Merge branches 'release', 'bugzilla-12011', 'bugzilla-12632', 'misc' and 'suspend...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
37 static void
38 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
39 uint32_t read_domains,
40 uint32_t write_domain);
41 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
44 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
45 int write);
46 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
47 uint64_t offset,
48 uint64_t size);
49 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
50 static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
51 static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
52 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
56 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
57 static int i915_gem_evict_something(struct drm_device *dev);
58 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
59 struct drm_i915_gem_pwrite *args,
60 struct drm_file *file_priv);
61
62 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
63 unsigned long end)
64 {
65 drm_i915_private_t *dev_priv = dev->dev_private;
66
67 if (start >= end ||
68 (start & (PAGE_SIZE - 1)) != 0 ||
69 (end & (PAGE_SIZE - 1)) != 0) {
70 return -EINVAL;
71 }
72
73 drm_mm_init(&dev_priv->mm.gtt_space, start,
74 end - start);
75
76 dev->gtt_total = (uint32_t) (end - start);
77
78 return 0;
79 }
80
81 int
82 i915_gem_init_ioctl(struct drm_device *dev, void *data,
83 struct drm_file *file_priv)
84 {
85 struct drm_i915_gem_init *args = data;
86 int ret;
87
88 mutex_lock(&dev->struct_mutex);
89 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
90 mutex_unlock(&dev->struct_mutex);
91
92 return ret;
93 }
94
95 int
96 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
97 struct drm_file *file_priv)
98 {
99 struct drm_i915_gem_get_aperture *args = data;
100
101 if (!(dev->driver->driver_features & DRIVER_GEM))
102 return -ENODEV;
103
104 args->aper_size = dev->gtt_total;
105 args->aper_available_size = (args->aper_size -
106 atomic_read(&dev->pin_memory));
107
108 return 0;
109 }
110
111
112 /**
113 * Creates a new mm object and returns a handle to it.
114 */
115 int
116 i915_gem_create_ioctl(struct drm_device *dev, void *data,
117 struct drm_file *file_priv)
118 {
119 struct drm_i915_gem_create *args = data;
120 struct drm_gem_object *obj;
121 int handle, ret;
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 mutex_lock(&dev->struct_mutex);
132 drm_gem_object_handle_unreference(obj);
133 mutex_unlock(&dev->struct_mutex);
134
135 if (ret)
136 return ret;
137
138 args->handle = handle;
139
140 return 0;
141 }
142
143 /**
144 * Reads data from the object referenced by handle.
145 *
146 * On error, the contents of *data are undefined.
147 */
148 int
149 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file_priv)
151 {
152 struct drm_i915_gem_pread *args = data;
153 struct drm_gem_object *obj;
154 struct drm_i915_gem_object *obj_priv;
155 ssize_t read;
156 loff_t offset;
157 int ret;
158
159 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
160 if (obj == NULL)
161 return -EBADF;
162 obj_priv = obj->driver_private;
163
164 /* Bounds check source.
165 *
166 * XXX: This could use review for overflow issues...
167 */
168 if (args->offset > obj->size || args->size > obj->size ||
169 args->offset + args->size > obj->size) {
170 drm_gem_object_unreference(obj);
171 return -EINVAL;
172 }
173
174 mutex_lock(&dev->struct_mutex);
175
176 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
177 args->size);
178 if (ret != 0) {
179 drm_gem_object_unreference(obj);
180 mutex_unlock(&dev->struct_mutex);
181 return ret;
182 }
183
184 offset = args->offset;
185
186 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
187 args->size, &offset);
188 if (read != args->size) {
189 drm_gem_object_unreference(obj);
190 mutex_unlock(&dev->struct_mutex);
191 if (read < 0)
192 return read;
193 else
194 return -EINVAL;
195 }
196
197 drm_gem_object_unreference(obj);
198 mutex_unlock(&dev->struct_mutex);
199
200 return 0;
201 }
202
203 /* This is the fast write path which cannot handle
204 * page faults in the source data
205 */
206
207 static inline int
208 fast_user_write(struct io_mapping *mapping,
209 loff_t page_base, int page_offset,
210 char __user *user_data,
211 int length)
212 {
213 char *vaddr_atomic;
214 unsigned long unwritten;
215
216 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
217 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
218 user_data, length);
219 io_mapping_unmap_atomic(vaddr_atomic);
220 if (unwritten)
221 return -EFAULT;
222 return 0;
223 }
224
225 /* Here's the write path which can sleep for
226 * page faults
227 */
228
229 static inline int
230 slow_user_write(struct io_mapping *mapping,
231 loff_t page_base, int page_offset,
232 char __user *user_data,
233 int length)
234 {
235 char __iomem *vaddr;
236 unsigned long unwritten;
237
238 vaddr = io_mapping_map_wc(mapping, page_base);
239 if (vaddr == NULL)
240 return -EFAULT;
241 unwritten = __copy_from_user(vaddr + page_offset,
242 user_data, length);
243 io_mapping_unmap(vaddr);
244 if (unwritten)
245 return -EFAULT;
246 return 0;
247 }
248
249 static int
250 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
251 struct drm_i915_gem_pwrite *args,
252 struct drm_file *file_priv)
253 {
254 struct drm_i915_gem_object *obj_priv = obj->driver_private;
255 drm_i915_private_t *dev_priv = dev->dev_private;
256 ssize_t remain;
257 loff_t offset, page_base;
258 char __user *user_data;
259 int page_offset, page_length;
260 int ret;
261
262 user_data = (char __user *) (uintptr_t) args->data_ptr;
263 remain = args->size;
264 if (!access_ok(VERIFY_READ, user_data, remain))
265 return -EFAULT;
266
267
268 mutex_lock(&dev->struct_mutex);
269 ret = i915_gem_object_pin(obj, 0);
270 if (ret) {
271 mutex_unlock(&dev->struct_mutex);
272 return ret;
273 }
274 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
275 if (ret)
276 goto fail;
277
278 obj_priv = obj->driver_private;
279 offset = obj_priv->gtt_offset + args->offset;
280 obj_priv->dirty = 1;
281
282 while (remain > 0) {
283 /* Operation in this page
284 *
285 * page_base = page offset within aperture
286 * page_offset = offset within page
287 * page_length = bytes to copy for this page
288 */
289 page_base = (offset & ~(PAGE_SIZE-1));
290 page_offset = offset & (PAGE_SIZE-1);
291 page_length = remain;
292 if ((page_offset + remain) > PAGE_SIZE)
293 page_length = PAGE_SIZE - page_offset;
294
295 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
296 page_offset, user_data, page_length);
297
298 /* If we get a fault while copying data, then (presumably) our
299 * source page isn't available. In this case, use the
300 * non-atomic function
301 */
302 if (ret) {
303 ret = slow_user_write (dev_priv->mm.gtt_mapping,
304 page_base, page_offset,
305 user_data, page_length);
306 if (ret)
307 goto fail;
308 }
309
310 remain -= page_length;
311 user_data += page_length;
312 offset += page_length;
313 }
314
315 fail:
316 i915_gem_object_unpin(obj);
317 mutex_unlock(&dev->struct_mutex);
318
319 return ret;
320 }
321
322 static int
323 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
324 struct drm_i915_gem_pwrite *args,
325 struct drm_file *file_priv)
326 {
327 int ret;
328 loff_t offset;
329 ssize_t written;
330
331 mutex_lock(&dev->struct_mutex);
332
333 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
334 if (ret) {
335 mutex_unlock(&dev->struct_mutex);
336 return ret;
337 }
338
339 offset = args->offset;
340
341 written = vfs_write(obj->filp,
342 (char __user *)(uintptr_t) args->data_ptr,
343 args->size, &offset);
344 if (written != args->size) {
345 mutex_unlock(&dev->struct_mutex);
346 if (written < 0)
347 return written;
348 else
349 return -EINVAL;
350 }
351
352 mutex_unlock(&dev->struct_mutex);
353
354 return 0;
355 }
356
357 /**
358 * Writes data to the object referenced by handle.
359 *
360 * On error, the contents of the buffer that were to be modified are undefined.
361 */
362 int
363 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
364 struct drm_file *file_priv)
365 {
366 struct drm_i915_gem_pwrite *args = data;
367 struct drm_gem_object *obj;
368 struct drm_i915_gem_object *obj_priv;
369 int ret = 0;
370
371 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
372 if (obj == NULL)
373 return -EBADF;
374 obj_priv = obj->driver_private;
375
376 /* Bounds check destination.
377 *
378 * XXX: This could use review for overflow issues...
379 */
380 if (args->offset > obj->size || args->size > obj->size ||
381 args->offset + args->size > obj->size) {
382 drm_gem_object_unreference(obj);
383 return -EINVAL;
384 }
385
386 /* We can only do the GTT pwrite on untiled buffers, as otherwise
387 * it would end up going through the fenced access, and we'll get
388 * different detiling behavior between reading and writing.
389 * pread/pwrite currently are reading and writing from the CPU
390 * perspective, requiring manual detiling by the client.
391 */
392 if (obj_priv->phys_obj)
393 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
394 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
395 dev->gtt_total != 0)
396 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
397 else
398 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
399
400 #if WATCH_PWRITE
401 if (ret)
402 DRM_INFO("pwrite failed %d\n", ret);
403 #endif
404
405 drm_gem_object_unreference(obj);
406
407 return ret;
408 }
409
410 /**
411 * Called when user space prepares to use an object with the CPU, either
412 * through the mmap ioctl's mapping or a GTT mapping.
413 */
414 int
415 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
416 struct drm_file *file_priv)
417 {
418 struct drm_i915_gem_set_domain *args = data;
419 struct drm_gem_object *obj;
420 uint32_t read_domains = args->read_domains;
421 uint32_t write_domain = args->write_domain;
422 int ret;
423
424 if (!(dev->driver->driver_features & DRIVER_GEM))
425 return -ENODEV;
426
427 /* Only handle setting domains to types used by the CPU. */
428 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
429 return -EINVAL;
430
431 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
432 return -EINVAL;
433
434 /* Having something in the write domain implies it's in the read
435 * domain, and only that read domain. Enforce that in the request.
436 */
437 if (write_domain != 0 && read_domains != write_domain)
438 return -EINVAL;
439
440 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
441 if (obj == NULL)
442 return -EBADF;
443
444 mutex_lock(&dev->struct_mutex);
445 #if WATCH_BUF
446 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
447 obj, obj->size, read_domains, write_domain);
448 #endif
449 if (read_domains & I915_GEM_DOMAIN_GTT) {
450 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
451
452 /* Silently promote "you're not bound, there was nothing to do"
453 * to success, since the client was just asking us to
454 * make sure everything was done.
455 */
456 if (ret == -EINVAL)
457 ret = 0;
458 } else {
459 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
460 }
461
462 drm_gem_object_unreference(obj);
463 mutex_unlock(&dev->struct_mutex);
464 return ret;
465 }
466
467 /**
468 * Called when user space has done writes to this buffer
469 */
470 int
471 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
472 struct drm_file *file_priv)
473 {
474 struct drm_i915_gem_sw_finish *args = data;
475 struct drm_gem_object *obj;
476 struct drm_i915_gem_object *obj_priv;
477 int ret = 0;
478
479 if (!(dev->driver->driver_features & DRIVER_GEM))
480 return -ENODEV;
481
482 mutex_lock(&dev->struct_mutex);
483 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
484 if (obj == NULL) {
485 mutex_unlock(&dev->struct_mutex);
486 return -EBADF;
487 }
488
489 #if WATCH_BUF
490 DRM_INFO("%s: sw_finish %d (%p %d)\n",
491 __func__, args->handle, obj, obj->size);
492 #endif
493 obj_priv = obj->driver_private;
494
495 /* Pinned buffers may be scanout, so flush the cache */
496 if (obj_priv->pin_count)
497 i915_gem_object_flush_cpu_write_domain(obj);
498
499 drm_gem_object_unreference(obj);
500 mutex_unlock(&dev->struct_mutex);
501 return ret;
502 }
503
504 /**
505 * Maps the contents of an object, returning the address it is mapped
506 * into.
507 *
508 * While the mapping holds a reference on the contents of the object, it doesn't
509 * imply a ref on the object itself.
510 */
511 int
512 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
513 struct drm_file *file_priv)
514 {
515 struct drm_i915_gem_mmap *args = data;
516 struct drm_gem_object *obj;
517 loff_t offset;
518 unsigned long addr;
519
520 if (!(dev->driver->driver_features & DRIVER_GEM))
521 return -ENODEV;
522
523 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
524 if (obj == NULL)
525 return -EBADF;
526
527 offset = args->offset;
528
529 down_write(&current->mm->mmap_sem);
530 addr = do_mmap(obj->filp, 0, args->size,
531 PROT_READ | PROT_WRITE, MAP_SHARED,
532 args->offset);
533 up_write(&current->mm->mmap_sem);
534 mutex_lock(&dev->struct_mutex);
535 drm_gem_object_unreference(obj);
536 mutex_unlock(&dev->struct_mutex);
537 if (IS_ERR((void *)addr))
538 return addr;
539
540 args->addr_ptr = (uint64_t) addr;
541
542 return 0;
543 }
544
545 /**
546 * i915_gem_fault - fault a page into the GTT
547 * vma: VMA in question
548 * vmf: fault info
549 *
550 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
551 * from userspace. The fault handler takes care of binding the object to
552 * the GTT (if needed), allocating and programming a fence register (again,
553 * only if needed based on whether the old reg is still valid or the object
554 * is tiled) and inserting a new PTE into the faulting process.
555 *
556 * Note that the faulting process may involve evicting existing objects
557 * from the GTT and/or fence registers to make room. So performance may
558 * suffer if the GTT working set is large or there are few fence registers
559 * left.
560 */
561 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
562 {
563 struct drm_gem_object *obj = vma->vm_private_data;
564 struct drm_device *dev = obj->dev;
565 struct drm_i915_private *dev_priv = dev->dev_private;
566 struct drm_i915_gem_object *obj_priv = obj->driver_private;
567 pgoff_t page_offset;
568 unsigned long pfn;
569 int ret = 0;
570 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
571
572 /* We don't use vmf->pgoff since that has the fake offset */
573 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
574 PAGE_SHIFT;
575
576 /* Now bind it into the GTT if needed */
577 mutex_lock(&dev->struct_mutex);
578 if (!obj_priv->gtt_space) {
579 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
580 if (ret) {
581 mutex_unlock(&dev->struct_mutex);
582 return VM_FAULT_SIGBUS;
583 }
584 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
585 }
586
587 /* Need a new fence register? */
588 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
589 obj_priv->tiling_mode != I915_TILING_NONE) {
590 ret = i915_gem_object_get_fence_reg(obj, write);
591 if (ret) {
592 mutex_unlock(&dev->struct_mutex);
593 return VM_FAULT_SIGBUS;
594 }
595 }
596
597 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
598 page_offset;
599
600 /* Finally, remap it using the new GTT offset */
601 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
602
603 mutex_unlock(&dev->struct_mutex);
604
605 switch (ret) {
606 case -ENOMEM:
607 case -EAGAIN:
608 return VM_FAULT_OOM;
609 case -EFAULT:
610 return VM_FAULT_SIGBUS;
611 default:
612 return VM_FAULT_NOPAGE;
613 }
614 }
615
616 /**
617 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
618 * @obj: obj in question
619 *
620 * GEM memory mapping works by handing back to userspace a fake mmap offset
621 * it can use in a subsequent mmap(2) call. The DRM core code then looks
622 * up the object based on the offset and sets up the various memory mapping
623 * structures.
624 *
625 * This routine allocates and attaches a fake offset for @obj.
626 */
627 static int
628 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
629 {
630 struct drm_device *dev = obj->dev;
631 struct drm_gem_mm *mm = dev->mm_private;
632 struct drm_i915_gem_object *obj_priv = obj->driver_private;
633 struct drm_map_list *list;
634 struct drm_map *map;
635 int ret = 0;
636
637 /* Set the object up for mmap'ing */
638 list = &obj->map_list;
639 list->map = drm_calloc(1, sizeof(struct drm_map_list),
640 DRM_MEM_DRIVER);
641 if (!list->map)
642 return -ENOMEM;
643
644 map = list->map;
645 map->type = _DRM_GEM;
646 map->size = obj->size;
647 map->handle = obj;
648
649 /* Get a DRM GEM mmap offset allocated... */
650 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
651 obj->size / PAGE_SIZE, 0, 0);
652 if (!list->file_offset_node) {
653 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
654 ret = -ENOMEM;
655 goto out_free_list;
656 }
657
658 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
659 obj->size / PAGE_SIZE, 0);
660 if (!list->file_offset_node) {
661 ret = -ENOMEM;
662 goto out_free_list;
663 }
664
665 list->hash.key = list->file_offset_node->start;
666 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
667 DRM_ERROR("failed to add to map hash\n");
668 goto out_free_mm;
669 }
670
671 /* By now we should be all set, any drm_mmap request on the offset
672 * below will get to our mmap & fault handler */
673 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
674
675 return 0;
676
677 out_free_mm:
678 drm_mm_put_block(list->file_offset_node);
679 out_free_list:
680 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
681
682 return ret;
683 }
684
685 static void
686 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
687 {
688 struct drm_device *dev = obj->dev;
689 struct drm_i915_gem_object *obj_priv = obj->driver_private;
690 struct drm_gem_mm *mm = dev->mm_private;
691 struct drm_map_list *list;
692
693 list = &obj->map_list;
694 drm_ht_remove_item(&mm->offset_hash, &list->hash);
695
696 if (list->file_offset_node) {
697 drm_mm_put_block(list->file_offset_node);
698 list->file_offset_node = NULL;
699 }
700
701 if (list->map) {
702 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
703 list->map = NULL;
704 }
705
706 obj_priv->mmap_offset = 0;
707 }
708
709 /**
710 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
711 * @obj: object to check
712 *
713 * Return the required GTT alignment for an object, taking into account
714 * potential fence register mapping if needed.
715 */
716 static uint32_t
717 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
718 {
719 struct drm_device *dev = obj->dev;
720 struct drm_i915_gem_object *obj_priv = obj->driver_private;
721 int start, i;
722
723 /*
724 * Minimum alignment is 4k (GTT page size), but might be greater
725 * if a fence register is needed for the object.
726 */
727 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
728 return 4096;
729
730 /*
731 * Previous chips need to be aligned to the size of the smallest
732 * fence register that can contain the object.
733 */
734 if (IS_I9XX(dev))
735 start = 1024*1024;
736 else
737 start = 512*1024;
738
739 for (i = start; i < obj->size; i <<= 1)
740 ;
741
742 return i;
743 }
744
745 /**
746 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
747 * @dev: DRM device
748 * @data: GTT mapping ioctl data
749 * @file_priv: GEM object info
750 *
751 * Simply returns the fake offset to userspace so it can mmap it.
752 * The mmap call will end up in drm_gem_mmap(), which will set things
753 * up so we can get faults in the handler above.
754 *
755 * The fault handler will take care of binding the object into the GTT
756 * (since it may have been evicted to make room for something), allocating
757 * a fence register, and mapping the appropriate aperture address into
758 * userspace.
759 */
760 int
761 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
762 struct drm_file *file_priv)
763 {
764 struct drm_i915_gem_mmap_gtt *args = data;
765 struct drm_i915_private *dev_priv = dev->dev_private;
766 struct drm_gem_object *obj;
767 struct drm_i915_gem_object *obj_priv;
768 int ret;
769
770 if (!(dev->driver->driver_features & DRIVER_GEM))
771 return -ENODEV;
772
773 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
774 if (obj == NULL)
775 return -EBADF;
776
777 mutex_lock(&dev->struct_mutex);
778
779 obj_priv = obj->driver_private;
780
781 if (!obj_priv->mmap_offset) {
782 ret = i915_gem_create_mmap_offset(obj);
783 if (ret) {
784 drm_gem_object_unreference(obj);
785 mutex_unlock(&dev->struct_mutex);
786 return ret;
787 }
788 }
789
790 args->offset = obj_priv->mmap_offset;
791
792 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
793
794 /* Make sure the alignment is correct for fence regs etc */
795 if (obj_priv->agp_mem &&
796 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
797 drm_gem_object_unreference(obj);
798 mutex_unlock(&dev->struct_mutex);
799 return -EINVAL;
800 }
801
802 /*
803 * Pull it into the GTT so that we have a page list (makes the
804 * initial fault faster and any subsequent flushing possible).
805 */
806 if (!obj_priv->agp_mem) {
807 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
808 if (ret) {
809 drm_gem_object_unreference(obj);
810 mutex_unlock(&dev->struct_mutex);
811 return ret;
812 }
813 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
814 }
815
816 drm_gem_object_unreference(obj);
817 mutex_unlock(&dev->struct_mutex);
818
819 return 0;
820 }
821
822 static void
823 i915_gem_object_free_page_list(struct drm_gem_object *obj)
824 {
825 struct drm_i915_gem_object *obj_priv = obj->driver_private;
826 int page_count = obj->size / PAGE_SIZE;
827 int i;
828
829 if (obj_priv->page_list == NULL)
830 return;
831
832
833 for (i = 0; i < page_count; i++)
834 if (obj_priv->page_list[i] != NULL) {
835 if (obj_priv->dirty)
836 set_page_dirty(obj_priv->page_list[i]);
837 mark_page_accessed(obj_priv->page_list[i]);
838 page_cache_release(obj_priv->page_list[i]);
839 }
840 obj_priv->dirty = 0;
841
842 drm_free(obj_priv->page_list,
843 page_count * sizeof(struct page *),
844 DRM_MEM_DRIVER);
845 obj_priv->page_list = NULL;
846 }
847
848 static void
849 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
850 {
851 struct drm_device *dev = obj->dev;
852 drm_i915_private_t *dev_priv = dev->dev_private;
853 struct drm_i915_gem_object *obj_priv = obj->driver_private;
854
855 /* Add a reference if we're newly entering the active list. */
856 if (!obj_priv->active) {
857 drm_gem_object_reference(obj);
858 obj_priv->active = 1;
859 }
860 /* Move from whatever list we were on to the tail of execution. */
861 list_move_tail(&obj_priv->list,
862 &dev_priv->mm.active_list);
863 obj_priv->last_rendering_seqno = seqno;
864 }
865
866 static void
867 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
868 {
869 struct drm_device *dev = obj->dev;
870 drm_i915_private_t *dev_priv = dev->dev_private;
871 struct drm_i915_gem_object *obj_priv = obj->driver_private;
872
873 BUG_ON(!obj_priv->active);
874 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
875 obj_priv->last_rendering_seqno = 0;
876 }
877
878 static void
879 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
880 {
881 struct drm_device *dev = obj->dev;
882 drm_i915_private_t *dev_priv = dev->dev_private;
883 struct drm_i915_gem_object *obj_priv = obj->driver_private;
884
885 i915_verify_inactive(dev, __FILE__, __LINE__);
886 if (obj_priv->pin_count != 0)
887 list_del_init(&obj_priv->list);
888 else
889 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
890
891 obj_priv->last_rendering_seqno = 0;
892 if (obj_priv->active) {
893 obj_priv->active = 0;
894 drm_gem_object_unreference(obj);
895 }
896 i915_verify_inactive(dev, __FILE__, __LINE__);
897 }
898
899 /**
900 * Creates a new sequence number, emitting a write of it to the status page
901 * plus an interrupt, which will trigger i915_user_interrupt_handler.
902 *
903 * Must be called with struct_lock held.
904 *
905 * Returned sequence numbers are nonzero on success.
906 */
907 static uint32_t
908 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
909 {
910 drm_i915_private_t *dev_priv = dev->dev_private;
911 struct drm_i915_gem_request *request;
912 uint32_t seqno;
913 int was_empty;
914 RING_LOCALS;
915
916 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
917 if (request == NULL)
918 return 0;
919
920 /* Grab the seqno we're going to make this request be, and bump the
921 * next (skipping 0 so it can be the reserved no-seqno value).
922 */
923 seqno = dev_priv->mm.next_gem_seqno;
924 dev_priv->mm.next_gem_seqno++;
925 if (dev_priv->mm.next_gem_seqno == 0)
926 dev_priv->mm.next_gem_seqno++;
927
928 BEGIN_LP_RING(4);
929 OUT_RING(MI_STORE_DWORD_INDEX);
930 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
931 OUT_RING(seqno);
932
933 OUT_RING(MI_USER_INTERRUPT);
934 ADVANCE_LP_RING();
935
936 DRM_DEBUG("%d\n", seqno);
937
938 request->seqno = seqno;
939 request->emitted_jiffies = jiffies;
940 was_empty = list_empty(&dev_priv->mm.request_list);
941 list_add_tail(&request->list, &dev_priv->mm.request_list);
942
943 /* Associate any objects on the flushing list matching the write
944 * domain we're flushing with our flush.
945 */
946 if (flush_domains != 0) {
947 struct drm_i915_gem_object *obj_priv, *next;
948
949 list_for_each_entry_safe(obj_priv, next,
950 &dev_priv->mm.flushing_list, list) {
951 struct drm_gem_object *obj = obj_priv->obj;
952
953 if ((obj->write_domain & flush_domains) ==
954 obj->write_domain) {
955 obj->write_domain = 0;
956 i915_gem_object_move_to_active(obj, seqno);
957 }
958 }
959
960 }
961
962 if (was_empty && !dev_priv->mm.suspended)
963 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
964 return seqno;
965 }
966
967 /**
968 * Command execution barrier
969 *
970 * Ensures that all commands in the ring are finished
971 * before signalling the CPU
972 */
973 static uint32_t
974 i915_retire_commands(struct drm_device *dev)
975 {
976 drm_i915_private_t *dev_priv = dev->dev_private;
977 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
978 uint32_t flush_domains = 0;
979 RING_LOCALS;
980
981 /* The sampler always gets flushed on i965 (sigh) */
982 if (IS_I965G(dev))
983 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
984 BEGIN_LP_RING(2);
985 OUT_RING(cmd);
986 OUT_RING(0); /* noop */
987 ADVANCE_LP_RING();
988 return flush_domains;
989 }
990
991 /**
992 * Moves buffers associated only with the given active seqno from the active
993 * to inactive list, potentially freeing them.
994 */
995 static void
996 i915_gem_retire_request(struct drm_device *dev,
997 struct drm_i915_gem_request *request)
998 {
999 drm_i915_private_t *dev_priv = dev->dev_private;
1000
1001 /* Move any buffers on the active list that are no longer referenced
1002 * by the ringbuffer to the flushing/inactive lists as appropriate.
1003 */
1004 while (!list_empty(&dev_priv->mm.active_list)) {
1005 struct drm_gem_object *obj;
1006 struct drm_i915_gem_object *obj_priv;
1007
1008 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1009 struct drm_i915_gem_object,
1010 list);
1011 obj = obj_priv->obj;
1012
1013 /* If the seqno being retired doesn't match the oldest in the
1014 * list, then the oldest in the list must still be newer than
1015 * this seqno.
1016 */
1017 if (obj_priv->last_rendering_seqno != request->seqno)
1018 return;
1019
1020 #if WATCH_LRU
1021 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1022 __func__, request->seqno, obj);
1023 #endif
1024
1025 if (obj->write_domain != 0)
1026 i915_gem_object_move_to_flushing(obj);
1027 else
1028 i915_gem_object_move_to_inactive(obj);
1029 }
1030 }
1031
1032 /**
1033 * Returns true if seq1 is later than seq2.
1034 */
1035 static int
1036 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1037 {
1038 return (int32_t)(seq1 - seq2) >= 0;
1039 }
1040
1041 uint32_t
1042 i915_get_gem_seqno(struct drm_device *dev)
1043 {
1044 drm_i915_private_t *dev_priv = dev->dev_private;
1045
1046 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1047 }
1048
1049 /**
1050 * This function clears the request list as sequence numbers are passed.
1051 */
1052 void
1053 i915_gem_retire_requests(struct drm_device *dev)
1054 {
1055 drm_i915_private_t *dev_priv = dev->dev_private;
1056 uint32_t seqno;
1057
1058 seqno = i915_get_gem_seqno(dev);
1059
1060 while (!list_empty(&dev_priv->mm.request_list)) {
1061 struct drm_i915_gem_request *request;
1062 uint32_t retiring_seqno;
1063
1064 request = list_first_entry(&dev_priv->mm.request_list,
1065 struct drm_i915_gem_request,
1066 list);
1067 retiring_seqno = request->seqno;
1068
1069 if (i915_seqno_passed(seqno, retiring_seqno) ||
1070 dev_priv->mm.wedged) {
1071 i915_gem_retire_request(dev, request);
1072
1073 list_del(&request->list);
1074 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1075 } else
1076 break;
1077 }
1078 }
1079
1080 void
1081 i915_gem_retire_work_handler(struct work_struct *work)
1082 {
1083 drm_i915_private_t *dev_priv;
1084 struct drm_device *dev;
1085
1086 dev_priv = container_of(work, drm_i915_private_t,
1087 mm.retire_work.work);
1088 dev = dev_priv->dev;
1089
1090 mutex_lock(&dev->struct_mutex);
1091 i915_gem_retire_requests(dev);
1092 if (!dev_priv->mm.suspended &&
1093 !list_empty(&dev_priv->mm.request_list))
1094 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1095 mutex_unlock(&dev->struct_mutex);
1096 }
1097
1098 /**
1099 * Waits for a sequence number to be signaled, and cleans up the
1100 * request and object lists appropriately for that event.
1101 */
1102 static int
1103 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1104 {
1105 drm_i915_private_t *dev_priv = dev->dev_private;
1106 int ret = 0;
1107
1108 BUG_ON(seqno == 0);
1109
1110 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1111 dev_priv->mm.waiting_gem_seqno = seqno;
1112 i915_user_irq_get(dev);
1113 ret = wait_event_interruptible(dev_priv->irq_queue,
1114 i915_seqno_passed(i915_get_gem_seqno(dev),
1115 seqno) ||
1116 dev_priv->mm.wedged);
1117 i915_user_irq_put(dev);
1118 dev_priv->mm.waiting_gem_seqno = 0;
1119 }
1120 if (dev_priv->mm.wedged)
1121 ret = -EIO;
1122
1123 if (ret && ret != -ERESTARTSYS)
1124 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1125 __func__, ret, seqno, i915_get_gem_seqno(dev));
1126
1127 /* Directly dispatch request retiring. While we have the work queue
1128 * to handle this, the waiter on a request often wants an associated
1129 * buffer to have made it to the inactive list, and we would need
1130 * a separate wait queue to handle that.
1131 */
1132 if (ret == 0)
1133 i915_gem_retire_requests(dev);
1134
1135 return ret;
1136 }
1137
1138 static void
1139 i915_gem_flush(struct drm_device *dev,
1140 uint32_t invalidate_domains,
1141 uint32_t flush_domains)
1142 {
1143 drm_i915_private_t *dev_priv = dev->dev_private;
1144 uint32_t cmd;
1145 RING_LOCALS;
1146
1147 #if WATCH_EXEC
1148 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1149 invalidate_domains, flush_domains);
1150 #endif
1151
1152 if (flush_domains & I915_GEM_DOMAIN_CPU)
1153 drm_agp_chipset_flush(dev);
1154
1155 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1156 I915_GEM_DOMAIN_GTT)) {
1157 /*
1158 * read/write caches:
1159 *
1160 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1161 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1162 * also flushed at 2d versus 3d pipeline switches.
1163 *
1164 * read-only caches:
1165 *
1166 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1167 * MI_READ_FLUSH is set, and is always flushed on 965.
1168 *
1169 * I915_GEM_DOMAIN_COMMAND may not exist?
1170 *
1171 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1172 * invalidated when MI_EXE_FLUSH is set.
1173 *
1174 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1175 * invalidated with every MI_FLUSH.
1176 *
1177 * TLBs:
1178 *
1179 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1180 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1181 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1182 * are flushed at any MI_FLUSH.
1183 */
1184
1185 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1186 if ((invalidate_domains|flush_domains) &
1187 I915_GEM_DOMAIN_RENDER)
1188 cmd &= ~MI_NO_WRITE_FLUSH;
1189 if (!IS_I965G(dev)) {
1190 /*
1191 * On the 965, the sampler cache always gets flushed
1192 * and this bit is reserved.
1193 */
1194 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1195 cmd |= MI_READ_FLUSH;
1196 }
1197 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1198 cmd |= MI_EXE_FLUSH;
1199
1200 #if WATCH_EXEC
1201 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1202 #endif
1203 BEGIN_LP_RING(2);
1204 OUT_RING(cmd);
1205 OUT_RING(0); /* noop */
1206 ADVANCE_LP_RING();
1207 }
1208 }
1209
1210 /**
1211 * Ensures that all rendering to the object has completed and the object is
1212 * safe to unbind from the GTT or access from the CPU.
1213 */
1214 static int
1215 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1216 {
1217 struct drm_device *dev = obj->dev;
1218 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1219 int ret;
1220
1221 /* This function only exists to support waiting for existing rendering,
1222 * not for emitting required flushes.
1223 */
1224 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1225
1226 /* If there is rendering queued on the buffer being evicted, wait for
1227 * it.
1228 */
1229 if (obj_priv->active) {
1230 #if WATCH_BUF
1231 DRM_INFO("%s: object %p wait for seqno %08x\n",
1232 __func__, obj, obj_priv->last_rendering_seqno);
1233 #endif
1234 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1235 if (ret != 0)
1236 return ret;
1237 }
1238
1239 return 0;
1240 }
1241
1242 /**
1243 * Unbinds an object from the GTT aperture.
1244 */
1245 int
1246 i915_gem_object_unbind(struct drm_gem_object *obj)
1247 {
1248 struct drm_device *dev = obj->dev;
1249 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1250 loff_t offset;
1251 int ret = 0;
1252
1253 #if WATCH_BUF
1254 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1255 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1256 #endif
1257 if (obj_priv->gtt_space == NULL)
1258 return 0;
1259
1260 if (obj_priv->pin_count != 0) {
1261 DRM_ERROR("Attempting to unbind pinned buffer\n");
1262 return -EINVAL;
1263 }
1264
1265 /* Move the object to the CPU domain to ensure that
1266 * any possible CPU writes while it's not in the GTT
1267 * are flushed when we go to remap it. This will
1268 * also ensure that all pending GPU writes are finished
1269 * before we unbind.
1270 */
1271 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1272 if (ret) {
1273 if (ret != -ERESTARTSYS)
1274 DRM_ERROR("set_domain failed: %d\n", ret);
1275 return ret;
1276 }
1277
1278 if (obj_priv->agp_mem != NULL) {
1279 drm_unbind_agp(obj_priv->agp_mem);
1280 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1281 obj_priv->agp_mem = NULL;
1282 }
1283
1284 BUG_ON(obj_priv->active);
1285
1286 /* blow away mappings if mapped through GTT */
1287 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1288 if (dev->dev_mapping)
1289 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1290
1291 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1292 i915_gem_clear_fence_reg(obj);
1293
1294 i915_gem_object_free_page_list(obj);
1295
1296 if (obj_priv->gtt_space) {
1297 atomic_dec(&dev->gtt_count);
1298 atomic_sub(obj->size, &dev->gtt_memory);
1299
1300 drm_mm_put_block(obj_priv->gtt_space);
1301 obj_priv->gtt_space = NULL;
1302 }
1303
1304 /* Remove ourselves from the LRU list if present. */
1305 if (!list_empty(&obj_priv->list))
1306 list_del_init(&obj_priv->list);
1307
1308 return 0;
1309 }
1310
1311 static int
1312 i915_gem_evict_something(struct drm_device *dev)
1313 {
1314 drm_i915_private_t *dev_priv = dev->dev_private;
1315 struct drm_gem_object *obj;
1316 struct drm_i915_gem_object *obj_priv;
1317 int ret = 0;
1318
1319 for (;;) {
1320 /* If there's an inactive buffer available now, grab it
1321 * and be done.
1322 */
1323 if (!list_empty(&dev_priv->mm.inactive_list)) {
1324 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1325 struct drm_i915_gem_object,
1326 list);
1327 obj = obj_priv->obj;
1328 BUG_ON(obj_priv->pin_count != 0);
1329 #if WATCH_LRU
1330 DRM_INFO("%s: evicting %p\n", __func__, obj);
1331 #endif
1332 BUG_ON(obj_priv->active);
1333
1334 /* Wait on the rendering and unbind the buffer. */
1335 ret = i915_gem_object_unbind(obj);
1336 break;
1337 }
1338
1339 /* If we didn't get anything, but the ring is still processing
1340 * things, wait for one of those things to finish and hopefully
1341 * leave us a buffer to evict.
1342 */
1343 if (!list_empty(&dev_priv->mm.request_list)) {
1344 struct drm_i915_gem_request *request;
1345
1346 request = list_first_entry(&dev_priv->mm.request_list,
1347 struct drm_i915_gem_request,
1348 list);
1349
1350 ret = i915_wait_request(dev, request->seqno);
1351 if (ret)
1352 break;
1353
1354 /* if waiting caused an object to become inactive,
1355 * then loop around and wait for it. Otherwise, we
1356 * assume that waiting freed and unbound something,
1357 * so there should now be some space in the GTT
1358 */
1359 if (!list_empty(&dev_priv->mm.inactive_list))
1360 continue;
1361 break;
1362 }
1363
1364 /* If we didn't have anything on the request list but there
1365 * are buffers awaiting a flush, emit one and try again.
1366 * When we wait on it, those buffers waiting for that flush
1367 * will get moved to inactive.
1368 */
1369 if (!list_empty(&dev_priv->mm.flushing_list)) {
1370 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1371 struct drm_i915_gem_object,
1372 list);
1373 obj = obj_priv->obj;
1374
1375 i915_gem_flush(dev,
1376 obj->write_domain,
1377 obj->write_domain);
1378 i915_add_request(dev, obj->write_domain);
1379
1380 obj = NULL;
1381 continue;
1382 }
1383
1384 DRM_ERROR("inactive empty %d request empty %d "
1385 "flushing empty %d\n",
1386 list_empty(&dev_priv->mm.inactive_list),
1387 list_empty(&dev_priv->mm.request_list),
1388 list_empty(&dev_priv->mm.flushing_list));
1389 /* If we didn't do any of the above, there's nothing to be done
1390 * and we just can't fit it in.
1391 */
1392 return -ENOMEM;
1393 }
1394 return ret;
1395 }
1396
1397 static int
1398 i915_gem_evict_everything(struct drm_device *dev)
1399 {
1400 int ret;
1401
1402 for (;;) {
1403 ret = i915_gem_evict_something(dev);
1404 if (ret != 0)
1405 break;
1406 }
1407 if (ret == -ENOMEM)
1408 return 0;
1409 return ret;
1410 }
1411
1412 static int
1413 i915_gem_object_get_page_list(struct drm_gem_object *obj)
1414 {
1415 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1416 int page_count, i;
1417 struct address_space *mapping;
1418 struct inode *inode;
1419 struct page *page;
1420 int ret;
1421
1422 if (obj_priv->page_list)
1423 return 0;
1424
1425 /* Get the list of pages out of our struct file. They'll be pinned
1426 * at this point until we release them.
1427 */
1428 page_count = obj->size / PAGE_SIZE;
1429 BUG_ON(obj_priv->page_list != NULL);
1430 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1431 DRM_MEM_DRIVER);
1432 if (obj_priv->page_list == NULL) {
1433 DRM_ERROR("Faled to allocate page list\n");
1434 return -ENOMEM;
1435 }
1436
1437 inode = obj->filp->f_path.dentry->d_inode;
1438 mapping = inode->i_mapping;
1439 for (i = 0; i < page_count; i++) {
1440 page = read_mapping_page(mapping, i, NULL);
1441 if (IS_ERR(page)) {
1442 ret = PTR_ERR(page);
1443 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1444 i915_gem_object_free_page_list(obj);
1445 return ret;
1446 }
1447 obj_priv->page_list[i] = page;
1448 }
1449 return 0;
1450 }
1451
1452 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1453 {
1454 struct drm_gem_object *obj = reg->obj;
1455 struct drm_device *dev = obj->dev;
1456 drm_i915_private_t *dev_priv = dev->dev_private;
1457 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1458 int regnum = obj_priv->fence_reg;
1459 uint64_t val;
1460
1461 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1462 0xfffff000) << 32;
1463 val |= obj_priv->gtt_offset & 0xfffff000;
1464 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1465 if (obj_priv->tiling_mode == I915_TILING_Y)
1466 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1467 val |= I965_FENCE_REG_VALID;
1468
1469 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1470 }
1471
1472 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1473 {
1474 struct drm_gem_object *obj = reg->obj;
1475 struct drm_device *dev = obj->dev;
1476 drm_i915_private_t *dev_priv = dev->dev_private;
1477 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1478 int regnum = obj_priv->fence_reg;
1479 int tile_width;
1480 uint32_t val;
1481 uint32_t pitch_val;
1482
1483 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1484 (obj_priv->gtt_offset & (obj->size - 1))) {
1485 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
1486 __func__, obj_priv->gtt_offset, obj->size);
1487 return;
1488 }
1489
1490 if (obj_priv->tiling_mode == I915_TILING_Y &&
1491 HAS_128_BYTE_Y_TILING(dev))
1492 tile_width = 128;
1493 else
1494 tile_width = 512;
1495
1496 /* Note: pitch better be a power of two tile widths */
1497 pitch_val = obj_priv->stride / tile_width;
1498 pitch_val = ffs(pitch_val) - 1;
1499
1500 val = obj_priv->gtt_offset;
1501 if (obj_priv->tiling_mode == I915_TILING_Y)
1502 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1503 val |= I915_FENCE_SIZE_BITS(obj->size);
1504 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1505 val |= I830_FENCE_REG_VALID;
1506
1507 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1508 }
1509
1510 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1511 {
1512 struct drm_gem_object *obj = reg->obj;
1513 struct drm_device *dev = obj->dev;
1514 drm_i915_private_t *dev_priv = dev->dev_private;
1515 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1516 int regnum = obj_priv->fence_reg;
1517 uint32_t val;
1518 uint32_t pitch_val;
1519
1520 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1521 (obj_priv->gtt_offset & (obj->size - 1))) {
1522 WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
1523 __func__, obj_priv->gtt_offset);
1524 return;
1525 }
1526
1527 pitch_val = (obj_priv->stride / 128) - 1;
1528
1529 val = obj_priv->gtt_offset;
1530 if (obj_priv->tiling_mode == I915_TILING_Y)
1531 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1532 val |= I830_FENCE_SIZE_BITS(obj->size);
1533 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1534 val |= I830_FENCE_REG_VALID;
1535
1536 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1537
1538 }
1539
1540 /**
1541 * i915_gem_object_get_fence_reg - set up a fence reg for an object
1542 * @obj: object to map through a fence reg
1543 * @write: object is about to be written
1544 *
1545 * When mapping objects through the GTT, userspace wants to be able to write
1546 * to them without having to worry about swizzling if the object is tiled.
1547 *
1548 * This function walks the fence regs looking for a free one for @obj,
1549 * stealing one if it can't find any.
1550 *
1551 * It then sets up the reg based on the object's properties: address, pitch
1552 * and tiling format.
1553 */
1554 static int
1555 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
1556 {
1557 struct drm_device *dev = obj->dev;
1558 struct drm_i915_private *dev_priv = dev->dev_private;
1559 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1560 struct drm_i915_fence_reg *reg = NULL;
1561 int i, ret;
1562
1563 switch (obj_priv->tiling_mode) {
1564 case I915_TILING_NONE:
1565 WARN(1, "allocating a fence for non-tiled object?\n");
1566 break;
1567 case I915_TILING_X:
1568 if (!obj_priv->stride)
1569 return -EINVAL;
1570 WARN((obj_priv->stride & (512 - 1)),
1571 "object 0x%08x is X tiled but has non-512B pitch\n",
1572 obj_priv->gtt_offset);
1573 break;
1574 case I915_TILING_Y:
1575 if (!obj_priv->stride)
1576 return -EINVAL;
1577 WARN((obj_priv->stride & (128 - 1)),
1578 "object 0x%08x is Y tiled but has non-128B pitch\n",
1579 obj_priv->gtt_offset);
1580 break;
1581 }
1582
1583 /* First try to find a free reg */
1584 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1585 reg = &dev_priv->fence_regs[i];
1586 if (!reg->obj)
1587 break;
1588 }
1589
1590 /* None available, try to steal one or wait for a user to finish */
1591 if (i == dev_priv->num_fence_regs) {
1592 struct drm_i915_gem_object *old_obj_priv = NULL;
1593 loff_t offset;
1594
1595 try_again:
1596 /* Could try to use LRU here instead... */
1597 for (i = dev_priv->fence_reg_start;
1598 i < dev_priv->num_fence_regs; i++) {
1599 reg = &dev_priv->fence_regs[i];
1600 old_obj_priv = reg->obj->driver_private;
1601 if (!old_obj_priv->pin_count)
1602 break;
1603 }
1604
1605 /*
1606 * Now things get ugly... we have to wait for one of the
1607 * objects to finish before trying again.
1608 */
1609 if (i == dev_priv->num_fence_regs) {
1610 ret = i915_gem_object_set_to_gtt_domain(reg->obj, 0);
1611 if (ret) {
1612 WARN(ret != -ERESTARTSYS,
1613 "switch to GTT domain failed: %d\n", ret);
1614 return ret;
1615 }
1616 goto try_again;
1617 }
1618
1619 /*
1620 * Zap this virtual mapping so we can set up a fence again
1621 * for this object next time we need it.
1622 */
1623 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
1624 if (dev->dev_mapping)
1625 unmap_mapping_range(dev->dev_mapping, offset,
1626 reg->obj->size, 1);
1627 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
1628 }
1629
1630 obj_priv->fence_reg = i;
1631 reg->obj = obj;
1632
1633 if (IS_I965G(dev))
1634 i965_write_fence_reg(reg);
1635 else if (IS_I9XX(dev))
1636 i915_write_fence_reg(reg);
1637 else
1638 i830_write_fence_reg(reg);
1639
1640 return 0;
1641 }
1642
1643 /**
1644 * i915_gem_clear_fence_reg - clear out fence register info
1645 * @obj: object to clear
1646 *
1647 * Zeroes out the fence register itself and clears out the associated
1648 * data structures in dev_priv and obj_priv.
1649 */
1650 static void
1651 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
1652 {
1653 struct drm_device *dev = obj->dev;
1654 drm_i915_private_t *dev_priv = dev->dev_private;
1655 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1656
1657 if (IS_I965G(dev))
1658 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
1659 else
1660 I915_WRITE(FENCE_REG_830_0 + (obj_priv->fence_reg * 4), 0);
1661
1662 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
1663 obj_priv->fence_reg = I915_FENCE_REG_NONE;
1664 }
1665
1666 /**
1667 * Finds free space in the GTT aperture and binds the object there.
1668 */
1669 static int
1670 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1671 {
1672 struct drm_device *dev = obj->dev;
1673 drm_i915_private_t *dev_priv = dev->dev_private;
1674 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1675 struct drm_mm_node *free_space;
1676 int page_count, ret;
1677
1678 if (dev_priv->mm.suspended)
1679 return -EBUSY;
1680 if (alignment == 0)
1681 alignment = i915_gem_get_gtt_alignment(obj);
1682 if (alignment & (PAGE_SIZE - 1)) {
1683 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1684 return -EINVAL;
1685 }
1686
1687 search_free:
1688 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1689 obj->size, alignment, 0);
1690 if (free_space != NULL) {
1691 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1692 alignment);
1693 if (obj_priv->gtt_space != NULL) {
1694 obj_priv->gtt_space->private = obj;
1695 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1696 }
1697 }
1698 if (obj_priv->gtt_space == NULL) {
1699 /* If the gtt is empty and we're still having trouble
1700 * fitting our object in, we're out of memory.
1701 */
1702 #if WATCH_LRU
1703 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1704 #endif
1705 if (list_empty(&dev_priv->mm.inactive_list) &&
1706 list_empty(&dev_priv->mm.flushing_list) &&
1707 list_empty(&dev_priv->mm.active_list)) {
1708 DRM_ERROR("GTT full, but LRU list empty\n");
1709 return -ENOMEM;
1710 }
1711
1712 ret = i915_gem_evict_something(dev);
1713 if (ret != 0) {
1714 if (ret != -ERESTARTSYS)
1715 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1716 return ret;
1717 }
1718 goto search_free;
1719 }
1720
1721 #if WATCH_BUF
1722 DRM_INFO("Binding object of size %d at 0x%08x\n",
1723 obj->size, obj_priv->gtt_offset);
1724 #endif
1725 ret = i915_gem_object_get_page_list(obj);
1726 if (ret) {
1727 drm_mm_put_block(obj_priv->gtt_space);
1728 obj_priv->gtt_space = NULL;
1729 return ret;
1730 }
1731
1732 page_count = obj->size / PAGE_SIZE;
1733 /* Create an AGP memory structure pointing at our pages, and bind it
1734 * into the GTT.
1735 */
1736 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1737 obj_priv->page_list,
1738 page_count,
1739 obj_priv->gtt_offset,
1740 obj_priv->agp_type);
1741 if (obj_priv->agp_mem == NULL) {
1742 i915_gem_object_free_page_list(obj);
1743 drm_mm_put_block(obj_priv->gtt_space);
1744 obj_priv->gtt_space = NULL;
1745 return -ENOMEM;
1746 }
1747 atomic_inc(&dev->gtt_count);
1748 atomic_add(obj->size, &dev->gtt_memory);
1749
1750 /* Assert that the object is not currently in any GPU domain. As it
1751 * wasn't in the GTT, there shouldn't be any way it could have been in
1752 * a GPU cache
1753 */
1754 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1755 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1756
1757 return 0;
1758 }
1759
1760 void
1761 i915_gem_clflush_object(struct drm_gem_object *obj)
1762 {
1763 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1764
1765 /* If we don't have a page list set up, then we're not pinned
1766 * to GPU, and we can ignore the cache flush because it'll happen
1767 * again at bind time.
1768 */
1769 if (obj_priv->page_list == NULL)
1770 return;
1771
1772 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1773 }
1774
1775 /** Flushes any GPU write domain for the object if it's dirty. */
1776 static void
1777 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1778 {
1779 struct drm_device *dev = obj->dev;
1780 uint32_t seqno;
1781
1782 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1783 return;
1784
1785 /* Queue the GPU write cache flushing we need. */
1786 i915_gem_flush(dev, 0, obj->write_domain);
1787 seqno = i915_add_request(dev, obj->write_domain);
1788 obj->write_domain = 0;
1789 i915_gem_object_move_to_active(obj, seqno);
1790 }
1791
1792 /** Flushes the GTT write domain for the object if it's dirty. */
1793 static void
1794 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1795 {
1796 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1797 return;
1798
1799 /* No actual flushing is required for the GTT write domain. Writes
1800 * to it immediately go to main memory as far as we know, so there's
1801 * no chipset flush. It also doesn't land in render cache.
1802 */
1803 obj->write_domain = 0;
1804 }
1805
1806 /** Flushes the CPU write domain for the object if it's dirty. */
1807 static void
1808 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1809 {
1810 struct drm_device *dev = obj->dev;
1811
1812 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1813 return;
1814
1815 i915_gem_clflush_object(obj);
1816 drm_agp_chipset_flush(dev);
1817 obj->write_domain = 0;
1818 }
1819
1820 /**
1821 * Moves a single object to the GTT read, and possibly write domain.
1822 *
1823 * This function returns when the move is complete, including waiting on
1824 * flushes to occur.
1825 */
1826 int
1827 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1828 {
1829 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1830 int ret;
1831
1832 /* Not valid to be called on unbound objects. */
1833 if (obj_priv->gtt_space == NULL)
1834 return -EINVAL;
1835
1836 i915_gem_object_flush_gpu_write_domain(obj);
1837 /* Wait on any GPU rendering and flushing to occur. */
1838 ret = i915_gem_object_wait_rendering(obj);
1839 if (ret != 0)
1840 return ret;
1841
1842 /* If we're writing through the GTT domain, then CPU and GPU caches
1843 * will need to be invalidated at next use.
1844 */
1845 if (write)
1846 obj->read_domains &= I915_GEM_DOMAIN_GTT;
1847
1848 i915_gem_object_flush_cpu_write_domain(obj);
1849
1850 /* It should now be out of any other write domains, and we can update
1851 * the domain values for our changes.
1852 */
1853 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1854 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1855 if (write) {
1856 obj->write_domain = I915_GEM_DOMAIN_GTT;
1857 obj_priv->dirty = 1;
1858 }
1859
1860 return 0;
1861 }
1862
1863 /**
1864 * Moves a single object to the CPU read, and possibly write domain.
1865 *
1866 * This function returns when the move is complete, including waiting on
1867 * flushes to occur.
1868 */
1869 static int
1870 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1871 {
1872 struct drm_device *dev = obj->dev;
1873 int ret;
1874
1875 i915_gem_object_flush_gpu_write_domain(obj);
1876 /* Wait on any GPU rendering and flushing to occur. */
1877 ret = i915_gem_object_wait_rendering(obj);
1878 if (ret != 0)
1879 return ret;
1880
1881 i915_gem_object_flush_gtt_write_domain(obj);
1882
1883 /* If we have a partially-valid cache of the object in the CPU,
1884 * finish invalidating it and free the per-page flags.
1885 */
1886 i915_gem_object_set_to_full_cpu_read_domain(obj);
1887
1888 /* Flush the CPU cache if it's still invalid. */
1889 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
1890 i915_gem_clflush_object(obj);
1891 drm_agp_chipset_flush(dev);
1892
1893 obj->read_domains |= I915_GEM_DOMAIN_CPU;
1894 }
1895
1896 /* It should now be out of any other write domains, and we can update
1897 * the domain values for our changes.
1898 */
1899 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1900
1901 /* If we're writing through the CPU, then the GPU read domains will
1902 * need to be invalidated at next use.
1903 */
1904 if (write) {
1905 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1906 obj->write_domain = I915_GEM_DOMAIN_CPU;
1907 }
1908
1909 return 0;
1910 }
1911
1912 /*
1913 * Set the next domain for the specified object. This
1914 * may not actually perform the necessary flushing/invaliding though,
1915 * as that may want to be batched with other set_domain operations
1916 *
1917 * This is (we hope) the only really tricky part of gem. The goal
1918 * is fairly simple -- track which caches hold bits of the object
1919 * and make sure they remain coherent. A few concrete examples may
1920 * help to explain how it works. For shorthand, we use the notation
1921 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1922 * a pair of read and write domain masks.
1923 *
1924 * Case 1: the batch buffer
1925 *
1926 * 1. Allocated
1927 * 2. Written by CPU
1928 * 3. Mapped to GTT
1929 * 4. Read by GPU
1930 * 5. Unmapped from GTT
1931 * 6. Freed
1932 *
1933 * Let's take these a step at a time
1934 *
1935 * 1. Allocated
1936 * Pages allocated from the kernel may still have
1937 * cache contents, so we set them to (CPU, CPU) always.
1938 * 2. Written by CPU (using pwrite)
1939 * The pwrite function calls set_domain (CPU, CPU) and
1940 * this function does nothing (as nothing changes)
1941 * 3. Mapped by GTT
1942 * This function asserts that the object is not
1943 * currently in any GPU-based read or write domains
1944 * 4. Read by GPU
1945 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1946 * As write_domain is zero, this function adds in the
1947 * current read domains (CPU+COMMAND, 0).
1948 * flush_domains is set to CPU.
1949 * invalidate_domains is set to COMMAND
1950 * clflush is run to get data out of the CPU caches
1951 * then i915_dev_set_domain calls i915_gem_flush to
1952 * emit an MI_FLUSH and drm_agp_chipset_flush
1953 * 5. Unmapped from GTT
1954 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1955 * flush_domains and invalidate_domains end up both zero
1956 * so no flushing/invalidating happens
1957 * 6. Freed
1958 * yay, done
1959 *
1960 * Case 2: The shared render buffer
1961 *
1962 * 1. Allocated
1963 * 2. Mapped to GTT
1964 * 3. Read/written by GPU
1965 * 4. set_domain to (CPU,CPU)
1966 * 5. Read/written by CPU
1967 * 6. Read/written by GPU
1968 *
1969 * 1. Allocated
1970 * Same as last example, (CPU, CPU)
1971 * 2. Mapped to GTT
1972 * Nothing changes (assertions find that it is not in the GPU)
1973 * 3. Read/written by GPU
1974 * execbuffer calls set_domain (RENDER, RENDER)
1975 * flush_domains gets CPU
1976 * invalidate_domains gets GPU
1977 * clflush (obj)
1978 * MI_FLUSH and drm_agp_chipset_flush
1979 * 4. set_domain (CPU, CPU)
1980 * flush_domains gets GPU
1981 * invalidate_domains gets CPU
1982 * wait_rendering (obj) to make sure all drawing is complete.
1983 * This will include an MI_FLUSH to get the data from GPU
1984 * to memory
1985 * clflush (obj) to invalidate the CPU cache
1986 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1987 * 5. Read/written by CPU
1988 * cache lines are loaded and dirtied
1989 * 6. Read written by GPU
1990 * Same as last GPU access
1991 *
1992 * Case 3: The constant buffer
1993 *
1994 * 1. Allocated
1995 * 2. Written by CPU
1996 * 3. Read by GPU
1997 * 4. Updated (written) by CPU again
1998 * 5. Read by GPU
1999 *
2000 * 1. Allocated
2001 * (CPU, CPU)
2002 * 2. Written by CPU
2003 * (CPU, CPU)
2004 * 3. Read by GPU
2005 * (CPU+RENDER, 0)
2006 * flush_domains = CPU
2007 * invalidate_domains = RENDER
2008 * clflush (obj)
2009 * MI_FLUSH
2010 * drm_agp_chipset_flush
2011 * 4. Updated (written) by CPU again
2012 * (CPU, CPU)
2013 * flush_domains = 0 (no previous write domain)
2014 * invalidate_domains = 0 (no new read domains)
2015 * 5. Read by GPU
2016 * (CPU+RENDER, 0)
2017 * flush_domains = CPU
2018 * invalidate_domains = RENDER
2019 * clflush (obj)
2020 * MI_FLUSH
2021 * drm_agp_chipset_flush
2022 */
2023 static void
2024 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
2025 uint32_t read_domains,
2026 uint32_t write_domain)
2027 {
2028 struct drm_device *dev = obj->dev;
2029 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2030 uint32_t invalidate_domains = 0;
2031 uint32_t flush_domains = 0;
2032
2033 BUG_ON(read_domains & I915_GEM_DOMAIN_CPU);
2034 BUG_ON(write_domain == I915_GEM_DOMAIN_CPU);
2035
2036 #if WATCH_BUF
2037 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2038 __func__, obj,
2039 obj->read_domains, read_domains,
2040 obj->write_domain, write_domain);
2041 #endif
2042 /*
2043 * If the object isn't moving to a new write domain,
2044 * let the object stay in multiple read domains
2045 */
2046 if (write_domain == 0)
2047 read_domains |= obj->read_domains;
2048 else
2049 obj_priv->dirty = 1;
2050
2051 /*
2052 * Flush the current write domain if
2053 * the new read domains don't match. Invalidate
2054 * any read domains which differ from the old
2055 * write domain
2056 */
2057 if (obj->write_domain && obj->write_domain != read_domains) {
2058 flush_domains |= obj->write_domain;
2059 invalidate_domains |= read_domains & ~obj->write_domain;
2060 }
2061 /*
2062 * Invalidate any read caches which may have
2063 * stale data. That is, any new read domains.
2064 */
2065 invalidate_domains |= read_domains & ~obj->read_domains;
2066 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2067 #if WATCH_BUF
2068 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2069 __func__, flush_domains, invalidate_domains);
2070 #endif
2071 i915_gem_clflush_object(obj);
2072 }
2073
2074 if ((write_domain | flush_domains) != 0)
2075 obj->write_domain = write_domain;
2076 obj->read_domains = read_domains;
2077
2078 dev->invalidate_domains |= invalidate_domains;
2079 dev->flush_domains |= flush_domains;
2080 #if WATCH_BUF
2081 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2082 __func__,
2083 obj->read_domains, obj->write_domain,
2084 dev->invalidate_domains, dev->flush_domains);
2085 #endif
2086 }
2087
2088 /**
2089 * Moves the object from a partially CPU read to a full one.
2090 *
2091 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2092 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2093 */
2094 static void
2095 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2096 {
2097 struct drm_device *dev = obj->dev;
2098 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2099
2100 if (!obj_priv->page_cpu_valid)
2101 return;
2102
2103 /* If we're partially in the CPU read domain, finish moving it in.
2104 */
2105 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2106 int i;
2107
2108 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2109 if (obj_priv->page_cpu_valid[i])
2110 continue;
2111 drm_clflush_pages(obj_priv->page_list + i, 1);
2112 }
2113 drm_agp_chipset_flush(dev);
2114 }
2115
2116 /* Free the page_cpu_valid mappings which are now stale, whether
2117 * or not we've got I915_GEM_DOMAIN_CPU.
2118 */
2119 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2120 DRM_MEM_DRIVER);
2121 obj_priv->page_cpu_valid = NULL;
2122 }
2123
2124 /**
2125 * Set the CPU read domain on a range of the object.
2126 *
2127 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2128 * not entirely valid. The page_cpu_valid member of the object flags which
2129 * pages have been flushed, and will be respected by
2130 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2131 * of the whole object.
2132 *
2133 * This function returns when the move is complete, including waiting on
2134 * flushes to occur.
2135 */
2136 static int
2137 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2138 uint64_t offset, uint64_t size)
2139 {
2140 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2141 int i, ret;
2142
2143 if (offset == 0 && size == obj->size)
2144 return i915_gem_object_set_to_cpu_domain(obj, 0);
2145
2146 i915_gem_object_flush_gpu_write_domain(obj);
2147 /* Wait on any GPU rendering and flushing to occur. */
2148 ret = i915_gem_object_wait_rendering(obj);
2149 if (ret != 0)
2150 return ret;
2151 i915_gem_object_flush_gtt_write_domain(obj);
2152
2153 /* If we're already fully in the CPU read domain, we're done. */
2154 if (obj_priv->page_cpu_valid == NULL &&
2155 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2156 return 0;
2157
2158 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2159 * newly adding I915_GEM_DOMAIN_CPU
2160 */
2161 if (obj_priv->page_cpu_valid == NULL) {
2162 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2163 DRM_MEM_DRIVER);
2164 if (obj_priv->page_cpu_valid == NULL)
2165 return -ENOMEM;
2166 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2167 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2168
2169 /* Flush the cache on any pages that are still invalid from the CPU's
2170 * perspective.
2171 */
2172 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2173 i++) {
2174 if (obj_priv->page_cpu_valid[i])
2175 continue;
2176
2177 drm_clflush_pages(obj_priv->page_list + i, 1);
2178
2179 obj_priv->page_cpu_valid[i] = 1;
2180 }
2181
2182 /* It should now be out of any other write domains, and we can update
2183 * the domain values for our changes.
2184 */
2185 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2186
2187 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2188
2189 return 0;
2190 }
2191
2192 /**
2193 * Pin an object to the GTT and evaluate the relocations landing in it.
2194 */
2195 static int
2196 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2197 struct drm_file *file_priv,
2198 struct drm_i915_gem_exec_object *entry)
2199 {
2200 struct drm_device *dev = obj->dev;
2201 drm_i915_private_t *dev_priv = dev->dev_private;
2202 struct drm_i915_gem_relocation_entry reloc;
2203 struct drm_i915_gem_relocation_entry __user *relocs;
2204 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2205 int i, ret;
2206 void __iomem *reloc_page;
2207
2208 /* Choose the GTT offset for our buffer and put it there. */
2209 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2210 if (ret)
2211 return ret;
2212
2213 entry->offset = obj_priv->gtt_offset;
2214
2215 relocs = (struct drm_i915_gem_relocation_entry __user *)
2216 (uintptr_t) entry->relocs_ptr;
2217 /* Apply the relocations, using the GTT aperture to avoid cache
2218 * flushing requirements.
2219 */
2220 for (i = 0; i < entry->relocation_count; i++) {
2221 struct drm_gem_object *target_obj;
2222 struct drm_i915_gem_object *target_obj_priv;
2223 uint32_t reloc_val, reloc_offset;
2224 uint32_t __iomem *reloc_entry;
2225
2226 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
2227 if (ret != 0) {
2228 i915_gem_object_unpin(obj);
2229 return ret;
2230 }
2231
2232 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2233 reloc.target_handle);
2234 if (target_obj == NULL) {
2235 i915_gem_object_unpin(obj);
2236 return -EBADF;
2237 }
2238 target_obj_priv = target_obj->driver_private;
2239
2240 /* The target buffer should have appeared before us in the
2241 * exec_object list, so it should have a GTT space bound by now.
2242 */
2243 if (target_obj_priv->gtt_space == NULL) {
2244 DRM_ERROR("No GTT space found for object %d\n",
2245 reloc.target_handle);
2246 drm_gem_object_unreference(target_obj);
2247 i915_gem_object_unpin(obj);
2248 return -EINVAL;
2249 }
2250
2251 if (reloc.offset > obj->size - 4) {
2252 DRM_ERROR("Relocation beyond object bounds: "
2253 "obj %p target %d offset %d size %d.\n",
2254 obj, reloc.target_handle,
2255 (int) reloc.offset, (int) obj->size);
2256 drm_gem_object_unreference(target_obj);
2257 i915_gem_object_unpin(obj);
2258 return -EINVAL;
2259 }
2260 if (reloc.offset & 3) {
2261 DRM_ERROR("Relocation not 4-byte aligned: "
2262 "obj %p target %d offset %d.\n",
2263 obj, reloc.target_handle,
2264 (int) reloc.offset);
2265 drm_gem_object_unreference(target_obj);
2266 i915_gem_object_unpin(obj);
2267 return -EINVAL;
2268 }
2269
2270 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
2271 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
2272 DRM_ERROR("reloc with read/write CPU domains: "
2273 "obj %p target %d offset %d "
2274 "read %08x write %08x",
2275 obj, reloc.target_handle,
2276 (int) reloc.offset,
2277 reloc.read_domains,
2278 reloc.write_domain);
2279 drm_gem_object_unreference(target_obj);
2280 i915_gem_object_unpin(obj);
2281 return -EINVAL;
2282 }
2283
2284 if (reloc.write_domain && target_obj->pending_write_domain &&
2285 reloc.write_domain != target_obj->pending_write_domain) {
2286 DRM_ERROR("Write domain conflict: "
2287 "obj %p target %d offset %d "
2288 "new %08x old %08x\n",
2289 obj, reloc.target_handle,
2290 (int) reloc.offset,
2291 reloc.write_domain,
2292 target_obj->pending_write_domain);
2293 drm_gem_object_unreference(target_obj);
2294 i915_gem_object_unpin(obj);
2295 return -EINVAL;
2296 }
2297
2298 #if WATCH_RELOC
2299 DRM_INFO("%s: obj %p offset %08x target %d "
2300 "read %08x write %08x gtt %08x "
2301 "presumed %08x delta %08x\n",
2302 __func__,
2303 obj,
2304 (int) reloc.offset,
2305 (int) reloc.target_handle,
2306 (int) reloc.read_domains,
2307 (int) reloc.write_domain,
2308 (int) target_obj_priv->gtt_offset,
2309 (int) reloc.presumed_offset,
2310 reloc.delta);
2311 #endif
2312
2313 target_obj->pending_read_domains |= reloc.read_domains;
2314 target_obj->pending_write_domain |= reloc.write_domain;
2315
2316 /* If the relocation already has the right value in it, no
2317 * more work needs to be done.
2318 */
2319 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
2320 drm_gem_object_unreference(target_obj);
2321 continue;
2322 }
2323
2324 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2325 if (ret != 0) {
2326 drm_gem_object_unreference(target_obj);
2327 i915_gem_object_unpin(obj);
2328 return -EINVAL;
2329 }
2330
2331 /* Map the page containing the relocation we're going to
2332 * perform.
2333 */
2334 reloc_offset = obj_priv->gtt_offset + reloc.offset;
2335 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2336 (reloc_offset &
2337 ~(PAGE_SIZE - 1)));
2338 reloc_entry = (uint32_t __iomem *)(reloc_page +
2339 (reloc_offset & (PAGE_SIZE - 1)));
2340 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
2341
2342 #if WATCH_BUF
2343 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2344 obj, (unsigned int) reloc.offset,
2345 readl(reloc_entry), reloc_val);
2346 #endif
2347 writel(reloc_val, reloc_entry);
2348 io_mapping_unmap_atomic(reloc_page);
2349
2350 /* Write the updated presumed offset for this entry back out
2351 * to the user.
2352 */
2353 reloc.presumed_offset = target_obj_priv->gtt_offset;
2354 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
2355 if (ret != 0) {
2356 drm_gem_object_unreference(target_obj);
2357 i915_gem_object_unpin(obj);
2358 return ret;
2359 }
2360
2361 drm_gem_object_unreference(target_obj);
2362 }
2363
2364 #if WATCH_BUF
2365 if (0)
2366 i915_gem_dump_object(obj, 128, __func__, ~0);
2367 #endif
2368 return 0;
2369 }
2370
2371 /** Dispatch a batchbuffer to the ring
2372 */
2373 static int
2374 i915_dispatch_gem_execbuffer(struct drm_device *dev,
2375 struct drm_i915_gem_execbuffer *exec,
2376 uint64_t exec_offset)
2377 {
2378 drm_i915_private_t *dev_priv = dev->dev_private;
2379 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
2380 (uintptr_t) exec->cliprects_ptr;
2381 int nbox = exec->num_cliprects;
2382 int i = 0, count;
2383 uint32_t exec_start, exec_len;
2384 RING_LOCALS;
2385
2386 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2387 exec_len = (uint32_t) exec->batch_len;
2388
2389 if ((exec_start | exec_len) & 0x7) {
2390 DRM_ERROR("alignment\n");
2391 return -EINVAL;
2392 }
2393
2394 if (!exec_start)
2395 return -EINVAL;
2396
2397 count = nbox ? nbox : 1;
2398
2399 for (i = 0; i < count; i++) {
2400 if (i < nbox) {
2401 int ret = i915_emit_box(dev, boxes, i,
2402 exec->DR1, exec->DR4);
2403 if (ret)
2404 return ret;
2405 }
2406
2407 if (IS_I830(dev) || IS_845G(dev)) {
2408 BEGIN_LP_RING(4);
2409 OUT_RING(MI_BATCH_BUFFER);
2410 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2411 OUT_RING(exec_start + exec_len - 4);
2412 OUT_RING(0);
2413 ADVANCE_LP_RING();
2414 } else {
2415 BEGIN_LP_RING(2);
2416 if (IS_I965G(dev)) {
2417 OUT_RING(MI_BATCH_BUFFER_START |
2418 (2 << 6) |
2419 MI_BATCH_NON_SECURE_I965);
2420 OUT_RING(exec_start);
2421 } else {
2422 OUT_RING(MI_BATCH_BUFFER_START |
2423 (2 << 6));
2424 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2425 }
2426 ADVANCE_LP_RING();
2427 }
2428 }
2429
2430 /* XXX breadcrumb */
2431 return 0;
2432 }
2433
2434 /* Throttle our rendering by waiting until the ring has completed our requests
2435 * emitted over 20 msec ago.
2436 *
2437 * This should get us reasonable parallelism between CPU and GPU but also
2438 * relatively low latency when blocking on a particular request to finish.
2439 */
2440 static int
2441 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2442 {
2443 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2444 int ret = 0;
2445 uint32_t seqno;
2446
2447 mutex_lock(&dev->struct_mutex);
2448 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2449 i915_file_priv->mm.last_gem_throttle_seqno =
2450 i915_file_priv->mm.last_gem_seqno;
2451 if (seqno)
2452 ret = i915_wait_request(dev, seqno);
2453 mutex_unlock(&dev->struct_mutex);
2454 return ret;
2455 }
2456
2457 int
2458 i915_gem_execbuffer(struct drm_device *dev, void *data,
2459 struct drm_file *file_priv)
2460 {
2461 drm_i915_private_t *dev_priv = dev->dev_private;
2462 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2463 struct drm_i915_gem_execbuffer *args = data;
2464 struct drm_i915_gem_exec_object *exec_list = NULL;
2465 struct drm_gem_object **object_list = NULL;
2466 struct drm_gem_object *batch_obj;
2467 int ret, i, pinned = 0;
2468 uint64_t exec_offset;
2469 uint32_t seqno, flush_domains;
2470 int pin_tries;
2471
2472 #if WATCH_EXEC
2473 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
2474 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
2475 #endif
2476
2477 if (args->buffer_count < 1) {
2478 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
2479 return -EINVAL;
2480 }
2481 /* Copy in the exec list from userland */
2482 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
2483 DRM_MEM_DRIVER);
2484 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
2485 DRM_MEM_DRIVER);
2486 if (exec_list == NULL || object_list == NULL) {
2487 DRM_ERROR("Failed to allocate exec or object list "
2488 "for %d buffers\n",
2489 args->buffer_count);
2490 ret = -ENOMEM;
2491 goto pre_mutex_err;
2492 }
2493 ret = copy_from_user(exec_list,
2494 (struct drm_i915_relocation_entry __user *)
2495 (uintptr_t) args->buffers_ptr,
2496 sizeof(*exec_list) * args->buffer_count);
2497 if (ret != 0) {
2498 DRM_ERROR("copy %d exec entries failed %d\n",
2499 args->buffer_count, ret);
2500 goto pre_mutex_err;
2501 }
2502
2503 mutex_lock(&dev->struct_mutex);
2504
2505 i915_verify_inactive(dev, __FILE__, __LINE__);
2506
2507 if (dev_priv->mm.wedged) {
2508 DRM_ERROR("Execbuf while wedged\n");
2509 mutex_unlock(&dev->struct_mutex);
2510 ret = -EIO;
2511 goto pre_mutex_err;
2512 }
2513
2514 if (dev_priv->mm.suspended) {
2515 DRM_ERROR("Execbuf while VT-switched.\n");
2516 mutex_unlock(&dev->struct_mutex);
2517 ret = -EBUSY;
2518 goto pre_mutex_err;
2519 }
2520
2521 /* Look up object handles */
2522 for (i = 0; i < args->buffer_count; i++) {
2523 object_list[i] = drm_gem_object_lookup(dev, file_priv,
2524 exec_list[i].handle);
2525 if (object_list[i] == NULL) {
2526 DRM_ERROR("Invalid object handle %d at index %d\n",
2527 exec_list[i].handle, i);
2528 ret = -EBADF;
2529 goto err;
2530 }
2531 }
2532
2533 /* Pin and relocate */
2534 for (pin_tries = 0; ; pin_tries++) {
2535 ret = 0;
2536 for (i = 0; i < args->buffer_count; i++) {
2537 object_list[i]->pending_read_domains = 0;
2538 object_list[i]->pending_write_domain = 0;
2539 ret = i915_gem_object_pin_and_relocate(object_list[i],
2540 file_priv,
2541 &exec_list[i]);
2542 if (ret)
2543 break;
2544 pinned = i + 1;
2545 }
2546 /* success */
2547 if (ret == 0)
2548 break;
2549
2550 /* error other than GTT full, or we've already tried again */
2551 if (ret != -ENOMEM || pin_tries >= 1) {
2552 if (ret != -ERESTARTSYS)
2553 DRM_ERROR("Failed to pin buffers %d\n", ret);
2554 goto err;
2555 }
2556
2557 /* unpin all of our buffers */
2558 for (i = 0; i < pinned; i++)
2559 i915_gem_object_unpin(object_list[i]);
2560 pinned = 0;
2561
2562 /* evict everyone we can from the aperture */
2563 ret = i915_gem_evict_everything(dev);
2564 if (ret)
2565 goto err;
2566 }
2567
2568 /* Set the pending read domains for the batch buffer to COMMAND */
2569 batch_obj = object_list[args->buffer_count-1];
2570 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2571 batch_obj->pending_write_domain = 0;
2572
2573 i915_verify_inactive(dev, __FILE__, __LINE__);
2574
2575 /* Zero the global flush/invalidate flags. These
2576 * will be modified as new domains are computed
2577 * for each object
2578 */
2579 dev->invalidate_domains = 0;
2580 dev->flush_domains = 0;
2581
2582 for (i = 0; i < args->buffer_count; i++) {
2583 struct drm_gem_object *obj = object_list[i];
2584
2585 /* Compute new gpu domains and update invalidate/flush */
2586 i915_gem_object_set_to_gpu_domain(obj,
2587 obj->pending_read_domains,
2588 obj->pending_write_domain);
2589 }
2590
2591 i915_verify_inactive(dev, __FILE__, __LINE__);
2592
2593 if (dev->invalidate_domains | dev->flush_domains) {
2594 #if WATCH_EXEC
2595 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2596 __func__,
2597 dev->invalidate_domains,
2598 dev->flush_domains);
2599 #endif
2600 i915_gem_flush(dev,
2601 dev->invalidate_domains,
2602 dev->flush_domains);
2603 if (dev->flush_domains)
2604 (void)i915_add_request(dev, dev->flush_domains);
2605 }
2606
2607 i915_verify_inactive(dev, __FILE__, __LINE__);
2608
2609 #if WATCH_COHERENCY
2610 for (i = 0; i < args->buffer_count; i++) {
2611 i915_gem_object_check_coherency(object_list[i],
2612 exec_list[i].handle);
2613 }
2614 #endif
2615
2616 exec_offset = exec_list[args->buffer_count - 1].offset;
2617
2618 #if WATCH_EXEC
2619 i915_gem_dump_object(object_list[args->buffer_count - 1],
2620 args->batch_len,
2621 __func__,
2622 ~0);
2623 #endif
2624
2625 /* Exec the batchbuffer */
2626 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2627 if (ret) {
2628 DRM_ERROR("dispatch failed %d\n", ret);
2629 goto err;
2630 }
2631
2632 /*
2633 * Ensure that the commands in the batch buffer are
2634 * finished before the interrupt fires
2635 */
2636 flush_domains = i915_retire_commands(dev);
2637
2638 i915_verify_inactive(dev, __FILE__, __LINE__);
2639
2640 /*
2641 * Get a seqno representing the execution of the current buffer,
2642 * which we can wait on. We would like to mitigate these interrupts,
2643 * likely by only creating seqnos occasionally (so that we have
2644 * *some* interrupts representing completion of buffers that we can
2645 * wait on when trying to clear up gtt space).
2646 */
2647 seqno = i915_add_request(dev, flush_domains);
2648 BUG_ON(seqno == 0);
2649 i915_file_priv->mm.last_gem_seqno = seqno;
2650 for (i = 0; i < args->buffer_count; i++) {
2651 struct drm_gem_object *obj = object_list[i];
2652
2653 i915_gem_object_move_to_active(obj, seqno);
2654 #if WATCH_LRU
2655 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2656 #endif
2657 }
2658 #if WATCH_LRU
2659 i915_dump_lru(dev, __func__);
2660 #endif
2661
2662 i915_verify_inactive(dev, __FILE__, __LINE__);
2663
2664 err:
2665 for (i = 0; i < pinned; i++)
2666 i915_gem_object_unpin(object_list[i]);
2667
2668 for (i = 0; i < args->buffer_count; i++)
2669 drm_gem_object_unreference(object_list[i]);
2670
2671 mutex_unlock(&dev->struct_mutex);
2672
2673 if (!ret) {
2674 /* Copy the new buffer offsets back to the user's exec list. */
2675 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2676 (uintptr_t) args->buffers_ptr,
2677 exec_list,
2678 sizeof(*exec_list) * args->buffer_count);
2679 if (ret)
2680 DRM_ERROR("failed to copy %d exec entries "
2681 "back to user (%d)\n",
2682 args->buffer_count, ret);
2683 }
2684
2685 pre_mutex_err:
2686 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2687 DRM_MEM_DRIVER);
2688 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2689 DRM_MEM_DRIVER);
2690
2691 return ret;
2692 }
2693
2694 int
2695 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2696 {
2697 struct drm_device *dev = obj->dev;
2698 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2699 int ret;
2700
2701 i915_verify_inactive(dev, __FILE__, __LINE__);
2702 if (obj_priv->gtt_space == NULL) {
2703 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2704 if (ret != 0) {
2705 if (ret != -EBUSY && ret != -ERESTARTSYS)
2706 DRM_ERROR("Failure to bind: %d", ret);
2707 return ret;
2708 }
2709 /*
2710 * Pre-965 chips need a fence register set up in order to
2711 * properly handle tiled surfaces.
2712 */
2713 if (!IS_I965G(dev) &&
2714 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
2715 obj_priv->tiling_mode != I915_TILING_NONE)
2716 i915_gem_object_get_fence_reg(obj, true);
2717 }
2718 obj_priv->pin_count++;
2719
2720 /* If the object is not active and not pending a flush,
2721 * remove it from the inactive list
2722 */
2723 if (obj_priv->pin_count == 1) {
2724 atomic_inc(&dev->pin_count);
2725 atomic_add(obj->size, &dev->pin_memory);
2726 if (!obj_priv->active &&
2727 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2728 I915_GEM_DOMAIN_GTT)) == 0 &&
2729 !list_empty(&obj_priv->list))
2730 list_del_init(&obj_priv->list);
2731 }
2732 i915_verify_inactive(dev, __FILE__, __LINE__);
2733
2734 return 0;
2735 }
2736
2737 void
2738 i915_gem_object_unpin(struct drm_gem_object *obj)
2739 {
2740 struct drm_device *dev = obj->dev;
2741 drm_i915_private_t *dev_priv = dev->dev_private;
2742 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2743
2744 i915_verify_inactive(dev, __FILE__, __LINE__);
2745 obj_priv->pin_count--;
2746 BUG_ON(obj_priv->pin_count < 0);
2747 BUG_ON(obj_priv->gtt_space == NULL);
2748
2749 /* If the object is no longer pinned, and is
2750 * neither active nor being flushed, then stick it on
2751 * the inactive list
2752 */
2753 if (obj_priv->pin_count == 0) {
2754 if (!obj_priv->active &&
2755 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2756 I915_GEM_DOMAIN_GTT)) == 0)
2757 list_move_tail(&obj_priv->list,
2758 &dev_priv->mm.inactive_list);
2759 atomic_dec(&dev->pin_count);
2760 atomic_sub(obj->size, &dev->pin_memory);
2761 }
2762 i915_verify_inactive(dev, __FILE__, __LINE__);
2763 }
2764
2765 int
2766 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2767 struct drm_file *file_priv)
2768 {
2769 struct drm_i915_gem_pin *args = data;
2770 struct drm_gem_object *obj;
2771 struct drm_i915_gem_object *obj_priv;
2772 int ret;
2773
2774 mutex_lock(&dev->struct_mutex);
2775
2776 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2777 if (obj == NULL) {
2778 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2779 args->handle);
2780 mutex_unlock(&dev->struct_mutex);
2781 return -EBADF;
2782 }
2783 obj_priv = obj->driver_private;
2784
2785 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
2786 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
2787 args->handle);
2788 drm_gem_object_unreference(obj);
2789 mutex_unlock(&dev->struct_mutex);
2790 return -EINVAL;
2791 }
2792
2793 obj_priv->user_pin_count++;
2794 obj_priv->pin_filp = file_priv;
2795 if (obj_priv->user_pin_count == 1) {
2796 ret = i915_gem_object_pin(obj, args->alignment);
2797 if (ret != 0) {
2798 drm_gem_object_unreference(obj);
2799 mutex_unlock(&dev->struct_mutex);
2800 return ret;
2801 }
2802 }
2803
2804 /* XXX - flush the CPU caches for pinned objects
2805 * as the X server doesn't manage domains yet
2806 */
2807 i915_gem_object_flush_cpu_write_domain(obj);
2808 args->offset = obj_priv->gtt_offset;
2809 drm_gem_object_unreference(obj);
2810 mutex_unlock(&dev->struct_mutex);
2811
2812 return 0;
2813 }
2814
2815 int
2816 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2817 struct drm_file *file_priv)
2818 {
2819 struct drm_i915_gem_pin *args = data;
2820 struct drm_gem_object *obj;
2821 struct drm_i915_gem_object *obj_priv;
2822
2823 mutex_lock(&dev->struct_mutex);
2824
2825 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2826 if (obj == NULL) {
2827 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2828 args->handle);
2829 mutex_unlock(&dev->struct_mutex);
2830 return -EBADF;
2831 }
2832
2833 obj_priv = obj->driver_private;
2834 if (obj_priv->pin_filp != file_priv) {
2835 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
2836 args->handle);
2837 drm_gem_object_unreference(obj);
2838 mutex_unlock(&dev->struct_mutex);
2839 return -EINVAL;
2840 }
2841 obj_priv->user_pin_count--;
2842 if (obj_priv->user_pin_count == 0) {
2843 obj_priv->pin_filp = NULL;
2844 i915_gem_object_unpin(obj);
2845 }
2846
2847 drm_gem_object_unreference(obj);
2848 mutex_unlock(&dev->struct_mutex);
2849 return 0;
2850 }
2851
2852 int
2853 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2854 struct drm_file *file_priv)
2855 {
2856 struct drm_i915_gem_busy *args = data;
2857 struct drm_gem_object *obj;
2858 struct drm_i915_gem_object *obj_priv;
2859
2860 mutex_lock(&dev->struct_mutex);
2861 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2862 if (obj == NULL) {
2863 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2864 args->handle);
2865 mutex_unlock(&dev->struct_mutex);
2866 return -EBADF;
2867 }
2868
2869 obj_priv = obj->driver_private;
2870 /* Don't count being on the flushing list against the object being
2871 * done. Otherwise, a buffer left on the flushing list but not getting
2872 * flushed (because nobody's flushing that domain) won't ever return
2873 * unbusy and get reused by libdrm's bo cache. The other expected
2874 * consumer of this interface, OpenGL's occlusion queries, also specs
2875 * that the objects get unbusy "eventually" without any interference.
2876 */
2877 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
2878
2879 drm_gem_object_unreference(obj);
2880 mutex_unlock(&dev->struct_mutex);
2881 return 0;
2882 }
2883
2884 int
2885 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2886 struct drm_file *file_priv)
2887 {
2888 return i915_gem_ring_throttle(dev, file_priv);
2889 }
2890
2891 int i915_gem_init_object(struct drm_gem_object *obj)
2892 {
2893 struct drm_i915_gem_object *obj_priv;
2894
2895 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2896 if (obj_priv == NULL)
2897 return -ENOMEM;
2898
2899 /*
2900 * We've just allocated pages from the kernel,
2901 * so they've just been written by the CPU with
2902 * zeros. They'll need to be clflushed before we
2903 * use them with the GPU.
2904 */
2905 obj->write_domain = I915_GEM_DOMAIN_CPU;
2906 obj->read_domains = I915_GEM_DOMAIN_CPU;
2907
2908 obj_priv->agp_type = AGP_USER_MEMORY;
2909
2910 obj->driver_private = obj_priv;
2911 obj_priv->obj = obj;
2912 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2913 INIT_LIST_HEAD(&obj_priv->list);
2914
2915 return 0;
2916 }
2917
2918 void i915_gem_free_object(struct drm_gem_object *obj)
2919 {
2920 struct drm_device *dev = obj->dev;
2921 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2922
2923 while (obj_priv->pin_count > 0)
2924 i915_gem_object_unpin(obj);
2925
2926 if (obj_priv->phys_obj)
2927 i915_gem_detach_phys_object(dev, obj);
2928
2929 i915_gem_object_unbind(obj);
2930
2931 i915_gem_free_mmap_offset(obj);
2932
2933 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2934 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2935 }
2936
2937 /** Unbinds all objects that are on the given buffer list. */
2938 static int
2939 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2940 {
2941 struct drm_gem_object *obj;
2942 struct drm_i915_gem_object *obj_priv;
2943 int ret;
2944
2945 while (!list_empty(head)) {
2946 obj_priv = list_first_entry(head,
2947 struct drm_i915_gem_object,
2948 list);
2949 obj = obj_priv->obj;
2950
2951 if (obj_priv->pin_count != 0) {
2952 DRM_ERROR("Pinned object in unbind list\n");
2953 mutex_unlock(&dev->struct_mutex);
2954 return -EINVAL;
2955 }
2956
2957 ret = i915_gem_object_unbind(obj);
2958 if (ret != 0) {
2959 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2960 ret);
2961 mutex_unlock(&dev->struct_mutex);
2962 return ret;
2963 }
2964 }
2965
2966
2967 return 0;
2968 }
2969
2970 static int
2971 i915_gem_idle(struct drm_device *dev)
2972 {
2973 drm_i915_private_t *dev_priv = dev->dev_private;
2974 uint32_t seqno, cur_seqno, last_seqno;
2975 int stuck, ret;
2976
2977 mutex_lock(&dev->struct_mutex);
2978
2979 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2980 mutex_unlock(&dev->struct_mutex);
2981 return 0;
2982 }
2983
2984 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2985 * We need to replace this with a semaphore, or something.
2986 */
2987 dev_priv->mm.suspended = 1;
2988
2989 /* Cancel the retire work handler, wait for it to finish if running
2990 */
2991 mutex_unlock(&dev->struct_mutex);
2992 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2993 mutex_lock(&dev->struct_mutex);
2994
2995 i915_kernel_lost_context(dev);
2996
2997 /* Flush the GPU along with all non-CPU write domains
2998 */
2999 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3000 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
3001 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
3002
3003 if (seqno == 0) {
3004 mutex_unlock(&dev->struct_mutex);
3005 return -ENOMEM;
3006 }
3007
3008 dev_priv->mm.waiting_gem_seqno = seqno;
3009 last_seqno = 0;
3010 stuck = 0;
3011 for (;;) {
3012 cur_seqno = i915_get_gem_seqno(dev);
3013 if (i915_seqno_passed(cur_seqno, seqno))
3014 break;
3015 if (last_seqno == cur_seqno) {
3016 if (stuck++ > 100) {
3017 DRM_ERROR("hardware wedged\n");
3018 dev_priv->mm.wedged = 1;
3019 DRM_WAKEUP(&dev_priv->irq_queue);
3020 break;
3021 }
3022 }
3023 msleep(10);
3024 last_seqno = cur_seqno;
3025 }
3026 dev_priv->mm.waiting_gem_seqno = 0;
3027
3028 i915_gem_retire_requests(dev);
3029
3030 if (!dev_priv->mm.wedged) {
3031 /* Active and flushing should now be empty as we've
3032 * waited for a sequence higher than any pending execbuffer
3033 */
3034 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3035 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3036 /* Request should now be empty as we've also waited
3037 * for the last request in the list
3038 */
3039 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3040 }
3041
3042 /* Empty the active and flushing lists to inactive. If there's
3043 * anything left at this point, it means that we're wedged and
3044 * nothing good's going to happen by leaving them there. So strip
3045 * the GPU domains and just stuff them onto inactive.
3046 */
3047 while (!list_empty(&dev_priv->mm.active_list)) {
3048 struct drm_i915_gem_object *obj_priv;
3049
3050 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3051 struct drm_i915_gem_object,
3052 list);
3053 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3054 i915_gem_object_move_to_inactive(obj_priv->obj);
3055 }
3056
3057 while (!list_empty(&dev_priv->mm.flushing_list)) {
3058 struct drm_i915_gem_object *obj_priv;
3059
3060 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3061 struct drm_i915_gem_object,
3062 list);
3063 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3064 i915_gem_object_move_to_inactive(obj_priv->obj);
3065 }
3066
3067
3068 /* Move all inactive buffers out of the GTT. */
3069 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3070 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3071 if (ret) {
3072 mutex_unlock(&dev->struct_mutex);
3073 return ret;
3074 }
3075
3076 i915_gem_cleanup_ringbuffer(dev);
3077 mutex_unlock(&dev->struct_mutex);
3078
3079 return 0;
3080 }
3081
3082 static int
3083 i915_gem_init_hws(struct drm_device *dev)
3084 {
3085 drm_i915_private_t *dev_priv = dev->dev_private;
3086 struct drm_gem_object *obj;
3087 struct drm_i915_gem_object *obj_priv;
3088 int ret;
3089
3090 /* If we need a physical address for the status page, it's already
3091 * initialized at driver load time.
3092 */
3093 if (!I915_NEED_GFX_HWS(dev))
3094 return 0;
3095
3096 obj = drm_gem_object_alloc(dev, 4096);
3097 if (obj == NULL) {
3098 DRM_ERROR("Failed to allocate status page\n");
3099 return -ENOMEM;
3100 }
3101 obj_priv = obj->driver_private;
3102 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3103
3104 ret = i915_gem_object_pin(obj, 4096);
3105 if (ret != 0) {
3106 drm_gem_object_unreference(obj);
3107 return ret;
3108 }
3109
3110 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3111
3112 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
3113 if (dev_priv->hw_status_page == NULL) {
3114 DRM_ERROR("Failed to map status page.\n");
3115 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3116 i915_gem_object_unpin(obj);
3117 drm_gem_object_unreference(obj);
3118 return -EINVAL;
3119 }
3120 dev_priv->hws_obj = obj;
3121 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3122 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3123 I915_READ(HWS_PGA); /* posting read */
3124 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3125
3126 return 0;
3127 }
3128
3129 static void
3130 i915_gem_cleanup_hws(struct drm_device *dev)
3131 {
3132 drm_i915_private_t *dev_priv = dev->dev_private;
3133 struct drm_gem_object *obj = dev_priv->hws_obj;
3134 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3135
3136 if (dev_priv->hws_obj == NULL)
3137 return;
3138
3139 kunmap(obj_priv->page_list[0]);
3140 i915_gem_object_unpin(obj);
3141 drm_gem_object_unreference(obj);
3142 dev_priv->hws_obj = NULL;
3143 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3144 dev_priv->hw_status_page = NULL;
3145
3146 /* Write high address into HWS_PGA when disabling. */
3147 I915_WRITE(HWS_PGA, 0x1ffff000);
3148 }
3149
3150 int
3151 i915_gem_init_ringbuffer(struct drm_device *dev)
3152 {
3153 drm_i915_private_t *dev_priv = dev->dev_private;
3154 struct drm_gem_object *obj;
3155 struct drm_i915_gem_object *obj_priv;
3156 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3157 int ret;
3158 u32 head;
3159
3160 ret = i915_gem_init_hws(dev);
3161 if (ret != 0)
3162 return ret;
3163
3164 obj = drm_gem_object_alloc(dev, 128 * 1024);
3165 if (obj == NULL) {
3166 DRM_ERROR("Failed to allocate ringbuffer\n");
3167 i915_gem_cleanup_hws(dev);
3168 return -ENOMEM;
3169 }
3170 obj_priv = obj->driver_private;
3171
3172 ret = i915_gem_object_pin(obj, 4096);
3173 if (ret != 0) {
3174 drm_gem_object_unreference(obj);
3175 i915_gem_cleanup_hws(dev);
3176 return ret;
3177 }
3178
3179 /* Set up the kernel mapping for the ring. */
3180 ring->Size = obj->size;
3181 ring->tail_mask = obj->size - 1;
3182
3183 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3184 ring->map.size = obj->size;
3185 ring->map.type = 0;
3186 ring->map.flags = 0;
3187 ring->map.mtrr = 0;
3188
3189 drm_core_ioremap_wc(&ring->map, dev);
3190 if (ring->map.handle == NULL) {
3191 DRM_ERROR("Failed to map ringbuffer.\n");
3192 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3193 i915_gem_object_unpin(obj);
3194 drm_gem_object_unreference(obj);
3195 i915_gem_cleanup_hws(dev);
3196 return -EINVAL;
3197 }
3198 ring->ring_obj = obj;
3199 ring->virtual_start = ring->map.handle;
3200
3201 /* Stop the ring if it's running. */
3202 I915_WRITE(PRB0_CTL, 0);
3203 I915_WRITE(PRB0_TAIL, 0);
3204 I915_WRITE(PRB0_HEAD, 0);
3205
3206 /* Initialize the ring. */
3207 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
3208 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3209
3210 /* G45 ring initialization fails to reset head to zero */
3211 if (head != 0) {
3212 DRM_ERROR("Ring head not reset to zero "
3213 "ctl %08x head %08x tail %08x start %08x\n",
3214 I915_READ(PRB0_CTL),
3215 I915_READ(PRB0_HEAD),
3216 I915_READ(PRB0_TAIL),
3217 I915_READ(PRB0_START));
3218 I915_WRITE(PRB0_HEAD, 0);
3219
3220 DRM_ERROR("Ring head forced to zero "
3221 "ctl %08x head %08x tail %08x start %08x\n",
3222 I915_READ(PRB0_CTL),
3223 I915_READ(PRB0_HEAD),
3224 I915_READ(PRB0_TAIL),
3225 I915_READ(PRB0_START));
3226 }
3227
3228 I915_WRITE(PRB0_CTL,
3229 ((obj->size - 4096) & RING_NR_PAGES) |
3230 RING_NO_REPORT |
3231 RING_VALID);
3232
3233 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3234
3235 /* If the head is still not zero, the ring is dead */
3236 if (head != 0) {
3237 DRM_ERROR("Ring initialization failed "
3238 "ctl %08x head %08x tail %08x start %08x\n",
3239 I915_READ(PRB0_CTL),
3240 I915_READ(PRB0_HEAD),
3241 I915_READ(PRB0_TAIL),
3242 I915_READ(PRB0_START));
3243 return -EIO;
3244 }
3245
3246 /* Update our cache of the ring state */
3247 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3248 i915_kernel_lost_context(dev);
3249 else {
3250 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3251 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3252 ring->space = ring->head - (ring->tail + 8);
3253 if (ring->space < 0)
3254 ring->space += ring->Size;
3255 }
3256
3257 return 0;
3258 }
3259
3260 void
3261 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3262 {
3263 drm_i915_private_t *dev_priv = dev->dev_private;
3264
3265 if (dev_priv->ring.ring_obj == NULL)
3266 return;
3267
3268 drm_core_ioremapfree(&dev_priv->ring.map, dev);
3269
3270 i915_gem_object_unpin(dev_priv->ring.ring_obj);
3271 drm_gem_object_unreference(dev_priv->ring.ring_obj);
3272 dev_priv->ring.ring_obj = NULL;
3273 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3274
3275 i915_gem_cleanup_hws(dev);
3276 }
3277
3278 int
3279 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3280 struct drm_file *file_priv)
3281 {
3282 drm_i915_private_t *dev_priv = dev->dev_private;
3283 int ret;
3284
3285 if (drm_core_check_feature(dev, DRIVER_MODESET))
3286 return 0;
3287
3288 if (dev_priv->mm.wedged) {
3289 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3290 dev_priv->mm.wedged = 0;
3291 }
3292
3293 mutex_lock(&dev->struct_mutex);
3294 dev_priv->mm.suspended = 0;
3295
3296 ret = i915_gem_init_ringbuffer(dev);
3297 if (ret != 0)
3298 return ret;
3299
3300 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3301 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3302 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3303 BUG_ON(!list_empty(&dev_priv->mm.request_list));
3304 mutex_unlock(&dev->struct_mutex);
3305
3306 drm_irq_install(dev);
3307
3308 return 0;
3309 }
3310
3311 int
3312 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3313 struct drm_file *file_priv)
3314 {
3315 int ret;
3316
3317 if (drm_core_check_feature(dev, DRIVER_MODESET))
3318 return 0;
3319
3320 ret = i915_gem_idle(dev);
3321 drm_irq_uninstall(dev);
3322
3323 return ret;
3324 }
3325
3326 void
3327 i915_gem_lastclose(struct drm_device *dev)
3328 {
3329 int ret;
3330
3331 if (drm_core_check_feature(dev, DRIVER_MODESET))
3332 return;
3333
3334 ret = i915_gem_idle(dev);
3335 if (ret)
3336 DRM_ERROR("failed to idle hardware: %d\n", ret);
3337 }
3338
3339 void
3340 i915_gem_load(struct drm_device *dev)
3341 {
3342 drm_i915_private_t *dev_priv = dev->dev_private;
3343
3344 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3345 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3346 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3347 INIT_LIST_HEAD(&dev_priv->mm.request_list);
3348 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3349 i915_gem_retire_work_handler);
3350 dev_priv->mm.next_gem_seqno = 1;
3351
3352 /* Old X drivers will take 0-2 for front, back, depth buffers */
3353 dev_priv->fence_reg_start = 3;
3354
3355 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3356 dev_priv->num_fence_regs = 16;
3357 else
3358 dev_priv->num_fence_regs = 8;
3359
3360 i915_gem_detect_bit_6_swizzle(dev);
3361 }
3362
3363 /*
3364 * Create a physically contiguous memory object for this object
3365 * e.g. for cursor + overlay regs
3366 */
3367 int i915_gem_init_phys_object(struct drm_device *dev,
3368 int id, int size)
3369 {
3370 drm_i915_private_t *dev_priv = dev->dev_private;
3371 struct drm_i915_gem_phys_object *phys_obj;
3372 int ret;
3373
3374 if (dev_priv->mm.phys_objs[id - 1] || !size)
3375 return 0;
3376
3377 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3378 if (!phys_obj)
3379 return -ENOMEM;
3380
3381 phys_obj->id = id;
3382
3383 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
3384 if (!phys_obj->handle) {
3385 ret = -ENOMEM;
3386 goto kfree_obj;
3387 }
3388 #ifdef CONFIG_X86
3389 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3390 #endif
3391
3392 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3393
3394 return 0;
3395 kfree_obj:
3396 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3397 return ret;
3398 }
3399
3400 void i915_gem_free_phys_object(struct drm_device *dev, int id)
3401 {
3402 drm_i915_private_t *dev_priv = dev->dev_private;
3403 struct drm_i915_gem_phys_object *phys_obj;
3404
3405 if (!dev_priv->mm.phys_objs[id - 1])
3406 return;
3407
3408 phys_obj = dev_priv->mm.phys_objs[id - 1];
3409 if (phys_obj->cur_obj) {
3410 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3411 }
3412
3413 #ifdef CONFIG_X86
3414 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3415 #endif
3416 drm_pci_free(dev, phys_obj->handle);
3417 kfree(phys_obj);
3418 dev_priv->mm.phys_objs[id - 1] = NULL;
3419 }
3420
3421 void i915_gem_free_all_phys_object(struct drm_device *dev)
3422 {
3423 int i;
3424
3425 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3426 i915_gem_free_phys_object(dev, i);
3427 }
3428
3429 void i915_gem_detach_phys_object(struct drm_device *dev,
3430 struct drm_gem_object *obj)
3431 {
3432 struct drm_i915_gem_object *obj_priv;
3433 int i;
3434 int ret;
3435 int page_count;
3436
3437 obj_priv = obj->driver_private;
3438 if (!obj_priv->phys_obj)
3439 return;
3440
3441 ret = i915_gem_object_get_page_list(obj);
3442 if (ret)
3443 goto out;
3444
3445 page_count = obj->size / PAGE_SIZE;
3446
3447 for (i = 0; i < page_count; i++) {
3448 char *dst = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3449 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3450
3451 memcpy(dst, src, PAGE_SIZE);
3452 kunmap_atomic(dst, KM_USER0);
3453 }
3454 drm_clflush_pages(obj_priv->page_list, page_count);
3455 drm_agp_chipset_flush(dev);
3456 out:
3457 obj_priv->phys_obj->cur_obj = NULL;
3458 obj_priv->phys_obj = NULL;
3459 }
3460
3461 int
3462 i915_gem_attach_phys_object(struct drm_device *dev,
3463 struct drm_gem_object *obj, int id)
3464 {
3465 drm_i915_private_t *dev_priv = dev->dev_private;
3466 struct drm_i915_gem_object *obj_priv;
3467 int ret = 0;
3468 int page_count;
3469 int i;
3470
3471 if (id > I915_MAX_PHYS_OBJECT)
3472 return -EINVAL;
3473
3474 obj_priv = obj->driver_private;
3475
3476 if (obj_priv->phys_obj) {
3477 if (obj_priv->phys_obj->id == id)
3478 return 0;
3479 i915_gem_detach_phys_object(dev, obj);
3480 }
3481
3482
3483 /* create a new object */
3484 if (!dev_priv->mm.phys_objs[id - 1]) {
3485 ret = i915_gem_init_phys_object(dev, id,
3486 obj->size);
3487 if (ret) {
3488 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
3489 goto out;
3490 }
3491 }
3492
3493 /* bind to the object */
3494 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
3495 obj_priv->phys_obj->cur_obj = obj;
3496
3497 ret = i915_gem_object_get_page_list(obj);
3498 if (ret) {
3499 DRM_ERROR("failed to get page list\n");
3500 goto out;
3501 }
3502
3503 page_count = obj->size / PAGE_SIZE;
3504
3505 for (i = 0; i < page_count; i++) {
3506 char *src = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3507 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3508
3509 memcpy(dst, src, PAGE_SIZE);
3510 kunmap_atomic(src, KM_USER0);
3511 }
3512
3513 return 0;
3514 out:
3515 return ret;
3516 }
3517
3518 static int
3519 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
3520 struct drm_i915_gem_pwrite *args,
3521 struct drm_file *file_priv)
3522 {
3523 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3524 void *obj_addr;
3525 int ret;
3526 char __user *user_data;
3527
3528 user_data = (char __user *) (uintptr_t) args->data_ptr;
3529 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
3530
3531 DRM_ERROR("obj_addr %p, %lld\n", obj_addr, args->size);
3532 ret = copy_from_user(obj_addr, user_data, args->size);
3533 if (ret)
3534 return -EFAULT;
3535
3536 drm_agp_chipset_flush(dev);
3537 return 0;
3538 }
This page took 0.153703 seconds and 6 git commands to generate.