2020 list_splice(&still_in_list, &dev_priv->mm.bound_list);
2021 }
2022
2023 return count;
2024 }
2025
2026 static unsigned long
2027 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2028 {
2029 i915_gem_evict_everything(dev_priv->dev);
2030 return i915_gem_shrink(dev_priv, LONG_MAX,
2031 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2032 }
2033
2034 static int
2035 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2036 {
2037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 int page_count, i;
2039 struct address_space *mapping;
2040 struct sg_table *st;
2041 struct scatterlist *sg;
2042 struct sg_page_iter sg_iter;
2043 struct page *page;
2044 unsigned long last_pfn = 0; /* suppress gcc warning */
2045 gfp_t gfp;
2046
2047 /* Assert that the object is not currently in any GPU domain. As it
2048 * wasn't in the GTT, there shouldn't be any way it could have been in
2049 * a GPU cache
2050 */
2051 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2052 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2053
2054 st = kmalloc(sizeof(*st), GFP_KERNEL);
2055 if (st == NULL)
2056 return -ENOMEM;
2057
2058 page_count = obj->base.size / PAGE_SIZE;
2059 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2060 kfree(st);
2061 return -ENOMEM;
2062 }
2063
2064 /* Get the list of pages out of our struct file. They'll be pinned
2065 * at this point until we release them.
2066 *
2067 * Fail silently without starting the shrinker
2068 */
2069 mapping = file_inode(obj->base.filp)->i_mapping;
2070 gfp = mapping_gfp_mask(mapping);
2071 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2072 gfp &= ~(__GFP_IO | __GFP_WAIT);
2073 sg = st->sgl;
2074 st->nents = 0;
2075 for (i = 0; i < page_count; i++) {
2076 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2077 if (IS_ERR(page)) {
2078 i915_gem_shrink(dev_priv,
2079 page_count,
2080 I915_SHRINK_BOUND |
2081 I915_SHRINK_UNBOUND |
2082 I915_SHRINK_PURGEABLE);
2083 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2084 }
2085 if (IS_ERR(page)) {
2086 /* We've tried hard to allocate the memory by reaping
2087 * our own buffer, now let the real VM do its job and
2088 * go down in flames if truly OOM.
2089 */
2090 i915_gem_shrink_all(dev_priv);
2091 page = shmem_read_mapping_page(mapping, i);
2092 if (IS_ERR(page))
2093 goto err_pages;
2094 }
2095 #ifdef CONFIG_SWIOTLB
2096 if (swiotlb_nr_tbl()) {
2097 st->nents++;
2098 sg_set_page(sg, page, PAGE_SIZE, 0);
2099 sg = sg_next(sg);
2100 continue;
2101 }
2102 #endif
2103 if (!i || page_to_pfn(page) != last_pfn + 1) {
2104 if (i)
2105 sg = sg_next(sg);
2106 st->nents++;
2107 sg_set_page(sg, page, PAGE_SIZE, 0);
2108 } else {
2109 sg->length += PAGE_SIZE;
2110 }
2111 last_pfn = page_to_pfn(page);
2112
2113 /* Check that the i965g/gm workaround works. */
2114 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2115 }
2116 #ifdef CONFIG_SWIOTLB
2117 if (!swiotlb_nr_tbl())
2118 #endif
2119 sg_mark_end(sg);
2120 obj->pages = st;
2121
2122 if (i915_gem_object_needs_bit17_swizzle(obj))
2123 i915_gem_object_do_bit_17_swizzle(obj);
2124
2125 return 0;
2126
2127 err_pages:
2128 sg_mark_end(sg);
2129 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2130 page_cache_release(sg_page_iter_page(&sg_iter));
2131 sg_free_table(st);
2132 kfree(st);
2133
2134 /* shmemfs first checks if there is enough memory to allocate the page
2135 * and reports ENOSPC should there be insufficient, along with the usual
2136 * ENOMEM for a genuine allocation failure.
2137 *
2138 * We use ENOSPC in our driver to mean that we have run out of aperture
2139 * space and so want to translate the error from shmemfs back to our
2140 * usual understanding of ENOMEM.
2141 */
2142 if (PTR_ERR(page) == -ENOSPC)
2143 return -ENOMEM;
2144 else
2145 return PTR_ERR(page);
2146 }
2147
2148 /* Ensure that the associated pages are gathered from the backing storage
2149 * and pinned into our object. i915_gem_object_get_pages() may be called
2150 * multiple times before they are released by a single call to
2151 * i915_gem_object_put_pages() - once the pages are no longer referenced
2152 * either as a result of memory pressure (reaping pages under the shrinker)
2153 * or as the object is itself released.
2154 */
2155 int
2156 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2157 {
2158 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2159 const struct drm_i915_gem_object_ops *ops = obj->ops;
2160 int ret;
2161
2162 if (obj->pages)
2163 return 0;
2164
2165 if (obj->madv != I915_MADV_WILLNEED) {
2166 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2167 return -EFAULT;
2168 }
2169
2170 BUG_ON(obj->pages_pin_count);
2171
2172 ret = ops->get_pages(obj);
2173 if (ret)
2174 return ret;
2175
2176 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2177 return 0;
2178 }
2179
2180 static void
2181 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2182 struct intel_engine_cs *ring)
2183 {
2184 u32 seqno = intel_ring_get_seqno(ring);
2185
2186 BUG_ON(ring == NULL);
2187 if (obj->ring != ring && obj->last_write_seqno) {
2188 /* Keep the seqno relative to the current ring */
2189 obj->last_write_seqno = seqno;
2190 }
2191 obj->ring = ring;
2192
2193 /* Add a reference if we're newly entering the active list. */
2194 if (!obj->active) {
2195 drm_gem_object_reference(&obj->base);
2196 obj->active = 1;
2197 }
2198
2199 list_move_tail(&obj->ring_list, &ring->active_list);
2200
2201 obj->last_read_seqno = seqno;
2202 }
2203
2204 void i915_vma_move_to_active(struct i915_vma *vma,
2205 struct intel_engine_cs *ring)
2206 {
2207 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2208 return i915_gem_object_move_to_active(vma->obj, ring);
2209 }
2210
2211 static void
2212 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2213 {
2214 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2215 struct i915_address_space *vm;
2216 struct i915_vma *vma;
2217
2218 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2219 BUG_ON(!obj->active);
2220
2221 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2222 vma = i915_gem_obj_to_vma(obj, vm);
2223 if (vma && !list_empty(&vma->mm_list))
2224 list_move_tail(&vma->mm_list, &vm->inactive_list);
2225 }
2226
2227 intel_fb_obj_flush(obj, true);
2228
2229 list_del_init(&obj->ring_list);
2230 obj->ring = NULL;
2231
2232 obj->last_read_seqno = 0;
2233 obj->last_write_seqno = 0;
2234 obj->base.write_domain = 0;
2235
2236 obj->last_fenced_seqno = 0;
2237
2238 obj->active = 0;
2239 drm_gem_object_unreference(&obj->base);
2240
2241 WARN_ON(i915_verify_lists(dev));
2242 }
2243
2244 static void
2245 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2246 {
2247 struct intel_engine_cs *ring = obj->ring;
2248
2249 if (ring == NULL)
2250 return;
2251
2252 if (i915_seqno_passed(ring->get_seqno(ring, true),
2253 obj->last_read_seqno))
2254 i915_gem_object_move_to_inactive(obj);
2255 }
2256
2257 static int
2258 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2259 {
2260 struct drm_i915_private *dev_priv = dev->dev_private;
2261 struct intel_engine_cs *ring;
2262 int ret, i, j;
2263
2264 /* Carefully retire all requests without writing to the rings */
2265 for_each_ring(ring, dev_priv, i) {
2266 ret = intel_ring_idle(ring);
2267 if (ret)
2268 return ret;
2269 }
2270 i915_gem_retire_requests(dev);
2271
2272 /* Finally reset hw state */
2273 for_each_ring(ring, dev_priv, i) {
2274 intel_ring_init_seqno(ring, seqno);
2275
2276 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2277 ring->semaphore.sync_seqno[j] = 0;
2278 }
2279
2280 return 0;
2281 }
2282
2283 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2284 {
2285 struct drm_i915_private *dev_priv = dev->dev_private;
2286 int ret;
2287
2288 if (seqno == 0)
2289 return -EINVAL;
2290
2291 /* HWS page needs to be set less than what we
2292 * will inject to ring
2293 */
2294 ret = i915_gem_init_seqno(dev, seqno - 1);
2295 if (ret)
2296 return ret;
2297
2298 /* Carefully set the last_seqno value so that wrap
2299 * detection still works
2300 */
2301 dev_priv->next_seqno = seqno;
2302 dev_priv->last_seqno = seqno - 1;
2303 if (dev_priv->last_seqno == 0)
2304 dev_priv->last_seqno--;
2305
2306 return 0;
2307 }
2308
2309 int
2310 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2311 {
2312 struct drm_i915_private *dev_priv = dev->dev_private;
2313
2314 /* reserve 0 for non-seqno */
2315 if (dev_priv->next_seqno == 0) {
2316 int ret = i915_gem_init_seqno(dev, 0);
2317 if (ret)
2318 return ret;
2319
2320 dev_priv->next_seqno = 1;
2321 }
2322
2323 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2324 return 0;
2325 }
2326
2327 int __i915_add_request(struct intel_engine_cs *ring,
2328 struct drm_file *file,
2329 struct drm_i915_gem_object *obj,
2330 u32 *out_seqno)
2331 {
2332 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2333 struct drm_i915_gem_request *request;
2334 struct intel_ringbuffer *ringbuf;
2335 u32 request_ring_position, request_start;
2336 int ret;
2337
2338 request = ring->preallocated_lazy_request;
2339 if (WARN_ON(request == NULL))
2340 return -ENOMEM;
2341
2342 if (i915.enable_execlists) {
2343 struct intel_context *ctx = request->ctx;
2344 ringbuf = ctx->engine[ring->id].ringbuf;
2345 } else
2346 ringbuf = ring->buffer;
2347
2348 request_start = intel_ring_get_tail(ringbuf);
2349 /*
2350 * Emit any outstanding flushes - execbuf can fail to emit the flush
2351 * after having emitted the batchbuffer command. Hence we need to fix
2352 * things up similar to emitting the lazy request. The difference here
2353 * is that the flush _must_ happen before the next request, no matter
2354 * what.
2355 */
2356 if (i915.enable_execlists) {
2357 ret = logical_ring_flush_all_caches(ringbuf);
2358 if (ret)
2359 return ret;
2360 } else {
2361 ret = intel_ring_flush_all_caches(ring);
2362 if (ret)
2363 return ret;
2364 }
2365
2366 /* Record the position of the start of the request so that
2367 * should we detect the updated seqno part-way through the
2368 * GPU processing the request, we never over-estimate the
2369 * position of the head.
2370 */
2371 request_ring_position = intel_ring_get_tail(ringbuf);
2372
2373 if (i915.enable_execlists) {
2374 ret = ring->emit_request(ringbuf);
2375 if (ret)
2376 return ret;
2377 } else {
2378 ret = ring->add_request(ring);
2379 if (ret)
2380 return ret;
2381 }
2382
2383 request->seqno = intel_ring_get_seqno(ring);
2384 request->ring = ring;
2385 request->head = request_start;
2386 request->tail = request_ring_position;
2387
2388 /* Whilst this request exists, batch_obj will be on the
2389 * active_list, and so will hold the active reference. Only when this
2390 * request is retired will the the batch_obj be moved onto the
2391 * inactive_list and lose its active reference. Hence we do not need
2392 * to explicitly hold another reference here.
2393 */
2394 request->batch_obj = obj;
2395
2396 if (!i915.enable_execlists) {
2397 /* Hold a reference to the current context so that we can inspect
2398 * it later in case a hangcheck error event fires.
2399 */
2400 request->ctx = ring->last_context;
2401 if (request->ctx)
2402 i915_gem_context_reference(request->ctx);
2403 }
2404
2405 request->emitted_jiffies = jiffies;
2406 list_add_tail(&request->list, &ring->request_list);
2407 request->file_priv = NULL;
2408
2409 if (file) {
2410 struct drm_i915_file_private *file_priv = file->driver_priv;
2411
2412 spin_lock(&file_priv->mm.lock);
2413 request->file_priv = file_priv;
2414 list_add_tail(&request->client_list,
2415 &file_priv->mm.request_list);
2416 spin_unlock(&file_priv->mm.lock);
2417 }
2418
2419 trace_i915_gem_request_add(ring, request->seqno);
2420 ring->outstanding_lazy_seqno = 0;
2421 ring->preallocated_lazy_request = NULL;
2422
2423 if (!dev_priv->ums.mm_suspended) {
2424 i915_queue_hangcheck(ring->dev);
2425
2426 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2427 queue_delayed_work(dev_priv->wq,
2428 &dev_priv->mm.retire_work,
2429 round_jiffies_up_relative(HZ));
2430 intel_mark_busy(dev_priv->dev);
2431 }
2432
2433 if (out_seqno)
2434 *out_seqno = request->seqno;
2435 return 0;
2436 }
2437
2438 static inline void
2439 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2440 {
2441 struct drm_i915_file_private *file_priv = request->file_priv;
2442
2443 if (!file_priv)
2444 return;
2445
2446 spin_lock(&file_priv->mm.lock);
2447 list_del(&request->client_list);
2448 request->file_priv = NULL;
2449 spin_unlock(&file_priv->mm.lock);
2450 }
2451
2452 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2453 const struct intel_context *ctx)
2454 {
2455 unsigned long elapsed;
2456
2457 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2458
2459 if (ctx->hang_stats.banned)
2460 return true;
2461
2462 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2463 if (!i915_gem_context_is_default(ctx)) {
2464 DRM_DEBUG("context hanging too fast, banning!\n");
2465 return true;
2466 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2467 if (i915_stop_ring_allow_warn(dev_priv))
2468 DRM_ERROR("gpu hanging too fast, banning!\n");
2469 return true;
2470 }
2471 }
2472
2473 return false;
2474 }
2475
2476 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2477 struct intel_context *ctx,
2478 const bool guilty)
2479 {
2480 struct i915_ctx_hang_stats *hs;
2481
2482 if (WARN_ON(!ctx))
2483 return;
2484
2485 hs = &ctx->hang_stats;
2486
2487 if (guilty) {
2488 hs->banned = i915_context_is_banned(dev_priv, ctx);
2489 hs->batch_active++;
2490 hs->guilty_ts = get_seconds();
2491 } else {
2492 hs->batch_pending++;
2493 }
2494 }
2495
2496 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2497 {
2498 list_del(&request->list);
2499 i915_gem_request_remove_from_client(request);
2500
2501 if (request->ctx)
2502 i915_gem_context_unreference(request->ctx);
2503
2504 kfree(request);
2505 }
2506
2507 struct drm_i915_gem_request *
2508 i915_gem_find_active_request(struct intel_engine_cs *ring)
2509 {
2510 struct drm_i915_gem_request *request;
2511 u32 completed_seqno;
2512
2513 completed_seqno = ring->get_seqno(ring, false);
2514
2515 list_for_each_entry(request, &ring->request_list, list) {
2516 if (i915_seqno_passed(completed_seqno, request->seqno))
2517 continue;
2518
2519 return request;
2520 }
2521
2522 return NULL;
2523 }
2524
2525 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2526 struct intel_engine_cs *ring)
2527 {
2528 struct drm_i915_gem_request *request;
2529 bool ring_hung;
2530
2531 request = i915_gem_find_active_request(ring);
2532
2533 if (request == NULL)
2534 return;
2535
2536 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2537
2538 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2539
2540 list_for_each_entry_continue(request, &ring->request_list, list)
2541 i915_set_reset_status(dev_priv, request->ctx, false);
2542 }
2543
2544 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2545 struct intel_engine_cs *ring)
2546 {
2547 while (!list_empty(&ring->active_list)) {
2548 struct drm_i915_gem_object *obj;
2549
2550 obj = list_first_entry(&ring->active_list,
2551 struct drm_i915_gem_object,
2552 ring_list);
2553
2554 i915_gem_object_move_to_inactive(obj);
2555 }
2556
2557 /*
2558 * We must free the requests after all the corresponding objects have
2559 * been moved off active lists. Which is the same order as the normal
2560 * retire_requests function does. This is important if object hold
2561 * implicit references on things like e.g. ppgtt address spaces through
2562 * the request.
2563 */
2564 while (!list_empty(&ring->request_list)) {
2565 struct drm_i915_gem_request *request;
2566
2567 request = list_first_entry(&ring->request_list,
2568 struct drm_i915_gem_request,
2569 list);
2570
2571 i915_gem_free_request(request);
2572 }
2573
2574 while (!list_empty(&ring->execlist_queue)) {
2575 struct intel_ctx_submit_request *submit_req;
2576
2577 submit_req = list_first_entry(&ring->execlist_queue,
2578 struct intel_ctx_submit_request,
2579 execlist_link);
2580 list_del(&submit_req->execlist_link);
2581 intel_runtime_pm_put(dev_priv);
2582 i915_gem_context_unreference(submit_req->ctx);
2583 kfree(submit_req);
2584 }
2585
2586 /* These may not have been flush before the reset, do so now */
2587 kfree(ring->preallocated_lazy_request);
2588 ring->preallocated_lazy_request = NULL;
2589 ring->outstanding_lazy_seqno = 0;
2590 }
2591
2592 void i915_gem_restore_fences(struct drm_device *dev)
2593 {
2594 struct drm_i915_private *dev_priv = dev->dev_private;
2595 int i;
2596
2597 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2598 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2599
2600 /*
2601 * Commit delayed tiling changes if we have an object still
2602 * attached to the fence, otherwise just clear the fence.
2603 */
2604 if (reg->obj) {
2605 i915_gem_object_update_fence(reg->obj, reg,
2606 reg->obj->tiling_mode);
2607 } else {
2608 i915_gem_write_fence(dev, i, NULL);
2609 }
2610 }
2611 }
2612
2613 void i915_gem_reset(struct drm_device *dev)
2614 {
2615 struct drm_i915_private *dev_priv = dev->dev_private;
2616 struct intel_engine_cs *ring;
2617 int i;
2618
2619 /*
2620 * Before we free the objects from the requests, we need to inspect
2621 * them for finding the guilty party. As the requests only borrow
2622 * their reference to the objects, the inspection must be done first.
2623 */
2624 for_each_ring(ring, dev_priv, i)
2625 i915_gem_reset_ring_status(dev_priv, ring);
2626
2627 for_each_ring(ring, dev_priv, i)
2628 i915_gem_reset_ring_cleanup(dev_priv, ring);
2629
2630 i915_gem_context_reset(dev);
2631
2632 i915_gem_restore_fences(dev);
2633 }
2634
2635 /**
2636 * This function clears the request list as sequence numbers are passed.
2637 */
2638 void
2639 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2640 {
2641 uint32_t seqno;
2642
2643 if (list_empty(&ring->request_list))
2644 return;
2645
2646 WARN_ON(i915_verify_lists(ring->dev));
2647
2648 seqno = ring->get_seqno(ring, true);
2649
2650 /* Move any buffers on the active list that are no longer referenced
2651 * by the ringbuffer to the flushing/inactive lists as appropriate,
2652 * before we free the context associated with the requests.
2653 */
2654 while (!list_empty(&ring->active_list)) {
2655 struct drm_i915_gem_object *obj;
2656
2657 obj = list_first_entry(&ring->active_list,
2658 struct drm_i915_gem_object,
2659 ring_list);
2660
2661 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2662 break;
2663
2664 i915_gem_object_move_to_inactive(obj);
2665 }
2666
2667
2668 while (!list_empty(&ring->request_list)) {
2669 struct drm_i915_gem_request *request;
2670 struct intel_ringbuffer *ringbuf;
2671
2672 request = list_first_entry(&ring->request_list,
2673 struct drm_i915_gem_request,
2674 list);
2675
2676 if (!i915_seqno_passed(seqno, request->seqno))
2677 break;
2678
2679 trace_i915_gem_request_retire(ring, request->seqno);
2680
2681 /* This is one of the few common intersection points
2682 * between legacy ringbuffer submission and execlists:
2683 * we need to tell them apart in order to find the correct
2684 * ringbuffer to which the request belongs to.
2685 */
2686 if (i915.enable_execlists) {
2687 struct intel_context *ctx = request->ctx;
2688 ringbuf = ctx->engine[ring->id].ringbuf;
2689 } else
2690 ringbuf = ring->buffer;
2691
2692 /* We know the GPU must have read the request to have
2693 * sent us the seqno + interrupt, so use the position
2694 * of tail of the request to update the last known position
2695 * of the GPU head.
2696 */
2697 ringbuf->last_retired_head = request->tail;
2698
2699 i915_gem_free_request(request);
2700 }
2701
2702 if (unlikely(ring->trace_irq_seqno &&
2703 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2704 ring->irq_put(ring);
2705 ring->trace_irq_seqno = 0;
2706 }
2707
2708 WARN_ON(i915_verify_lists(ring->dev));
2709 }
2710
2711 bool
2712 i915_gem_retire_requests(struct drm_device *dev)
2713 {
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715 struct intel_engine_cs *ring;
2716 bool idle = true;
2717 int i;
2718
2719 for_each_ring(ring, dev_priv, i) {
2720 i915_gem_retire_requests_ring(ring);
2721 idle &= list_empty(&ring->request_list);
2722 }
2723
2724 if (idle)
2725 mod_delayed_work(dev_priv->wq,
2726 &dev_priv->mm.idle_work,
2727 msecs_to_jiffies(100));
2728
2729 return idle;
2730 }
2731
2732 static void
2733 i915_gem_retire_work_handler(struct work_struct *work)
2734 {
2735 struct drm_i915_private *dev_priv =
2736 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2737 struct drm_device *dev = dev_priv->dev;
2738 bool idle;
2739
2740 /* Come back later if the device is busy... */
2741 idle = false;
2742 if (mutex_trylock(&dev->struct_mutex)) {
2743 idle = i915_gem_retire_requests(dev);
2744 mutex_unlock(&dev->struct_mutex);
2745 }
2746 if (!idle)
2747 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2748 round_jiffies_up_relative(HZ));
2749 }
2750
2751 static void
2752 i915_gem_idle_work_handler(struct work_struct *work)
2753 {
2754 struct drm_i915_private *dev_priv =
2755 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2756
2757 intel_mark_idle(dev_priv->dev);
2758 }
2759
2760 /**
2761 * Ensures that an object will eventually get non-busy by flushing any required
2762 * write domains, emitting any outstanding lazy request and retiring and
2763 * completed requests.
2764 */
2765 static int
2766 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2767 {
2768 int ret;
2769
2770 if (obj->active) {
2771 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2772 if (ret)
2773 return ret;
2774
2775 i915_gem_retire_requests_ring(obj->ring);
2776 }
2777
2778 return 0;
2779 }
2780
2781 /**
2782 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2783 * @DRM_IOCTL_ARGS: standard ioctl arguments
2784 *
2785 * Returns 0 if successful, else an error is returned with the remaining time in
2786 * the timeout parameter.
2787 * -ETIME: object is still busy after timeout
2788 * -ERESTARTSYS: signal interrupted the wait
2789 * -ENONENT: object doesn't exist
2790 * Also possible, but rare:
2791 * -EAGAIN: GPU wedged
2792 * -ENOMEM: damn
2793 * -ENODEV: Internal IRQ fail
2794 * -E?: The add request failed
2795 *
2796 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2797 * non-zero timeout parameter the wait ioctl will wait for the given number of
2798 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2799 * without holding struct_mutex the object may become re-busied before this
2800 * function completes. A similar but shorter * race condition exists in the busy
2801 * ioctl
2802 */
2803 int
2804 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2805 {
2806 struct drm_i915_private *dev_priv = dev->dev_private;
2807 struct drm_i915_gem_wait *args = data;
2808 struct drm_i915_gem_object *obj;
2809 struct intel_engine_cs *ring = NULL;
2810 unsigned reset_counter;
2811 u32 seqno = 0;
2812 int ret = 0;
2813
2814 ret = i915_mutex_lock_interruptible(dev);
2815 if (ret)
2816 return ret;
2817
2818 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2819 if (&obj->base == NULL) {
2820 mutex_unlock(&dev->struct_mutex);
2821 return -ENOENT;
2822 }
2823
2824 /* Need to make sure the object gets inactive eventually. */
2825 ret = i915_gem_object_flush_active(obj);
2826 if (ret)
2827 goto out;
2828
2829 if (obj->active) {
2830 seqno = obj->last_read_seqno;
2831 ring = obj->ring;
2832 }
2833
2834 if (seqno == 0)
2835 goto out;
2836
2837 /* Do this after OLR check to make sure we make forward progress polling
2838 * on this IOCTL with a timeout <=0 (like busy ioctl)
2839 */
2840 if (args->timeout_ns <= 0) {
2841 ret = -ETIME;
2842 goto out;
2843 }
2844
2845 drm_gem_object_unreference(&obj->base);
2846 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2847 mutex_unlock(&dev->struct_mutex);
2848
2849 return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2850 file->driver_priv);
2851
2852 out:
2853 drm_gem_object_unreference(&obj->base);
2854 mutex_unlock(&dev->struct_mutex);
2855 return ret;
2856 }
2857
2858 /**
2859 * i915_gem_object_sync - sync an object to a ring.
2860 *
2861 * @obj: object which may be in use on another ring.
2862 * @to: ring we wish to use the object on. May be NULL.
2863 *
2864 * This code is meant to abstract object synchronization with the GPU.
2865 * Calling with NULL implies synchronizing the object with the CPU
2866 * rather than a particular GPU ring.
2867 *
2868 * Returns 0 if successful, else propagates up the lower layer error.
2869 */
2870 int
2871 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2872 struct intel_engine_cs *to)
2873 {
2874 struct intel_engine_cs *from = obj->ring;
2875 u32 seqno;
2876 int ret, idx;
2877
2878 if (from == NULL || to == from)
2879 return 0;
2880
2881 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2882 return i915_gem_object_wait_rendering(obj, false);
2883
2884 idx = intel_ring_sync_index(from, to);
2885
2886 seqno = obj->last_read_seqno;
2887 /* Optimization: Avoid semaphore sync when we are sure we already
2888 * waited for an object with higher seqno */
2889 if (seqno <= from->semaphore.sync_seqno[idx])
2890 return 0;
2891
2892 ret = i915_gem_check_olr(obj->ring, seqno);
2893 if (ret)
2894 return ret;
2895
2896 trace_i915_gem_ring_sync_to(from, to, seqno);
2897 ret = to->semaphore.sync_to(to, from, seqno);
2898 if (!ret)
2899 /* We use last_read_seqno because sync_to()
2900 * might have just caused seqno wrap under
2901 * the radar.
2902 */
2903 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2904
2905 return ret;
2906 }
2907
2908 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2909 {
2910 u32 old_write_domain, old_read_domains;
2911
2912 /* Force a pagefault for domain tracking on next user access */
2913 i915_gem_release_mmap(obj);
2914
2915 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2916 return;
2917
2918 /* Wait for any direct GTT access to complete */
2919 mb();
2920
2921 old_read_domains = obj->base.read_domains;
2922 old_write_domain = obj->base.write_domain;
2923
2924 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2925 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2926
2927 trace_i915_gem_object_change_domain(obj,
2928 old_read_domains,
2929 old_write_domain);
2930 }
2931
2932 int i915_vma_unbind(struct i915_vma *vma)
2933 {
2934 struct drm_i915_gem_object *obj = vma->obj;
2935 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2936 int ret;
2937
2938 if (list_empty(&vma->vma_link))
2939 return 0;
2940
2941 if (!drm_mm_node_allocated(&vma->node)) {
2942 i915_gem_vma_destroy(vma);
2943 return 0;
2944 }
2945
2946 if (vma->pin_count)
2947 return -EBUSY;
2948
2949 BUG_ON(obj->pages == NULL);
2950
2951 ret = i915_gem_object_finish_gpu(obj);
2952 if (ret)
2953 return ret;
2954 /* Continue on if we fail due to EIO, the GPU is hung so we
2955 * should be safe and we need to cleanup or else we might
2956 * cause memory corruption through use-after-free.
2957 */
2958
2959 /* Throw away the active reference before moving to the unbound list */
2960 i915_gem_object_retire(obj);
2961
2962 if (i915_is_ggtt(vma->vm)) {
2963 i915_gem_object_finish_gtt(obj);
2964
2965 /* release the fence reg _after_ flushing */
2966 ret = i915_gem_object_put_fence(obj);
2967 if (ret)
2968 return ret;
2969 }
2970
2971 trace_i915_vma_unbind(vma);
2972
2973 vma->unbind_vma(vma);
2974
2975 list_del_init(&vma->mm_list);
2976 if (i915_is_ggtt(vma->vm))
2977 obj->map_and_fenceable = false;
2978
2979 drm_mm_remove_node(&vma->node);
2980 i915_gem_vma_destroy(vma);
2981
2982 /* Since the unbound list is global, only move to that list if
2983 * no more VMAs exist. */
2984 if (list_empty(&obj->vma_list)) {
2985 i915_gem_gtt_finish_object(obj);
2986 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2987 }
2988
2989 /* And finally now the object is completely decoupled from this vma,
2990 * we can drop its hold on the backing storage and allow it to be
2991 * reaped by the shrinker.
2992 */
2993 i915_gem_object_unpin_pages(obj);
2994
2995 return 0;
2996 }
2997
2998 int i915_gpu_idle(struct drm_device *dev)
2999 {
3000 struct drm_i915_private *dev_priv = dev->dev_private;
3001 struct intel_engine_cs *ring;
3002 int ret, i;
3003
3004 /* Flush everything onto the inactive list. */
3005 for_each_ring(ring, dev_priv, i) {
3006 if (!i915.enable_execlists) {
3007 ret = i915_switch_context(ring, ring->default_context);
3008 if (ret)
3009 return ret;
3010 }
3011
3012 ret = intel_ring_idle(ring);
3013 if (ret)
3014 return ret;
3015 }
3016
3017 return 0;
3018 }
3019
3020 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3021 struct drm_i915_gem_object *obj)
3022 {
3023 struct drm_i915_private *dev_priv = dev->dev_private;
3024 int fence_reg;
3025 int fence_pitch_shift;
3026
3027 if (INTEL_INFO(dev)->gen >= 6) {
3028 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3029 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3030 } else {
3031 fence_reg = FENCE_REG_965_0;
3032 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3033 }
3034
3035 fence_reg += reg * 8;
3036
3037 /* To w/a incoherency with non-atomic 64-bit register updates,
3038 * we split the 64-bit update into two 32-bit writes. In order
3039 * for a partial fence not to be evaluated between writes, we
3040 * precede the update with write to turn off the fence register,
3041 * and only enable the fence as the last step.
3042 *
3043 * For extra levels of paranoia, we make sure each step lands
3044 * before applying the next step.
3045 */
3046 I915_WRITE(fence_reg, 0);
3047 POSTING_READ(fence_reg);
3048
3049 if (obj) {
3050 u32 size = i915_gem_obj_ggtt_size(obj);
3051 uint64_t val;
3052
3053 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3054 0xfffff000) << 32;
3055 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3056 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3057 if (obj->tiling_mode == I915_TILING_Y)
3058 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3059 val |= I965_FENCE_REG_VALID;
3060
3061 I915_WRITE(fence_reg + 4, val >> 32);
3062 POSTING_READ(fence_reg + 4);
3063
3064 I915_WRITE(fence_reg + 0, val);
3065 POSTING_READ(fence_reg);
3066 } else {
3067 I915_WRITE(fence_reg + 4, 0);
3068 POSTING_READ(fence_reg + 4);
3069 }
3070 }
3071
3072 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3073 struct drm_i915_gem_object *obj)
3074 {
3075 struct drm_i915_private *dev_priv = dev->dev_private;
3076 u32 val;
3077
3078 if (obj) {
3079 u32 size = i915_gem_obj_ggtt_size(obj);
3080 int pitch_val;
3081 int tile_width;
3082
3083 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3084 (size & -size) != size ||
3085 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3086 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3087 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3088
3089 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3090 tile_width = 128;
3091 else
3092 tile_width = 512;
3093
3094 /* Note: pitch better be a power of two tile widths */
3095 pitch_val = obj->stride / tile_width;
3096 pitch_val = ffs(pitch_val) - 1;
3097
3098 val = i915_gem_obj_ggtt_offset(obj);
3099 if (obj->tiling_mode == I915_TILING_Y)
3100 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3101 val |= I915_FENCE_SIZE_BITS(size);
3102 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3103 val |= I830_FENCE_REG_VALID;
3104 } else
3105 val = 0;
3106
3107 if (reg < 8)
3108 reg = FENCE_REG_830_0 + reg * 4;
3109 else
3110 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3111
3112 I915_WRITE(reg, val);
3113 POSTING_READ(reg);
3114 }
3115
3116 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3117 struct drm_i915_gem_object *obj)
3118 {
3119 struct drm_i915_private *dev_priv = dev->dev_private;
3120 uint32_t val;
3121
3122 if (obj) {
3123 u32 size = i915_gem_obj_ggtt_size(obj);
3124 uint32_t pitch_val;
3125
3126 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3127 (size & -size) != size ||
3128 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3129 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3130 i915_gem_obj_ggtt_offset(obj), size);
3131
3132 pitch_val = obj->stride / 128;
3133 pitch_val = ffs(pitch_val) - 1;
3134
3135 val = i915_gem_obj_ggtt_offset(obj);
3136 if (obj->tiling_mode == I915_TILING_Y)
3137 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3138 val |= I830_FENCE_SIZE_BITS(size);
3139 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3140 val |= I830_FENCE_REG_VALID;
3141 } else
3142 val = 0;
3143
3144 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3145 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3146 }
3147
3148 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3149 {
3150 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3151 }
3152
3153 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3154 struct drm_i915_gem_object *obj)
3155 {
3156 struct drm_i915_private *dev_priv = dev->dev_private;
3157
3158 /* Ensure that all CPU reads are completed before installing a fence
3159 * and all writes before removing the fence.
3160 */
3161 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3162 mb();
3163
3164 WARN(obj && (!obj->stride || !obj->tiling_mode),
3165 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3166 obj->stride, obj->tiling_mode);
3167
3168 switch (INTEL_INFO(dev)->gen) {
3169 case 8:
3170 case 7:
3171 case 6:
3172 case 5:
3173 case 4: i965_write_fence_reg(dev, reg, obj); break;
3174 case 3: i915_write_fence_reg(dev, reg, obj); break;
3175 case 2: i830_write_fence_reg(dev, reg, obj); break;
3176 default: BUG();
3177 }
3178
3179 /* And similarly be paranoid that no direct access to this region
3180 * is reordered to before the fence is installed.
3181 */
3182 if (i915_gem_object_needs_mb(obj))
3183 mb();
3184 }
3185
3186 static inline int fence_number(struct drm_i915_private *dev_priv,
3187 struct drm_i915_fence_reg *fence)
3188 {
3189 return fence - dev_priv->fence_regs;
3190 }
3191
3192 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3193 struct drm_i915_fence_reg *fence,
3194 bool enable)
3195 {
3196 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3197 int reg = fence_number(dev_priv, fence);
3198
3199 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3200
3201 if (enable) {
3202 obj->fence_reg = reg;
3203 fence->obj = obj;
3204 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3205 } else {
3206 obj->fence_reg = I915_FENCE_REG_NONE;
3207 fence->obj = NULL;
3208 list_del_init(&fence->lru_list);
3209 }
3210 obj->fence_dirty = false;
3211 }
3212
3213 static int
3214 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3215 {
3216 if (obj->last_fenced_seqno) {
3217 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3218 if (ret)
3219 return ret;
3220
3221 obj->last_fenced_seqno = 0;
3222 }
3223
3224 return 0;
3225 }
3226
3227 int
3228 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3229 {
3230 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3231 struct drm_i915_fence_reg *fence;
3232 int ret;
3233
3234 ret = i915_gem_object_wait_fence(obj);
3235 if (ret)
3236 return ret;
3237
3238 if (obj->fence_reg == I915_FENCE_REG_NONE)
3239 return 0;
3240
3241 fence = &dev_priv->fence_regs[obj->fence_reg];
3242
3243 if (WARN_ON(fence->pin_count))
3244 return -EBUSY;
3245
3246 i915_gem_object_fence_lost(obj);
3247 i915_gem_object_update_fence(obj, fence, false);
3248
3249 return 0;
3250 }
3251
3252 static struct drm_i915_fence_reg *
3253 i915_find_fence_reg(struct drm_device *dev)
3254 {
3255 struct drm_i915_private *dev_priv = dev->dev_private;
3256 struct drm_i915_fence_reg *reg, *avail;
3257 int i;
3258
3259 /* First try to find a free reg */
3260 avail = NULL;
3261 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3262 reg = &dev_priv->fence_regs[i];
3263 if (!reg->obj)
3264 return reg;
3265
3266 if (!reg->pin_count)
3267 avail = reg;
3268 }
3269
3270 if (avail == NULL)
3271 goto deadlock;
3272
3273 /* None available, try to steal one or wait for a user to finish */
3274 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3275 if (reg->pin_count)
3276 continue;
3277
3278 return reg;
3279 }
3280
3281 deadlock:
3282 /* Wait for completion of pending flips which consume fences */
3283 if (intel_has_pending_fb_unpin(dev))
3284 return ERR_PTR(-EAGAIN);
3285
3286 return ERR_PTR(-EDEADLK);
3287 }
3288
3289 /**
3290 * i915_gem_object_get_fence - set up fencing for an object
3291 * @obj: object to map through a fence reg
3292 *
3293 * When mapping objects through the GTT, userspace wants to be able to write
3294 * to them without having to worry about swizzling if the object is tiled.
3295 * This function walks the fence regs looking for a free one for @obj,
3296 * stealing one if it can't find any.
3297 *
3298 * It then sets up the reg based on the object's properties: address, pitch
3299 * and tiling format.
3300 *
3301 * For an untiled surface, this removes any existing fence.
3302 */
3303 int
3304 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3305 {
3306 struct drm_device *dev = obj->base.dev;
3307 struct drm_i915_private *dev_priv = dev->dev_private;
3308 bool enable = obj->tiling_mode != I915_TILING_NONE;
3309 struct drm_i915_fence_reg *reg;
3310 int ret;
3311
3312 /* Have we updated the tiling parameters upon the object and so
3313 * will need to serialise the write to the associated fence register?
3314 */
3315 if (obj->fence_dirty) {
3316 ret = i915_gem_object_wait_fence(obj);
3317 if (ret)
3318 return ret;
3319 }
3320
3321 /* Just update our place in the LRU if our fence is getting reused. */
3322 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3323 reg = &dev_priv->fence_regs[obj->fence_reg];
3324 if (!obj->fence_dirty) {
3325 list_move_tail(&reg->lru_list,
3326 &dev_priv->mm.fence_list);
3327 return 0;
3328 }
3329 } else if (enable) {
3330 if (WARN_ON(!obj->map_and_fenceable))
3331 return -EINVAL;
3332
3333 reg = i915_find_fence_reg(dev);
3334 if (IS_ERR(reg))
3335 return PTR_ERR(reg);
3336
3337 if (reg->obj) {
3338 struct drm_i915_gem_object *old = reg->obj;
3339
3340 ret = i915_gem_object_wait_fence(old);
3341 if (ret)
3342 return ret;
3343
3344 i915_gem_object_fence_lost(old);
3345 }
3346 } else
3347 return 0;
3348
3349 i915_gem_object_update_fence(obj, reg, enable);
3350
3351 return 0;
3352 }
3353
3354 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3355 unsigned long cache_level)
3356 {
3357 struct drm_mm_node *gtt_space = &vma->node;
3358 struct drm_mm_node *other;
3359
3360 /*
3361 * On some machines we have to be careful when putting differing types
3362 * of snoopable memory together to avoid the prefetcher crossing memory
3363 * domains and dying. During vm initialisation, we decide whether or not
3364 * these constraints apply and set the drm_mm.color_adjust
3365 * appropriately.
3366 */
3367 if (vma->vm->mm.color_adjust == NULL)
3368 return true;
3369
3370 if (!drm_mm_node_allocated(gtt_space))
3371 return true;
3372
3373 if (list_empty(&gtt_space->node_list))
3374 return true;
3375
3376 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3377 if (other->allocated && !other->hole_follows && other->color != cache_level)
3378 return false;
3379
3380 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3381 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3382 return false;
3383
3384 return true;
3385 }
3386
3387 static void i915_gem_verify_gtt(struct drm_device *dev)
3388 {
3389 #if WATCH_GTT
3390 struct drm_i915_private *dev_priv = dev->dev_private;
3391 struct drm_i915_gem_object *obj;
3392 int err = 0;
3393
3394 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3395 if (obj->gtt_space == NULL) {
3396 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3397 err++;
3398 continue;
3399 }
3400
3401 if (obj->cache_level != obj->gtt_space->color) {
3402 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3403 i915_gem_obj_ggtt_offset(obj),
3404 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3405 obj->cache_level,
3406 obj->gtt_space->color);
3407 err++;
3408 continue;
3409 }
3410
3411 if (!i915_gem_valid_gtt_space(dev,
3412 obj->gtt_space,
3413 obj->cache_level)) {
3414 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3415 i915_gem_obj_ggtt_offset(obj),
3416 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3417 obj->cache_level);
3418 err++;
3419 continue;
3420 }
3421 }
3422
3423 WARN_ON(err);
3424 #endif
3425 }
3426
3427 /**
3428 * Finds free space in the GTT aperture and binds the object there.
3429 */
3430 static struct i915_vma *
3431 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3432 struct i915_address_space *vm,
3433 unsigned alignment,
3434 uint64_t flags)
3435 {
3436 struct drm_device *dev = obj->base.dev;
3437 struct drm_i915_private *dev_priv = dev->dev_private;
3438 u32 size, fence_size, fence_alignment, unfenced_alignment;
3439 unsigned long start =
3440 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3441 unsigned long end =
3442 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3443 struct i915_vma *vma;
3444 int ret;
3445
3446 fence_size = i915_gem_get_gtt_size(dev,
3447 obj->base.size,
3448 obj->tiling_mode);
3449 fence_alignment = i915_gem_get_gtt_alignment(dev,
3450 obj->base.size,
3451 obj->tiling_mode, true);
3452 unfenced_alignment =
3453 i915_gem_get_gtt_alignment(dev,
3454 obj->base.size,
3455 obj->tiling_mode, false);
3456
3457 if (alignment == 0)
3458 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3459 unfenced_alignment;
3460 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3461 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3462 return ERR_PTR(-EINVAL);
3463 }
3464
3465 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3466
3467 /* If the object is bigger than the entire aperture, reject it early
3468 * before evicting everything in a vain attempt to find space.
3469 */
3470 if (obj->base.size > end) {
3471 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3472 obj->base.size,
3473 flags & PIN_MAPPABLE ? "mappable" : "total",
3474 end);
3475 return ERR_PTR(-E2BIG);
3476 }
3477
3478 ret = i915_gem_object_get_pages(obj);
3479 if (ret)
3480 return ERR_PTR(ret);
3481
3482 i915_gem_object_pin_pages(obj);
3483
3484 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3485 if (IS_ERR(vma))
3486 goto err_unpin;
3487
3488 search_free:
3489 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3490 size, alignment,
3491 obj->cache_level,
3492 start, end,
3493 DRM_MM_SEARCH_DEFAULT,
3494 DRM_MM_CREATE_DEFAULT);
3495 if (ret) {
3496 ret = i915_gem_evict_something(dev, vm, size, alignment,
3497 obj->cache_level,
3498 start, end,
3499 flags);
3500 if (ret == 0)
3501 goto search_free;
3502
3503 goto err_free_vma;
3504 }
3505 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3506 ret = -EINVAL;
3507 goto err_remove_node;
3508 }
3509
3510 ret = i915_gem_gtt_prepare_object(obj);
3511 if (ret)
3512 goto err_remove_node;
3513
3514 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3515 list_add_tail(&vma->mm_list, &vm->inactive_list);
3516
3517 if (i915_is_ggtt(vm)) {
3518 bool mappable, fenceable;
3519
3520 fenceable = (vma->node.size == fence_size &&
3521 (vma->node.start & (fence_alignment - 1)) == 0);
3522
3523 mappable = (vma->node.start + obj->base.size <=
3524 dev_priv->gtt.mappable_end);
3525
3526 obj->map_and_fenceable = mappable && fenceable;
3527 }
3528
3529 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3530
3531 trace_i915_vma_bind(vma, flags);
3532 vma->bind_vma(vma, obj->cache_level,
3533 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3534
3535 i915_gem_verify_gtt(dev);
3536 return vma;
3537
3538 err_remove_node:
3539 drm_mm_remove_node(&vma->node);
3540 err_free_vma:
3541 i915_gem_vma_destroy(vma);
3542 vma = ERR_PTR(ret);
3543 err_unpin:
3544 i915_gem_object_unpin_pages(obj);
3545 return vma;
3546 }
3547
3548 bool
3549 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3550 bool force)
3551 {
3552 /* If we don't have a page list set up, then we're not pinned
3553 * to GPU, and we can ignore the cache flush because it'll happen
3554 * again at bind time.
3555 */
3556 if (obj->pages == NULL)
3557 return false;
3558
3559 /*
3560 * Stolen memory is always coherent with the GPU as it is explicitly
3561 * marked as wc by the system, or the system is cache-coherent.
3562 */
3563 if (obj->stolen)
3564 return false;
3565
3566 /* If the GPU is snooping the contents of the CPU cache,
3567 * we do not need to manually clear the CPU cache lines. However,
3568 * the caches are only snooped when the render cache is
3569 * flushed/invalidated. As we always have to emit invalidations
3570 * and flushes when moving into and out of the RENDER domain, correct
3571 * snooping behaviour occurs naturally as the result of our domain
3572 * tracking.
3573 */
3574 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3575 return false;
3576
3577 trace_i915_gem_object_clflush(obj);
3578 drm_clflush_sg(obj->pages);
3579
3580 return true;
3581 }
3582
3583 /** Flushes the GTT write domain for the object if it's dirty. */
3584 static void
3585 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3586 {
3587 uint32_t old_write_domain;
3588
3589 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3590 return;
3591
3592 /* No actual flushing is required for the GTT write domain. Writes
3593 * to it immediately go to main memory as far as we know, so there's
3594 * no chipset flush. It also doesn't land in render cache.
3595 *
3596 * However, we do have to enforce the order so that all writes through
3597 * the GTT land before any writes to the device, such as updates to
3598 * the GATT itself.
3599 */
3600 wmb();
3601
3602 old_write_domain = obj->base.write_domain;
3603 obj->base.write_domain = 0;
3604
3605 intel_fb_obj_flush(obj, false);
3606
3607 trace_i915_gem_object_change_domain(obj,
3608 obj->base.read_domains,
3609 old_write_domain);
3610 }
3611
3612 /** Flushes the CPU write domain for the object if it's dirty. */
3613 static void
3614 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3615 bool force)
3616 {
3617 uint32_t old_write_domain;
3618
3619 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3620 return;
3621
3622 if (i915_gem_clflush_object(obj, force))
3623 i915_gem_chipset_flush(obj->base.dev);
3624
3625 old_write_domain = obj->base.write_domain;
3626 obj->base.write_domain = 0;
3627
3628 intel_fb_obj_flush(obj, false);
3629
3630 trace_i915_gem_object_change_domain(obj,
3631 obj->base.read_domains,
3632 old_write_domain);
3633 }
3634
3635 /**
3636 * Moves a single object to the GTT read, and possibly write domain.
3637 *
3638 * This function returns when the move is complete, including waiting on
3639 * flushes to occur.
3640 */
3641 int
3642 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3643 {
3644 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3645 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3646 uint32_t old_write_domain, old_read_domains;
3647 int ret;
3648
3649 /* Not valid to be called on unbound objects. */
3650 if (vma == NULL)
3651 return -EINVAL;
3652
3653 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3654 return 0;
3655
3656 ret = i915_gem_object_wait_rendering(obj, !write);
3657 if (ret)
3658 return ret;
3659
3660 i915_gem_object_retire(obj);
3661 i915_gem_object_flush_cpu_write_domain(obj, false);
3662
3663 /* Serialise direct access to this object with the barriers for
3664 * coherent writes from the GPU, by effectively invalidating the
3665 * GTT domain upon first access.
3666 */
3667 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3668 mb();
3669
3670 old_write_domain = obj->base.write_domain;
3671 old_read_domains = obj->base.read_domains;
3672
3673 /* It should now be out of any other write domains, and we can update
3674 * the domain values for our changes.
3675 */
3676 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3677 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3678 if (write) {
3679 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3680 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3681 obj->dirty = 1;
3682 }
3683
3684 if (write)
3685 intel_fb_obj_invalidate(obj, NULL);
3686
3687 trace_i915_gem_object_change_domain(obj,
3688 old_read_domains,
3689 old_write_domain);
3690
3691 /* And bump the LRU for this access */
3692 if (i915_gem_object_is_inactive(obj))
3693 list_move_tail(&vma->mm_list,
3694 &dev_priv->gtt.base.inactive_list);
3695
3696 return 0;
3697 }
3698
3699 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3700 enum i915_cache_level cache_level)
3701 {
3702 struct drm_device *dev = obj->base.dev;
3703 struct i915_vma *vma, *next;
3704 int ret;
3705
3706 if (obj->cache_level == cache_level)
3707 return 0;
3708
3709 if (i915_gem_obj_is_pinned(obj)) {
3710 DRM_DEBUG("can not change the cache level of pinned objects\n");
3711 return -EBUSY;
3712 }
3713
3714 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3715 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3716 ret = i915_vma_unbind(vma);
3717 if (ret)
3718 return ret;
3719 }
3720 }
3721
3722 if (i915_gem_obj_bound_any(obj)) {
3723 ret = i915_gem_object_finish_gpu(obj);
3724 if (ret)
3725 return ret;
3726
3727 i915_gem_object_finish_gtt(obj);
3728
3729 /* Before SandyBridge, you could not use tiling or fence
3730 * registers with snooped memory, so relinquish any fences
3731 * currently pointing to our region in the aperture.
3732 */
3733 if (INTEL_INFO(dev)->gen < 6) {
3734 ret = i915_gem_object_put_fence(obj);
3735 if (ret)
3736 return ret;
3737 }
3738
3739 list_for_each_entry(vma, &obj->vma_list, vma_link)
3740 if (drm_mm_node_allocated(&vma->node))
3741 vma->bind_vma(vma, cache_level,
3742 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3743 }
3744
3745 list_for_each_entry(vma, &obj->vma_list, vma_link)
3746 vma->node.color = cache_level;
3747 obj->cache_level = cache_level;
3748
3749 if (cpu_write_needs_clflush(obj)) {
3750 u32 old_read_domains, old_write_domain;
3751
3752 /* If we're coming from LLC cached, then we haven't
3753 * actually been tracking whether the data is in the
3754 * CPU cache or not, since we only allow one bit set
3755 * in obj->write_domain and have been skipping the clflushes.
3756 * Just set it to the CPU cache for now.
3757 */
3758 i915_gem_object_retire(obj);
3759 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3760
3761 old_read_domains = obj->base.read_domains;
3762 old_write_domain = obj->base.write_domain;
3763
3764 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3765 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3766
3767 trace_i915_gem_object_change_domain(obj,
3768 old_read_domains,
3769 old_write_domain);
3770 }
3771
3772 i915_gem_verify_gtt(dev);
3773 return 0;
3774 }
3775
3776 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3777 struct drm_file *file)
3778 {
3779 struct drm_i915_gem_caching *args = data;
3780 struct drm_i915_gem_object *obj;
3781 int ret;
3782
3783 ret = i915_mutex_lock_interruptible(dev);
3784 if (ret)
3785 return ret;
3786
3787 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3788 if (&obj->base == NULL) {
3789 ret = -ENOENT;
3790 goto unlock;
3791 }
3792
3793 switch (obj->cache_level) {
3794 case I915_CACHE_LLC:
3795 case I915_CACHE_L3_LLC:
3796 args->caching = I915_CACHING_CACHED;
3797 break;
3798
3799 case I915_CACHE_WT:
3800 args->caching = I915_CACHING_DISPLAY;
3801 break;
3802
3803 default:
3804 args->caching = I915_CACHING_NONE;
3805 break;
3806 }
3807
3808 drm_gem_object_unreference(&obj->base);
3809 unlock:
3810 mutex_unlock(&dev->struct_mutex);
3811 return ret;
3812 }
3813
3814 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3815 struct drm_file *file)
3816 {
3817 struct drm_i915_gem_caching *args = data;
3818 struct drm_i915_gem_object *obj;
3819 enum i915_cache_level level;
3820 int ret;
3821
3822 switch (args->caching) {
3823 case I915_CACHING_NONE:
3824 level = I915_CACHE_NONE;
3825 break;
3826 case I915_CACHING_CACHED:
3827 level = I915_CACHE_LLC;
3828 break;
3829 case I915_CACHING_DISPLAY:
3830 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3831 break;
3832 default:
3833 return -EINVAL;
3834 }
3835
3836 ret = i915_mutex_lock_interruptible(dev);
3837 if (ret)
3838 return ret;
3839
3840 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3841 if (&obj->base == NULL) {
3842 ret = -ENOENT;
3843 goto unlock;
3844 }
3845
3846 ret = i915_gem_object_set_cache_level(obj, level);
3847
3848 drm_gem_object_unreference(&obj->base);
3849 unlock:
3850 mutex_unlock(&dev->struct_mutex);
3851 return ret;
3852 }
3853
3854 static bool is_pin_display(struct drm_i915_gem_object *obj)
3855 {
3856 struct i915_vma *vma;
3857
3858 vma = i915_gem_obj_to_ggtt(obj);
3859 if (!vma)
3860 return false;
3861
3862 /* There are 3 sources that pin objects:
3863 * 1. The display engine (scanouts, sprites, cursors);
3864 * 2. Reservations for execbuffer;
3865 * 3. The user.
3866 *
3867 * We can ignore reservations as we hold the struct_mutex and
3868 * are only called outside of the reservation path. The user
3869 * can only increment pin_count once, and so if after
3870 * subtracting the potential reference by the user, any pin_count
3871 * remains, it must be due to another use by the display engine.
3872 */
3873 return vma->pin_count - !!obj->user_pin_count;
3874 }
3875
3876 /*
3877 * Prepare buffer for display plane (scanout, cursors, etc).
3878 * Can be called from an uninterruptible phase (modesetting) and allows
3879 * any flushes to be pipelined (for pageflips).
3880 */
3881 int
3882 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3883 u32 alignment,
3884 struct intel_engine_cs *pipelined)
3885 {
3886 u32 old_read_domains, old_write_domain;
3887 bool was_pin_display;
3888 int ret;
3889
3890 if (pipelined != obj->ring) {
3891 ret = i915_gem_object_sync(obj, pipelined);
3892 if (ret)
3893 return ret;
3894 }
3895
3896 /* Mark the pin_display early so that we account for the
3897 * display coherency whilst setting up the cache domains.
3898 */
3899 was_pin_display = obj->pin_display;
3900 obj->pin_display = true;
3901
3902 /* The display engine is not coherent with the LLC cache on gen6. As
3903 * a result, we make sure that the pinning that is about to occur is
3904 * done with uncached PTEs. This is lowest common denominator for all
3905 * chipsets.
3906 *
3907 * However for gen6+, we could do better by using the GFDT bit instead
3908 * of uncaching, which would allow us to flush all the LLC-cached data
3909 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3910 */
3911 ret = i915_gem_object_set_cache_level(obj,
3912 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3913 if (ret)
3914 goto err_unpin_display;
3915
3916 /* As the user may map the buffer once pinned in the display plane
3917 * (e.g. libkms for the bootup splash), we have to ensure that we
3918 * always use map_and_fenceable for all scanout buffers.
3919 */
3920 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3921 if (ret)
3922 goto err_unpin_display;
3923
3924 i915_gem_object_flush_cpu_write_domain(obj, true);
3925
3926 old_write_domain = obj->base.write_domain;
3927 old_read_domains = obj->base.read_domains;
3928
3929 /* It should now be out of any other write domains, and we can update
3930 * the domain values for our changes.
3931 */
3932 obj->base.write_domain = 0;
3933 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3934
3935 trace_i915_gem_object_change_domain(obj,
3936 old_read_domains,
3937 old_write_domain);
3938
3939 return 0;
3940
3941 err_unpin_display:
3942 WARN_ON(was_pin_display != is_pin_display(obj));
3943 obj->pin_display = was_pin_display;
3944 return ret;
3945 }
3946
3947 void
3948 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3949 {
3950 i915_gem_object_ggtt_unpin(obj);
3951 obj->pin_display = is_pin_display(obj);
3952 }
3953
3954 int
3955 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3956 {
3957 int ret;
3958
3959 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3960 return 0;
3961
3962 ret = i915_gem_object_wait_rendering(obj, false);
3963 if (ret)
3964 return ret;
3965
3966 /* Ensure that we invalidate the GPU's caches and TLBs. */
3967 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3968 return 0;
3969 }
3970
3971 /**
3972 * Moves a single object to the CPU read, and possibly write domain.
3973 *
3974 * This function returns when the move is complete, including waiting on
3975 * flushes to occur.
3976 */
3977 int
3978 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3979 {
3980 uint32_t old_write_domain, old_read_domains;
3981 int ret;
3982
3983 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3984 return 0;
3985
3986 ret = i915_gem_object_wait_rendering(obj, !write);
3987 if (ret)
3988 return ret;
3989
3990 i915_gem_object_retire(obj);
3991 i915_gem_object_flush_gtt_write_domain(obj);
3992
3993 old_write_domain = obj->base.write_domain;
3994 old_read_domains = obj->base.read_domains;
3995
3996 /* Flush the CPU cache if it's still invalid. */
3997 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3998 i915_gem_clflush_object(obj, false);
3999
4000 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4001 }
4002
4003 /* It should now be out of any other write domains, and we can update
4004 * the domain values for our changes.
4005 */
4006 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4007
4008 /* If we're writing through the CPU, then the GPU read domains will
4009 * need to be invalidated at next use.
4010 */
4011 if (write) {
4012 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4013 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4014 }
4015
4016 if (write)
4017 intel_fb_obj_invalidate(obj, NULL);
4018
4019 trace_i915_gem_object_change_domain(obj,
4020 old_read_domains,
4021 old_write_domain);
4022
4023 return 0;
4024 }
4025
4026 /* Throttle our rendering by waiting until the ring has completed our requests
4027 * emitted over 20 msec ago.
4028 *
4029 * Note that if we were to use the current jiffies each time around the loop,
4030 * we wouldn't escape the function with any frames outstanding if the time to
4031 * render a frame was over 20ms.
4032 *
4033 * This should get us reasonable parallelism between CPU and GPU but also
4034 * relatively low latency when blocking on a particular request to finish.
4035 */
4036 static int
4037 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4038 {
4039 struct drm_i915_private *dev_priv = dev->dev_private;
4040 struct drm_i915_file_private *file_priv = file->driver_priv;
4041 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4042 struct drm_i915_gem_request *request;
4043 struct intel_engine_cs *ring = NULL;
4044 unsigned reset_counter;
4045 u32 seqno = 0;
4046 int ret;
4047
4048 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4049 if (ret)
4050 return ret;
4051
4052 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4053 if (ret)
4054 return ret;
4055
4056 spin_lock(&file_priv->mm.lock);
4057 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4058 if (time_after_eq(request->emitted_jiffies, recent_enough))
4059 break;
4060
4061 ring = request->ring;
4062 seqno = request->seqno;
4063 }
4064 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4065 spin_unlock(&file_priv->mm.lock);
4066
4067 if (seqno == 0)
4068 return 0;
4069
4070 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4071 if (ret == 0)
4072 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4073
4074 return ret;
4075 }
4076
4077 static bool
4078 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4079 {
4080 struct drm_i915_gem_object *obj = vma->obj;
4081
4082 if (alignment &&
4083 vma->node.start & (alignment - 1))
4084 return true;
4085
4086 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4087 return true;
4088
4089 if (flags & PIN_OFFSET_BIAS &&
4090 vma->node.start < (flags & PIN_OFFSET_MASK))
4091 return true;
4092
4093 return false;
4094 }
4095
4096 int
4097 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4098 struct i915_address_space *vm,
4099 uint32_t alignment,
4100 uint64_t flags)
4101 {
4102 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4103 struct i915_vma *vma;
4104 int ret;
4105
4106 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4107 return -ENODEV;
4108
4109 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4110 return -EINVAL;
4111
4112 vma = i915_gem_obj_to_vma(obj, vm);
4113 if (vma) {
4114 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4115 return -EBUSY;
4116
4117 if (i915_vma_misplaced(vma, alignment, flags)) {
4118 WARN(vma->pin_count,
4119 "bo is already pinned with incorrect alignment:"
4120 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4121 " obj->map_and_fenceable=%d\n",
4122 i915_gem_obj_offset(obj, vm), alignment,
4123 !!(flags & PIN_MAPPABLE),
4124 obj->map_and_fenceable);
4125 ret = i915_vma_unbind(vma);
4126 if (ret)
4127 return ret;
4128
4129 vma = NULL;
4130 }
4131 }
4132
4133 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4134 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4135 if (IS_ERR(vma))
4136 return PTR_ERR(vma);
4137 }
4138
4139 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4140 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4141
4142 vma->pin_count++;
4143 if (flags & PIN_MAPPABLE)
4144 obj->pin_mappable |= true;
4145
4146 return 0;
4147 }
4148
4149 void
4150 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4151 {
4152 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4153
4154 BUG_ON(!vma);
4155 BUG_ON(vma->pin_count == 0);
4156 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4157
4158 if (--vma->pin_count == 0)
4159 obj->pin_mappable = false;
4160 }
4161
4162 bool
4163 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4164 {
4165 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4166 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4167 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4168
4169 WARN_ON(!ggtt_vma ||
4170 dev_priv->fence_regs[obj->fence_reg].pin_count >
4171 ggtt_vma->pin_count);
4172 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4173 return true;
4174 } else
4175 return false;
4176 }
4177
4178 void
4179 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4180 {
4181 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4182 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4183 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4184 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4185 }
4186 }
4187
4188 int
4189 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4190 struct drm_file *file)
4191 {
4192 struct drm_i915_gem_pin *args = data;
4193 struct drm_i915_gem_object *obj;
4194 int ret;
4195
4196 if (INTEL_INFO(dev)->gen >= 6)
4197 return -ENODEV;
4198
4199 ret = i915_mutex_lock_interruptible(dev);
4200 if (ret)
4201 return ret;
4202
4203 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4204 if (&obj->base == NULL) {
4205 ret = -ENOENT;
4206 goto unlock;
4207 }
4208
4209 if (obj->madv != I915_MADV_WILLNEED) {
4210 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4211 ret = -EFAULT;
4212 goto out;
4213 }
4214
4215 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4216 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4217 args->handle);
4218 ret = -EINVAL;
4219 goto out;
4220 }
4221
4222 if (obj->user_pin_count == ULONG_MAX) {
4223 ret = -EBUSY;
4224 goto out;
4225 }
4226
4227 if (obj->user_pin_count == 0) {
4228 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4229 if (ret)
4230 goto out;
4231 }
4232
4233 obj->user_pin_count++;
4234 obj->pin_filp = file;
4235
4236 args->offset = i915_gem_obj_ggtt_offset(obj);
4237 out:
4238 drm_gem_object_unreference(&obj->base);
4239 unlock:
4240 mutex_unlock(&dev->struct_mutex);
4241 return ret;
4242 }
4243
4244 int
4245 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4246 struct drm_file *file)
4247 {
4248 struct drm_i915_gem_pin *args = data;
4249 struct drm_i915_gem_object *obj;
4250 int ret;
4251
4252 ret = i915_mutex_lock_interruptible(dev);
4253 if (ret)
4254 return ret;
4255
4256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4257 if (&obj->base == NULL) {
4258 ret = -ENOENT;
4259 goto unlock;
4260 }
4261
4262 if (obj->pin_filp != file) {
4263 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4264 args->handle);
4265 ret = -EINVAL;
4266 goto out;
4267 }
4268 obj->user_pin_count--;
4269 if (obj->user_pin_count == 0) {
4270 obj->pin_filp = NULL;
4271 i915_gem_object_ggtt_unpin(obj);
4272 }
4273
4274 out:
4275 drm_gem_object_unreference(&obj->base);
4276 unlock:
4277 mutex_unlock(&dev->struct_mutex);
4278 return ret;
4279 }
4280
4281 int
4282 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4283 struct drm_file *file)
4284 {
4285 struct drm_i915_gem_busy *args = data;
4286 struct drm_i915_gem_object *obj;
4287 int ret;
4288
4289 ret = i915_mutex_lock_interruptible(dev);
4290 if (ret)
4291 return ret;
4292
4293 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4294 if (&obj->base == NULL) {
4295 ret = -ENOENT;
4296 goto unlock;
4297 }
4298
4299 /* Count all active objects as busy, even if they are currently not used
4300 * by the gpu. Users of this interface expect objects to eventually
4301 * become non-busy without any further actions, therefore emit any
4302 * necessary flushes here.
4303 */
4304 ret = i915_gem_object_flush_active(obj);
4305
4306 args->busy = obj->active;
4307 if (obj->ring) {
4308 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4309 args->busy |= intel_ring_flag(obj->ring) << 16;
4310 }
4311
4312 drm_gem_object_unreference(&obj->base);
4313 unlock:
4314 mutex_unlock(&dev->struct_mutex);
4315 return ret;
4316 }
4317
4318 int
4319 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4320 struct drm_file *file_priv)
4321 {
4322 return i915_gem_ring_throttle(dev, file_priv);
4323 }
4324
4325 int
4326 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4327 struct drm_file *file_priv)
4328 {
4329 struct drm_i915_gem_madvise *args = data;
4330 struct drm_i915_gem_object *obj;
4331 int ret;
4332
4333 switch (args->madv) {
4334 case I915_MADV_DONTNEED:
4335 case I915_MADV_WILLNEED:
4336 break;
4337 default:
4338 return -EINVAL;
4339 }
4340
4341 ret = i915_mutex_lock_interruptible(dev);
4342 if (ret)
4343 return ret;
4344
4345 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4346 if (&obj->base == NULL) {
4347 ret = -ENOENT;
4348 goto unlock;
4349 }
4350
4351 if (i915_gem_obj_is_pinned(obj)) {
4352 ret = -EINVAL;
4353 goto out;
4354 }
4355
4356 if (obj->madv != __I915_MADV_PURGED)
4357 obj->madv = args->madv;
4358
4359 /* if the object is no longer attached, discard its backing storage */
4360 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4361 i915_gem_object_truncate(obj);
4362
4363 args->retained = obj->madv != __I915_MADV_PURGED;
4364
4365 out:
4366 drm_gem_object_unreference(&obj->base);
4367 unlock:
4368 mutex_unlock(&dev->struct_mutex);
4369 return ret;
4370 }
4371
4372 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4373 const struct drm_i915_gem_object_ops *ops)
4374 {
4375 INIT_LIST_HEAD(&obj->global_list);
4376 INIT_LIST_HEAD(&obj->ring_list);
4377 INIT_LIST_HEAD(&obj->obj_exec_link);
4378 INIT_LIST_HEAD(&obj->vma_list);
4379
4380 obj->ops = ops;
4381
4382 obj->fence_reg = I915_FENCE_REG_NONE;
4383 obj->madv = I915_MADV_WILLNEED;
4384
4385 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4386 }
4387
4388 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4389 .get_pages = i915_gem_object_get_pages_gtt,
4390 .put_pages = i915_gem_object_put_pages_gtt,
4391 };
4392
4393 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4394 size_t size)
4395 {
4396 struct drm_i915_gem_object *obj;
4397 struct address_space *mapping;
4398 gfp_t mask;
4399
4400 obj = i915_gem_object_alloc(dev);
4401 if (obj == NULL)
4402 return NULL;
4403
4404 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4405 i915_gem_object_free(obj);
4406 return NULL;
4407 }
4408
4409 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4410 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4411 /* 965gm cannot relocate objects above 4GiB. */
4412 mask &= ~__GFP_HIGHMEM;
4413 mask |= __GFP_DMA32;
4414 }
4415
4416 mapping = file_inode(obj->base.filp)->i_mapping;
4417 mapping_set_gfp_mask(mapping, mask);
4418
4419 i915_gem_object_init(obj, &i915_gem_object_ops);
4420
4421 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4422 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4423
4424 if (HAS_LLC(dev)) {
4425 /* On some devices, we can have the GPU use the LLC (the CPU
4426 * cache) for about a 10% performance improvement
4427 * compared to uncached. Graphics requests other than
4428 * display scanout are coherent with the CPU in
4429 * accessing this cache. This means in this mode we
4430 * don't need to clflush on the CPU side, and on the
4431 * GPU side we only need to flush internal caches to
4432 * get data visible to the CPU.
4433 *
4434 * However, we maintain the display planes as UC, and so
4435 * need to rebind when first used as such.
4436 */
4437 obj->cache_level = I915_CACHE_LLC;
4438 } else
4439 obj->cache_level = I915_CACHE_NONE;
4440
4441 trace_i915_gem_object_create(obj);
4442
4443 return obj;
4444 }
4445
4446 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4447 {
4448 /* If we are the last user of the backing storage (be it shmemfs
4449 * pages or stolen etc), we know that the pages are going to be
4450 * immediately released. In this case, we can then skip copying
4451 * back the contents from the GPU.
4452 */
4453
4454 if (obj->madv != I915_MADV_WILLNEED)
4455 return false;
4456
4457 if (obj->base.filp == NULL)
4458 return true;
4459
4460 /* At first glance, this looks racy, but then again so would be
4461 * userspace racing mmap against close. However, the first external
4462 * reference to the filp can only be obtained through the
4463 * i915_gem_mmap_ioctl() which safeguards us against the user
4464 * acquiring such a reference whilst we are in the middle of
4465 * freeing the object.
4466 */
4467 return atomic_long_read(&obj->base.filp->f_count) == 1;
4468 }
4469
4470 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4471 {
4472 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4473 struct drm_device *dev = obj->base.dev;
4474 struct drm_i915_private *dev_priv = dev->dev_private;
4475 struct i915_vma *vma, *next;
4476
4477 intel_runtime_pm_get(dev_priv);
4478
4479 trace_i915_gem_object_destroy(obj);
4480
4481 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4482 int ret;
4483
4484 vma->pin_count = 0;
4485 ret = i915_vma_unbind(vma);
4486 if (WARN_ON(ret == -ERESTARTSYS)) {
4487 bool was_interruptible;
4488
4489 was_interruptible = dev_priv->mm.interruptible;
4490 dev_priv->mm.interruptible = false;
4491
4492 WARN_ON(i915_vma_unbind(vma));
4493
4494 dev_priv->mm.interruptible = was_interruptible;
4495 }
4496 }
4497
4498 i915_gem_object_detach_phys(obj);
4499
4500 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4501 * before progressing. */
4502 if (obj->stolen)
4503 i915_gem_object_unpin_pages(obj);
4504
4505 WARN_ON(obj->frontbuffer_bits);
4506
4507 if (WARN_ON(obj->pages_pin_count))
4508 obj->pages_pin_count = 0;
4509 if (discard_backing_storage(obj))
4510 obj->madv = I915_MADV_DONTNEED;
4511 i915_gem_object_put_pages(obj);
4512 i915_gem_object_free_mmap_offset(obj);
4513
4514 BUG_ON(obj->pages);
4515
4516 if (obj->base.import_attach)
4517 drm_prime_gem_destroy(&obj->base, NULL);
4518
4519 if (obj->ops->release)
4520 obj->ops->release(obj);
4521
4522 drm_gem_object_release(&obj->base);
4523 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4524
4525 kfree(obj->bit_17);
4526 i915_gem_object_free(obj);
4527
4528 intel_runtime_pm_put(dev_priv);
4529 }
4530
4531 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4532 struct i915_address_space *vm)
4533 {
4534 struct i915_vma *vma;
4535 list_for_each_entry(vma, &obj->vma_list, vma_link)
4536 if (vma->vm == vm)
4537 return vma;
4538
4539 return NULL;
4540 }
4541
4542 void i915_gem_vma_destroy(struct i915_vma *vma)
4543 {
4544 struct i915_address_space *vm = NULL;
4545 WARN_ON(vma->node.allocated);
4546
4547 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4548 if (!list_empty(&vma->exec_list))
4549 return;
4550
4551 vm = vma->vm;
4552
4553 if (!i915_is_ggtt(vm))
4554 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4555
4556 list_del(&vma->vma_link);
4557
4558 kfree(vma);
4559 }
4560
4561 static void
4562 i915_gem_stop_ringbuffers(struct drm_device *dev)
4563 {
4564 struct drm_i915_private *dev_priv = dev->dev_private;
4565 struct intel_engine_cs *ring;
4566 int i;
4567
4568 for_each_ring(ring, dev_priv, i)
4569 dev_priv->gt.stop_ring(ring);
4570 }
4571
4572 int
4573 i915_gem_suspend(struct drm_device *dev)
4574 {
4575 struct drm_i915_private *dev_priv = dev->dev_private;
4576 int ret = 0;
4577
4578 mutex_lock(&dev->struct_mutex);
4579 if (dev_priv->ums.mm_suspended)
4580 goto err;
4581
4582 ret = i915_gpu_idle(dev);
4583 if (ret)
4584 goto err;
4585
4586 i915_gem_retire_requests(dev);
4587
4588 /* Under UMS, be paranoid and evict. */
4589 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4590 i915_gem_evict_everything(dev);
4591
4592 i915_kernel_lost_context(dev);
4593 i915_gem_stop_ringbuffers(dev);
4594
4595 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4596 * We need to replace this with a semaphore, or something.
4597 * And not confound ums.mm_suspended!
4598 */
4599 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4600 DRIVER_MODESET);
4601 mutex_unlock(&dev->struct_mutex);
4602
4603 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4604 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4605 flush_delayed_work(&dev_priv->mm.idle_work);
4606
4607 return 0;
4608
4609 err:
4610 mutex_unlock(&dev->struct_mutex);
4611 return ret;
4612 }
4613
4614 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4615 {
4616 struct drm_device *dev = ring->dev;
4617 struct drm_i915_private *dev_priv = dev->dev_private;
4618 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4619 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4620 int i, ret;
4621
4622 if (!HAS_L3_DPF(dev) || !remap_info)
4623 return 0;
4624
4625 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4626 if (ret)
4627 return ret;
4628
4629 /*
4630 * Note: We do not worry about the concurrent register cacheline hang
4631 * here because no other code should access these registers other than
4632 * at initialization time.
4633 */
4634 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4635 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4636 intel_ring_emit(ring, reg_base + i);
4637 intel_ring_emit(ring, remap_info[i/4]);
4638 }
4639
4640 intel_ring_advance(ring);
4641
4642 return ret;
4643 }
4644
4645 void i915_gem_init_swizzling(struct drm_device *dev)
4646 {
4647 struct drm_i915_private *dev_priv = dev->dev_private;
4648
4649 if (INTEL_INFO(dev)->gen < 5 ||
4650 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4651 return;
4652
4653 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4654 DISP_TILE_SURFACE_SWIZZLING);
4655
4656 if (IS_GEN5(dev))
4657 return;
4658
4659 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4660 if (IS_GEN6(dev))
4661 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4662 else if (IS_GEN7(dev))
4663 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4664 else if (IS_GEN8(dev))
4665 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4666 else
4667 BUG();
4668 }
4669
4670 static bool
4671 intel_enable_blt(struct drm_device *dev)
4672 {
4673 if (!HAS_BLT(dev))
4674 return false;
4675
4676 /* The blitter was dysfunctional on early prototypes */
4677 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4678 DRM_INFO("BLT not supported on this pre-production hardware;"
4679 " graphics performance will be degraded.\n");
4680 return false;
4681 }
4682
4683 return true;
4684 }
4685
4686 static void init_unused_ring(struct drm_device *dev, u32 base)
4687 {
4688 struct drm_i915_private *dev_priv = dev->dev_private;
4689
4690 I915_WRITE(RING_CTL(base), 0);
4691 I915_WRITE(RING_HEAD(base), 0);
4692 I915_WRITE(RING_TAIL(base), 0);
4693 I915_WRITE(RING_START(base), 0);
4694 }
4695
4696 static void init_unused_rings(struct drm_device *dev)
4697 {
4698 if (IS_I830(dev)) {
4699 init_unused_ring(dev, PRB1_BASE);
4700 init_unused_ring(dev, SRB0_BASE);
4701 init_unused_ring(dev, SRB1_BASE);
4702 init_unused_ring(dev, SRB2_BASE);
4703 init_unused_ring(dev, SRB3_BASE);
4704 } else if (IS_GEN2(dev)) {
4705 init_unused_ring(dev, SRB0_BASE);
4706 init_unused_ring(dev, SRB1_BASE);
4707 } else if (IS_GEN3(dev)) {
4708 init_unused_ring(dev, PRB1_BASE);
4709 init_unused_ring(dev, PRB2_BASE);
4710 }
4711 }
4712
4713 int i915_gem_init_rings(struct drm_device *dev)
4714 {
4715 struct drm_i915_private *dev_priv = dev->dev_private;
4716 int ret;
4717
4718 /*
4719 * At least 830 can leave some of the unused rings
4720 * "active" (ie. head != tail) after resume which
4721 * will prevent c3 entry. Makes sure all unused rings
4722 * are totally idle.
4723 */
4724 init_unused_rings(dev);
4725
4726 ret = intel_init_render_ring_buffer(dev);
4727 if (ret)
4728 return ret;
4729
4730 if (HAS_BSD(dev)) {
4731 ret = intel_init_bsd_ring_buffer(dev);
4732 if (ret)
4733 goto cleanup_render_ring;
4734 }
4735
4736 if (intel_enable_blt(dev)) {
4737 ret = intel_init_blt_ring_buffer(dev);
4738 if (ret)
4739 goto cleanup_bsd_ring;
4740 }
4741
4742 if (HAS_VEBOX(dev)) {
4743 ret = intel_init_vebox_ring_buffer(dev);
4744 if (ret)
4745 goto cleanup_blt_ring;
4746 }
4747
4748 if (HAS_BSD2(dev)) {
4749 ret = intel_init_bsd2_ring_buffer(dev);
4750 if (ret)
4751 goto cleanup_vebox_ring;
4752 }
4753
4754 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4755 if (ret)
4756 goto cleanup_bsd2_ring;
4757
4758 return 0;
4759
4760 cleanup_bsd2_ring:
4761 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4762 cleanup_vebox_ring:
4763 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4764 cleanup_blt_ring:
4765 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4766 cleanup_bsd_ring:
4767 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4768 cleanup_render_ring:
4769 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4770
4771 return ret;
4772 }
4773
4774 int
4775 i915_gem_init_hw(struct drm_device *dev)
4776 {
4777 struct drm_i915_private *dev_priv = dev->dev_private;
4778 int ret, i;
4779
4780 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4781 return -EIO;
4782
4783 if (dev_priv->ellc_size)
4784 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4785
4786 if (IS_HASWELL(dev))
4787 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4788 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4789
4790 if (HAS_PCH_NOP(dev)) {
4791 if (IS_IVYBRIDGE(dev)) {
4792 u32 temp = I915_READ(GEN7_MSG_CTL);
4793 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4794 I915_WRITE(GEN7_MSG_CTL, temp);
4795 } else if (INTEL_INFO(dev)->gen >= 7) {
4796 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4797 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4798 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4799 }
4800 }
4801
4802 i915_gem_init_swizzling(dev);
4803
4804 ret = dev_priv->gt.init_rings(dev);
4805 if (ret)
4806 return ret;
4807
4808 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4809 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4810
4811 /*
4812 * XXX: Contexts should only be initialized once. Doing a switch to the
4813 * default context switch however is something we'd like to do after
4814 * reset or thaw (the latter may not actually be necessary for HW, but
4815 * goes with our code better). Context switching requires rings (for
4816 * the do_switch), but before enabling PPGTT. So don't move this.
4817 */
4818 ret = i915_gem_context_enable(dev_priv);
4819 if (ret && ret != -EIO) {
4820 DRM_ERROR("Context enable failed %d\n", ret);
4821 i915_gem_cleanup_ringbuffer(dev);
4822
4823 return ret;
4824 }
4825
4826 ret = i915_ppgtt_init_hw(dev);
4827 if (ret && ret != -EIO) {
4828 DRM_ERROR("PPGTT enable failed %d\n", ret);
4829 i915_gem_cleanup_ringbuffer(dev);
4830 }
4831
4832 return ret;
4833 }
4834
4835 int i915_gem_init(struct drm_device *dev)
4836 {
4837 struct drm_i915_private *dev_priv = dev->dev_private;
4838 int ret;
4839
4840 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4841 i915.enable_execlists);
4842
4843 mutex_lock(&dev->struct_mutex);
4844
4845 if (IS_VALLEYVIEW(dev)) {
4846 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4847 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4848 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4849 VLV_GTLC_ALLOWWAKEACK), 10))
4850 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4851 }
4852
4853 if (!i915.enable_execlists) {
4854 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4855 dev_priv->gt.init_rings = i915_gem_init_rings;
4856 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4857 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4858 } else {
4859 dev_priv->gt.do_execbuf = intel_execlists_submission;
4860 dev_priv->gt.init_rings = intel_logical_rings_init;
4861 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4862 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4863 }
4864
4865 ret = i915_gem_init_userptr(dev);
4866 if (ret) {
4867 mutex_unlock(&dev->struct_mutex);
4868 return ret;
4869 }
4870
4871 i915_gem_init_global_gtt(dev);
4872
4873 ret = i915_gem_context_init(dev);
4874 if (ret) {
4875 mutex_unlock(&dev->struct_mutex);
4876 return ret;
4877 }
4878
4879 ret = i915_gem_init_hw(dev);
4880 if (ret == -EIO) {
4881 /* Allow ring initialisation to fail by marking the GPU as
4882 * wedged. But we only want to do this where the GPU is angry,
4883 * for all other failure, such as an allocation failure, bail.
4884 */
4885 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4886 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4887 ret = 0;
4888 }
4889 mutex_unlock(&dev->struct_mutex);
4890
4891 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4892 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4893 dev_priv->dri1.allow_batchbuffer = 1;
4894 return ret;
4895 }
4896
4897 void
4898 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4899 {
4900 struct drm_i915_private *dev_priv = dev->dev_private;
4901 struct intel_engine_cs *ring;
4902 int i;
4903
4904 for_each_ring(ring, dev_priv, i)
4905 dev_priv->gt.cleanup_ring(ring);
4906 }
4907
4908 int
4909 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4910 struct drm_file *file_priv)
4911 {
4912 struct drm_i915_private *dev_priv = dev->dev_private;
4913 int ret;
4914
4915 if (drm_core_check_feature(dev, DRIVER_MODESET))
4916 return 0;
4917
4918 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4919 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4920 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4921 }
4922
4923 mutex_lock(&dev->struct_mutex);
4924 dev_priv->ums.mm_suspended = 0;
4925
4926 ret = i915_gem_init_hw(dev);
4927 if (ret != 0) {
4928 mutex_unlock(&dev->struct_mutex);
4929 return ret;
4930 }
4931
4932 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4933
4934 ret = drm_irq_install(dev, dev->pdev->irq);
4935 if (ret)
4936 goto cleanup_ringbuffer;
4937 mutex_unlock(&dev->struct_mutex);
4938
4939 return 0;
4940
4941 cleanup_ringbuffer:
4942 i915_gem_cleanup_ringbuffer(dev);
4943 dev_priv->ums.mm_suspended = 1;
4944 mutex_unlock(&dev->struct_mutex);
4945
4946 return ret;
4947 }
4948
4949 int
4950 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4951 struct drm_file *file_priv)
4952 {
4953 if (drm_core_check_feature(dev, DRIVER_MODESET))
4954 return 0;
4955
4956 mutex_lock(&dev->struct_mutex);
4957 drm_irq_uninstall(dev);
4958 mutex_unlock(&dev->struct_mutex);
4959
4960 return i915_gem_suspend(dev);
4961 }
4962
4963 void
4964 i915_gem_lastclose(struct drm_device *dev)
4965 {
4966 int ret;
4967
4968 if (drm_core_check_feature(dev, DRIVER_MODESET))
4969 return;
4970
4971 ret = i915_gem_suspend(dev);
4972 if (ret)
4973 DRM_ERROR("failed to idle hardware: %d\n", ret);
4974 }
4975
4976 static void
4977 init_ring_lists(struct intel_engine_cs *ring)
4978 {
4979 INIT_LIST_HEAD(&ring->active_list);
4980 INIT_LIST_HEAD(&ring->request_list);
4981 }
4982
4983 void i915_init_vm(struct drm_i915_private *dev_priv,
4984 struct i915_address_space *vm)
4985 {
4986 if (!i915_is_ggtt(vm))
4987 drm_mm_init(&vm->mm, vm->start, vm->total);
4988 vm->dev = dev_priv->dev;
4989 INIT_LIST_HEAD(&vm->active_list);
4990 INIT_LIST_HEAD(&vm->inactive_list);
4991 INIT_LIST_HEAD(&vm->global_link);
4992 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4993 }
4994
4995 void
4996 i915_gem_load(struct drm_device *dev)
4997 {
4998 struct drm_i915_private *dev_priv = dev->dev_private;
4999 int i;
5000
5001 dev_priv->slab =
5002 kmem_cache_create("i915_gem_object",
5003 sizeof(struct drm_i915_gem_object), 0,
5004 SLAB_HWCACHE_ALIGN,
5005 NULL);
5006
5007 INIT_LIST_HEAD(&dev_priv->vm_list);
5008 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5009
5010 INIT_LIST_HEAD(&dev_priv->context_list);
5011 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5012 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5013 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5014 for (i = 0; i < I915_NUM_RINGS; i++)
5015 init_ring_lists(&dev_priv->ring[i]);
5016 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5017 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5018 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5019 i915_gem_retire_work_handler);
5020 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5021 i915_gem_idle_work_handler);
5022 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5023
5024 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5025 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5026 I915_WRITE(MI_ARB_STATE,
5027 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5028 }
5029
5030 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5031
5032 /* Old X drivers will take 0-2 for front, back, depth buffers */
5033 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5034 dev_priv->fence_reg_start = 3;
5035
5036 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5037 dev_priv->num_fence_regs = 32;
5038 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5039 dev_priv->num_fence_regs = 16;
5040 else
5041 dev_priv->num_fence_regs = 8;
5042
5043 /* Initialize fence registers to zero */
5044 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5045 i915_gem_restore_fences(dev);
5046
5047 i915_gem_detect_bit_6_swizzle(dev);
5048 init_waitqueue_head(&dev_priv->pending_flip_queue);
5049
5050 dev_priv->mm.interruptible = true;
5051
5052 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5053 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5054 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5055 register_shrinker(&dev_priv->mm.shrinker);
5056
5057 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5058 register_oom_notifier(&dev_priv->mm.oom_notifier);
5059
5060 mutex_init(&dev_priv->fb_tracking.lock);
5061 }
5062
5063 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5064 {
5065 struct drm_i915_file_private *file_priv = file->driver_priv;
5066
5067 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5068
5069 /* Clean up our request list when the client is going away, so that
5070 * later retire_requests won't dereference our soon-to-be-gone
5071 * file_priv.
5072 */
5073 spin_lock(&file_priv->mm.lock);
5074 while (!list_empty(&file_priv->mm.request_list)) {
5075 struct drm_i915_gem_request *request;
5076
5077 request = list_first_entry(&file_priv->mm.request_list,
5078 struct drm_i915_gem_request,
5079 client_list);
5080 list_del(&request->client_list);
5081 request->file_priv = NULL;
5082 }
5083 spin_unlock(&file_priv->mm.lock);
5084 }
5085
5086 static void
5087 i915_gem_file_idle_work_handler(struct work_struct *work)
5088 {
5089 struct drm_i915_file_private *file_priv =
5090 container_of(work, typeof(*file_priv), mm.idle_work.work);
5091
5092 atomic_set(&file_priv->rps_wait_boost, false);
5093 }
5094
5095 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5096 {
5097 struct drm_i915_file_private *file_priv;
5098 int ret;
5099
5100 DRM_DEBUG_DRIVER("\n");
5101
5102 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5103 if (!file_priv)
5104 return -ENOMEM;
5105
5106 file->driver_priv = file_priv;
5107 file_priv->dev_priv = dev->dev_private;
5108 file_priv->file = file;
5109
5110 spin_lock_init(&file_priv->mm.lock);
5111 INIT_LIST_HEAD(&file_priv->mm.request_list);
5112 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5113 i915_gem_file_idle_work_handler);
5114
5115 ret = i915_gem_context_open(dev, file);
5116 if (ret)
5117 kfree(file_priv);
5118
5119 return ret;
5120 }
5121
5122 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5123 struct drm_i915_gem_object *new,
5124 unsigned frontbuffer_bits)
5125 {
5126 if (old) {
5127 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5128 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5129 old->frontbuffer_bits &= ~frontbuffer_bits;
5130 }
5131
5132 if (new) {
5133 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5134 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5135 new->frontbuffer_bits |= frontbuffer_bits;
5136 }
5137 }
5138
5139 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5140 {
5141 if (!mutex_is_locked(mutex))
5142 return false;
5143
5144 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5145 return mutex->owner == task;
5146 #else
5147 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5148 return false;
5149 #endif
5150 }
5151
5152 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5153 {
5154 if (!mutex_trylock(&dev->struct_mutex)) {
5155 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5156 return false;
5157
5158 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5159 return false;
5160
5161 *unlock = false;
5162 } else
5163 *unlock = true;
5164
5165 return true;
5166 }
5167
5168 static int num_vma_bound(struct drm_i915_gem_object *obj)
5169 {
5170 struct i915_vma *vma;
5171 int count = 0;
5172
5173 list_for_each_entry(vma, &obj->vma_list, vma_link)
5174 if (drm_mm_node_allocated(&vma->node))
5175 count++;
5176
5177 return count;
5178 }
5179
5180 static unsigned long
5181 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5182 {
5183 struct drm_i915_private *dev_priv =
5184 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5185 struct drm_device *dev = dev_priv->dev;
5186 struct drm_i915_gem_object *obj;
5187 unsigned long count;
5188 bool unlock;
5189
5190 if (!i915_gem_shrinker_lock(dev, &unlock))
5191 return 0;
5192
5193 count = 0;
5194 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5195 if (obj->pages_pin_count == 0)
5196 count += obj->base.size >> PAGE_SHIFT;
5197
5198 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5199 if (!i915_gem_obj_is_pinned(obj) &&
5200 obj->pages_pin_count == num_vma_bound(obj))
5201 count += obj->base.size >> PAGE_SHIFT;
5202 }
5203
5204 if (unlock)
5205 mutex_unlock(&dev->struct_mutex);
5206
5207 return count;
5208 }
5209
5210 /* All the new VM stuff */
5211 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5212 struct i915_address_space *vm)
5213 {
5214 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5215 struct i915_vma *vma;
5216
5217 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5218
5219 list_for_each_entry(vma, &o->vma_list, vma_link) {
5220 if (vma->vm == vm)
5221 return vma->node.start;
5222
5223 }
5224 WARN(1, "%s vma for this object not found.\n",
5225 i915_is_ggtt(vm) ? "global" : "ppgtt");
5226 return -1;
5227 }
5228
5229 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5230 struct i915_address_space *vm)
5231 {
5232 struct i915_vma *vma;
5233
5234 list_for_each_entry(vma, &o->vma_list, vma_link)
5235 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5236 return true;
5237
5238 return false;
5239 }
5240
5241 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5242 {
5243 struct i915_vma *vma;
5244
5245 list_for_each_entry(vma, &o->vma_list, vma_link)
5246 if (drm_mm_node_allocated(&vma->node))
5247 return true;
5248
5249 return false;
5250 }
5251
5252 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5253 struct i915_address_space *vm)
5254 {
5255 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5256 struct i915_vma *vma;
5257
5258 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5259
5260 BUG_ON(list_empty(&o->vma_list));
5261
5262 list_for_each_entry(vma, &o->vma_list, vma_link)
5263 if (vma->vm == vm)
5264 return vma->node.size;
5265
5266 return 0;
5267 }
5268
5269 static unsigned long
5270 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5271 {
5272 struct drm_i915_private *dev_priv =
5273 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5274 struct drm_device *dev = dev_priv->dev;
5275 unsigned long freed;
5276 bool unlock;
5277
5278 if (!i915_gem_shrinker_lock(dev, &unlock))
5279 return SHRINK_STOP;
5280
5281 freed = i915_gem_shrink(dev_priv,
5282 sc->nr_to_scan,
5283 I915_SHRINK_BOUND |
5284 I915_SHRINK_UNBOUND |
5285 I915_SHRINK_PURGEABLE);
5286 if (freed < sc->nr_to_scan)
5287 freed += i915_gem_shrink(dev_priv,
5288 sc->nr_to_scan - freed,
5289 I915_SHRINK_BOUND |
5290 I915_SHRINK_UNBOUND);
5291 if (unlock)
5292 mutex_unlock(&dev->struct_mutex);
5293
5294 return freed;
5295 }
5296
5297 static int
5298 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5299 {
5300 struct drm_i915_private *dev_priv =
5301 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5302 struct drm_device *dev = dev_priv->dev;
5303 struct drm_i915_gem_object *obj;
5304 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5305 unsigned long pinned, bound, unbound, freed;
5306 bool was_interruptible;
5307 bool unlock;
5308
5309 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5310 schedule_timeout_killable(1);
5311 if (fatal_signal_pending(current))
5312 return NOTIFY_DONE;
5313 }
5314 if (timeout == 0) {
5315 pr_err("Unable to purge GPU memory due lock contention.\n");
5316 return NOTIFY_DONE;
5317 }
5318
5319 was_interruptible = dev_priv->mm.interruptible;
5320 dev_priv->mm.interruptible = false;
5321
5322 freed = i915_gem_shrink_all(dev_priv);
5323
5324 dev_priv->mm.interruptible = was_interruptible;
5325
5326 /* Because we may be allocating inside our own driver, we cannot
5327 * assert that there are no objects with pinned pages that are not
5328 * being pointed to by hardware.
5329 */
5330 unbound = bound = pinned = 0;
5331 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5332 if (!obj->base.filp) /* not backed by a freeable object */
5333 continue;
5334
5335 if (obj->pages_pin_count)
5336 pinned += obj->base.size;
5337 else
5338 unbound += obj->base.size;
5339 }
5340 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5341 if (!obj->base.filp)
5342 continue;
5343
5344 if (obj->pages_pin_count)
5345 pinned += obj->base.size;
5346 else
5347 bound += obj->base.size;
5348 }
5349
5350 if (unlock)
5351 mutex_unlock(&dev->struct_mutex);
5352
5353 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5354 freed, pinned);
5355 if (unbound || bound)
5356 pr_err("%lu and %lu bytes still available in the "
5357 "bound and unbound GPU page lists.\n",
5358 bound, unbound);
5359
5360 *(unsigned long *)ptr += freed;
5361 return NOTIFY_DONE;
5362 }
5363
5364 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5365 {
5366 struct i915_vma *vma;
5367
5368 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5369 if (vma->vm != i915_obj_to_ggtt(obj))
5370 return NULL;
5371
5372 return vma;
5373 }
This page took 0.137896 seconds and 6 git commands to generate.