drm/i915: Add dynamic page trace events
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->slab, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521
522 i915_gem_object_retire(obj);
523 }
524
525 ret = i915_gem_object_get_pages(obj);
526 if (ret)
527 return ret;
528
529 i915_gem_object_pin_pages(obj);
530
531 return ret;
532 }
533
534 /* Per-page copy function for the shmem pread fastpath.
535 * Flushes invalid cachelines before reading the target if
536 * needs_clflush is set. */
537 static int
538 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539 char __user *user_data,
540 bool page_do_bit17_swizzling, bool needs_clflush)
541 {
542 char *vaddr;
543 int ret;
544
545 if (unlikely(page_do_bit17_swizzling))
546 return -EINVAL;
547
548 vaddr = kmap_atomic(page);
549 if (needs_clflush)
550 drm_clflush_virt_range(vaddr + shmem_page_offset,
551 page_length);
552 ret = __copy_to_user_inatomic(user_data,
553 vaddr + shmem_page_offset,
554 page_length);
555 kunmap_atomic(vaddr);
556
557 return ret ? -EFAULT : 0;
558 }
559
560 static void
561 shmem_clflush_swizzled_range(char *addr, unsigned long length,
562 bool swizzled)
563 {
564 if (unlikely(swizzled)) {
565 unsigned long start = (unsigned long) addr;
566 unsigned long end = (unsigned long) addr + length;
567
568 /* For swizzling simply ensure that we always flush both
569 * channels. Lame, but simple and it works. Swizzled
570 * pwrite/pread is far from a hotpath - current userspace
571 * doesn't use it at all. */
572 start = round_down(start, 128);
573 end = round_up(end, 128);
574
575 drm_clflush_virt_range((void *)start, end - start);
576 } else {
577 drm_clflush_virt_range(addr, length);
578 }
579
580 }
581
582 /* Only difference to the fast-path function is that this can handle bit17
583 * and uses non-atomic copy and kmap functions. */
584 static int
585 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586 char __user *user_data,
587 bool page_do_bit17_swizzling, bool needs_clflush)
588 {
589 char *vaddr;
590 int ret;
591
592 vaddr = kmap(page);
593 if (needs_clflush)
594 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595 page_length,
596 page_do_bit17_swizzling);
597
598 if (page_do_bit17_swizzling)
599 ret = __copy_to_user_swizzled(user_data,
600 vaddr, shmem_page_offset,
601 page_length);
602 else
603 ret = __copy_to_user(user_data,
604 vaddr + shmem_page_offset,
605 page_length);
606 kunmap(page);
607
608 return ret ? - EFAULT : 0;
609 }
610
611 static int
612 i915_gem_shmem_pread(struct drm_device *dev,
613 struct drm_i915_gem_object *obj,
614 struct drm_i915_gem_pread *args,
615 struct drm_file *file)
616 {
617 char __user *user_data;
618 ssize_t remain;
619 loff_t offset;
620 int shmem_page_offset, page_length, ret = 0;
621 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622 int prefaulted = 0;
623 int needs_clflush = 0;
624 struct sg_page_iter sg_iter;
625
626 user_data = to_user_ptr(args->data_ptr);
627 remain = args->size;
628
629 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630
631 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 if (ret)
633 return ret;
634
635 offset = args->offset;
636
637 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638 offset >> PAGE_SHIFT) {
639 struct page *page = sg_page_iter_page(&sg_iter);
640
641 if (remain <= 0)
642 break;
643
644 /* Operation in this page
645 *
646 * shmem_page_offset = offset within page in shmem file
647 * page_length = bytes to copy for this page
648 */
649 shmem_page_offset = offset_in_page(offset);
650 page_length = remain;
651 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652 page_length = PAGE_SIZE - shmem_page_offset;
653
654 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655 (page_to_phys(page) & (1 << 17)) != 0;
656
657 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660 if (ret == 0)
661 goto next_page;
662
663 mutex_unlock(&dev->struct_mutex);
664
665 if (likely(!i915.prefault_disable) && !prefaulted) {
666 ret = fault_in_multipages_writeable(user_data, remain);
667 /* Userspace is tricking us, but we've already clobbered
668 * its pages with the prefault and promised to write the
669 * data up to the first fault. Hence ignore any errors
670 * and just continue. */
671 (void)ret;
672 prefaulted = 1;
673 }
674
675 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676 user_data, page_do_bit17_swizzling,
677 needs_clflush);
678
679 mutex_lock(&dev->struct_mutex);
680
681 if (ret)
682 goto out;
683
684 next_page:
685 remain -= page_length;
686 user_data += page_length;
687 offset += page_length;
688 }
689
690 out:
691 i915_gem_object_unpin_pages(obj);
692
693 return ret;
694 }
695
696 /**
697 * Reads data from the object referenced by handle.
698 *
699 * On error, the contents of *data are undefined.
700 */
701 int
702 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703 struct drm_file *file)
704 {
705 struct drm_i915_gem_pread *args = data;
706 struct drm_i915_gem_object *obj;
707 int ret = 0;
708
709 if (args->size == 0)
710 return 0;
711
712 if (!access_ok(VERIFY_WRITE,
713 to_user_ptr(args->data_ptr),
714 args->size))
715 return -EFAULT;
716
717 ret = i915_mutex_lock_interruptible(dev);
718 if (ret)
719 return ret;
720
721 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722 if (&obj->base == NULL) {
723 ret = -ENOENT;
724 goto unlock;
725 }
726
727 /* Bounds check source. */
728 if (args->offset > obj->base.size ||
729 args->size > obj->base.size - args->offset) {
730 ret = -EINVAL;
731 goto out;
732 }
733
734 /* prime objects have no backing filp to GEM pread/pwrite
735 * pages from.
736 */
737 if (!obj->base.filp) {
738 ret = -EINVAL;
739 goto out;
740 }
741
742 trace_i915_gem_object_pread(obj, args->offset, args->size);
743
744 ret = i915_gem_shmem_pread(dev, obj, args, file);
745
746 out:
747 drm_gem_object_unreference(&obj->base);
748 unlock:
749 mutex_unlock(&dev->struct_mutex);
750 return ret;
751 }
752
753 /* This is the fast write path which cannot handle
754 * page faults in the source data
755 */
756
757 static inline int
758 fast_user_write(struct io_mapping *mapping,
759 loff_t page_base, int page_offset,
760 char __user *user_data,
761 int length)
762 {
763 void __iomem *vaddr_atomic;
764 void *vaddr;
765 unsigned long unwritten;
766
767 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 /* We can use the cpu mem copy function because this is X86. */
769 vaddr = (void __force*)vaddr_atomic + page_offset;
770 unwritten = __copy_from_user_inatomic_nocache(vaddr,
771 user_data, length);
772 io_mapping_unmap_atomic(vaddr_atomic);
773 return unwritten;
774 }
775
776 /**
777 * This is the fast pwrite path, where we copy the data directly from the
778 * user into the GTT, uncached.
779 */
780 static int
781 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782 struct drm_i915_gem_object *obj,
783 struct drm_i915_gem_pwrite *args,
784 struct drm_file *file)
785 {
786 struct drm_i915_private *dev_priv = dev->dev_private;
787 ssize_t remain;
788 loff_t offset, page_base;
789 char __user *user_data;
790 int page_offset, page_length, ret;
791
792 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
793 if (ret)
794 goto out;
795
796 ret = i915_gem_object_set_to_gtt_domain(obj, true);
797 if (ret)
798 goto out_unpin;
799
800 ret = i915_gem_object_put_fence(obj);
801 if (ret)
802 goto out_unpin;
803
804 user_data = to_user_ptr(args->data_ptr);
805 remain = args->size;
806
807 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808
809 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
811 while (remain > 0) {
812 /* Operation in this page
813 *
814 * page_base = page offset within aperture
815 * page_offset = offset within page
816 * page_length = bytes to copy for this page
817 */
818 page_base = offset & PAGE_MASK;
819 page_offset = offset_in_page(offset);
820 page_length = remain;
821 if ((page_offset + remain) > PAGE_SIZE)
822 page_length = PAGE_SIZE - page_offset;
823
824 /* If we get a fault while copying data, then (presumably) our
825 * source page isn't available. Return the error and we'll
826 * retry in the slow path.
827 */
828 if (fast_user_write(dev_priv->gtt.mappable, page_base,
829 page_offset, user_data, page_length)) {
830 ret = -EFAULT;
831 goto out_flush;
832 }
833
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
837 }
838
839 out_flush:
840 intel_fb_obj_flush(obj, false);
841 out_unpin:
842 i915_gem_object_ggtt_unpin(obj);
843 out:
844 return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
857 {
858 char *vaddr;
859 int ret;
860
861 if (unlikely(page_do_bit17_swizzling))
862 return -EINVAL;
863
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
874
875 return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
886 {
887 char *vaddr;
888 int ret;
889
890 vaddr = kmap(page);
891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 user_data,
898 page_length);
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
907 kunmap(page);
908
909 return ret ? -EFAULT : 0;
910 }
911
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
917 {
918 ssize_t remain;
919 loff_t offset;
920 char __user *user_data;
921 int shmem_page_offset, page_length, ret = 0;
922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923 int hit_slowpath = 0;
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
926 struct sg_page_iter sg_iter;
927
928 user_data = to_user_ptr(args->data_ptr);
929 remain = args->size;
930
931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
938 needs_clflush_after = cpu_write_needs_clflush(obj);
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
942
943 i915_gem_object_retire(obj);
944 }
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
950
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
957 i915_gem_object_pin_pages(obj);
958
959 offset = args->offset;
960 obj->dirty = 1;
961
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
964 struct page *page = sg_page_iter_page(&sg_iter);
965 int partial_cacheline_write;
966
967 if (remain <= 0)
968 break;
969
970 /* Operation in this page
971 *
972 * shmem_page_offset = offset within page in shmem file
973 * page_length = bytes to copy for this page
974 */
975 shmem_page_offset = offset_in_page(offset);
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
980
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
997
998 hit_slowpath = 1;
999 mutex_unlock(&dev->struct_mutex);
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
1004
1005 mutex_lock(&dev->struct_mutex);
1006
1007 if (ret)
1008 goto out;
1009
1010 next_page:
1011 remain -= page_length;
1012 user_data += page_length;
1013 offset += page_length;
1014 }
1015
1016 out:
1017 i915_gem_object_unpin_pages(obj);
1018
1019 if (hit_slowpath) {
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
1029 }
1030 }
1031
1032 if (needs_clflush_after)
1033 i915_gem_chipset_flush(dev);
1034
1035 intel_fb_obj_flush(obj, false);
1036 return ret;
1037 }
1038
1039 /**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044 int
1045 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file)
1047 {
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 struct drm_i915_gem_pwrite *args = data;
1050 struct drm_i915_gem_object *obj;
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
1057 to_user_ptr(args->data_ptr),
1058 args->size))
1059 return -EFAULT;
1060
1061 if (likely(!i915.prefault_disable)) {
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
1067
1068 intel_runtime_pm_get(dev_priv);
1069
1070 ret = i915_mutex_lock_interruptible(dev);
1071 if (ret)
1072 goto put_rpm;
1073
1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 if (&obj->base == NULL) {
1076 ret = -ENOENT;
1077 goto unlock;
1078 }
1079
1080 /* Bounds check destination. */
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097 ret = -EFAULT;
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
1111 }
1112
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
1119
1120 out:
1121 drm_gem_object_unreference(&obj->base);
1122 unlock:
1123 mutex_unlock(&dev->struct_mutex);
1124 put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
1127 return ret;
1128 }
1129
1130 int
1131 i915_gem_check_wedge(struct i915_gpu_error *error,
1132 bool interruptible)
1133 {
1134 if (i915_reset_in_progress(error)) {
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
1142 return -EIO;
1143
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
1151 }
1152
1153 return 0;
1154 }
1155
1156 /*
1157 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158 */
1159 int
1160 i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 {
1162 int ret;
1163
1164 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165
1166 ret = 0;
1167 if (req == req->ring->outstanding_lazy_request)
1168 ret = i915_add_request(req->ring);
1169
1170 return ret;
1171 }
1172
1173 static void fake_irq(unsigned long data)
1174 {
1175 wake_up_process((struct task_struct *)data);
1176 }
1177
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179 struct intel_engine_cs *ring)
1180 {
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183
1184 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1185 {
1186 if (file_priv == NULL)
1187 return true;
1188
1189 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1190 }
1191
1192 /**
1193 * __i915_wait_request - wait until execution of request has finished
1194 * @req: duh!
1195 * @reset_counter: reset sequence associated with the given request
1196 * @interruptible: do an interruptible wait (normally yes)
1197 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1198 *
1199 * Note: It is of utmost importance that the passed in seqno and reset_counter
1200 * values have been read by the caller in an smp safe manner. Where read-side
1201 * locks are involved, it is sufficient to read the reset_counter before
1202 * unlocking the lock that protects the seqno. For lockless tricks, the
1203 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1204 * inserted.
1205 *
1206 * Returns 0 if the request was found within the alloted time. Else returns the
1207 * errno with remaining time filled in timeout argument.
1208 */
1209 int __i915_wait_request(struct drm_i915_gem_request *req,
1210 unsigned reset_counter,
1211 bool interruptible,
1212 s64 *timeout,
1213 struct drm_i915_file_private *file_priv)
1214 {
1215 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1216 struct drm_device *dev = ring->dev;
1217 struct drm_i915_private *dev_priv = dev->dev_private;
1218 const bool irq_test_in_progress =
1219 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1220 DEFINE_WAIT(wait);
1221 unsigned long timeout_expire;
1222 s64 before, now;
1223 int ret;
1224
1225 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1226
1227 if (i915_gem_request_completed(req, true))
1228 return 0;
1229
1230 timeout_expire = timeout ?
1231 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1232
1233 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1234 gen6_rps_boost(dev_priv);
1235 if (file_priv)
1236 mod_delayed_work(dev_priv->wq,
1237 &file_priv->mm.idle_work,
1238 msecs_to_jiffies(100));
1239 }
1240
1241 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1242 return -ENODEV;
1243
1244 /* Record current time in case interrupted by signal, or wedged */
1245 trace_i915_gem_request_wait_begin(req);
1246 before = ktime_get_raw_ns();
1247 for (;;) {
1248 struct timer_list timer;
1249
1250 prepare_to_wait(&ring->irq_queue, &wait,
1251 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1252
1253 /* We need to check whether any gpu reset happened in between
1254 * the caller grabbing the seqno and now ... */
1255 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1256 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1257 * is truely gone. */
1258 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259 if (ret == 0)
1260 ret = -EAGAIN;
1261 break;
1262 }
1263
1264 if (i915_gem_request_completed(req, false)) {
1265 ret = 0;
1266 break;
1267 }
1268
1269 if (interruptible && signal_pending(current)) {
1270 ret = -ERESTARTSYS;
1271 break;
1272 }
1273
1274 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1275 ret = -ETIME;
1276 break;
1277 }
1278
1279 timer.function = NULL;
1280 if (timeout || missed_irq(dev_priv, ring)) {
1281 unsigned long expire;
1282
1283 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1284 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1285 mod_timer(&timer, expire);
1286 }
1287
1288 io_schedule();
1289
1290 if (timer.function) {
1291 del_singleshot_timer_sync(&timer);
1292 destroy_timer_on_stack(&timer);
1293 }
1294 }
1295 now = ktime_get_raw_ns();
1296 trace_i915_gem_request_wait_end(req);
1297
1298 if (!irq_test_in_progress)
1299 ring->irq_put(ring);
1300
1301 finish_wait(&ring->irq_queue, &wait);
1302
1303 if (timeout) {
1304 s64 tres = *timeout - (now - before);
1305
1306 *timeout = tres < 0 ? 0 : tres;
1307
1308 /*
1309 * Apparently ktime isn't accurate enough and occasionally has a
1310 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1311 * things up to make the test happy. We allow up to 1 jiffy.
1312 *
1313 * This is a regrssion from the timespec->ktime conversion.
1314 */
1315 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1316 *timeout = 0;
1317 }
1318
1319 return ret;
1320 }
1321
1322 /**
1323 * Waits for a request to be signaled, and cleans up the
1324 * request and object lists appropriately for that event.
1325 */
1326 int
1327 i915_wait_request(struct drm_i915_gem_request *req)
1328 {
1329 struct drm_device *dev;
1330 struct drm_i915_private *dev_priv;
1331 bool interruptible;
1332 unsigned reset_counter;
1333 int ret;
1334
1335 BUG_ON(req == NULL);
1336
1337 dev = req->ring->dev;
1338 dev_priv = dev->dev_private;
1339 interruptible = dev_priv->mm.interruptible;
1340
1341 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1342
1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1344 if (ret)
1345 return ret;
1346
1347 ret = i915_gem_check_olr(req);
1348 if (ret)
1349 return ret;
1350
1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352 i915_gem_request_reference(req);
1353 ret = __i915_wait_request(req, reset_counter,
1354 interruptible, NULL, NULL);
1355 i915_gem_request_unreference(req);
1356 return ret;
1357 }
1358
1359 static int
1360 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1361 {
1362 if (!obj->active)
1363 return 0;
1364
1365 /* Manually manage the write flush as we may have not yet
1366 * retired the buffer.
1367 *
1368 * Note that the last_write_req is always the earlier of
1369 * the two (read/write) requests, so if we haved successfully waited,
1370 * we know we have passed the last write.
1371 */
1372 i915_gem_request_assign(&obj->last_write_req, NULL);
1373
1374 return 0;
1375 }
1376
1377 /**
1378 * Ensures that all rendering to the object has completed and the object is
1379 * safe to unbind from the GTT or access from the CPU.
1380 */
1381 static __must_check int
1382 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1383 bool readonly)
1384 {
1385 struct drm_i915_gem_request *req;
1386 int ret;
1387
1388 req = readonly ? obj->last_write_req : obj->last_read_req;
1389 if (!req)
1390 return 0;
1391
1392 ret = i915_wait_request(req);
1393 if (ret)
1394 return ret;
1395
1396 return i915_gem_object_wait_rendering__tail(obj);
1397 }
1398
1399 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1400 * as the object state may change during this call.
1401 */
1402 static __must_check int
1403 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1404 struct drm_i915_file_private *file_priv,
1405 bool readonly)
1406 {
1407 struct drm_i915_gem_request *req;
1408 struct drm_device *dev = obj->base.dev;
1409 struct drm_i915_private *dev_priv = dev->dev_private;
1410 unsigned reset_counter;
1411 int ret;
1412
1413 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1414 BUG_ON(!dev_priv->mm.interruptible);
1415
1416 req = readonly ? obj->last_write_req : obj->last_read_req;
1417 if (!req)
1418 return 0;
1419
1420 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1421 if (ret)
1422 return ret;
1423
1424 ret = i915_gem_check_olr(req);
1425 if (ret)
1426 return ret;
1427
1428 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1429 i915_gem_request_reference(req);
1430 mutex_unlock(&dev->struct_mutex);
1431 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1432 mutex_lock(&dev->struct_mutex);
1433 i915_gem_request_unreference(req);
1434 if (ret)
1435 return ret;
1436
1437 return i915_gem_object_wait_rendering__tail(obj);
1438 }
1439
1440 /**
1441 * Called when user space prepares to use an object with the CPU, either
1442 * through the mmap ioctl's mapping or a GTT mapping.
1443 */
1444 int
1445 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1446 struct drm_file *file)
1447 {
1448 struct drm_i915_gem_set_domain *args = data;
1449 struct drm_i915_gem_object *obj;
1450 uint32_t read_domains = args->read_domains;
1451 uint32_t write_domain = args->write_domain;
1452 int ret;
1453
1454 /* Only handle setting domains to types used by the CPU. */
1455 if (write_domain & I915_GEM_GPU_DOMAINS)
1456 return -EINVAL;
1457
1458 if (read_domains & I915_GEM_GPU_DOMAINS)
1459 return -EINVAL;
1460
1461 /* Having something in the write domain implies it's in the read
1462 * domain, and only that read domain. Enforce that in the request.
1463 */
1464 if (write_domain != 0 && read_domains != write_domain)
1465 return -EINVAL;
1466
1467 ret = i915_mutex_lock_interruptible(dev);
1468 if (ret)
1469 return ret;
1470
1471 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1472 if (&obj->base == NULL) {
1473 ret = -ENOENT;
1474 goto unlock;
1475 }
1476
1477 /* Try to flush the object off the GPU without holding the lock.
1478 * We will repeat the flush holding the lock in the normal manner
1479 * to catch cases where we are gazumped.
1480 */
1481 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1482 file->driver_priv,
1483 !write_domain);
1484 if (ret)
1485 goto unref;
1486
1487 if (read_domains & I915_GEM_DOMAIN_GTT)
1488 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1489 else
1490 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1491
1492 unref:
1493 drm_gem_object_unreference(&obj->base);
1494 unlock:
1495 mutex_unlock(&dev->struct_mutex);
1496 return ret;
1497 }
1498
1499 /**
1500 * Called when user space has done writes to this buffer
1501 */
1502 int
1503 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1504 struct drm_file *file)
1505 {
1506 struct drm_i915_gem_sw_finish *args = data;
1507 struct drm_i915_gem_object *obj;
1508 int ret = 0;
1509
1510 ret = i915_mutex_lock_interruptible(dev);
1511 if (ret)
1512 return ret;
1513
1514 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1515 if (&obj->base == NULL) {
1516 ret = -ENOENT;
1517 goto unlock;
1518 }
1519
1520 /* Pinned buffers may be scanout, so flush the cache */
1521 if (obj->pin_display)
1522 i915_gem_object_flush_cpu_write_domain(obj);
1523
1524 drm_gem_object_unreference(&obj->base);
1525 unlock:
1526 mutex_unlock(&dev->struct_mutex);
1527 return ret;
1528 }
1529
1530 /**
1531 * Maps the contents of an object, returning the address it is mapped
1532 * into.
1533 *
1534 * While the mapping holds a reference on the contents of the object, it doesn't
1535 * imply a ref on the object itself.
1536 *
1537 * IMPORTANT:
1538 *
1539 * DRM driver writers who look a this function as an example for how to do GEM
1540 * mmap support, please don't implement mmap support like here. The modern way
1541 * to implement DRM mmap support is with an mmap offset ioctl (like
1542 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1543 * That way debug tooling like valgrind will understand what's going on, hiding
1544 * the mmap call in a driver private ioctl will break that. The i915 driver only
1545 * does cpu mmaps this way because we didn't know better.
1546 */
1547 int
1548 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1549 struct drm_file *file)
1550 {
1551 struct drm_i915_gem_mmap *args = data;
1552 struct drm_gem_object *obj;
1553 unsigned long addr;
1554
1555 if (args->flags & ~(I915_MMAP_WC))
1556 return -EINVAL;
1557
1558 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1559 return -ENODEV;
1560
1561 obj = drm_gem_object_lookup(dev, file, args->handle);
1562 if (obj == NULL)
1563 return -ENOENT;
1564
1565 /* prime objects have no backing filp to GEM mmap
1566 * pages from.
1567 */
1568 if (!obj->filp) {
1569 drm_gem_object_unreference_unlocked(obj);
1570 return -EINVAL;
1571 }
1572
1573 addr = vm_mmap(obj->filp, 0, args->size,
1574 PROT_READ | PROT_WRITE, MAP_SHARED,
1575 args->offset);
1576 if (args->flags & I915_MMAP_WC) {
1577 struct mm_struct *mm = current->mm;
1578 struct vm_area_struct *vma;
1579
1580 down_write(&mm->mmap_sem);
1581 vma = find_vma(mm, addr);
1582 if (vma)
1583 vma->vm_page_prot =
1584 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1585 else
1586 addr = -ENOMEM;
1587 up_write(&mm->mmap_sem);
1588 }
1589 drm_gem_object_unreference_unlocked(obj);
1590 if (IS_ERR((void *)addr))
1591 return addr;
1592
1593 args->addr_ptr = (uint64_t) addr;
1594
1595 return 0;
1596 }
1597
1598 /**
1599 * i915_gem_fault - fault a page into the GTT
1600 * vma: VMA in question
1601 * vmf: fault info
1602 *
1603 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1604 * from userspace. The fault handler takes care of binding the object to
1605 * the GTT (if needed), allocating and programming a fence register (again,
1606 * only if needed based on whether the old reg is still valid or the object
1607 * is tiled) and inserting a new PTE into the faulting process.
1608 *
1609 * Note that the faulting process may involve evicting existing objects
1610 * from the GTT and/or fence registers to make room. So performance may
1611 * suffer if the GTT working set is large or there are few fence registers
1612 * left.
1613 */
1614 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1615 {
1616 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1617 struct drm_device *dev = obj->base.dev;
1618 struct drm_i915_private *dev_priv = dev->dev_private;
1619 pgoff_t page_offset;
1620 unsigned long pfn;
1621 int ret = 0;
1622 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1623
1624 intel_runtime_pm_get(dev_priv);
1625
1626 /* We don't use vmf->pgoff since that has the fake offset */
1627 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1628 PAGE_SHIFT;
1629
1630 ret = i915_mutex_lock_interruptible(dev);
1631 if (ret)
1632 goto out;
1633
1634 trace_i915_gem_object_fault(obj, page_offset, true, write);
1635
1636 /* Try to flush the object off the GPU first without holding the lock.
1637 * Upon reacquiring the lock, we will perform our sanity checks and then
1638 * repeat the flush holding the lock in the normal manner to catch cases
1639 * where we are gazumped.
1640 */
1641 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1642 if (ret)
1643 goto unlock;
1644
1645 /* Access to snoopable pages through the GTT is incoherent. */
1646 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1647 ret = -EFAULT;
1648 goto unlock;
1649 }
1650
1651 /* Now bind it into the GTT if needed */
1652 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1653 if (ret)
1654 goto unlock;
1655
1656 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1657 if (ret)
1658 goto unpin;
1659
1660 ret = i915_gem_object_get_fence(obj);
1661 if (ret)
1662 goto unpin;
1663
1664 /* Finally, remap it using the new GTT offset */
1665 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1666 pfn >>= PAGE_SHIFT;
1667
1668 if (!obj->fault_mappable) {
1669 unsigned long size = min_t(unsigned long,
1670 vma->vm_end - vma->vm_start,
1671 obj->base.size);
1672 int i;
1673
1674 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1675 ret = vm_insert_pfn(vma,
1676 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1677 pfn + i);
1678 if (ret)
1679 break;
1680 }
1681
1682 obj->fault_mappable = true;
1683 } else
1684 ret = vm_insert_pfn(vma,
1685 (unsigned long)vmf->virtual_address,
1686 pfn + page_offset);
1687 unpin:
1688 i915_gem_object_ggtt_unpin(obj);
1689 unlock:
1690 mutex_unlock(&dev->struct_mutex);
1691 out:
1692 switch (ret) {
1693 case -EIO:
1694 /*
1695 * We eat errors when the gpu is terminally wedged to avoid
1696 * userspace unduly crashing (gl has no provisions for mmaps to
1697 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1698 * and so needs to be reported.
1699 */
1700 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1701 ret = VM_FAULT_SIGBUS;
1702 break;
1703 }
1704 case -EAGAIN:
1705 /*
1706 * EAGAIN means the gpu is hung and we'll wait for the error
1707 * handler to reset everything when re-faulting in
1708 * i915_mutex_lock_interruptible.
1709 */
1710 case 0:
1711 case -ERESTARTSYS:
1712 case -EINTR:
1713 case -EBUSY:
1714 /*
1715 * EBUSY is ok: this just means that another thread
1716 * already did the job.
1717 */
1718 ret = VM_FAULT_NOPAGE;
1719 break;
1720 case -ENOMEM:
1721 ret = VM_FAULT_OOM;
1722 break;
1723 case -ENOSPC:
1724 case -EFAULT:
1725 ret = VM_FAULT_SIGBUS;
1726 break;
1727 default:
1728 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1729 ret = VM_FAULT_SIGBUS;
1730 break;
1731 }
1732
1733 intel_runtime_pm_put(dev_priv);
1734 return ret;
1735 }
1736
1737 /**
1738 * i915_gem_release_mmap - remove physical page mappings
1739 * @obj: obj in question
1740 *
1741 * Preserve the reservation of the mmapping with the DRM core code, but
1742 * relinquish ownership of the pages back to the system.
1743 *
1744 * It is vital that we remove the page mapping if we have mapped a tiled
1745 * object through the GTT and then lose the fence register due to
1746 * resource pressure. Similarly if the object has been moved out of the
1747 * aperture, than pages mapped into userspace must be revoked. Removing the
1748 * mapping will then trigger a page fault on the next user access, allowing
1749 * fixup by i915_gem_fault().
1750 */
1751 void
1752 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1753 {
1754 if (!obj->fault_mappable)
1755 return;
1756
1757 drm_vma_node_unmap(&obj->base.vma_node,
1758 obj->base.dev->anon_inode->i_mapping);
1759 obj->fault_mappable = false;
1760 }
1761
1762 void
1763 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1764 {
1765 struct drm_i915_gem_object *obj;
1766
1767 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1768 i915_gem_release_mmap(obj);
1769 }
1770
1771 uint32_t
1772 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1773 {
1774 uint32_t gtt_size;
1775
1776 if (INTEL_INFO(dev)->gen >= 4 ||
1777 tiling_mode == I915_TILING_NONE)
1778 return size;
1779
1780 /* Previous chips need a power-of-two fence region when tiling */
1781 if (INTEL_INFO(dev)->gen == 3)
1782 gtt_size = 1024*1024;
1783 else
1784 gtt_size = 512*1024;
1785
1786 while (gtt_size < size)
1787 gtt_size <<= 1;
1788
1789 return gtt_size;
1790 }
1791
1792 /**
1793 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1794 * @obj: object to check
1795 *
1796 * Return the required GTT alignment for an object, taking into account
1797 * potential fence register mapping.
1798 */
1799 uint32_t
1800 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1801 int tiling_mode, bool fenced)
1802 {
1803 /*
1804 * Minimum alignment is 4k (GTT page size), but might be greater
1805 * if a fence register is needed for the object.
1806 */
1807 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1808 tiling_mode == I915_TILING_NONE)
1809 return 4096;
1810
1811 /*
1812 * Previous chips need to be aligned to the size of the smallest
1813 * fence register that can contain the object.
1814 */
1815 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1816 }
1817
1818 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1819 {
1820 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1821 int ret;
1822
1823 if (drm_vma_node_has_offset(&obj->base.vma_node))
1824 return 0;
1825
1826 dev_priv->mm.shrinker_no_lock_stealing = true;
1827
1828 ret = drm_gem_create_mmap_offset(&obj->base);
1829 if (ret != -ENOSPC)
1830 goto out;
1831
1832 /* Badly fragmented mmap space? The only way we can recover
1833 * space is by destroying unwanted objects. We can't randomly release
1834 * mmap_offsets as userspace expects them to be persistent for the
1835 * lifetime of the objects. The closest we can is to release the
1836 * offsets on purgeable objects by truncating it and marking it purged,
1837 * which prevents userspace from ever using that object again.
1838 */
1839 i915_gem_shrink(dev_priv,
1840 obj->base.size >> PAGE_SHIFT,
1841 I915_SHRINK_BOUND |
1842 I915_SHRINK_UNBOUND |
1843 I915_SHRINK_PURGEABLE);
1844 ret = drm_gem_create_mmap_offset(&obj->base);
1845 if (ret != -ENOSPC)
1846 goto out;
1847
1848 i915_gem_shrink_all(dev_priv);
1849 ret = drm_gem_create_mmap_offset(&obj->base);
1850 out:
1851 dev_priv->mm.shrinker_no_lock_stealing = false;
1852
1853 return ret;
1854 }
1855
1856 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1857 {
1858 drm_gem_free_mmap_offset(&obj->base);
1859 }
1860
1861 int
1862 i915_gem_mmap_gtt(struct drm_file *file,
1863 struct drm_device *dev,
1864 uint32_t handle,
1865 uint64_t *offset)
1866 {
1867 struct drm_i915_private *dev_priv = dev->dev_private;
1868 struct drm_i915_gem_object *obj;
1869 int ret;
1870
1871 ret = i915_mutex_lock_interruptible(dev);
1872 if (ret)
1873 return ret;
1874
1875 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1876 if (&obj->base == NULL) {
1877 ret = -ENOENT;
1878 goto unlock;
1879 }
1880
1881 if (obj->base.size > dev_priv->gtt.mappable_end) {
1882 ret = -E2BIG;
1883 goto out;
1884 }
1885
1886 if (obj->madv != I915_MADV_WILLNEED) {
1887 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1888 ret = -EFAULT;
1889 goto out;
1890 }
1891
1892 ret = i915_gem_object_create_mmap_offset(obj);
1893 if (ret)
1894 goto out;
1895
1896 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1897
1898 out:
1899 drm_gem_object_unreference(&obj->base);
1900 unlock:
1901 mutex_unlock(&dev->struct_mutex);
1902 return ret;
1903 }
1904
1905 /**
1906 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1907 * @dev: DRM device
1908 * @data: GTT mapping ioctl data
1909 * @file: GEM object info
1910 *
1911 * Simply returns the fake offset to userspace so it can mmap it.
1912 * The mmap call will end up in drm_gem_mmap(), which will set things
1913 * up so we can get faults in the handler above.
1914 *
1915 * The fault handler will take care of binding the object into the GTT
1916 * (since it may have been evicted to make room for something), allocating
1917 * a fence register, and mapping the appropriate aperture address into
1918 * userspace.
1919 */
1920 int
1921 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1922 struct drm_file *file)
1923 {
1924 struct drm_i915_gem_mmap_gtt *args = data;
1925
1926 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1927 }
1928
1929 /* Immediately discard the backing storage */
1930 static void
1931 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1932 {
1933 i915_gem_object_free_mmap_offset(obj);
1934
1935 if (obj->base.filp == NULL)
1936 return;
1937
1938 /* Our goal here is to return as much of the memory as
1939 * is possible back to the system as we are called from OOM.
1940 * To do this we must instruct the shmfs to drop all of its
1941 * backing pages, *now*.
1942 */
1943 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1944 obj->madv = __I915_MADV_PURGED;
1945 }
1946
1947 /* Try to discard unwanted pages */
1948 static void
1949 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1950 {
1951 struct address_space *mapping;
1952
1953 switch (obj->madv) {
1954 case I915_MADV_DONTNEED:
1955 i915_gem_object_truncate(obj);
1956 case __I915_MADV_PURGED:
1957 return;
1958 }
1959
1960 if (obj->base.filp == NULL)
1961 return;
1962
1963 mapping = file_inode(obj->base.filp)->i_mapping,
1964 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1965 }
1966
1967 static void
1968 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1969 {
1970 struct sg_page_iter sg_iter;
1971 int ret;
1972
1973 BUG_ON(obj->madv == __I915_MADV_PURGED);
1974
1975 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1976 if (ret) {
1977 /* In the event of a disaster, abandon all caches and
1978 * hope for the best.
1979 */
1980 WARN_ON(ret != -EIO);
1981 i915_gem_clflush_object(obj, true);
1982 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1983 }
1984
1985 if (i915_gem_object_needs_bit17_swizzle(obj))
1986 i915_gem_object_save_bit_17_swizzle(obj);
1987
1988 if (obj->madv == I915_MADV_DONTNEED)
1989 obj->dirty = 0;
1990
1991 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1992 struct page *page = sg_page_iter_page(&sg_iter);
1993
1994 if (obj->dirty)
1995 set_page_dirty(page);
1996
1997 if (obj->madv == I915_MADV_WILLNEED)
1998 mark_page_accessed(page);
1999
2000 page_cache_release(page);
2001 }
2002 obj->dirty = 0;
2003
2004 sg_free_table(obj->pages);
2005 kfree(obj->pages);
2006 }
2007
2008 int
2009 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2010 {
2011 const struct drm_i915_gem_object_ops *ops = obj->ops;
2012
2013 if (obj->pages == NULL)
2014 return 0;
2015
2016 if (obj->pages_pin_count)
2017 return -EBUSY;
2018
2019 BUG_ON(i915_gem_obj_bound_any(obj));
2020
2021 /* ->put_pages might need to allocate memory for the bit17 swizzle
2022 * array, hence protect them from being reaped by removing them from gtt
2023 * lists early. */
2024 list_del(&obj->global_list);
2025
2026 ops->put_pages(obj);
2027 obj->pages = NULL;
2028
2029 i915_gem_object_invalidate(obj);
2030
2031 return 0;
2032 }
2033
2034 static int
2035 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2036 {
2037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 int page_count, i;
2039 struct address_space *mapping;
2040 struct sg_table *st;
2041 struct scatterlist *sg;
2042 struct sg_page_iter sg_iter;
2043 struct page *page;
2044 unsigned long last_pfn = 0; /* suppress gcc warning */
2045 gfp_t gfp;
2046
2047 /* Assert that the object is not currently in any GPU domain. As it
2048 * wasn't in the GTT, there shouldn't be any way it could have been in
2049 * a GPU cache
2050 */
2051 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2052 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2053
2054 st = kmalloc(sizeof(*st), GFP_KERNEL);
2055 if (st == NULL)
2056 return -ENOMEM;
2057
2058 page_count = obj->base.size / PAGE_SIZE;
2059 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2060 kfree(st);
2061 return -ENOMEM;
2062 }
2063
2064 /* Get the list of pages out of our struct file. They'll be pinned
2065 * at this point until we release them.
2066 *
2067 * Fail silently without starting the shrinker
2068 */
2069 mapping = file_inode(obj->base.filp)->i_mapping;
2070 gfp = mapping_gfp_mask(mapping);
2071 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2072 gfp &= ~(__GFP_IO | __GFP_WAIT);
2073 sg = st->sgl;
2074 st->nents = 0;
2075 for (i = 0; i < page_count; i++) {
2076 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2077 if (IS_ERR(page)) {
2078 i915_gem_shrink(dev_priv,
2079 page_count,
2080 I915_SHRINK_BOUND |
2081 I915_SHRINK_UNBOUND |
2082 I915_SHRINK_PURGEABLE);
2083 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2084 }
2085 if (IS_ERR(page)) {
2086 /* We've tried hard to allocate the memory by reaping
2087 * our own buffer, now let the real VM do its job and
2088 * go down in flames if truly OOM.
2089 */
2090 i915_gem_shrink_all(dev_priv);
2091 page = shmem_read_mapping_page(mapping, i);
2092 if (IS_ERR(page))
2093 goto err_pages;
2094 }
2095 #ifdef CONFIG_SWIOTLB
2096 if (swiotlb_nr_tbl()) {
2097 st->nents++;
2098 sg_set_page(sg, page, PAGE_SIZE, 0);
2099 sg = sg_next(sg);
2100 continue;
2101 }
2102 #endif
2103 if (!i || page_to_pfn(page) != last_pfn + 1) {
2104 if (i)
2105 sg = sg_next(sg);
2106 st->nents++;
2107 sg_set_page(sg, page, PAGE_SIZE, 0);
2108 } else {
2109 sg->length += PAGE_SIZE;
2110 }
2111 last_pfn = page_to_pfn(page);
2112
2113 /* Check that the i965g/gm workaround works. */
2114 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2115 }
2116 #ifdef CONFIG_SWIOTLB
2117 if (!swiotlb_nr_tbl())
2118 #endif
2119 sg_mark_end(sg);
2120 obj->pages = st;
2121
2122 if (i915_gem_object_needs_bit17_swizzle(obj))
2123 i915_gem_object_do_bit_17_swizzle(obj);
2124
2125 if (obj->tiling_mode != I915_TILING_NONE &&
2126 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2127 i915_gem_object_pin_pages(obj);
2128
2129 return 0;
2130
2131 err_pages:
2132 sg_mark_end(sg);
2133 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2134 page_cache_release(sg_page_iter_page(&sg_iter));
2135 sg_free_table(st);
2136 kfree(st);
2137
2138 /* shmemfs first checks if there is enough memory to allocate the page
2139 * and reports ENOSPC should there be insufficient, along with the usual
2140 * ENOMEM for a genuine allocation failure.
2141 *
2142 * We use ENOSPC in our driver to mean that we have run out of aperture
2143 * space and so want to translate the error from shmemfs back to our
2144 * usual understanding of ENOMEM.
2145 */
2146 if (PTR_ERR(page) == -ENOSPC)
2147 return -ENOMEM;
2148 else
2149 return PTR_ERR(page);
2150 }
2151
2152 /* Ensure that the associated pages are gathered from the backing storage
2153 * and pinned into our object. i915_gem_object_get_pages() may be called
2154 * multiple times before they are released by a single call to
2155 * i915_gem_object_put_pages() - once the pages are no longer referenced
2156 * either as a result of memory pressure (reaping pages under the shrinker)
2157 * or as the object is itself released.
2158 */
2159 int
2160 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2161 {
2162 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2163 const struct drm_i915_gem_object_ops *ops = obj->ops;
2164 int ret;
2165
2166 if (obj->pages)
2167 return 0;
2168
2169 if (obj->madv != I915_MADV_WILLNEED) {
2170 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2171 return -EFAULT;
2172 }
2173
2174 BUG_ON(obj->pages_pin_count);
2175
2176 ret = ops->get_pages(obj);
2177 if (ret)
2178 return ret;
2179
2180 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2181 return 0;
2182 }
2183
2184 static void
2185 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2186 struct intel_engine_cs *ring)
2187 {
2188 struct drm_i915_gem_request *req;
2189 struct intel_engine_cs *old_ring;
2190
2191 BUG_ON(ring == NULL);
2192
2193 req = intel_ring_get_request(ring);
2194 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2195
2196 if (old_ring != ring && obj->last_write_req) {
2197 /* Keep the request relative to the current ring */
2198 i915_gem_request_assign(&obj->last_write_req, req);
2199 }
2200
2201 /* Add a reference if we're newly entering the active list. */
2202 if (!obj->active) {
2203 drm_gem_object_reference(&obj->base);
2204 obj->active = 1;
2205 }
2206
2207 list_move_tail(&obj->ring_list, &ring->active_list);
2208
2209 i915_gem_request_assign(&obj->last_read_req, req);
2210 }
2211
2212 void i915_vma_move_to_active(struct i915_vma *vma,
2213 struct intel_engine_cs *ring)
2214 {
2215 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2216 return i915_gem_object_move_to_active(vma->obj, ring);
2217 }
2218
2219 static void
2220 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2221 {
2222 struct i915_vma *vma;
2223
2224 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2225 BUG_ON(!obj->active);
2226
2227 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2228 if (!list_empty(&vma->mm_list))
2229 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2230 }
2231
2232 intel_fb_obj_flush(obj, true);
2233
2234 list_del_init(&obj->ring_list);
2235
2236 i915_gem_request_assign(&obj->last_read_req, NULL);
2237 i915_gem_request_assign(&obj->last_write_req, NULL);
2238 obj->base.write_domain = 0;
2239
2240 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2241
2242 obj->active = 0;
2243 drm_gem_object_unreference(&obj->base);
2244
2245 WARN_ON(i915_verify_lists(dev));
2246 }
2247
2248 static void
2249 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2250 {
2251 if (obj->last_read_req == NULL)
2252 return;
2253
2254 if (i915_gem_request_completed(obj->last_read_req, true))
2255 i915_gem_object_move_to_inactive(obj);
2256 }
2257
2258 static int
2259 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2260 {
2261 struct drm_i915_private *dev_priv = dev->dev_private;
2262 struct intel_engine_cs *ring;
2263 int ret, i, j;
2264
2265 /* Carefully retire all requests without writing to the rings */
2266 for_each_ring(ring, dev_priv, i) {
2267 ret = intel_ring_idle(ring);
2268 if (ret)
2269 return ret;
2270 }
2271 i915_gem_retire_requests(dev);
2272
2273 /* Finally reset hw state */
2274 for_each_ring(ring, dev_priv, i) {
2275 intel_ring_init_seqno(ring, seqno);
2276
2277 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2278 ring->semaphore.sync_seqno[j] = 0;
2279 }
2280
2281 return 0;
2282 }
2283
2284 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2285 {
2286 struct drm_i915_private *dev_priv = dev->dev_private;
2287 int ret;
2288
2289 if (seqno == 0)
2290 return -EINVAL;
2291
2292 /* HWS page needs to be set less than what we
2293 * will inject to ring
2294 */
2295 ret = i915_gem_init_seqno(dev, seqno - 1);
2296 if (ret)
2297 return ret;
2298
2299 /* Carefully set the last_seqno value so that wrap
2300 * detection still works
2301 */
2302 dev_priv->next_seqno = seqno;
2303 dev_priv->last_seqno = seqno - 1;
2304 if (dev_priv->last_seqno == 0)
2305 dev_priv->last_seqno--;
2306
2307 return 0;
2308 }
2309
2310 int
2311 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2312 {
2313 struct drm_i915_private *dev_priv = dev->dev_private;
2314
2315 /* reserve 0 for non-seqno */
2316 if (dev_priv->next_seqno == 0) {
2317 int ret = i915_gem_init_seqno(dev, 0);
2318 if (ret)
2319 return ret;
2320
2321 dev_priv->next_seqno = 1;
2322 }
2323
2324 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2325 return 0;
2326 }
2327
2328 int __i915_add_request(struct intel_engine_cs *ring,
2329 struct drm_file *file,
2330 struct drm_i915_gem_object *obj)
2331 {
2332 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2333 struct drm_i915_gem_request *request;
2334 struct intel_ringbuffer *ringbuf;
2335 u32 request_start;
2336 int ret;
2337
2338 request = ring->outstanding_lazy_request;
2339 if (WARN_ON(request == NULL))
2340 return -ENOMEM;
2341
2342 if (i915.enable_execlists) {
2343 ringbuf = request->ctx->engine[ring->id].ringbuf;
2344 } else
2345 ringbuf = ring->buffer;
2346
2347 request_start = intel_ring_get_tail(ringbuf);
2348 /*
2349 * Emit any outstanding flushes - execbuf can fail to emit the flush
2350 * after having emitted the batchbuffer command. Hence we need to fix
2351 * things up similar to emitting the lazy request. The difference here
2352 * is that the flush _must_ happen before the next request, no matter
2353 * what.
2354 */
2355 if (i915.enable_execlists) {
2356 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2357 if (ret)
2358 return ret;
2359 } else {
2360 ret = intel_ring_flush_all_caches(ring);
2361 if (ret)
2362 return ret;
2363 }
2364
2365 /* Record the position of the start of the request so that
2366 * should we detect the updated seqno part-way through the
2367 * GPU processing the request, we never over-estimate the
2368 * position of the head.
2369 */
2370 request->postfix = intel_ring_get_tail(ringbuf);
2371
2372 if (i915.enable_execlists) {
2373 ret = ring->emit_request(ringbuf, request);
2374 if (ret)
2375 return ret;
2376 } else {
2377 ret = ring->add_request(ring);
2378 if (ret)
2379 return ret;
2380 }
2381
2382 request->head = request_start;
2383 request->tail = intel_ring_get_tail(ringbuf);
2384
2385 /* Whilst this request exists, batch_obj will be on the
2386 * active_list, and so will hold the active reference. Only when this
2387 * request is retired will the the batch_obj be moved onto the
2388 * inactive_list and lose its active reference. Hence we do not need
2389 * to explicitly hold another reference here.
2390 */
2391 request->batch_obj = obj;
2392
2393 if (!i915.enable_execlists) {
2394 /* Hold a reference to the current context so that we can inspect
2395 * it later in case a hangcheck error event fires.
2396 */
2397 request->ctx = ring->last_context;
2398 if (request->ctx)
2399 i915_gem_context_reference(request->ctx);
2400 }
2401
2402 request->emitted_jiffies = jiffies;
2403 list_add_tail(&request->list, &ring->request_list);
2404 request->file_priv = NULL;
2405
2406 if (file) {
2407 struct drm_i915_file_private *file_priv = file->driver_priv;
2408
2409 spin_lock(&file_priv->mm.lock);
2410 request->file_priv = file_priv;
2411 list_add_tail(&request->client_list,
2412 &file_priv->mm.request_list);
2413 spin_unlock(&file_priv->mm.lock);
2414
2415 request->pid = get_pid(task_pid(current));
2416 }
2417
2418 trace_i915_gem_request_add(request);
2419 ring->outstanding_lazy_request = NULL;
2420
2421 i915_queue_hangcheck(ring->dev);
2422
2423 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2424 queue_delayed_work(dev_priv->wq,
2425 &dev_priv->mm.retire_work,
2426 round_jiffies_up_relative(HZ));
2427 intel_mark_busy(dev_priv->dev);
2428
2429 return 0;
2430 }
2431
2432 static inline void
2433 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2434 {
2435 struct drm_i915_file_private *file_priv = request->file_priv;
2436
2437 if (!file_priv)
2438 return;
2439
2440 spin_lock(&file_priv->mm.lock);
2441 list_del(&request->client_list);
2442 request->file_priv = NULL;
2443 spin_unlock(&file_priv->mm.lock);
2444 }
2445
2446 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2447 const struct intel_context *ctx)
2448 {
2449 unsigned long elapsed;
2450
2451 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2452
2453 if (ctx->hang_stats.banned)
2454 return true;
2455
2456 if (ctx->hang_stats.ban_period_seconds &&
2457 elapsed <= ctx->hang_stats.ban_period_seconds) {
2458 if (!i915_gem_context_is_default(ctx)) {
2459 DRM_DEBUG("context hanging too fast, banning!\n");
2460 return true;
2461 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2462 if (i915_stop_ring_allow_warn(dev_priv))
2463 DRM_ERROR("gpu hanging too fast, banning!\n");
2464 return true;
2465 }
2466 }
2467
2468 return false;
2469 }
2470
2471 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2472 struct intel_context *ctx,
2473 const bool guilty)
2474 {
2475 struct i915_ctx_hang_stats *hs;
2476
2477 if (WARN_ON(!ctx))
2478 return;
2479
2480 hs = &ctx->hang_stats;
2481
2482 if (guilty) {
2483 hs->banned = i915_context_is_banned(dev_priv, ctx);
2484 hs->batch_active++;
2485 hs->guilty_ts = get_seconds();
2486 } else {
2487 hs->batch_pending++;
2488 }
2489 }
2490
2491 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2492 {
2493 list_del(&request->list);
2494 i915_gem_request_remove_from_client(request);
2495
2496 put_pid(request->pid);
2497
2498 i915_gem_request_unreference(request);
2499 }
2500
2501 void i915_gem_request_free(struct kref *req_ref)
2502 {
2503 struct drm_i915_gem_request *req = container_of(req_ref,
2504 typeof(*req), ref);
2505 struct intel_context *ctx = req->ctx;
2506
2507 if (ctx) {
2508 if (i915.enable_execlists) {
2509 struct intel_engine_cs *ring = req->ring;
2510
2511 if (ctx != ring->default_context)
2512 intel_lr_context_unpin(ring, ctx);
2513 }
2514
2515 i915_gem_context_unreference(ctx);
2516 }
2517
2518 kfree(req);
2519 }
2520
2521 struct drm_i915_gem_request *
2522 i915_gem_find_active_request(struct intel_engine_cs *ring)
2523 {
2524 struct drm_i915_gem_request *request;
2525
2526 list_for_each_entry(request, &ring->request_list, list) {
2527 if (i915_gem_request_completed(request, false))
2528 continue;
2529
2530 return request;
2531 }
2532
2533 return NULL;
2534 }
2535
2536 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2537 struct intel_engine_cs *ring)
2538 {
2539 struct drm_i915_gem_request *request;
2540 bool ring_hung;
2541
2542 request = i915_gem_find_active_request(ring);
2543
2544 if (request == NULL)
2545 return;
2546
2547 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2548
2549 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2550
2551 list_for_each_entry_continue(request, &ring->request_list, list)
2552 i915_set_reset_status(dev_priv, request->ctx, false);
2553 }
2554
2555 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2556 struct intel_engine_cs *ring)
2557 {
2558 while (!list_empty(&ring->active_list)) {
2559 struct drm_i915_gem_object *obj;
2560
2561 obj = list_first_entry(&ring->active_list,
2562 struct drm_i915_gem_object,
2563 ring_list);
2564
2565 i915_gem_object_move_to_inactive(obj);
2566 }
2567
2568 /*
2569 * Clear the execlists queue up before freeing the requests, as those
2570 * are the ones that keep the context and ringbuffer backing objects
2571 * pinned in place.
2572 */
2573 while (!list_empty(&ring->execlist_queue)) {
2574 struct drm_i915_gem_request *submit_req;
2575
2576 submit_req = list_first_entry(&ring->execlist_queue,
2577 struct drm_i915_gem_request,
2578 execlist_link);
2579 list_del(&submit_req->execlist_link);
2580 intel_runtime_pm_put(dev_priv);
2581
2582 if (submit_req->ctx != ring->default_context)
2583 intel_lr_context_unpin(ring, submit_req->ctx);
2584
2585 i915_gem_request_unreference(submit_req);
2586 }
2587
2588 /*
2589 * We must free the requests after all the corresponding objects have
2590 * been moved off active lists. Which is the same order as the normal
2591 * retire_requests function does. This is important if object hold
2592 * implicit references on things like e.g. ppgtt address spaces through
2593 * the request.
2594 */
2595 while (!list_empty(&ring->request_list)) {
2596 struct drm_i915_gem_request *request;
2597
2598 request = list_first_entry(&ring->request_list,
2599 struct drm_i915_gem_request,
2600 list);
2601
2602 i915_gem_free_request(request);
2603 }
2604
2605 /* This may not have been flushed before the reset, so clean it now */
2606 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2607 }
2608
2609 void i915_gem_restore_fences(struct drm_device *dev)
2610 {
2611 struct drm_i915_private *dev_priv = dev->dev_private;
2612 int i;
2613
2614 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2615 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2616
2617 /*
2618 * Commit delayed tiling changes if we have an object still
2619 * attached to the fence, otherwise just clear the fence.
2620 */
2621 if (reg->obj) {
2622 i915_gem_object_update_fence(reg->obj, reg,
2623 reg->obj->tiling_mode);
2624 } else {
2625 i915_gem_write_fence(dev, i, NULL);
2626 }
2627 }
2628 }
2629
2630 void i915_gem_reset(struct drm_device *dev)
2631 {
2632 struct drm_i915_private *dev_priv = dev->dev_private;
2633 struct intel_engine_cs *ring;
2634 int i;
2635
2636 /*
2637 * Before we free the objects from the requests, we need to inspect
2638 * them for finding the guilty party. As the requests only borrow
2639 * their reference to the objects, the inspection must be done first.
2640 */
2641 for_each_ring(ring, dev_priv, i)
2642 i915_gem_reset_ring_status(dev_priv, ring);
2643
2644 for_each_ring(ring, dev_priv, i)
2645 i915_gem_reset_ring_cleanup(dev_priv, ring);
2646
2647 i915_gem_context_reset(dev);
2648
2649 i915_gem_restore_fences(dev);
2650 }
2651
2652 /**
2653 * This function clears the request list as sequence numbers are passed.
2654 */
2655 void
2656 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2657 {
2658 if (list_empty(&ring->request_list))
2659 return;
2660
2661 WARN_ON(i915_verify_lists(ring->dev));
2662
2663 /* Move any buffers on the active list that are no longer referenced
2664 * by the ringbuffer to the flushing/inactive lists as appropriate,
2665 * before we free the context associated with the requests.
2666 */
2667 while (!list_empty(&ring->active_list)) {
2668 struct drm_i915_gem_object *obj;
2669
2670 obj = list_first_entry(&ring->active_list,
2671 struct drm_i915_gem_object,
2672 ring_list);
2673
2674 if (!i915_gem_request_completed(obj->last_read_req, true))
2675 break;
2676
2677 i915_gem_object_move_to_inactive(obj);
2678 }
2679
2680
2681 while (!list_empty(&ring->request_list)) {
2682 struct drm_i915_gem_request *request;
2683
2684 request = list_first_entry(&ring->request_list,
2685 struct drm_i915_gem_request,
2686 list);
2687
2688 if (!i915_gem_request_completed(request, true))
2689 break;
2690
2691 trace_i915_gem_request_retire(request);
2692
2693 /* We know the GPU must have read the request to have
2694 * sent us the seqno + interrupt, so use the position
2695 * of tail of the request to update the last known position
2696 * of the GPU head.
2697 */
2698 request->ringbuf->last_retired_head = request->postfix;
2699
2700 i915_gem_free_request(request);
2701 }
2702
2703 if (unlikely(ring->trace_irq_req &&
2704 i915_gem_request_completed(ring->trace_irq_req, true))) {
2705 ring->irq_put(ring);
2706 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2707 }
2708
2709 WARN_ON(i915_verify_lists(ring->dev));
2710 }
2711
2712 bool
2713 i915_gem_retire_requests(struct drm_device *dev)
2714 {
2715 struct drm_i915_private *dev_priv = dev->dev_private;
2716 struct intel_engine_cs *ring;
2717 bool idle = true;
2718 int i;
2719
2720 for_each_ring(ring, dev_priv, i) {
2721 i915_gem_retire_requests_ring(ring);
2722 idle &= list_empty(&ring->request_list);
2723 if (i915.enable_execlists) {
2724 unsigned long flags;
2725
2726 spin_lock_irqsave(&ring->execlist_lock, flags);
2727 idle &= list_empty(&ring->execlist_queue);
2728 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2729
2730 intel_execlists_retire_requests(ring);
2731 }
2732 }
2733
2734 if (idle)
2735 mod_delayed_work(dev_priv->wq,
2736 &dev_priv->mm.idle_work,
2737 msecs_to_jiffies(100));
2738
2739 return idle;
2740 }
2741
2742 static void
2743 i915_gem_retire_work_handler(struct work_struct *work)
2744 {
2745 struct drm_i915_private *dev_priv =
2746 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2747 struct drm_device *dev = dev_priv->dev;
2748 bool idle;
2749
2750 /* Come back later if the device is busy... */
2751 idle = false;
2752 if (mutex_trylock(&dev->struct_mutex)) {
2753 idle = i915_gem_retire_requests(dev);
2754 mutex_unlock(&dev->struct_mutex);
2755 }
2756 if (!idle)
2757 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2758 round_jiffies_up_relative(HZ));
2759 }
2760
2761 static void
2762 i915_gem_idle_work_handler(struct work_struct *work)
2763 {
2764 struct drm_i915_private *dev_priv =
2765 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2766
2767 intel_mark_idle(dev_priv->dev);
2768 }
2769
2770 /**
2771 * Ensures that an object will eventually get non-busy by flushing any required
2772 * write domains, emitting any outstanding lazy request and retiring and
2773 * completed requests.
2774 */
2775 static int
2776 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2777 {
2778 struct intel_engine_cs *ring;
2779 int ret;
2780
2781 if (obj->active) {
2782 ring = i915_gem_request_get_ring(obj->last_read_req);
2783
2784 ret = i915_gem_check_olr(obj->last_read_req);
2785 if (ret)
2786 return ret;
2787
2788 i915_gem_retire_requests_ring(ring);
2789 }
2790
2791 return 0;
2792 }
2793
2794 /**
2795 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2796 * @DRM_IOCTL_ARGS: standard ioctl arguments
2797 *
2798 * Returns 0 if successful, else an error is returned with the remaining time in
2799 * the timeout parameter.
2800 * -ETIME: object is still busy after timeout
2801 * -ERESTARTSYS: signal interrupted the wait
2802 * -ENONENT: object doesn't exist
2803 * Also possible, but rare:
2804 * -EAGAIN: GPU wedged
2805 * -ENOMEM: damn
2806 * -ENODEV: Internal IRQ fail
2807 * -E?: The add request failed
2808 *
2809 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2810 * non-zero timeout parameter the wait ioctl will wait for the given number of
2811 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2812 * without holding struct_mutex the object may become re-busied before this
2813 * function completes. A similar but shorter * race condition exists in the busy
2814 * ioctl
2815 */
2816 int
2817 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2818 {
2819 struct drm_i915_private *dev_priv = dev->dev_private;
2820 struct drm_i915_gem_wait *args = data;
2821 struct drm_i915_gem_object *obj;
2822 struct drm_i915_gem_request *req;
2823 unsigned reset_counter;
2824 int ret = 0;
2825
2826 if (args->flags != 0)
2827 return -EINVAL;
2828
2829 ret = i915_mutex_lock_interruptible(dev);
2830 if (ret)
2831 return ret;
2832
2833 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2834 if (&obj->base == NULL) {
2835 mutex_unlock(&dev->struct_mutex);
2836 return -ENOENT;
2837 }
2838
2839 /* Need to make sure the object gets inactive eventually. */
2840 ret = i915_gem_object_flush_active(obj);
2841 if (ret)
2842 goto out;
2843
2844 if (!obj->active || !obj->last_read_req)
2845 goto out;
2846
2847 req = obj->last_read_req;
2848
2849 /* Do this after OLR check to make sure we make forward progress polling
2850 * on this IOCTL with a timeout == 0 (like busy ioctl)
2851 */
2852 if (args->timeout_ns == 0) {
2853 ret = -ETIME;
2854 goto out;
2855 }
2856
2857 drm_gem_object_unreference(&obj->base);
2858 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2859 i915_gem_request_reference(req);
2860 mutex_unlock(&dev->struct_mutex);
2861
2862 ret = __i915_wait_request(req, reset_counter, true,
2863 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2864 file->driver_priv);
2865 mutex_lock(&dev->struct_mutex);
2866 i915_gem_request_unreference(req);
2867 mutex_unlock(&dev->struct_mutex);
2868 return ret;
2869
2870 out:
2871 drm_gem_object_unreference(&obj->base);
2872 mutex_unlock(&dev->struct_mutex);
2873 return ret;
2874 }
2875
2876 /**
2877 * i915_gem_object_sync - sync an object to a ring.
2878 *
2879 * @obj: object which may be in use on another ring.
2880 * @to: ring we wish to use the object on. May be NULL.
2881 *
2882 * This code is meant to abstract object synchronization with the GPU.
2883 * Calling with NULL implies synchronizing the object with the CPU
2884 * rather than a particular GPU ring.
2885 *
2886 * Returns 0 if successful, else propagates up the lower layer error.
2887 */
2888 int
2889 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2890 struct intel_engine_cs *to)
2891 {
2892 struct intel_engine_cs *from;
2893 u32 seqno;
2894 int ret, idx;
2895
2896 from = i915_gem_request_get_ring(obj->last_read_req);
2897
2898 if (from == NULL || to == from)
2899 return 0;
2900
2901 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2902 return i915_gem_object_wait_rendering(obj, false);
2903
2904 idx = intel_ring_sync_index(from, to);
2905
2906 seqno = i915_gem_request_get_seqno(obj->last_read_req);
2907 /* Optimization: Avoid semaphore sync when we are sure we already
2908 * waited for an object with higher seqno */
2909 if (seqno <= from->semaphore.sync_seqno[idx])
2910 return 0;
2911
2912 ret = i915_gem_check_olr(obj->last_read_req);
2913 if (ret)
2914 return ret;
2915
2916 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2917 ret = to->semaphore.sync_to(to, from, seqno);
2918 if (!ret)
2919 /* We use last_read_req because sync_to()
2920 * might have just caused seqno wrap under
2921 * the radar.
2922 */
2923 from->semaphore.sync_seqno[idx] =
2924 i915_gem_request_get_seqno(obj->last_read_req);
2925
2926 return ret;
2927 }
2928
2929 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2930 {
2931 u32 old_write_domain, old_read_domains;
2932
2933 /* Force a pagefault for domain tracking on next user access */
2934 i915_gem_release_mmap(obj);
2935
2936 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2937 return;
2938
2939 /* Wait for any direct GTT access to complete */
2940 mb();
2941
2942 old_read_domains = obj->base.read_domains;
2943 old_write_domain = obj->base.write_domain;
2944
2945 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2946 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2947
2948 trace_i915_gem_object_change_domain(obj,
2949 old_read_domains,
2950 old_write_domain);
2951 }
2952
2953 int i915_vma_unbind(struct i915_vma *vma)
2954 {
2955 struct drm_i915_gem_object *obj = vma->obj;
2956 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2957 int ret;
2958
2959 if (list_empty(&vma->vma_link))
2960 return 0;
2961
2962 if (!drm_mm_node_allocated(&vma->node)) {
2963 i915_gem_vma_destroy(vma);
2964 return 0;
2965 }
2966
2967 if (vma->pin_count)
2968 return -EBUSY;
2969
2970 BUG_ON(obj->pages == NULL);
2971
2972 ret = i915_gem_object_finish_gpu(obj);
2973 if (ret)
2974 return ret;
2975 /* Continue on if we fail due to EIO, the GPU is hung so we
2976 * should be safe and we need to cleanup or else we might
2977 * cause memory corruption through use-after-free.
2978 */
2979
2980 if (i915_is_ggtt(vma->vm) &&
2981 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2982 i915_gem_object_finish_gtt(obj);
2983
2984 /* release the fence reg _after_ flushing */
2985 ret = i915_gem_object_put_fence(obj);
2986 if (ret)
2987 return ret;
2988 }
2989
2990 trace_i915_vma_unbind(vma);
2991
2992 vma->unbind_vma(vma);
2993
2994 list_del_init(&vma->mm_list);
2995 if (i915_is_ggtt(vma->vm)) {
2996 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2997 obj->map_and_fenceable = false;
2998 } else if (vma->ggtt_view.pages) {
2999 sg_free_table(vma->ggtt_view.pages);
3000 kfree(vma->ggtt_view.pages);
3001 vma->ggtt_view.pages = NULL;
3002 }
3003 }
3004
3005 drm_mm_remove_node(&vma->node);
3006 i915_gem_vma_destroy(vma);
3007
3008 /* Since the unbound list is global, only move to that list if
3009 * no more VMAs exist. */
3010 if (list_empty(&obj->vma_list)) {
3011 /* Throw away the active reference before
3012 * moving to the unbound list. */
3013 i915_gem_object_retire(obj);
3014
3015 i915_gem_gtt_finish_object(obj);
3016 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3017 }
3018
3019 /* And finally now the object is completely decoupled from this vma,
3020 * we can drop its hold on the backing storage and allow it to be
3021 * reaped by the shrinker.
3022 */
3023 i915_gem_object_unpin_pages(obj);
3024
3025 return 0;
3026 }
3027
3028 int i915_gpu_idle(struct drm_device *dev)
3029 {
3030 struct drm_i915_private *dev_priv = dev->dev_private;
3031 struct intel_engine_cs *ring;
3032 int ret, i;
3033
3034 /* Flush everything onto the inactive list. */
3035 for_each_ring(ring, dev_priv, i) {
3036 if (!i915.enable_execlists) {
3037 ret = i915_switch_context(ring, ring->default_context);
3038 if (ret)
3039 return ret;
3040 }
3041
3042 ret = intel_ring_idle(ring);
3043 if (ret)
3044 return ret;
3045 }
3046
3047 return 0;
3048 }
3049
3050 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3051 struct drm_i915_gem_object *obj)
3052 {
3053 struct drm_i915_private *dev_priv = dev->dev_private;
3054 int fence_reg;
3055 int fence_pitch_shift;
3056
3057 if (INTEL_INFO(dev)->gen >= 6) {
3058 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3059 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3060 } else {
3061 fence_reg = FENCE_REG_965_0;
3062 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3063 }
3064
3065 fence_reg += reg * 8;
3066
3067 /* To w/a incoherency with non-atomic 64-bit register updates,
3068 * we split the 64-bit update into two 32-bit writes. In order
3069 * for a partial fence not to be evaluated between writes, we
3070 * precede the update with write to turn off the fence register,
3071 * and only enable the fence as the last step.
3072 *
3073 * For extra levels of paranoia, we make sure each step lands
3074 * before applying the next step.
3075 */
3076 I915_WRITE(fence_reg, 0);
3077 POSTING_READ(fence_reg);
3078
3079 if (obj) {
3080 u32 size = i915_gem_obj_ggtt_size(obj);
3081 uint64_t val;
3082
3083 /* Adjust fence size to match tiled area */
3084 if (obj->tiling_mode != I915_TILING_NONE) {
3085 uint32_t row_size = obj->stride *
3086 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3087 size = (size / row_size) * row_size;
3088 }
3089
3090 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3091 0xfffff000) << 32;
3092 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3093 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3094 if (obj->tiling_mode == I915_TILING_Y)
3095 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3096 val |= I965_FENCE_REG_VALID;
3097
3098 I915_WRITE(fence_reg + 4, val >> 32);
3099 POSTING_READ(fence_reg + 4);
3100
3101 I915_WRITE(fence_reg + 0, val);
3102 POSTING_READ(fence_reg);
3103 } else {
3104 I915_WRITE(fence_reg + 4, 0);
3105 POSTING_READ(fence_reg + 4);
3106 }
3107 }
3108
3109 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3110 struct drm_i915_gem_object *obj)
3111 {
3112 struct drm_i915_private *dev_priv = dev->dev_private;
3113 u32 val;
3114
3115 if (obj) {
3116 u32 size = i915_gem_obj_ggtt_size(obj);
3117 int pitch_val;
3118 int tile_width;
3119
3120 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3121 (size & -size) != size ||
3122 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3123 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3124 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3125
3126 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3127 tile_width = 128;
3128 else
3129 tile_width = 512;
3130
3131 /* Note: pitch better be a power of two tile widths */
3132 pitch_val = obj->stride / tile_width;
3133 pitch_val = ffs(pitch_val) - 1;
3134
3135 val = i915_gem_obj_ggtt_offset(obj);
3136 if (obj->tiling_mode == I915_TILING_Y)
3137 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3138 val |= I915_FENCE_SIZE_BITS(size);
3139 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3140 val |= I830_FENCE_REG_VALID;
3141 } else
3142 val = 0;
3143
3144 if (reg < 8)
3145 reg = FENCE_REG_830_0 + reg * 4;
3146 else
3147 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3148
3149 I915_WRITE(reg, val);
3150 POSTING_READ(reg);
3151 }
3152
3153 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3154 struct drm_i915_gem_object *obj)
3155 {
3156 struct drm_i915_private *dev_priv = dev->dev_private;
3157 uint32_t val;
3158
3159 if (obj) {
3160 u32 size = i915_gem_obj_ggtt_size(obj);
3161 uint32_t pitch_val;
3162
3163 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3164 (size & -size) != size ||
3165 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3166 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3167 i915_gem_obj_ggtt_offset(obj), size);
3168
3169 pitch_val = obj->stride / 128;
3170 pitch_val = ffs(pitch_val) - 1;
3171
3172 val = i915_gem_obj_ggtt_offset(obj);
3173 if (obj->tiling_mode == I915_TILING_Y)
3174 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3175 val |= I830_FENCE_SIZE_BITS(size);
3176 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3177 val |= I830_FENCE_REG_VALID;
3178 } else
3179 val = 0;
3180
3181 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3182 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3183 }
3184
3185 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3186 {
3187 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3188 }
3189
3190 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3191 struct drm_i915_gem_object *obj)
3192 {
3193 struct drm_i915_private *dev_priv = dev->dev_private;
3194
3195 /* Ensure that all CPU reads are completed before installing a fence
3196 * and all writes before removing the fence.
3197 */
3198 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3199 mb();
3200
3201 WARN(obj && (!obj->stride || !obj->tiling_mode),
3202 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3203 obj->stride, obj->tiling_mode);
3204
3205 if (IS_GEN2(dev))
3206 i830_write_fence_reg(dev, reg, obj);
3207 else if (IS_GEN3(dev))
3208 i915_write_fence_reg(dev, reg, obj);
3209 else if (INTEL_INFO(dev)->gen >= 4)
3210 i965_write_fence_reg(dev, reg, obj);
3211
3212 /* And similarly be paranoid that no direct access to this region
3213 * is reordered to before the fence is installed.
3214 */
3215 if (i915_gem_object_needs_mb(obj))
3216 mb();
3217 }
3218
3219 static inline int fence_number(struct drm_i915_private *dev_priv,
3220 struct drm_i915_fence_reg *fence)
3221 {
3222 return fence - dev_priv->fence_regs;
3223 }
3224
3225 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3226 struct drm_i915_fence_reg *fence,
3227 bool enable)
3228 {
3229 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3230 int reg = fence_number(dev_priv, fence);
3231
3232 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3233
3234 if (enable) {
3235 obj->fence_reg = reg;
3236 fence->obj = obj;
3237 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3238 } else {
3239 obj->fence_reg = I915_FENCE_REG_NONE;
3240 fence->obj = NULL;
3241 list_del_init(&fence->lru_list);
3242 }
3243 obj->fence_dirty = false;
3244 }
3245
3246 static int
3247 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3248 {
3249 if (obj->last_fenced_req) {
3250 int ret = i915_wait_request(obj->last_fenced_req);
3251 if (ret)
3252 return ret;
3253
3254 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3255 }
3256
3257 return 0;
3258 }
3259
3260 int
3261 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3262 {
3263 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3264 struct drm_i915_fence_reg *fence;
3265 int ret;
3266
3267 ret = i915_gem_object_wait_fence(obj);
3268 if (ret)
3269 return ret;
3270
3271 if (obj->fence_reg == I915_FENCE_REG_NONE)
3272 return 0;
3273
3274 fence = &dev_priv->fence_regs[obj->fence_reg];
3275
3276 if (WARN_ON(fence->pin_count))
3277 return -EBUSY;
3278
3279 i915_gem_object_fence_lost(obj);
3280 i915_gem_object_update_fence(obj, fence, false);
3281
3282 return 0;
3283 }
3284
3285 static struct drm_i915_fence_reg *
3286 i915_find_fence_reg(struct drm_device *dev)
3287 {
3288 struct drm_i915_private *dev_priv = dev->dev_private;
3289 struct drm_i915_fence_reg *reg, *avail;
3290 int i;
3291
3292 /* First try to find a free reg */
3293 avail = NULL;
3294 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3295 reg = &dev_priv->fence_regs[i];
3296 if (!reg->obj)
3297 return reg;
3298
3299 if (!reg->pin_count)
3300 avail = reg;
3301 }
3302
3303 if (avail == NULL)
3304 goto deadlock;
3305
3306 /* None available, try to steal one or wait for a user to finish */
3307 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3308 if (reg->pin_count)
3309 continue;
3310
3311 return reg;
3312 }
3313
3314 deadlock:
3315 /* Wait for completion of pending flips which consume fences */
3316 if (intel_has_pending_fb_unpin(dev))
3317 return ERR_PTR(-EAGAIN);
3318
3319 return ERR_PTR(-EDEADLK);
3320 }
3321
3322 /**
3323 * i915_gem_object_get_fence - set up fencing for an object
3324 * @obj: object to map through a fence reg
3325 *
3326 * When mapping objects through the GTT, userspace wants to be able to write
3327 * to them without having to worry about swizzling if the object is tiled.
3328 * This function walks the fence regs looking for a free one for @obj,
3329 * stealing one if it can't find any.
3330 *
3331 * It then sets up the reg based on the object's properties: address, pitch
3332 * and tiling format.
3333 *
3334 * For an untiled surface, this removes any existing fence.
3335 */
3336 int
3337 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3338 {
3339 struct drm_device *dev = obj->base.dev;
3340 struct drm_i915_private *dev_priv = dev->dev_private;
3341 bool enable = obj->tiling_mode != I915_TILING_NONE;
3342 struct drm_i915_fence_reg *reg;
3343 int ret;
3344
3345 /* Have we updated the tiling parameters upon the object and so
3346 * will need to serialise the write to the associated fence register?
3347 */
3348 if (obj->fence_dirty) {
3349 ret = i915_gem_object_wait_fence(obj);
3350 if (ret)
3351 return ret;
3352 }
3353
3354 /* Just update our place in the LRU if our fence is getting reused. */
3355 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3356 reg = &dev_priv->fence_regs[obj->fence_reg];
3357 if (!obj->fence_dirty) {
3358 list_move_tail(&reg->lru_list,
3359 &dev_priv->mm.fence_list);
3360 return 0;
3361 }
3362 } else if (enable) {
3363 if (WARN_ON(!obj->map_and_fenceable))
3364 return -EINVAL;
3365
3366 reg = i915_find_fence_reg(dev);
3367 if (IS_ERR(reg))
3368 return PTR_ERR(reg);
3369
3370 if (reg->obj) {
3371 struct drm_i915_gem_object *old = reg->obj;
3372
3373 ret = i915_gem_object_wait_fence(old);
3374 if (ret)
3375 return ret;
3376
3377 i915_gem_object_fence_lost(old);
3378 }
3379 } else
3380 return 0;
3381
3382 i915_gem_object_update_fence(obj, reg, enable);
3383
3384 return 0;
3385 }
3386
3387 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3388 unsigned long cache_level)
3389 {
3390 struct drm_mm_node *gtt_space = &vma->node;
3391 struct drm_mm_node *other;
3392
3393 /*
3394 * On some machines we have to be careful when putting differing types
3395 * of snoopable memory together to avoid the prefetcher crossing memory
3396 * domains and dying. During vm initialisation, we decide whether or not
3397 * these constraints apply and set the drm_mm.color_adjust
3398 * appropriately.
3399 */
3400 if (vma->vm->mm.color_adjust == NULL)
3401 return true;
3402
3403 if (!drm_mm_node_allocated(gtt_space))
3404 return true;
3405
3406 if (list_empty(&gtt_space->node_list))
3407 return true;
3408
3409 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3410 if (other->allocated && !other->hole_follows && other->color != cache_level)
3411 return false;
3412
3413 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3414 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3415 return false;
3416
3417 return true;
3418 }
3419
3420 /**
3421 * Finds free space in the GTT aperture and binds the object there.
3422 */
3423 static struct i915_vma *
3424 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3425 struct i915_address_space *vm,
3426 const struct i915_ggtt_view *ggtt_view,
3427 unsigned alignment,
3428 uint64_t flags)
3429 {
3430 struct drm_device *dev = obj->base.dev;
3431 struct drm_i915_private *dev_priv = dev->dev_private;
3432 u32 size, fence_size, fence_alignment, unfenced_alignment;
3433 unsigned long start =
3434 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3435 unsigned long end =
3436 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3437 struct i915_vma *vma;
3438 int ret;
3439
3440 if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3441 return ERR_PTR(-EINVAL);
3442
3443 fence_size = i915_gem_get_gtt_size(dev,
3444 obj->base.size,
3445 obj->tiling_mode);
3446 fence_alignment = i915_gem_get_gtt_alignment(dev,
3447 obj->base.size,
3448 obj->tiling_mode, true);
3449 unfenced_alignment =
3450 i915_gem_get_gtt_alignment(dev,
3451 obj->base.size,
3452 obj->tiling_mode, false);
3453
3454 if (alignment == 0)
3455 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3456 unfenced_alignment;
3457 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3458 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3459 return ERR_PTR(-EINVAL);
3460 }
3461
3462 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3463
3464 /* If the object is bigger than the entire aperture, reject it early
3465 * before evicting everything in a vain attempt to find space.
3466 */
3467 if (obj->base.size > end) {
3468 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3469 obj->base.size,
3470 flags & PIN_MAPPABLE ? "mappable" : "total",
3471 end);
3472 return ERR_PTR(-E2BIG);
3473 }
3474
3475 ret = i915_gem_object_get_pages(obj);
3476 if (ret)
3477 return ERR_PTR(ret);
3478
3479 i915_gem_object_pin_pages(obj);
3480
3481 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3482 i915_gem_obj_lookup_or_create_vma(obj, vm);
3483
3484 if (IS_ERR(vma))
3485 goto err_unpin;
3486
3487 search_free:
3488 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3489 size, alignment,
3490 obj->cache_level,
3491 start, end,
3492 DRM_MM_SEARCH_DEFAULT,
3493 DRM_MM_CREATE_DEFAULT);
3494 if (ret) {
3495 ret = i915_gem_evict_something(dev, vm, size, alignment,
3496 obj->cache_level,
3497 start, end,
3498 flags);
3499 if (ret == 0)
3500 goto search_free;
3501
3502 goto err_free_vma;
3503 }
3504 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3505 ret = -EINVAL;
3506 goto err_remove_node;
3507 }
3508
3509 ret = i915_gem_gtt_prepare_object(obj);
3510 if (ret)
3511 goto err_remove_node;
3512
3513 /* allocate before insert / bind */
3514 if (vma->vm->allocate_va_range) {
3515 trace_i915_va_alloc(vma->vm, vma->node.start, vma->node.size,
3516 VM_TO_TRACE_NAME(vma->vm));
3517 ret = vma->vm->allocate_va_range(vma->vm,
3518 vma->node.start,
3519 vma->node.size);
3520 if (ret)
3521 goto err_remove_node;
3522 }
3523
3524 trace_i915_vma_bind(vma, flags);
3525 ret = i915_vma_bind(vma, obj->cache_level,
3526 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3527 if (ret)
3528 goto err_finish_gtt;
3529
3530 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3531 list_add_tail(&vma->mm_list, &vm->inactive_list);
3532
3533 return vma;
3534
3535 err_finish_gtt:
3536 i915_gem_gtt_finish_object(obj);
3537 err_remove_node:
3538 drm_mm_remove_node(&vma->node);
3539 err_free_vma:
3540 i915_gem_vma_destroy(vma);
3541 vma = ERR_PTR(ret);
3542 err_unpin:
3543 i915_gem_object_unpin_pages(obj);
3544 return vma;
3545 }
3546
3547 bool
3548 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3549 bool force)
3550 {
3551 /* If we don't have a page list set up, then we're not pinned
3552 * to GPU, and we can ignore the cache flush because it'll happen
3553 * again at bind time.
3554 */
3555 if (obj->pages == NULL)
3556 return false;
3557
3558 /*
3559 * Stolen memory is always coherent with the GPU as it is explicitly
3560 * marked as wc by the system, or the system is cache-coherent.
3561 */
3562 if (obj->stolen || obj->phys_handle)
3563 return false;
3564
3565 /* If the GPU is snooping the contents of the CPU cache,
3566 * we do not need to manually clear the CPU cache lines. However,
3567 * the caches are only snooped when the render cache is
3568 * flushed/invalidated. As we always have to emit invalidations
3569 * and flushes when moving into and out of the RENDER domain, correct
3570 * snooping behaviour occurs naturally as the result of our domain
3571 * tracking.
3572 */
3573 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3574 obj->cache_dirty = true;
3575 return false;
3576 }
3577
3578 trace_i915_gem_object_clflush(obj);
3579 drm_clflush_sg(obj->pages);
3580 obj->cache_dirty = false;
3581
3582 return true;
3583 }
3584
3585 /** Flushes the GTT write domain for the object if it's dirty. */
3586 static void
3587 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3588 {
3589 uint32_t old_write_domain;
3590
3591 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3592 return;
3593
3594 /* No actual flushing is required for the GTT write domain. Writes
3595 * to it immediately go to main memory as far as we know, so there's
3596 * no chipset flush. It also doesn't land in render cache.
3597 *
3598 * However, we do have to enforce the order so that all writes through
3599 * the GTT land before any writes to the device, such as updates to
3600 * the GATT itself.
3601 */
3602 wmb();
3603
3604 old_write_domain = obj->base.write_domain;
3605 obj->base.write_domain = 0;
3606
3607 intel_fb_obj_flush(obj, false);
3608
3609 trace_i915_gem_object_change_domain(obj,
3610 obj->base.read_domains,
3611 old_write_domain);
3612 }
3613
3614 /** Flushes the CPU write domain for the object if it's dirty. */
3615 static void
3616 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3617 {
3618 uint32_t old_write_domain;
3619
3620 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3621 return;
3622
3623 if (i915_gem_clflush_object(obj, obj->pin_display))
3624 i915_gem_chipset_flush(obj->base.dev);
3625
3626 old_write_domain = obj->base.write_domain;
3627 obj->base.write_domain = 0;
3628
3629 intel_fb_obj_flush(obj, false);
3630
3631 trace_i915_gem_object_change_domain(obj,
3632 obj->base.read_domains,
3633 old_write_domain);
3634 }
3635
3636 /**
3637 * Moves a single object to the GTT read, and possibly write domain.
3638 *
3639 * This function returns when the move is complete, including waiting on
3640 * flushes to occur.
3641 */
3642 int
3643 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3644 {
3645 uint32_t old_write_domain, old_read_domains;
3646 struct i915_vma *vma;
3647 int ret;
3648
3649 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3650 return 0;
3651
3652 ret = i915_gem_object_wait_rendering(obj, !write);
3653 if (ret)
3654 return ret;
3655
3656 i915_gem_object_retire(obj);
3657
3658 /* Flush and acquire obj->pages so that we are coherent through
3659 * direct access in memory with previous cached writes through
3660 * shmemfs and that our cache domain tracking remains valid.
3661 * For example, if the obj->filp was moved to swap without us
3662 * being notified and releasing the pages, we would mistakenly
3663 * continue to assume that the obj remained out of the CPU cached
3664 * domain.
3665 */
3666 ret = i915_gem_object_get_pages(obj);
3667 if (ret)
3668 return ret;
3669
3670 i915_gem_object_flush_cpu_write_domain(obj);
3671
3672 /* Serialise direct access to this object with the barriers for
3673 * coherent writes from the GPU, by effectively invalidating the
3674 * GTT domain upon first access.
3675 */
3676 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3677 mb();
3678
3679 old_write_domain = obj->base.write_domain;
3680 old_read_domains = obj->base.read_domains;
3681
3682 /* It should now be out of any other write domains, and we can update
3683 * the domain values for our changes.
3684 */
3685 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3686 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3687 if (write) {
3688 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3689 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3690 obj->dirty = 1;
3691 }
3692
3693 if (write)
3694 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3695
3696 trace_i915_gem_object_change_domain(obj,
3697 old_read_domains,
3698 old_write_domain);
3699
3700 /* And bump the LRU for this access */
3701 vma = i915_gem_obj_to_ggtt(obj);
3702 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3703 list_move_tail(&vma->mm_list,
3704 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3705
3706 return 0;
3707 }
3708
3709 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3710 enum i915_cache_level cache_level)
3711 {
3712 struct drm_device *dev = obj->base.dev;
3713 struct i915_vma *vma, *next;
3714 int ret;
3715
3716 if (obj->cache_level == cache_level)
3717 return 0;
3718
3719 if (i915_gem_obj_is_pinned(obj)) {
3720 DRM_DEBUG("can not change the cache level of pinned objects\n");
3721 return -EBUSY;
3722 }
3723
3724 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3725 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3726 ret = i915_vma_unbind(vma);
3727 if (ret)
3728 return ret;
3729 }
3730 }
3731
3732 if (i915_gem_obj_bound_any(obj)) {
3733 ret = i915_gem_object_finish_gpu(obj);
3734 if (ret)
3735 return ret;
3736
3737 i915_gem_object_finish_gtt(obj);
3738
3739 /* Before SandyBridge, you could not use tiling or fence
3740 * registers with snooped memory, so relinquish any fences
3741 * currently pointing to our region in the aperture.
3742 */
3743 if (INTEL_INFO(dev)->gen < 6) {
3744 ret = i915_gem_object_put_fence(obj);
3745 if (ret)
3746 return ret;
3747 }
3748
3749 list_for_each_entry(vma, &obj->vma_list, vma_link)
3750 if (drm_mm_node_allocated(&vma->node)) {
3751 ret = i915_vma_bind(vma, cache_level,
3752 vma->bound & GLOBAL_BIND);
3753 if (ret)
3754 return ret;
3755 }
3756 }
3757
3758 list_for_each_entry(vma, &obj->vma_list, vma_link)
3759 vma->node.color = cache_level;
3760 obj->cache_level = cache_level;
3761
3762 if (obj->cache_dirty &&
3763 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3764 cpu_write_needs_clflush(obj)) {
3765 if (i915_gem_clflush_object(obj, true))
3766 i915_gem_chipset_flush(obj->base.dev);
3767 }
3768
3769 return 0;
3770 }
3771
3772 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3773 struct drm_file *file)
3774 {
3775 struct drm_i915_gem_caching *args = data;
3776 struct drm_i915_gem_object *obj;
3777 int ret;
3778
3779 ret = i915_mutex_lock_interruptible(dev);
3780 if (ret)
3781 return ret;
3782
3783 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3784 if (&obj->base == NULL) {
3785 ret = -ENOENT;
3786 goto unlock;
3787 }
3788
3789 switch (obj->cache_level) {
3790 case I915_CACHE_LLC:
3791 case I915_CACHE_L3_LLC:
3792 args->caching = I915_CACHING_CACHED;
3793 break;
3794
3795 case I915_CACHE_WT:
3796 args->caching = I915_CACHING_DISPLAY;
3797 break;
3798
3799 default:
3800 args->caching = I915_CACHING_NONE;
3801 break;
3802 }
3803
3804 drm_gem_object_unreference(&obj->base);
3805 unlock:
3806 mutex_unlock(&dev->struct_mutex);
3807 return ret;
3808 }
3809
3810 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3811 struct drm_file *file)
3812 {
3813 struct drm_i915_gem_caching *args = data;
3814 struct drm_i915_gem_object *obj;
3815 enum i915_cache_level level;
3816 int ret;
3817
3818 switch (args->caching) {
3819 case I915_CACHING_NONE:
3820 level = I915_CACHE_NONE;
3821 break;
3822 case I915_CACHING_CACHED:
3823 level = I915_CACHE_LLC;
3824 break;
3825 case I915_CACHING_DISPLAY:
3826 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3827 break;
3828 default:
3829 return -EINVAL;
3830 }
3831
3832 ret = i915_mutex_lock_interruptible(dev);
3833 if (ret)
3834 return ret;
3835
3836 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3837 if (&obj->base == NULL) {
3838 ret = -ENOENT;
3839 goto unlock;
3840 }
3841
3842 ret = i915_gem_object_set_cache_level(obj, level);
3843
3844 drm_gem_object_unreference(&obj->base);
3845 unlock:
3846 mutex_unlock(&dev->struct_mutex);
3847 return ret;
3848 }
3849
3850 static bool is_pin_display(struct drm_i915_gem_object *obj)
3851 {
3852 struct i915_vma *vma;
3853
3854 vma = i915_gem_obj_to_ggtt(obj);
3855 if (!vma)
3856 return false;
3857
3858 /* There are 2 sources that pin objects:
3859 * 1. The display engine (scanouts, sprites, cursors);
3860 * 2. Reservations for execbuffer;
3861 *
3862 * We can ignore reservations as we hold the struct_mutex and
3863 * are only called outside of the reservation path.
3864 */
3865 return vma->pin_count;
3866 }
3867
3868 /*
3869 * Prepare buffer for display plane (scanout, cursors, etc).
3870 * Can be called from an uninterruptible phase (modesetting) and allows
3871 * any flushes to be pipelined (for pageflips).
3872 */
3873 int
3874 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3875 u32 alignment,
3876 struct intel_engine_cs *pipelined,
3877 const struct i915_ggtt_view *view)
3878 {
3879 u32 old_read_domains, old_write_domain;
3880 bool was_pin_display;
3881 int ret;
3882
3883 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3884 ret = i915_gem_object_sync(obj, pipelined);
3885 if (ret)
3886 return ret;
3887 }
3888
3889 /* Mark the pin_display early so that we account for the
3890 * display coherency whilst setting up the cache domains.
3891 */
3892 was_pin_display = obj->pin_display;
3893 obj->pin_display = true;
3894
3895 /* The display engine is not coherent with the LLC cache on gen6. As
3896 * a result, we make sure that the pinning that is about to occur is
3897 * done with uncached PTEs. This is lowest common denominator for all
3898 * chipsets.
3899 *
3900 * However for gen6+, we could do better by using the GFDT bit instead
3901 * of uncaching, which would allow us to flush all the LLC-cached data
3902 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3903 */
3904 ret = i915_gem_object_set_cache_level(obj,
3905 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3906 if (ret)
3907 goto err_unpin_display;
3908
3909 /* As the user may map the buffer once pinned in the display plane
3910 * (e.g. libkms for the bootup splash), we have to ensure that we
3911 * always use map_and_fenceable for all scanout buffers.
3912 */
3913 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3914 view->type == I915_GGTT_VIEW_NORMAL ?
3915 PIN_MAPPABLE : 0);
3916 if (ret)
3917 goto err_unpin_display;
3918
3919 i915_gem_object_flush_cpu_write_domain(obj);
3920
3921 old_write_domain = obj->base.write_domain;
3922 old_read_domains = obj->base.read_domains;
3923
3924 /* It should now be out of any other write domains, and we can update
3925 * the domain values for our changes.
3926 */
3927 obj->base.write_domain = 0;
3928 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3929
3930 trace_i915_gem_object_change_domain(obj,
3931 old_read_domains,
3932 old_write_domain);
3933
3934 return 0;
3935
3936 err_unpin_display:
3937 WARN_ON(was_pin_display != is_pin_display(obj));
3938 obj->pin_display = was_pin_display;
3939 return ret;
3940 }
3941
3942 void
3943 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3944 const struct i915_ggtt_view *view)
3945 {
3946 i915_gem_object_ggtt_unpin_view(obj, view);
3947
3948 obj->pin_display = is_pin_display(obj);
3949 }
3950
3951 int
3952 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3953 {
3954 int ret;
3955
3956 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3957 return 0;
3958
3959 ret = i915_gem_object_wait_rendering(obj, false);
3960 if (ret)
3961 return ret;
3962
3963 /* Ensure that we invalidate the GPU's caches and TLBs. */
3964 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3965 return 0;
3966 }
3967
3968 /**
3969 * Moves a single object to the CPU read, and possibly write domain.
3970 *
3971 * This function returns when the move is complete, including waiting on
3972 * flushes to occur.
3973 */
3974 int
3975 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3976 {
3977 uint32_t old_write_domain, old_read_domains;
3978 int ret;
3979
3980 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3981 return 0;
3982
3983 ret = i915_gem_object_wait_rendering(obj, !write);
3984 if (ret)
3985 return ret;
3986
3987 i915_gem_object_retire(obj);
3988 i915_gem_object_flush_gtt_write_domain(obj);
3989
3990 old_write_domain = obj->base.write_domain;
3991 old_read_domains = obj->base.read_domains;
3992
3993 /* Flush the CPU cache if it's still invalid. */
3994 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3995 i915_gem_clflush_object(obj, false);
3996
3997 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3998 }
3999
4000 /* It should now be out of any other write domains, and we can update
4001 * the domain values for our changes.
4002 */
4003 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4004
4005 /* If we're writing through the CPU, then the GPU read domains will
4006 * need to be invalidated at next use.
4007 */
4008 if (write) {
4009 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4010 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4011 }
4012
4013 if (write)
4014 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4015
4016 trace_i915_gem_object_change_domain(obj,
4017 old_read_domains,
4018 old_write_domain);
4019
4020 return 0;
4021 }
4022
4023 /* Throttle our rendering by waiting until the ring has completed our requests
4024 * emitted over 20 msec ago.
4025 *
4026 * Note that if we were to use the current jiffies each time around the loop,
4027 * we wouldn't escape the function with any frames outstanding if the time to
4028 * render a frame was over 20ms.
4029 *
4030 * This should get us reasonable parallelism between CPU and GPU but also
4031 * relatively low latency when blocking on a particular request to finish.
4032 */
4033 static int
4034 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4035 {
4036 struct drm_i915_private *dev_priv = dev->dev_private;
4037 struct drm_i915_file_private *file_priv = file->driver_priv;
4038 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4039 struct drm_i915_gem_request *request, *target = NULL;
4040 unsigned reset_counter;
4041 int ret;
4042
4043 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4044 if (ret)
4045 return ret;
4046
4047 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4048 if (ret)
4049 return ret;
4050
4051 spin_lock(&file_priv->mm.lock);
4052 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4053 if (time_after_eq(request->emitted_jiffies, recent_enough))
4054 break;
4055
4056 target = request;
4057 }
4058 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4059 if (target)
4060 i915_gem_request_reference(target);
4061 spin_unlock(&file_priv->mm.lock);
4062
4063 if (target == NULL)
4064 return 0;
4065
4066 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4067 if (ret == 0)
4068 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4069
4070 mutex_lock(&dev->struct_mutex);
4071 i915_gem_request_unreference(target);
4072 mutex_unlock(&dev->struct_mutex);
4073
4074 return ret;
4075 }
4076
4077 static bool
4078 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4079 {
4080 struct drm_i915_gem_object *obj = vma->obj;
4081
4082 if (alignment &&
4083 vma->node.start & (alignment - 1))
4084 return true;
4085
4086 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4087 return true;
4088
4089 if (flags & PIN_OFFSET_BIAS &&
4090 vma->node.start < (flags & PIN_OFFSET_MASK))
4091 return true;
4092
4093 return false;
4094 }
4095
4096 static int
4097 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4098 struct i915_address_space *vm,
4099 const struct i915_ggtt_view *ggtt_view,
4100 uint32_t alignment,
4101 uint64_t flags)
4102 {
4103 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4104 struct i915_vma *vma;
4105 unsigned bound;
4106 int ret;
4107
4108 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4109 return -ENODEV;
4110
4111 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4112 return -EINVAL;
4113
4114 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4115 return -EINVAL;
4116
4117 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4118 return -EINVAL;
4119
4120 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4121 i915_gem_obj_to_vma(obj, vm);
4122
4123 if (IS_ERR(vma))
4124 return PTR_ERR(vma);
4125
4126 if (vma) {
4127 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4128 return -EBUSY;
4129
4130 if (i915_vma_misplaced(vma, alignment, flags)) {
4131 unsigned long offset;
4132 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view->type) :
4133 i915_gem_obj_offset(obj, vm);
4134 WARN(vma->pin_count,
4135 "bo is already pinned in %s with incorrect alignment:"
4136 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4137 " obj->map_and_fenceable=%d\n",
4138 ggtt_view ? "ggtt" : "ppgtt",
4139 offset,
4140 alignment,
4141 !!(flags & PIN_MAPPABLE),
4142 obj->map_and_fenceable);
4143 ret = i915_vma_unbind(vma);
4144 if (ret)
4145 return ret;
4146
4147 vma = NULL;
4148 }
4149 }
4150
4151 bound = vma ? vma->bound : 0;
4152 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4153 /* In true PPGTT, bind has possibly changed PDEs, which
4154 * means we must do a context switch before the GPU can
4155 * accurately read some of the VMAs.
4156 */
4157 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4158 flags);
4159 if (IS_ERR(vma))
4160 return PTR_ERR(vma);
4161 }
4162
4163 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4164 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4165 if (ret)
4166 return ret;
4167 }
4168
4169 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4170 bool mappable, fenceable;
4171 u32 fence_size, fence_alignment;
4172
4173 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4174 obj->base.size,
4175 obj->tiling_mode);
4176 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4177 obj->base.size,
4178 obj->tiling_mode,
4179 true);
4180
4181 fenceable = (vma->node.size == fence_size &&
4182 (vma->node.start & (fence_alignment - 1)) == 0);
4183
4184 mappable = (vma->node.start + fence_size <=
4185 dev_priv->gtt.mappable_end);
4186
4187 obj->map_and_fenceable = mappable && fenceable;
4188 }
4189
4190 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4191
4192 vma->pin_count++;
4193 if (flags & PIN_MAPPABLE)
4194 obj->pin_mappable |= true;
4195
4196 return 0;
4197 }
4198
4199 int
4200 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4201 struct i915_address_space *vm,
4202 uint32_t alignment,
4203 uint64_t flags)
4204 {
4205 return i915_gem_object_do_pin(obj, vm,
4206 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4207 alignment, flags);
4208 }
4209
4210 int
4211 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4212 const struct i915_ggtt_view *view,
4213 uint32_t alignment,
4214 uint64_t flags)
4215 {
4216 if (WARN_ONCE(!view, "no view specified"))
4217 return -EINVAL;
4218
4219 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4220 alignment, flags | PIN_GLOBAL);
4221 }
4222
4223 void
4224 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4225 const struct i915_ggtt_view *view)
4226 {
4227 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4228
4229 BUG_ON(!vma);
4230 WARN_ON(vma->pin_count == 0);
4231 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view->type));
4232
4233 if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
4234 obj->pin_mappable = false;
4235 }
4236
4237 bool
4238 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4239 {
4240 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4241 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4242 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4243
4244 WARN_ON(!ggtt_vma ||
4245 dev_priv->fence_regs[obj->fence_reg].pin_count >
4246 ggtt_vma->pin_count);
4247 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4248 return true;
4249 } else
4250 return false;
4251 }
4252
4253 void
4254 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4255 {
4256 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4257 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4258 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4259 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4260 }
4261 }
4262
4263 int
4264 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4265 struct drm_file *file)
4266 {
4267 struct drm_i915_gem_busy *args = data;
4268 struct drm_i915_gem_object *obj;
4269 int ret;
4270
4271 ret = i915_mutex_lock_interruptible(dev);
4272 if (ret)
4273 return ret;
4274
4275 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4276 if (&obj->base == NULL) {
4277 ret = -ENOENT;
4278 goto unlock;
4279 }
4280
4281 /* Count all active objects as busy, even if they are currently not used
4282 * by the gpu. Users of this interface expect objects to eventually
4283 * become non-busy without any further actions, therefore emit any
4284 * necessary flushes here.
4285 */
4286 ret = i915_gem_object_flush_active(obj);
4287
4288 args->busy = obj->active;
4289 if (obj->last_read_req) {
4290 struct intel_engine_cs *ring;
4291 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4292 ring = i915_gem_request_get_ring(obj->last_read_req);
4293 args->busy |= intel_ring_flag(ring) << 16;
4294 }
4295
4296 drm_gem_object_unreference(&obj->base);
4297 unlock:
4298 mutex_unlock(&dev->struct_mutex);
4299 return ret;
4300 }
4301
4302 int
4303 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4304 struct drm_file *file_priv)
4305 {
4306 return i915_gem_ring_throttle(dev, file_priv);
4307 }
4308
4309 int
4310 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4311 struct drm_file *file_priv)
4312 {
4313 struct drm_i915_private *dev_priv = dev->dev_private;
4314 struct drm_i915_gem_madvise *args = data;
4315 struct drm_i915_gem_object *obj;
4316 int ret;
4317
4318 switch (args->madv) {
4319 case I915_MADV_DONTNEED:
4320 case I915_MADV_WILLNEED:
4321 break;
4322 default:
4323 return -EINVAL;
4324 }
4325
4326 ret = i915_mutex_lock_interruptible(dev);
4327 if (ret)
4328 return ret;
4329
4330 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4331 if (&obj->base == NULL) {
4332 ret = -ENOENT;
4333 goto unlock;
4334 }
4335
4336 if (i915_gem_obj_is_pinned(obj)) {
4337 ret = -EINVAL;
4338 goto out;
4339 }
4340
4341 if (obj->pages &&
4342 obj->tiling_mode != I915_TILING_NONE &&
4343 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4344 if (obj->madv == I915_MADV_WILLNEED)
4345 i915_gem_object_unpin_pages(obj);
4346 if (args->madv == I915_MADV_WILLNEED)
4347 i915_gem_object_pin_pages(obj);
4348 }
4349
4350 if (obj->madv != __I915_MADV_PURGED)
4351 obj->madv = args->madv;
4352
4353 /* if the object is no longer attached, discard its backing storage */
4354 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4355 i915_gem_object_truncate(obj);
4356
4357 args->retained = obj->madv != __I915_MADV_PURGED;
4358
4359 out:
4360 drm_gem_object_unreference(&obj->base);
4361 unlock:
4362 mutex_unlock(&dev->struct_mutex);
4363 return ret;
4364 }
4365
4366 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4367 const struct drm_i915_gem_object_ops *ops)
4368 {
4369 INIT_LIST_HEAD(&obj->global_list);
4370 INIT_LIST_HEAD(&obj->ring_list);
4371 INIT_LIST_HEAD(&obj->obj_exec_link);
4372 INIT_LIST_HEAD(&obj->vma_list);
4373 INIT_LIST_HEAD(&obj->batch_pool_list);
4374
4375 obj->ops = ops;
4376
4377 obj->fence_reg = I915_FENCE_REG_NONE;
4378 obj->madv = I915_MADV_WILLNEED;
4379
4380 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4381 }
4382
4383 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4384 .get_pages = i915_gem_object_get_pages_gtt,
4385 .put_pages = i915_gem_object_put_pages_gtt,
4386 };
4387
4388 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4389 size_t size)
4390 {
4391 struct drm_i915_gem_object *obj;
4392 struct address_space *mapping;
4393 gfp_t mask;
4394
4395 obj = i915_gem_object_alloc(dev);
4396 if (obj == NULL)
4397 return NULL;
4398
4399 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4400 i915_gem_object_free(obj);
4401 return NULL;
4402 }
4403
4404 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4405 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4406 /* 965gm cannot relocate objects above 4GiB. */
4407 mask &= ~__GFP_HIGHMEM;
4408 mask |= __GFP_DMA32;
4409 }
4410
4411 mapping = file_inode(obj->base.filp)->i_mapping;
4412 mapping_set_gfp_mask(mapping, mask);
4413
4414 i915_gem_object_init(obj, &i915_gem_object_ops);
4415
4416 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4417 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4418
4419 if (HAS_LLC(dev)) {
4420 /* On some devices, we can have the GPU use the LLC (the CPU
4421 * cache) for about a 10% performance improvement
4422 * compared to uncached. Graphics requests other than
4423 * display scanout are coherent with the CPU in
4424 * accessing this cache. This means in this mode we
4425 * don't need to clflush on the CPU side, and on the
4426 * GPU side we only need to flush internal caches to
4427 * get data visible to the CPU.
4428 *
4429 * However, we maintain the display planes as UC, and so
4430 * need to rebind when first used as such.
4431 */
4432 obj->cache_level = I915_CACHE_LLC;
4433 } else
4434 obj->cache_level = I915_CACHE_NONE;
4435
4436 trace_i915_gem_object_create(obj);
4437
4438 return obj;
4439 }
4440
4441 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4442 {
4443 /* If we are the last user of the backing storage (be it shmemfs
4444 * pages or stolen etc), we know that the pages are going to be
4445 * immediately released. In this case, we can then skip copying
4446 * back the contents from the GPU.
4447 */
4448
4449 if (obj->madv != I915_MADV_WILLNEED)
4450 return false;
4451
4452 if (obj->base.filp == NULL)
4453 return true;
4454
4455 /* At first glance, this looks racy, but then again so would be
4456 * userspace racing mmap against close. However, the first external
4457 * reference to the filp can only be obtained through the
4458 * i915_gem_mmap_ioctl() which safeguards us against the user
4459 * acquiring such a reference whilst we are in the middle of
4460 * freeing the object.
4461 */
4462 return atomic_long_read(&obj->base.filp->f_count) == 1;
4463 }
4464
4465 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4466 {
4467 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4468 struct drm_device *dev = obj->base.dev;
4469 struct drm_i915_private *dev_priv = dev->dev_private;
4470 struct i915_vma *vma, *next;
4471
4472 intel_runtime_pm_get(dev_priv);
4473
4474 trace_i915_gem_object_destroy(obj);
4475
4476 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4477 int ret;
4478
4479 vma->pin_count = 0;
4480 ret = i915_vma_unbind(vma);
4481 if (WARN_ON(ret == -ERESTARTSYS)) {
4482 bool was_interruptible;
4483
4484 was_interruptible = dev_priv->mm.interruptible;
4485 dev_priv->mm.interruptible = false;
4486
4487 WARN_ON(i915_vma_unbind(vma));
4488
4489 dev_priv->mm.interruptible = was_interruptible;
4490 }
4491 }
4492
4493 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4494 * before progressing. */
4495 if (obj->stolen)
4496 i915_gem_object_unpin_pages(obj);
4497
4498 WARN_ON(obj->frontbuffer_bits);
4499
4500 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4501 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4502 obj->tiling_mode != I915_TILING_NONE)
4503 i915_gem_object_unpin_pages(obj);
4504
4505 if (WARN_ON(obj->pages_pin_count))
4506 obj->pages_pin_count = 0;
4507 if (discard_backing_storage(obj))
4508 obj->madv = I915_MADV_DONTNEED;
4509 i915_gem_object_put_pages(obj);
4510 i915_gem_object_free_mmap_offset(obj);
4511
4512 BUG_ON(obj->pages);
4513
4514 if (obj->base.import_attach)
4515 drm_prime_gem_destroy(&obj->base, NULL);
4516
4517 if (obj->ops->release)
4518 obj->ops->release(obj);
4519
4520 drm_gem_object_release(&obj->base);
4521 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4522
4523 kfree(obj->bit_17);
4524 i915_gem_object_free(obj);
4525
4526 intel_runtime_pm_put(dev_priv);
4527 }
4528
4529 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4530 struct i915_address_space *vm)
4531 {
4532 struct i915_vma *vma;
4533 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4534 if (i915_is_ggtt(vma->vm) &&
4535 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4536 continue;
4537 if (vma->vm == vm)
4538 return vma;
4539 }
4540 return NULL;
4541 }
4542
4543 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4544 const struct i915_ggtt_view *view)
4545 {
4546 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4547 struct i915_vma *vma;
4548
4549 if (WARN_ONCE(!view, "no view specified"))
4550 return ERR_PTR(-EINVAL);
4551
4552 list_for_each_entry(vma, &obj->vma_list, vma_link)
4553 if (vma->vm == ggtt && vma->ggtt_view.type == view->type)
4554 return vma;
4555 return NULL;
4556 }
4557
4558 void i915_gem_vma_destroy(struct i915_vma *vma)
4559 {
4560 struct i915_address_space *vm = NULL;
4561 WARN_ON(vma->node.allocated);
4562
4563 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4564 if (!list_empty(&vma->exec_list))
4565 return;
4566
4567 vm = vma->vm;
4568
4569 if (!i915_is_ggtt(vm))
4570 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4571
4572 list_del(&vma->vma_link);
4573
4574 kfree(vma);
4575 }
4576
4577 static void
4578 i915_gem_stop_ringbuffers(struct drm_device *dev)
4579 {
4580 struct drm_i915_private *dev_priv = dev->dev_private;
4581 struct intel_engine_cs *ring;
4582 int i;
4583
4584 for_each_ring(ring, dev_priv, i)
4585 dev_priv->gt.stop_ring(ring);
4586 }
4587
4588 int
4589 i915_gem_suspend(struct drm_device *dev)
4590 {
4591 struct drm_i915_private *dev_priv = dev->dev_private;
4592 int ret = 0;
4593
4594 mutex_lock(&dev->struct_mutex);
4595 ret = i915_gpu_idle(dev);
4596 if (ret)
4597 goto err;
4598
4599 i915_gem_retire_requests(dev);
4600
4601 i915_gem_stop_ringbuffers(dev);
4602 mutex_unlock(&dev->struct_mutex);
4603
4604 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4605 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4606 flush_delayed_work(&dev_priv->mm.idle_work);
4607
4608 /* Assert that we sucessfully flushed all the work and
4609 * reset the GPU back to its idle, low power state.
4610 */
4611 WARN_ON(dev_priv->mm.busy);
4612
4613 return 0;
4614
4615 err:
4616 mutex_unlock(&dev->struct_mutex);
4617 return ret;
4618 }
4619
4620 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4621 {
4622 struct drm_device *dev = ring->dev;
4623 struct drm_i915_private *dev_priv = dev->dev_private;
4624 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4625 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4626 int i, ret;
4627
4628 if (!HAS_L3_DPF(dev) || !remap_info)
4629 return 0;
4630
4631 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4632 if (ret)
4633 return ret;
4634
4635 /*
4636 * Note: We do not worry about the concurrent register cacheline hang
4637 * here because no other code should access these registers other than
4638 * at initialization time.
4639 */
4640 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4641 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4642 intel_ring_emit(ring, reg_base + i);
4643 intel_ring_emit(ring, remap_info[i/4]);
4644 }
4645
4646 intel_ring_advance(ring);
4647
4648 return ret;
4649 }
4650
4651 void i915_gem_init_swizzling(struct drm_device *dev)
4652 {
4653 struct drm_i915_private *dev_priv = dev->dev_private;
4654
4655 if (INTEL_INFO(dev)->gen < 5 ||
4656 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4657 return;
4658
4659 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4660 DISP_TILE_SURFACE_SWIZZLING);
4661
4662 if (IS_GEN5(dev))
4663 return;
4664
4665 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4666 if (IS_GEN6(dev))
4667 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4668 else if (IS_GEN7(dev))
4669 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4670 else if (IS_GEN8(dev))
4671 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4672 else
4673 BUG();
4674 }
4675
4676 static bool
4677 intel_enable_blt(struct drm_device *dev)
4678 {
4679 if (!HAS_BLT(dev))
4680 return false;
4681
4682 /* The blitter was dysfunctional on early prototypes */
4683 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4684 DRM_INFO("BLT not supported on this pre-production hardware;"
4685 " graphics performance will be degraded.\n");
4686 return false;
4687 }
4688
4689 return true;
4690 }
4691
4692 static void init_unused_ring(struct drm_device *dev, u32 base)
4693 {
4694 struct drm_i915_private *dev_priv = dev->dev_private;
4695
4696 I915_WRITE(RING_CTL(base), 0);
4697 I915_WRITE(RING_HEAD(base), 0);
4698 I915_WRITE(RING_TAIL(base), 0);
4699 I915_WRITE(RING_START(base), 0);
4700 }
4701
4702 static void init_unused_rings(struct drm_device *dev)
4703 {
4704 if (IS_I830(dev)) {
4705 init_unused_ring(dev, PRB1_BASE);
4706 init_unused_ring(dev, SRB0_BASE);
4707 init_unused_ring(dev, SRB1_BASE);
4708 init_unused_ring(dev, SRB2_BASE);
4709 init_unused_ring(dev, SRB3_BASE);
4710 } else if (IS_GEN2(dev)) {
4711 init_unused_ring(dev, SRB0_BASE);
4712 init_unused_ring(dev, SRB1_BASE);
4713 } else if (IS_GEN3(dev)) {
4714 init_unused_ring(dev, PRB1_BASE);
4715 init_unused_ring(dev, PRB2_BASE);
4716 }
4717 }
4718
4719 int i915_gem_init_rings(struct drm_device *dev)
4720 {
4721 struct drm_i915_private *dev_priv = dev->dev_private;
4722 int ret;
4723
4724 ret = intel_init_render_ring_buffer(dev);
4725 if (ret)
4726 return ret;
4727
4728 if (HAS_BSD(dev)) {
4729 ret = intel_init_bsd_ring_buffer(dev);
4730 if (ret)
4731 goto cleanup_render_ring;
4732 }
4733
4734 if (intel_enable_blt(dev)) {
4735 ret = intel_init_blt_ring_buffer(dev);
4736 if (ret)
4737 goto cleanup_bsd_ring;
4738 }
4739
4740 if (HAS_VEBOX(dev)) {
4741 ret = intel_init_vebox_ring_buffer(dev);
4742 if (ret)
4743 goto cleanup_blt_ring;
4744 }
4745
4746 if (HAS_BSD2(dev)) {
4747 ret = intel_init_bsd2_ring_buffer(dev);
4748 if (ret)
4749 goto cleanup_vebox_ring;
4750 }
4751
4752 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4753 if (ret)
4754 goto cleanup_bsd2_ring;
4755
4756 return 0;
4757
4758 cleanup_bsd2_ring:
4759 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4760 cleanup_vebox_ring:
4761 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4762 cleanup_blt_ring:
4763 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4764 cleanup_bsd_ring:
4765 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4766 cleanup_render_ring:
4767 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4768
4769 return ret;
4770 }
4771
4772 int
4773 i915_gem_init_hw(struct drm_device *dev)
4774 {
4775 struct drm_i915_private *dev_priv = dev->dev_private;
4776 struct intel_engine_cs *ring;
4777 int ret, i;
4778
4779 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4780 return -EIO;
4781
4782 /* Double layer security blanket, see i915_gem_init() */
4783 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4784
4785 if (dev_priv->ellc_size)
4786 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4787
4788 if (IS_HASWELL(dev))
4789 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4790 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4791
4792 if (HAS_PCH_NOP(dev)) {
4793 if (IS_IVYBRIDGE(dev)) {
4794 u32 temp = I915_READ(GEN7_MSG_CTL);
4795 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4796 I915_WRITE(GEN7_MSG_CTL, temp);
4797 } else if (INTEL_INFO(dev)->gen >= 7) {
4798 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4799 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4800 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4801 }
4802 }
4803
4804 i915_gem_init_swizzling(dev);
4805
4806 /*
4807 * At least 830 can leave some of the unused rings
4808 * "active" (ie. head != tail) after resume which
4809 * will prevent c3 entry. Makes sure all unused rings
4810 * are totally idle.
4811 */
4812 init_unused_rings(dev);
4813
4814 for_each_ring(ring, dev_priv, i) {
4815 ret = ring->init_hw(ring);
4816 if (ret)
4817 goto out;
4818 }
4819
4820 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4821 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4822
4823 ret = i915_ppgtt_init_hw(dev);
4824 if (ret && ret != -EIO) {
4825 DRM_ERROR("PPGTT enable failed %d\n", ret);
4826 i915_gem_cleanup_ringbuffer(dev);
4827 }
4828
4829 ret = i915_gem_context_enable(dev_priv);
4830 if (ret && ret != -EIO) {
4831 DRM_ERROR("Context enable failed %d\n", ret);
4832 i915_gem_cleanup_ringbuffer(dev);
4833
4834 goto out;
4835 }
4836
4837 out:
4838 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4839 return ret;
4840 }
4841
4842 int i915_gem_init(struct drm_device *dev)
4843 {
4844 struct drm_i915_private *dev_priv = dev->dev_private;
4845 int ret;
4846
4847 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4848 i915.enable_execlists);
4849
4850 mutex_lock(&dev->struct_mutex);
4851
4852 if (IS_VALLEYVIEW(dev)) {
4853 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4854 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4855 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4856 VLV_GTLC_ALLOWWAKEACK), 10))
4857 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4858 }
4859
4860 if (!i915.enable_execlists) {
4861 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4862 dev_priv->gt.init_rings = i915_gem_init_rings;
4863 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4864 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4865 } else {
4866 dev_priv->gt.do_execbuf = intel_execlists_submission;
4867 dev_priv->gt.init_rings = intel_logical_rings_init;
4868 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4869 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4870 }
4871
4872 /* This is just a security blanket to placate dragons.
4873 * On some systems, we very sporadically observe that the first TLBs
4874 * used by the CS may be stale, despite us poking the TLB reset. If
4875 * we hold the forcewake during initialisation these problems
4876 * just magically go away.
4877 */
4878 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4879
4880 ret = i915_gem_init_userptr(dev);
4881 if (ret)
4882 goto out_unlock;
4883
4884 i915_gem_init_global_gtt(dev);
4885
4886 ret = i915_gem_context_init(dev);
4887 if (ret)
4888 goto out_unlock;
4889
4890 ret = dev_priv->gt.init_rings(dev);
4891 if (ret)
4892 goto out_unlock;
4893
4894 ret = i915_gem_init_hw(dev);
4895 if (ret == -EIO) {
4896 /* Allow ring initialisation to fail by marking the GPU as
4897 * wedged. But we only want to do this where the GPU is angry,
4898 * for all other failure, such as an allocation failure, bail.
4899 */
4900 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4901 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4902 ret = 0;
4903 }
4904
4905 out_unlock:
4906 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4907 mutex_unlock(&dev->struct_mutex);
4908
4909 return ret;
4910 }
4911
4912 void
4913 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4914 {
4915 struct drm_i915_private *dev_priv = dev->dev_private;
4916 struct intel_engine_cs *ring;
4917 int i;
4918
4919 for_each_ring(ring, dev_priv, i)
4920 dev_priv->gt.cleanup_ring(ring);
4921 }
4922
4923 static void
4924 init_ring_lists(struct intel_engine_cs *ring)
4925 {
4926 INIT_LIST_HEAD(&ring->active_list);
4927 INIT_LIST_HEAD(&ring->request_list);
4928 }
4929
4930 void i915_init_vm(struct drm_i915_private *dev_priv,
4931 struct i915_address_space *vm)
4932 {
4933 if (!i915_is_ggtt(vm))
4934 drm_mm_init(&vm->mm, vm->start, vm->total);
4935 vm->dev = dev_priv->dev;
4936 INIT_LIST_HEAD(&vm->active_list);
4937 INIT_LIST_HEAD(&vm->inactive_list);
4938 INIT_LIST_HEAD(&vm->global_link);
4939 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4940 }
4941
4942 void
4943 i915_gem_load(struct drm_device *dev)
4944 {
4945 struct drm_i915_private *dev_priv = dev->dev_private;
4946 int i;
4947
4948 dev_priv->slab =
4949 kmem_cache_create("i915_gem_object",
4950 sizeof(struct drm_i915_gem_object), 0,
4951 SLAB_HWCACHE_ALIGN,
4952 NULL);
4953
4954 INIT_LIST_HEAD(&dev_priv->vm_list);
4955 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4956
4957 INIT_LIST_HEAD(&dev_priv->context_list);
4958 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4959 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4960 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4961 for (i = 0; i < I915_NUM_RINGS; i++)
4962 init_ring_lists(&dev_priv->ring[i]);
4963 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4964 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4965 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4966 i915_gem_retire_work_handler);
4967 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4968 i915_gem_idle_work_handler);
4969 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4970
4971 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4972
4973 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4974 dev_priv->num_fence_regs = 32;
4975 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4976 dev_priv->num_fence_regs = 16;
4977 else
4978 dev_priv->num_fence_regs = 8;
4979
4980 if (intel_vgpu_active(dev))
4981 dev_priv->num_fence_regs =
4982 I915_READ(vgtif_reg(avail_rs.fence_num));
4983
4984 /* Initialize fence registers to zero */
4985 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4986 i915_gem_restore_fences(dev);
4987
4988 i915_gem_detect_bit_6_swizzle(dev);
4989 init_waitqueue_head(&dev_priv->pending_flip_queue);
4990
4991 dev_priv->mm.interruptible = true;
4992
4993 i915_gem_shrinker_init(dev_priv);
4994
4995 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
4996
4997 mutex_init(&dev_priv->fb_tracking.lock);
4998 }
4999
5000 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5001 {
5002 struct drm_i915_file_private *file_priv = file->driver_priv;
5003
5004 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5005
5006 /* Clean up our request list when the client is going away, so that
5007 * later retire_requests won't dereference our soon-to-be-gone
5008 * file_priv.
5009 */
5010 spin_lock(&file_priv->mm.lock);
5011 while (!list_empty(&file_priv->mm.request_list)) {
5012 struct drm_i915_gem_request *request;
5013
5014 request = list_first_entry(&file_priv->mm.request_list,
5015 struct drm_i915_gem_request,
5016 client_list);
5017 list_del(&request->client_list);
5018 request->file_priv = NULL;
5019 }
5020 spin_unlock(&file_priv->mm.lock);
5021 }
5022
5023 static void
5024 i915_gem_file_idle_work_handler(struct work_struct *work)
5025 {
5026 struct drm_i915_file_private *file_priv =
5027 container_of(work, typeof(*file_priv), mm.idle_work.work);
5028
5029 atomic_set(&file_priv->rps_wait_boost, false);
5030 }
5031
5032 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5033 {
5034 struct drm_i915_file_private *file_priv;
5035 int ret;
5036
5037 DRM_DEBUG_DRIVER("\n");
5038
5039 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5040 if (!file_priv)
5041 return -ENOMEM;
5042
5043 file->driver_priv = file_priv;
5044 file_priv->dev_priv = dev->dev_private;
5045 file_priv->file = file;
5046
5047 spin_lock_init(&file_priv->mm.lock);
5048 INIT_LIST_HEAD(&file_priv->mm.request_list);
5049 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5050 i915_gem_file_idle_work_handler);
5051
5052 ret = i915_gem_context_open(dev, file);
5053 if (ret)
5054 kfree(file_priv);
5055
5056 return ret;
5057 }
5058
5059 /**
5060 * i915_gem_track_fb - update frontbuffer tracking
5061 * old: current GEM buffer for the frontbuffer slots
5062 * new: new GEM buffer for the frontbuffer slots
5063 * frontbuffer_bits: bitmask of frontbuffer slots
5064 *
5065 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5066 * from @old and setting them in @new. Both @old and @new can be NULL.
5067 */
5068 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5069 struct drm_i915_gem_object *new,
5070 unsigned frontbuffer_bits)
5071 {
5072 if (old) {
5073 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5074 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5075 old->frontbuffer_bits &= ~frontbuffer_bits;
5076 }
5077
5078 if (new) {
5079 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5080 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5081 new->frontbuffer_bits |= frontbuffer_bits;
5082 }
5083 }
5084
5085 /* All the new VM stuff */
5086 unsigned long
5087 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5088 struct i915_address_space *vm)
5089 {
5090 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5091 struct i915_vma *vma;
5092
5093 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5094
5095 list_for_each_entry(vma, &o->vma_list, vma_link) {
5096 if (i915_is_ggtt(vma->vm) &&
5097 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5098 continue;
5099 if (vma->vm == vm)
5100 return vma->node.start;
5101 }
5102
5103 WARN(1, "%s vma for this object not found.\n",
5104 i915_is_ggtt(vm) ? "global" : "ppgtt");
5105 return -1;
5106 }
5107
5108 unsigned long
5109 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5110 enum i915_ggtt_view_type view)
5111 {
5112 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5113 struct i915_vma *vma;
5114
5115 list_for_each_entry(vma, &o->vma_list, vma_link)
5116 if (vma->vm == ggtt && vma->ggtt_view.type == view)
5117 return vma->node.start;
5118
5119 WARN(1, "global vma for this object not found.\n");
5120 return -1;
5121 }
5122
5123 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5124 struct i915_address_space *vm)
5125 {
5126 struct i915_vma *vma;
5127
5128 list_for_each_entry(vma, &o->vma_list, vma_link) {
5129 if (i915_is_ggtt(vma->vm) &&
5130 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5131 continue;
5132 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5133 return true;
5134 }
5135
5136 return false;
5137 }
5138
5139 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5140 enum i915_ggtt_view_type view)
5141 {
5142 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5143 struct i915_vma *vma;
5144
5145 list_for_each_entry(vma, &o->vma_list, vma_link)
5146 if (vma->vm == ggtt &&
5147 vma->ggtt_view.type == view &&
5148 drm_mm_node_allocated(&vma->node))
5149 return true;
5150
5151 return false;
5152 }
5153
5154 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5155 {
5156 struct i915_vma *vma;
5157
5158 list_for_each_entry(vma, &o->vma_list, vma_link)
5159 if (drm_mm_node_allocated(&vma->node))
5160 return true;
5161
5162 return false;
5163 }
5164
5165 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5166 struct i915_address_space *vm)
5167 {
5168 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5169 struct i915_vma *vma;
5170
5171 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5172
5173 BUG_ON(list_empty(&o->vma_list));
5174
5175 list_for_each_entry(vma, &o->vma_list, vma_link) {
5176 if (i915_is_ggtt(vma->vm) &&
5177 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5178 continue;
5179 if (vma->vm == vm)
5180 return vma->node.size;
5181 }
5182 return 0;
5183 }
5184
5185 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5186 {
5187 struct i915_vma *vma;
5188 list_for_each_entry(vma, &obj->vma_list, vma_link) {
5189 if (i915_is_ggtt(vma->vm) &&
5190 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5191 continue;
5192 if (vma->pin_count > 0)
5193 return true;
5194 }
5195 return false;
5196 }
5197
This page took 0.207012 seconds and 6 git commands to generate.