drm/i915: Do not hold mutex when faulting in user addresses
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
67
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
70
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74 {
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77 }
78
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81 {
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84 }
85
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
88 {
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
91 }
92
93 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
95 {
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
98 }
99
100 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
102 {
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
105 }
106
107 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
109 {
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
112 }
113
114 int
115 i915_gem_check_is_wedged(struct drm_device *dev)
116 {
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
121
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
124
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
128
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
132
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
137 */
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
142 }
143
144 static int i915_mutex_lock_interruptible(struct drm_device *dev)
145 {
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
148
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
152
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
156
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
160 }
161
162 WARN_ON(i915_verify_lists(dev));
163 return 0;
164 }
165
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
168 {
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
172 }
173
174 int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
176 unsigned long end)
177 {
178 drm_i915_private_t *dev_priv = dev->dev_private;
179
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
183 return -EINVAL;
184 }
185
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
188
189 dev_priv->mm.gtt_total = end - start;
190
191 return 0;
192 }
193
194 int
195 i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
197 {
198 struct drm_i915_gem_init *args = data;
199 int ret;
200
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 mutex_unlock(&dev->struct_mutex);
204
205 return ret;
206 }
207
208 int
209 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
211 {
212 struct drm_i915_private *dev_priv = dev->dev_private;
213 struct drm_i915_gem_get_aperture *args = data;
214
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
217
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
222
223 return 0;
224 }
225
226
227 /**
228 * Creates a new mm object and returns a handle to it.
229 */
230 int
231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
233 {
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 args->size = roundup(args->size, PAGE_SIZE);
240
241 /* Allocate the new object */
242 obj = i915_gem_alloc_object(dev, args->size);
243 if (obj == NULL)
244 return -ENOMEM;
245
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
247 if (ret) {
248 drm_gem_object_release(obj);
249 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250 kfree(obj);
251 return ret;
252 }
253
254 /* drop reference from allocate - handle holds it now */
255 drm_gem_object_unreference(obj);
256 trace_i915_gem_object_create(obj);
257
258 args->handle = handle;
259 return 0;
260 }
261
262 static inline int
263 fast_shmem_read(struct page **pages,
264 loff_t page_base, int page_offset,
265 char __user *data,
266 int length)
267 {
268 char *vaddr;
269 int ret;
270
271 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
272 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
273 kunmap_atomic(vaddr);
274
275 return ret;
276 }
277
278 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
279 {
280 drm_i915_private_t *dev_priv = obj->dev->dev_private;
281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
282
283 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284 obj_priv->tiling_mode != I915_TILING_NONE;
285 }
286
287 static inline void
288 slow_shmem_copy(struct page *dst_page,
289 int dst_offset,
290 struct page *src_page,
291 int src_offset,
292 int length)
293 {
294 char *dst_vaddr, *src_vaddr;
295
296 dst_vaddr = kmap(dst_page);
297 src_vaddr = kmap(src_page);
298
299 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
300
301 kunmap(src_page);
302 kunmap(dst_page);
303 }
304
305 static inline void
306 slow_shmem_bit17_copy(struct page *gpu_page,
307 int gpu_offset,
308 struct page *cpu_page,
309 int cpu_offset,
310 int length,
311 int is_read)
312 {
313 char *gpu_vaddr, *cpu_vaddr;
314
315 /* Use the unswizzled path if this page isn't affected. */
316 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317 if (is_read)
318 return slow_shmem_copy(cpu_page, cpu_offset,
319 gpu_page, gpu_offset, length);
320 else
321 return slow_shmem_copy(gpu_page, gpu_offset,
322 cpu_page, cpu_offset, length);
323 }
324
325 gpu_vaddr = kmap(gpu_page);
326 cpu_vaddr = kmap(cpu_page);
327
328 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329 * XORing with the other bits (A9 for Y, A9 and A10 for X)
330 */
331 while (length > 0) {
332 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333 int this_length = min(cacheline_end - gpu_offset, length);
334 int swizzled_gpu_offset = gpu_offset ^ 64;
335
336 if (is_read) {
337 memcpy(cpu_vaddr + cpu_offset,
338 gpu_vaddr + swizzled_gpu_offset,
339 this_length);
340 } else {
341 memcpy(gpu_vaddr + swizzled_gpu_offset,
342 cpu_vaddr + cpu_offset,
343 this_length);
344 }
345 cpu_offset += this_length;
346 gpu_offset += this_length;
347 length -= this_length;
348 }
349
350 kunmap(cpu_page);
351 kunmap(gpu_page);
352 }
353
354 /**
355 * This is the fast shmem pread path, which attempts to copy_from_user directly
356 * from the backing pages of the object to the user's address space. On a
357 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
358 */
359 static int
360 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361 struct drm_i915_gem_pread *args,
362 struct drm_file *file_priv)
363 {
364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 ssize_t remain;
366 loff_t offset, page_base;
367 char __user *user_data;
368 int page_offset, page_length;
369
370 user_data = (char __user *) (uintptr_t) args->data_ptr;
371 remain = args->size;
372
373 obj_priv = to_intel_bo(obj);
374 offset = args->offset;
375
376 while (remain > 0) {
377 /* Operation in this page
378 *
379 * page_base = page offset within aperture
380 * page_offset = offset within page
381 * page_length = bytes to copy for this page
382 */
383 page_base = (offset & ~(PAGE_SIZE-1));
384 page_offset = offset & (PAGE_SIZE-1);
385 page_length = remain;
386 if ((page_offset + remain) > PAGE_SIZE)
387 page_length = PAGE_SIZE - page_offset;
388
389 if (fast_shmem_read(obj_priv->pages,
390 page_base, page_offset,
391 user_data, page_length))
392 return -EFAULT;
393
394 remain -= page_length;
395 user_data += page_length;
396 offset += page_length;
397 }
398
399 return 0;
400 }
401
402 static int
403 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
404 {
405 int ret;
406
407 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
408
409 /* If we've insufficient memory to map in the pages, attempt
410 * to make some space by throwing out some old buffers.
411 */
412 if (ret == -ENOMEM) {
413 struct drm_device *dev = obj->dev;
414
415 ret = i915_gem_evict_something(dev, obj->size,
416 i915_gem_get_gtt_alignment(obj));
417 if (ret)
418 return ret;
419
420 ret = i915_gem_object_get_pages(obj, 0);
421 }
422
423 return ret;
424 }
425
426 /**
427 * This is the fallback shmem pread path, which allocates temporary storage
428 * in kernel space to copy_to_user into outside of the struct_mutex, so we
429 * can copy out of the object's backing pages while holding the struct mutex
430 * and not take page faults.
431 */
432 static int
433 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
434 struct drm_i915_gem_pread *args,
435 struct drm_file *file_priv)
436 {
437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
438 struct mm_struct *mm = current->mm;
439 struct page **user_pages;
440 ssize_t remain;
441 loff_t offset, pinned_pages, i;
442 loff_t first_data_page, last_data_page, num_pages;
443 int shmem_page_index, shmem_page_offset;
444 int data_page_index, data_page_offset;
445 int page_length;
446 int ret;
447 uint64_t data_ptr = args->data_ptr;
448 int do_bit17_swizzling;
449
450 remain = args->size;
451
452 /* Pin the user pages containing the data. We can't fault while
453 * holding the struct mutex, yet we want to hold it while
454 * dereferencing the user data.
455 */
456 first_data_page = data_ptr / PAGE_SIZE;
457 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
458 num_pages = last_data_page - first_data_page + 1;
459
460 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
461 if (user_pages == NULL)
462 return -ENOMEM;
463
464 mutex_unlock(&dev->struct_mutex);
465 down_read(&mm->mmap_sem);
466 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
467 num_pages, 1, 0, user_pages, NULL);
468 up_read(&mm->mmap_sem);
469 mutex_lock(&dev->struct_mutex);
470 if (pinned_pages < num_pages) {
471 ret = -EFAULT;
472 goto out;
473 }
474
475 ret = i915_gem_object_set_cpu_read_domain_range(obj,
476 args->offset,
477 args->size);
478 if (ret)
479 goto out;
480
481 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
482
483 obj_priv = to_intel_bo(obj);
484 offset = args->offset;
485
486 while (remain > 0) {
487 /* Operation in this page
488 *
489 * shmem_page_index = page number within shmem file
490 * shmem_page_offset = offset within page in shmem file
491 * data_page_index = page number in get_user_pages return
492 * data_page_offset = offset with data_page_index page.
493 * page_length = bytes to copy for this page
494 */
495 shmem_page_index = offset / PAGE_SIZE;
496 shmem_page_offset = offset & ~PAGE_MASK;
497 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
498 data_page_offset = data_ptr & ~PAGE_MASK;
499
500 page_length = remain;
501 if ((shmem_page_offset + page_length) > PAGE_SIZE)
502 page_length = PAGE_SIZE - shmem_page_offset;
503 if ((data_page_offset + page_length) > PAGE_SIZE)
504 page_length = PAGE_SIZE - data_page_offset;
505
506 if (do_bit17_swizzling) {
507 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
508 shmem_page_offset,
509 user_pages[data_page_index],
510 data_page_offset,
511 page_length,
512 1);
513 } else {
514 slow_shmem_copy(user_pages[data_page_index],
515 data_page_offset,
516 obj_priv->pages[shmem_page_index],
517 shmem_page_offset,
518 page_length);
519 }
520
521 remain -= page_length;
522 data_ptr += page_length;
523 offset += page_length;
524 }
525
526 out:
527 for (i = 0; i < pinned_pages; i++) {
528 SetPageDirty(user_pages[i]);
529 page_cache_release(user_pages[i]);
530 }
531 drm_free_large(user_pages);
532
533 return ret;
534 }
535
536 /**
537 * Reads data from the object referenced by handle.
538 *
539 * On error, the contents of *data are undefined.
540 */
541 int
542 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
543 struct drm_file *file_priv)
544 {
545 struct drm_i915_gem_pread *args = data;
546 struct drm_gem_object *obj;
547 struct drm_i915_gem_object *obj_priv;
548 int ret = 0;
549
550 if (args->size == 0)
551 return 0;
552
553 if (!access_ok(VERIFY_WRITE,
554 (char __user *)(uintptr_t)args->data_ptr,
555 args->size))
556 return -EFAULT;
557
558 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
559 args->size);
560 if (ret)
561 return -EFAULT;
562
563 ret = i915_mutex_lock_interruptible(dev);
564 if (ret)
565 return ret;
566
567 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
568 if (obj == NULL) {
569 ret = -ENOENT;
570 goto unlock;
571 }
572 obj_priv = to_intel_bo(obj);
573
574 /* Bounds check source. */
575 if (args->offset > obj->size || args->size > obj->size - args->offset) {
576 ret = -EINVAL;
577 goto out;
578 }
579
580 ret = i915_gem_object_get_pages_or_evict(obj);
581 if (ret)
582 goto out;
583
584 ret = i915_gem_object_set_cpu_read_domain_range(obj,
585 args->offset,
586 args->size);
587 if (ret)
588 goto out_put;
589
590 ret = -EFAULT;
591 if (!i915_gem_object_needs_bit17_swizzle(obj))
592 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
593 if (ret == -EFAULT)
594 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
595
596 out_put:
597 i915_gem_object_put_pages(obj);
598 out:
599 drm_gem_object_unreference(obj);
600 unlock:
601 mutex_unlock(&dev->struct_mutex);
602 return ret;
603 }
604
605 /* This is the fast write path which cannot handle
606 * page faults in the source data
607 */
608
609 static inline int
610 fast_user_write(struct io_mapping *mapping,
611 loff_t page_base, int page_offset,
612 char __user *user_data,
613 int length)
614 {
615 char *vaddr_atomic;
616 unsigned long unwritten;
617
618 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
619 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
620 user_data, length);
621 io_mapping_unmap_atomic(vaddr_atomic);
622 return unwritten;
623 }
624
625 /* Here's the write path which can sleep for
626 * page faults
627 */
628
629 static inline void
630 slow_kernel_write(struct io_mapping *mapping,
631 loff_t gtt_base, int gtt_offset,
632 struct page *user_page, int user_offset,
633 int length)
634 {
635 char __iomem *dst_vaddr;
636 char *src_vaddr;
637
638 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
639 src_vaddr = kmap(user_page);
640
641 memcpy_toio(dst_vaddr + gtt_offset,
642 src_vaddr + user_offset,
643 length);
644
645 kunmap(user_page);
646 io_mapping_unmap(dst_vaddr);
647 }
648
649 static inline int
650 fast_shmem_write(struct page **pages,
651 loff_t page_base, int page_offset,
652 char __user *data,
653 int length)
654 {
655 char *vaddr;
656 int ret;
657
658 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
659 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
660 kunmap_atomic(vaddr);
661
662 return ret;
663 }
664
665 /**
666 * This is the fast pwrite path, where we copy the data directly from the
667 * user into the GTT, uncached.
668 */
669 static int
670 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
671 struct drm_i915_gem_pwrite *args,
672 struct drm_file *file_priv)
673 {
674 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
675 drm_i915_private_t *dev_priv = dev->dev_private;
676 ssize_t remain;
677 loff_t offset, page_base;
678 char __user *user_data;
679 int page_offset, page_length;
680
681 user_data = (char __user *) (uintptr_t) args->data_ptr;
682 remain = args->size;
683
684 obj_priv = to_intel_bo(obj);
685 offset = obj_priv->gtt_offset + args->offset;
686
687 while (remain > 0) {
688 /* Operation in this page
689 *
690 * page_base = page offset within aperture
691 * page_offset = offset within page
692 * page_length = bytes to copy for this page
693 */
694 page_base = (offset & ~(PAGE_SIZE-1));
695 page_offset = offset & (PAGE_SIZE-1);
696 page_length = remain;
697 if ((page_offset + remain) > PAGE_SIZE)
698 page_length = PAGE_SIZE - page_offset;
699
700 /* If we get a fault while copying data, then (presumably) our
701 * source page isn't available. Return the error and we'll
702 * retry in the slow path.
703 */
704 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
705 page_offset, user_data, page_length))
706
707 return -EFAULT;
708
709 remain -= page_length;
710 user_data += page_length;
711 offset += page_length;
712 }
713
714 return 0;
715 }
716
717 /**
718 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
719 * the memory and maps it using kmap_atomic for copying.
720 *
721 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
722 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
723 */
724 static int
725 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
726 struct drm_i915_gem_pwrite *args,
727 struct drm_file *file_priv)
728 {
729 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
730 drm_i915_private_t *dev_priv = dev->dev_private;
731 ssize_t remain;
732 loff_t gtt_page_base, offset;
733 loff_t first_data_page, last_data_page, num_pages;
734 loff_t pinned_pages, i;
735 struct page **user_pages;
736 struct mm_struct *mm = current->mm;
737 int gtt_page_offset, data_page_offset, data_page_index, page_length;
738 int ret;
739 uint64_t data_ptr = args->data_ptr;
740
741 remain = args->size;
742
743 /* Pin the user pages containing the data. We can't fault while
744 * holding the struct mutex, and all of the pwrite implementations
745 * want to hold it while dereferencing the user data.
746 */
747 first_data_page = data_ptr / PAGE_SIZE;
748 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
749 num_pages = last_data_page - first_data_page + 1;
750
751 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
752 if (user_pages == NULL)
753 return -ENOMEM;
754
755 mutex_unlock(&dev->struct_mutex);
756 down_read(&mm->mmap_sem);
757 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
758 num_pages, 0, 0, user_pages, NULL);
759 up_read(&mm->mmap_sem);
760 mutex_lock(&dev->struct_mutex);
761 if (pinned_pages < num_pages) {
762 ret = -EFAULT;
763 goto out_unpin_pages;
764 }
765
766 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
767 if (ret)
768 goto out_unpin_pages;
769
770 obj_priv = to_intel_bo(obj);
771 offset = obj_priv->gtt_offset + args->offset;
772
773 while (remain > 0) {
774 /* Operation in this page
775 *
776 * gtt_page_base = page offset within aperture
777 * gtt_page_offset = offset within page in aperture
778 * data_page_index = page number in get_user_pages return
779 * data_page_offset = offset with data_page_index page.
780 * page_length = bytes to copy for this page
781 */
782 gtt_page_base = offset & PAGE_MASK;
783 gtt_page_offset = offset & ~PAGE_MASK;
784 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
785 data_page_offset = data_ptr & ~PAGE_MASK;
786
787 page_length = remain;
788 if ((gtt_page_offset + page_length) > PAGE_SIZE)
789 page_length = PAGE_SIZE - gtt_page_offset;
790 if ((data_page_offset + page_length) > PAGE_SIZE)
791 page_length = PAGE_SIZE - data_page_offset;
792
793 slow_kernel_write(dev_priv->mm.gtt_mapping,
794 gtt_page_base, gtt_page_offset,
795 user_pages[data_page_index],
796 data_page_offset,
797 page_length);
798
799 remain -= page_length;
800 offset += page_length;
801 data_ptr += page_length;
802 }
803
804 out_unpin_pages:
805 for (i = 0; i < pinned_pages; i++)
806 page_cache_release(user_pages[i]);
807 drm_free_large(user_pages);
808
809 return ret;
810 }
811
812 /**
813 * This is the fast shmem pwrite path, which attempts to directly
814 * copy_from_user into the kmapped pages backing the object.
815 */
816 static int
817 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
818 struct drm_i915_gem_pwrite *args,
819 struct drm_file *file_priv)
820 {
821 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
822 ssize_t remain;
823 loff_t offset, page_base;
824 char __user *user_data;
825 int page_offset, page_length;
826
827 user_data = (char __user *) (uintptr_t) args->data_ptr;
828 remain = args->size;
829
830 obj_priv = to_intel_bo(obj);
831 offset = args->offset;
832 obj_priv->dirty = 1;
833
834 while (remain > 0) {
835 /* Operation in this page
836 *
837 * page_base = page offset within aperture
838 * page_offset = offset within page
839 * page_length = bytes to copy for this page
840 */
841 page_base = (offset & ~(PAGE_SIZE-1));
842 page_offset = offset & (PAGE_SIZE-1);
843 page_length = remain;
844 if ((page_offset + remain) > PAGE_SIZE)
845 page_length = PAGE_SIZE - page_offset;
846
847 if (fast_shmem_write(obj_priv->pages,
848 page_base, page_offset,
849 user_data, page_length))
850 return -EFAULT;
851
852 remain -= page_length;
853 user_data += page_length;
854 offset += page_length;
855 }
856
857 return 0;
858 }
859
860 /**
861 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
862 * the memory and maps it using kmap_atomic for copying.
863 *
864 * This avoids taking mmap_sem for faulting on the user's address while the
865 * struct_mutex is held.
866 */
867 static int
868 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
869 struct drm_i915_gem_pwrite *args,
870 struct drm_file *file_priv)
871 {
872 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
873 struct mm_struct *mm = current->mm;
874 struct page **user_pages;
875 ssize_t remain;
876 loff_t offset, pinned_pages, i;
877 loff_t first_data_page, last_data_page, num_pages;
878 int shmem_page_index, shmem_page_offset;
879 int data_page_index, data_page_offset;
880 int page_length;
881 int ret;
882 uint64_t data_ptr = args->data_ptr;
883 int do_bit17_swizzling;
884
885 remain = args->size;
886
887 /* Pin the user pages containing the data. We can't fault while
888 * holding the struct mutex, and all of the pwrite implementations
889 * want to hold it while dereferencing the user data.
890 */
891 first_data_page = data_ptr / PAGE_SIZE;
892 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
893 num_pages = last_data_page - first_data_page + 1;
894
895 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
896 if (user_pages == NULL)
897 return -ENOMEM;
898
899 mutex_unlock(&dev->struct_mutex);
900 down_read(&mm->mmap_sem);
901 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
902 num_pages, 0, 0, user_pages, NULL);
903 up_read(&mm->mmap_sem);
904 mutex_lock(&dev->struct_mutex);
905 if (pinned_pages < num_pages) {
906 ret = -EFAULT;
907 goto out;
908 }
909
910 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
911 if (ret)
912 goto out;
913
914 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
915
916 obj_priv = to_intel_bo(obj);
917 offset = args->offset;
918 obj_priv->dirty = 1;
919
920 while (remain > 0) {
921 /* Operation in this page
922 *
923 * shmem_page_index = page number within shmem file
924 * shmem_page_offset = offset within page in shmem file
925 * data_page_index = page number in get_user_pages return
926 * data_page_offset = offset with data_page_index page.
927 * page_length = bytes to copy for this page
928 */
929 shmem_page_index = offset / PAGE_SIZE;
930 shmem_page_offset = offset & ~PAGE_MASK;
931 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
932 data_page_offset = data_ptr & ~PAGE_MASK;
933
934 page_length = remain;
935 if ((shmem_page_offset + page_length) > PAGE_SIZE)
936 page_length = PAGE_SIZE - shmem_page_offset;
937 if ((data_page_offset + page_length) > PAGE_SIZE)
938 page_length = PAGE_SIZE - data_page_offset;
939
940 if (do_bit17_swizzling) {
941 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
942 shmem_page_offset,
943 user_pages[data_page_index],
944 data_page_offset,
945 page_length,
946 0);
947 } else {
948 slow_shmem_copy(obj_priv->pages[shmem_page_index],
949 shmem_page_offset,
950 user_pages[data_page_index],
951 data_page_offset,
952 page_length);
953 }
954
955 remain -= page_length;
956 data_ptr += page_length;
957 offset += page_length;
958 }
959
960 out:
961 for (i = 0; i < pinned_pages; i++)
962 page_cache_release(user_pages[i]);
963 drm_free_large(user_pages);
964
965 return ret;
966 }
967
968 /**
969 * Writes data to the object referenced by handle.
970 *
971 * On error, the contents of the buffer that were to be modified are undefined.
972 */
973 int
974 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
975 struct drm_file *file)
976 {
977 struct drm_i915_gem_pwrite *args = data;
978 struct drm_gem_object *obj;
979 struct drm_i915_gem_object *obj_priv;
980 int ret;
981
982 if (args->size == 0)
983 return 0;
984
985 if (!access_ok(VERIFY_READ,
986 (char __user *)(uintptr_t)args->data_ptr,
987 args->size))
988 return -EFAULT;
989
990 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
991 args->size);
992 if (ret)
993 return -EFAULT;
994
995 ret = i915_mutex_lock_interruptible(dev);
996 if (ret)
997 return ret;
998
999 obj = drm_gem_object_lookup(dev, file, args->handle);
1000 if (obj == NULL) {
1001 ret = -ENOENT;
1002 goto unlock;
1003 }
1004 obj_priv = to_intel_bo(obj);
1005
1006 /* Bounds check destination. */
1007 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1008 ret = -EINVAL;
1009 goto out;
1010 }
1011
1012 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1013 * it would end up going through the fenced access, and we'll get
1014 * different detiling behavior between reading and writing.
1015 * pread/pwrite currently are reading and writing from the CPU
1016 * perspective, requiring manual detiling by the client.
1017 */
1018 if (obj_priv->phys_obj)
1019 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1020 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1021 obj_priv->gtt_space &&
1022 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1023 ret = i915_gem_object_pin(obj, 0);
1024 if (ret)
1025 goto out;
1026
1027 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1028 if (ret)
1029 goto out_unpin;
1030
1031 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1032 if (ret == -EFAULT)
1033 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1034
1035 out_unpin:
1036 i915_gem_object_unpin(obj);
1037 } else {
1038 ret = i915_gem_object_get_pages_or_evict(obj);
1039 if (ret)
1040 goto out;
1041
1042 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1043 if (ret)
1044 goto out_put;
1045
1046 ret = -EFAULT;
1047 if (!i915_gem_object_needs_bit17_swizzle(obj))
1048 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1049 if (ret == -EFAULT)
1050 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1051
1052 out_put:
1053 i915_gem_object_put_pages(obj);
1054 }
1055
1056 out:
1057 drm_gem_object_unreference(obj);
1058 unlock:
1059 mutex_unlock(&dev->struct_mutex);
1060 return ret;
1061 }
1062
1063 /**
1064 * Called when user space prepares to use an object with the CPU, either
1065 * through the mmap ioctl's mapping or a GTT mapping.
1066 */
1067 int
1068 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1069 struct drm_file *file_priv)
1070 {
1071 struct drm_i915_private *dev_priv = dev->dev_private;
1072 struct drm_i915_gem_set_domain *args = data;
1073 struct drm_gem_object *obj;
1074 struct drm_i915_gem_object *obj_priv;
1075 uint32_t read_domains = args->read_domains;
1076 uint32_t write_domain = args->write_domain;
1077 int ret;
1078
1079 if (!(dev->driver->driver_features & DRIVER_GEM))
1080 return -ENODEV;
1081
1082 /* Only handle setting domains to types used by the CPU. */
1083 if (write_domain & I915_GEM_GPU_DOMAINS)
1084 return -EINVAL;
1085
1086 if (read_domains & I915_GEM_GPU_DOMAINS)
1087 return -EINVAL;
1088
1089 /* Having something in the write domain implies it's in the read
1090 * domain, and only that read domain. Enforce that in the request.
1091 */
1092 if (write_domain != 0 && read_domains != write_domain)
1093 return -EINVAL;
1094
1095 ret = i915_mutex_lock_interruptible(dev);
1096 if (ret)
1097 return ret;
1098
1099 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1100 if (obj == NULL) {
1101 ret = -ENOENT;
1102 goto unlock;
1103 }
1104 obj_priv = to_intel_bo(obj);
1105
1106 intel_mark_busy(dev, obj);
1107
1108 if (read_domains & I915_GEM_DOMAIN_GTT) {
1109 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1110
1111 /* Update the LRU on the fence for the CPU access that's
1112 * about to occur.
1113 */
1114 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1115 struct drm_i915_fence_reg *reg =
1116 &dev_priv->fence_regs[obj_priv->fence_reg];
1117 list_move_tail(&reg->lru_list,
1118 &dev_priv->mm.fence_list);
1119 }
1120
1121 /* Silently promote "you're not bound, there was nothing to do"
1122 * to success, since the client was just asking us to
1123 * make sure everything was done.
1124 */
1125 if (ret == -EINVAL)
1126 ret = 0;
1127 } else {
1128 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1129 }
1130
1131 /* Maintain LRU order of "inactive" objects */
1132 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1133 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1134
1135 drm_gem_object_unreference(obj);
1136 unlock:
1137 mutex_unlock(&dev->struct_mutex);
1138 return ret;
1139 }
1140
1141 /**
1142 * Called when user space has done writes to this buffer
1143 */
1144 int
1145 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1146 struct drm_file *file_priv)
1147 {
1148 struct drm_i915_gem_sw_finish *args = data;
1149 struct drm_gem_object *obj;
1150 int ret = 0;
1151
1152 if (!(dev->driver->driver_features & DRIVER_GEM))
1153 return -ENODEV;
1154
1155 ret = i915_mutex_lock_interruptible(dev);
1156 if (ret)
1157 return ret;
1158
1159 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1160 if (obj == NULL) {
1161 ret = -ENOENT;
1162 goto unlock;
1163 }
1164
1165 /* Pinned buffers may be scanout, so flush the cache */
1166 if (to_intel_bo(obj)->pin_count)
1167 i915_gem_object_flush_cpu_write_domain(obj);
1168
1169 drm_gem_object_unreference(obj);
1170 unlock:
1171 mutex_unlock(&dev->struct_mutex);
1172 return ret;
1173 }
1174
1175 /**
1176 * Maps the contents of an object, returning the address it is mapped
1177 * into.
1178 *
1179 * While the mapping holds a reference on the contents of the object, it doesn't
1180 * imply a ref on the object itself.
1181 */
1182 int
1183 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1184 struct drm_file *file_priv)
1185 {
1186 struct drm_i915_gem_mmap *args = data;
1187 struct drm_gem_object *obj;
1188 loff_t offset;
1189 unsigned long addr;
1190
1191 if (!(dev->driver->driver_features & DRIVER_GEM))
1192 return -ENODEV;
1193
1194 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1195 if (obj == NULL)
1196 return -ENOENT;
1197
1198 offset = args->offset;
1199
1200 down_write(&current->mm->mmap_sem);
1201 addr = do_mmap(obj->filp, 0, args->size,
1202 PROT_READ | PROT_WRITE, MAP_SHARED,
1203 args->offset);
1204 up_write(&current->mm->mmap_sem);
1205 drm_gem_object_unreference_unlocked(obj);
1206 if (IS_ERR((void *)addr))
1207 return addr;
1208
1209 args->addr_ptr = (uint64_t) addr;
1210
1211 return 0;
1212 }
1213
1214 /**
1215 * i915_gem_fault - fault a page into the GTT
1216 * vma: VMA in question
1217 * vmf: fault info
1218 *
1219 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1220 * from userspace. The fault handler takes care of binding the object to
1221 * the GTT (if needed), allocating and programming a fence register (again,
1222 * only if needed based on whether the old reg is still valid or the object
1223 * is tiled) and inserting a new PTE into the faulting process.
1224 *
1225 * Note that the faulting process may involve evicting existing objects
1226 * from the GTT and/or fence registers to make room. So performance may
1227 * suffer if the GTT working set is large or there are few fence registers
1228 * left.
1229 */
1230 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1231 {
1232 struct drm_gem_object *obj = vma->vm_private_data;
1233 struct drm_device *dev = obj->dev;
1234 drm_i915_private_t *dev_priv = dev->dev_private;
1235 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1236 pgoff_t page_offset;
1237 unsigned long pfn;
1238 int ret = 0;
1239 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1240
1241 /* We don't use vmf->pgoff since that has the fake offset */
1242 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1243 PAGE_SHIFT;
1244
1245 /* Now bind it into the GTT if needed */
1246 mutex_lock(&dev->struct_mutex);
1247 if (!obj_priv->gtt_space) {
1248 ret = i915_gem_object_bind_to_gtt(obj, 0);
1249 if (ret)
1250 goto unlock;
1251
1252 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1253 if (ret)
1254 goto unlock;
1255 }
1256
1257 /* Need a new fence register? */
1258 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1259 ret = i915_gem_object_get_fence_reg(obj, true);
1260 if (ret)
1261 goto unlock;
1262 }
1263
1264 if (i915_gem_object_is_inactive(obj_priv))
1265 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1266
1267 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1268 page_offset;
1269
1270 /* Finally, remap it using the new GTT offset */
1271 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1272 unlock:
1273 mutex_unlock(&dev->struct_mutex);
1274
1275 switch (ret) {
1276 case 0:
1277 case -ERESTARTSYS:
1278 return VM_FAULT_NOPAGE;
1279 case -ENOMEM:
1280 case -EAGAIN:
1281 return VM_FAULT_OOM;
1282 default:
1283 return VM_FAULT_SIGBUS;
1284 }
1285 }
1286
1287 /**
1288 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1289 * @obj: obj in question
1290 *
1291 * GEM memory mapping works by handing back to userspace a fake mmap offset
1292 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1293 * up the object based on the offset and sets up the various memory mapping
1294 * structures.
1295 *
1296 * This routine allocates and attaches a fake offset for @obj.
1297 */
1298 static int
1299 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1300 {
1301 struct drm_device *dev = obj->dev;
1302 struct drm_gem_mm *mm = dev->mm_private;
1303 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1304 struct drm_map_list *list;
1305 struct drm_local_map *map;
1306 int ret = 0;
1307
1308 /* Set the object up for mmap'ing */
1309 list = &obj->map_list;
1310 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1311 if (!list->map)
1312 return -ENOMEM;
1313
1314 map = list->map;
1315 map->type = _DRM_GEM;
1316 map->size = obj->size;
1317 map->handle = obj;
1318
1319 /* Get a DRM GEM mmap offset allocated... */
1320 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1321 obj->size / PAGE_SIZE, 0, 0);
1322 if (!list->file_offset_node) {
1323 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1324 ret = -ENOSPC;
1325 goto out_free_list;
1326 }
1327
1328 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1329 obj->size / PAGE_SIZE, 0);
1330 if (!list->file_offset_node) {
1331 ret = -ENOMEM;
1332 goto out_free_list;
1333 }
1334
1335 list->hash.key = list->file_offset_node->start;
1336 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1337 if (ret) {
1338 DRM_ERROR("failed to add to map hash\n");
1339 goto out_free_mm;
1340 }
1341
1342 /* By now we should be all set, any drm_mmap request on the offset
1343 * below will get to our mmap & fault handler */
1344 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1345
1346 return 0;
1347
1348 out_free_mm:
1349 drm_mm_put_block(list->file_offset_node);
1350 out_free_list:
1351 kfree(list->map);
1352
1353 return ret;
1354 }
1355
1356 /**
1357 * i915_gem_release_mmap - remove physical page mappings
1358 * @obj: obj in question
1359 *
1360 * Preserve the reservation of the mmapping with the DRM core code, but
1361 * relinquish ownership of the pages back to the system.
1362 *
1363 * It is vital that we remove the page mapping if we have mapped a tiled
1364 * object through the GTT and then lose the fence register due to
1365 * resource pressure. Similarly if the object has been moved out of the
1366 * aperture, than pages mapped into userspace must be revoked. Removing the
1367 * mapping will then trigger a page fault on the next user access, allowing
1368 * fixup by i915_gem_fault().
1369 */
1370 void
1371 i915_gem_release_mmap(struct drm_gem_object *obj)
1372 {
1373 struct drm_device *dev = obj->dev;
1374 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1375
1376 if (dev->dev_mapping)
1377 unmap_mapping_range(dev->dev_mapping,
1378 obj_priv->mmap_offset, obj->size, 1);
1379 }
1380
1381 static void
1382 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1383 {
1384 struct drm_device *dev = obj->dev;
1385 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1386 struct drm_gem_mm *mm = dev->mm_private;
1387 struct drm_map_list *list;
1388
1389 list = &obj->map_list;
1390 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1391
1392 if (list->file_offset_node) {
1393 drm_mm_put_block(list->file_offset_node);
1394 list->file_offset_node = NULL;
1395 }
1396
1397 if (list->map) {
1398 kfree(list->map);
1399 list->map = NULL;
1400 }
1401
1402 obj_priv->mmap_offset = 0;
1403 }
1404
1405 /**
1406 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1407 * @obj: object to check
1408 *
1409 * Return the required GTT alignment for an object, taking into account
1410 * potential fence register mapping if needed.
1411 */
1412 static uint32_t
1413 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1414 {
1415 struct drm_device *dev = obj->dev;
1416 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1417 int start, i;
1418
1419 /*
1420 * Minimum alignment is 4k (GTT page size), but might be greater
1421 * if a fence register is needed for the object.
1422 */
1423 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1424 return 4096;
1425
1426 /*
1427 * Previous chips need to be aligned to the size of the smallest
1428 * fence register that can contain the object.
1429 */
1430 if (INTEL_INFO(dev)->gen == 3)
1431 start = 1024*1024;
1432 else
1433 start = 512*1024;
1434
1435 for (i = start; i < obj->size; i <<= 1)
1436 ;
1437
1438 return i;
1439 }
1440
1441 /**
1442 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1443 * @dev: DRM device
1444 * @data: GTT mapping ioctl data
1445 * @file_priv: GEM object info
1446 *
1447 * Simply returns the fake offset to userspace so it can mmap it.
1448 * The mmap call will end up in drm_gem_mmap(), which will set things
1449 * up so we can get faults in the handler above.
1450 *
1451 * The fault handler will take care of binding the object into the GTT
1452 * (since it may have been evicted to make room for something), allocating
1453 * a fence register, and mapping the appropriate aperture address into
1454 * userspace.
1455 */
1456 int
1457 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1458 struct drm_file *file_priv)
1459 {
1460 struct drm_i915_gem_mmap_gtt *args = data;
1461 struct drm_gem_object *obj;
1462 struct drm_i915_gem_object *obj_priv;
1463 int ret;
1464
1465 if (!(dev->driver->driver_features & DRIVER_GEM))
1466 return -ENODEV;
1467
1468 ret = i915_mutex_lock_interruptible(dev);
1469 if (ret)
1470 return ret;
1471
1472 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1473 if (obj == NULL) {
1474 ret = -ENOENT;
1475 goto unlock;
1476 }
1477 obj_priv = to_intel_bo(obj);
1478
1479 if (obj_priv->madv != I915_MADV_WILLNEED) {
1480 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1481 ret = -EINVAL;
1482 goto out;
1483 }
1484
1485 if (!obj_priv->mmap_offset) {
1486 ret = i915_gem_create_mmap_offset(obj);
1487 if (ret)
1488 goto out;
1489 }
1490
1491 args->offset = obj_priv->mmap_offset;
1492
1493 /*
1494 * Pull it into the GTT so that we have a page list (makes the
1495 * initial fault faster and any subsequent flushing possible).
1496 */
1497 if (!obj_priv->agp_mem) {
1498 ret = i915_gem_object_bind_to_gtt(obj, 0);
1499 if (ret)
1500 goto out;
1501 }
1502
1503 out:
1504 drm_gem_object_unreference(obj);
1505 unlock:
1506 mutex_unlock(&dev->struct_mutex);
1507 return ret;
1508 }
1509
1510 static void
1511 i915_gem_object_put_pages(struct drm_gem_object *obj)
1512 {
1513 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1514 int page_count = obj->size / PAGE_SIZE;
1515 int i;
1516
1517 BUG_ON(obj_priv->pages_refcount == 0);
1518 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1519
1520 if (--obj_priv->pages_refcount != 0)
1521 return;
1522
1523 if (obj_priv->tiling_mode != I915_TILING_NONE)
1524 i915_gem_object_save_bit_17_swizzle(obj);
1525
1526 if (obj_priv->madv == I915_MADV_DONTNEED)
1527 obj_priv->dirty = 0;
1528
1529 for (i = 0; i < page_count; i++) {
1530 if (obj_priv->dirty)
1531 set_page_dirty(obj_priv->pages[i]);
1532
1533 if (obj_priv->madv == I915_MADV_WILLNEED)
1534 mark_page_accessed(obj_priv->pages[i]);
1535
1536 page_cache_release(obj_priv->pages[i]);
1537 }
1538 obj_priv->dirty = 0;
1539
1540 drm_free_large(obj_priv->pages);
1541 obj_priv->pages = NULL;
1542 }
1543
1544 static uint32_t
1545 i915_gem_next_request_seqno(struct drm_device *dev,
1546 struct intel_ring_buffer *ring)
1547 {
1548 drm_i915_private_t *dev_priv = dev->dev_private;
1549
1550 ring->outstanding_lazy_request = true;
1551 return dev_priv->next_seqno;
1552 }
1553
1554 static void
1555 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1556 struct intel_ring_buffer *ring)
1557 {
1558 struct drm_device *dev = obj->dev;
1559 struct drm_i915_private *dev_priv = dev->dev_private;
1560 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1561 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1562
1563 BUG_ON(ring == NULL);
1564 obj_priv->ring = ring;
1565
1566 /* Add a reference if we're newly entering the active list. */
1567 if (!obj_priv->active) {
1568 drm_gem_object_reference(obj);
1569 obj_priv->active = 1;
1570 }
1571
1572 /* Move from whatever list we were on to the tail of execution. */
1573 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1574 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1575 obj_priv->last_rendering_seqno = seqno;
1576 }
1577
1578 static void
1579 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1580 {
1581 struct drm_device *dev = obj->dev;
1582 drm_i915_private_t *dev_priv = dev->dev_private;
1583 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1584
1585 BUG_ON(!obj_priv->active);
1586 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1587 list_del_init(&obj_priv->ring_list);
1588 obj_priv->last_rendering_seqno = 0;
1589 }
1590
1591 /* Immediately discard the backing storage */
1592 static void
1593 i915_gem_object_truncate(struct drm_gem_object *obj)
1594 {
1595 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1596 struct inode *inode;
1597
1598 /* Our goal here is to return as much of the memory as
1599 * is possible back to the system as we are called from OOM.
1600 * To do this we must instruct the shmfs to drop all of its
1601 * backing pages, *now*. Here we mirror the actions taken
1602 * when by shmem_delete_inode() to release the backing store.
1603 */
1604 inode = obj->filp->f_path.dentry->d_inode;
1605 truncate_inode_pages(inode->i_mapping, 0);
1606 if (inode->i_op->truncate_range)
1607 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1608
1609 obj_priv->madv = __I915_MADV_PURGED;
1610 }
1611
1612 static inline int
1613 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1614 {
1615 return obj_priv->madv == I915_MADV_DONTNEED;
1616 }
1617
1618 static void
1619 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1620 {
1621 struct drm_device *dev = obj->dev;
1622 drm_i915_private_t *dev_priv = dev->dev_private;
1623 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1624
1625 if (obj_priv->pin_count != 0)
1626 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1627 else
1628 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1629 list_del_init(&obj_priv->ring_list);
1630
1631 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1632
1633 obj_priv->last_rendering_seqno = 0;
1634 obj_priv->ring = NULL;
1635 if (obj_priv->active) {
1636 obj_priv->active = 0;
1637 drm_gem_object_unreference(obj);
1638 }
1639 WARN_ON(i915_verify_lists(dev));
1640 }
1641
1642 static void
1643 i915_gem_process_flushing_list(struct drm_device *dev,
1644 uint32_t flush_domains,
1645 struct intel_ring_buffer *ring)
1646 {
1647 drm_i915_private_t *dev_priv = dev->dev_private;
1648 struct drm_i915_gem_object *obj_priv, *next;
1649
1650 list_for_each_entry_safe(obj_priv, next,
1651 &ring->gpu_write_list,
1652 gpu_write_list) {
1653 struct drm_gem_object *obj = &obj_priv->base;
1654
1655 if (obj->write_domain & flush_domains) {
1656 uint32_t old_write_domain = obj->write_domain;
1657
1658 obj->write_domain = 0;
1659 list_del_init(&obj_priv->gpu_write_list);
1660 i915_gem_object_move_to_active(obj, ring);
1661
1662 /* update the fence lru list */
1663 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1664 struct drm_i915_fence_reg *reg =
1665 &dev_priv->fence_regs[obj_priv->fence_reg];
1666 list_move_tail(&reg->lru_list,
1667 &dev_priv->mm.fence_list);
1668 }
1669
1670 trace_i915_gem_object_change_domain(obj,
1671 obj->read_domains,
1672 old_write_domain);
1673 }
1674 }
1675 }
1676
1677 uint32_t
1678 i915_add_request(struct drm_device *dev,
1679 struct drm_file *file,
1680 struct drm_i915_gem_request *request,
1681 struct intel_ring_buffer *ring)
1682 {
1683 drm_i915_private_t *dev_priv = dev->dev_private;
1684 struct drm_i915_file_private *file_priv = NULL;
1685 uint32_t seqno;
1686 int was_empty;
1687
1688 if (file != NULL)
1689 file_priv = file->driver_priv;
1690
1691 if (request == NULL) {
1692 request = kzalloc(sizeof(*request), GFP_KERNEL);
1693 if (request == NULL)
1694 return 0;
1695 }
1696
1697 seqno = ring->add_request(dev, ring, 0);
1698 ring->outstanding_lazy_request = false;
1699
1700 request->seqno = seqno;
1701 request->ring = ring;
1702 request->emitted_jiffies = jiffies;
1703 was_empty = list_empty(&ring->request_list);
1704 list_add_tail(&request->list, &ring->request_list);
1705
1706 if (file_priv) {
1707 spin_lock(&file_priv->mm.lock);
1708 request->file_priv = file_priv;
1709 list_add_tail(&request->client_list,
1710 &file_priv->mm.request_list);
1711 spin_unlock(&file_priv->mm.lock);
1712 }
1713
1714 if (!dev_priv->mm.suspended) {
1715 mod_timer(&dev_priv->hangcheck_timer,
1716 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1717 if (was_empty)
1718 queue_delayed_work(dev_priv->wq,
1719 &dev_priv->mm.retire_work, HZ);
1720 }
1721 return seqno;
1722 }
1723
1724 /**
1725 * Command execution barrier
1726 *
1727 * Ensures that all commands in the ring are finished
1728 * before signalling the CPU
1729 */
1730 static void
1731 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1732 {
1733 uint32_t flush_domains = 0;
1734
1735 /* The sampler always gets flushed on i965 (sigh) */
1736 if (INTEL_INFO(dev)->gen >= 4)
1737 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1738
1739 ring->flush(dev, ring,
1740 I915_GEM_DOMAIN_COMMAND, flush_domains);
1741 }
1742
1743 static inline void
1744 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1745 {
1746 struct drm_i915_file_private *file_priv = request->file_priv;
1747
1748 if (!file_priv)
1749 return;
1750
1751 spin_lock(&file_priv->mm.lock);
1752 list_del(&request->client_list);
1753 request->file_priv = NULL;
1754 spin_unlock(&file_priv->mm.lock);
1755 }
1756
1757 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1758 struct intel_ring_buffer *ring)
1759 {
1760 while (!list_empty(&ring->request_list)) {
1761 struct drm_i915_gem_request *request;
1762
1763 request = list_first_entry(&ring->request_list,
1764 struct drm_i915_gem_request,
1765 list);
1766
1767 list_del(&request->list);
1768 i915_gem_request_remove_from_client(request);
1769 kfree(request);
1770 }
1771
1772 while (!list_empty(&ring->active_list)) {
1773 struct drm_i915_gem_object *obj_priv;
1774
1775 obj_priv = list_first_entry(&ring->active_list,
1776 struct drm_i915_gem_object,
1777 ring_list);
1778
1779 obj_priv->base.write_domain = 0;
1780 list_del_init(&obj_priv->gpu_write_list);
1781 i915_gem_object_move_to_inactive(&obj_priv->base);
1782 }
1783 }
1784
1785 void i915_gem_reset(struct drm_device *dev)
1786 {
1787 struct drm_i915_private *dev_priv = dev->dev_private;
1788 struct drm_i915_gem_object *obj_priv;
1789 int i;
1790
1791 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1792 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1793 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1794
1795 /* Remove anything from the flushing lists. The GPU cache is likely
1796 * to be lost on reset along with the data, so simply move the
1797 * lost bo to the inactive list.
1798 */
1799 while (!list_empty(&dev_priv->mm.flushing_list)) {
1800 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1801 struct drm_i915_gem_object,
1802 mm_list);
1803
1804 obj_priv->base.write_domain = 0;
1805 list_del_init(&obj_priv->gpu_write_list);
1806 i915_gem_object_move_to_inactive(&obj_priv->base);
1807 }
1808
1809 /* Move everything out of the GPU domains to ensure we do any
1810 * necessary invalidation upon reuse.
1811 */
1812 list_for_each_entry(obj_priv,
1813 &dev_priv->mm.inactive_list,
1814 mm_list)
1815 {
1816 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1817 }
1818
1819 /* The fence registers are invalidated so clear them out */
1820 for (i = 0; i < 16; i++) {
1821 struct drm_i915_fence_reg *reg;
1822
1823 reg = &dev_priv->fence_regs[i];
1824 if (!reg->obj)
1825 continue;
1826
1827 i915_gem_clear_fence_reg(reg->obj);
1828 }
1829 }
1830
1831 /**
1832 * This function clears the request list as sequence numbers are passed.
1833 */
1834 static void
1835 i915_gem_retire_requests_ring(struct drm_device *dev,
1836 struct intel_ring_buffer *ring)
1837 {
1838 drm_i915_private_t *dev_priv = dev->dev_private;
1839 uint32_t seqno;
1840
1841 if (!ring->status_page.page_addr ||
1842 list_empty(&ring->request_list))
1843 return;
1844
1845 WARN_ON(i915_verify_lists(dev));
1846
1847 seqno = ring->get_seqno(dev, ring);
1848 while (!list_empty(&ring->request_list)) {
1849 struct drm_i915_gem_request *request;
1850
1851 request = list_first_entry(&ring->request_list,
1852 struct drm_i915_gem_request,
1853 list);
1854
1855 if (!i915_seqno_passed(seqno, request->seqno))
1856 break;
1857
1858 trace_i915_gem_request_retire(dev, request->seqno);
1859
1860 list_del(&request->list);
1861 i915_gem_request_remove_from_client(request);
1862 kfree(request);
1863 }
1864
1865 /* Move any buffers on the active list that are no longer referenced
1866 * by the ringbuffer to the flushing/inactive lists as appropriate.
1867 */
1868 while (!list_empty(&ring->active_list)) {
1869 struct drm_gem_object *obj;
1870 struct drm_i915_gem_object *obj_priv;
1871
1872 obj_priv = list_first_entry(&ring->active_list,
1873 struct drm_i915_gem_object,
1874 ring_list);
1875
1876 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1877 break;
1878
1879 obj = &obj_priv->base;
1880 if (obj->write_domain != 0)
1881 i915_gem_object_move_to_flushing(obj);
1882 else
1883 i915_gem_object_move_to_inactive(obj);
1884 }
1885
1886 if (unlikely (dev_priv->trace_irq_seqno &&
1887 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1888 ring->user_irq_put(dev, ring);
1889 dev_priv->trace_irq_seqno = 0;
1890 }
1891
1892 WARN_ON(i915_verify_lists(dev));
1893 }
1894
1895 void
1896 i915_gem_retire_requests(struct drm_device *dev)
1897 {
1898 drm_i915_private_t *dev_priv = dev->dev_private;
1899
1900 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1901 struct drm_i915_gem_object *obj_priv, *tmp;
1902
1903 /* We must be careful that during unbind() we do not
1904 * accidentally infinitely recurse into retire requests.
1905 * Currently:
1906 * retire -> free -> unbind -> wait -> retire_ring
1907 */
1908 list_for_each_entry_safe(obj_priv, tmp,
1909 &dev_priv->mm.deferred_free_list,
1910 mm_list)
1911 i915_gem_free_object_tail(&obj_priv->base);
1912 }
1913
1914 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1915 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1916 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
1917 }
1918
1919 static void
1920 i915_gem_retire_work_handler(struct work_struct *work)
1921 {
1922 drm_i915_private_t *dev_priv;
1923 struct drm_device *dev;
1924
1925 dev_priv = container_of(work, drm_i915_private_t,
1926 mm.retire_work.work);
1927 dev = dev_priv->dev;
1928
1929 /* Come back later if the device is busy... */
1930 if (!mutex_trylock(&dev->struct_mutex)) {
1931 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1932 return;
1933 }
1934
1935 i915_gem_retire_requests(dev);
1936
1937 if (!dev_priv->mm.suspended &&
1938 (!list_empty(&dev_priv->render_ring.request_list) ||
1939 !list_empty(&dev_priv->bsd_ring.request_list) ||
1940 !list_empty(&dev_priv->blt_ring.request_list)))
1941 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1942 mutex_unlock(&dev->struct_mutex);
1943 }
1944
1945 int
1946 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1947 bool interruptible, struct intel_ring_buffer *ring)
1948 {
1949 drm_i915_private_t *dev_priv = dev->dev_private;
1950 u32 ier;
1951 int ret = 0;
1952
1953 BUG_ON(seqno == 0);
1954
1955 if (atomic_read(&dev_priv->mm.wedged))
1956 return -EAGAIN;
1957
1958 if (ring->outstanding_lazy_request) {
1959 seqno = i915_add_request(dev, NULL, NULL, ring);
1960 if (seqno == 0)
1961 return -ENOMEM;
1962 }
1963 BUG_ON(seqno == dev_priv->next_seqno);
1964
1965 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1966 if (HAS_PCH_SPLIT(dev))
1967 ier = I915_READ(DEIER) | I915_READ(GTIER);
1968 else
1969 ier = I915_READ(IER);
1970 if (!ier) {
1971 DRM_ERROR("something (likely vbetool) disabled "
1972 "interrupts, re-enabling\n");
1973 i915_driver_irq_preinstall(dev);
1974 i915_driver_irq_postinstall(dev);
1975 }
1976
1977 trace_i915_gem_request_wait_begin(dev, seqno);
1978
1979 ring->waiting_gem_seqno = seqno;
1980 ring->user_irq_get(dev, ring);
1981 if (interruptible)
1982 ret = wait_event_interruptible(ring->irq_queue,
1983 i915_seqno_passed(
1984 ring->get_seqno(dev, ring), seqno)
1985 || atomic_read(&dev_priv->mm.wedged));
1986 else
1987 wait_event(ring->irq_queue,
1988 i915_seqno_passed(
1989 ring->get_seqno(dev, ring), seqno)
1990 || atomic_read(&dev_priv->mm.wedged));
1991
1992 ring->user_irq_put(dev, ring);
1993 ring->waiting_gem_seqno = 0;
1994
1995 trace_i915_gem_request_wait_end(dev, seqno);
1996 }
1997 if (atomic_read(&dev_priv->mm.wedged))
1998 ret = -EAGAIN;
1999
2000 if (ret && ret != -ERESTARTSYS)
2001 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2002 __func__, ret, seqno, ring->get_seqno(dev, ring),
2003 dev_priv->next_seqno);
2004
2005 /* Directly dispatch request retiring. While we have the work queue
2006 * to handle this, the waiter on a request often wants an associated
2007 * buffer to have made it to the inactive list, and we would need
2008 * a separate wait queue to handle that.
2009 */
2010 if (ret == 0)
2011 i915_gem_retire_requests_ring(dev, ring);
2012
2013 return ret;
2014 }
2015
2016 /**
2017 * Waits for a sequence number to be signaled, and cleans up the
2018 * request and object lists appropriately for that event.
2019 */
2020 static int
2021 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2022 struct intel_ring_buffer *ring)
2023 {
2024 return i915_do_wait_request(dev, seqno, 1, ring);
2025 }
2026
2027 static void
2028 i915_gem_flush_ring(struct drm_device *dev,
2029 struct drm_file *file_priv,
2030 struct intel_ring_buffer *ring,
2031 uint32_t invalidate_domains,
2032 uint32_t flush_domains)
2033 {
2034 ring->flush(dev, ring, invalidate_domains, flush_domains);
2035 i915_gem_process_flushing_list(dev, flush_domains, ring);
2036 }
2037
2038 static void
2039 i915_gem_flush(struct drm_device *dev,
2040 struct drm_file *file_priv,
2041 uint32_t invalidate_domains,
2042 uint32_t flush_domains,
2043 uint32_t flush_rings)
2044 {
2045 drm_i915_private_t *dev_priv = dev->dev_private;
2046
2047 if (flush_domains & I915_GEM_DOMAIN_CPU)
2048 drm_agp_chipset_flush(dev);
2049
2050 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2051 if (flush_rings & RING_RENDER)
2052 i915_gem_flush_ring(dev, file_priv,
2053 &dev_priv->render_ring,
2054 invalidate_domains, flush_domains);
2055 if (flush_rings & RING_BSD)
2056 i915_gem_flush_ring(dev, file_priv,
2057 &dev_priv->bsd_ring,
2058 invalidate_domains, flush_domains);
2059 if (flush_rings & RING_BLT)
2060 i915_gem_flush_ring(dev, file_priv,
2061 &dev_priv->blt_ring,
2062 invalidate_domains, flush_domains);
2063 }
2064 }
2065
2066 /**
2067 * Ensures that all rendering to the object has completed and the object is
2068 * safe to unbind from the GTT or access from the CPU.
2069 */
2070 static int
2071 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2072 bool interruptible)
2073 {
2074 struct drm_device *dev = obj->dev;
2075 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2076 int ret;
2077
2078 /* This function only exists to support waiting for existing rendering,
2079 * not for emitting required flushes.
2080 */
2081 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2082
2083 /* If there is rendering queued on the buffer being evicted, wait for
2084 * it.
2085 */
2086 if (obj_priv->active) {
2087 ret = i915_do_wait_request(dev,
2088 obj_priv->last_rendering_seqno,
2089 interruptible,
2090 obj_priv->ring);
2091 if (ret)
2092 return ret;
2093 }
2094
2095 return 0;
2096 }
2097
2098 /**
2099 * Unbinds an object from the GTT aperture.
2100 */
2101 int
2102 i915_gem_object_unbind(struct drm_gem_object *obj)
2103 {
2104 struct drm_device *dev = obj->dev;
2105 struct drm_i915_private *dev_priv = dev->dev_private;
2106 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2107 int ret = 0;
2108
2109 if (obj_priv->gtt_space == NULL)
2110 return 0;
2111
2112 if (obj_priv->pin_count != 0) {
2113 DRM_ERROR("Attempting to unbind pinned buffer\n");
2114 return -EINVAL;
2115 }
2116
2117 /* blow away mappings if mapped through GTT */
2118 i915_gem_release_mmap(obj);
2119
2120 /* Move the object to the CPU domain to ensure that
2121 * any possible CPU writes while it's not in the GTT
2122 * are flushed when we go to remap it. This will
2123 * also ensure that all pending GPU writes are finished
2124 * before we unbind.
2125 */
2126 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2127 if (ret == -ERESTARTSYS)
2128 return ret;
2129 /* Continue on if we fail due to EIO, the GPU is hung so we
2130 * should be safe and we need to cleanup or else we might
2131 * cause memory corruption through use-after-free.
2132 */
2133 if (ret) {
2134 i915_gem_clflush_object(obj);
2135 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2136 }
2137
2138 /* release the fence reg _after_ flushing */
2139 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2140 i915_gem_clear_fence_reg(obj);
2141
2142 drm_unbind_agp(obj_priv->agp_mem);
2143 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2144
2145 i915_gem_object_put_pages(obj);
2146 BUG_ON(obj_priv->pages_refcount);
2147
2148 i915_gem_info_remove_gtt(dev_priv, obj->size);
2149 list_del_init(&obj_priv->mm_list);
2150
2151 drm_mm_put_block(obj_priv->gtt_space);
2152 obj_priv->gtt_space = NULL;
2153 obj_priv->gtt_offset = 0;
2154
2155 if (i915_gem_object_is_purgeable(obj_priv))
2156 i915_gem_object_truncate(obj);
2157
2158 trace_i915_gem_object_unbind(obj);
2159
2160 return ret;
2161 }
2162
2163 static int i915_ring_idle(struct drm_device *dev,
2164 struct intel_ring_buffer *ring)
2165 {
2166 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2167 return 0;
2168
2169 i915_gem_flush_ring(dev, NULL, ring,
2170 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2171 return i915_wait_request(dev,
2172 i915_gem_next_request_seqno(dev, ring),
2173 ring);
2174 }
2175
2176 int
2177 i915_gpu_idle(struct drm_device *dev)
2178 {
2179 drm_i915_private_t *dev_priv = dev->dev_private;
2180 bool lists_empty;
2181 int ret;
2182
2183 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2184 list_empty(&dev_priv->mm.active_list));
2185 if (lists_empty)
2186 return 0;
2187
2188 /* Flush everything onto the inactive list. */
2189 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2190 if (ret)
2191 return ret;
2192
2193 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2194 if (ret)
2195 return ret;
2196
2197 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2198 if (ret)
2199 return ret;
2200
2201 return 0;
2202 }
2203
2204 static int
2205 i915_gem_object_get_pages(struct drm_gem_object *obj,
2206 gfp_t gfpmask)
2207 {
2208 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2209 int page_count, i;
2210 struct address_space *mapping;
2211 struct inode *inode;
2212 struct page *page;
2213
2214 BUG_ON(obj_priv->pages_refcount
2215 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2216
2217 if (obj_priv->pages_refcount++ != 0)
2218 return 0;
2219
2220 /* Get the list of pages out of our struct file. They'll be pinned
2221 * at this point until we release them.
2222 */
2223 page_count = obj->size / PAGE_SIZE;
2224 BUG_ON(obj_priv->pages != NULL);
2225 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2226 if (obj_priv->pages == NULL) {
2227 obj_priv->pages_refcount--;
2228 return -ENOMEM;
2229 }
2230
2231 inode = obj->filp->f_path.dentry->d_inode;
2232 mapping = inode->i_mapping;
2233 for (i = 0; i < page_count; i++) {
2234 page = read_cache_page_gfp(mapping, i,
2235 GFP_HIGHUSER |
2236 __GFP_COLD |
2237 __GFP_RECLAIMABLE |
2238 gfpmask);
2239 if (IS_ERR(page))
2240 goto err_pages;
2241
2242 obj_priv->pages[i] = page;
2243 }
2244
2245 if (obj_priv->tiling_mode != I915_TILING_NONE)
2246 i915_gem_object_do_bit_17_swizzle(obj);
2247
2248 return 0;
2249
2250 err_pages:
2251 while (i--)
2252 page_cache_release(obj_priv->pages[i]);
2253
2254 drm_free_large(obj_priv->pages);
2255 obj_priv->pages = NULL;
2256 obj_priv->pages_refcount--;
2257 return PTR_ERR(page);
2258 }
2259
2260 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2261 {
2262 struct drm_gem_object *obj = reg->obj;
2263 struct drm_device *dev = obj->dev;
2264 drm_i915_private_t *dev_priv = dev->dev_private;
2265 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2266 int regnum = obj_priv->fence_reg;
2267 uint64_t val;
2268
2269 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2270 0xfffff000) << 32;
2271 val |= obj_priv->gtt_offset & 0xfffff000;
2272 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2273 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2274
2275 if (obj_priv->tiling_mode == I915_TILING_Y)
2276 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2277 val |= I965_FENCE_REG_VALID;
2278
2279 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2280 }
2281
2282 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2283 {
2284 struct drm_gem_object *obj = reg->obj;
2285 struct drm_device *dev = obj->dev;
2286 drm_i915_private_t *dev_priv = dev->dev_private;
2287 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2288 int regnum = obj_priv->fence_reg;
2289 uint64_t val;
2290
2291 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2292 0xfffff000) << 32;
2293 val |= obj_priv->gtt_offset & 0xfffff000;
2294 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2295 if (obj_priv->tiling_mode == I915_TILING_Y)
2296 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2297 val |= I965_FENCE_REG_VALID;
2298
2299 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2300 }
2301
2302 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2303 {
2304 struct drm_gem_object *obj = reg->obj;
2305 struct drm_device *dev = obj->dev;
2306 drm_i915_private_t *dev_priv = dev->dev_private;
2307 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2308 int regnum = obj_priv->fence_reg;
2309 int tile_width;
2310 uint32_t fence_reg, val;
2311 uint32_t pitch_val;
2312
2313 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2314 (obj_priv->gtt_offset & (obj->size - 1))) {
2315 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2316 __func__, obj_priv->gtt_offset, obj->size);
2317 return;
2318 }
2319
2320 if (obj_priv->tiling_mode == I915_TILING_Y &&
2321 HAS_128_BYTE_Y_TILING(dev))
2322 tile_width = 128;
2323 else
2324 tile_width = 512;
2325
2326 /* Note: pitch better be a power of two tile widths */
2327 pitch_val = obj_priv->stride / tile_width;
2328 pitch_val = ffs(pitch_val) - 1;
2329
2330 if (obj_priv->tiling_mode == I915_TILING_Y &&
2331 HAS_128_BYTE_Y_TILING(dev))
2332 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2333 else
2334 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2335
2336 val = obj_priv->gtt_offset;
2337 if (obj_priv->tiling_mode == I915_TILING_Y)
2338 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2339 val |= I915_FENCE_SIZE_BITS(obj->size);
2340 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2341 val |= I830_FENCE_REG_VALID;
2342
2343 if (regnum < 8)
2344 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2345 else
2346 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2347 I915_WRITE(fence_reg, val);
2348 }
2349
2350 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2351 {
2352 struct drm_gem_object *obj = reg->obj;
2353 struct drm_device *dev = obj->dev;
2354 drm_i915_private_t *dev_priv = dev->dev_private;
2355 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2356 int regnum = obj_priv->fence_reg;
2357 uint32_t val;
2358 uint32_t pitch_val;
2359 uint32_t fence_size_bits;
2360
2361 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2362 (obj_priv->gtt_offset & (obj->size - 1))) {
2363 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2364 __func__, obj_priv->gtt_offset);
2365 return;
2366 }
2367
2368 pitch_val = obj_priv->stride / 128;
2369 pitch_val = ffs(pitch_val) - 1;
2370 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2371
2372 val = obj_priv->gtt_offset;
2373 if (obj_priv->tiling_mode == I915_TILING_Y)
2374 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2375 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2376 WARN_ON(fence_size_bits & ~0x00000f00);
2377 val |= fence_size_bits;
2378 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2379 val |= I830_FENCE_REG_VALID;
2380
2381 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2382 }
2383
2384 static int i915_find_fence_reg(struct drm_device *dev,
2385 bool interruptible)
2386 {
2387 struct drm_i915_fence_reg *reg = NULL;
2388 struct drm_i915_gem_object *obj_priv = NULL;
2389 struct drm_i915_private *dev_priv = dev->dev_private;
2390 struct drm_gem_object *obj = NULL;
2391 int i, avail, ret;
2392
2393 /* First try to find a free reg */
2394 avail = 0;
2395 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2396 reg = &dev_priv->fence_regs[i];
2397 if (!reg->obj)
2398 return i;
2399
2400 obj_priv = to_intel_bo(reg->obj);
2401 if (!obj_priv->pin_count)
2402 avail++;
2403 }
2404
2405 if (avail == 0)
2406 return -ENOSPC;
2407
2408 /* None available, try to steal one or wait for a user to finish */
2409 i = I915_FENCE_REG_NONE;
2410 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2411 lru_list) {
2412 obj = reg->obj;
2413 obj_priv = to_intel_bo(obj);
2414
2415 if (obj_priv->pin_count)
2416 continue;
2417
2418 /* found one! */
2419 i = obj_priv->fence_reg;
2420 break;
2421 }
2422
2423 BUG_ON(i == I915_FENCE_REG_NONE);
2424
2425 /* We only have a reference on obj from the active list. put_fence_reg
2426 * might drop that one, causing a use-after-free in it. So hold a
2427 * private reference to obj like the other callers of put_fence_reg
2428 * (set_tiling ioctl) do. */
2429 drm_gem_object_reference(obj);
2430 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2431 drm_gem_object_unreference(obj);
2432 if (ret != 0)
2433 return ret;
2434
2435 return i;
2436 }
2437
2438 /**
2439 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2440 * @obj: object to map through a fence reg
2441 *
2442 * When mapping objects through the GTT, userspace wants to be able to write
2443 * to them without having to worry about swizzling if the object is tiled.
2444 *
2445 * This function walks the fence regs looking for a free one for @obj,
2446 * stealing one if it can't find any.
2447 *
2448 * It then sets up the reg based on the object's properties: address, pitch
2449 * and tiling format.
2450 */
2451 int
2452 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2453 bool interruptible)
2454 {
2455 struct drm_device *dev = obj->dev;
2456 struct drm_i915_private *dev_priv = dev->dev_private;
2457 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2458 struct drm_i915_fence_reg *reg = NULL;
2459 int ret;
2460
2461 /* Just update our place in the LRU if our fence is getting used. */
2462 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2463 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2464 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2465 return 0;
2466 }
2467
2468 switch (obj_priv->tiling_mode) {
2469 case I915_TILING_NONE:
2470 WARN(1, "allocating a fence for non-tiled object?\n");
2471 break;
2472 case I915_TILING_X:
2473 if (!obj_priv->stride)
2474 return -EINVAL;
2475 WARN((obj_priv->stride & (512 - 1)),
2476 "object 0x%08x is X tiled but has non-512B pitch\n",
2477 obj_priv->gtt_offset);
2478 break;
2479 case I915_TILING_Y:
2480 if (!obj_priv->stride)
2481 return -EINVAL;
2482 WARN((obj_priv->stride & (128 - 1)),
2483 "object 0x%08x is Y tiled but has non-128B pitch\n",
2484 obj_priv->gtt_offset);
2485 break;
2486 }
2487
2488 ret = i915_find_fence_reg(dev, interruptible);
2489 if (ret < 0)
2490 return ret;
2491
2492 obj_priv->fence_reg = ret;
2493 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2494 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2495
2496 reg->obj = obj;
2497
2498 switch (INTEL_INFO(dev)->gen) {
2499 case 6:
2500 sandybridge_write_fence_reg(reg);
2501 break;
2502 case 5:
2503 case 4:
2504 i965_write_fence_reg(reg);
2505 break;
2506 case 3:
2507 i915_write_fence_reg(reg);
2508 break;
2509 case 2:
2510 i830_write_fence_reg(reg);
2511 break;
2512 }
2513
2514 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2515 obj_priv->tiling_mode);
2516
2517 return 0;
2518 }
2519
2520 /**
2521 * i915_gem_clear_fence_reg - clear out fence register info
2522 * @obj: object to clear
2523 *
2524 * Zeroes out the fence register itself and clears out the associated
2525 * data structures in dev_priv and obj_priv.
2526 */
2527 static void
2528 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2529 {
2530 struct drm_device *dev = obj->dev;
2531 drm_i915_private_t *dev_priv = dev->dev_private;
2532 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2533 struct drm_i915_fence_reg *reg =
2534 &dev_priv->fence_regs[obj_priv->fence_reg];
2535 uint32_t fence_reg;
2536
2537 switch (INTEL_INFO(dev)->gen) {
2538 case 6:
2539 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2540 (obj_priv->fence_reg * 8), 0);
2541 break;
2542 case 5:
2543 case 4:
2544 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2545 break;
2546 case 3:
2547 if (obj_priv->fence_reg >= 8)
2548 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2549 else
2550 case 2:
2551 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2552
2553 I915_WRITE(fence_reg, 0);
2554 break;
2555 }
2556
2557 reg->obj = NULL;
2558 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2559 list_del_init(&reg->lru_list);
2560 }
2561
2562 /**
2563 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2564 * to the buffer to finish, and then resets the fence register.
2565 * @obj: tiled object holding a fence register.
2566 * @bool: whether the wait upon the fence is interruptible
2567 *
2568 * Zeroes out the fence register itself and clears out the associated
2569 * data structures in dev_priv and obj_priv.
2570 */
2571 int
2572 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2573 bool interruptible)
2574 {
2575 struct drm_device *dev = obj->dev;
2576 struct drm_i915_private *dev_priv = dev->dev_private;
2577 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2578 struct drm_i915_fence_reg *reg;
2579
2580 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2581 return 0;
2582
2583 /* If we've changed tiling, GTT-mappings of the object
2584 * need to re-fault to ensure that the correct fence register
2585 * setup is in place.
2586 */
2587 i915_gem_release_mmap(obj);
2588
2589 /* On the i915, GPU access to tiled buffers is via a fence,
2590 * therefore we must wait for any outstanding access to complete
2591 * before clearing the fence.
2592 */
2593 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2594 if (reg->gpu) {
2595 int ret;
2596
2597 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2598 if (ret)
2599 return ret;
2600
2601 ret = i915_gem_object_wait_rendering(obj, interruptible);
2602 if (ret)
2603 return ret;
2604
2605 reg->gpu = false;
2606 }
2607
2608 i915_gem_object_flush_gtt_write_domain(obj);
2609 i915_gem_clear_fence_reg(obj);
2610
2611 return 0;
2612 }
2613
2614 /**
2615 * Finds free space in the GTT aperture and binds the object there.
2616 */
2617 static int
2618 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2619 {
2620 struct drm_device *dev = obj->dev;
2621 drm_i915_private_t *dev_priv = dev->dev_private;
2622 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2623 struct drm_mm_node *free_space;
2624 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2625 int ret;
2626
2627 if (obj_priv->madv != I915_MADV_WILLNEED) {
2628 DRM_ERROR("Attempting to bind a purgeable object\n");
2629 return -EINVAL;
2630 }
2631
2632 if (alignment == 0)
2633 alignment = i915_gem_get_gtt_alignment(obj);
2634 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2635 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2636 return -EINVAL;
2637 }
2638
2639 /* If the object is bigger than the entire aperture, reject it early
2640 * before evicting everything in a vain attempt to find space.
2641 */
2642 if (obj->size > dev_priv->mm.gtt_total) {
2643 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2644 return -E2BIG;
2645 }
2646
2647 search_free:
2648 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2649 obj->size, alignment, 0);
2650 if (free_space != NULL)
2651 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2652 alignment);
2653 if (obj_priv->gtt_space == NULL) {
2654 /* If the gtt is empty and we're still having trouble
2655 * fitting our object in, we're out of memory.
2656 */
2657 ret = i915_gem_evict_something(dev, obj->size, alignment);
2658 if (ret)
2659 return ret;
2660
2661 goto search_free;
2662 }
2663
2664 ret = i915_gem_object_get_pages(obj, gfpmask);
2665 if (ret) {
2666 drm_mm_put_block(obj_priv->gtt_space);
2667 obj_priv->gtt_space = NULL;
2668
2669 if (ret == -ENOMEM) {
2670 /* first try to clear up some space from the GTT */
2671 ret = i915_gem_evict_something(dev, obj->size,
2672 alignment);
2673 if (ret) {
2674 /* now try to shrink everyone else */
2675 if (gfpmask) {
2676 gfpmask = 0;
2677 goto search_free;
2678 }
2679
2680 return ret;
2681 }
2682
2683 goto search_free;
2684 }
2685
2686 return ret;
2687 }
2688
2689 /* Create an AGP memory structure pointing at our pages, and bind it
2690 * into the GTT.
2691 */
2692 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2693 obj_priv->pages,
2694 obj->size >> PAGE_SHIFT,
2695 obj_priv->gtt_space->start,
2696 obj_priv->agp_type);
2697 if (obj_priv->agp_mem == NULL) {
2698 i915_gem_object_put_pages(obj);
2699 drm_mm_put_block(obj_priv->gtt_space);
2700 obj_priv->gtt_space = NULL;
2701
2702 ret = i915_gem_evict_something(dev, obj->size, alignment);
2703 if (ret)
2704 return ret;
2705
2706 goto search_free;
2707 }
2708
2709 /* keep track of bounds object by adding it to the inactive list */
2710 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2711 i915_gem_info_add_gtt(dev_priv, obj->size);
2712
2713 /* Assert that the object is not currently in any GPU domain. As it
2714 * wasn't in the GTT, there shouldn't be any way it could have been in
2715 * a GPU cache
2716 */
2717 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2718 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2719
2720 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2721 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2722
2723 return 0;
2724 }
2725
2726 void
2727 i915_gem_clflush_object(struct drm_gem_object *obj)
2728 {
2729 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2730
2731 /* If we don't have a page list set up, then we're not pinned
2732 * to GPU, and we can ignore the cache flush because it'll happen
2733 * again at bind time.
2734 */
2735 if (obj_priv->pages == NULL)
2736 return;
2737
2738 trace_i915_gem_object_clflush(obj);
2739
2740 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2741 }
2742
2743 /** Flushes any GPU write domain for the object if it's dirty. */
2744 static int
2745 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2746 bool pipelined)
2747 {
2748 struct drm_device *dev = obj->dev;
2749 uint32_t old_write_domain;
2750
2751 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2752 return 0;
2753
2754 /* Queue the GPU write cache flushing we need. */
2755 old_write_domain = obj->write_domain;
2756 i915_gem_flush_ring(dev, NULL,
2757 to_intel_bo(obj)->ring,
2758 0, obj->write_domain);
2759 BUG_ON(obj->write_domain);
2760
2761 trace_i915_gem_object_change_domain(obj,
2762 obj->read_domains,
2763 old_write_domain);
2764
2765 if (pipelined)
2766 return 0;
2767
2768 return i915_gem_object_wait_rendering(obj, true);
2769 }
2770
2771 /** Flushes the GTT write domain for the object if it's dirty. */
2772 static void
2773 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2774 {
2775 uint32_t old_write_domain;
2776
2777 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2778 return;
2779
2780 /* No actual flushing is required for the GTT write domain. Writes
2781 * to it immediately go to main memory as far as we know, so there's
2782 * no chipset flush. It also doesn't land in render cache.
2783 */
2784 old_write_domain = obj->write_domain;
2785 obj->write_domain = 0;
2786
2787 trace_i915_gem_object_change_domain(obj,
2788 obj->read_domains,
2789 old_write_domain);
2790 }
2791
2792 /** Flushes the CPU write domain for the object if it's dirty. */
2793 static void
2794 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2795 {
2796 struct drm_device *dev = obj->dev;
2797 uint32_t old_write_domain;
2798
2799 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2800 return;
2801
2802 i915_gem_clflush_object(obj);
2803 drm_agp_chipset_flush(dev);
2804 old_write_domain = obj->write_domain;
2805 obj->write_domain = 0;
2806
2807 trace_i915_gem_object_change_domain(obj,
2808 obj->read_domains,
2809 old_write_domain);
2810 }
2811
2812 /**
2813 * Moves a single object to the GTT read, and possibly write domain.
2814 *
2815 * This function returns when the move is complete, including waiting on
2816 * flushes to occur.
2817 */
2818 int
2819 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2820 {
2821 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2822 uint32_t old_write_domain, old_read_domains;
2823 int ret;
2824
2825 /* Not valid to be called on unbound objects. */
2826 if (obj_priv->gtt_space == NULL)
2827 return -EINVAL;
2828
2829 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2830 if (ret != 0)
2831 return ret;
2832
2833 i915_gem_object_flush_cpu_write_domain(obj);
2834
2835 if (write) {
2836 ret = i915_gem_object_wait_rendering(obj, true);
2837 if (ret)
2838 return ret;
2839 }
2840
2841 old_write_domain = obj->write_domain;
2842 old_read_domains = obj->read_domains;
2843
2844 /* It should now be out of any other write domains, and we can update
2845 * the domain values for our changes.
2846 */
2847 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2848 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2849 if (write) {
2850 obj->read_domains = I915_GEM_DOMAIN_GTT;
2851 obj->write_domain = I915_GEM_DOMAIN_GTT;
2852 obj_priv->dirty = 1;
2853 }
2854
2855 trace_i915_gem_object_change_domain(obj,
2856 old_read_domains,
2857 old_write_domain);
2858
2859 return 0;
2860 }
2861
2862 /*
2863 * Prepare buffer for display plane. Use uninterruptible for possible flush
2864 * wait, as in modesetting process we're not supposed to be interrupted.
2865 */
2866 int
2867 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2868 bool pipelined)
2869 {
2870 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2871 uint32_t old_read_domains;
2872 int ret;
2873
2874 /* Not valid to be called on unbound objects. */
2875 if (obj_priv->gtt_space == NULL)
2876 return -EINVAL;
2877
2878 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2879 if (ret)
2880 return ret;
2881
2882 /* Currently, we are always called from an non-interruptible context. */
2883 if (!pipelined) {
2884 ret = i915_gem_object_wait_rendering(obj, false);
2885 if (ret)
2886 return ret;
2887 }
2888
2889 i915_gem_object_flush_cpu_write_domain(obj);
2890
2891 old_read_domains = obj->read_domains;
2892 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2893
2894 trace_i915_gem_object_change_domain(obj,
2895 old_read_domains,
2896 obj->write_domain);
2897
2898 return 0;
2899 }
2900
2901 int
2902 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
2903 bool interruptible)
2904 {
2905 if (!obj->active)
2906 return 0;
2907
2908 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
2909 i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
2910 0, obj->base.write_domain);
2911
2912 return i915_gem_object_wait_rendering(&obj->base, interruptible);
2913 }
2914
2915 /**
2916 * Moves a single object to the CPU read, and possibly write domain.
2917 *
2918 * This function returns when the move is complete, including waiting on
2919 * flushes to occur.
2920 */
2921 static int
2922 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2923 {
2924 uint32_t old_write_domain, old_read_domains;
2925 int ret;
2926
2927 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2928 if (ret != 0)
2929 return ret;
2930
2931 i915_gem_object_flush_gtt_write_domain(obj);
2932
2933 /* If we have a partially-valid cache of the object in the CPU,
2934 * finish invalidating it and free the per-page flags.
2935 */
2936 i915_gem_object_set_to_full_cpu_read_domain(obj);
2937
2938 if (write) {
2939 ret = i915_gem_object_wait_rendering(obj, true);
2940 if (ret)
2941 return ret;
2942 }
2943
2944 old_write_domain = obj->write_domain;
2945 old_read_domains = obj->read_domains;
2946
2947 /* Flush the CPU cache if it's still invalid. */
2948 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2949 i915_gem_clflush_object(obj);
2950
2951 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2952 }
2953
2954 /* It should now be out of any other write domains, and we can update
2955 * the domain values for our changes.
2956 */
2957 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2958
2959 /* If we're writing through the CPU, then the GPU read domains will
2960 * need to be invalidated at next use.
2961 */
2962 if (write) {
2963 obj->read_domains = I915_GEM_DOMAIN_CPU;
2964 obj->write_domain = I915_GEM_DOMAIN_CPU;
2965 }
2966
2967 trace_i915_gem_object_change_domain(obj,
2968 old_read_domains,
2969 old_write_domain);
2970
2971 return 0;
2972 }
2973
2974 /*
2975 * Set the next domain for the specified object. This
2976 * may not actually perform the necessary flushing/invaliding though,
2977 * as that may want to be batched with other set_domain operations
2978 *
2979 * This is (we hope) the only really tricky part of gem. The goal
2980 * is fairly simple -- track which caches hold bits of the object
2981 * and make sure they remain coherent. A few concrete examples may
2982 * help to explain how it works. For shorthand, we use the notation
2983 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2984 * a pair of read and write domain masks.
2985 *
2986 * Case 1: the batch buffer
2987 *
2988 * 1. Allocated
2989 * 2. Written by CPU
2990 * 3. Mapped to GTT
2991 * 4. Read by GPU
2992 * 5. Unmapped from GTT
2993 * 6. Freed
2994 *
2995 * Let's take these a step at a time
2996 *
2997 * 1. Allocated
2998 * Pages allocated from the kernel may still have
2999 * cache contents, so we set them to (CPU, CPU) always.
3000 * 2. Written by CPU (using pwrite)
3001 * The pwrite function calls set_domain (CPU, CPU) and
3002 * this function does nothing (as nothing changes)
3003 * 3. Mapped by GTT
3004 * This function asserts that the object is not
3005 * currently in any GPU-based read or write domains
3006 * 4. Read by GPU
3007 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3008 * As write_domain is zero, this function adds in the
3009 * current read domains (CPU+COMMAND, 0).
3010 * flush_domains is set to CPU.
3011 * invalidate_domains is set to COMMAND
3012 * clflush is run to get data out of the CPU caches
3013 * then i915_dev_set_domain calls i915_gem_flush to
3014 * emit an MI_FLUSH and drm_agp_chipset_flush
3015 * 5. Unmapped from GTT
3016 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3017 * flush_domains and invalidate_domains end up both zero
3018 * so no flushing/invalidating happens
3019 * 6. Freed
3020 * yay, done
3021 *
3022 * Case 2: The shared render buffer
3023 *
3024 * 1. Allocated
3025 * 2. Mapped to GTT
3026 * 3. Read/written by GPU
3027 * 4. set_domain to (CPU,CPU)
3028 * 5. Read/written by CPU
3029 * 6. Read/written by GPU
3030 *
3031 * 1. Allocated
3032 * Same as last example, (CPU, CPU)
3033 * 2. Mapped to GTT
3034 * Nothing changes (assertions find that it is not in the GPU)
3035 * 3. Read/written by GPU
3036 * execbuffer calls set_domain (RENDER, RENDER)
3037 * flush_domains gets CPU
3038 * invalidate_domains gets GPU
3039 * clflush (obj)
3040 * MI_FLUSH and drm_agp_chipset_flush
3041 * 4. set_domain (CPU, CPU)
3042 * flush_domains gets GPU
3043 * invalidate_domains gets CPU
3044 * wait_rendering (obj) to make sure all drawing is complete.
3045 * This will include an MI_FLUSH to get the data from GPU
3046 * to memory
3047 * clflush (obj) to invalidate the CPU cache
3048 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3049 * 5. Read/written by CPU
3050 * cache lines are loaded and dirtied
3051 * 6. Read written by GPU
3052 * Same as last GPU access
3053 *
3054 * Case 3: The constant buffer
3055 *
3056 * 1. Allocated
3057 * 2. Written by CPU
3058 * 3. Read by GPU
3059 * 4. Updated (written) by CPU again
3060 * 5. Read by GPU
3061 *
3062 * 1. Allocated
3063 * (CPU, CPU)
3064 * 2. Written by CPU
3065 * (CPU, CPU)
3066 * 3. Read by GPU
3067 * (CPU+RENDER, 0)
3068 * flush_domains = CPU
3069 * invalidate_domains = RENDER
3070 * clflush (obj)
3071 * MI_FLUSH
3072 * drm_agp_chipset_flush
3073 * 4. Updated (written) by CPU again
3074 * (CPU, CPU)
3075 * flush_domains = 0 (no previous write domain)
3076 * invalidate_domains = 0 (no new read domains)
3077 * 5. Read by GPU
3078 * (CPU+RENDER, 0)
3079 * flush_domains = CPU
3080 * invalidate_domains = RENDER
3081 * clflush (obj)
3082 * MI_FLUSH
3083 * drm_agp_chipset_flush
3084 */
3085 static void
3086 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3087 struct intel_ring_buffer *ring)
3088 {
3089 struct drm_device *dev = obj->dev;
3090 struct drm_i915_private *dev_priv = dev->dev_private;
3091 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3092 uint32_t invalidate_domains = 0;
3093 uint32_t flush_domains = 0;
3094 uint32_t old_read_domains;
3095
3096 intel_mark_busy(dev, obj);
3097
3098 /*
3099 * If the object isn't moving to a new write domain,
3100 * let the object stay in multiple read domains
3101 */
3102 if (obj->pending_write_domain == 0)
3103 obj->pending_read_domains |= obj->read_domains;
3104 else
3105 obj_priv->dirty = 1;
3106
3107 /*
3108 * Flush the current write domain if
3109 * the new read domains don't match. Invalidate
3110 * any read domains which differ from the old
3111 * write domain
3112 */
3113 if (obj->write_domain &&
3114 (obj->write_domain != obj->pending_read_domains ||
3115 obj_priv->ring != ring)) {
3116 flush_domains |= obj->write_domain;
3117 invalidate_domains |=
3118 obj->pending_read_domains & ~obj->write_domain;
3119 }
3120 /*
3121 * Invalidate any read caches which may have
3122 * stale data. That is, any new read domains.
3123 */
3124 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3125 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3126 i915_gem_clflush_object(obj);
3127
3128 old_read_domains = obj->read_domains;
3129
3130 /* The actual obj->write_domain will be updated with
3131 * pending_write_domain after we emit the accumulated flush for all
3132 * of our domain changes in execbuffers (which clears objects'
3133 * write_domains). So if we have a current write domain that we
3134 * aren't changing, set pending_write_domain to that.
3135 */
3136 if (flush_domains == 0 && obj->pending_write_domain == 0)
3137 obj->pending_write_domain = obj->write_domain;
3138 obj->read_domains = obj->pending_read_domains;
3139
3140 dev->invalidate_domains |= invalidate_domains;
3141 dev->flush_domains |= flush_domains;
3142 if (flush_domains & I915_GEM_GPU_DOMAINS)
3143 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3144 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3145 dev_priv->mm.flush_rings |= ring->id;
3146
3147 trace_i915_gem_object_change_domain(obj,
3148 old_read_domains,
3149 obj->write_domain);
3150 }
3151
3152 /**
3153 * Moves the object from a partially CPU read to a full one.
3154 *
3155 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3156 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3157 */
3158 static void
3159 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3160 {
3161 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3162
3163 if (!obj_priv->page_cpu_valid)
3164 return;
3165
3166 /* If we're partially in the CPU read domain, finish moving it in.
3167 */
3168 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3169 int i;
3170
3171 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3172 if (obj_priv->page_cpu_valid[i])
3173 continue;
3174 drm_clflush_pages(obj_priv->pages + i, 1);
3175 }
3176 }
3177
3178 /* Free the page_cpu_valid mappings which are now stale, whether
3179 * or not we've got I915_GEM_DOMAIN_CPU.
3180 */
3181 kfree(obj_priv->page_cpu_valid);
3182 obj_priv->page_cpu_valid = NULL;
3183 }
3184
3185 /**
3186 * Set the CPU read domain on a range of the object.
3187 *
3188 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3189 * not entirely valid. The page_cpu_valid member of the object flags which
3190 * pages have been flushed, and will be respected by
3191 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3192 * of the whole object.
3193 *
3194 * This function returns when the move is complete, including waiting on
3195 * flushes to occur.
3196 */
3197 static int
3198 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3199 uint64_t offset, uint64_t size)
3200 {
3201 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3202 uint32_t old_read_domains;
3203 int i, ret;
3204
3205 if (offset == 0 && size == obj->size)
3206 return i915_gem_object_set_to_cpu_domain(obj, 0);
3207
3208 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3209 if (ret != 0)
3210 return ret;
3211 i915_gem_object_flush_gtt_write_domain(obj);
3212
3213 /* If we're already fully in the CPU read domain, we're done. */
3214 if (obj_priv->page_cpu_valid == NULL &&
3215 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3216 return 0;
3217
3218 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3219 * newly adding I915_GEM_DOMAIN_CPU
3220 */
3221 if (obj_priv->page_cpu_valid == NULL) {
3222 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3223 GFP_KERNEL);
3224 if (obj_priv->page_cpu_valid == NULL)
3225 return -ENOMEM;
3226 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3227 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3228
3229 /* Flush the cache on any pages that are still invalid from the CPU's
3230 * perspective.
3231 */
3232 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3233 i++) {
3234 if (obj_priv->page_cpu_valid[i])
3235 continue;
3236
3237 drm_clflush_pages(obj_priv->pages + i, 1);
3238
3239 obj_priv->page_cpu_valid[i] = 1;
3240 }
3241
3242 /* It should now be out of any other write domains, and we can update
3243 * the domain values for our changes.
3244 */
3245 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3246
3247 old_read_domains = obj->read_domains;
3248 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3249
3250 trace_i915_gem_object_change_domain(obj,
3251 old_read_domains,
3252 obj->write_domain);
3253
3254 return 0;
3255 }
3256
3257 /**
3258 * Pin an object to the GTT and evaluate the relocations landing in it.
3259 */
3260 static int
3261 i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3262 struct drm_file *file_priv,
3263 struct drm_i915_gem_exec_object2 *entry)
3264 {
3265 struct drm_device *dev = obj->base.dev;
3266 drm_i915_private_t *dev_priv = dev->dev_private;
3267 struct drm_i915_gem_relocation_entry __user *user_relocs;
3268 struct drm_gem_object *target_obj = NULL;
3269 uint32_t target_handle = 0;
3270 int i, ret = 0;
3271
3272 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3273 for (i = 0; i < entry->relocation_count; i++) {
3274 struct drm_i915_gem_relocation_entry reloc;
3275 uint32_t target_offset;
3276
3277 if (__copy_from_user_inatomic(&reloc,
3278 user_relocs+i,
3279 sizeof(reloc))) {
3280 ret = -EFAULT;
3281 break;
3282 }
3283
3284 if (reloc.target_handle != target_handle) {
3285 drm_gem_object_unreference(target_obj);
3286
3287 target_obj = drm_gem_object_lookup(dev, file_priv,
3288 reloc.target_handle);
3289 if (target_obj == NULL) {
3290 ret = -ENOENT;
3291 break;
3292 }
3293
3294 target_handle = reloc.target_handle;
3295 }
3296 target_offset = to_intel_bo(target_obj)->gtt_offset;
3297
3298 #if WATCH_RELOC
3299 DRM_INFO("%s: obj %p offset %08x target %d "
3300 "read %08x write %08x gtt %08x "
3301 "presumed %08x delta %08x\n",
3302 __func__,
3303 obj,
3304 (int) reloc.offset,
3305 (int) reloc.target_handle,
3306 (int) reloc.read_domains,
3307 (int) reloc.write_domain,
3308 (int) target_offset,
3309 (int) reloc.presumed_offset,
3310 reloc.delta);
3311 #endif
3312
3313 /* The target buffer should have appeared before us in the
3314 * exec_object list, so it should have a GTT space bound by now.
3315 */
3316 if (target_offset == 0) {
3317 DRM_ERROR("No GTT space found for object %d\n",
3318 reloc.target_handle);
3319 ret = -EINVAL;
3320 break;
3321 }
3322
3323 /* Validate that the target is in a valid r/w GPU domain */
3324 if (reloc.write_domain & (reloc.write_domain - 1)) {
3325 DRM_ERROR("reloc with multiple write domains: "
3326 "obj %p target %d offset %d "
3327 "read %08x write %08x",
3328 obj, reloc.target_handle,
3329 (int) reloc.offset,
3330 reloc.read_domains,
3331 reloc.write_domain);
3332 ret = -EINVAL;
3333 break;
3334 }
3335 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3336 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3337 DRM_ERROR("reloc with read/write CPU domains: "
3338 "obj %p target %d offset %d "
3339 "read %08x write %08x",
3340 obj, reloc.target_handle,
3341 (int) reloc.offset,
3342 reloc.read_domains,
3343 reloc.write_domain);
3344 ret = -EINVAL;
3345 break;
3346 }
3347 if (reloc.write_domain && target_obj->pending_write_domain &&
3348 reloc.write_domain != target_obj->pending_write_domain) {
3349 DRM_ERROR("Write domain conflict: "
3350 "obj %p target %d offset %d "
3351 "new %08x old %08x\n",
3352 obj, reloc.target_handle,
3353 (int) reloc.offset,
3354 reloc.write_domain,
3355 target_obj->pending_write_domain);
3356 ret = -EINVAL;
3357 break;
3358 }
3359
3360 target_obj->pending_read_domains |= reloc.read_domains;
3361 target_obj->pending_write_domain |= reloc.write_domain;
3362
3363 /* If the relocation already has the right value in it, no
3364 * more work needs to be done.
3365 */
3366 if (target_offset == reloc.presumed_offset)
3367 continue;
3368
3369 /* Check that the relocation address is valid... */
3370 if (reloc.offset > obj->base.size - 4) {
3371 DRM_ERROR("Relocation beyond object bounds: "
3372 "obj %p target %d offset %d size %d.\n",
3373 obj, reloc.target_handle,
3374 (int) reloc.offset, (int) obj->base.size);
3375 ret = -EINVAL;
3376 break;
3377 }
3378 if (reloc.offset & 3) {
3379 DRM_ERROR("Relocation not 4-byte aligned: "
3380 "obj %p target %d offset %d.\n",
3381 obj, reloc.target_handle,
3382 (int) reloc.offset);
3383 ret = -EINVAL;
3384 break;
3385 }
3386
3387 /* and points to somewhere within the target object. */
3388 if (reloc.delta >= target_obj->size) {
3389 DRM_ERROR("Relocation beyond target object bounds: "
3390 "obj %p target %d delta %d size %d.\n",
3391 obj, reloc.target_handle,
3392 (int) reloc.delta, (int) target_obj->size);
3393 ret = -EINVAL;
3394 break;
3395 }
3396
3397 reloc.delta += target_offset;
3398 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3399 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3400 char *vaddr;
3401
3402 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3403 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3404 kunmap_atomic(vaddr);
3405 } else {
3406 uint32_t __iomem *reloc_entry;
3407 void __iomem *reloc_page;
3408
3409 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3410 if (ret)
3411 break;
3412
3413 /* Map the page containing the relocation we're going to perform. */
3414 reloc.offset += obj->gtt_offset;
3415 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3416 reloc.offset & PAGE_MASK);
3417 reloc_entry = (uint32_t __iomem *)
3418 (reloc_page + (reloc.offset & ~PAGE_MASK));
3419 iowrite32(reloc.delta, reloc_entry);
3420 io_mapping_unmap_atomic(reloc_page);
3421 }
3422
3423 /* and update the user's relocation entry */
3424 reloc.presumed_offset = target_offset;
3425 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3426 &reloc.presumed_offset,
3427 sizeof(reloc.presumed_offset))) {
3428 ret = -EFAULT;
3429 break;
3430 }
3431 }
3432
3433 drm_gem_object_unreference(target_obj);
3434 return ret;
3435 }
3436
3437 static int
3438 i915_gem_execbuffer_pin(struct drm_device *dev,
3439 struct drm_file *file,
3440 struct drm_gem_object **object_list,
3441 struct drm_i915_gem_exec_object2 *exec_list,
3442 int count)
3443 {
3444 struct drm_i915_private *dev_priv = dev->dev_private;
3445 int ret, i, retry;
3446
3447 /* attempt to pin all of the buffers into the GTT */
3448 for (retry = 0; retry < 2; retry++) {
3449 ret = 0;
3450 for (i = 0; i < count; i++) {
3451 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3452 struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
3453 bool need_fence =
3454 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3455 obj->tiling_mode != I915_TILING_NONE;
3456
3457 /* Check fence reg constraints and rebind if necessary */
3458 if (need_fence &&
3459 !i915_gem_object_fence_offset_ok(&obj->base,
3460 obj->tiling_mode)) {
3461 ret = i915_gem_object_unbind(&obj->base);
3462 if (ret)
3463 break;
3464 }
3465
3466 ret = i915_gem_object_pin(&obj->base, entry->alignment);
3467 if (ret)
3468 break;
3469
3470 /*
3471 * Pre-965 chips need a fence register set up in order
3472 * to properly handle blits to/from tiled surfaces.
3473 */
3474 if (need_fence) {
3475 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3476 if (ret) {
3477 i915_gem_object_unpin(&obj->base);
3478 break;
3479 }
3480
3481 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3482 }
3483
3484 entry->offset = obj->gtt_offset;
3485 }
3486
3487 while (i--)
3488 i915_gem_object_unpin(object_list[i]);
3489
3490 if (ret == 0)
3491 break;
3492
3493 if (ret != -ENOSPC || retry)
3494 return ret;
3495
3496 ret = i915_gem_evict_everything(dev);
3497 if (ret)
3498 return ret;
3499 }
3500
3501 return 0;
3502 }
3503
3504 static int
3505 i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3506 struct drm_file *file,
3507 struct intel_ring_buffer *ring,
3508 struct drm_gem_object **objects,
3509 int count)
3510 {
3511 struct drm_i915_private *dev_priv = dev->dev_private;
3512 int ret, i;
3513
3514 /* Zero the global flush/invalidate flags. These
3515 * will be modified as new domains are computed
3516 * for each object
3517 */
3518 dev->invalidate_domains = 0;
3519 dev->flush_domains = 0;
3520 dev_priv->mm.flush_rings = 0;
3521 for (i = 0; i < count; i++)
3522 i915_gem_object_set_to_gpu_domain(objects[i], ring);
3523
3524 if (dev->invalidate_domains | dev->flush_domains) {
3525 #if WATCH_EXEC
3526 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3527 __func__,
3528 dev->invalidate_domains,
3529 dev->flush_domains);
3530 #endif
3531 i915_gem_flush(dev, file,
3532 dev->invalidate_domains,
3533 dev->flush_domains,
3534 dev_priv->mm.flush_rings);
3535 }
3536
3537 for (i = 0; i < count; i++) {
3538 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3539 /* XXX replace with semaphores */
3540 if (obj->ring && ring != obj->ring) {
3541 ret = i915_gem_object_wait_rendering(&obj->base, true);
3542 if (ret)
3543 return ret;
3544 }
3545 }
3546
3547 return 0;
3548 }
3549
3550 /* Throttle our rendering by waiting until the ring has completed our requests
3551 * emitted over 20 msec ago.
3552 *
3553 * Note that if we were to use the current jiffies each time around the loop,
3554 * we wouldn't escape the function with any frames outstanding if the time to
3555 * render a frame was over 20ms.
3556 *
3557 * This should get us reasonable parallelism between CPU and GPU but also
3558 * relatively low latency when blocking on a particular request to finish.
3559 */
3560 static int
3561 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3562 {
3563 struct drm_i915_private *dev_priv = dev->dev_private;
3564 struct drm_i915_file_private *file_priv = file->driver_priv;
3565 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3566 struct drm_i915_gem_request *request;
3567 struct intel_ring_buffer *ring = NULL;
3568 u32 seqno = 0;
3569 int ret;
3570
3571 spin_lock(&file_priv->mm.lock);
3572 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3573 if (time_after_eq(request->emitted_jiffies, recent_enough))
3574 break;
3575
3576 ring = request->ring;
3577 seqno = request->seqno;
3578 }
3579 spin_unlock(&file_priv->mm.lock);
3580
3581 if (seqno == 0)
3582 return 0;
3583
3584 ret = 0;
3585 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3586 /* And wait for the seqno passing without holding any locks and
3587 * causing extra latency for others. This is safe as the irq
3588 * generation is designed to be run atomically and so is
3589 * lockless.
3590 */
3591 ring->user_irq_get(dev, ring);
3592 ret = wait_event_interruptible(ring->irq_queue,
3593 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3594 || atomic_read(&dev_priv->mm.wedged));
3595 ring->user_irq_put(dev, ring);
3596
3597 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3598 ret = -EIO;
3599 }
3600
3601 if (ret == 0)
3602 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3603
3604 return ret;
3605 }
3606
3607 static int
3608 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3609 uint64_t exec_offset)
3610 {
3611 uint32_t exec_start, exec_len;
3612
3613 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3614 exec_len = (uint32_t) exec->batch_len;
3615
3616 if ((exec_start | exec_len) & 0x7)
3617 return -EINVAL;
3618
3619 if (!exec_start)
3620 return -EINVAL;
3621
3622 return 0;
3623 }
3624
3625 static int
3626 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3627 int count)
3628 {
3629 int i;
3630
3631 for (i = 0; i < count; i++) {
3632 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3633 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3634
3635 if (!access_ok(VERIFY_READ, ptr, length))
3636 return -EFAULT;
3637
3638 /* we may also need to update the presumed offsets */
3639 if (!access_ok(VERIFY_WRITE, ptr, length))
3640 return -EFAULT;
3641
3642 if (fault_in_pages_readable(ptr, length))
3643 return -EFAULT;
3644 }
3645
3646 return 0;
3647 }
3648
3649 static int
3650 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3651 struct drm_file *file,
3652 struct drm_i915_gem_execbuffer2 *args,
3653 struct drm_i915_gem_exec_object2 *exec_list)
3654 {
3655 drm_i915_private_t *dev_priv = dev->dev_private;
3656 struct drm_gem_object **object_list = NULL;
3657 struct drm_gem_object *batch_obj;
3658 struct drm_i915_gem_object *obj_priv;
3659 struct drm_clip_rect *cliprects = NULL;
3660 struct drm_i915_gem_request *request = NULL;
3661 int ret, i, flips;
3662 uint64_t exec_offset;
3663
3664 struct intel_ring_buffer *ring = NULL;
3665
3666 ret = i915_gem_check_is_wedged(dev);
3667 if (ret)
3668 return ret;
3669
3670 ret = validate_exec_list(exec_list, args->buffer_count);
3671 if (ret)
3672 return ret;
3673
3674 #if WATCH_EXEC
3675 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3676 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3677 #endif
3678 switch (args->flags & I915_EXEC_RING_MASK) {
3679 case I915_EXEC_DEFAULT:
3680 case I915_EXEC_RENDER:
3681 ring = &dev_priv->render_ring;
3682 break;
3683 case I915_EXEC_BSD:
3684 if (!HAS_BSD(dev)) {
3685 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3686 return -EINVAL;
3687 }
3688 ring = &dev_priv->bsd_ring;
3689 break;
3690 case I915_EXEC_BLT:
3691 if (!HAS_BLT(dev)) {
3692 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3693 return -EINVAL;
3694 }
3695 ring = &dev_priv->blt_ring;
3696 break;
3697 default:
3698 DRM_ERROR("execbuf with unknown ring: %d\n",
3699 (int)(args->flags & I915_EXEC_RING_MASK));
3700 return -EINVAL;
3701 }
3702
3703 if (args->buffer_count < 1) {
3704 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3705 return -EINVAL;
3706 }
3707 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3708 if (object_list == NULL) {
3709 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3710 args->buffer_count);
3711 ret = -ENOMEM;
3712 goto pre_mutex_err;
3713 }
3714
3715 if (args->num_cliprects != 0) {
3716 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3717 GFP_KERNEL);
3718 if (cliprects == NULL) {
3719 ret = -ENOMEM;
3720 goto pre_mutex_err;
3721 }
3722
3723 ret = copy_from_user(cliprects,
3724 (struct drm_clip_rect __user *)
3725 (uintptr_t) args->cliprects_ptr,
3726 sizeof(*cliprects) * args->num_cliprects);
3727 if (ret != 0) {
3728 DRM_ERROR("copy %d cliprects failed: %d\n",
3729 args->num_cliprects, ret);
3730 ret = -EFAULT;
3731 goto pre_mutex_err;
3732 }
3733 }
3734
3735 request = kzalloc(sizeof(*request), GFP_KERNEL);
3736 if (request == NULL) {
3737 ret = -ENOMEM;
3738 goto pre_mutex_err;
3739 }
3740
3741 ret = i915_mutex_lock_interruptible(dev);
3742 if (ret)
3743 goto pre_mutex_err;
3744
3745 if (dev_priv->mm.suspended) {
3746 mutex_unlock(&dev->struct_mutex);
3747 ret = -EBUSY;
3748 goto pre_mutex_err;
3749 }
3750
3751 /* Look up object handles */
3752 for (i = 0; i < args->buffer_count; i++) {
3753 object_list[i] = drm_gem_object_lookup(dev, file,
3754 exec_list[i].handle);
3755 if (object_list[i] == NULL) {
3756 DRM_ERROR("Invalid object handle %d at index %d\n",
3757 exec_list[i].handle, i);
3758 /* prevent error path from reading uninitialized data */
3759 args->buffer_count = i + 1;
3760 ret = -ENOENT;
3761 goto err;
3762 }
3763
3764 obj_priv = to_intel_bo(object_list[i]);
3765 if (obj_priv->in_execbuffer) {
3766 DRM_ERROR("Object %p appears more than once in object list\n",
3767 object_list[i]);
3768 /* prevent error path from reading uninitialized data */
3769 args->buffer_count = i + 1;
3770 ret = -EINVAL;
3771 goto err;
3772 }
3773 obj_priv->in_execbuffer = true;
3774 }
3775
3776 /* Move the objects en-masse into the GTT, evicting if necessary. */
3777 ret = i915_gem_execbuffer_pin(dev, file,
3778 object_list, exec_list,
3779 args->buffer_count);
3780 if (ret)
3781 goto err;
3782
3783 /* The objects are in their final locations, apply the relocations. */
3784 for (i = 0; i < args->buffer_count; i++) {
3785 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3786 obj->base.pending_read_domains = 0;
3787 obj->base.pending_write_domain = 0;
3788 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3789 if (ret)
3790 goto err;
3791 }
3792
3793 /* Set the pending read domains for the batch buffer to COMMAND */
3794 batch_obj = object_list[args->buffer_count-1];
3795 if (batch_obj->pending_write_domain) {
3796 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3797 ret = -EINVAL;
3798 goto err;
3799 }
3800 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3801
3802 /* Sanity check the batch buffer */
3803 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3804 ret = i915_gem_check_execbuffer(args, exec_offset);
3805 if (ret != 0) {
3806 DRM_ERROR("execbuf with invalid offset/length\n");
3807 goto err;
3808 }
3809
3810 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
3811 object_list, args->buffer_count);
3812 if (ret)
3813 goto err;
3814
3815 for (i = 0; i < args->buffer_count; i++) {
3816 struct drm_gem_object *obj = object_list[i];
3817 uint32_t old_write_domain = obj->write_domain;
3818 obj->write_domain = obj->pending_write_domain;
3819 trace_i915_gem_object_change_domain(obj,
3820 obj->read_domains,
3821 old_write_domain);
3822 }
3823
3824 #if WATCH_COHERENCY
3825 for (i = 0; i < args->buffer_count; i++) {
3826 i915_gem_object_check_coherency(object_list[i],
3827 exec_list[i].handle);
3828 }
3829 #endif
3830
3831 #if WATCH_EXEC
3832 i915_gem_dump_object(batch_obj,
3833 args->batch_len,
3834 __func__,
3835 ~0);
3836 #endif
3837
3838 /* Check for any pending flips. As we only maintain a flip queue depth
3839 * of 1, we can simply insert a WAIT for the next display flip prior
3840 * to executing the batch and avoid stalling the CPU.
3841 */
3842 flips = 0;
3843 for (i = 0; i < args->buffer_count; i++) {
3844 if (object_list[i]->write_domain)
3845 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3846 }
3847 if (flips) {
3848 int plane, flip_mask;
3849
3850 for (plane = 0; flips >> plane; plane++) {
3851 if (((flips >> plane) & 1) == 0)
3852 continue;
3853
3854 if (plane)
3855 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3856 else
3857 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3858
3859 intel_ring_begin(dev, ring, 2);
3860 intel_ring_emit(dev, ring,
3861 MI_WAIT_FOR_EVENT | flip_mask);
3862 intel_ring_emit(dev, ring, MI_NOOP);
3863 intel_ring_advance(dev, ring);
3864 }
3865 }
3866
3867 /* Exec the batchbuffer */
3868 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3869 cliprects, exec_offset);
3870 if (ret) {
3871 DRM_ERROR("dispatch failed %d\n", ret);
3872 goto err;
3873 }
3874
3875 /*
3876 * Ensure that the commands in the batch buffer are
3877 * finished before the interrupt fires
3878 */
3879 i915_retire_commands(dev, ring);
3880
3881 for (i = 0; i < args->buffer_count; i++) {
3882 struct drm_gem_object *obj = object_list[i];
3883
3884 i915_gem_object_move_to_active(obj, ring);
3885 if (obj->write_domain)
3886 list_move_tail(&to_intel_bo(obj)->gpu_write_list,
3887 &ring->gpu_write_list);
3888 }
3889
3890 i915_add_request(dev, file, request, ring);
3891 request = NULL;
3892
3893 err:
3894 for (i = 0; i < args->buffer_count; i++) {
3895 if (object_list[i]) {
3896 obj_priv = to_intel_bo(object_list[i]);
3897 obj_priv->in_execbuffer = false;
3898 }
3899 drm_gem_object_unreference(object_list[i]);
3900 }
3901
3902 mutex_unlock(&dev->struct_mutex);
3903
3904 pre_mutex_err:
3905 drm_free_large(object_list);
3906 kfree(cliprects);
3907 kfree(request);
3908
3909 return ret;
3910 }
3911
3912 /*
3913 * Legacy execbuffer just creates an exec2 list from the original exec object
3914 * list array and passes it to the real function.
3915 */
3916 int
3917 i915_gem_execbuffer(struct drm_device *dev, void *data,
3918 struct drm_file *file_priv)
3919 {
3920 struct drm_i915_gem_execbuffer *args = data;
3921 struct drm_i915_gem_execbuffer2 exec2;
3922 struct drm_i915_gem_exec_object *exec_list = NULL;
3923 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3924 int ret, i;
3925
3926 #if WATCH_EXEC
3927 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3928 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3929 #endif
3930
3931 if (args->buffer_count < 1) {
3932 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3933 return -EINVAL;
3934 }
3935
3936 /* Copy in the exec list from userland */
3937 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3938 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3939 if (exec_list == NULL || exec2_list == NULL) {
3940 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3941 args->buffer_count);
3942 drm_free_large(exec_list);
3943 drm_free_large(exec2_list);
3944 return -ENOMEM;
3945 }
3946 ret = copy_from_user(exec_list,
3947 (struct drm_i915_relocation_entry __user *)
3948 (uintptr_t) args->buffers_ptr,
3949 sizeof(*exec_list) * args->buffer_count);
3950 if (ret != 0) {
3951 DRM_ERROR("copy %d exec entries failed %d\n",
3952 args->buffer_count, ret);
3953 drm_free_large(exec_list);
3954 drm_free_large(exec2_list);
3955 return -EFAULT;
3956 }
3957
3958 for (i = 0; i < args->buffer_count; i++) {
3959 exec2_list[i].handle = exec_list[i].handle;
3960 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3961 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3962 exec2_list[i].alignment = exec_list[i].alignment;
3963 exec2_list[i].offset = exec_list[i].offset;
3964 if (INTEL_INFO(dev)->gen < 4)
3965 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3966 else
3967 exec2_list[i].flags = 0;
3968 }
3969
3970 exec2.buffers_ptr = args->buffers_ptr;
3971 exec2.buffer_count = args->buffer_count;
3972 exec2.batch_start_offset = args->batch_start_offset;
3973 exec2.batch_len = args->batch_len;
3974 exec2.DR1 = args->DR1;
3975 exec2.DR4 = args->DR4;
3976 exec2.num_cliprects = args->num_cliprects;
3977 exec2.cliprects_ptr = args->cliprects_ptr;
3978 exec2.flags = I915_EXEC_RENDER;
3979
3980 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3981 if (!ret) {
3982 /* Copy the new buffer offsets back to the user's exec list. */
3983 for (i = 0; i < args->buffer_count; i++)
3984 exec_list[i].offset = exec2_list[i].offset;
3985 /* ... and back out to userspace */
3986 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3987 (uintptr_t) args->buffers_ptr,
3988 exec_list,
3989 sizeof(*exec_list) * args->buffer_count);
3990 if (ret) {
3991 ret = -EFAULT;
3992 DRM_ERROR("failed to copy %d exec entries "
3993 "back to user (%d)\n",
3994 args->buffer_count, ret);
3995 }
3996 }
3997
3998 drm_free_large(exec_list);
3999 drm_free_large(exec2_list);
4000 return ret;
4001 }
4002
4003 int
4004 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4005 struct drm_file *file_priv)
4006 {
4007 struct drm_i915_gem_execbuffer2 *args = data;
4008 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4009 int ret;
4010
4011 #if WATCH_EXEC
4012 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4013 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4014 #endif
4015
4016 if (args->buffer_count < 1) {
4017 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4018 return -EINVAL;
4019 }
4020
4021 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4022 if (exec2_list == NULL) {
4023 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4024 args->buffer_count);
4025 return -ENOMEM;
4026 }
4027 ret = copy_from_user(exec2_list,
4028 (struct drm_i915_relocation_entry __user *)
4029 (uintptr_t) args->buffers_ptr,
4030 sizeof(*exec2_list) * args->buffer_count);
4031 if (ret != 0) {
4032 DRM_ERROR("copy %d exec entries failed %d\n",
4033 args->buffer_count, ret);
4034 drm_free_large(exec2_list);
4035 return -EFAULT;
4036 }
4037
4038 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4039 if (!ret) {
4040 /* Copy the new buffer offsets back to the user's exec list. */
4041 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4042 (uintptr_t) args->buffers_ptr,
4043 exec2_list,
4044 sizeof(*exec2_list) * args->buffer_count);
4045 if (ret) {
4046 ret = -EFAULT;
4047 DRM_ERROR("failed to copy %d exec entries "
4048 "back to user (%d)\n",
4049 args->buffer_count, ret);
4050 }
4051 }
4052
4053 drm_free_large(exec2_list);
4054 return ret;
4055 }
4056
4057 int
4058 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4059 {
4060 struct drm_device *dev = obj->dev;
4061 struct drm_i915_private *dev_priv = dev->dev_private;
4062 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4063 int ret;
4064
4065 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4066 WARN_ON(i915_verify_lists(dev));
4067
4068 if (obj_priv->gtt_space != NULL) {
4069 if (alignment == 0)
4070 alignment = i915_gem_get_gtt_alignment(obj);
4071 if (obj_priv->gtt_offset & (alignment - 1)) {
4072 WARN(obj_priv->pin_count,
4073 "bo is already pinned with incorrect alignment: offset=%x, req.alignment=%x\n",
4074 obj_priv->gtt_offset, alignment);
4075 ret = i915_gem_object_unbind(obj);
4076 if (ret)
4077 return ret;
4078 }
4079 }
4080
4081 if (obj_priv->gtt_space == NULL) {
4082 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4083 if (ret)
4084 return ret;
4085 }
4086
4087 obj_priv->pin_count++;
4088
4089 /* If the object is not active and not pending a flush,
4090 * remove it from the inactive list
4091 */
4092 if (obj_priv->pin_count == 1) {
4093 i915_gem_info_add_pin(dev_priv, obj->size);
4094 if (!obj_priv->active)
4095 list_move_tail(&obj_priv->mm_list,
4096 &dev_priv->mm.pinned_list);
4097 }
4098
4099 WARN_ON(i915_verify_lists(dev));
4100 return 0;
4101 }
4102
4103 void
4104 i915_gem_object_unpin(struct drm_gem_object *obj)
4105 {
4106 struct drm_device *dev = obj->dev;
4107 drm_i915_private_t *dev_priv = dev->dev_private;
4108 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4109
4110 WARN_ON(i915_verify_lists(dev));
4111 obj_priv->pin_count--;
4112 BUG_ON(obj_priv->pin_count < 0);
4113 BUG_ON(obj_priv->gtt_space == NULL);
4114
4115 /* If the object is no longer pinned, and is
4116 * neither active nor being flushed, then stick it on
4117 * the inactive list
4118 */
4119 if (obj_priv->pin_count == 0) {
4120 if (!obj_priv->active)
4121 list_move_tail(&obj_priv->mm_list,
4122 &dev_priv->mm.inactive_list);
4123 i915_gem_info_remove_pin(dev_priv, obj->size);
4124 }
4125 WARN_ON(i915_verify_lists(dev));
4126 }
4127
4128 int
4129 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4130 struct drm_file *file_priv)
4131 {
4132 struct drm_i915_gem_pin *args = data;
4133 struct drm_gem_object *obj;
4134 struct drm_i915_gem_object *obj_priv;
4135 int ret;
4136
4137 ret = i915_mutex_lock_interruptible(dev);
4138 if (ret)
4139 return ret;
4140
4141 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4142 if (obj == NULL) {
4143 ret = -ENOENT;
4144 goto unlock;
4145 }
4146 obj_priv = to_intel_bo(obj);
4147
4148 if (obj_priv->madv != I915_MADV_WILLNEED) {
4149 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4150 ret = -EINVAL;
4151 goto out;
4152 }
4153
4154 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4155 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4156 args->handle);
4157 ret = -EINVAL;
4158 goto out;
4159 }
4160
4161 obj_priv->user_pin_count++;
4162 obj_priv->pin_filp = file_priv;
4163 if (obj_priv->user_pin_count == 1) {
4164 ret = i915_gem_object_pin(obj, args->alignment);
4165 if (ret)
4166 goto out;
4167 }
4168
4169 /* XXX - flush the CPU caches for pinned objects
4170 * as the X server doesn't manage domains yet
4171 */
4172 i915_gem_object_flush_cpu_write_domain(obj);
4173 args->offset = obj_priv->gtt_offset;
4174 out:
4175 drm_gem_object_unreference(obj);
4176 unlock:
4177 mutex_unlock(&dev->struct_mutex);
4178 return ret;
4179 }
4180
4181 int
4182 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4183 struct drm_file *file_priv)
4184 {
4185 struct drm_i915_gem_pin *args = data;
4186 struct drm_gem_object *obj;
4187 struct drm_i915_gem_object *obj_priv;
4188 int ret;
4189
4190 ret = i915_mutex_lock_interruptible(dev);
4191 if (ret)
4192 return ret;
4193
4194 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4195 if (obj == NULL) {
4196 ret = -ENOENT;
4197 goto unlock;
4198 }
4199 obj_priv = to_intel_bo(obj);
4200
4201 if (obj_priv->pin_filp != file_priv) {
4202 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4203 args->handle);
4204 ret = -EINVAL;
4205 goto out;
4206 }
4207 obj_priv->user_pin_count--;
4208 if (obj_priv->user_pin_count == 0) {
4209 obj_priv->pin_filp = NULL;
4210 i915_gem_object_unpin(obj);
4211 }
4212
4213 out:
4214 drm_gem_object_unreference(obj);
4215 unlock:
4216 mutex_unlock(&dev->struct_mutex);
4217 return ret;
4218 }
4219
4220 int
4221 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4222 struct drm_file *file_priv)
4223 {
4224 struct drm_i915_gem_busy *args = data;
4225 struct drm_gem_object *obj;
4226 struct drm_i915_gem_object *obj_priv;
4227 int ret;
4228
4229 ret = i915_mutex_lock_interruptible(dev);
4230 if (ret)
4231 return ret;
4232
4233 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4234 if (obj == NULL) {
4235 ret = -ENOENT;
4236 goto unlock;
4237 }
4238 obj_priv = to_intel_bo(obj);
4239
4240 /* Count all active objects as busy, even if they are currently not used
4241 * by the gpu. Users of this interface expect objects to eventually
4242 * become non-busy without any further actions, therefore emit any
4243 * necessary flushes here.
4244 */
4245 args->busy = obj_priv->active;
4246 if (args->busy) {
4247 /* Unconditionally flush objects, even when the gpu still uses this
4248 * object. Userspace calling this function indicates that it wants to
4249 * use this buffer rather sooner than later, so issuing the required
4250 * flush earlier is beneficial.
4251 */
4252 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4253 i915_gem_flush_ring(dev, file_priv,
4254 obj_priv->ring,
4255 0, obj->write_domain);
4256
4257 /* Update the active list for the hardware's current position.
4258 * Otherwise this only updates on a delayed timer or when irqs
4259 * are actually unmasked, and our working set ends up being
4260 * larger than required.
4261 */
4262 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4263
4264 args->busy = obj_priv->active;
4265 }
4266
4267 drm_gem_object_unreference(obj);
4268 unlock:
4269 mutex_unlock(&dev->struct_mutex);
4270 return ret;
4271 }
4272
4273 int
4274 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4275 struct drm_file *file_priv)
4276 {
4277 return i915_gem_ring_throttle(dev, file_priv);
4278 }
4279
4280 int
4281 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4282 struct drm_file *file_priv)
4283 {
4284 struct drm_i915_gem_madvise *args = data;
4285 struct drm_gem_object *obj;
4286 struct drm_i915_gem_object *obj_priv;
4287 int ret;
4288
4289 switch (args->madv) {
4290 case I915_MADV_DONTNEED:
4291 case I915_MADV_WILLNEED:
4292 break;
4293 default:
4294 return -EINVAL;
4295 }
4296
4297 ret = i915_mutex_lock_interruptible(dev);
4298 if (ret)
4299 return ret;
4300
4301 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4302 if (obj == NULL) {
4303 ret = -ENOENT;
4304 goto unlock;
4305 }
4306 obj_priv = to_intel_bo(obj);
4307
4308 if (obj_priv->pin_count) {
4309 ret = -EINVAL;
4310 goto out;
4311 }
4312
4313 if (obj_priv->madv != __I915_MADV_PURGED)
4314 obj_priv->madv = args->madv;
4315
4316 /* if the object is no longer bound, discard its backing storage */
4317 if (i915_gem_object_is_purgeable(obj_priv) &&
4318 obj_priv->gtt_space == NULL)
4319 i915_gem_object_truncate(obj);
4320
4321 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4322
4323 out:
4324 drm_gem_object_unreference(obj);
4325 unlock:
4326 mutex_unlock(&dev->struct_mutex);
4327 return ret;
4328 }
4329
4330 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4331 size_t size)
4332 {
4333 struct drm_i915_private *dev_priv = dev->dev_private;
4334 struct drm_i915_gem_object *obj;
4335
4336 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4337 if (obj == NULL)
4338 return NULL;
4339
4340 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4341 kfree(obj);
4342 return NULL;
4343 }
4344
4345 i915_gem_info_add_obj(dev_priv, size);
4346
4347 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4348 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4349
4350 obj->agp_type = AGP_USER_MEMORY;
4351 obj->base.driver_private = NULL;
4352 obj->fence_reg = I915_FENCE_REG_NONE;
4353 INIT_LIST_HEAD(&obj->mm_list);
4354 INIT_LIST_HEAD(&obj->ring_list);
4355 INIT_LIST_HEAD(&obj->gpu_write_list);
4356 obj->madv = I915_MADV_WILLNEED;
4357
4358 return &obj->base;
4359 }
4360
4361 int i915_gem_init_object(struct drm_gem_object *obj)
4362 {
4363 BUG();
4364
4365 return 0;
4366 }
4367
4368 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4369 {
4370 struct drm_device *dev = obj->dev;
4371 drm_i915_private_t *dev_priv = dev->dev_private;
4372 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4373 int ret;
4374
4375 ret = i915_gem_object_unbind(obj);
4376 if (ret == -ERESTARTSYS) {
4377 list_move(&obj_priv->mm_list,
4378 &dev_priv->mm.deferred_free_list);
4379 return;
4380 }
4381
4382 if (obj_priv->mmap_offset)
4383 i915_gem_free_mmap_offset(obj);
4384
4385 drm_gem_object_release(obj);
4386 i915_gem_info_remove_obj(dev_priv, obj->size);
4387
4388 kfree(obj_priv->page_cpu_valid);
4389 kfree(obj_priv->bit_17);
4390 kfree(obj_priv);
4391 }
4392
4393 void i915_gem_free_object(struct drm_gem_object *obj)
4394 {
4395 struct drm_device *dev = obj->dev;
4396 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4397
4398 trace_i915_gem_object_destroy(obj);
4399
4400 while (obj_priv->pin_count > 0)
4401 i915_gem_object_unpin(obj);
4402
4403 if (obj_priv->phys_obj)
4404 i915_gem_detach_phys_object(dev, obj);
4405
4406 i915_gem_free_object_tail(obj);
4407 }
4408
4409 int
4410 i915_gem_idle(struct drm_device *dev)
4411 {
4412 drm_i915_private_t *dev_priv = dev->dev_private;
4413 int ret;
4414
4415 mutex_lock(&dev->struct_mutex);
4416
4417 if (dev_priv->mm.suspended) {
4418 mutex_unlock(&dev->struct_mutex);
4419 return 0;
4420 }
4421
4422 ret = i915_gpu_idle(dev);
4423 if (ret) {
4424 mutex_unlock(&dev->struct_mutex);
4425 return ret;
4426 }
4427
4428 /* Under UMS, be paranoid and evict. */
4429 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4430 ret = i915_gem_evict_inactive(dev);
4431 if (ret) {
4432 mutex_unlock(&dev->struct_mutex);
4433 return ret;
4434 }
4435 }
4436
4437 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4438 * We need to replace this with a semaphore, or something.
4439 * And not confound mm.suspended!
4440 */
4441 dev_priv->mm.suspended = 1;
4442 del_timer_sync(&dev_priv->hangcheck_timer);
4443
4444 i915_kernel_lost_context(dev);
4445 i915_gem_cleanup_ringbuffer(dev);
4446
4447 mutex_unlock(&dev->struct_mutex);
4448
4449 /* Cancel the retire work handler, which should be idle now. */
4450 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4451
4452 return 0;
4453 }
4454
4455 /*
4456 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4457 * over cache flushing.
4458 */
4459 static int
4460 i915_gem_init_pipe_control(struct drm_device *dev)
4461 {
4462 drm_i915_private_t *dev_priv = dev->dev_private;
4463 struct drm_gem_object *obj;
4464 struct drm_i915_gem_object *obj_priv;
4465 int ret;
4466
4467 obj = i915_gem_alloc_object(dev, 4096);
4468 if (obj == NULL) {
4469 DRM_ERROR("Failed to allocate seqno page\n");
4470 ret = -ENOMEM;
4471 goto err;
4472 }
4473 obj_priv = to_intel_bo(obj);
4474 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4475
4476 ret = i915_gem_object_pin(obj, 4096);
4477 if (ret)
4478 goto err_unref;
4479
4480 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4481 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4482 if (dev_priv->seqno_page == NULL)
4483 goto err_unpin;
4484
4485 dev_priv->seqno_obj = obj;
4486 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4487
4488 return 0;
4489
4490 err_unpin:
4491 i915_gem_object_unpin(obj);
4492 err_unref:
4493 drm_gem_object_unreference(obj);
4494 err:
4495 return ret;
4496 }
4497
4498
4499 static void
4500 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4501 {
4502 drm_i915_private_t *dev_priv = dev->dev_private;
4503 struct drm_gem_object *obj;
4504 struct drm_i915_gem_object *obj_priv;
4505
4506 obj = dev_priv->seqno_obj;
4507 obj_priv = to_intel_bo(obj);
4508 kunmap(obj_priv->pages[0]);
4509 i915_gem_object_unpin(obj);
4510 drm_gem_object_unreference(obj);
4511 dev_priv->seqno_obj = NULL;
4512
4513 dev_priv->seqno_page = NULL;
4514 }
4515
4516 int
4517 i915_gem_init_ringbuffer(struct drm_device *dev)
4518 {
4519 drm_i915_private_t *dev_priv = dev->dev_private;
4520 int ret;
4521
4522 if (HAS_PIPE_CONTROL(dev)) {
4523 ret = i915_gem_init_pipe_control(dev);
4524 if (ret)
4525 return ret;
4526 }
4527
4528 ret = intel_init_render_ring_buffer(dev);
4529 if (ret)
4530 goto cleanup_pipe_control;
4531
4532 if (HAS_BSD(dev)) {
4533 ret = intel_init_bsd_ring_buffer(dev);
4534 if (ret)
4535 goto cleanup_render_ring;
4536 }
4537
4538 if (HAS_BLT(dev)) {
4539 ret = intel_init_blt_ring_buffer(dev);
4540 if (ret)
4541 goto cleanup_bsd_ring;
4542 }
4543
4544 dev_priv->next_seqno = 1;
4545
4546 return 0;
4547
4548 cleanup_bsd_ring:
4549 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4550 cleanup_render_ring:
4551 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4552 cleanup_pipe_control:
4553 if (HAS_PIPE_CONTROL(dev))
4554 i915_gem_cleanup_pipe_control(dev);
4555 return ret;
4556 }
4557
4558 void
4559 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4560 {
4561 drm_i915_private_t *dev_priv = dev->dev_private;
4562
4563 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4564 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4565 intel_cleanup_ring_buffer(dev, &dev_priv->blt_ring);
4566 if (HAS_PIPE_CONTROL(dev))
4567 i915_gem_cleanup_pipe_control(dev);
4568 }
4569
4570 int
4571 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4572 struct drm_file *file_priv)
4573 {
4574 drm_i915_private_t *dev_priv = dev->dev_private;
4575 int ret;
4576
4577 if (drm_core_check_feature(dev, DRIVER_MODESET))
4578 return 0;
4579
4580 if (atomic_read(&dev_priv->mm.wedged)) {
4581 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4582 atomic_set(&dev_priv->mm.wedged, 0);
4583 }
4584
4585 mutex_lock(&dev->struct_mutex);
4586 dev_priv->mm.suspended = 0;
4587
4588 ret = i915_gem_init_ringbuffer(dev);
4589 if (ret != 0) {
4590 mutex_unlock(&dev->struct_mutex);
4591 return ret;
4592 }
4593
4594 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4595 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4596 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4597 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4598 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4599 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4600 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4601 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4602 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4603 mutex_unlock(&dev->struct_mutex);
4604
4605 ret = drm_irq_install(dev);
4606 if (ret)
4607 goto cleanup_ringbuffer;
4608
4609 return 0;
4610
4611 cleanup_ringbuffer:
4612 mutex_lock(&dev->struct_mutex);
4613 i915_gem_cleanup_ringbuffer(dev);
4614 dev_priv->mm.suspended = 1;
4615 mutex_unlock(&dev->struct_mutex);
4616
4617 return ret;
4618 }
4619
4620 int
4621 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4622 struct drm_file *file_priv)
4623 {
4624 if (drm_core_check_feature(dev, DRIVER_MODESET))
4625 return 0;
4626
4627 drm_irq_uninstall(dev);
4628 return i915_gem_idle(dev);
4629 }
4630
4631 void
4632 i915_gem_lastclose(struct drm_device *dev)
4633 {
4634 int ret;
4635
4636 if (drm_core_check_feature(dev, DRIVER_MODESET))
4637 return;
4638
4639 ret = i915_gem_idle(dev);
4640 if (ret)
4641 DRM_ERROR("failed to idle hardware: %d\n", ret);
4642 }
4643
4644 static void
4645 init_ring_lists(struct intel_ring_buffer *ring)
4646 {
4647 INIT_LIST_HEAD(&ring->active_list);
4648 INIT_LIST_HEAD(&ring->request_list);
4649 INIT_LIST_HEAD(&ring->gpu_write_list);
4650 }
4651
4652 void
4653 i915_gem_load(struct drm_device *dev)
4654 {
4655 int i;
4656 drm_i915_private_t *dev_priv = dev->dev_private;
4657
4658 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4659 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4660 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4661 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4662 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4663 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4664 init_ring_lists(&dev_priv->render_ring);
4665 init_ring_lists(&dev_priv->bsd_ring);
4666 init_ring_lists(&dev_priv->blt_ring);
4667 for (i = 0; i < 16; i++)
4668 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4669 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4670 i915_gem_retire_work_handler);
4671 init_completion(&dev_priv->error_completion);
4672 spin_lock(&shrink_list_lock);
4673 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4674 spin_unlock(&shrink_list_lock);
4675
4676 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4677 if (IS_GEN3(dev)) {
4678 u32 tmp = I915_READ(MI_ARB_STATE);
4679 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4680 /* arb state is a masked write, so set bit + bit in mask */
4681 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4682 I915_WRITE(MI_ARB_STATE, tmp);
4683 }
4684 }
4685
4686 /* Old X drivers will take 0-2 for front, back, depth buffers */
4687 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4688 dev_priv->fence_reg_start = 3;
4689
4690 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4691 dev_priv->num_fence_regs = 16;
4692 else
4693 dev_priv->num_fence_regs = 8;
4694
4695 /* Initialize fence registers to zero */
4696 switch (INTEL_INFO(dev)->gen) {
4697 case 6:
4698 for (i = 0; i < 16; i++)
4699 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4700 break;
4701 case 5:
4702 case 4:
4703 for (i = 0; i < 16; i++)
4704 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4705 break;
4706 case 3:
4707 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4708 for (i = 0; i < 8; i++)
4709 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4710 case 2:
4711 for (i = 0; i < 8; i++)
4712 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4713 break;
4714 }
4715 i915_gem_detect_bit_6_swizzle(dev);
4716 init_waitqueue_head(&dev_priv->pending_flip_queue);
4717 }
4718
4719 /*
4720 * Create a physically contiguous memory object for this object
4721 * e.g. for cursor + overlay regs
4722 */
4723 static int i915_gem_init_phys_object(struct drm_device *dev,
4724 int id, int size, int align)
4725 {
4726 drm_i915_private_t *dev_priv = dev->dev_private;
4727 struct drm_i915_gem_phys_object *phys_obj;
4728 int ret;
4729
4730 if (dev_priv->mm.phys_objs[id - 1] || !size)
4731 return 0;
4732
4733 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4734 if (!phys_obj)
4735 return -ENOMEM;
4736
4737 phys_obj->id = id;
4738
4739 phys_obj->handle = drm_pci_alloc(dev, size, align);
4740 if (!phys_obj->handle) {
4741 ret = -ENOMEM;
4742 goto kfree_obj;
4743 }
4744 #ifdef CONFIG_X86
4745 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4746 #endif
4747
4748 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4749
4750 return 0;
4751 kfree_obj:
4752 kfree(phys_obj);
4753 return ret;
4754 }
4755
4756 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4757 {
4758 drm_i915_private_t *dev_priv = dev->dev_private;
4759 struct drm_i915_gem_phys_object *phys_obj;
4760
4761 if (!dev_priv->mm.phys_objs[id - 1])
4762 return;
4763
4764 phys_obj = dev_priv->mm.phys_objs[id - 1];
4765 if (phys_obj->cur_obj) {
4766 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4767 }
4768
4769 #ifdef CONFIG_X86
4770 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4771 #endif
4772 drm_pci_free(dev, phys_obj->handle);
4773 kfree(phys_obj);
4774 dev_priv->mm.phys_objs[id - 1] = NULL;
4775 }
4776
4777 void i915_gem_free_all_phys_object(struct drm_device *dev)
4778 {
4779 int i;
4780
4781 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4782 i915_gem_free_phys_object(dev, i);
4783 }
4784
4785 void i915_gem_detach_phys_object(struct drm_device *dev,
4786 struct drm_gem_object *obj)
4787 {
4788 struct drm_i915_gem_object *obj_priv;
4789 int i;
4790 int ret;
4791 int page_count;
4792
4793 obj_priv = to_intel_bo(obj);
4794 if (!obj_priv->phys_obj)
4795 return;
4796
4797 ret = i915_gem_object_get_pages(obj, 0);
4798 if (ret)
4799 goto out;
4800
4801 page_count = obj->size / PAGE_SIZE;
4802
4803 for (i = 0; i < page_count; i++) {
4804 char *dst = kmap_atomic(obj_priv->pages[i]);
4805 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4806
4807 memcpy(dst, src, PAGE_SIZE);
4808 kunmap_atomic(dst);
4809 }
4810 drm_clflush_pages(obj_priv->pages, page_count);
4811 drm_agp_chipset_flush(dev);
4812
4813 i915_gem_object_put_pages(obj);
4814 out:
4815 obj_priv->phys_obj->cur_obj = NULL;
4816 obj_priv->phys_obj = NULL;
4817 }
4818
4819 int
4820 i915_gem_attach_phys_object(struct drm_device *dev,
4821 struct drm_gem_object *obj,
4822 int id,
4823 int align)
4824 {
4825 drm_i915_private_t *dev_priv = dev->dev_private;
4826 struct drm_i915_gem_object *obj_priv;
4827 int ret = 0;
4828 int page_count;
4829 int i;
4830
4831 if (id > I915_MAX_PHYS_OBJECT)
4832 return -EINVAL;
4833
4834 obj_priv = to_intel_bo(obj);
4835
4836 if (obj_priv->phys_obj) {
4837 if (obj_priv->phys_obj->id == id)
4838 return 0;
4839 i915_gem_detach_phys_object(dev, obj);
4840 }
4841
4842 /* create a new object */
4843 if (!dev_priv->mm.phys_objs[id - 1]) {
4844 ret = i915_gem_init_phys_object(dev, id,
4845 obj->size, align);
4846 if (ret) {
4847 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4848 goto out;
4849 }
4850 }
4851
4852 /* bind to the object */
4853 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4854 obj_priv->phys_obj->cur_obj = obj;
4855
4856 ret = i915_gem_object_get_pages(obj, 0);
4857 if (ret) {
4858 DRM_ERROR("failed to get page list\n");
4859 goto out;
4860 }
4861
4862 page_count = obj->size / PAGE_SIZE;
4863
4864 for (i = 0; i < page_count; i++) {
4865 char *src = kmap_atomic(obj_priv->pages[i]);
4866 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4867
4868 memcpy(dst, src, PAGE_SIZE);
4869 kunmap_atomic(src);
4870 }
4871
4872 i915_gem_object_put_pages(obj);
4873
4874 return 0;
4875 out:
4876 return ret;
4877 }
4878
4879 static int
4880 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4881 struct drm_i915_gem_pwrite *args,
4882 struct drm_file *file_priv)
4883 {
4884 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4885 void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
4886 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4887
4888 DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
4889
4890 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4891 unsigned long unwritten;
4892
4893 /* The physical object once assigned is fixed for the lifetime
4894 * of the obj, so we can safely drop the lock and continue
4895 * to access vaddr.
4896 */
4897 mutex_unlock(&dev->struct_mutex);
4898 unwritten = copy_from_user(vaddr, user_data, args->size);
4899 mutex_lock(&dev->struct_mutex);
4900 if (unwritten)
4901 return -EFAULT;
4902 }
4903
4904 drm_agp_chipset_flush(dev);
4905 return 0;
4906 }
4907
4908 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4909 {
4910 struct drm_i915_file_private *file_priv = file->driver_priv;
4911
4912 /* Clean up our request list when the client is going away, so that
4913 * later retire_requests won't dereference our soon-to-be-gone
4914 * file_priv.
4915 */
4916 spin_lock(&file_priv->mm.lock);
4917 while (!list_empty(&file_priv->mm.request_list)) {
4918 struct drm_i915_gem_request *request;
4919
4920 request = list_first_entry(&file_priv->mm.request_list,
4921 struct drm_i915_gem_request,
4922 client_list);
4923 list_del(&request->client_list);
4924 request->file_priv = NULL;
4925 }
4926 spin_unlock(&file_priv->mm.lock);
4927 }
4928
4929 static int
4930 i915_gpu_is_active(struct drm_device *dev)
4931 {
4932 drm_i915_private_t *dev_priv = dev->dev_private;
4933 int lists_empty;
4934
4935 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4936 list_empty(&dev_priv->mm.active_list);
4937
4938 return !lists_empty;
4939 }
4940
4941 static int
4942 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4943 {
4944 drm_i915_private_t *dev_priv, *next_dev;
4945 struct drm_i915_gem_object *obj_priv, *next_obj;
4946 int cnt = 0;
4947 int would_deadlock = 1;
4948
4949 /* "fast-path" to count number of available objects */
4950 if (nr_to_scan == 0) {
4951 spin_lock(&shrink_list_lock);
4952 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4953 struct drm_device *dev = dev_priv->dev;
4954
4955 if (mutex_trylock(&dev->struct_mutex)) {
4956 list_for_each_entry(obj_priv,
4957 &dev_priv->mm.inactive_list,
4958 mm_list)
4959 cnt++;
4960 mutex_unlock(&dev->struct_mutex);
4961 }
4962 }
4963 spin_unlock(&shrink_list_lock);
4964
4965 return (cnt / 100) * sysctl_vfs_cache_pressure;
4966 }
4967
4968 spin_lock(&shrink_list_lock);
4969
4970 rescan:
4971 /* first scan for clean buffers */
4972 list_for_each_entry_safe(dev_priv, next_dev,
4973 &shrink_list, mm.shrink_list) {
4974 struct drm_device *dev = dev_priv->dev;
4975
4976 if (! mutex_trylock(&dev->struct_mutex))
4977 continue;
4978
4979 spin_unlock(&shrink_list_lock);
4980 i915_gem_retire_requests(dev);
4981
4982 list_for_each_entry_safe(obj_priv, next_obj,
4983 &dev_priv->mm.inactive_list,
4984 mm_list) {
4985 if (i915_gem_object_is_purgeable(obj_priv)) {
4986 i915_gem_object_unbind(&obj_priv->base);
4987 if (--nr_to_scan <= 0)
4988 break;
4989 }
4990 }
4991
4992 spin_lock(&shrink_list_lock);
4993 mutex_unlock(&dev->struct_mutex);
4994
4995 would_deadlock = 0;
4996
4997 if (nr_to_scan <= 0)
4998 break;
4999 }
5000
5001 /* second pass, evict/count anything still on the inactive list */
5002 list_for_each_entry_safe(dev_priv, next_dev,
5003 &shrink_list, mm.shrink_list) {
5004 struct drm_device *dev = dev_priv->dev;
5005
5006 if (! mutex_trylock(&dev->struct_mutex))
5007 continue;
5008
5009 spin_unlock(&shrink_list_lock);
5010
5011 list_for_each_entry_safe(obj_priv, next_obj,
5012 &dev_priv->mm.inactive_list,
5013 mm_list) {
5014 if (nr_to_scan > 0) {
5015 i915_gem_object_unbind(&obj_priv->base);
5016 nr_to_scan--;
5017 } else
5018 cnt++;
5019 }
5020
5021 spin_lock(&shrink_list_lock);
5022 mutex_unlock(&dev->struct_mutex);
5023
5024 would_deadlock = 0;
5025 }
5026
5027 if (nr_to_scan) {
5028 int active = 0;
5029
5030 /*
5031 * We are desperate for pages, so as a last resort, wait
5032 * for the GPU to finish and discard whatever we can.
5033 * This has a dramatic impact to reduce the number of
5034 * OOM-killer events whilst running the GPU aggressively.
5035 */
5036 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5037 struct drm_device *dev = dev_priv->dev;
5038
5039 if (!mutex_trylock(&dev->struct_mutex))
5040 continue;
5041
5042 spin_unlock(&shrink_list_lock);
5043
5044 if (i915_gpu_is_active(dev)) {
5045 i915_gpu_idle(dev);
5046 active++;
5047 }
5048
5049 spin_lock(&shrink_list_lock);
5050 mutex_unlock(&dev->struct_mutex);
5051 }
5052
5053 if (active)
5054 goto rescan;
5055 }
5056
5057 spin_unlock(&shrink_list_lock);
5058
5059 if (would_deadlock)
5060 return -1;
5061 else if (cnt > 0)
5062 return (cnt / 100) * sysctl_vfs_cache_pressure;
5063 else
5064 return 0;
5065 }
5066
5067 static struct shrinker shrinker = {
5068 .shrink = i915_gem_shrink,
5069 .seeks = DEFAULT_SEEKS,
5070 };
5071
5072 __init void
5073 i915_gem_shrinker_init(void)
5074 {
5075 register_shrinker(&shrinker);
5076 }
5077
5078 __exit void
5079 i915_gem_shrinker_exit(void)
5080 {
5081 unregister_shrinker(&shrinker);
5082 }
This page took 0.249792 seconds and 6 git commands to generate.