Merge branch 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51 {
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 return true;
59
60 return obj->pin_display;
61 }
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66 {
67 spin_lock(&dev_priv->mm.object_stat_lock);
68 dev_priv->mm.object_count++;
69 dev_priv->mm.object_memory += size;
70 spin_unlock(&dev_priv->mm.object_stat_lock);
71 }
72
73 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75 {
76 spin_lock(&dev_priv->mm.object_stat_lock);
77 dev_priv->mm.object_count--;
78 dev_priv->mm.object_memory -= size;
79 spin_unlock(&dev_priv->mm.object_stat_lock);
80 }
81
82 static int
83 i915_gem_wait_for_error(struct i915_gpu_error *error)
84 {
85 int ret;
86
87 if (!i915_reset_in_progress(error))
88 return 0;
89
90 /*
91 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92 * userspace. If it takes that long something really bad is going on and
93 * we should simply try to bail out and fail as gracefully as possible.
94 */
95 ret = wait_event_interruptible_timeout(error->reset_queue,
96 !i915_reset_in_progress(error),
97 10*HZ);
98 if (ret == 0) {
99 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100 return -EIO;
101 } else if (ret < 0) {
102 return ret;
103 } else {
104 return 0;
105 }
106 }
107
108 int i915_mutex_lock_interruptible(struct drm_device *dev)
109 {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 int ret;
112
113 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
121 WARN_ON(i915_verify_lists(dev));
122 return 0;
123 }
124
125 int
126 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127 struct drm_file *file)
128 {
129 struct drm_i915_private *dev_priv = to_i915(dev);
130 struct i915_ggtt *ggtt = &dev_priv->ggtt;
131 struct drm_i915_gem_get_aperture *args = data;
132 struct i915_vma *vma;
133 size_t pinned;
134
135 pinned = 0;
136 mutex_lock(&dev->struct_mutex);
137 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138 if (vma->pin_count)
139 pinned += vma->node.size;
140 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141 if (vma->pin_count)
142 pinned += vma->node.size;
143 mutex_unlock(&dev->struct_mutex);
144
145 args->aper_size = ggtt->base.total;
146 args->aper_available_size = args->aper_size - pinned;
147
148 return 0;
149 }
150
151 static int
152 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153 {
154 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155 char *vaddr = obj->phys_handle->vaddr;
156 struct sg_table *st;
157 struct scatterlist *sg;
158 int i;
159
160 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161 return -EINVAL;
162
163 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164 struct page *page;
165 char *src;
166
167 page = shmem_read_mapping_page(mapping, i);
168 if (IS_ERR(page))
169 return PTR_ERR(page);
170
171 src = kmap_atomic(page);
172 memcpy(vaddr, src, PAGE_SIZE);
173 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174 kunmap_atomic(src);
175
176 put_page(page);
177 vaddr += PAGE_SIZE;
178 }
179
180 i915_gem_chipset_flush(obj->base.dev);
181
182 st = kmalloc(sizeof(*st), GFP_KERNEL);
183 if (st == NULL)
184 return -ENOMEM;
185
186 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187 kfree(st);
188 return -ENOMEM;
189 }
190
191 sg = st->sgl;
192 sg->offset = 0;
193 sg->length = obj->base.size;
194
195 sg_dma_address(sg) = obj->phys_handle->busaddr;
196 sg_dma_len(sg) = obj->base.size;
197
198 obj->pages = st;
199 return 0;
200 }
201
202 static void
203 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204 {
205 int ret;
206
207 BUG_ON(obj->madv == __I915_MADV_PURGED);
208
209 ret = i915_gem_object_set_to_cpu_domain(obj, true);
210 if (WARN_ON(ret)) {
211 /* In the event of a disaster, abandon all caches and
212 * hope for the best.
213 */
214 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215 }
216
217 if (obj->madv == I915_MADV_DONTNEED)
218 obj->dirty = 0;
219
220 if (obj->dirty) {
221 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222 char *vaddr = obj->phys_handle->vaddr;
223 int i;
224
225 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 struct page *page;
227 char *dst;
228
229 page = shmem_read_mapping_page(mapping, i);
230 if (IS_ERR(page))
231 continue;
232
233 dst = kmap_atomic(page);
234 drm_clflush_virt_range(vaddr, PAGE_SIZE);
235 memcpy(dst, vaddr, PAGE_SIZE);
236 kunmap_atomic(dst);
237
238 set_page_dirty(page);
239 if (obj->madv == I915_MADV_WILLNEED)
240 mark_page_accessed(page);
241 put_page(page);
242 vaddr += PAGE_SIZE;
243 }
244 obj->dirty = 0;
245 }
246
247 sg_free_table(obj->pages);
248 kfree(obj->pages);
249 }
250
251 static void
252 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253 {
254 drm_pci_free(obj->base.dev, obj->phys_handle);
255 }
256
257 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258 .get_pages = i915_gem_object_get_pages_phys,
259 .put_pages = i915_gem_object_put_pages_phys,
260 .release = i915_gem_object_release_phys,
261 };
262
263 static int
264 drop_pages(struct drm_i915_gem_object *obj)
265 {
266 struct i915_vma *vma, *next;
267 int ret;
268
269 drm_gem_object_reference(&obj->base);
270 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271 if (i915_vma_unbind(vma))
272 break;
273
274 ret = i915_gem_object_put_pages(obj);
275 drm_gem_object_unreference(&obj->base);
276
277 return ret;
278 }
279
280 int
281 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282 int align)
283 {
284 drm_dma_handle_t *phys;
285 int ret;
286
287 if (obj->phys_handle) {
288 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289 return -EBUSY;
290
291 return 0;
292 }
293
294 if (obj->madv != I915_MADV_WILLNEED)
295 return -EFAULT;
296
297 if (obj->base.filp == NULL)
298 return -EINVAL;
299
300 ret = drop_pages(obj);
301 if (ret)
302 return ret;
303
304 /* create a new object */
305 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306 if (!phys)
307 return -ENOMEM;
308
309 obj->phys_handle = phys;
310 obj->ops = &i915_gem_phys_ops;
311
312 return i915_gem_object_get_pages(obj);
313 }
314
315 static int
316 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317 struct drm_i915_gem_pwrite *args,
318 struct drm_file *file_priv)
319 {
320 struct drm_device *dev = obj->base.dev;
321 void *vaddr = obj->phys_handle->vaddr + args->offset;
322 char __user *user_data = u64_to_user_ptr(args->data_ptr);
323 int ret = 0;
324
325 /* We manually control the domain here and pretend that it
326 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327 */
328 ret = i915_gem_object_wait_rendering(obj, false);
329 if (ret)
330 return ret;
331
332 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334 unsigned long unwritten;
335
336 /* The physical object once assigned is fixed for the lifetime
337 * of the obj, so we can safely drop the lock and continue
338 * to access vaddr.
339 */
340 mutex_unlock(&dev->struct_mutex);
341 unwritten = copy_from_user(vaddr, user_data, args->size);
342 mutex_lock(&dev->struct_mutex);
343 if (unwritten) {
344 ret = -EFAULT;
345 goto out;
346 }
347 }
348
349 drm_clflush_virt_range(vaddr, args->size);
350 i915_gem_chipset_flush(dev);
351
352 out:
353 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354 return ret;
355 }
356
357 void *i915_gem_object_alloc(struct drm_device *dev)
358 {
359 struct drm_i915_private *dev_priv = dev->dev_private;
360 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 }
362
363 void i915_gem_object_free(struct drm_i915_gem_object *obj)
364 {
365 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366 kmem_cache_free(dev_priv->objects, obj);
367 }
368
369 static int
370 i915_gem_create(struct drm_file *file,
371 struct drm_device *dev,
372 uint64_t size,
373 uint32_t *handle_p)
374 {
375 struct drm_i915_gem_object *obj;
376 int ret;
377 u32 handle;
378
379 size = roundup(size, PAGE_SIZE);
380 if (size == 0)
381 return -EINVAL;
382
383 /* Allocate the new object */
384 obj = i915_gem_alloc_object(dev, size);
385 if (obj == NULL)
386 return -ENOMEM;
387
388 ret = drm_gem_handle_create(file, &obj->base, &handle);
389 /* drop reference from allocate - handle holds it now */
390 drm_gem_object_unreference_unlocked(&obj->base);
391 if (ret)
392 return ret;
393
394 *handle_p = handle;
395 return 0;
396 }
397
398 int
399 i915_gem_dumb_create(struct drm_file *file,
400 struct drm_device *dev,
401 struct drm_mode_create_dumb *args)
402 {
403 /* have to work out size/pitch and return them */
404 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405 args->size = args->pitch * args->height;
406 return i915_gem_create(file, dev,
407 args->size, &args->handle);
408 }
409
410 /**
411 * Creates a new mm object and returns a handle to it.
412 */
413 int
414 i915_gem_create_ioctl(struct drm_device *dev, void *data,
415 struct drm_file *file)
416 {
417 struct drm_i915_gem_create *args = data;
418
419 return i915_gem_create(file, dev,
420 args->size, &args->handle);
421 }
422
423 static inline int
424 __copy_to_user_swizzled(char __user *cpu_vaddr,
425 const char *gpu_vaddr, int gpu_offset,
426 int length)
427 {
428 int ret, cpu_offset = 0;
429
430 while (length > 0) {
431 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432 int this_length = min(cacheline_end - gpu_offset, length);
433 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436 gpu_vaddr + swizzled_gpu_offset,
437 this_length);
438 if (ret)
439 return ret + length;
440
441 cpu_offset += this_length;
442 gpu_offset += this_length;
443 length -= this_length;
444 }
445
446 return 0;
447 }
448
449 static inline int
450 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451 const char __user *cpu_vaddr,
452 int length)
453 {
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462 cpu_vaddr + cpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473 }
474
475 /*
476 * Pins the specified object's pages and synchronizes the object with
477 * GPU accesses. Sets needs_clflush to non-zero if the caller should
478 * flush the object from the CPU cache.
479 */
480 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481 int *needs_clflush)
482 {
483 int ret;
484
485 *needs_clflush = 0;
486
487 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488 return -EINVAL;
489
490 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491 /* If we're not in the cpu read domain, set ourself into the gtt
492 * read domain and manually flush cachelines (if required). This
493 * optimizes for the case when the gpu will dirty the data
494 * anyway again before the next pread happens. */
495 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496 obj->cache_level);
497 ret = i915_gem_object_wait_rendering(obj, true);
498 if (ret)
499 return ret;
500 }
501
502 ret = i915_gem_object_get_pages(obj);
503 if (ret)
504 return ret;
505
506 i915_gem_object_pin_pages(obj);
507
508 return ret;
509 }
510
511 /* Per-page copy function for the shmem pread fastpath.
512 * Flushes invalid cachelines before reading the target if
513 * needs_clflush is set. */
514 static int
515 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516 char __user *user_data,
517 bool page_do_bit17_swizzling, bool needs_clflush)
518 {
519 char *vaddr;
520 int ret;
521
522 if (unlikely(page_do_bit17_swizzling))
523 return -EINVAL;
524
525 vaddr = kmap_atomic(page);
526 if (needs_clflush)
527 drm_clflush_virt_range(vaddr + shmem_page_offset,
528 page_length);
529 ret = __copy_to_user_inatomic(user_data,
530 vaddr + shmem_page_offset,
531 page_length);
532 kunmap_atomic(vaddr);
533
534 return ret ? -EFAULT : 0;
535 }
536
537 static void
538 shmem_clflush_swizzled_range(char *addr, unsigned long length,
539 bool swizzled)
540 {
541 if (unlikely(swizzled)) {
542 unsigned long start = (unsigned long) addr;
543 unsigned long end = (unsigned long) addr + length;
544
545 /* For swizzling simply ensure that we always flush both
546 * channels. Lame, but simple and it works. Swizzled
547 * pwrite/pread is far from a hotpath - current userspace
548 * doesn't use it at all. */
549 start = round_down(start, 128);
550 end = round_up(end, 128);
551
552 drm_clflush_virt_range((void *)start, end - start);
553 } else {
554 drm_clflush_virt_range(addr, length);
555 }
556
557 }
558
559 /* Only difference to the fast-path function is that this can handle bit17
560 * and uses non-atomic copy and kmap functions. */
561 static int
562 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563 char __user *user_data,
564 bool page_do_bit17_swizzling, bool needs_clflush)
565 {
566 char *vaddr;
567 int ret;
568
569 vaddr = kmap(page);
570 if (needs_clflush)
571 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572 page_length,
573 page_do_bit17_swizzling);
574
575 if (page_do_bit17_swizzling)
576 ret = __copy_to_user_swizzled(user_data,
577 vaddr, shmem_page_offset,
578 page_length);
579 else
580 ret = __copy_to_user(user_data,
581 vaddr + shmem_page_offset,
582 page_length);
583 kunmap(page);
584
585 return ret ? - EFAULT : 0;
586 }
587
588 static int
589 i915_gem_shmem_pread(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pread *args,
592 struct drm_file *file)
593 {
594 char __user *user_data;
595 ssize_t remain;
596 loff_t offset;
597 int shmem_page_offset, page_length, ret = 0;
598 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599 int prefaulted = 0;
600 int needs_clflush = 0;
601 struct sg_page_iter sg_iter;
602
603 user_data = u64_to_user_ptr(args->data_ptr);
604 remain = args->size;
605
606 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607
608 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609 if (ret)
610 return ret;
611
612 offset = args->offset;
613
614 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615 offset >> PAGE_SHIFT) {
616 struct page *page = sg_page_iter_page(&sg_iter);
617
618 if (remain <= 0)
619 break;
620
621 /* Operation in this page
622 *
623 * shmem_page_offset = offset within page in shmem file
624 * page_length = bytes to copy for this page
625 */
626 shmem_page_offset = offset_in_page(offset);
627 page_length = remain;
628 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629 page_length = PAGE_SIZE - shmem_page_offset;
630
631 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632 (page_to_phys(page) & (1 << 17)) != 0;
633
634 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635 user_data, page_do_bit17_swizzling,
636 needs_clflush);
637 if (ret == 0)
638 goto next_page;
639
640 mutex_unlock(&dev->struct_mutex);
641
642 if (likely(!i915.prefault_disable) && !prefaulted) {
643 ret = fault_in_multipages_writeable(user_data, remain);
644 /* Userspace is tricking us, but we've already clobbered
645 * its pages with the prefault and promised to write the
646 * data up to the first fault. Hence ignore any errors
647 * and just continue. */
648 (void)ret;
649 prefaulted = 1;
650 }
651
652 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653 user_data, page_do_bit17_swizzling,
654 needs_clflush);
655
656 mutex_lock(&dev->struct_mutex);
657
658 if (ret)
659 goto out;
660
661 next_page:
662 remain -= page_length;
663 user_data += page_length;
664 offset += page_length;
665 }
666
667 out:
668 i915_gem_object_unpin_pages(obj);
669
670 return ret;
671 }
672
673 /**
674 * Reads data from the object referenced by handle.
675 *
676 * On error, the contents of *data are undefined.
677 */
678 int
679 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680 struct drm_file *file)
681 {
682 struct drm_i915_gem_pread *args = data;
683 struct drm_i915_gem_object *obj;
684 int ret = 0;
685
686 if (args->size == 0)
687 return 0;
688
689 if (!access_ok(VERIFY_WRITE,
690 u64_to_user_ptr(args->data_ptr),
691 args->size))
692 return -EFAULT;
693
694 ret = i915_mutex_lock_interruptible(dev);
695 if (ret)
696 return ret;
697
698 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
699 if (&obj->base == NULL) {
700 ret = -ENOENT;
701 goto unlock;
702 }
703
704 /* Bounds check source. */
705 if (args->offset > obj->base.size ||
706 args->size > obj->base.size - args->offset) {
707 ret = -EINVAL;
708 goto out;
709 }
710
711 /* prime objects have no backing filp to GEM pread/pwrite
712 * pages from.
713 */
714 if (!obj->base.filp) {
715 ret = -EINVAL;
716 goto out;
717 }
718
719 trace_i915_gem_object_pread(obj, args->offset, args->size);
720
721 ret = i915_gem_shmem_pread(dev, obj, args, file);
722
723 out:
724 drm_gem_object_unreference(&obj->base);
725 unlock:
726 mutex_unlock(&dev->struct_mutex);
727 return ret;
728 }
729
730 /* This is the fast write path which cannot handle
731 * page faults in the source data
732 */
733
734 static inline int
735 fast_user_write(struct io_mapping *mapping,
736 loff_t page_base, int page_offset,
737 char __user *user_data,
738 int length)
739 {
740 void __iomem *vaddr_atomic;
741 void *vaddr;
742 unsigned long unwritten;
743
744 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745 /* We can use the cpu mem copy function because this is X86. */
746 vaddr = (void __force*)vaddr_atomic + page_offset;
747 unwritten = __copy_from_user_inatomic_nocache(vaddr,
748 user_data, length);
749 io_mapping_unmap_atomic(vaddr_atomic);
750 return unwritten;
751 }
752
753 /**
754 * This is the fast pwrite path, where we copy the data directly from the
755 * user into the GTT, uncached.
756 */
757 static int
758 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759 struct drm_i915_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file)
762 {
763 struct drm_i915_private *dev_priv = to_i915(dev);
764 struct i915_ggtt *ggtt = &dev_priv->ggtt;
765 ssize_t remain;
766 loff_t offset, page_base;
767 char __user *user_data;
768 int page_offset, page_length, ret;
769
770 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
771 if (ret)
772 goto out;
773
774 ret = i915_gem_object_set_to_gtt_domain(obj, true);
775 if (ret)
776 goto out_unpin;
777
778 ret = i915_gem_object_put_fence(obj);
779 if (ret)
780 goto out_unpin;
781
782 user_data = u64_to_user_ptr(args->data_ptr);
783 remain = args->size;
784
785 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786
787 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788
789 while (remain > 0) {
790 /* Operation in this page
791 *
792 * page_base = page offset within aperture
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
795 */
796 page_base = offset & PAGE_MASK;
797 page_offset = offset_in_page(offset);
798 page_length = remain;
799 if ((page_offset + remain) > PAGE_SIZE)
800 page_length = PAGE_SIZE - page_offset;
801
802 /* If we get a fault while copying data, then (presumably) our
803 * source page isn't available. Return the error and we'll
804 * retry in the slow path.
805 */
806 if (fast_user_write(ggtt->mappable, page_base,
807 page_offset, user_data, page_length)) {
808 ret = -EFAULT;
809 goto out_flush;
810 }
811
812 remain -= page_length;
813 user_data += page_length;
814 offset += page_length;
815 }
816
817 out_flush:
818 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
819 out_unpin:
820 i915_gem_object_ggtt_unpin(obj);
821 out:
822 return ret;
823 }
824
825 /* Per-page copy function for the shmem pwrite fastpath.
826 * Flushes invalid cachelines before writing to the target if
827 * needs_clflush_before is set and flushes out any written cachelines after
828 * writing if needs_clflush is set. */
829 static int
830 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831 char __user *user_data,
832 bool page_do_bit17_swizzling,
833 bool needs_clflush_before,
834 bool needs_clflush_after)
835 {
836 char *vaddr;
837 int ret;
838
839 if (unlikely(page_do_bit17_swizzling))
840 return -EINVAL;
841
842 vaddr = kmap_atomic(page);
843 if (needs_clflush_before)
844 drm_clflush_virt_range(vaddr + shmem_page_offset,
845 page_length);
846 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847 user_data, page_length);
848 if (needs_clflush_after)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 kunmap_atomic(vaddr);
852
853 return ret ? -EFAULT : 0;
854 }
855
856 /* Only difference to the fast-path function is that this can handle bit17
857 * and uses non-atomic copy and kmap functions. */
858 static int
859 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860 char __user *user_data,
861 bool page_do_bit17_swizzling,
862 bool needs_clflush_before,
863 bool needs_clflush_after)
864 {
865 char *vaddr;
866 int ret;
867
868 vaddr = kmap(page);
869 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871 page_length,
872 page_do_bit17_swizzling);
873 if (page_do_bit17_swizzling)
874 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875 user_data,
876 page_length);
877 else
878 ret = __copy_from_user(vaddr + shmem_page_offset,
879 user_data,
880 page_length);
881 if (needs_clflush_after)
882 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883 page_length,
884 page_do_bit17_swizzling);
885 kunmap(page);
886
887 return ret ? -EFAULT : 0;
888 }
889
890 static int
891 i915_gem_shmem_pwrite(struct drm_device *dev,
892 struct drm_i915_gem_object *obj,
893 struct drm_i915_gem_pwrite *args,
894 struct drm_file *file)
895 {
896 ssize_t remain;
897 loff_t offset;
898 char __user *user_data;
899 int shmem_page_offset, page_length, ret = 0;
900 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901 int hit_slowpath = 0;
902 int needs_clflush_after = 0;
903 int needs_clflush_before = 0;
904 struct sg_page_iter sg_iter;
905
906 user_data = u64_to_user_ptr(args->data_ptr);
907 remain = args->size;
908
909 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910
911 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912 /* If we're not in the cpu write domain, set ourself into the gtt
913 * write domain and manually flush cachelines (if required). This
914 * optimizes for the case when the gpu will use the data
915 * right away and we therefore have to clflush anyway. */
916 needs_clflush_after = cpu_write_needs_clflush(obj);
917 ret = i915_gem_object_wait_rendering(obj, false);
918 if (ret)
919 return ret;
920 }
921 /* Same trick applies to invalidate partially written cachelines read
922 * before writing. */
923 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924 needs_clflush_before =
925 !cpu_cache_is_coherent(dev, obj->cache_level);
926
927 ret = i915_gem_object_get_pages(obj);
928 if (ret)
929 return ret;
930
931 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932
933 i915_gem_object_pin_pages(obj);
934
935 offset = args->offset;
936 obj->dirty = 1;
937
938 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939 offset >> PAGE_SHIFT) {
940 struct page *page = sg_page_iter_page(&sg_iter);
941 int partial_cacheline_write;
942
943 if (remain <= 0)
944 break;
945
946 /* Operation in this page
947 *
948 * shmem_page_offset = offset within page in shmem file
949 * page_length = bytes to copy for this page
950 */
951 shmem_page_offset = offset_in_page(offset);
952
953 page_length = remain;
954 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - shmem_page_offset;
956
957 /* If we don't overwrite a cacheline completely we need to be
958 * careful to have up-to-date data by first clflushing. Don't
959 * overcomplicate things and flush the entire patch. */
960 partial_cacheline_write = needs_clflush_before &&
961 ((shmem_page_offset | page_length)
962 & (boot_cpu_data.x86_clflush_size - 1));
963
964 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965 (page_to_phys(page) & (1 << 17)) != 0;
966
967 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968 user_data, page_do_bit17_swizzling,
969 partial_cacheline_write,
970 needs_clflush_after);
971 if (ret == 0)
972 goto next_page;
973
974 hit_slowpath = 1;
975 mutex_unlock(&dev->struct_mutex);
976 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 partial_cacheline_write,
979 needs_clflush_after);
980
981 mutex_lock(&dev->struct_mutex);
982
983 if (ret)
984 goto out;
985
986 next_page:
987 remain -= page_length;
988 user_data += page_length;
989 offset += page_length;
990 }
991
992 out:
993 i915_gem_object_unpin_pages(obj);
994
995 if (hit_slowpath) {
996 /*
997 * Fixup: Flush cpu caches in case we didn't flush the dirty
998 * cachelines in-line while writing and the object moved
999 * out of the cpu write domain while we've dropped the lock.
1000 */
1001 if (!needs_clflush_after &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003 if (i915_gem_clflush_object(obj, obj->pin_display))
1004 needs_clflush_after = true;
1005 }
1006 }
1007
1008 if (needs_clflush_after)
1009 i915_gem_chipset_flush(dev);
1010 else
1011 obj->cache_dirty = true;
1012
1013 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014 return ret;
1015 }
1016
1017 /**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022 int
1023 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024 struct drm_file *file)
1025 {
1026 struct drm_i915_private *dev_priv = dev->dev_private;
1027 struct drm_i915_gem_pwrite *args = data;
1028 struct drm_i915_gem_object *obj;
1029 int ret;
1030
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_READ,
1035 u64_to_user_ptr(args->data_ptr),
1036 args->size))
1037 return -EFAULT;
1038
1039 if (likely(!i915.prefault_disable)) {
1040 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1041 args->size);
1042 if (ret)
1043 return -EFAULT;
1044 }
1045
1046 intel_runtime_pm_get(dev_priv);
1047
1048 ret = i915_mutex_lock_interruptible(dev);
1049 if (ret)
1050 goto put_rpm;
1051
1052 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1053 if (&obj->base == NULL) {
1054 ret = -ENOENT;
1055 goto unlock;
1056 }
1057
1058 /* Bounds check destination. */
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
1061 ret = -EINVAL;
1062 goto out;
1063 }
1064
1065 /* prime objects have no backing filp to GEM pread/pwrite
1066 * pages from.
1067 */
1068 if (!obj->base.filp) {
1069 ret = -EINVAL;
1070 goto out;
1071 }
1072
1073 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
1075 ret = -EFAULT;
1076 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077 * it would end up going through the fenced access, and we'll get
1078 * different detiling behavior between reading and writing.
1079 * pread/pwrite currently are reading and writing from the CPU
1080 * perspective, requiring manual detiling by the client.
1081 */
1082 if (obj->tiling_mode == I915_TILING_NONE &&
1083 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084 cpu_write_needs_clflush(obj)) {
1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1086 /* Note that the gtt paths might fail with non-page-backed user
1087 * pointers (e.g. gtt mappings when moving data between
1088 * textures). Fallback to the shmem path in that case. */
1089 }
1090
1091 if (ret == -EFAULT || ret == -ENOSPC) {
1092 if (obj->phys_handle)
1093 ret = i915_gem_phys_pwrite(obj, args, file);
1094 else
1095 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096 }
1097
1098 out:
1099 drm_gem_object_unreference(&obj->base);
1100 unlock:
1101 mutex_unlock(&dev->struct_mutex);
1102 put_rpm:
1103 intel_runtime_pm_put(dev_priv);
1104
1105 return ret;
1106 }
1107
1108 static int
1109 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110 {
1111 if (__i915_terminally_wedged(reset_counter))
1112 return -EIO;
1113
1114 if (__i915_reset_in_progress(reset_counter)) {
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
1120 return -EAGAIN;
1121 }
1122
1123 return 0;
1124 }
1125
1126 static void fake_irq(unsigned long data)
1127 {
1128 wake_up_process((struct task_struct *)data);
1129 }
1130
1131 static bool missed_irq(struct drm_i915_private *dev_priv,
1132 struct intel_engine_cs *engine)
1133 {
1134 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 }
1136
1137 static unsigned long local_clock_us(unsigned *cpu)
1138 {
1139 unsigned long t;
1140
1141 /* Cheaply and approximately convert from nanoseconds to microseconds.
1142 * The result and subsequent calculations are also defined in the same
1143 * approximate microseconds units. The principal source of timing
1144 * error here is from the simple truncation.
1145 *
1146 * Note that local_clock() is only defined wrt to the current CPU;
1147 * the comparisons are no longer valid if we switch CPUs. Instead of
1148 * blocking preemption for the entire busywait, we can detect the CPU
1149 * switch and use that as indicator of system load and a reason to
1150 * stop busywaiting, see busywait_stop().
1151 */
1152 *cpu = get_cpu();
1153 t = local_clock() >> 10;
1154 put_cpu();
1155
1156 return t;
1157 }
1158
1159 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160 {
1161 unsigned this_cpu;
1162
1163 if (time_after(local_clock_us(&this_cpu), timeout))
1164 return true;
1165
1166 return this_cpu != cpu;
1167 }
1168
1169 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170 {
1171 unsigned long timeout;
1172 unsigned cpu;
1173
1174 /* When waiting for high frequency requests, e.g. during synchronous
1175 * rendering split between the CPU and GPU, the finite amount of time
1176 * required to set up the irq and wait upon it limits the response
1177 * rate. By busywaiting on the request completion for a short while we
1178 * can service the high frequency waits as quick as possible. However,
1179 * if it is a slow request, we want to sleep as quickly as possible.
1180 * The tradeoff between waiting and sleeping is roughly the time it
1181 * takes to sleep on a request, on the order of a microsecond.
1182 */
1183
1184 if (req->engine->irq_refcount)
1185 return -EBUSY;
1186
1187 /* Only spin if we know the GPU is processing this request */
1188 if (!i915_gem_request_started(req, true))
1189 return -EAGAIN;
1190
1191 timeout = local_clock_us(&cpu) + 5;
1192 while (!need_resched()) {
1193 if (i915_gem_request_completed(req, true))
1194 return 0;
1195
1196 if (signal_pending_state(state, current))
1197 break;
1198
1199 if (busywait_stop(timeout, cpu))
1200 break;
1201
1202 cpu_relax_lowlatency();
1203 }
1204
1205 if (i915_gem_request_completed(req, false))
1206 return 0;
1207
1208 return -EAGAIN;
1209 }
1210
1211 /**
1212 * __i915_wait_request - wait until execution of request has finished
1213 * @req: duh!
1214 * @interruptible: do an interruptible wait (normally yes)
1215 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216 *
1217 * Note: It is of utmost importance that the passed in seqno and reset_counter
1218 * values have been read by the caller in an smp safe manner. Where read-side
1219 * locks are involved, it is sufficient to read the reset_counter before
1220 * unlocking the lock that protects the seqno. For lockless tricks, the
1221 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222 * inserted.
1223 *
1224 * Returns 0 if the request was found within the alloted time. Else returns the
1225 * errno with remaining time filled in timeout argument.
1226 */
1227 int __i915_wait_request(struct drm_i915_gem_request *req,
1228 bool interruptible,
1229 s64 *timeout,
1230 struct intel_rps_client *rps)
1231 {
1232 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233 struct drm_device *dev = engine->dev;
1234 struct drm_i915_private *dev_priv = dev->dev_private;
1235 const bool irq_test_in_progress =
1236 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1237 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1238 DEFINE_WAIT(wait);
1239 unsigned long timeout_expire;
1240 s64 before = 0; /* Only to silence a compiler warning. */
1241 int ret;
1242
1243 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1244
1245 if (list_empty(&req->list))
1246 return 0;
1247
1248 if (i915_gem_request_completed(req, true))
1249 return 0;
1250
1251 timeout_expire = 0;
1252 if (timeout) {
1253 if (WARN_ON(*timeout < 0))
1254 return -EINVAL;
1255
1256 if (*timeout == 0)
1257 return -ETIME;
1258
1259 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1260
1261 /*
1262 * Record current time in case interrupted by signal, or wedged.
1263 */
1264 before = ktime_get_raw_ns();
1265 }
1266
1267 if (INTEL_INFO(dev_priv)->gen >= 6)
1268 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1269
1270 trace_i915_gem_request_wait_begin(req);
1271
1272 /* Optimistic spin for the next jiffie before touching IRQs */
1273 ret = __i915_spin_request(req, state);
1274 if (ret == 0)
1275 goto out;
1276
1277 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1278 ret = -ENODEV;
1279 goto out;
1280 }
1281
1282 for (;;) {
1283 struct timer_list timer;
1284
1285 prepare_to_wait(&engine->irq_queue, &wait, state);
1286
1287 /* We need to check whether any gpu reset happened in between
1288 * the request being submitted and now. If a reset has occurred,
1289 * the request is effectively complete (we either are in the
1290 * process of or have discarded the rendering and completely
1291 * reset the GPU. The results of the request are lost and we
1292 * are free to continue on with the original operation.
1293 */
1294 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1295 ret = 0;
1296 break;
1297 }
1298
1299 if (i915_gem_request_completed(req, false)) {
1300 ret = 0;
1301 break;
1302 }
1303
1304 if (signal_pending_state(state, current)) {
1305 ret = -ERESTARTSYS;
1306 break;
1307 }
1308
1309 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1310 ret = -ETIME;
1311 break;
1312 }
1313
1314 timer.function = NULL;
1315 if (timeout || missed_irq(dev_priv, engine)) {
1316 unsigned long expire;
1317
1318 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1319 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1320 mod_timer(&timer, expire);
1321 }
1322
1323 io_schedule();
1324
1325 if (timer.function) {
1326 del_singleshot_timer_sync(&timer);
1327 destroy_timer_on_stack(&timer);
1328 }
1329 }
1330 if (!irq_test_in_progress)
1331 engine->irq_put(engine);
1332
1333 finish_wait(&engine->irq_queue, &wait);
1334
1335 out:
1336 trace_i915_gem_request_wait_end(req);
1337
1338 if (timeout) {
1339 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1340
1341 *timeout = tres < 0 ? 0 : tres;
1342
1343 /*
1344 * Apparently ktime isn't accurate enough and occasionally has a
1345 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1346 * things up to make the test happy. We allow up to 1 jiffy.
1347 *
1348 * This is a regrssion from the timespec->ktime conversion.
1349 */
1350 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1351 *timeout = 0;
1352 }
1353
1354 return ret;
1355 }
1356
1357 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1358 struct drm_file *file)
1359 {
1360 struct drm_i915_file_private *file_priv;
1361
1362 WARN_ON(!req || !file || req->file_priv);
1363
1364 if (!req || !file)
1365 return -EINVAL;
1366
1367 if (req->file_priv)
1368 return -EINVAL;
1369
1370 file_priv = file->driver_priv;
1371
1372 spin_lock(&file_priv->mm.lock);
1373 req->file_priv = file_priv;
1374 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1375 spin_unlock(&file_priv->mm.lock);
1376
1377 req->pid = get_pid(task_pid(current));
1378
1379 return 0;
1380 }
1381
1382 static inline void
1383 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1384 {
1385 struct drm_i915_file_private *file_priv = request->file_priv;
1386
1387 if (!file_priv)
1388 return;
1389
1390 spin_lock(&file_priv->mm.lock);
1391 list_del(&request->client_list);
1392 request->file_priv = NULL;
1393 spin_unlock(&file_priv->mm.lock);
1394
1395 put_pid(request->pid);
1396 request->pid = NULL;
1397 }
1398
1399 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1400 {
1401 trace_i915_gem_request_retire(request);
1402
1403 /* We know the GPU must have read the request to have
1404 * sent us the seqno + interrupt, so use the position
1405 * of tail of the request to update the last known position
1406 * of the GPU head.
1407 *
1408 * Note this requires that we are always called in request
1409 * completion order.
1410 */
1411 request->ringbuf->last_retired_head = request->postfix;
1412
1413 list_del_init(&request->list);
1414 i915_gem_request_remove_from_client(request);
1415
1416 i915_gem_request_unreference(request);
1417 }
1418
1419 static void
1420 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1421 {
1422 struct intel_engine_cs *engine = req->engine;
1423 struct drm_i915_gem_request *tmp;
1424
1425 lockdep_assert_held(&engine->dev->struct_mutex);
1426
1427 if (list_empty(&req->list))
1428 return;
1429
1430 do {
1431 tmp = list_first_entry(&engine->request_list,
1432 typeof(*tmp), list);
1433
1434 i915_gem_request_retire(tmp);
1435 } while (tmp != req);
1436
1437 WARN_ON(i915_verify_lists(engine->dev));
1438 }
1439
1440 /**
1441 * Waits for a request to be signaled, and cleans up the
1442 * request and object lists appropriately for that event.
1443 */
1444 int
1445 i915_wait_request(struct drm_i915_gem_request *req)
1446 {
1447 struct drm_i915_private *dev_priv = req->i915;
1448 bool interruptible;
1449 int ret;
1450
1451 interruptible = dev_priv->mm.interruptible;
1452
1453 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1454
1455 ret = __i915_wait_request(req, interruptible, NULL, NULL);
1456 if (ret)
1457 return ret;
1458
1459 /* If the GPU hung, we want to keep the requests to find the guilty. */
1460 if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1461 __i915_gem_request_retire__upto(req);
1462
1463 return 0;
1464 }
1465
1466 /**
1467 * Ensures that all rendering to the object has completed and the object is
1468 * safe to unbind from the GTT or access from the CPU.
1469 */
1470 int
1471 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1472 bool readonly)
1473 {
1474 int ret, i;
1475
1476 if (!obj->active)
1477 return 0;
1478
1479 if (readonly) {
1480 if (obj->last_write_req != NULL) {
1481 ret = i915_wait_request(obj->last_write_req);
1482 if (ret)
1483 return ret;
1484
1485 i = obj->last_write_req->engine->id;
1486 if (obj->last_read_req[i] == obj->last_write_req)
1487 i915_gem_object_retire__read(obj, i);
1488 else
1489 i915_gem_object_retire__write(obj);
1490 }
1491 } else {
1492 for (i = 0; i < I915_NUM_ENGINES; i++) {
1493 if (obj->last_read_req[i] == NULL)
1494 continue;
1495
1496 ret = i915_wait_request(obj->last_read_req[i]);
1497 if (ret)
1498 return ret;
1499
1500 i915_gem_object_retire__read(obj, i);
1501 }
1502 GEM_BUG_ON(obj->active);
1503 }
1504
1505 return 0;
1506 }
1507
1508 static void
1509 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1510 struct drm_i915_gem_request *req)
1511 {
1512 int ring = req->engine->id;
1513
1514 if (obj->last_read_req[ring] == req)
1515 i915_gem_object_retire__read(obj, ring);
1516 else if (obj->last_write_req == req)
1517 i915_gem_object_retire__write(obj);
1518
1519 if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1520 __i915_gem_request_retire__upto(req);
1521 }
1522
1523 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1524 * as the object state may change during this call.
1525 */
1526 static __must_check int
1527 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1528 struct intel_rps_client *rps,
1529 bool readonly)
1530 {
1531 struct drm_device *dev = obj->base.dev;
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1534 int ret, i, n = 0;
1535
1536 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1537 BUG_ON(!dev_priv->mm.interruptible);
1538
1539 if (!obj->active)
1540 return 0;
1541
1542 if (readonly) {
1543 struct drm_i915_gem_request *req;
1544
1545 req = obj->last_write_req;
1546 if (req == NULL)
1547 return 0;
1548
1549 requests[n++] = i915_gem_request_reference(req);
1550 } else {
1551 for (i = 0; i < I915_NUM_ENGINES; i++) {
1552 struct drm_i915_gem_request *req;
1553
1554 req = obj->last_read_req[i];
1555 if (req == NULL)
1556 continue;
1557
1558 requests[n++] = i915_gem_request_reference(req);
1559 }
1560 }
1561
1562 mutex_unlock(&dev->struct_mutex);
1563 ret = 0;
1564 for (i = 0; ret == 0 && i < n; i++)
1565 ret = __i915_wait_request(requests[i], true, NULL, rps);
1566 mutex_lock(&dev->struct_mutex);
1567
1568 for (i = 0; i < n; i++) {
1569 if (ret == 0)
1570 i915_gem_object_retire_request(obj, requests[i]);
1571 i915_gem_request_unreference(requests[i]);
1572 }
1573
1574 return ret;
1575 }
1576
1577 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1578 {
1579 struct drm_i915_file_private *fpriv = file->driver_priv;
1580 return &fpriv->rps;
1581 }
1582
1583 /**
1584 * Called when user space prepares to use an object with the CPU, either
1585 * through the mmap ioctl's mapping or a GTT mapping.
1586 */
1587 int
1588 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1589 struct drm_file *file)
1590 {
1591 struct drm_i915_gem_set_domain *args = data;
1592 struct drm_i915_gem_object *obj;
1593 uint32_t read_domains = args->read_domains;
1594 uint32_t write_domain = args->write_domain;
1595 int ret;
1596
1597 /* Only handle setting domains to types used by the CPU. */
1598 if (write_domain & I915_GEM_GPU_DOMAINS)
1599 return -EINVAL;
1600
1601 if (read_domains & I915_GEM_GPU_DOMAINS)
1602 return -EINVAL;
1603
1604 /* Having something in the write domain implies it's in the read
1605 * domain, and only that read domain. Enforce that in the request.
1606 */
1607 if (write_domain != 0 && read_domains != write_domain)
1608 return -EINVAL;
1609
1610 ret = i915_mutex_lock_interruptible(dev);
1611 if (ret)
1612 return ret;
1613
1614 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1615 if (&obj->base == NULL) {
1616 ret = -ENOENT;
1617 goto unlock;
1618 }
1619
1620 /* Try to flush the object off the GPU without holding the lock.
1621 * We will repeat the flush holding the lock in the normal manner
1622 * to catch cases where we are gazumped.
1623 */
1624 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1625 to_rps_client(file),
1626 !write_domain);
1627 if (ret)
1628 goto unref;
1629
1630 if (read_domains & I915_GEM_DOMAIN_GTT)
1631 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1632 else
1633 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1634
1635 if (write_domain != 0)
1636 intel_fb_obj_invalidate(obj,
1637 write_domain == I915_GEM_DOMAIN_GTT ?
1638 ORIGIN_GTT : ORIGIN_CPU);
1639
1640 unref:
1641 drm_gem_object_unreference(&obj->base);
1642 unlock:
1643 mutex_unlock(&dev->struct_mutex);
1644 return ret;
1645 }
1646
1647 /**
1648 * Called when user space has done writes to this buffer
1649 */
1650 int
1651 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1652 struct drm_file *file)
1653 {
1654 struct drm_i915_gem_sw_finish *args = data;
1655 struct drm_i915_gem_object *obj;
1656 int ret = 0;
1657
1658 ret = i915_mutex_lock_interruptible(dev);
1659 if (ret)
1660 return ret;
1661
1662 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1663 if (&obj->base == NULL) {
1664 ret = -ENOENT;
1665 goto unlock;
1666 }
1667
1668 /* Pinned buffers may be scanout, so flush the cache */
1669 if (obj->pin_display)
1670 i915_gem_object_flush_cpu_write_domain(obj);
1671
1672 drm_gem_object_unreference(&obj->base);
1673 unlock:
1674 mutex_unlock(&dev->struct_mutex);
1675 return ret;
1676 }
1677
1678 /**
1679 * Maps the contents of an object, returning the address it is mapped
1680 * into.
1681 *
1682 * While the mapping holds a reference on the contents of the object, it doesn't
1683 * imply a ref on the object itself.
1684 *
1685 * IMPORTANT:
1686 *
1687 * DRM driver writers who look a this function as an example for how to do GEM
1688 * mmap support, please don't implement mmap support like here. The modern way
1689 * to implement DRM mmap support is with an mmap offset ioctl (like
1690 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1691 * That way debug tooling like valgrind will understand what's going on, hiding
1692 * the mmap call in a driver private ioctl will break that. The i915 driver only
1693 * does cpu mmaps this way because we didn't know better.
1694 */
1695 int
1696 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1697 struct drm_file *file)
1698 {
1699 struct drm_i915_gem_mmap *args = data;
1700 struct drm_gem_object *obj;
1701 unsigned long addr;
1702
1703 if (args->flags & ~(I915_MMAP_WC))
1704 return -EINVAL;
1705
1706 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1707 return -ENODEV;
1708
1709 obj = drm_gem_object_lookup(file, args->handle);
1710 if (obj == NULL)
1711 return -ENOENT;
1712
1713 /* prime objects have no backing filp to GEM mmap
1714 * pages from.
1715 */
1716 if (!obj->filp) {
1717 drm_gem_object_unreference_unlocked(obj);
1718 return -EINVAL;
1719 }
1720
1721 addr = vm_mmap(obj->filp, 0, args->size,
1722 PROT_READ | PROT_WRITE, MAP_SHARED,
1723 args->offset);
1724 if (args->flags & I915_MMAP_WC) {
1725 struct mm_struct *mm = current->mm;
1726 struct vm_area_struct *vma;
1727
1728 if (down_write_killable(&mm->mmap_sem)) {
1729 drm_gem_object_unreference_unlocked(obj);
1730 return -EINTR;
1731 }
1732 vma = find_vma(mm, addr);
1733 if (vma)
1734 vma->vm_page_prot =
1735 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1736 else
1737 addr = -ENOMEM;
1738 up_write(&mm->mmap_sem);
1739 }
1740 drm_gem_object_unreference_unlocked(obj);
1741 if (IS_ERR((void *)addr))
1742 return addr;
1743
1744 args->addr_ptr = (uint64_t) addr;
1745
1746 return 0;
1747 }
1748
1749 /**
1750 * i915_gem_fault - fault a page into the GTT
1751 * @vma: VMA in question
1752 * @vmf: fault info
1753 *
1754 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1755 * from userspace. The fault handler takes care of binding the object to
1756 * the GTT (if needed), allocating and programming a fence register (again,
1757 * only if needed based on whether the old reg is still valid or the object
1758 * is tiled) and inserting a new PTE into the faulting process.
1759 *
1760 * Note that the faulting process may involve evicting existing objects
1761 * from the GTT and/or fence registers to make room. So performance may
1762 * suffer if the GTT working set is large or there are few fence registers
1763 * left.
1764 */
1765 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1766 {
1767 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1768 struct drm_device *dev = obj->base.dev;
1769 struct drm_i915_private *dev_priv = to_i915(dev);
1770 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1771 struct i915_ggtt_view view = i915_ggtt_view_normal;
1772 pgoff_t page_offset;
1773 unsigned long pfn;
1774 int ret = 0;
1775 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1776
1777 intel_runtime_pm_get(dev_priv);
1778
1779 /* We don't use vmf->pgoff since that has the fake offset */
1780 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1781 PAGE_SHIFT;
1782
1783 ret = i915_mutex_lock_interruptible(dev);
1784 if (ret)
1785 goto out;
1786
1787 trace_i915_gem_object_fault(obj, page_offset, true, write);
1788
1789 /* Try to flush the object off the GPU first without holding the lock.
1790 * Upon reacquiring the lock, we will perform our sanity checks and then
1791 * repeat the flush holding the lock in the normal manner to catch cases
1792 * where we are gazumped.
1793 */
1794 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1795 if (ret)
1796 goto unlock;
1797
1798 /* Access to snoopable pages through the GTT is incoherent. */
1799 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1800 ret = -EFAULT;
1801 goto unlock;
1802 }
1803
1804 /* Use a partial view if the object is bigger than the aperture. */
1805 if (obj->base.size >= ggtt->mappable_end &&
1806 obj->tiling_mode == I915_TILING_NONE) {
1807 static const unsigned int chunk_size = 256; // 1 MiB
1808
1809 memset(&view, 0, sizeof(view));
1810 view.type = I915_GGTT_VIEW_PARTIAL;
1811 view.params.partial.offset = rounddown(page_offset, chunk_size);
1812 view.params.partial.size =
1813 min_t(unsigned int,
1814 chunk_size,
1815 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1816 view.params.partial.offset);
1817 }
1818
1819 /* Now pin it into the GTT if needed */
1820 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1821 if (ret)
1822 goto unlock;
1823
1824 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1825 if (ret)
1826 goto unpin;
1827
1828 ret = i915_gem_object_get_fence(obj);
1829 if (ret)
1830 goto unpin;
1831
1832 /* Finally, remap it using the new GTT offset */
1833 pfn = ggtt->mappable_base +
1834 i915_gem_obj_ggtt_offset_view(obj, &view);
1835 pfn >>= PAGE_SHIFT;
1836
1837 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1838 /* Overriding existing pages in partial view does not cause
1839 * us any trouble as TLBs are still valid because the fault
1840 * is due to userspace losing part of the mapping or never
1841 * having accessed it before (at this partials' range).
1842 */
1843 unsigned long base = vma->vm_start +
1844 (view.params.partial.offset << PAGE_SHIFT);
1845 unsigned int i;
1846
1847 for (i = 0; i < view.params.partial.size; i++) {
1848 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1849 if (ret)
1850 break;
1851 }
1852
1853 obj->fault_mappable = true;
1854 } else {
1855 if (!obj->fault_mappable) {
1856 unsigned long size = min_t(unsigned long,
1857 vma->vm_end - vma->vm_start,
1858 obj->base.size);
1859 int i;
1860
1861 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1862 ret = vm_insert_pfn(vma,
1863 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1864 pfn + i);
1865 if (ret)
1866 break;
1867 }
1868
1869 obj->fault_mappable = true;
1870 } else
1871 ret = vm_insert_pfn(vma,
1872 (unsigned long)vmf->virtual_address,
1873 pfn + page_offset);
1874 }
1875 unpin:
1876 i915_gem_object_ggtt_unpin_view(obj, &view);
1877 unlock:
1878 mutex_unlock(&dev->struct_mutex);
1879 out:
1880 switch (ret) {
1881 case -EIO:
1882 /*
1883 * We eat errors when the gpu is terminally wedged to avoid
1884 * userspace unduly crashing (gl has no provisions for mmaps to
1885 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1886 * and so needs to be reported.
1887 */
1888 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1889 ret = VM_FAULT_SIGBUS;
1890 break;
1891 }
1892 case -EAGAIN:
1893 /*
1894 * EAGAIN means the gpu is hung and we'll wait for the error
1895 * handler to reset everything when re-faulting in
1896 * i915_mutex_lock_interruptible.
1897 */
1898 case 0:
1899 case -ERESTARTSYS:
1900 case -EINTR:
1901 case -EBUSY:
1902 /*
1903 * EBUSY is ok: this just means that another thread
1904 * already did the job.
1905 */
1906 ret = VM_FAULT_NOPAGE;
1907 break;
1908 case -ENOMEM:
1909 ret = VM_FAULT_OOM;
1910 break;
1911 case -ENOSPC:
1912 case -EFAULT:
1913 ret = VM_FAULT_SIGBUS;
1914 break;
1915 default:
1916 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1917 ret = VM_FAULT_SIGBUS;
1918 break;
1919 }
1920
1921 intel_runtime_pm_put(dev_priv);
1922 return ret;
1923 }
1924
1925 /**
1926 * i915_gem_release_mmap - remove physical page mappings
1927 * @obj: obj in question
1928 *
1929 * Preserve the reservation of the mmapping with the DRM core code, but
1930 * relinquish ownership of the pages back to the system.
1931 *
1932 * It is vital that we remove the page mapping if we have mapped a tiled
1933 * object through the GTT and then lose the fence register due to
1934 * resource pressure. Similarly if the object has been moved out of the
1935 * aperture, than pages mapped into userspace must be revoked. Removing the
1936 * mapping will then trigger a page fault on the next user access, allowing
1937 * fixup by i915_gem_fault().
1938 */
1939 void
1940 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1941 {
1942 /* Serialisation between user GTT access and our code depends upon
1943 * revoking the CPU's PTE whilst the mutex is held. The next user
1944 * pagefault then has to wait until we release the mutex.
1945 */
1946 lockdep_assert_held(&obj->base.dev->struct_mutex);
1947
1948 if (!obj->fault_mappable)
1949 return;
1950
1951 drm_vma_node_unmap(&obj->base.vma_node,
1952 obj->base.dev->anon_inode->i_mapping);
1953
1954 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1955 * memory transactions from userspace before we return. The TLB
1956 * flushing implied above by changing the PTE above *should* be
1957 * sufficient, an extra barrier here just provides us with a bit
1958 * of paranoid documentation about our requirement to serialise
1959 * memory writes before touching registers / GSM.
1960 */
1961 wmb();
1962
1963 obj->fault_mappable = false;
1964 }
1965
1966 void
1967 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1968 {
1969 struct drm_i915_gem_object *obj;
1970
1971 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1972 i915_gem_release_mmap(obj);
1973 }
1974
1975 uint32_t
1976 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1977 {
1978 uint32_t gtt_size;
1979
1980 if (INTEL_INFO(dev)->gen >= 4 ||
1981 tiling_mode == I915_TILING_NONE)
1982 return size;
1983
1984 /* Previous chips need a power-of-two fence region when tiling */
1985 if (INTEL_INFO(dev)->gen == 3)
1986 gtt_size = 1024*1024;
1987 else
1988 gtt_size = 512*1024;
1989
1990 while (gtt_size < size)
1991 gtt_size <<= 1;
1992
1993 return gtt_size;
1994 }
1995
1996 /**
1997 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1998 * @obj: object to check
1999 *
2000 * Return the required GTT alignment for an object, taking into account
2001 * potential fence register mapping.
2002 */
2003 uint32_t
2004 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2005 int tiling_mode, bool fenced)
2006 {
2007 /*
2008 * Minimum alignment is 4k (GTT page size), but might be greater
2009 * if a fence register is needed for the object.
2010 */
2011 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2012 tiling_mode == I915_TILING_NONE)
2013 return 4096;
2014
2015 /*
2016 * Previous chips need to be aligned to the size of the smallest
2017 * fence register that can contain the object.
2018 */
2019 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2020 }
2021
2022 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2023 {
2024 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2025 int ret;
2026
2027 dev_priv->mm.shrinker_no_lock_stealing = true;
2028
2029 ret = drm_gem_create_mmap_offset(&obj->base);
2030 if (ret != -ENOSPC)
2031 goto out;
2032
2033 /* Badly fragmented mmap space? The only way we can recover
2034 * space is by destroying unwanted objects. We can't randomly release
2035 * mmap_offsets as userspace expects them to be persistent for the
2036 * lifetime of the objects. The closest we can is to release the
2037 * offsets on purgeable objects by truncating it and marking it purged,
2038 * which prevents userspace from ever using that object again.
2039 */
2040 i915_gem_shrink(dev_priv,
2041 obj->base.size >> PAGE_SHIFT,
2042 I915_SHRINK_BOUND |
2043 I915_SHRINK_UNBOUND |
2044 I915_SHRINK_PURGEABLE);
2045 ret = drm_gem_create_mmap_offset(&obj->base);
2046 if (ret != -ENOSPC)
2047 goto out;
2048
2049 i915_gem_shrink_all(dev_priv);
2050 ret = drm_gem_create_mmap_offset(&obj->base);
2051 out:
2052 dev_priv->mm.shrinker_no_lock_stealing = false;
2053
2054 return ret;
2055 }
2056
2057 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2058 {
2059 drm_gem_free_mmap_offset(&obj->base);
2060 }
2061
2062 int
2063 i915_gem_mmap_gtt(struct drm_file *file,
2064 struct drm_device *dev,
2065 uint32_t handle,
2066 uint64_t *offset)
2067 {
2068 struct drm_i915_gem_object *obj;
2069 int ret;
2070
2071 ret = i915_mutex_lock_interruptible(dev);
2072 if (ret)
2073 return ret;
2074
2075 obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2076 if (&obj->base == NULL) {
2077 ret = -ENOENT;
2078 goto unlock;
2079 }
2080
2081 if (obj->madv != I915_MADV_WILLNEED) {
2082 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2083 ret = -EFAULT;
2084 goto out;
2085 }
2086
2087 ret = i915_gem_object_create_mmap_offset(obj);
2088 if (ret)
2089 goto out;
2090
2091 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2092
2093 out:
2094 drm_gem_object_unreference(&obj->base);
2095 unlock:
2096 mutex_unlock(&dev->struct_mutex);
2097 return ret;
2098 }
2099
2100 /**
2101 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2102 * @dev: DRM device
2103 * @data: GTT mapping ioctl data
2104 * @file: GEM object info
2105 *
2106 * Simply returns the fake offset to userspace so it can mmap it.
2107 * The mmap call will end up in drm_gem_mmap(), which will set things
2108 * up so we can get faults in the handler above.
2109 *
2110 * The fault handler will take care of binding the object into the GTT
2111 * (since it may have been evicted to make room for something), allocating
2112 * a fence register, and mapping the appropriate aperture address into
2113 * userspace.
2114 */
2115 int
2116 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2117 struct drm_file *file)
2118 {
2119 struct drm_i915_gem_mmap_gtt *args = data;
2120
2121 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2122 }
2123
2124 /* Immediately discard the backing storage */
2125 static void
2126 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2127 {
2128 i915_gem_object_free_mmap_offset(obj);
2129
2130 if (obj->base.filp == NULL)
2131 return;
2132
2133 /* Our goal here is to return as much of the memory as
2134 * is possible back to the system as we are called from OOM.
2135 * To do this we must instruct the shmfs to drop all of its
2136 * backing pages, *now*.
2137 */
2138 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2139 obj->madv = __I915_MADV_PURGED;
2140 }
2141
2142 /* Try to discard unwanted pages */
2143 static void
2144 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2145 {
2146 struct address_space *mapping;
2147
2148 switch (obj->madv) {
2149 case I915_MADV_DONTNEED:
2150 i915_gem_object_truncate(obj);
2151 case __I915_MADV_PURGED:
2152 return;
2153 }
2154
2155 if (obj->base.filp == NULL)
2156 return;
2157
2158 mapping = file_inode(obj->base.filp)->i_mapping,
2159 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2160 }
2161
2162 static void
2163 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2164 {
2165 struct sg_page_iter sg_iter;
2166 int ret;
2167
2168 BUG_ON(obj->madv == __I915_MADV_PURGED);
2169
2170 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2171 if (WARN_ON(ret)) {
2172 /* In the event of a disaster, abandon all caches and
2173 * hope for the best.
2174 */
2175 i915_gem_clflush_object(obj, true);
2176 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2177 }
2178
2179 i915_gem_gtt_finish_object(obj);
2180
2181 if (i915_gem_object_needs_bit17_swizzle(obj))
2182 i915_gem_object_save_bit_17_swizzle(obj);
2183
2184 if (obj->madv == I915_MADV_DONTNEED)
2185 obj->dirty = 0;
2186
2187 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2188 struct page *page = sg_page_iter_page(&sg_iter);
2189
2190 if (obj->dirty)
2191 set_page_dirty(page);
2192
2193 if (obj->madv == I915_MADV_WILLNEED)
2194 mark_page_accessed(page);
2195
2196 put_page(page);
2197 }
2198 obj->dirty = 0;
2199
2200 sg_free_table(obj->pages);
2201 kfree(obj->pages);
2202 }
2203
2204 int
2205 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2206 {
2207 const struct drm_i915_gem_object_ops *ops = obj->ops;
2208
2209 if (obj->pages == NULL)
2210 return 0;
2211
2212 if (obj->pages_pin_count)
2213 return -EBUSY;
2214
2215 BUG_ON(i915_gem_obj_bound_any(obj));
2216
2217 /* ->put_pages might need to allocate memory for the bit17 swizzle
2218 * array, hence protect them from being reaped by removing them from gtt
2219 * lists early. */
2220 list_del(&obj->global_list);
2221
2222 if (obj->mapping) {
2223 if (is_vmalloc_addr(obj->mapping))
2224 vunmap(obj->mapping);
2225 else
2226 kunmap(kmap_to_page(obj->mapping));
2227 obj->mapping = NULL;
2228 }
2229
2230 ops->put_pages(obj);
2231 obj->pages = NULL;
2232
2233 i915_gem_object_invalidate(obj);
2234
2235 return 0;
2236 }
2237
2238 static int
2239 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2240 {
2241 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2242 int page_count, i;
2243 struct address_space *mapping;
2244 struct sg_table *st;
2245 struct scatterlist *sg;
2246 struct sg_page_iter sg_iter;
2247 struct page *page;
2248 unsigned long last_pfn = 0; /* suppress gcc warning */
2249 int ret;
2250 gfp_t gfp;
2251
2252 /* Assert that the object is not currently in any GPU domain. As it
2253 * wasn't in the GTT, there shouldn't be any way it could have been in
2254 * a GPU cache
2255 */
2256 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2257 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2258
2259 st = kmalloc(sizeof(*st), GFP_KERNEL);
2260 if (st == NULL)
2261 return -ENOMEM;
2262
2263 page_count = obj->base.size / PAGE_SIZE;
2264 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2265 kfree(st);
2266 return -ENOMEM;
2267 }
2268
2269 /* Get the list of pages out of our struct file. They'll be pinned
2270 * at this point until we release them.
2271 *
2272 * Fail silently without starting the shrinker
2273 */
2274 mapping = file_inode(obj->base.filp)->i_mapping;
2275 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2276 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2277 sg = st->sgl;
2278 st->nents = 0;
2279 for (i = 0; i < page_count; i++) {
2280 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2281 if (IS_ERR(page)) {
2282 i915_gem_shrink(dev_priv,
2283 page_count,
2284 I915_SHRINK_BOUND |
2285 I915_SHRINK_UNBOUND |
2286 I915_SHRINK_PURGEABLE);
2287 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2288 }
2289 if (IS_ERR(page)) {
2290 /* We've tried hard to allocate the memory by reaping
2291 * our own buffer, now let the real VM do its job and
2292 * go down in flames if truly OOM.
2293 */
2294 i915_gem_shrink_all(dev_priv);
2295 page = shmem_read_mapping_page(mapping, i);
2296 if (IS_ERR(page)) {
2297 ret = PTR_ERR(page);
2298 goto err_pages;
2299 }
2300 }
2301 #ifdef CONFIG_SWIOTLB
2302 if (swiotlb_nr_tbl()) {
2303 st->nents++;
2304 sg_set_page(sg, page, PAGE_SIZE, 0);
2305 sg = sg_next(sg);
2306 continue;
2307 }
2308 #endif
2309 if (!i || page_to_pfn(page) != last_pfn + 1) {
2310 if (i)
2311 sg = sg_next(sg);
2312 st->nents++;
2313 sg_set_page(sg, page, PAGE_SIZE, 0);
2314 } else {
2315 sg->length += PAGE_SIZE;
2316 }
2317 last_pfn = page_to_pfn(page);
2318
2319 /* Check that the i965g/gm workaround works. */
2320 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2321 }
2322 #ifdef CONFIG_SWIOTLB
2323 if (!swiotlb_nr_tbl())
2324 #endif
2325 sg_mark_end(sg);
2326 obj->pages = st;
2327
2328 ret = i915_gem_gtt_prepare_object(obj);
2329 if (ret)
2330 goto err_pages;
2331
2332 if (i915_gem_object_needs_bit17_swizzle(obj))
2333 i915_gem_object_do_bit_17_swizzle(obj);
2334
2335 if (obj->tiling_mode != I915_TILING_NONE &&
2336 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2337 i915_gem_object_pin_pages(obj);
2338
2339 return 0;
2340
2341 err_pages:
2342 sg_mark_end(sg);
2343 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2344 put_page(sg_page_iter_page(&sg_iter));
2345 sg_free_table(st);
2346 kfree(st);
2347
2348 /* shmemfs first checks if there is enough memory to allocate the page
2349 * and reports ENOSPC should there be insufficient, along with the usual
2350 * ENOMEM for a genuine allocation failure.
2351 *
2352 * We use ENOSPC in our driver to mean that we have run out of aperture
2353 * space and so want to translate the error from shmemfs back to our
2354 * usual understanding of ENOMEM.
2355 */
2356 if (ret == -ENOSPC)
2357 ret = -ENOMEM;
2358
2359 return ret;
2360 }
2361
2362 /* Ensure that the associated pages are gathered from the backing storage
2363 * and pinned into our object. i915_gem_object_get_pages() may be called
2364 * multiple times before they are released by a single call to
2365 * i915_gem_object_put_pages() - once the pages are no longer referenced
2366 * either as a result of memory pressure (reaping pages under the shrinker)
2367 * or as the object is itself released.
2368 */
2369 int
2370 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2371 {
2372 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2373 const struct drm_i915_gem_object_ops *ops = obj->ops;
2374 int ret;
2375
2376 if (obj->pages)
2377 return 0;
2378
2379 if (obj->madv != I915_MADV_WILLNEED) {
2380 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2381 return -EFAULT;
2382 }
2383
2384 BUG_ON(obj->pages_pin_count);
2385
2386 ret = ops->get_pages(obj);
2387 if (ret)
2388 return ret;
2389
2390 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2391
2392 obj->get_page.sg = obj->pages->sgl;
2393 obj->get_page.last = 0;
2394
2395 return 0;
2396 }
2397
2398 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2399 {
2400 int ret;
2401
2402 lockdep_assert_held(&obj->base.dev->struct_mutex);
2403
2404 ret = i915_gem_object_get_pages(obj);
2405 if (ret)
2406 return ERR_PTR(ret);
2407
2408 i915_gem_object_pin_pages(obj);
2409
2410 if (obj->mapping == NULL) {
2411 struct page **pages;
2412
2413 pages = NULL;
2414 if (obj->base.size == PAGE_SIZE)
2415 obj->mapping = kmap(sg_page(obj->pages->sgl));
2416 else
2417 pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2418 sizeof(*pages),
2419 GFP_TEMPORARY);
2420 if (pages != NULL) {
2421 struct sg_page_iter sg_iter;
2422 int n;
2423
2424 n = 0;
2425 for_each_sg_page(obj->pages->sgl, &sg_iter,
2426 obj->pages->nents, 0)
2427 pages[n++] = sg_page_iter_page(&sg_iter);
2428
2429 obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2430 drm_free_large(pages);
2431 }
2432 if (obj->mapping == NULL) {
2433 i915_gem_object_unpin_pages(obj);
2434 return ERR_PTR(-ENOMEM);
2435 }
2436 }
2437
2438 return obj->mapping;
2439 }
2440
2441 void i915_vma_move_to_active(struct i915_vma *vma,
2442 struct drm_i915_gem_request *req)
2443 {
2444 struct drm_i915_gem_object *obj = vma->obj;
2445 struct intel_engine_cs *engine;
2446
2447 engine = i915_gem_request_get_engine(req);
2448
2449 /* Add a reference if we're newly entering the active list. */
2450 if (obj->active == 0)
2451 drm_gem_object_reference(&obj->base);
2452 obj->active |= intel_engine_flag(engine);
2453
2454 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2455 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2456
2457 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2458 }
2459
2460 static void
2461 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2462 {
2463 GEM_BUG_ON(obj->last_write_req == NULL);
2464 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2465
2466 i915_gem_request_assign(&obj->last_write_req, NULL);
2467 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2468 }
2469
2470 static void
2471 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2472 {
2473 struct i915_vma *vma;
2474
2475 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2476 GEM_BUG_ON(!(obj->active & (1 << ring)));
2477
2478 list_del_init(&obj->engine_list[ring]);
2479 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2480
2481 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2482 i915_gem_object_retire__write(obj);
2483
2484 obj->active &= ~(1 << ring);
2485 if (obj->active)
2486 return;
2487
2488 /* Bump our place on the bound list to keep it roughly in LRU order
2489 * so that we don't steal from recently used but inactive objects
2490 * (unless we are forced to ofc!)
2491 */
2492 list_move_tail(&obj->global_list,
2493 &to_i915(obj->base.dev)->mm.bound_list);
2494
2495 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2496 if (!list_empty(&vma->vm_link))
2497 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2498 }
2499
2500 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2501 drm_gem_object_unreference(&obj->base);
2502 }
2503
2504 static int
2505 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2506 {
2507 struct drm_i915_private *dev_priv = dev->dev_private;
2508 struct intel_engine_cs *engine;
2509 int ret;
2510
2511 /* Carefully retire all requests without writing to the rings */
2512 for_each_engine(engine, dev_priv) {
2513 ret = intel_engine_idle(engine);
2514 if (ret)
2515 return ret;
2516 }
2517 i915_gem_retire_requests(dev);
2518
2519 /* Finally reset hw state */
2520 for_each_engine(engine, dev_priv)
2521 intel_ring_init_seqno(engine, seqno);
2522
2523 return 0;
2524 }
2525
2526 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2527 {
2528 struct drm_i915_private *dev_priv = dev->dev_private;
2529 int ret;
2530
2531 if (seqno == 0)
2532 return -EINVAL;
2533
2534 /* HWS page needs to be set less than what we
2535 * will inject to ring
2536 */
2537 ret = i915_gem_init_seqno(dev, seqno - 1);
2538 if (ret)
2539 return ret;
2540
2541 /* Carefully set the last_seqno value so that wrap
2542 * detection still works
2543 */
2544 dev_priv->next_seqno = seqno;
2545 dev_priv->last_seqno = seqno - 1;
2546 if (dev_priv->last_seqno == 0)
2547 dev_priv->last_seqno--;
2548
2549 return 0;
2550 }
2551
2552 int
2553 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2554 {
2555 struct drm_i915_private *dev_priv = dev->dev_private;
2556
2557 /* reserve 0 for non-seqno */
2558 if (dev_priv->next_seqno == 0) {
2559 int ret = i915_gem_init_seqno(dev, 0);
2560 if (ret)
2561 return ret;
2562
2563 dev_priv->next_seqno = 1;
2564 }
2565
2566 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2567 return 0;
2568 }
2569
2570 /*
2571 * NB: This function is not allowed to fail. Doing so would mean the the
2572 * request is not being tracked for completion but the work itself is
2573 * going to happen on the hardware. This would be a Bad Thing(tm).
2574 */
2575 void __i915_add_request(struct drm_i915_gem_request *request,
2576 struct drm_i915_gem_object *obj,
2577 bool flush_caches)
2578 {
2579 struct intel_engine_cs *engine;
2580 struct drm_i915_private *dev_priv;
2581 struct intel_ringbuffer *ringbuf;
2582 u32 request_start;
2583 int ret;
2584
2585 if (WARN_ON(request == NULL))
2586 return;
2587
2588 engine = request->engine;
2589 dev_priv = request->i915;
2590 ringbuf = request->ringbuf;
2591
2592 /*
2593 * To ensure that this call will not fail, space for its emissions
2594 * should already have been reserved in the ring buffer. Let the ring
2595 * know that it is time to use that space up.
2596 */
2597 intel_ring_reserved_space_use(ringbuf);
2598
2599 request_start = intel_ring_get_tail(ringbuf);
2600 /*
2601 * Emit any outstanding flushes - execbuf can fail to emit the flush
2602 * after having emitted the batchbuffer command. Hence we need to fix
2603 * things up similar to emitting the lazy request. The difference here
2604 * is that the flush _must_ happen before the next request, no matter
2605 * what.
2606 */
2607 if (flush_caches) {
2608 if (i915.enable_execlists)
2609 ret = logical_ring_flush_all_caches(request);
2610 else
2611 ret = intel_ring_flush_all_caches(request);
2612 /* Not allowed to fail! */
2613 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2614 }
2615
2616 trace_i915_gem_request_add(request);
2617
2618 request->head = request_start;
2619
2620 /* Whilst this request exists, batch_obj will be on the
2621 * active_list, and so will hold the active reference. Only when this
2622 * request is retired will the the batch_obj be moved onto the
2623 * inactive_list and lose its active reference. Hence we do not need
2624 * to explicitly hold another reference here.
2625 */
2626 request->batch_obj = obj;
2627
2628 /* Seal the request and mark it as pending execution. Note that
2629 * we may inspect this state, without holding any locks, during
2630 * hangcheck. Hence we apply the barrier to ensure that we do not
2631 * see a more recent value in the hws than we are tracking.
2632 */
2633 request->emitted_jiffies = jiffies;
2634 request->previous_seqno = engine->last_submitted_seqno;
2635 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2636 list_add_tail(&request->list, &engine->request_list);
2637
2638 /* Record the position of the start of the request so that
2639 * should we detect the updated seqno part-way through the
2640 * GPU processing the request, we never over-estimate the
2641 * position of the head.
2642 */
2643 request->postfix = intel_ring_get_tail(ringbuf);
2644
2645 if (i915.enable_execlists)
2646 ret = engine->emit_request(request);
2647 else {
2648 ret = engine->add_request(request);
2649
2650 request->tail = intel_ring_get_tail(ringbuf);
2651 }
2652 /* Not allowed to fail! */
2653 WARN(ret, "emit|add_request failed: %d!\n", ret);
2654
2655 i915_queue_hangcheck(engine->dev);
2656
2657 queue_delayed_work(dev_priv->wq,
2658 &dev_priv->mm.retire_work,
2659 round_jiffies_up_relative(HZ));
2660 intel_mark_busy(dev_priv->dev);
2661
2662 /* Sanity check that the reserved size was large enough. */
2663 intel_ring_reserved_space_end(ringbuf);
2664 }
2665
2666 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2667 const struct intel_context *ctx)
2668 {
2669 unsigned long elapsed;
2670
2671 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2672
2673 if (ctx->hang_stats.banned)
2674 return true;
2675
2676 if (ctx->hang_stats.ban_period_seconds &&
2677 elapsed <= ctx->hang_stats.ban_period_seconds) {
2678 if (!i915_gem_context_is_default(ctx)) {
2679 DRM_DEBUG("context hanging too fast, banning!\n");
2680 return true;
2681 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2682 if (i915_stop_ring_allow_warn(dev_priv))
2683 DRM_ERROR("gpu hanging too fast, banning!\n");
2684 return true;
2685 }
2686 }
2687
2688 return false;
2689 }
2690
2691 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2692 struct intel_context *ctx,
2693 const bool guilty)
2694 {
2695 struct i915_ctx_hang_stats *hs;
2696
2697 if (WARN_ON(!ctx))
2698 return;
2699
2700 hs = &ctx->hang_stats;
2701
2702 if (guilty) {
2703 hs->banned = i915_context_is_banned(dev_priv, ctx);
2704 hs->batch_active++;
2705 hs->guilty_ts = get_seconds();
2706 } else {
2707 hs->batch_pending++;
2708 }
2709 }
2710
2711 void i915_gem_request_free(struct kref *req_ref)
2712 {
2713 struct drm_i915_gem_request *req = container_of(req_ref,
2714 typeof(*req), ref);
2715 struct intel_context *ctx = req->ctx;
2716
2717 if (req->file_priv)
2718 i915_gem_request_remove_from_client(req);
2719
2720 if (ctx) {
2721 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2722 intel_lr_context_unpin(ctx, req->engine);
2723
2724 i915_gem_context_unreference(ctx);
2725 }
2726
2727 kmem_cache_free(req->i915->requests, req);
2728 }
2729
2730 static inline int
2731 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2732 struct intel_context *ctx,
2733 struct drm_i915_gem_request **req_out)
2734 {
2735 struct drm_i915_private *dev_priv = to_i915(engine->dev);
2736 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2737 struct drm_i915_gem_request *req;
2738 int ret;
2739
2740 if (!req_out)
2741 return -EINVAL;
2742
2743 *req_out = NULL;
2744
2745 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2746 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2747 * and restart.
2748 */
2749 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2750 if (ret)
2751 return ret;
2752
2753 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2754 if (req == NULL)
2755 return -ENOMEM;
2756
2757 ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2758 if (ret)
2759 goto err;
2760
2761 kref_init(&req->ref);
2762 req->i915 = dev_priv;
2763 req->engine = engine;
2764 req->reset_counter = reset_counter;
2765 req->ctx = ctx;
2766 i915_gem_context_reference(req->ctx);
2767
2768 if (i915.enable_execlists)
2769 ret = intel_logical_ring_alloc_request_extras(req);
2770 else
2771 ret = intel_ring_alloc_request_extras(req);
2772 if (ret) {
2773 i915_gem_context_unreference(req->ctx);
2774 goto err;
2775 }
2776
2777 /*
2778 * Reserve space in the ring buffer for all the commands required to
2779 * eventually emit this request. This is to guarantee that the
2780 * i915_add_request() call can't fail. Note that the reserve may need
2781 * to be redone if the request is not actually submitted straight
2782 * away, e.g. because a GPU scheduler has deferred it.
2783 */
2784 if (i915.enable_execlists)
2785 ret = intel_logical_ring_reserve_space(req);
2786 else
2787 ret = intel_ring_reserve_space(req);
2788 if (ret) {
2789 /*
2790 * At this point, the request is fully allocated even if not
2791 * fully prepared. Thus it can be cleaned up using the proper
2792 * free code.
2793 */
2794 intel_ring_reserved_space_cancel(req->ringbuf);
2795 i915_gem_request_unreference(req);
2796 return ret;
2797 }
2798
2799 *req_out = req;
2800 return 0;
2801
2802 err:
2803 kmem_cache_free(dev_priv->requests, req);
2804 return ret;
2805 }
2806
2807 /**
2808 * i915_gem_request_alloc - allocate a request structure
2809 *
2810 * @engine: engine that we wish to issue the request on.
2811 * @ctx: context that the request will be associated with.
2812 * This can be NULL if the request is not directly related to
2813 * any specific user context, in which case this function will
2814 * choose an appropriate context to use.
2815 *
2816 * Returns a pointer to the allocated request if successful,
2817 * or an error code if not.
2818 */
2819 struct drm_i915_gem_request *
2820 i915_gem_request_alloc(struct intel_engine_cs *engine,
2821 struct intel_context *ctx)
2822 {
2823 struct drm_i915_gem_request *req;
2824 int err;
2825
2826 if (ctx == NULL)
2827 ctx = to_i915(engine->dev)->kernel_context;
2828 err = __i915_gem_request_alloc(engine, ctx, &req);
2829 return err ? ERR_PTR(err) : req;
2830 }
2831
2832 struct drm_i915_gem_request *
2833 i915_gem_find_active_request(struct intel_engine_cs *engine)
2834 {
2835 struct drm_i915_gem_request *request;
2836
2837 list_for_each_entry(request, &engine->request_list, list) {
2838 if (i915_gem_request_completed(request, false))
2839 continue;
2840
2841 return request;
2842 }
2843
2844 return NULL;
2845 }
2846
2847 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2848 struct intel_engine_cs *engine)
2849 {
2850 struct drm_i915_gem_request *request;
2851 bool ring_hung;
2852
2853 request = i915_gem_find_active_request(engine);
2854
2855 if (request == NULL)
2856 return;
2857
2858 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2859
2860 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2861
2862 list_for_each_entry_continue(request, &engine->request_list, list)
2863 i915_set_reset_status(dev_priv, request->ctx, false);
2864 }
2865
2866 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2867 struct intel_engine_cs *engine)
2868 {
2869 struct intel_ringbuffer *buffer;
2870
2871 while (!list_empty(&engine->active_list)) {
2872 struct drm_i915_gem_object *obj;
2873
2874 obj = list_first_entry(&engine->active_list,
2875 struct drm_i915_gem_object,
2876 engine_list[engine->id]);
2877
2878 i915_gem_object_retire__read(obj, engine->id);
2879 }
2880
2881 /*
2882 * Clear the execlists queue up before freeing the requests, as those
2883 * are the ones that keep the context and ringbuffer backing objects
2884 * pinned in place.
2885 */
2886
2887 if (i915.enable_execlists) {
2888 /* Ensure irq handler finishes or is cancelled. */
2889 tasklet_kill(&engine->irq_tasklet);
2890
2891 spin_lock_bh(&engine->execlist_lock);
2892 /* list_splice_tail_init checks for empty lists */
2893 list_splice_tail_init(&engine->execlist_queue,
2894 &engine->execlist_retired_req_list);
2895 spin_unlock_bh(&engine->execlist_lock);
2896
2897 intel_execlists_retire_requests(engine);
2898 }
2899
2900 /*
2901 * We must free the requests after all the corresponding objects have
2902 * been moved off active lists. Which is the same order as the normal
2903 * retire_requests function does. This is important if object hold
2904 * implicit references on things like e.g. ppgtt address spaces through
2905 * the request.
2906 */
2907 while (!list_empty(&engine->request_list)) {
2908 struct drm_i915_gem_request *request;
2909
2910 request = list_first_entry(&engine->request_list,
2911 struct drm_i915_gem_request,
2912 list);
2913
2914 i915_gem_request_retire(request);
2915 }
2916
2917 /* Having flushed all requests from all queues, we know that all
2918 * ringbuffers must now be empty. However, since we do not reclaim
2919 * all space when retiring the request (to prevent HEADs colliding
2920 * with rapid ringbuffer wraparound) the amount of available space
2921 * upon reset is less than when we start. Do one more pass over
2922 * all the ringbuffers to reset last_retired_head.
2923 */
2924 list_for_each_entry(buffer, &engine->buffers, link) {
2925 buffer->last_retired_head = buffer->tail;
2926 intel_ring_update_space(buffer);
2927 }
2928
2929 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2930 }
2931
2932 void i915_gem_reset(struct drm_device *dev)
2933 {
2934 struct drm_i915_private *dev_priv = dev->dev_private;
2935 struct intel_engine_cs *engine;
2936
2937 /*
2938 * Before we free the objects from the requests, we need to inspect
2939 * them for finding the guilty party. As the requests only borrow
2940 * their reference to the objects, the inspection must be done first.
2941 */
2942 for_each_engine(engine, dev_priv)
2943 i915_gem_reset_engine_status(dev_priv, engine);
2944
2945 for_each_engine(engine, dev_priv)
2946 i915_gem_reset_engine_cleanup(dev_priv, engine);
2947
2948 i915_gem_context_reset(dev);
2949
2950 i915_gem_restore_fences(dev);
2951
2952 WARN_ON(i915_verify_lists(dev));
2953 }
2954
2955 /**
2956 * This function clears the request list as sequence numbers are passed.
2957 */
2958 void
2959 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2960 {
2961 WARN_ON(i915_verify_lists(engine->dev));
2962
2963 /* Retire requests first as we use it above for the early return.
2964 * If we retire requests last, we may use a later seqno and so clear
2965 * the requests lists without clearing the active list, leading to
2966 * confusion.
2967 */
2968 while (!list_empty(&engine->request_list)) {
2969 struct drm_i915_gem_request *request;
2970
2971 request = list_first_entry(&engine->request_list,
2972 struct drm_i915_gem_request,
2973 list);
2974
2975 if (!i915_gem_request_completed(request, true))
2976 break;
2977
2978 i915_gem_request_retire(request);
2979 }
2980
2981 /* Move any buffers on the active list that are no longer referenced
2982 * by the ringbuffer to the flushing/inactive lists as appropriate,
2983 * before we free the context associated with the requests.
2984 */
2985 while (!list_empty(&engine->active_list)) {
2986 struct drm_i915_gem_object *obj;
2987
2988 obj = list_first_entry(&engine->active_list,
2989 struct drm_i915_gem_object,
2990 engine_list[engine->id]);
2991
2992 if (!list_empty(&obj->last_read_req[engine->id]->list))
2993 break;
2994
2995 i915_gem_object_retire__read(obj, engine->id);
2996 }
2997
2998 if (unlikely(engine->trace_irq_req &&
2999 i915_gem_request_completed(engine->trace_irq_req, true))) {
3000 engine->irq_put(engine);
3001 i915_gem_request_assign(&engine->trace_irq_req, NULL);
3002 }
3003
3004 WARN_ON(i915_verify_lists(engine->dev));
3005 }
3006
3007 bool
3008 i915_gem_retire_requests(struct drm_device *dev)
3009 {
3010 struct drm_i915_private *dev_priv = dev->dev_private;
3011 struct intel_engine_cs *engine;
3012 bool idle = true;
3013
3014 for_each_engine(engine, dev_priv) {
3015 i915_gem_retire_requests_ring(engine);
3016 idle &= list_empty(&engine->request_list);
3017 if (i915.enable_execlists) {
3018 spin_lock_bh(&engine->execlist_lock);
3019 idle &= list_empty(&engine->execlist_queue);
3020 spin_unlock_bh(&engine->execlist_lock);
3021
3022 intel_execlists_retire_requests(engine);
3023 }
3024 }
3025
3026 if (idle)
3027 mod_delayed_work(dev_priv->wq,
3028 &dev_priv->mm.idle_work,
3029 msecs_to_jiffies(100));
3030
3031 return idle;
3032 }
3033
3034 static void
3035 i915_gem_retire_work_handler(struct work_struct *work)
3036 {
3037 struct drm_i915_private *dev_priv =
3038 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3039 struct drm_device *dev = dev_priv->dev;
3040 bool idle;
3041
3042 /* Come back later if the device is busy... */
3043 idle = false;
3044 if (mutex_trylock(&dev->struct_mutex)) {
3045 idle = i915_gem_retire_requests(dev);
3046 mutex_unlock(&dev->struct_mutex);
3047 }
3048 if (!idle)
3049 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3050 round_jiffies_up_relative(HZ));
3051 }
3052
3053 static void
3054 i915_gem_idle_work_handler(struct work_struct *work)
3055 {
3056 struct drm_i915_private *dev_priv =
3057 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3058 struct drm_device *dev = dev_priv->dev;
3059 struct intel_engine_cs *engine;
3060
3061 for_each_engine(engine, dev_priv)
3062 if (!list_empty(&engine->request_list))
3063 return;
3064
3065 /* we probably should sync with hangcheck here, using cancel_work_sync.
3066 * Also locking seems to be fubar here, engine->request_list is protected
3067 * by dev->struct_mutex. */
3068
3069 intel_mark_idle(dev);
3070
3071 if (mutex_trylock(&dev->struct_mutex)) {
3072 for_each_engine(engine, dev_priv)
3073 i915_gem_batch_pool_fini(&engine->batch_pool);
3074
3075 mutex_unlock(&dev->struct_mutex);
3076 }
3077 }
3078
3079 /**
3080 * Ensures that an object will eventually get non-busy by flushing any required
3081 * write domains, emitting any outstanding lazy request and retiring and
3082 * completed requests.
3083 */
3084 static int
3085 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3086 {
3087 int i;
3088
3089 if (!obj->active)
3090 return 0;
3091
3092 for (i = 0; i < I915_NUM_ENGINES; i++) {
3093 struct drm_i915_gem_request *req;
3094
3095 req = obj->last_read_req[i];
3096 if (req == NULL)
3097 continue;
3098
3099 if (list_empty(&req->list))
3100 goto retire;
3101
3102 if (i915_gem_request_completed(req, true)) {
3103 __i915_gem_request_retire__upto(req);
3104 retire:
3105 i915_gem_object_retire__read(obj, i);
3106 }
3107 }
3108
3109 return 0;
3110 }
3111
3112 /**
3113 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3114 * @DRM_IOCTL_ARGS: standard ioctl arguments
3115 *
3116 * Returns 0 if successful, else an error is returned with the remaining time in
3117 * the timeout parameter.
3118 * -ETIME: object is still busy after timeout
3119 * -ERESTARTSYS: signal interrupted the wait
3120 * -ENONENT: object doesn't exist
3121 * Also possible, but rare:
3122 * -EAGAIN: GPU wedged
3123 * -ENOMEM: damn
3124 * -ENODEV: Internal IRQ fail
3125 * -E?: The add request failed
3126 *
3127 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3128 * non-zero timeout parameter the wait ioctl will wait for the given number of
3129 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3130 * without holding struct_mutex the object may become re-busied before this
3131 * function completes. A similar but shorter * race condition exists in the busy
3132 * ioctl
3133 */
3134 int
3135 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3136 {
3137 struct drm_i915_gem_wait *args = data;
3138 struct drm_i915_gem_object *obj;
3139 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3140 int i, n = 0;
3141 int ret;
3142
3143 if (args->flags != 0)
3144 return -EINVAL;
3145
3146 ret = i915_mutex_lock_interruptible(dev);
3147 if (ret)
3148 return ret;
3149
3150 obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3151 if (&obj->base == NULL) {
3152 mutex_unlock(&dev->struct_mutex);
3153 return -ENOENT;
3154 }
3155
3156 /* Need to make sure the object gets inactive eventually. */
3157 ret = i915_gem_object_flush_active(obj);
3158 if (ret)
3159 goto out;
3160
3161 if (!obj->active)
3162 goto out;
3163
3164 /* Do this after OLR check to make sure we make forward progress polling
3165 * on this IOCTL with a timeout == 0 (like busy ioctl)
3166 */
3167 if (args->timeout_ns == 0) {
3168 ret = -ETIME;
3169 goto out;
3170 }
3171
3172 drm_gem_object_unreference(&obj->base);
3173
3174 for (i = 0; i < I915_NUM_ENGINES; i++) {
3175 if (obj->last_read_req[i] == NULL)
3176 continue;
3177
3178 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3179 }
3180
3181 mutex_unlock(&dev->struct_mutex);
3182
3183 for (i = 0; i < n; i++) {
3184 if (ret == 0)
3185 ret = __i915_wait_request(req[i], true,
3186 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3187 to_rps_client(file));
3188 i915_gem_request_unreference__unlocked(req[i]);
3189 }
3190 return ret;
3191
3192 out:
3193 drm_gem_object_unreference(&obj->base);
3194 mutex_unlock(&dev->struct_mutex);
3195 return ret;
3196 }
3197
3198 static int
3199 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3200 struct intel_engine_cs *to,
3201 struct drm_i915_gem_request *from_req,
3202 struct drm_i915_gem_request **to_req)
3203 {
3204 struct intel_engine_cs *from;
3205 int ret;
3206
3207 from = i915_gem_request_get_engine(from_req);
3208 if (to == from)
3209 return 0;
3210
3211 if (i915_gem_request_completed(from_req, true))
3212 return 0;
3213
3214 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3215 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3216 ret = __i915_wait_request(from_req,
3217 i915->mm.interruptible,
3218 NULL,
3219 &i915->rps.semaphores);
3220 if (ret)
3221 return ret;
3222
3223 i915_gem_object_retire_request(obj, from_req);
3224 } else {
3225 int idx = intel_ring_sync_index(from, to);
3226 u32 seqno = i915_gem_request_get_seqno(from_req);
3227
3228 WARN_ON(!to_req);
3229
3230 if (seqno <= from->semaphore.sync_seqno[idx])
3231 return 0;
3232
3233 if (*to_req == NULL) {
3234 struct drm_i915_gem_request *req;
3235
3236 req = i915_gem_request_alloc(to, NULL);
3237 if (IS_ERR(req))
3238 return PTR_ERR(req);
3239
3240 *to_req = req;
3241 }
3242
3243 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3244 ret = to->semaphore.sync_to(*to_req, from, seqno);
3245 if (ret)
3246 return ret;
3247
3248 /* We use last_read_req because sync_to()
3249 * might have just caused seqno wrap under
3250 * the radar.
3251 */
3252 from->semaphore.sync_seqno[idx] =
3253 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3254 }
3255
3256 return 0;
3257 }
3258
3259 /**
3260 * i915_gem_object_sync - sync an object to a ring.
3261 *
3262 * @obj: object which may be in use on another ring.
3263 * @to: ring we wish to use the object on. May be NULL.
3264 * @to_req: request we wish to use the object for. See below.
3265 * This will be allocated and returned if a request is
3266 * required but not passed in.
3267 *
3268 * This code is meant to abstract object synchronization with the GPU.
3269 * Calling with NULL implies synchronizing the object with the CPU
3270 * rather than a particular GPU ring. Conceptually we serialise writes
3271 * between engines inside the GPU. We only allow one engine to write
3272 * into a buffer at any time, but multiple readers. To ensure each has
3273 * a coherent view of memory, we must:
3274 *
3275 * - If there is an outstanding write request to the object, the new
3276 * request must wait for it to complete (either CPU or in hw, requests
3277 * on the same ring will be naturally ordered).
3278 *
3279 * - If we are a write request (pending_write_domain is set), the new
3280 * request must wait for outstanding read requests to complete.
3281 *
3282 * For CPU synchronisation (NULL to) no request is required. For syncing with
3283 * rings to_req must be non-NULL. However, a request does not have to be
3284 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3285 * request will be allocated automatically and returned through *to_req. Note
3286 * that it is not guaranteed that commands will be emitted (because the system
3287 * might already be idle). Hence there is no need to create a request that
3288 * might never have any work submitted. Note further that if a request is
3289 * returned in *to_req, it is the responsibility of the caller to submit
3290 * that request (after potentially adding more work to it).
3291 *
3292 * Returns 0 if successful, else propagates up the lower layer error.
3293 */
3294 int
3295 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3296 struct intel_engine_cs *to,
3297 struct drm_i915_gem_request **to_req)
3298 {
3299 const bool readonly = obj->base.pending_write_domain == 0;
3300 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3301 int ret, i, n;
3302
3303 if (!obj->active)
3304 return 0;
3305
3306 if (to == NULL)
3307 return i915_gem_object_wait_rendering(obj, readonly);
3308
3309 n = 0;
3310 if (readonly) {
3311 if (obj->last_write_req)
3312 req[n++] = obj->last_write_req;
3313 } else {
3314 for (i = 0; i < I915_NUM_ENGINES; i++)
3315 if (obj->last_read_req[i])
3316 req[n++] = obj->last_read_req[i];
3317 }
3318 for (i = 0; i < n; i++) {
3319 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3320 if (ret)
3321 return ret;
3322 }
3323
3324 return 0;
3325 }
3326
3327 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3328 {
3329 u32 old_write_domain, old_read_domains;
3330
3331 /* Force a pagefault for domain tracking on next user access */
3332 i915_gem_release_mmap(obj);
3333
3334 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3335 return;
3336
3337 old_read_domains = obj->base.read_domains;
3338 old_write_domain = obj->base.write_domain;
3339
3340 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3341 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3342
3343 trace_i915_gem_object_change_domain(obj,
3344 old_read_domains,
3345 old_write_domain);
3346 }
3347
3348 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3349 {
3350 struct drm_i915_gem_object *obj = vma->obj;
3351 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3352 int ret;
3353
3354 if (list_empty(&vma->obj_link))
3355 return 0;
3356
3357 if (!drm_mm_node_allocated(&vma->node)) {
3358 i915_gem_vma_destroy(vma);
3359 return 0;
3360 }
3361
3362 if (vma->pin_count)
3363 return -EBUSY;
3364
3365 BUG_ON(obj->pages == NULL);
3366
3367 if (wait) {
3368 ret = i915_gem_object_wait_rendering(obj, false);
3369 if (ret)
3370 return ret;
3371 }
3372
3373 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3374 i915_gem_object_finish_gtt(obj);
3375
3376 /* release the fence reg _after_ flushing */
3377 ret = i915_gem_object_put_fence(obj);
3378 if (ret)
3379 return ret;
3380 }
3381
3382 trace_i915_vma_unbind(vma);
3383
3384 vma->vm->unbind_vma(vma);
3385 vma->bound = 0;
3386
3387 list_del_init(&vma->vm_link);
3388 if (vma->is_ggtt) {
3389 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3390 obj->map_and_fenceable = false;
3391 } else if (vma->ggtt_view.pages) {
3392 sg_free_table(vma->ggtt_view.pages);
3393 kfree(vma->ggtt_view.pages);
3394 }
3395 vma->ggtt_view.pages = NULL;
3396 }
3397
3398 drm_mm_remove_node(&vma->node);
3399 i915_gem_vma_destroy(vma);
3400
3401 /* Since the unbound list is global, only move to that list if
3402 * no more VMAs exist. */
3403 if (list_empty(&obj->vma_list))
3404 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3405
3406 /* And finally now the object is completely decoupled from this vma,
3407 * we can drop its hold on the backing storage and allow it to be
3408 * reaped by the shrinker.
3409 */
3410 i915_gem_object_unpin_pages(obj);
3411
3412 return 0;
3413 }
3414
3415 int i915_vma_unbind(struct i915_vma *vma)
3416 {
3417 return __i915_vma_unbind(vma, true);
3418 }
3419
3420 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3421 {
3422 return __i915_vma_unbind(vma, false);
3423 }
3424
3425 int i915_gpu_idle(struct drm_device *dev)
3426 {
3427 struct drm_i915_private *dev_priv = dev->dev_private;
3428 struct intel_engine_cs *engine;
3429 int ret;
3430
3431 /* Flush everything onto the inactive list. */
3432 for_each_engine(engine, dev_priv) {
3433 if (!i915.enable_execlists) {
3434 struct drm_i915_gem_request *req;
3435
3436 req = i915_gem_request_alloc(engine, NULL);
3437 if (IS_ERR(req))
3438 return PTR_ERR(req);
3439
3440 ret = i915_switch_context(req);
3441 i915_add_request_no_flush(req);
3442 if (ret)
3443 return ret;
3444 }
3445
3446 ret = intel_engine_idle(engine);
3447 if (ret)
3448 return ret;
3449 }
3450
3451 WARN_ON(i915_verify_lists(dev));
3452 return 0;
3453 }
3454
3455 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3456 unsigned long cache_level)
3457 {
3458 struct drm_mm_node *gtt_space = &vma->node;
3459 struct drm_mm_node *other;
3460
3461 /*
3462 * On some machines we have to be careful when putting differing types
3463 * of snoopable memory together to avoid the prefetcher crossing memory
3464 * domains and dying. During vm initialisation, we decide whether or not
3465 * these constraints apply and set the drm_mm.color_adjust
3466 * appropriately.
3467 */
3468 if (vma->vm->mm.color_adjust == NULL)
3469 return true;
3470
3471 if (!drm_mm_node_allocated(gtt_space))
3472 return true;
3473
3474 if (list_empty(&gtt_space->node_list))
3475 return true;
3476
3477 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3478 if (other->allocated && !other->hole_follows && other->color != cache_level)
3479 return false;
3480
3481 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3482 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3483 return false;
3484
3485 return true;
3486 }
3487
3488 /**
3489 * Finds free space in the GTT aperture and binds the object or a view of it
3490 * there.
3491 */
3492 static struct i915_vma *
3493 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3494 struct i915_address_space *vm,
3495 const struct i915_ggtt_view *ggtt_view,
3496 unsigned alignment,
3497 uint64_t flags)
3498 {
3499 struct drm_device *dev = obj->base.dev;
3500 struct drm_i915_private *dev_priv = to_i915(dev);
3501 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3502 u32 fence_alignment, unfenced_alignment;
3503 u32 search_flag, alloc_flag;
3504 u64 start, end;
3505 u64 size, fence_size;
3506 struct i915_vma *vma;
3507 int ret;
3508
3509 if (i915_is_ggtt(vm)) {
3510 u32 view_size;
3511
3512 if (WARN_ON(!ggtt_view))
3513 return ERR_PTR(-EINVAL);
3514
3515 view_size = i915_ggtt_view_size(obj, ggtt_view);
3516
3517 fence_size = i915_gem_get_gtt_size(dev,
3518 view_size,
3519 obj->tiling_mode);
3520 fence_alignment = i915_gem_get_gtt_alignment(dev,
3521 view_size,
3522 obj->tiling_mode,
3523 true);
3524 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3525 view_size,
3526 obj->tiling_mode,
3527 false);
3528 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3529 } else {
3530 fence_size = i915_gem_get_gtt_size(dev,
3531 obj->base.size,
3532 obj->tiling_mode);
3533 fence_alignment = i915_gem_get_gtt_alignment(dev,
3534 obj->base.size,
3535 obj->tiling_mode,
3536 true);
3537 unfenced_alignment =
3538 i915_gem_get_gtt_alignment(dev,
3539 obj->base.size,
3540 obj->tiling_mode,
3541 false);
3542 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3543 }
3544
3545 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3546 end = vm->total;
3547 if (flags & PIN_MAPPABLE)
3548 end = min_t(u64, end, ggtt->mappable_end);
3549 if (flags & PIN_ZONE_4G)
3550 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3551
3552 if (alignment == 0)
3553 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3554 unfenced_alignment;
3555 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3556 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3557 ggtt_view ? ggtt_view->type : 0,
3558 alignment);
3559 return ERR_PTR(-EINVAL);
3560 }
3561
3562 /* If binding the object/GGTT view requires more space than the entire
3563 * aperture has, reject it early before evicting everything in a vain
3564 * attempt to find space.
3565 */
3566 if (size > end) {
3567 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3568 ggtt_view ? ggtt_view->type : 0,
3569 size,
3570 flags & PIN_MAPPABLE ? "mappable" : "total",
3571 end);
3572 return ERR_PTR(-E2BIG);
3573 }
3574
3575 ret = i915_gem_object_get_pages(obj);
3576 if (ret)
3577 return ERR_PTR(ret);
3578
3579 i915_gem_object_pin_pages(obj);
3580
3581 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3582 i915_gem_obj_lookup_or_create_vma(obj, vm);
3583
3584 if (IS_ERR(vma))
3585 goto err_unpin;
3586
3587 if (flags & PIN_OFFSET_FIXED) {
3588 uint64_t offset = flags & PIN_OFFSET_MASK;
3589
3590 if (offset & (alignment - 1) || offset + size > end) {
3591 ret = -EINVAL;
3592 goto err_free_vma;
3593 }
3594 vma->node.start = offset;
3595 vma->node.size = size;
3596 vma->node.color = obj->cache_level;
3597 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3598 if (ret) {
3599 ret = i915_gem_evict_for_vma(vma);
3600 if (ret == 0)
3601 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3602 }
3603 if (ret)
3604 goto err_free_vma;
3605 } else {
3606 if (flags & PIN_HIGH) {
3607 search_flag = DRM_MM_SEARCH_BELOW;
3608 alloc_flag = DRM_MM_CREATE_TOP;
3609 } else {
3610 search_flag = DRM_MM_SEARCH_DEFAULT;
3611 alloc_flag = DRM_MM_CREATE_DEFAULT;
3612 }
3613
3614 search_free:
3615 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3616 size, alignment,
3617 obj->cache_level,
3618 start, end,
3619 search_flag,
3620 alloc_flag);
3621 if (ret) {
3622 ret = i915_gem_evict_something(dev, vm, size, alignment,
3623 obj->cache_level,
3624 start, end,
3625 flags);
3626 if (ret == 0)
3627 goto search_free;
3628
3629 goto err_free_vma;
3630 }
3631 }
3632 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3633 ret = -EINVAL;
3634 goto err_remove_node;
3635 }
3636
3637 trace_i915_vma_bind(vma, flags);
3638 ret = i915_vma_bind(vma, obj->cache_level, flags);
3639 if (ret)
3640 goto err_remove_node;
3641
3642 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3643 list_add_tail(&vma->vm_link, &vm->inactive_list);
3644
3645 return vma;
3646
3647 err_remove_node:
3648 drm_mm_remove_node(&vma->node);
3649 err_free_vma:
3650 i915_gem_vma_destroy(vma);
3651 vma = ERR_PTR(ret);
3652 err_unpin:
3653 i915_gem_object_unpin_pages(obj);
3654 return vma;
3655 }
3656
3657 bool
3658 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3659 bool force)
3660 {
3661 /* If we don't have a page list set up, then we're not pinned
3662 * to GPU, and we can ignore the cache flush because it'll happen
3663 * again at bind time.
3664 */
3665 if (obj->pages == NULL)
3666 return false;
3667
3668 /*
3669 * Stolen memory is always coherent with the GPU as it is explicitly
3670 * marked as wc by the system, or the system is cache-coherent.
3671 */
3672 if (obj->stolen || obj->phys_handle)
3673 return false;
3674
3675 /* If the GPU is snooping the contents of the CPU cache,
3676 * we do not need to manually clear the CPU cache lines. However,
3677 * the caches are only snooped when the render cache is
3678 * flushed/invalidated. As we always have to emit invalidations
3679 * and flushes when moving into and out of the RENDER domain, correct
3680 * snooping behaviour occurs naturally as the result of our domain
3681 * tracking.
3682 */
3683 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3684 obj->cache_dirty = true;
3685 return false;
3686 }
3687
3688 trace_i915_gem_object_clflush(obj);
3689 drm_clflush_sg(obj->pages);
3690 obj->cache_dirty = false;
3691
3692 return true;
3693 }
3694
3695 /** Flushes the GTT write domain for the object if it's dirty. */
3696 static void
3697 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3698 {
3699 uint32_t old_write_domain;
3700
3701 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3702 return;
3703
3704 /* No actual flushing is required for the GTT write domain. Writes
3705 * to it immediately go to main memory as far as we know, so there's
3706 * no chipset flush. It also doesn't land in render cache.
3707 *
3708 * However, we do have to enforce the order so that all writes through
3709 * the GTT land before any writes to the device, such as updates to
3710 * the GATT itself.
3711 */
3712 wmb();
3713
3714 old_write_domain = obj->base.write_domain;
3715 obj->base.write_domain = 0;
3716
3717 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3718
3719 trace_i915_gem_object_change_domain(obj,
3720 obj->base.read_domains,
3721 old_write_domain);
3722 }
3723
3724 /** Flushes the CPU write domain for the object if it's dirty. */
3725 static void
3726 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3727 {
3728 uint32_t old_write_domain;
3729
3730 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3731 return;
3732
3733 if (i915_gem_clflush_object(obj, obj->pin_display))
3734 i915_gem_chipset_flush(obj->base.dev);
3735
3736 old_write_domain = obj->base.write_domain;
3737 obj->base.write_domain = 0;
3738
3739 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3740
3741 trace_i915_gem_object_change_domain(obj,
3742 obj->base.read_domains,
3743 old_write_domain);
3744 }
3745
3746 /**
3747 * Moves a single object to the GTT read, and possibly write domain.
3748 *
3749 * This function returns when the move is complete, including waiting on
3750 * flushes to occur.
3751 */
3752 int
3753 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3754 {
3755 struct drm_device *dev = obj->base.dev;
3756 struct drm_i915_private *dev_priv = to_i915(dev);
3757 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3758 uint32_t old_write_domain, old_read_domains;
3759 struct i915_vma *vma;
3760 int ret;
3761
3762 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3763 return 0;
3764
3765 ret = i915_gem_object_wait_rendering(obj, !write);
3766 if (ret)
3767 return ret;
3768
3769 /* Flush and acquire obj->pages so that we are coherent through
3770 * direct access in memory with previous cached writes through
3771 * shmemfs and that our cache domain tracking remains valid.
3772 * For example, if the obj->filp was moved to swap without us
3773 * being notified and releasing the pages, we would mistakenly
3774 * continue to assume that the obj remained out of the CPU cached
3775 * domain.
3776 */
3777 ret = i915_gem_object_get_pages(obj);
3778 if (ret)
3779 return ret;
3780
3781 i915_gem_object_flush_cpu_write_domain(obj);
3782
3783 /* Serialise direct access to this object with the barriers for
3784 * coherent writes from the GPU, by effectively invalidating the
3785 * GTT domain upon first access.
3786 */
3787 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3788 mb();
3789
3790 old_write_domain = obj->base.write_domain;
3791 old_read_domains = obj->base.read_domains;
3792
3793 /* It should now be out of any other write domains, and we can update
3794 * the domain values for our changes.
3795 */
3796 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3797 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3798 if (write) {
3799 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3800 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3801 obj->dirty = 1;
3802 }
3803
3804 trace_i915_gem_object_change_domain(obj,
3805 old_read_domains,
3806 old_write_domain);
3807
3808 /* And bump the LRU for this access */
3809 vma = i915_gem_obj_to_ggtt(obj);
3810 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3811 list_move_tail(&vma->vm_link,
3812 &ggtt->base.inactive_list);
3813
3814 return 0;
3815 }
3816
3817 /**
3818 * Changes the cache-level of an object across all VMA.
3819 *
3820 * After this function returns, the object will be in the new cache-level
3821 * across all GTT and the contents of the backing storage will be coherent,
3822 * with respect to the new cache-level. In order to keep the backing storage
3823 * coherent for all users, we only allow a single cache level to be set
3824 * globally on the object and prevent it from being changed whilst the
3825 * hardware is reading from the object. That is if the object is currently
3826 * on the scanout it will be set to uncached (or equivalent display
3827 * cache coherency) and all non-MOCS GPU access will also be uncached so
3828 * that all direct access to the scanout remains coherent.
3829 */
3830 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3831 enum i915_cache_level cache_level)
3832 {
3833 struct drm_device *dev = obj->base.dev;
3834 struct i915_vma *vma, *next;
3835 bool bound = false;
3836 int ret = 0;
3837
3838 if (obj->cache_level == cache_level)
3839 goto out;
3840
3841 /* Inspect the list of currently bound VMA and unbind any that would
3842 * be invalid given the new cache-level. This is principally to
3843 * catch the issue of the CS prefetch crossing page boundaries and
3844 * reading an invalid PTE on older architectures.
3845 */
3846 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3847 if (!drm_mm_node_allocated(&vma->node))
3848 continue;
3849
3850 if (vma->pin_count) {
3851 DRM_DEBUG("can not change the cache level of pinned objects\n");
3852 return -EBUSY;
3853 }
3854
3855 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3856 ret = i915_vma_unbind(vma);
3857 if (ret)
3858 return ret;
3859 } else
3860 bound = true;
3861 }
3862
3863 /* We can reuse the existing drm_mm nodes but need to change the
3864 * cache-level on the PTE. We could simply unbind them all and
3865 * rebind with the correct cache-level on next use. However since
3866 * we already have a valid slot, dma mapping, pages etc, we may as
3867 * rewrite the PTE in the belief that doing so tramples upon less
3868 * state and so involves less work.
3869 */
3870 if (bound) {
3871 /* Before we change the PTE, the GPU must not be accessing it.
3872 * If we wait upon the object, we know that all the bound
3873 * VMA are no longer active.
3874 */
3875 ret = i915_gem_object_wait_rendering(obj, false);
3876 if (ret)
3877 return ret;
3878
3879 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3880 /* Access to snoopable pages through the GTT is
3881 * incoherent and on some machines causes a hard
3882 * lockup. Relinquish the CPU mmaping to force
3883 * userspace to refault in the pages and we can
3884 * then double check if the GTT mapping is still
3885 * valid for that pointer access.
3886 */
3887 i915_gem_release_mmap(obj);
3888
3889 /* As we no longer need a fence for GTT access,
3890 * we can relinquish it now (and so prevent having
3891 * to steal a fence from someone else on the next
3892 * fence request). Note GPU activity would have
3893 * dropped the fence as all snoopable access is
3894 * supposed to be linear.
3895 */
3896 ret = i915_gem_object_put_fence(obj);
3897 if (ret)
3898 return ret;
3899 } else {
3900 /* We either have incoherent backing store and
3901 * so no GTT access or the architecture is fully
3902 * coherent. In such cases, existing GTT mmaps
3903 * ignore the cache bit in the PTE and we can
3904 * rewrite it without confusing the GPU or having
3905 * to force userspace to fault back in its mmaps.
3906 */
3907 }
3908
3909 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3910 if (!drm_mm_node_allocated(&vma->node))
3911 continue;
3912
3913 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3914 if (ret)
3915 return ret;
3916 }
3917 }
3918
3919 list_for_each_entry(vma, &obj->vma_list, obj_link)
3920 vma->node.color = cache_level;
3921 obj->cache_level = cache_level;
3922
3923 out:
3924 /* Flush the dirty CPU caches to the backing storage so that the
3925 * object is now coherent at its new cache level (with respect
3926 * to the access domain).
3927 */
3928 if (obj->cache_dirty &&
3929 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3930 cpu_write_needs_clflush(obj)) {
3931 if (i915_gem_clflush_object(obj, true))
3932 i915_gem_chipset_flush(obj->base.dev);
3933 }
3934
3935 return 0;
3936 }
3937
3938 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3939 struct drm_file *file)
3940 {
3941 struct drm_i915_gem_caching *args = data;
3942 struct drm_i915_gem_object *obj;
3943
3944 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3945 if (&obj->base == NULL)
3946 return -ENOENT;
3947
3948 switch (obj->cache_level) {
3949 case I915_CACHE_LLC:
3950 case I915_CACHE_L3_LLC:
3951 args->caching = I915_CACHING_CACHED;
3952 break;
3953
3954 case I915_CACHE_WT:
3955 args->caching = I915_CACHING_DISPLAY;
3956 break;
3957
3958 default:
3959 args->caching = I915_CACHING_NONE;
3960 break;
3961 }
3962
3963 drm_gem_object_unreference_unlocked(&obj->base);
3964 return 0;
3965 }
3966
3967 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3968 struct drm_file *file)
3969 {
3970 struct drm_i915_private *dev_priv = dev->dev_private;
3971 struct drm_i915_gem_caching *args = data;
3972 struct drm_i915_gem_object *obj;
3973 enum i915_cache_level level;
3974 int ret;
3975
3976 switch (args->caching) {
3977 case I915_CACHING_NONE:
3978 level = I915_CACHE_NONE;
3979 break;
3980 case I915_CACHING_CACHED:
3981 /*
3982 * Due to a HW issue on BXT A stepping, GPU stores via a
3983 * snooped mapping may leave stale data in a corresponding CPU
3984 * cacheline, whereas normally such cachelines would get
3985 * invalidated.
3986 */
3987 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3988 return -ENODEV;
3989
3990 level = I915_CACHE_LLC;
3991 break;
3992 case I915_CACHING_DISPLAY:
3993 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3994 break;
3995 default:
3996 return -EINVAL;
3997 }
3998
3999 intel_runtime_pm_get(dev_priv);
4000
4001 ret = i915_mutex_lock_interruptible(dev);
4002 if (ret)
4003 goto rpm_put;
4004
4005 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4006 if (&obj->base == NULL) {
4007 ret = -ENOENT;
4008 goto unlock;
4009 }
4010
4011 ret = i915_gem_object_set_cache_level(obj, level);
4012
4013 drm_gem_object_unreference(&obj->base);
4014 unlock:
4015 mutex_unlock(&dev->struct_mutex);
4016 rpm_put:
4017 intel_runtime_pm_put(dev_priv);
4018
4019 return ret;
4020 }
4021
4022 /*
4023 * Prepare buffer for display plane (scanout, cursors, etc).
4024 * Can be called from an uninterruptible phase (modesetting) and allows
4025 * any flushes to be pipelined (for pageflips).
4026 */
4027 int
4028 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4029 u32 alignment,
4030 const struct i915_ggtt_view *view)
4031 {
4032 u32 old_read_domains, old_write_domain;
4033 int ret;
4034
4035 /* Mark the pin_display early so that we account for the
4036 * display coherency whilst setting up the cache domains.
4037 */
4038 obj->pin_display++;
4039
4040 /* The display engine is not coherent with the LLC cache on gen6. As
4041 * a result, we make sure that the pinning that is about to occur is
4042 * done with uncached PTEs. This is lowest common denominator for all
4043 * chipsets.
4044 *
4045 * However for gen6+, we could do better by using the GFDT bit instead
4046 * of uncaching, which would allow us to flush all the LLC-cached data
4047 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4048 */
4049 ret = i915_gem_object_set_cache_level(obj,
4050 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4051 if (ret)
4052 goto err_unpin_display;
4053
4054 /* As the user may map the buffer once pinned in the display plane
4055 * (e.g. libkms for the bootup splash), we have to ensure that we
4056 * always use map_and_fenceable for all scanout buffers.
4057 */
4058 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4059 view->type == I915_GGTT_VIEW_NORMAL ?
4060 PIN_MAPPABLE : 0);
4061 if (ret)
4062 goto err_unpin_display;
4063
4064 i915_gem_object_flush_cpu_write_domain(obj);
4065
4066 old_write_domain = obj->base.write_domain;
4067 old_read_domains = obj->base.read_domains;
4068
4069 /* It should now be out of any other write domains, and we can update
4070 * the domain values for our changes.
4071 */
4072 obj->base.write_domain = 0;
4073 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4074
4075 trace_i915_gem_object_change_domain(obj,
4076 old_read_domains,
4077 old_write_domain);
4078
4079 return 0;
4080
4081 err_unpin_display:
4082 obj->pin_display--;
4083 return ret;
4084 }
4085
4086 void
4087 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4088 const struct i915_ggtt_view *view)
4089 {
4090 if (WARN_ON(obj->pin_display == 0))
4091 return;
4092
4093 i915_gem_object_ggtt_unpin_view(obj, view);
4094
4095 obj->pin_display--;
4096 }
4097
4098 /**
4099 * Moves a single object to the CPU read, and possibly write domain.
4100 *
4101 * This function returns when the move is complete, including waiting on
4102 * flushes to occur.
4103 */
4104 int
4105 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4106 {
4107 uint32_t old_write_domain, old_read_domains;
4108 int ret;
4109
4110 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4111 return 0;
4112
4113 ret = i915_gem_object_wait_rendering(obj, !write);
4114 if (ret)
4115 return ret;
4116
4117 i915_gem_object_flush_gtt_write_domain(obj);
4118
4119 old_write_domain = obj->base.write_domain;
4120 old_read_domains = obj->base.read_domains;
4121
4122 /* Flush the CPU cache if it's still invalid. */
4123 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4124 i915_gem_clflush_object(obj, false);
4125
4126 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4127 }
4128
4129 /* It should now be out of any other write domains, and we can update
4130 * the domain values for our changes.
4131 */
4132 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4133
4134 /* If we're writing through the CPU, then the GPU read domains will
4135 * need to be invalidated at next use.
4136 */
4137 if (write) {
4138 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4139 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4140 }
4141
4142 trace_i915_gem_object_change_domain(obj,
4143 old_read_domains,
4144 old_write_domain);
4145
4146 return 0;
4147 }
4148
4149 /* Throttle our rendering by waiting until the ring has completed our requests
4150 * emitted over 20 msec ago.
4151 *
4152 * Note that if we were to use the current jiffies each time around the loop,
4153 * we wouldn't escape the function with any frames outstanding if the time to
4154 * render a frame was over 20ms.
4155 *
4156 * This should get us reasonable parallelism between CPU and GPU but also
4157 * relatively low latency when blocking on a particular request to finish.
4158 */
4159 static int
4160 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4161 {
4162 struct drm_i915_private *dev_priv = dev->dev_private;
4163 struct drm_i915_file_private *file_priv = file->driver_priv;
4164 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4165 struct drm_i915_gem_request *request, *target = NULL;
4166 int ret;
4167
4168 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4169 if (ret)
4170 return ret;
4171
4172 /* ABI: return -EIO if already wedged */
4173 if (i915_terminally_wedged(&dev_priv->gpu_error))
4174 return -EIO;
4175
4176 spin_lock(&file_priv->mm.lock);
4177 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4178 if (time_after_eq(request->emitted_jiffies, recent_enough))
4179 break;
4180
4181 /*
4182 * Note that the request might not have been submitted yet.
4183 * In which case emitted_jiffies will be zero.
4184 */
4185 if (!request->emitted_jiffies)
4186 continue;
4187
4188 target = request;
4189 }
4190 if (target)
4191 i915_gem_request_reference(target);
4192 spin_unlock(&file_priv->mm.lock);
4193
4194 if (target == NULL)
4195 return 0;
4196
4197 ret = __i915_wait_request(target, true, NULL, NULL);
4198 if (ret == 0)
4199 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4200
4201 i915_gem_request_unreference__unlocked(target);
4202
4203 return ret;
4204 }
4205
4206 static bool
4207 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4208 {
4209 struct drm_i915_gem_object *obj = vma->obj;
4210
4211 if (alignment &&
4212 vma->node.start & (alignment - 1))
4213 return true;
4214
4215 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4216 return true;
4217
4218 if (flags & PIN_OFFSET_BIAS &&
4219 vma->node.start < (flags & PIN_OFFSET_MASK))
4220 return true;
4221
4222 if (flags & PIN_OFFSET_FIXED &&
4223 vma->node.start != (flags & PIN_OFFSET_MASK))
4224 return true;
4225
4226 return false;
4227 }
4228
4229 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4230 {
4231 struct drm_i915_gem_object *obj = vma->obj;
4232 bool mappable, fenceable;
4233 u32 fence_size, fence_alignment;
4234
4235 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4236 obj->base.size,
4237 obj->tiling_mode);
4238 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4239 obj->base.size,
4240 obj->tiling_mode,
4241 true);
4242
4243 fenceable = (vma->node.size == fence_size &&
4244 (vma->node.start & (fence_alignment - 1)) == 0);
4245
4246 mappable = (vma->node.start + fence_size <=
4247 to_i915(obj->base.dev)->ggtt.mappable_end);
4248
4249 obj->map_and_fenceable = mappable && fenceable;
4250 }
4251
4252 static int
4253 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4254 struct i915_address_space *vm,
4255 const struct i915_ggtt_view *ggtt_view,
4256 uint32_t alignment,
4257 uint64_t flags)
4258 {
4259 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4260 struct i915_vma *vma;
4261 unsigned bound;
4262 int ret;
4263
4264 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4265 return -ENODEV;
4266
4267 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4268 return -EINVAL;
4269
4270 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4271 return -EINVAL;
4272
4273 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4274 return -EINVAL;
4275
4276 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4277 i915_gem_obj_to_vma(obj, vm);
4278
4279 if (vma) {
4280 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4281 return -EBUSY;
4282
4283 if (i915_vma_misplaced(vma, alignment, flags)) {
4284 WARN(vma->pin_count,
4285 "bo is already pinned in %s with incorrect alignment:"
4286 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4287 " obj->map_and_fenceable=%d\n",
4288 ggtt_view ? "ggtt" : "ppgtt",
4289 upper_32_bits(vma->node.start),
4290 lower_32_bits(vma->node.start),
4291 alignment,
4292 !!(flags & PIN_MAPPABLE),
4293 obj->map_and_fenceable);
4294 ret = i915_vma_unbind(vma);
4295 if (ret)
4296 return ret;
4297
4298 vma = NULL;
4299 }
4300 }
4301
4302 bound = vma ? vma->bound : 0;
4303 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4304 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4305 flags);
4306 if (IS_ERR(vma))
4307 return PTR_ERR(vma);
4308 } else {
4309 ret = i915_vma_bind(vma, obj->cache_level, flags);
4310 if (ret)
4311 return ret;
4312 }
4313
4314 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4315 (bound ^ vma->bound) & GLOBAL_BIND) {
4316 __i915_vma_set_map_and_fenceable(vma);
4317 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4318 }
4319
4320 vma->pin_count++;
4321 return 0;
4322 }
4323
4324 int
4325 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4326 struct i915_address_space *vm,
4327 uint32_t alignment,
4328 uint64_t flags)
4329 {
4330 return i915_gem_object_do_pin(obj, vm,
4331 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4332 alignment, flags);
4333 }
4334
4335 int
4336 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4337 const struct i915_ggtt_view *view,
4338 uint32_t alignment,
4339 uint64_t flags)
4340 {
4341 struct drm_device *dev = obj->base.dev;
4342 struct drm_i915_private *dev_priv = to_i915(dev);
4343 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4344
4345 BUG_ON(!view);
4346
4347 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4348 alignment, flags | PIN_GLOBAL);
4349 }
4350
4351 void
4352 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4353 const struct i915_ggtt_view *view)
4354 {
4355 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4356
4357 WARN_ON(vma->pin_count == 0);
4358 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4359
4360 --vma->pin_count;
4361 }
4362
4363 int
4364 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4365 struct drm_file *file)
4366 {
4367 struct drm_i915_gem_busy *args = data;
4368 struct drm_i915_gem_object *obj;
4369 int ret;
4370
4371 ret = i915_mutex_lock_interruptible(dev);
4372 if (ret)
4373 return ret;
4374
4375 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4376 if (&obj->base == NULL) {
4377 ret = -ENOENT;
4378 goto unlock;
4379 }
4380
4381 /* Count all active objects as busy, even if they are currently not used
4382 * by the gpu. Users of this interface expect objects to eventually
4383 * become non-busy without any further actions, therefore emit any
4384 * necessary flushes here.
4385 */
4386 ret = i915_gem_object_flush_active(obj);
4387 if (ret)
4388 goto unref;
4389
4390 args->busy = 0;
4391 if (obj->active) {
4392 int i;
4393
4394 for (i = 0; i < I915_NUM_ENGINES; i++) {
4395 struct drm_i915_gem_request *req;
4396
4397 req = obj->last_read_req[i];
4398 if (req)
4399 args->busy |= 1 << (16 + req->engine->exec_id);
4400 }
4401 if (obj->last_write_req)
4402 args->busy |= obj->last_write_req->engine->exec_id;
4403 }
4404
4405 unref:
4406 drm_gem_object_unreference(&obj->base);
4407 unlock:
4408 mutex_unlock(&dev->struct_mutex);
4409 return ret;
4410 }
4411
4412 int
4413 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4414 struct drm_file *file_priv)
4415 {
4416 return i915_gem_ring_throttle(dev, file_priv);
4417 }
4418
4419 int
4420 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4421 struct drm_file *file_priv)
4422 {
4423 struct drm_i915_private *dev_priv = dev->dev_private;
4424 struct drm_i915_gem_madvise *args = data;
4425 struct drm_i915_gem_object *obj;
4426 int ret;
4427
4428 switch (args->madv) {
4429 case I915_MADV_DONTNEED:
4430 case I915_MADV_WILLNEED:
4431 break;
4432 default:
4433 return -EINVAL;
4434 }
4435
4436 ret = i915_mutex_lock_interruptible(dev);
4437 if (ret)
4438 return ret;
4439
4440 obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4441 if (&obj->base == NULL) {
4442 ret = -ENOENT;
4443 goto unlock;
4444 }
4445
4446 if (i915_gem_obj_is_pinned(obj)) {
4447 ret = -EINVAL;
4448 goto out;
4449 }
4450
4451 if (obj->pages &&
4452 obj->tiling_mode != I915_TILING_NONE &&
4453 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4454 if (obj->madv == I915_MADV_WILLNEED)
4455 i915_gem_object_unpin_pages(obj);
4456 if (args->madv == I915_MADV_WILLNEED)
4457 i915_gem_object_pin_pages(obj);
4458 }
4459
4460 if (obj->madv != __I915_MADV_PURGED)
4461 obj->madv = args->madv;
4462
4463 /* if the object is no longer attached, discard its backing storage */
4464 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4465 i915_gem_object_truncate(obj);
4466
4467 args->retained = obj->madv != __I915_MADV_PURGED;
4468
4469 out:
4470 drm_gem_object_unreference(&obj->base);
4471 unlock:
4472 mutex_unlock(&dev->struct_mutex);
4473 return ret;
4474 }
4475
4476 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4477 const struct drm_i915_gem_object_ops *ops)
4478 {
4479 int i;
4480
4481 INIT_LIST_HEAD(&obj->global_list);
4482 for (i = 0; i < I915_NUM_ENGINES; i++)
4483 INIT_LIST_HEAD(&obj->engine_list[i]);
4484 INIT_LIST_HEAD(&obj->obj_exec_link);
4485 INIT_LIST_HEAD(&obj->vma_list);
4486 INIT_LIST_HEAD(&obj->batch_pool_link);
4487
4488 obj->ops = ops;
4489
4490 obj->fence_reg = I915_FENCE_REG_NONE;
4491 obj->madv = I915_MADV_WILLNEED;
4492
4493 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4494 }
4495
4496 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4497 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4498 .get_pages = i915_gem_object_get_pages_gtt,
4499 .put_pages = i915_gem_object_put_pages_gtt,
4500 };
4501
4502 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4503 size_t size)
4504 {
4505 struct drm_i915_gem_object *obj;
4506 struct address_space *mapping;
4507 gfp_t mask;
4508
4509 obj = i915_gem_object_alloc(dev);
4510 if (obj == NULL)
4511 return NULL;
4512
4513 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4514 i915_gem_object_free(obj);
4515 return NULL;
4516 }
4517
4518 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4519 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4520 /* 965gm cannot relocate objects above 4GiB. */
4521 mask &= ~__GFP_HIGHMEM;
4522 mask |= __GFP_DMA32;
4523 }
4524
4525 mapping = file_inode(obj->base.filp)->i_mapping;
4526 mapping_set_gfp_mask(mapping, mask);
4527
4528 i915_gem_object_init(obj, &i915_gem_object_ops);
4529
4530 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4531 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4532
4533 if (HAS_LLC(dev)) {
4534 /* On some devices, we can have the GPU use the LLC (the CPU
4535 * cache) for about a 10% performance improvement
4536 * compared to uncached. Graphics requests other than
4537 * display scanout are coherent with the CPU in
4538 * accessing this cache. This means in this mode we
4539 * don't need to clflush on the CPU side, and on the
4540 * GPU side we only need to flush internal caches to
4541 * get data visible to the CPU.
4542 *
4543 * However, we maintain the display planes as UC, and so
4544 * need to rebind when first used as such.
4545 */
4546 obj->cache_level = I915_CACHE_LLC;
4547 } else
4548 obj->cache_level = I915_CACHE_NONE;
4549
4550 trace_i915_gem_object_create(obj);
4551
4552 return obj;
4553 }
4554
4555 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4556 {
4557 /* If we are the last user of the backing storage (be it shmemfs
4558 * pages or stolen etc), we know that the pages are going to be
4559 * immediately released. In this case, we can then skip copying
4560 * back the contents from the GPU.
4561 */
4562
4563 if (obj->madv != I915_MADV_WILLNEED)
4564 return false;
4565
4566 if (obj->base.filp == NULL)
4567 return true;
4568
4569 /* At first glance, this looks racy, but then again so would be
4570 * userspace racing mmap against close. However, the first external
4571 * reference to the filp can only be obtained through the
4572 * i915_gem_mmap_ioctl() which safeguards us against the user
4573 * acquiring such a reference whilst we are in the middle of
4574 * freeing the object.
4575 */
4576 return atomic_long_read(&obj->base.filp->f_count) == 1;
4577 }
4578
4579 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4580 {
4581 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4582 struct drm_device *dev = obj->base.dev;
4583 struct drm_i915_private *dev_priv = dev->dev_private;
4584 struct i915_vma *vma, *next;
4585
4586 intel_runtime_pm_get(dev_priv);
4587
4588 trace_i915_gem_object_destroy(obj);
4589
4590 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4591 int ret;
4592
4593 vma->pin_count = 0;
4594 ret = i915_vma_unbind(vma);
4595 if (WARN_ON(ret == -ERESTARTSYS)) {
4596 bool was_interruptible;
4597
4598 was_interruptible = dev_priv->mm.interruptible;
4599 dev_priv->mm.interruptible = false;
4600
4601 WARN_ON(i915_vma_unbind(vma));
4602
4603 dev_priv->mm.interruptible = was_interruptible;
4604 }
4605 }
4606
4607 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4608 * before progressing. */
4609 if (obj->stolen)
4610 i915_gem_object_unpin_pages(obj);
4611
4612 WARN_ON(obj->frontbuffer_bits);
4613
4614 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4615 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4616 obj->tiling_mode != I915_TILING_NONE)
4617 i915_gem_object_unpin_pages(obj);
4618
4619 if (WARN_ON(obj->pages_pin_count))
4620 obj->pages_pin_count = 0;
4621 if (discard_backing_storage(obj))
4622 obj->madv = I915_MADV_DONTNEED;
4623 i915_gem_object_put_pages(obj);
4624 i915_gem_object_free_mmap_offset(obj);
4625
4626 BUG_ON(obj->pages);
4627
4628 if (obj->base.import_attach)
4629 drm_prime_gem_destroy(&obj->base, NULL);
4630
4631 if (obj->ops->release)
4632 obj->ops->release(obj);
4633
4634 drm_gem_object_release(&obj->base);
4635 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4636
4637 kfree(obj->bit_17);
4638 i915_gem_object_free(obj);
4639
4640 intel_runtime_pm_put(dev_priv);
4641 }
4642
4643 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4644 struct i915_address_space *vm)
4645 {
4646 struct i915_vma *vma;
4647 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4648 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4649 vma->vm == vm)
4650 return vma;
4651 }
4652 return NULL;
4653 }
4654
4655 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4656 const struct i915_ggtt_view *view)
4657 {
4658 struct drm_device *dev = obj->base.dev;
4659 struct drm_i915_private *dev_priv = to_i915(dev);
4660 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4661 struct i915_vma *vma;
4662
4663 BUG_ON(!view);
4664
4665 list_for_each_entry(vma, &obj->vma_list, obj_link)
4666 if (vma->vm == &ggtt->base &&
4667 i915_ggtt_view_equal(&vma->ggtt_view, view))
4668 return vma;
4669 return NULL;
4670 }
4671
4672 void i915_gem_vma_destroy(struct i915_vma *vma)
4673 {
4674 WARN_ON(vma->node.allocated);
4675
4676 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4677 if (!list_empty(&vma->exec_list))
4678 return;
4679
4680 if (!vma->is_ggtt)
4681 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4682
4683 list_del(&vma->obj_link);
4684
4685 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4686 }
4687
4688 static void
4689 i915_gem_stop_engines(struct drm_device *dev)
4690 {
4691 struct drm_i915_private *dev_priv = dev->dev_private;
4692 struct intel_engine_cs *engine;
4693
4694 for_each_engine(engine, dev_priv)
4695 dev_priv->gt.stop_engine(engine);
4696 }
4697
4698 int
4699 i915_gem_suspend(struct drm_device *dev)
4700 {
4701 struct drm_i915_private *dev_priv = dev->dev_private;
4702 int ret = 0;
4703
4704 mutex_lock(&dev->struct_mutex);
4705 ret = i915_gpu_idle(dev);
4706 if (ret)
4707 goto err;
4708
4709 i915_gem_retire_requests(dev);
4710
4711 i915_gem_stop_engines(dev);
4712 mutex_unlock(&dev->struct_mutex);
4713
4714 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4715 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4716 flush_delayed_work(&dev_priv->mm.idle_work);
4717
4718 /* Assert that we sucessfully flushed all the work and
4719 * reset the GPU back to its idle, low power state.
4720 */
4721 WARN_ON(dev_priv->mm.busy);
4722
4723 return 0;
4724
4725 err:
4726 mutex_unlock(&dev->struct_mutex);
4727 return ret;
4728 }
4729
4730 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4731 {
4732 struct intel_engine_cs *engine = req->engine;
4733 struct drm_device *dev = engine->dev;
4734 struct drm_i915_private *dev_priv = dev->dev_private;
4735 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4736 int i, ret;
4737
4738 if (!HAS_L3_DPF(dev) || !remap_info)
4739 return 0;
4740
4741 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4742 if (ret)
4743 return ret;
4744
4745 /*
4746 * Note: We do not worry about the concurrent register cacheline hang
4747 * here because no other code should access these registers other than
4748 * at initialization time.
4749 */
4750 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4751 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4752 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4753 intel_ring_emit(engine, remap_info[i]);
4754 }
4755
4756 intel_ring_advance(engine);
4757
4758 return ret;
4759 }
4760
4761 void i915_gem_init_swizzling(struct drm_device *dev)
4762 {
4763 struct drm_i915_private *dev_priv = dev->dev_private;
4764
4765 if (INTEL_INFO(dev)->gen < 5 ||
4766 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4767 return;
4768
4769 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4770 DISP_TILE_SURFACE_SWIZZLING);
4771
4772 if (IS_GEN5(dev))
4773 return;
4774
4775 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4776 if (IS_GEN6(dev))
4777 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4778 else if (IS_GEN7(dev))
4779 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4780 else if (IS_GEN8(dev))
4781 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4782 else
4783 BUG();
4784 }
4785
4786 static void init_unused_ring(struct drm_device *dev, u32 base)
4787 {
4788 struct drm_i915_private *dev_priv = dev->dev_private;
4789
4790 I915_WRITE(RING_CTL(base), 0);
4791 I915_WRITE(RING_HEAD(base), 0);
4792 I915_WRITE(RING_TAIL(base), 0);
4793 I915_WRITE(RING_START(base), 0);
4794 }
4795
4796 static void init_unused_rings(struct drm_device *dev)
4797 {
4798 if (IS_I830(dev)) {
4799 init_unused_ring(dev, PRB1_BASE);
4800 init_unused_ring(dev, SRB0_BASE);
4801 init_unused_ring(dev, SRB1_BASE);
4802 init_unused_ring(dev, SRB2_BASE);
4803 init_unused_ring(dev, SRB3_BASE);
4804 } else if (IS_GEN2(dev)) {
4805 init_unused_ring(dev, SRB0_BASE);
4806 init_unused_ring(dev, SRB1_BASE);
4807 } else if (IS_GEN3(dev)) {
4808 init_unused_ring(dev, PRB1_BASE);
4809 init_unused_ring(dev, PRB2_BASE);
4810 }
4811 }
4812
4813 int i915_gem_init_engines(struct drm_device *dev)
4814 {
4815 struct drm_i915_private *dev_priv = dev->dev_private;
4816 int ret;
4817
4818 ret = intel_init_render_ring_buffer(dev);
4819 if (ret)
4820 return ret;
4821
4822 if (HAS_BSD(dev)) {
4823 ret = intel_init_bsd_ring_buffer(dev);
4824 if (ret)
4825 goto cleanup_render_ring;
4826 }
4827
4828 if (HAS_BLT(dev)) {
4829 ret = intel_init_blt_ring_buffer(dev);
4830 if (ret)
4831 goto cleanup_bsd_ring;
4832 }
4833
4834 if (HAS_VEBOX(dev)) {
4835 ret = intel_init_vebox_ring_buffer(dev);
4836 if (ret)
4837 goto cleanup_blt_ring;
4838 }
4839
4840 if (HAS_BSD2(dev)) {
4841 ret = intel_init_bsd2_ring_buffer(dev);
4842 if (ret)
4843 goto cleanup_vebox_ring;
4844 }
4845
4846 return 0;
4847
4848 cleanup_vebox_ring:
4849 intel_cleanup_engine(&dev_priv->engine[VECS]);
4850 cleanup_blt_ring:
4851 intel_cleanup_engine(&dev_priv->engine[BCS]);
4852 cleanup_bsd_ring:
4853 intel_cleanup_engine(&dev_priv->engine[VCS]);
4854 cleanup_render_ring:
4855 intel_cleanup_engine(&dev_priv->engine[RCS]);
4856
4857 return ret;
4858 }
4859
4860 int
4861 i915_gem_init_hw(struct drm_device *dev)
4862 {
4863 struct drm_i915_private *dev_priv = dev->dev_private;
4864 struct intel_engine_cs *engine;
4865 int ret, j;
4866
4867 /* Double layer security blanket, see i915_gem_init() */
4868 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4869
4870 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4871 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4872
4873 if (IS_HASWELL(dev))
4874 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4875 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4876
4877 if (HAS_PCH_NOP(dev)) {
4878 if (IS_IVYBRIDGE(dev)) {
4879 u32 temp = I915_READ(GEN7_MSG_CTL);
4880 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4881 I915_WRITE(GEN7_MSG_CTL, temp);
4882 } else if (INTEL_INFO(dev)->gen >= 7) {
4883 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4884 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4885 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4886 }
4887 }
4888
4889 i915_gem_init_swizzling(dev);
4890
4891 /*
4892 * At least 830 can leave some of the unused rings
4893 * "active" (ie. head != tail) after resume which
4894 * will prevent c3 entry. Makes sure all unused rings
4895 * are totally idle.
4896 */
4897 init_unused_rings(dev);
4898
4899 BUG_ON(!dev_priv->kernel_context);
4900
4901 ret = i915_ppgtt_init_hw(dev);
4902 if (ret) {
4903 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4904 goto out;
4905 }
4906
4907 /* Need to do basic initialisation of all rings first: */
4908 for_each_engine(engine, dev_priv) {
4909 ret = engine->init_hw(engine);
4910 if (ret)
4911 goto out;
4912 }
4913
4914 intel_mocs_init_l3cc_table(dev);
4915
4916 /* We can't enable contexts until all firmware is loaded */
4917 if (HAS_GUC_UCODE(dev)) {
4918 ret = intel_guc_ucode_load(dev);
4919 if (ret) {
4920 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4921 ret = -EIO;
4922 goto out;
4923 }
4924 }
4925
4926 /*
4927 * Increment the next seqno by 0x100 so we have a visible break
4928 * on re-initialisation
4929 */
4930 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4931 if (ret)
4932 goto out;
4933
4934 /* Now it is safe to go back round and do everything else: */
4935 for_each_engine(engine, dev_priv) {
4936 struct drm_i915_gem_request *req;
4937
4938 req = i915_gem_request_alloc(engine, NULL);
4939 if (IS_ERR(req)) {
4940 ret = PTR_ERR(req);
4941 break;
4942 }
4943
4944 if (engine->id == RCS) {
4945 for (j = 0; j < NUM_L3_SLICES(dev); j++) {
4946 ret = i915_gem_l3_remap(req, j);
4947 if (ret)
4948 goto err_request;
4949 }
4950 }
4951
4952 ret = i915_ppgtt_init_ring(req);
4953 if (ret)
4954 goto err_request;
4955
4956 ret = i915_gem_context_enable(req);
4957 if (ret)
4958 goto err_request;
4959
4960 err_request:
4961 i915_add_request_no_flush(req);
4962 if (ret) {
4963 DRM_ERROR("Failed to enable %s, error=%d\n",
4964 engine->name, ret);
4965 i915_gem_cleanup_engines(dev);
4966 break;
4967 }
4968 }
4969
4970 out:
4971 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4972 return ret;
4973 }
4974
4975 int i915_gem_init(struct drm_device *dev)
4976 {
4977 struct drm_i915_private *dev_priv = dev->dev_private;
4978 int ret;
4979
4980 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4981 i915.enable_execlists);
4982
4983 mutex_lock(&dev->struct_mutex);
4984
4985 if (!i915.enable_execlists) {
4986 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4987 dev_priv->gt.init_engines = i915_gem_init_engines;
4988 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4989 dev_priv->gt.stop_engine = intel_stop_engine;
4990 } else {
4991 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4992 dev_priv->gt.init_engines = intel_logical_rings_init;
4993 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4994 dev_priv->gt.stop_engine = intel_logical_ring_stop;
4995 }
4996
4997 /* This is just a security blanket to placate dragons.
4998 * On some systems, we very sporadically observe that the first TLBs
4999 * used by the CS may be stale, despite us poking the TLB reset. If
5000 * we hold the forcewake during initialisation these problems
5001 * just magically go away.
5002 */
5003 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5004
5005 ret = i915_gem_init_userptr(dev);
5006 if (ret)
5007 goto out_unlock;
5008
5009 i915_gem_init_ggtt(dev);
5010
5011 ret = i915_gem_context_init(dev);
5012 if (ret)
5013 goto out_unlock;
5014
5015 ret = dev_priv->gt.init_engines(dev);
5016 if (ret)
5017 goto out_unlock;
5018
5019 ret = i915_gem_init_hw(dev);
5020 if (ret == -EIO) {
5021 /* Allow ring initialisation to fail by marking the GPU as
5022 * wedged. But we only want to do this where the GPU is angry,
5023 * for all other failure, such as an allocation failure, bail.
5024 */
5025 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5026 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5027 ret = 0;
5028 }
5029
5030 out_unlock:
5031 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5032 mutex_unlock(&dev->struct_mutex);
5033
5034 return ret;
5035 }
5036
5037 void
5038 i915_gem_cleanup_engines(struct drm_device *dev)
5039 {
5040 struct drm_i915_private *dev_priv = dev->dev_private;
5041 struct intel_engine_cs *engine;
5042
5043 for_each_engine(engine, dev_priv)
5044 dev_priv->gt.cleanup_engine(engine);
5045
5046 if (i915.enable_execlists)
5047 /*
5048 * Neither the BIOS, ourselves or any other kernel
5049 * expects the system to be in execlists mode on startup,
5050 * so we need to reset the GPU back to legacy mode.
5051 */
5052 intel_gpu_reset(dev, ALL_ENGINES);
5053 }
5054
5055 static void
5056 init_engine_lists(struct intel_engine_cs *engine)
5057 {
5058 INIT_LIST_HEAD(&engine->active_list);
5059 INIT_LIST_HEAD(&engine->request_list);
5060 }
5061
5062 void
5063 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5064 {
5065 struct drm_device *dev = dev_priv->dev;
5066
5067 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5068 !IS_CHERRYVIEW(dev_priv))
5069 dev_priv->num_fence_regs = 32;
5070 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5071 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5072 dev_priv->num_fence_regs = 16;
5073 else
5074 dev_priv->num_fence_regs = 8;
5075
5076 if (intel_vgpu_active(dev))
5077 dev_priv->num_fence_regs =
5078 I915_READ(vgtif_reg(avail_rs.fence_num));
5079
5080 /* Initialize fence registers to zero */
5081 i915_gem_restore_fences(dev);
5082
5083 i915_gem_detect_bit_6_swizzle(dev);
5084 }
5085
5086 void
5087 i915_gem_load_init(struct drm_device *dev)
5088 {
5089 struct drm_i915_private *dev_priv = dev->dev_private;
5090 int i;
5091
5092 dev_priv->objects =
5093 kmem_cache_create("i915_gem_object",
5094 sizeof(struct drm_i915_gem_object), 0,
5095 SLAB_HWCACHE_ALIGN,
5096 NULL);
5097 dev_priv->vmas =
5098 kmem_cache_create("i915_gem_vma",
5099 sizeof(struct i915_vma), 0,
5100 SLAB_HWCACHE_ALIGN,
5101 NULL);
5102 dev_priv->requests =
5103 kmem_cache_create("i915_gem_request",
5104 sizeof(struct drm_i915_gem_request), 0,
5105 SLAB_HWCACHE_ALIGN,
5106 NULL);
5107
5108 INIT_LIST_HEAD(&dev_priv->vm_list);
5109 INIT_LIST_HEAD(&dev_priv->context_list);
5110 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5111 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5112 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5113 for (i = 0; i < I915_NUM_ENGINES; i++)
5114 init_engine_lists(&dev_priv->engine[i]);
5115 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5116 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5117 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5118 i915_gem_retire_work_handler);
5119 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5120 i915_gem_idle_work_handler);
5121 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5122
5123 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5124
5125 /*
5126 * Set initial sequence number for requests.
5127 * Using this number allows the wraparound to happen early,
5128 * catching any obvious problems.
5129 */
5130 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5131 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5132
5133 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5134
5135 init_waitqueue_head(&dev_priv->pending_flip_queue);
5136
5137 dev_priv->mm.interruptible = true;
5138
5139 mutex_init(&dev_priv->fb_tracking.lock);
5140 }
5141
5142 void i915_gem_load_cleanup(struct drm_device *dev)
5143 {
5144 struct drm_i915_private *dev_priv = to_i915(dev);
5145
5146 kmem_cache_destroy(dev_priv->requests);
5147 kmem_cache_destroy(dev_priv->vmas);
5148 kmem_cache_destroy(dev_priv->objects);
5149 }
5150
5151 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5152 {
5153 struct drm_i915_file_private *file_priv = file->driver_priv;
5154
5155 /* Clean up our request list when the client is going away, so that
5156 * later retire_requests won't dereference our soon-to-be-gone
5157 * file_priv.
5158 */
5159 spin_lock(&file_priv->mm.lock);
5160 while (!list_empty(&file_priv->mm.request_list)) {
5161 struct drm_i915_gem_request *request;
5162
5163 request = list_first_entry(&file_priv->mm.request_list,
5164 struct drm_i915_gem_request,
5165 client_list);
5166 list_del(&request->client_list);
5167 request->file_priv = NULL;
5168 }
5169 spin_unlock(&file_priv->mm.lock);
5170
5171 if (!list_empty(&file_priv->rps.link)) {
5172 spin_lock(&to_i915(dev)->rps.client_lock);
5173 list_del(&file_priv->rps.link);
5174 spin_unlock(&to_i915(dev)->rps.client_lock);
5175 }
5176 }
5177
5178 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5179 {
5180 struct drm_i915_file_private *file_priv;
5181 int ret;
5182
5183 DRM_DEBUG_DRIVER("\n");
5184
5185 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5186 if (!file_priv)
5187 return -ENOMEM;
5188
5189 file->driver_priv = file_priv;
5190 file_priv->dev_priv = dev->dev_private;
5191 file_priv->file = file;
5192 INIT_LIST_HEAD(&file_priv->rps.link);
5193
5194 spin_lock_init(&file_priv->mm.lock);
5195 INIT_LIST_HEAD(&file_priv->mm.request_list);
5196
5197 file_priv->bsd_ring = -1;
5198
5199 ret = i915_gem_context_open(dev, file);
5200 if (ret)
5201 kfree(file_priv);
5202
5203 return ret;
5204 }
5205
5206 /**
5207 * i915_gem_track_fb - update frontbuffer tracking
5208 * @old: current GEM buffer for the frontbuffer slots
5209 * @new: new GEM buffer for the frontbuffer slots
5210 * @frontbuffer_bits: bitmask of frontbuffer slots
5211 *
5212 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5213 * from @old and setting them in @new. Both @old and @new can be NULL.
5214 */
5215 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5216 struct drm_i915_gem_object *new,
5217 unsigned frontbuffer_bits)
5218 {
5219 if (old) {
5220 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5221 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5222 old->frontbuffer_bits &= ~frontbuffer_bits;
5223 }
5224
5225 if (new) {
5226 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5227 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5228 new->frontbuffer_bits |= frontbuffer_bits;
5229 }
5230 }
5231
5232 /* All the new VM stuff */
5233 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5234 struct i915_address_space *vm)
5235 {
5236 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5237 struct i915_vma *vma;
5238
5239 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5240
5241 list_for_each_entry(vma, &o->vma_list, obj_link) {
5242 if (vma->is_ggtt &&
5243 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5244 continue;
5245 if (vma->vm == vm)
5246 return vma->node.start;
5247 }
5248
5249 WARN(1, "%s vma for this object not found.\n",
5250 i915_is_ggtt(vm) ? "global" : "ppgtt");
5251 return -1;
5252 }
5253
5254 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5255 const struct i915_ggtt_view *view)
5256 {
5257 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5258 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5259 struct i915_vma *vma;
5260
5261 list_for_each_entry(vma, &o->vma_list, obj_link)
5262 if (vma->vm == &ggtt->base &&
5263 i915_ggtt_view_equal(&vma->ggtt_view, view))
5264 return vma->node.start;
5265
5266 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5267 return -1;
5268 }
5269
5270 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5271 struct i915_address_space *vm)
5272 {
5273 struct i915_vma *vma;
5274
5275 list_for_each_entry(vma, &o->vma_list, obj_link) {
5276 if (vma->is_ggtt &&
5277 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5278 continue;
5279 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5280 return true;
5281 }
5282
5283 return false;
5284 }
5285
5286 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5287 const struct i915_ggtt_view *view)
5288 {
5289 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5290 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5291 struct i915_vma *vma;
5292
5293 list_for_each_entry(vma, &o->vma_list, obj_link)
5294 if (vma->vm == &ggtt->base &&
5295 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5296 drm_mm_node_allocated(&vma->node))
5297 return true;
5298
5299 return false;
5300 }
5301
5302 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5303 {
5304 struct i915_vma *vma;
5305
5306 list_for_each_entry(vma, &o->vma_list, obj_link)
5307 if (drm_mm_node_allocated(&vma->node))
5308 return true;
5309
5310 return false;
5311 }
5312
5313 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5314 struct i915_address_space *vm)
5315 {
5316 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5317 struct i915_vma *vma;
5318
5319 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5320
5321 BUG_ON(list_empty(&o->vma_list));
5322
5323 list_for_each_entry(vma, &o->vma_list, obj_link) {
5324 if (vma->is_ggtt &&
5325 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5326 continue;
5327 if (vma->vm == vm)
5328 return vma->node.size;
5329 }
5330 return 0;
5331 }
5332
5333 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5334 {
5335 struct i915_vma *vma;
5336 list_for_each_entry(vma, &obj->vma_list, obj_link)
5337 if (vma->pin_count > 0)
5338 return true;
5339
5340 return false;
5341 }
5342
5343 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5344 struct page *
5345 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5346 {
5347 struct page *page;
5348
5349 /* Only default objects have per-page dirty tracking */
5350 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5351 return NULL;
5352
5353 page = i915_gem_object_get_page(obj, n);
5354 set_page_dirty(page);
5355 return page;
5356 }
5357
5358 /* Allocate a new GEM object and fill it with the supplied data */
5359 struct drm_i915_gem_object *
5360 i915_gem_object_create_from_data(struct drm_device *dev,
5361 const void *data, size_t size)
5362 {
5363 struct drm_i915_gem_object *obj;
5364 struct sg_table *sg;
5365 size_t bytes;
5366 int ret;
5367
5368 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5369 if (IS_ERR_OR_NULL(obj))
5370 return obj;
5371
5372 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5373 if (ret)
5374 goto fail;
5375
5376 ret = i915_gem_object_get_pages(obj);
5377 if (ret)
5378 goto fail;
5379
5380 i915_gem_object_pin_pages(obj);
5381 sg = obj->pages;
5382 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5383 obj->dirty = 1; /* Backing store is now out of date */
5384 i915_gem_object_unpin_pages(obj);
5385
5386 if (WARN_ON(bytes != size)) {
5387 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5388 ret = -EFAULT;
5389 goto fail;
5390 }
5391
5392 return obj;
5393
5394 fail:
5395 drm_gem_object_unreference(&obj->base);
5396 return ERR_PTR(ret);
5397 }
This page took 0.141606 seconds and 6 git commands to generate.