drm/i915: kill mappable/fenceable disdinction
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 struct change_domains {
40 uint32_t invalidate_domains;
41 uint32_t flush_domains;
42 uint32_t flush_rings;
43 };
44
45 static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
46 static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
47
48 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
49 bool pipelined);
50 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
51 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
52 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
53 int write);
54 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
55 uint64_t offset,
56 uint64_t size);
57 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
58 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
59 bool interruptible);
60 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
61 unsigned alignment,
62 bool map_and_fenceable);
63 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
64 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
65 struct drm_i915_gem_pwrite *args,
66 struct drm_file *file_priv);
67 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
68
69 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
70 int nr_to_scan,
71 gfp_t gfp_mask);
72
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
90 struct drm_i915_gem_object *obj)
91 {
92 dev_priv->mm.gtt_count++;
93 dev_priv->mm.gtt_memory += obj->gtt_space->size;
94 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
95 dev_priv->mm.mappable_gtt_used +=
96 min_t(size_t, obj->gtt_space->size,
97 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
98 }
99 }
100
101 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
102 struct drm_i915_gem_object *obj)
103 {
104 dev_priv->mm.gtt_count--;
105 dev_priv->mm.gtt_memory -= obj->gtt_space->size;
106 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
107 dev_priv->mm.mappable_gtt_used -=
108 min_t(size_t, obj->gtt_space->size,
109 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
110 }
111 }
112
113 /**
114 * Update the mappable working set counters. Call _only_ when there is a change
115 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
116 * @mappable: new state the changed mappable flag (either pin_ or fault_).
117 */
118 static void
119 i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
120 struct drm_i915_gem_object *obj,
121 bool mappable)
122 {
123 if (mappable) {
124 if (obj->pin_mappable && obj->fault_mappable)
125 /* Combined state was already mappable. */
126 return;
127 dev_priv->mm.gtt_mappable_count++;
128 dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
129 } else {
130 if (obj->pin_mappable || obj->fault_mappable)
131 /* Combined state still mappable. */
132 return;
133 dev_priv->mm.gtt_mappable_count--;
134 dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
135 }
136 }
137
138 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
139 struct drm_i915_gem_object *obj,
140 bool mappable)
141 {
142 dev_priv->mm.pin_count++;
143 dev_priv->mm.pin_memory += obj->gtt_space->size;
144 if (mappable) {
145 obj->pin_mappable = true;
146 i915_gem_info_update_mappable(dev_priv, obj, true);
147 }
148 }
149
150 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
151 struct drm_i915_gem_object *obj)
152 {
153 dev_priv->mm.pin_count--;
154 dev_priv->mm.pin_memory -= obj->gtt_space->size;
155 if (obj->pin_mappable) {
156 obj->pin_mappable = false;
157 i915_gem_info_update_mappable(dev_priv, obj, false);
158 }
159 }
160
161 int
162 i915_gem_check_is_wedged(struct drm_device *dev)
163 {
164 struct drm_i915_private *dev_priv = dev->dev_private;
165 struct completion *x = &dev_priv->error_completion;
166 unsigned long flags;
167 int ret;
168
169 if (!atomic_read(&dev_priv->mm.wedged))
170 return 0;
171
172 ret = wait_for_completion_interruptible(x);
173 if (ret)
174 return ret;
175
176 /* Success, we reset the GPU! */
177 if (!atomic_read(&dev_priv->mm.wedged))
178 return 0;
179
180 /* GPU is hung, bump the completion count to account for
181 * the token we just consumed so that we never hit zero and
182 * end up waiting upon a subsequent completion event that
183 * will never happen.
184 */
185 spin_lock_irqsave(&x->wait.lock, flags);
186 x->done++;
187 spin_unlock_irqrestore(&x->wait.lock, flags);
188 return -EIO;
189 }
190
191 static int i915_mutex_lock_interruptible(struct drm_device *dev)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 int ret;
195
196 ret = i915_gem_check_is_wedged(dev);
197 if (ret)
198 return ret;
199
200 ret = mutex_lock_interruptible(&dev->struct_mutex);
201 if (ret)
202 return ret;
203
204 if (atomic_read(&dev_priv->mm.wedged)) {
205 mutex_unlock(&dev->struct_mutex);
206 return -EAGAIN;
207 }
208
209 WARN_ON(i915_verify_lists(dev));
210 return 0;
211 }
212
213 static inline bool
214 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
215 {
216 return obj_priv->gtt_space &&
217 !obj_priv->active &&
218 obj_priv->pin_count == 0;
219 }
220
221 int i915_gem_do_init(struct drm_device *dev,
222 unsigned long start,
223 unsigned long mappable_end,
224 unsigned long end)
225 {
226 drm_i915_private_t *dev_priv = dev->dev_private;
227
228 if (start >= end ||
229 (start & (PAGE_SIZE - 1)) != 0 ||
230 (end & (PAGE_SIZE - 1)) != 0) {
231 return -EINVAL;
232 }
233
234 drm_mm_init(&dev_priv->mm.gtt_space, start,
235 end - start);
236
237 dev_priv->mm.gtt_total = end - start;
238 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
239 dev_priv->mm.gtt_mappable_end = mappable_end;
240
241 return 0;
242 }
243
244 int
245 i915_gem_init_ioctl(struct drm_device *dev, void *data,
246 struct drm_file *file_priv)
247 {
248 struct drm_i915_gem_init *args = data;
249 int ret;
250
251 mutex_lock(&dev->struct_mutex);
252 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
253 mutex_unlock(&dev->struct_mutex);
254
255 return ret;
256 }
257
258 int
259 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
260 struct drm_file *file_priv)
261 {
262 struct drm_i915_private *dev_priv = dev->dev_private;
263 struct drm_i915_gem_get_aperture *args = data;
264
265 if (!(dev->driver->driver_features & DRIVER_GEM))
266 return -ENODEV;
267
268 mutex_lock(&dev->struct_mutex);
269 args->aper_size = dev_priv->mm.gtt_total;
270 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
271 mutex_unlock(&dev->struct_mutex);
272
273 return 0;
274 }
275
276
277 /**
278 * Creates a new mm object and returns a handle to it.
279 */
280 int
281 i915_gem_create_ioctl(struct drm_device *dev, void *data,
282 struct drm_file *file_priv)
283 {
284 struct drm_i915_gem_create *args = data;
285 struct drm_gem_object *obj;
286 int ret;
287 u32 handle;
288
289 args->size = roundup(args->size, PAGE_SIZE);
290
291 /* Allocate the new object */
292 obj = i915_gem_alloc_object(dev, args->size);
293 if (obj == NULL)
294 return -ENOMEM;
295
296 ret = drm_gem_handle_create(file_priv, obj, &handle);
297 if (ret) {
298 drm_gem_object_release(obj);
299 i915_gem_info_remove_obj(dev->dev_private, obj->size);
300 kfree(obj);
301 return ret;
302 }
303
304 /* drop reference from allocate - handle holds it now */
305 drm_gem_object_unreference(obj);
306 trace_i915_gem_object_create(obj);
307
308 args->handle = handle;
309 return 0;
310 }
311
312 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
313 {
314 drm_i915_private_t *dev_priv = obj->dev->dev_private;
315 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
316
317 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
318 obj_priv->tiling_mode != I915_TILING_NONE;
319 }
320
321 static inline void
322 slow_shmem_copy(struct page *dst_page,
323 int dst_offset,
324 struct page *src_page,
325 int src_offset,
326 int length)
327 {
328 char *dst_vaddr, *src_vaddr;
329
330 dst_vaddr = kmap(dst_page);
331 src_vaddr = kmap(src_page);
332
333 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
334
335 kunmap(src_page);
336 kunmap(dst_page);
337 }
338
339 static inline void
340 slow_shmem_bit17_copy(struct page *gpu_page,
341 int gpu_offset,
342 struct page *cpu_page,
343 int cpu_offset,
344 int length,
345 int is_read)
346 {
347 char *gpu_vaddr, *cpu_vaddr;
348
349 /* Use the unswizzled path if this page isn't affected. */
350 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
351 if (is_read)
352 return slow_shmem_copy(cpu_page, cpu_offset,
353 gpu_page, gpu_offset, length);
354 else
355 return slow_shmem_copy(gpu_page, gpu_offset,
356 cpu_page, cpu_offset, length);
357 }
358
359 gpu_vaddr = kmap(gpu_page);
360 cpu_vaddr = kmap(cpu_page);
361
362 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
363 * XORing with the other bits (A9 for Y, A9 and A10 for X)
364 */
365 while (length > 0) {
366 int cacheline_end = ALIGN(gpu_offset + 1, 64);
367 int this_length = min(cacheline_end - gpu_offset, length);
368 int swizzled_gpu_offset = gpu_offset ^ 64;
369
370 if (is_read) {
371 memcpy(cpu_vaddr + cpu_offset,
372 gpu_vaddr + swizzled_gpu_offset,
373 this_length);
374 } else {
375 memcpy(gpu_vaddr + swizzled_gpu_offset,
376 cpu_vaddr + cpu_offset,
377 this_length);
378 }
379 cpu_offset += this_length;
380 gpu_offset += this_length;
381 length -= this_length;
382 }
383
384 kunmap(cpu_page);
385 kunmap(gpu_page);
386 }
387
388 /**
389 * This is the fast shmem pread path, which attempts to copy_from_user directly
390 * from the backing pages of the object to the user's address space. On a
391 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
392 */
393 static int
394 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
395 struct drm_i915_gem_pread *args,
396 struct drm_file *file_priv)
397 {
398 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
399 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
400 ssize_t remain;
401 loff_t offset;
402 char __user *user_data;
403 int page_offset, page_length;
404
405 user_data = (char __user *) (uintptr_t) args->data_ptr;
406 remain = args->size;
407
408 obj_priv = to_intel_bo(obj);
409 offset = args->offset;
410
411 while (remain > 0) {
412 struct page *page;
413 char *vaddr;
414 int ret;
415
416 /* Operation in this page
417 *
418 * page_offset = offset within page
419 * page_length = bytes to copy for this page
420 */
421 page_offset = offset & (PAGE_SIZE-1);
422 page_length = remain;
423 if ((page_offset + remain) > PAGE_SIZE)
424 page_length = PAGE_SIZE - page_offset;
425
426 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
427 GFP_HIGHUSER | __GFP_RECLAIMABLE);
428 if (IS_ERR(page))
429 return PTR_ERR(page);
430
431 vaddr = kmap_atomic(page);
432 ret = __copy_to_user_inatomic(user_data,
433 vaddr + page_offset,
434 page_length);
435 kunmap_atomic(vaddr);
436
437 mark_page_accessed(page);
438 page_cache_release(page);
439 if (ret)
440 return -EFAULT;
441
442 remain -= page_length;
443 user_data += page_length;
444 offset += page_length;
445 }
446
447 return 0;
448 }
449
450 /**
451 * This is the fallback shmem pread path, which allocates temporary storage
452 * in kernel space to copy_to_user into outside of the struct_mutex, so we
453 * can copy out of the object's backing pages while holding the struct mutex
454 * and not take page faults.
455 */
456 static int
457 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
458 struct drm_i915_gem_pread *args,
459 struct drm_file *file_priv)
460 {
461 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
462 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
463 struct mm_struct *mm = current->mm;
464 struct page **user_pages;
465 ssize_t remain;
466 loff_t offset, pinned_pages, i;
467 loff_t first_data_page, last_data_page, num_pages;
468 int shmem_page_offset;
469 int data_page_index, data_page_offset;
470 int page_length;
471 int ret;
472 uint64_t data_ptr = args->data_ptr;
473 int do_bit17_swizzling;
474
475 remain = args->size;
476
477 /* Pin the user pages containing the data. We can't fault while
478 * holding the struct mutex, yet we want to hold it while
479 * dereferencing the user data.
480 */
481 first_data_page = data_ptr / PAGE_SIZE;
482 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
483 num_pages = last_data_page - first_data_page + 1;
484
485 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
486 if (user_pages == NULL)
487 return -ENOMEM;
488
489 mutex_unlock(&dev->struct_mutex);
490 down_read(&mm->mmap_sem);
491 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
492 num_pages, 1, 0, user_pages, NULL);
493 up_read(&mm->mmap_sem);
494 mutex_lock(&dev->struct_mutex);
495 if (pinned_pages < num_pages) {
496 ret = -EFAULT;
497 goto out;
498 }
499
500 ret = i915_gem_object_set_cpu_read_domain_range(obj,
501 args->offset,
502 args->size);
503 if (ret)
504 goto out;
505
506 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
507
508 obj_priv = to_intel_bo(obj);
509 offset = args->offset;
510
511 while (remain > 0) {
512 struct page *page;
513
514 /* Operation in this page
515 *
516 * shmem_page_offset = offset within page in shmem file
517 * data_page_index = page number in get_user_pages return
518 * data_page_offset = offset with data_page_index page.
519 * page_length = bytes to copy for this page
520 */
521 shmem_page_offset = offset & ~PAGE_MASK;
522 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
523 data_page_offset = data_ptr & ~PAGE_MASK;
524
525 page_length = remain;
526 if ((shmem_page_offset + page_length) > PAGE_SIZE)
527 page_length = PAGE_SIZE - shmem_page_offset;
528 if ((data_page_offset + page_length) > PAGE_SIZE)
529 page_length = PAGE_SIZE - data_page_offset;
530
531 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
532 GFP_HIGHUSER | __GFP_RECLAIMABLE);
533 if (IS_ERR(page))
534 return PTR_ERR(page);
535
536 if (do_bit17_swizzling) {
537 slow_shmem_bit17_copy(page,
538 shmem_page_offset,
539 user_pages[data_page_index],
540 data_page_offset,
541 page_length,
542 1);
543 } else {
544 slow_shmem_copy(user_pages[data_page_index],
545 data_page_offset,
546 page,
547 shmem_page_offset,
548 page_length);
549 }
550
551 mark_page_accessed(page);
552 page_cache_release(page);
553
554 remain -= page_length;
555 data_ptr += page_length;
556 offset += page_length;
557 }
558
559 out:
560 for (i = 0; i < pinned_pages; i++) {
561 SetPageDirty(user_pages[i]);
562 mark_page_accessed(user_pages[i]);
563 page_cache_release(user_pages[i]);
564 }
565 drm_free_large(user_pages);
566
567 return ret;
568 }
569
570 /**
571 * Reads data from the object referenced by handle.
572 *
573 * On error, the contents of *data are undefined.
574 */
575 int
576 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
577 struct drm_file *file_priv)
578 {
579 struct drm_i915_gem_pread *args = data;
580 struct drm_gem_object *obj;
581 struct drm_i915_gem_object *obj_priv;
582 int ret = 0;
583
584 ret = i915_mutex_lock_interruptible(dev);
585 if (ret)
586 return ret;
587
588 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
589 if (obj == NULL) {
590 ret = -ENOENT;
591 goto unlock;
592 }
593 obj_priv = to_intel_bo(obj);
594
595 /* Bounds check source. */
596 if (args->offset > obj->size || args->size > obj->size - args->offset) {
597 ret = -EINVAL;
598 goto out;
599 }
600
601 if (args->size == 0)
602 goto out;
603
604 if (!access_ok(VERIFY_WRITE,
605 (char __user *)(uintptr_t)args->data_ptr,
606 args->size)) {
607 ret = -EFAULT;
608 goto out;
609 }
610
611 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
612 args->size);
613 if (ret) {
614 ret = -EFAULT;
615 goto out;
616 }
617
618 ret = i915_gem_object_set_cpu_read_domain_range(obj,
619 args->offset,
620 args->size);
621 if (ret)
622 goto out;
623
624 ret = -EFAULT;
625 if (!i915_gem_object_needs_bit17_swizzle(obj))
626 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
627 if (ret == -EFAULT)
628 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
629
630 out:
631 drm_gem_object_unreference(obj);
632 unlock:
633 mutex_unlock(&dev->struct_mutex);
634 return ret;
635 }
636
637 /* This is the fast write path which cannot handle
638 * page faults in the source data
639 */
640
641 static inline int
642 fast_user_write(struct io_mapping *mapping,
643 loff_t page_base, int page_offset,
644 char __user *user_data,
645 int length)
646 {
647 char *vaddr_atomic;
648 unsigned long unwritten;
649
650 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
651 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
652 user_data, length);
653 io_mapping_unmap_atomic(vaddr_atomic);
654 return unwritten;
655 }
656
657 /* Here's the write path which can sleep for
658 * page faults
659 */
660
661 static inline void
662 slow_kernel_write(struct io_mapping *mapping,
663 loff_t gtt_base, int gtt_offset,
664 struct page *user_page, int user_offset,
665 int length)
666 {
667 char __iomem *dst_vaddr;
668 char *src_vaddr;
669
670 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
671 src_vaddr = kmap(user_page);
672
673 memcpy_toio(dst_vaddr + gtt_offset,
674 src_vaddr + user_offset,
675 length);
676
677 kunmap(user_page);
678 io_mapping_unmap(dst_vaddr);
679 }
680
681 /**
682 * This is the fast pwrite path, where we copy the data directly from the
683 * user into the GTT, uncached.
684 */
685 static int
686 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
687 struct drm_i915_gem_pwrite *args,
688 struct drm_file *file_priv)
689 {
690 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
691 drm_i915_private_t *dev_priv = dev->dev_private;
692 ssize_t remain;
693 loff_t offset, page_base;
694 char __user *user_data;
695 int page_offset, page_length;
696
697 user_data = (char __user *) (uintptr_t) args->data_ptr;
698 remain = args->size;
699
700 obj_priv = to_intel_bo(obj);
701 offset = obj_priv->gtt_offset + args->offset;
702
703 while (remain > 0) {
704 /* Operation in this page
705 *
706 * page_base = page offset within aperture
707 * page_offset = offset within page
708 * page_length = bytes to copy for this page
709 */
710 page_base = (offset & ~(PAGE_SIZE-1));
711 page_offset = offset & (PAGE_SIZE-1);
712 page_length = remain;
713 if ((page_offset + remain) > PAGE_SIZE)
714 page_length = PAGE_SIZE - page_offset;
715
716 /* If we get a fault while copying data, then (presumably) our
717 * source page isn't available. Return the error and we'll
718 * retry in the slow path.
719 */
720 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
721 page_offset, user_data, page_length))
722
723 return -EFAULT;
724
725 remain -= page_length;
726 user_data += page_length;
727 offset += page_length;
728 }
729
730 return 0;
731 }
732
733 /**
734 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
735 * the memory and maps it using kmap_atomic for copying.
736 *
737 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
738 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
739 */
740 static int
741 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
742 struct drm_i915_gem_pwrite *args,
743 struct drm_file *file_priv)
744 {
745 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
746 drm_i915_private_t *dev_priv = dev->dev_private;
747 ssize_t remain;
748 loff_t gtt_page_base, offset;
749 loff_t first_data_page, last_data_page, num_pages;
750 loff_t pinned_pages, i;
751 struct page **user_pages;
752 struct mm_struct *mm = current->mm;
753 int gtt_page_offset, data_page_offset, data_page_index, page_length;
754 int ret;
755 uint64_t data_ptr = args->data_ptr;
756
757 remain = args->size;
758
759 /* Pin the user pages containing the data. We can't fault while
760 * holding the struct mutex, and all of the pwrite implementations
761 * want to hold it while dereferencing the user data.
762 */
763 first_data_page = data_ptr / PAGE_SIZE;
764 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
765 num_pages = last_data_page - first_data_page + 1;
766
767 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
768 if (user_pages == NULL)
769 return -ENOMEM;
770
771 mutex_unlock(&dev->struct_mutex);
772 down_read(&mm->mmap_sem);
773 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
774 num_pages, 0, 0, user_pages, NULL);
775 up_read(&mm->mmap_sem);
776 mutex_lock(&dev->struct_mutex);
777 if (pinned_pages < num_pages) {
778 ret = -EFAULT;
779 goto out_unpin_pages;
780 }
781
782 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
783 if (ret)
784 goto out_unpin_pages;
785
786 obj_priv = to_intel_bo(obj);
787 offset = obj_priv->gtt_offset + args->offset;
788
789 while (remain > 0) {
790 /* Operation in this page
791 *
792 * gtt_page_base = page offset within aperture
793 * gtt_page_offset = offset within page in aperture
794 * data_page_index = page number in get_user_pages return
795 * data_page_offset = offset with data_page_index page.
796 * page_length = bytes to copy for this page
797 */
798 gtt_page_base = offset & PAGE_MASK;
799 gtt_page_offset = offset & ~PAGE_MASK;
800 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
801 data_page_offset = data_ptr & ~PAGE_MASK;
802
803 page_length = remain;
804 if ((gtt_page_offset + page_length) > PAGE_SIZE)
805 page_length = PAGE_SIZE - gtt_page_offset;
806 if ((data_page_offset + page_length) > PAGE_SIZE)
807 page_length = PAGE_SIZE - data_page_offset;
808
809 slow_kernel_write(dev_priv->mm.gtt_mapping,
810 gtt_page_base, gtt_page_offset,
811 user_pages[data_page_index],
812 data_page_offset,
813 page_length);
814
815 remain -= page_length;
816 offset += page_length;
817 data_ptr += page_length;
818 }
819
820 out_unpin_pages:
821 for (i = 0; i < pinned_pages; i++)
822 page_cache_release(user_pages[i]);
823 drm_free_large(user_pages);
824
825 return ret;
826 }
827
828 /**
829 * This is the fast shmem pwrite path, which attempts to directly
830 * copy_from_user into the kmapped pages backing the object.
831 */
832 static int
833 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
834 struct drm_i915_gem_pwrite *args,
835 struct drm_file *file_priv)
836 {
837 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
838 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
839 ssize_t remain;
840 loff_t offset;
841 char __user *user_data;
842 int page_offset, page_length;
843
844 user_data = (char __user *) (uintptr_t) args->data_ptr;
845 remain = args->size;
846
847 obj_priv = to_intel_bo(obj);
848 offset = args->offset;
849 obj_priv->dirty = 1;
850
851 while (remain > 0) {
852 struct page *page;
853 char *vaddr;
854 int ret;
855
856 /* Operation in this page
857 *
858 * page_offset = offset within page
859 * page_length = bytes to copy for this page
860 */
861 page_offset = offset & (PAGE_SIZE-1);
862 page_length = remain;
863 if ((page_offset + remain) > PAGE_SIZE)
864 page_length = PAGE_SIZE - page_offset;
865
866 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
867 GFP_HIGHUSER | __GFP_RECLAIMABLE);
868 if (IS_ERR(page))
869 return PTR_ERR(page);
870
871 vaddr = kmap_atomic(page, KM_USER0);
872 ret = __copy_from_user_inatomic(vaddr + page_offset,
873 user_data,
874 page_length);
875 kunmap_atomic(vaddr, KM_USER0);
876
877 set_page_dirty(page);
878 mark_page_accessed(page);
879 page_cache_release(page);
880
881 /* If we get a fault while copying data, then (presumably) our
882 * source page isn't available. Return the error and we'll
883 * retry in the slow path.
884 */
885 if (ret)
886 return -EFAULT;
887
888 remain -= page_length;
889 user_data += page_length;
890 offset += page_length;
891 }
892
893 return 0;
894 }
895
896 /**
897 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
898 * the memory and maps it using kmap_atomic for copying.
899 *
900 * This avoids taking mmap_sem for faulting on the user's address while the
901 * struct_mutex is held.
902 */
903 static int
904 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
905 struct drm_i915_gem_pwrite *args,
906 struct drm_file *file_priv)
907 {
908 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
909 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
910 struct mm_struct *mm = current->mm;
911 struct page **user_pages;
912 ssize_t remain;
913 loff_t offset, pinned_pages, i;
914 loff_t first_data_page, last_data_page, num_pages;
915 int shmem_page_offset;
916 int data_page_index, data_page_offset;
917 int page_length;
918 int ret;
919 uint64_t data_ptr = args->data_ptr;
920 int do_bit17_swizzling;
921
922 remain = args->size;
923
924 /* Pin the user pages containing the data. We can't fault while
925 * holding the struct mutex, and all of the pwrite implementations
926 * want to hold it while dereferencing the user data.
927 */
928 first_data_page = data_ptr / PAGE_SIZE;
929 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
930 num_pages = last_data_page - first_data_page + 1;
931
932 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
933 if (user_pages == NULL)
934 return -ENOMEM;
935
936 mutex_unlock(&dev->struct_mutex);
937 down_read(&mm->mmap_sem);
938 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
939 num_pages, 0, 0, user_pages, NULL);
940 up_read(&mm->mmap_sem);
941 mutex_lock(&dev->struct_mutex);
942 if (pinned_pages < num_pages) {
943 ret = -EFAULT;
944 goto out;
945 }
946
947 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
948 if (ret)
949 goto out;
950
951 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
952
953 obj_priv = to_intel_bo(obj);
954 offset = args->offset;
955 obj_priv->dirty = 1;
956
957 while (remain > 0) {
958 struct page *page;
959
960 /* Operation in this page
961 *
962 * shmem_page_offset = offset within page in shmem file
963 * data_page_index = page number in get_user_pages return
964 * data_page_offset = offset with data_page_index page.
965 * page_length = bytes to copy for this page
966 */
967 shmem_page_offset = offset & ~PAGE_MASK;
968 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
969 data_page_offset = data_ptr & ~PAGE_MASK;
970
971 page_length = remain;
972 if ((shmem_page_offset + page_length) > PAGE_SIZE)
973 page_length = PAGE_SIZE - shmem_page_offset;
974 if ((data_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - data_page_offset;
976
977 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
978 GFP_HIGHUSER | __GFP_RECLAIMABLE);
979 if (IS_ERR(page)) {
980 ret = PTR_ERR(page);
981 goto out;
982 }
983
984 if (do_bit17_swizzling) {
985 slow_shmem_bit17_copy(page,
986 shmem_page_offset,
987 user_pages[data_page_index],
988 data_page_offset,
989 page_length,
990 0);
991 } else {
992 slow_shmem_copy(page,
993 shmem_page_offset,
994 user_pages[data_page_index],
995 data_page_offset,
996 page_length);
997 }
998
999 set_page_dirty(page);
1000 mark_page_accessed(page);
1001 page_cache_release(page);
1002
1003 remain -= page_length;
1004 data_ptr += page_length;
1005 offset += page_length;
1006 }
1007
1008 out:
1009 for (i = 0; i < pinned_pages; i++)
1010 page_cache_release(user_pages[i]);
1011 drm_free_large(user_pages);
1012
1013 return ret;
1014 }
1015
1016 /**
1017 * Writes data to the object referenced by handle.
1018 *
1019 * On error, the contents of the buffer that were to be modified are undefined.
1020 */
1021 int
1022 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1023 struct drm_file *file)
1024 {
1025 struct drm_i915_gem_pwrite *args = data;
1026 struct drm_gem_object *obj;
1027 struct drm_i915_gem_object *obj_priv;
1028 int ret = 0;
1029
1030 ret = i915_mutex_lock_interruptible(dev);
1031 if (ret)
1032 return ret;
1033
1034 obj = drm_gem_object_lookup(dev, file, args->handle);
1035 if (obj == NULL) {
1036 ret = -ENOENT;
1037 goto unlock;
1038 }
1039 obj_priv = to_intel_bo(obj);
1040
1041
1042 /* Bounds check destination. */
1043 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1044 ret = -EINVAL;
1045 goto out;
1046 }
1047
1048 if (args->size == 0)
1049 goto out;
1050
1051 if (!access_ok(VERIFY_READ,
1052 (char __user *)(uintptr_t)args->data_ptr,
1053 args->size)) {
1054 ret = -EFAULT;
1055 goto out;
1056 }
1057
1058 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1059 args->size);
1060 if (ret) {
1061 ret = -EFAULT;
1062 goto out;
1063 }
1064
1065 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1066 * it would end up going through the fenced access, and we'll get
1067 * different detiling behavior between reading and writing.
1068 * pread/pwrite currently are reading and writing from the CPU
1069 * perspective, requiring manual detiling by the client.
1070 */
1071 if (obj_priv->phys_obj)
1072 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1073 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1074 obj_priv->gtt_space &&
1075 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1076 ret = i915_gem_object_pin(obj, 0, true);
1077 if (ret)
1078 goto out;
1079
1080 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1081 if (ret)
1082 goto out_unpin;
1083
1084 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1085 if (ret == -EFAULT)
1086 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1087
1088 out_unpin:
1089 i915_gem_object_unpin(obj);
1090 } else {
1091 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1092 if (ret)
1093 goto out;
1094
1095 ret = -EFAULT;
1096 if (!i915_gem_object_needs_bit17_swizzle(obj))
1097 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1098 if (ret == -EFAULT)
1099 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1100 }
1101
1102 out:
1103 drm_gem_object_unreference(obj);
1104 unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106 return ret;
1107 }
1108
1109 /**
1110 * Called when user space prepares to use an object with the CPU, either
1111 * through the mmap ioctl's mapping or a GTT mapping.
1112 */
1113 int
1114 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1115 struct drm_file *file_priv)
1116 {
1117 struct drm_i915_private *dev_priv = dev->dev_private;
1118 struct drm_i915_gem_set_domain *args = data;
1119 struct drm_gem_object *obj;
1120 struct drm_i915_gem_object *obj_priv;
1121 uint32_t read_domains = args->read_domains;
1122 uint32_t write_domain = args->write_domain;
1123 int ret;
1124
1125 if (!(dev->driver->driver_features & DRIVER_GEM))
1126 return -ENODEV;
1127
1128 /* Only handle setting domains to types used by the CPU. */
1129 if (write_domain & I915_GEM_GPU_DOMAINS)
1130 return -EINVAL;
1131
1132 if (read_domains & I915_GEM_GPU_DOMAINS)
1133 return -EINVAL;
1134
1135 /* Having something in the write domain implies it's in the read
1136 * domain, and only that read domain. Enforce that in the request.
1137 */
1138 if (write_domain != 0 && read_domains != write_domain)
1139 return -EINVAL;
1140
1141 ret = i915_mutex_lock_interruptible(dev);
1142 if (ret)
1143 return ret;
1144
1145 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1146 if (obj == NULL) {
1147 ret = -ENOENT;
1148 goto unlock;
1149 }
1150 obj_priv = to_intel_bo(obj);
1151
1152 intel_mark_busy(dev, obj);
1153
1154 if (read_domains & I915_GEM_DOMAIN_GTT) {
1155 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1156
1157 /* Update the LRU on the fence for the CPU access that's
1158 * about to occur.
1159 */
1160 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1161 struct drm_i915_fence_reg *reg =
1162 &dev_priv->fence_regs[obj_priv->fence_reg];
1163 list_move_tail(&reg->lru_list,
1164 &dev_priv->mm.fence_list);
1165 }
1166
1167 /* Silently promote "you're not bound, there was nothing to do"
1168 * to success, since the client was just asking us to
1169 * make sure everything was done.
1170 */
1171 if (ret == -EINVAL)
1172 ret = 0;
1173 } else {
1174 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1175 }
1176
1177 /* Maintain LRU order of "inactive" objects */
1178 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1179 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1180
1181 drm_gem_object_unreference(obj);
1182 unlock:
1183 mutex_unlock(&dev->struct_mutex);
1184 return ret;
1185 }
1186
1187 /**
1188 * Called when user space has done writes to this buffer
1189 */
1190 int
1191 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1192 struct drm_file *file_priv)
1193 {
1194 struct drm_i915_gem_sw_finish *args = data;
1195 struct drm_gem_object *obj;
1196 int ret = 0;
1197
1198 if (!(dev->driver->driver_features & DRIVER_GEM))
1199 return -ENODEV;
1200
1201 ret = i915_mutex_lock_interruptible(dev);
1202 if (ret)
1203 return ret;
1204
1205 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1206 if (obj == NULL) {
1207 ret = -ENOENT;
1208 goto unlock;
1209 }
1210
1211 /* Pinned buffers may be scanout, so flush the cache */
1212 if (to_intel_bo(obj)->pin_count)
1213 i915_gem_object_flush_cpu_write_domain(obj);
1214
1215 drm_gem_object_unreference(obj);
1216 unlock:
1217 mutex_unlock(&dev->struct_mutex);
1218 return ret;
1219 }
1220
1221 /**
1222 * Maps the contents of an object, returning the address it is mapped
1223 * into.
1224 *
1225 * While the mapping holds a reference on the contents of the object, it doesn't
1226 * imply a ref on the object itself.
1227 */
1228 int
1229 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1230 struct drm_file *file_priv)
1231 {
1232 struct drm_i915_private *dev_priv = dev->dev_private;
1233 struct drm_i915_gem_mmap *args = data;
1234 struct drm_gem_object *obj;
1235 loff_t offset;
1236 unsigned long addr;
1237
1238 if (!(dev->driver->driver_features & DRIVER_GEM))
1239 return -ENODEV;
1240
1241 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1242 if (obj == NULL)
1243 return -ENOENT;
1244
1245 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1246 drm_gem_object_unreference_unlocked(obj);
1247 return -E2BIG;
1248 }
1249
1250 offset = args->offset;
1251
1252 down_write(&current->mm->mmap_sem);
1253 addr = do_mmap(obj->filp, 0, args->size,
1254 PROT_READ | PROT_WRITE, MAP_SHARED,
1255 args->offset);
1256 up_write(&current->mm->mmap_sem);
1257 drm_gem_object_unreference_unlocked(obj);
1258 if (IS_ERR((void *)addr))
1259 return addr;
1260
1261 args->addr_ptr = (uint64_t) addr;
1262
1263 return 0;
1264 }
1265
1266 /**
1267 * i915_gem_fault - fault a page into the GTT
1268 * vma: VMA in question
1269 * vmf: fault info
1270 *
1271 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1272 * from userspace. The fault handler takes care of binding the object to
1273 * the GTT (if needed), allocating and programming a fence register (again,
1274 * only if needed based on whether the old reg is still valid or the object
1275 * is tiled) and inserting a new PTE into the faulting process.
1276 *
1277 * Note that the faulting process may involve evicting existing objects
1278 * from the GTT and/or fence registers to make room. So performance may
1279 * suffer if the GTT working set is large or there are few fence registers
1280 * left.
1281 */
1282 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1283 {
1284 struct drm_gem_object *obj = vma->vm_private_data;
1285 struct drm_device *dev = obj->dev;
1286 drm_i915_private_t *dev_priv = dev->dev_private;
1287 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1288 pgoff_t page_offset;
1289 unsigned long pfn;
1290 int ret = 0;
1291 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1292
1293 /* We don't use vmf->pgoff since that has the fake offset */
1294 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1295 PAGE_SHIFT;
1296
1297 /* Now bind it into the GTT if needed */
1298 mutex_lock(&dev->struct_mutex);
1299 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
1300
1301 if (obj_priv->gtt_space) {
1302 if (!obj_priv->map_and_fenceable) {
1303 ret = i915_gem_object_unbind(obj);
1304 if (ret)
1305 goto unlock;
1306 }
1307 }
1308
1309 if (!obj_priv->gtt_space) {
1310 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1311 if (ret)
1312 goto unlock;
1313 }
1314
1315 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1316 if (ret)
1317 goto unlock;
1318
1319 if (!obj_priv->fault_mappable) {
1320 obj_priv->fault_mappable = true;
1321 i915_gem_info_update_mappable(dev_priv, obj_priv, true);
1322 }
1323
1324 /* Need a new fence register? */
1325 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1326 ret = i915_gem_object_get_fence_reg(obj, true);
1327 if (ret)
1328 goto unlock;
1329 }
1330
1331 if (i915_gem_object_is_inactive(obj_priv))
1332 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1333
1334 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1335 page_offset;
1336
1337 /* Finally, remap it using the new GTT offset */
1338 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1339 unlock:
1340 mutex_unlock(&dev->struct_mutex);
1341
1342 switch (ret) {
1343 case 0:
1344 case -ERESTARTSYS:
1345 return VM_FAULT_NOPAGE;
1346 case -ENOMEM:
1347 case -EAGAIN:
1348 return VM_FAULT_OOM;
1349 default:
1350 return VM_FAULT_SIGBUS;
1351 }
1352 }
1353
1354 /**
1355 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1356 * @obj: obj in question
1357 *
1358 * GEM memory mapping works by handing back to userspace a fake mmap offset
1359 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1360 * up the object based on the offset and sets up the various memory mapping
1361 * structures.
1362 *
1363 * This routine allocates and attaches a fake offset for @obj.
1364 */
1365 static int
1366 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1367 {
1368 struct drm_device *dev = obj->dev;
1369 struct drm_gem_mm *mm = dev->mm_private;
1370 struct drm_map_list *list;
1371 struct drm_local_map *map;
1372 int ret = 0;
1373
1374 /* Set the object up for mmap'ing */
1375 list = &obj->map_list;
1376 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1377 if (!list->map)
1378 return -ENOMEM;
1379
1380 map = list->map;
1381 map->type = _DRM_GEM;
1382 map->size = obj->size;
1383 map->handle = obj;
1384
1385 /* Get a DRM GEM mmap offset allocated... */
1386 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1387 obj->size / PAGE_SIZE, 0, 0);
1388 if (!list->file_offset_node) {
1389 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1390 ret = -ENOSPC;
1391 goto out_free_list;
1392 }
1393
1394 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1395 obj->size / PAGE_SIZE, 0);
1396 if (!list->file_offset_node) {
1397 ret = -ENOMEM;
1398 goto out_free_list;
1399 }
1400
1401 list->hash.key = list->file_offset_node->start;
1402 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1403 if (ret) {
1404 DRM_ERROR("failed to add to map hash\n");
1405 goto out_free_mm;
1406 }
1407
1408 return 0;
1409
1410 out_free_mm:
1411 drm_mm_put_block(list->file_offset_node);
1412 out_free_list:
1413 kfree(list->map);
1414 list->map = NULL;
1415
1416 return ret;
1417 }
1418
1419 /**
1420 * i915_gem_release_mmap - remove physical page mappings
1421 * @obj: obj in question
1422 *
1423 * Preserve the reservation of the mmapping with the DRM core code, but
1424 * relinquish ownership of the pages back to the system.
1425 *
1426 * It is vital that we remove the page mapping if we have mapped a tiled
1427 * object through the GTT and then lose the fence register due to
1428 * resource pressure. Similarly if the object has been moved out of the
1429 * aperture, than pages mapped into userspace must be revoked. Removing the
1430 * mapping will then trigger a page fault on the next user access, allowing
1431 * fixup by i915_gem_fault().
1432 */
1433 void
1434 i915_gem_release_mmap(struct drm_gem_object *obj)
1435 {
1436 struct drm_device *dev = obj->dev;
1437 struct drm_i915_private *dev_priv = dev->dev_private;
1438 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1439
1440 if (unlikely(obj->map_list.map && dev->dev_mapping))
1441 unmap_mapping_range(dev->dev_mapping,
1442 (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
1443 obj->size, 1);
1444
1445 if (obj_priv->fault_mappable) {
1446 obj_priv->fault_mappable = false;
1447 i915_gem_info_update_mappable(dev_priv, obj_priv, false);
1448 }
1449 }
1450
1451 static void
1452 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1453 {
1454 struct drm_device *dev = obj->dev;
1455 struct drm_gem_mm *mm = dev->mm_private;
1456 struct drm_map_list *list = &obj->map_list;
1457
1458 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1459 drm_mm_put_block(list->file_offset_node);
1460 kfree(list->map);
1461 list->map = NULL;
1462 }
1463
1464 /**
1465 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1466 * @obj: object to check
1467 *
1468 * Return the required GTT alignment for an object, taking into account
1469 * potential fence register mapping if needed.
1470 */
1471 static uint32_t
1472 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
1473 {
1474 struct drm_device *dev = obj_priv->base.dev;
1475
1476 /*
1477 * Minimum alignment is 4k (GTT page size), but might be greater
1478 * if a fence register is needed for the object.
1479 */
1480 if (INTEL_INFO(dev)->gen >= 4 ||
1481 obj_priv->tiling_mode == I915_TILING_NONE)
1482 return 4096;
1483
1484 /*
1485 * Previous chips need to be aligned to the size of the smallest
1486 * fence register that can contain the object.
1487 */
1488 return i915_gem_get_gtt_size(obj_priv);
1489 }
1490
1491 static uint32_t
1492 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
1493 {
1494 struct drm_device *dev = obj_priv->base.dev;
1495 uint32_t size;
1496
1497 /*
1498 * Minimum alignment is 4k (GTT page size), but might be greater
1499 * if a fence register is needed for the object.
1500 */
1501 if (INTEL_INFO(dev)->gen >= 4)
1502 return obj_priv->base.size;
1503
1504 /*
1505 * Previous chips need to be aligned to the size of the smallest
1506 * fence register that can contain the object.
1507 */
1508 if (INTEL_INFO(dev)->gen == 3)
1509 size = 1024*1024;
1510 else
1511 size = 512*1024;
1512
1513 while (size < obj_priv->base.size)
1514 size <<= 1;
1515
1516 return size;
1517 }
1518
1519 /**
1520 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1521 * @dev: DRM device
1522 * @data: GTT mapping ioctl data
1523 * @file_priv: GEM object info
1524 *
1525 * Simply returns the fake offset to userspace so it can mmap it.
1526 * The mmap call will end up in drm_gem_mmap(), which will set things
1527 * up so we can get faults in the handler above.
1528 *
1529 * The fault handler will take care of binding the object into the GTT
1530 * (since it may have been evicted to make room for something), allocating
1531 * a fence register, and mapping the appropriate aperture address into
1532 * userspace.
1533 */
1534 int
1535 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1536 struct drm_file *file_priv)
1537 {
1538 struct drm_i915_private *dev_priv = dev->dev_private;
1539 struct drm_i915_gem_mmap_gtt *args = data;
1540 struct drm_gem_object *obj;
1541 struct drm_i915_gem_object *obj_priv;
1542 int ret;
1543
1544 if (!(dev->driver->driver_features & DRIVER_GEM))
1545 return -ENODEV;
1546
1547 ret = i915_mutex_lock_interruptible(dev);
1548 if (ret)
1549 return ret;
1550
1551 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1552 if (obj == NULL) {
1553 ret = -ENOENT;
1554 goto unlock;
1555 }
1556 obj_priv = to_intel_bo(obj);
1557
1558 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1559 ret = -E2BIG;
1560 goto unlock;
1561 }
1562
1563 if (obj_priv->madv != I915_MADV_WILLNEED) {
1564 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1565 ret = -EINVAL;
1566 goto out;
1567 }
1568
1569 if (!obj->map_list.map) {
1570 ret = i915_gem_create_mmap_offset(obj);
1571 if (ret)
1572 goto out;
1573 }
1574
1575 args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
1576
1577 out:
1578 drm_gem_object_unreference(obj);
1579 unlock:
1580 mutex_unlock(&dev->struct_mutex);
1581 return ret;
1582 }
1583
1584 static int
1585 i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
1586 gfp_t gfpmask)
1587 {
1588 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1589 int page_count, i;
1590 struct address_space *mapping;
1591 struct inode *inode;
1592 struct page *page;
1593
1594 /* Get the list of pages out of our struct file. They'll be pinned
1595 * at this point until we release them.
1596 */
1597 page_count = obj->size / PAGE_SIZE;
1598 BUG_ON(obj_priv->pages != NULL);
1599 obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1600 if (obj_priv->pages == NULL)
1601 return -ENOMEM;
1602
1603 inode = obj->filp->f_path.dentry->d_inode;
1604 mapping = inode->i_mapping;
1605 for (i = 0; i < page_count; i++) {
1606 page = read_cache_page_gfp(mapping, i,
1607 GFP_HIGHUSER |
1608 __GFP_COLD |
1609 __GFP_RECLAIMABLE |
1610 gfpmask);
1611 if (IS_ERR(page))
1612 goto err_pages;
1613
1614 obj_priv->pages[i] = page;
1615 }
1616
1617 if (obj_priv->tiling_mode != I915_TILING_NONE)
1618 i915_gem_object_do_bit_17_swizzle(obj);
1619
1620 return 0;
1621
1622 err_pages:
1623 while (i--)
1624 page_cache_release(obj_priv->pages[i]);
1625
1626 drm_free_large(obj_priv->pages);
1627 obj_priv->pages = NULL;
1628 return PTR_ERR(page);
1629 }
1630
1631 static void
1632 i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
1633 {
1634 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1635 int page_count = obj->size / PAGE_SIZE;
1636 int i;
1637
1638 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1639
1640 if (obj_priv->tiling_mode != I915_TILING_NONE)
1641 i915_gem_object_save_bit_17_swizzle(obj);
1642
1643 if (obj_priv->madv == I915_MADV_DONTNEED)
1644 obj_priv->dirty = 0;
1645
1646 for (i = 0; i < page_count; i++) {
1647 if (obj_priv->dirty)
1648 set_page_dirty(obj_priv->pages[i]);
1649
1650 if (obj_priv->madv == I915_MADV_WILLNEED)
1651 mark_page_accessed(obj_priv->pages[i]);
1652
1653 page_cache_release(obj_priv->pages[i]);
1654 }
1655 obj_priv->dirty = 0;
1656
1657 drm_free_large(obj_priv->pages);
1658 obj_priv->pages = NULL;
1659 }
1660
1661 static uint32_t
1662 i915_gem_next_request_seqno(struct drm_device *dev,
1663 struct intel_ring_buffer *ring)
1664 {
1665 drm_i915_private_t *dev_priv = dev->dev_private;
1666
1667 ring->outstanding_lazy_request = true;
1668 return dev_priv->next_seqno;
1669 }
1670
1671 static void
1672 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1673 struct intel_ring_buffer *ring)
1674 {
1675 struct drm_device *dev = obj->dev;
1676 struct drm_i915_private *dev_priv = dev->dev_private;
1677 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1678 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1679
1680 BUG_ON(ring == NULL);
1681 obj_priv->ring = ring;
1682
1683 /* Add a reference if we're newly entering the active list. */
1684 if (!obj_priv->active) {
1685 drm_gem_object_reference(obj);
1686 obj_priv->active = 1;
1687 }
1688
1689 /* Move from whatever list we were on to the tail of execution. */
1690 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1691 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1692 obj_priv->last_rendering_seqno = seqno;
1693 }
1694
1695 static void
1696 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1697 {
1698 struct drm_device *dev = obj->dev;
1699 drm_i915_private_t *dev_priv = dev->dev_private;
1700 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1701
1702 BUG_ON(!obj_priv->active);
1703 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1704 list_del_init(&obj_priv->ring_list);
1705 obj_priv->last_rendering_seqno = 0;
1706 }
1707
1708 /* Immediately discard the backing storage */
1709 static void
1710 i915_gem_object_truncate(struct drm_gem_object *obj)
1711 {
1712 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1713 struct inode *inode;
1714
1715 /* Our goal here is to return as much of the memory as
1716 * is possible back to the system as we are called from OOM.
1717 * To do this we must instruct the shmfs to drop all of its
1718 * backing pages, *now*. Here we mirror the actions taken
1719 * when by shmem_delete_inode() to release the backing store.
1720 */
1721 inode = obj->filp->f_path.dentry->d_inode;
1722 truncate_inode_pages(inode->i_mapping, 0);
1723 if (inode->i_op->truncate_range)
1724 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1725
1726 obj_priv->madv = __I915_MADV_PURGED;
1727 }
1728
1729 static inline int
1730 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1731 {
1732 return obj_priv->madv == I915_MADV_DONTNEED;
1733 }
1734
1735 static void
1736 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1737 {
1738 struct drm_device *dev = obj->dev;
1739 drm_i915_private_t *dev_priv = dev->dev_private;
1740 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1741
1742 if (obj_priv->pin_count != 0)
1743 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1744 else
1745 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1746 list_del_init(&obj_priv->ring_list);
1747
1748 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1749
1750 obj_priv->last_rendering_seqno = 0;
1751 obj_priv->ring = NULL;
1752 if (obj_priv->active) {
1753 obj_priv->active = 0;
1754 drm_gem_object_unreference(obj);
1755 }
1756 WARN_ON(i915_verify_lists(dev));
1757 }
1758
1759 static void
1760 i915_gem_process_flushing_list(struct drm_device *dev,
1761 uint32_t flush_domains,
1762 struct intel_ring_buffer *ring)
1763 {
1764 drm_i915_private_t *dev_priv = dev->dev_private;
1765 struct drm_i915_gem_object *obj_priv, *next;
1766
1767 list_for_each_entry_safe(obj_priv, next,
1768 &ring->gpu_write_list,
1769 gpu_write_list) {
1770 struct drm_gem_object *obj = &obj_priv->base;
1771
1772 if (obj->write_domain & flush_domains) {
1773 uint32_t old_write_domain = obj->write_domain;
1774
1775 obj->write_domain = 0;
1776 list_del_init(&obj_priv->gpu_write_list);
1777 i915_gem_object_move_to_active(obj, ring);
1778
1779 /* update the fence lru list */
1780 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1781 struct drm_i915_fence_reg *reg =
1782 &dev_priv->fence_regs[obj_priv->fence_reg];
1783 list_move_tail(&reg->lru_list,
1784 &dev_priv->mm.fence_list);
1785 }
1786
1787 trace_i915_gem_object_change_domain(obj,
1788 obj->read_domains,
1789 old_write_domain);
1790 }
1791 }
1792 }
1793
1794 int
1795 i915_add_request(struct drm_device *dev,
1796 struct drm_file *file,
1797 struct drm_i915_gem_request *request,
1798 struct intel_ring_buffer *ring)
1799 {
1800 drm_i915_private_t *dev_priv = dev->dev_private;
1801 struct drm_i915_file_private *file_priv = NULL;
1802 uint32_t seqno;
1803 int was_empty;
1804 int ret;
1805
1806 BUG_ON(request == NULL);
1807
1808 if (file != NULL)
1809 file_priv = file->driver_priv;
1810
1811 ret = ring->add_request(ring, &seqno);
1812 if (ret)
1813 return ret;
1814
1815 ring->outstanding_lazy_request = false;
1816
1817 request->seqno = seqno;
1818 request->ring = ring;
1819 request->emitted_jiffies = jiffies;
1820 was_empty = list_empty(&ring->request_list);
1821 list_add_tail(&request->list, &ring->request_list);
1822
1823 if (file_priv) {
1824 spin_lock(&file_priv->mm.lock);
1825 request->file_priv = file_priv;
1826 list_add_tail(&request->client_list,
1827 &file_priv->mm.request_list);
1828 spin_unlock(&file_priv->mm.lock);
1829 }
1830
1831 if (!dev_priv->mm.suspended) {
1832 mod_timer(&dev_priv->hangcheck_timer,
1833 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1834 if (was_empty)
1835 queue_delayed_work(dev_priv->wq,
1836 &dev_priv->mm.retire_work, HZ);
1837 }
1838 return 0;
1839 }
1840
1841 /**
1842 * Command execution barrier
1843 *
1844 * Ensures that all commands in the ring are finished
1845 * before signalling the CPU
1846 */
1847 static void
1848 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1849 {
1850 uint32_t flush_domains = 0;
1851
1852 /* The sampler always gets flushed on i965 (sigh) */
1853 if (INTEL_INFO(dev)->gen >= 4)
1854 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1855
1856 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1857 }
1858
1859 static inline void
1860 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1861 {
1862 struct drm_i915_file_private *file_priv = request->file_priv;
1863
1864 if (!file_priv)
1865 return;
1866
1867 spin_lock(&file_priv->mm.lock);
1868 list_del(&request->client_list);
1869 request->file_priv = NULL;
1870 spin_unlock(&file_priv->mm.lock);
1871 }
1872
1873 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1874 struct intel_ring_buffer *ring)
1875 {
1876 while (!list_empty(&ring->request_list)) {
1877 struct drm_i915_gem_request *request;
1878
1879 request = list_first_entry(&ring->request_list,
1880 struct drm_i915_gem_request,
1881 list);
1882
1883 list_del(&request->list);
1884 i915_gem_request_remove_from_client(request);
1885 kfree(request);
1886 }
1887
1888 while (!list_empty(&ring->active_list)) {
1889 struct drm_i915_gem_object *obj_priv;
1890
1891 obj_priv = list_first_entry(&ring->active_list,
1892 struct drm_i915_gem_object,
1893 ring_list);
1894
1895 obj_priv->base.write_domain = 0;
1896 list_del_init(&obj_priv->gpu_write_list);
1897 i915_gem_object_move_to_inactive(&obj_priv->base);
1898 }
1899 }
1900
1901 void i915_gem_reset(struct drm_device *dev)
1902 {
1903 struct drm_i915_private *dev_priv = dev->dev_private;
1904 struct drm_i915_gem_object *obj_priv;
1905 int i;
1906
1907 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1908 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1909 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1910
1911 /* Remove anything from the flushing lists. The GPU cache is likely
1912 * to be lost on reset along with the data, so simply move the
1913 * lost bo to the inactive list.
1914 */
1915 while (!list_empty(&dev_priv->mm.flushing_list)) {
1916 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1917 struct drm_i915_gem_object,
1918 mm_list);
1919
1920 obj_priv->base.write_domain = 0;
1921 list_del_init(&obj_priv->gpu_write_list);
1922 i915_gem_object_move_to_inactive(&obj_priv->base);
1923 }
1924
1925 /* Move everything out of the GPU domains to ensure we do any
1926 * necessary invalidation upon reuse.
1927 */
1928 list_for_each_entry(obj_priv,
1929 &dev_priv->mm.inactive_list,
1930 mm_list)
1931 {
1932 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1933 }
1934
1935 /* The fence registers are invalidated so clear them out */
1936 for (i = 0; i < 16; i++) {
1937 struct drm_i915_fence_reg *reg;
1938
1939 reg = &dev_priv->fence_regs[i];
1940 if (!reg->obj)
1941 continue;
1942
1943 i915_gem_clear_fence_reg(reg->obj);
1944 }
1945 }
1946
1947 /**
1948 * This function clears the request list as sequence numbers are passed.
1949 */
1950 static void
1951 i915_gem_retire_requests_ring(struct drm_device *dev,
1952 struct intel_ring_buffer *ring)
1953 {
1954 drm_i915_private_t *dev_priv = dev->dev_private;
1955 uint32_t seqno;
1956
1957 if (!ring->status_page.page_addr ||
1958 list_empty(&ring->request_list))
1959 return;
1960
1961 WARN_ON(i915_verify_lists(dev));
1962
1963 seqno = ring->get_seqno(ring);
1964 while (!list_empty(&ring->request_list)) {
1965 struct drm_i915_gem_request *request;
1966
1967 request = list_first_entry(&ring->request_list,
1968 struct drm_i915_gem_request,
1969 list);
1970
1971 if (!i915_seqno_passed(seqno, request->seqno))
1972 break;
1973
1974 trace_i915_gem_request_retire(dev, request->seqno);
1975
1976 list_del(&request->list);
1977 i915_gem_request_remove_from_client(request);
1978 kfree(request);
1979 }
1980
1981 /* Move any buffers on the active list that are no longer referenced
1982 * by the ringbuffer to the flushing/inactive lists as appropriate.
1983 */
1984 while (!list_empty(&ring->active_list)) {
1985 struct drm_gem_object *obj;
1986 struct drm_i915_gem_object *obj_priv;
1987
1988 obj_priv = list_first_entry(&ring->active_list,
1989 struct drm_i915_gem_object,
1990 ring_list);
1991
1992 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1993 break;
1994
1995 obj = &obj_priv->base;
1996 if (obj->write_domain != 0)
1997 i915_gem_object_move_to_flushing(obj);
1998 else
1999 i915_gem_object_move_to_inactive(obj);
2000 }
2001
2002 if (unlikely (dev_priv->trace_irq_seqno &&
2003 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
2004 ring->user_irq_put(ring);
2005 dev_priv->trace_irq_seqno = 0;
2006 }
2007
2008 WARN_ON(i915_verify_lists(dev));
2009 }
2010
2011 void
2012 i915_gem_retire_requests(struct drm_device *dev)
2013 {
2014 drm_i915_private_t *dev_priv = dev->dev_private;
2015
2016 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
2017 struct drm_i915_gem_object *obj_priv, *tmp;
2018
2019 /* We must be careful that during unbind() we do not
2020 * accidentally infinitely recurse into retire requests.
2021 * Currently:
2022 * retire -> free -> unbind -> wait -> retire_ring
2023 */
2024 list_for_each_entry_safe(obj_priv, tmp,
2025 &dev_priv->mm.deferred_free_list,
2026 mm_list)
2027 i915_gem_free_object_tail(&obj_priv->base);
2028 }
2029
2030 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
2031 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
2032 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
2033 }
2034
2035 static void
2036 i915_gem_retire_work_handler(struct work_struct *work)
2037 {
2038 drm_i915_private_t *dev_priv;
2039 struct drm_device *dev;
2040
2041 dev_priv = container_of(work, drm_i915_private_t,
2042 mm.retire_work.work);
2043 dev = dev_priv->dev;
2044
2045 /* Come back later if the device is busy... */
2046 if (!mutex_trylock(&dev->struct_mutex)) {
2047 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2048 return;
2049 }
2050
2051 i915_gem_retire_requests(dev);
2052
2053 if (!dev_priv->mm.suspended &&
2054 (!list_empty(&dev_priv->render_ring.request_list) ||
2055 !list_empty(&dev_priv->bsd_ring.request_list) ||
2056 !list_empty(&dev_priv->blt_ring.request_list)))
2057 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2058 mutex_unlock(&dev->struct_mutex);
2059 }
2060
2061 int
2062 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2063 bool interruptible, struct intel_ring_buffer *ring)
2064 {
2065 drm_i915_private_t *dev_priv = dev->dev_private;
2066 u32 ier;
2067 int ret = 0;
2068
2069 BUG_ON(seqno == 0);
2070
2071 if (atomic_read(&dev_priv->mm.wedged))
2072 return -EAGAIN;
2073
2074 if (ring->outstanding_lazy_request) {
2075 struct drm_i915_gem_request *request;
2076
2077 request = kzalloc(sizeof(*request), GFP_KERNEL);
2078 if (request == NULL)
2079 return -ENOMEM;
2080
2081 ret = i915_add_request(dev, NULL, request, ring);
2082 if (ret) {
2083 kfree(request);
2084 return ret;
2085 }
2086
2087 seqno = request->seqno;
2088 }
2089 BUG_ON(seqno == dev_priv->next_seqno);
2090
2091 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2092 if (HAS_PCH_SPLIT(dev))
2093 ier = I915_READ(DEIER) | I915_READ(GTIER);
2094 else
2095 ier = I915_READ(IER);
2096 if (!ier) {
2097 DRM_ERROR("something (likely vbetool) disabled "
2098 "interrupts, re-enabling\n");
2099 i915_driver_irq_preinstall(dev);
2100 i915_driver_irq_postinstall(dev);
2101 }
2102
2103 trace_i915_gem_request_wait_begin(dev, seqno);
2104
2105 ring->waiting_seqno = seqno;
2106 ring->user_irq_get(ring);
2107 if (interruptible)
2108 ret = wait_event_interruptible(ring->irq_queue,
2109 i915_seqno_passed(ring->get_seqno(ring), seqno)
2110 || atomic_read(&dev_priv->mm.wedged));
2111 else
2112 wait_event(ring->irq_queue,
2113 i915_seqno_passed(ring->get_seqno(ring), seqno)
2114 || atomic_read(&dev_priv->mm.wedged));
2115
2116 ring->user_irq_put(ring);
2117 ring->waiting_seqno = 0;
2118
2119 trace_i915_gem_request_wait_end(dev, seqno);
2120 }
2121 if (atomic_read(&dev_priv->mm.wedged))
2122 ret = -EAGAIN;
2123
2124 if (ret && ret != -ERESTARTSYS)
2125 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2126 __func__, ret, seqno, ring->get_seqno(ring),
2127 dev_priv->next_seqno);
2128
2129 /* Directly dispatch request retiring. While we have the work queue
2130 * to handle this, the waiter on a request often wants an associated
2131 * buffer to have made it to the inactive list, and we would need
2132 * a separate wait queue to handle that.
2133 */
2134 if (ret == 0)
2135 i915_gem_retire_requests_ring(dev, ring);
2136
2137 return ret;
2138 }
2139
2140 /**
2141 * Waits for a sequence number to be signaled, and cleans up the
2142 * request and object lists appropriately for that event.
2143 */
2144 static int
2145 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2146 struct intel_ring_buffer *ring)
2147 {
2148 return i915_do_wait_request(dev, seqno, 1, ring);
2149 }
2150
2151 static void
2152 i915_gem_flush_ring(struct drm_device *dev,
2153 struct drm_file *file_priv,
2154 struct intel_ring_buffer *ring,
2155 uint32_t invalidate_domains,
2156 uint32_t flush_domains)
2157 {
2158 ring->flush(ring, invalidate_domains, flush_domains);
2159 i915_gem_process_flushing_list(dev, flush_domains, ring);
2160 }
2161
2162 static void
2163 i915_gem_flush(struct drm_device *dev,
2164 struct drm_file *file_priv,
2165 uint32_t invalidate_domains,
2166 uint32_t flush_domains,
2167 uint32_t flush_rings)
2168 {
2169 drm_i915_private_t *dev_priv = dev->dev_private;
2170
2171 if (flush_domains & I915_GEM_DOMAIN_CPU)
2172 drm_agp_chipset_flush(dev);
2173
2174 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2175 if (flush_rings & RING_RENDER)
2176 i915_gem_flush_ring(dev, file_priv,
2177 &dev_priv->render_ring,
2178 invalidate_domains, flush_domains);
2179 if (flush_rings & RING_BSD)
2180 i915_gem_flush_ring(dev, file_priv,
2181 &dev_priv->bsd_ring,
2182 invalidate_domains, flush_domains);
2183 if (flush_rings & RING_BLT)
2184 i915_gem_flush_ring(dev, file_priv,
2185 &dev_priv->blt_ring,
2186 invalidate_domains, flush_domains);
2187 }
2188 }
2189
2190 /**
2191 * Ensures that all rendering to the object has completed and the object is
2192 * safe to unbind from the GTT or access from the CPU.
2193 */
2194 static int
2195 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2196 bool interruptible)
2197 {
2198 struct drm_device *dev = obj->dev;
2199 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2200 int ret;
2201
2202 /* This function only exists to support waiting for existing rendering,
2203 * not for emitting required flushes.
2204 */
2205 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2206
2207 /* If there is rendering queued on the buffer being evicted, wait for
2208 * it.
2209 */
2210 if (obj_priv->active) {
2211 ret = i915_do_wait_request(dev,
2212 obj_priv->last_rendering_seqno,
2213 interruptible,
2214 obj_priv->ring);
2215 if (ret)
2216 return ret;
2217 }
2218
2219 return 0;
2220 }
2221
2222 /**
2223 * Unbinds an object from the GTT aperture.
2224 */
2225 int
2226 i915_gem_object_unbind(struct drm_gem_object *obj)
2227 {
2228 struct drm_device *dev = obj->dev;
2229 struct drm_i915_private *dev_priv = dev->dev_private;
2230 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2231 int ret = 0;
2232
2233 if (obj_priv->gtt_space == NULL)
2234 return 0;
2235
2236 if (obj_priv->pin_count != 0) {
2237 DRM_ERROR("Attempting to unbind pinned buffer\n");
2238 return -EINVAL;
2239 }
2240
2241 /* blow away mappings if mapped through GTT */
2242 i915_gem_release_mmap(obj);
2243
2244 /* Move the object to the CPU domain to ensure that
2245 * any possible CPU writes while it's not in the GTT
2246 * are flushed when we go to remap it. This will
2247 * also ensure that all pending GPU writes are finished
2248 * before we unbind.
2249 */
2250 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2251 if (ret == -ERESTARTSYS)
2252 return ret;
2253 /* Continue on if we fail due to EIO, the GPU is hung so we
2254 * should be safe and we need to cleanup or else we might
2255 * cause memory corruption through use-after-free.
2256 */
2257 if (ret) {
2258 i915_gem_clflush_object(obj);
2259 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2260 }
2261
2262 /* release the fence reg _after_ flushing */
2263 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2264 i915_gem_clear_fence_reg(obj);
2265
2266 drm_unbind_agp(obj_priv->agp_mem);
2267 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2268
2269 i915_gem_object_put_pages_gtt(obj);
2270
2271 i915_gem_info_remove_gtt(dev_priv, obj_priv);
2272 list_del_init(&obj_priv->mm_list);
2273 /* Avoid an unnecessary call to unbind on rebind. */
2274 obj_priv->map_and_fenceable = true;
2275
2276 drm_mm_put_block(obj_priv->gtt_space);
2277 obj_priv->gtt_space = NULL;
2278 obj_priv->gtt_offset = 0;
2279
2280 if (i915_gem_object_is_purgeable(obj_priv))
2281 i915_gem_object_truncate(obj);
2282
2283 trace_i915_gem_object_unbind(obj);
2284
2285 return ret;
2286 }
2287
2288 static int i915_ring_idle(struct drm_device *dev,
2289 struct intel_ring_buffer *ring)
2290 {
2291 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2292 return 0;
2293
2294 i915_gem_flush_ring(dev, NULL, ring,
2295 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2296 return i915_wait_request(dev,
2297 i915_gem_next_request_seqno(dev, ring),
2298 ring);
2299 }
2300
2301 int
2302 i915_gpu_idle(struct drm_device *dev)
2303 {
2304 drm_i915_private_t *dev_priv = dev->dev_private;
2305 bool lists_empty;
2306 int ret;
2307
2308 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2309 list_empty(&dev_priv->mm.active_list));
2310 if (lists_empty)
2311 return 0;
2312
2313 /* Flush everything onto the inactive list. */
2314 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2315 if (ret)
2316 return ret;
2317
2318 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2319 if (ret)
2320 return ret;
2321
2322 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2323 if (ret)
2324 return ret;
2325
2326 return 0;
2327 }
2328
2329 static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
2330 {
2331 struct drm_device *dev = obj->dev;
2332 drm_i915_private_t *dev_priv = dev->dev_private;
2333 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2334 u32 size = i915_gem_get_gtt_size(obj_priv);
2335 int regnum = obj_priv->fence_reg;
2336 uint64_t val;
2337
2338 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2339 0xfffff000) << 32;
2340 val |= obj_priv->gtt_offset & 0xfffff000;
2341 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2342 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2343
2344 if (obj_priv->tiling_mode == I915_TILING_Y)
2345 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2346 val |= I965_FENCE_REG_VALID;
2347
2348 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2349 }
2350
2351 static void i965_write_fence_reg(struct drm_gem_object *obj)
2352 {
2353 struct drm_device *dev = obj->dev;
2354 drm_i915_private_t *dev_priv = dev->dev_private;
2355 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2356 u32 size = i915_gem_get_gtt_size(obj_priv);
2357 int regnum = obj_priv->fence_reg;
2358 uint64_t val;
2359
2360 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2361 0xfffff000) << 32;
2362 val |= obj_priv->gtt_offset & 0xfffff000;
2363 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2364 if (obj_priv->tiling_mode == I915_TILING_Y)
2365 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2366 val |= I965_FENCE_REG_VALID;
2367
2368 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2369 }
2370
2371 static void i915_write_fence_reg(struct drm_gem_object *obj)
2372 {
2373 struct drm_device *dev = obj->dev;
2374 drm_i915_private_t *dev_priv = dev->dev_private;
2375 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2376 u32 size = i915_gem_get_gtt_size(obj_priv);
2377 uint32_t fence_reg, val, pitch_val;
2378 int tile_width;
2379
2380 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2381 (obj_priv->gtt_offset & (size - 1))) {
2382 WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
2383 __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
2384 obj_priv->gtt_space->start, obj_priv->gtt_space->size);
2385 return;
2386 }
2387
2388 if (obj_priv->tiling_mode == I915_TILING_Y &&
2389 HAS_128_BYTE_Y_TILING(dev))
2390 tile_width = 128;
2391 else
2392 tile_width = 512;
2393
2394 /* Note: pitch better be a power of two tile widths */
2395 pitch_val = obj_priv->stride / tile_width;
2396 pitch_val = ffs(pitch_val) - 1;
2397
2398 if (obj_priv->tiling_mode == I915_TILING_Y &&
2399 HAS_128_BYTE_Y_TILING(dev))
2400 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2401 else
2402 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2403
2404 val = obj_priv->gtt_offset;
2405 if (obj_priv->tiling_mode == I915_TILING_Y)
2406 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2407 val |= I915_FENCE_SIZE_BITS(size);
2408 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2409 val |= I830_FENCE_REG_VALID;
2410
2411 fence_reg = obj_priv->fence_reg;
2412 if (fence_reg < 8)
2413 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2414 else
2415 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2416 I915_WRITE(fence_reg, val);
2417 }
2418
2419 static void i830_write_fence_reg(struct drm_gem_object *obj)
2420 {
2421 struct drm_device *dev = obj->dev;
2422 drm_i915_private_t *dev_priv = dev->dev_private;
2423 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2424 u32 size = i915_gem_get_gtt_size(obj_priv);
2425 int regnum = obj_priv->fence_reg;
2426 uint32_t val;
2427 uint32_t pitch_val;
2428 uint32_t fence_size_bits;
2429
2430 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2431 (obj_priv->gtt_offset & (obj->size - 1))) {
2432 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2433 __func__, obj_priv->gtt_offset);
2434 return;
2435 }
2436
2437 pitch_val = obj_priv->stride / 128;
2438 pitch_val = ffs(pitch_val) - 1;
2439 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2440
2441 val = obj_priv->gtt_offset;
2442 if (obj_priv->tiling_mode == I915_TILING_Y)
2443 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2444 fence_size_bits = I830_FENCE_SIZE_BITS(size);
2445 WARN_ON(fence_size_bits & ~0x00000f00);
2446 val |= fence_size_bits;
2447 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2448 val |= I830_FENCE_REG_VALID;
2449
2450 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2451 }
2452
2453 static int i915_find_fence_reg(struct drm_device *dev,
2454 bool interruptible)
2455 {
2456 struct drm_i915_private *dev_priv = dev->dev_private;
2457 struct drm_i915_fence_reg *reg;
2458 struct drm_i915_gem_object *obj_priv = NULL;
2459 int i, avail, ret;
2460
2461 /* First try to find a free reg */
2462 avail = 0;
2463 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2464 reg = &dev_priv->fence_regs[i];
2465 if (!reg->obj)
2466 return i;
2467
2468 obj_priv = to_intel_bo(reg->obj);
2469 if (!obj_priv->pin_count)
2470 avail++;
2471 }
2472
2473 if (avail == 0)
2474 return -ENOSPC;
2475
2476 /* None available, try to steal one or wait for a user to finish */
2477 avail = I915_FENCE_REG_NONE;
2478 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2479 lru_list) {
2480 obj_priv = to_intel_bo(reg->obj);
2481 if (obj_priv->pin_count)
2482 continue;
2483
2484 /* found one! */
2485 avail = obj_priv->fence_reg;
2486 break;
2487 }
2488
2489 BUG_ON(avail == I915_FENCE_REG_NONE);
2490
2491 /* We only have a reference on obj from the active list. put_fence_reg
2492 * might drop that one, causing a use-after-free in it. So hold a
2493 * private reference to obj like the other callers of put_fence_reg
2494 * (set_tiling ioctl) do. */
2495 drm_gem_object_reference(&obj_priv->base);
2496 ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
2497 drm_gem_object_unreference(&obj_priv->base);
2498 if (ret != 0)
2499 return ret;
2500
2501 return avail;
2502 }
2503
2504 /**
2505 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2506 * @obj: object to map through a fence reg
2507 *
2508 * When mapping objects through the GTT, userspace wants to be able to write
2509 * to them without having to worry about swizzling if the object is tiled.
2510 *
2511 * This function walks the fence regs looking for a free one for @obj,
2512 * stealing one if it can't find any.
2513 *
2514 * It then sets up the reg based on the object's properties: address, pitch
2515 * and tiling format.
2516 */
2517 int
2518 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2519 bool interruptible)
2520 {
2521 struct drm_device *dev = obj->dev;
2522 struct drm_i915_private *dev_priv = dev->dev_private;
2523 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2524 struct drm_i915_fence_reg *reg = NULL;
2525 int ret;
2526
2527 /* Just update our place in the LRU if our fence is getting used. */
2528 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2529 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2530 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2531 return 0;
2532 }
2533
2534 switch (obj_priv->tiling_mode) {
2535 case I915_TILING_NONE:
2536 WARN(1, "allocating a fence for non-tiled object?\n");
2537 break;
2538 case I915_TILING_X:
2539 if (!obj_priv->stride)
2540 return -EINVAL;
2541 WARN((obj_priv->stride & (512 - 1)),
2542 "object 0x%08x is X tiled but has non-512B pitch\n",
2543 obj_priv->gtt_offset);
2544 break;
2545 case I915_TILING_Y:
2546 if (!obj_priv->stride)
2547 return -EINVAL;
2548 WARN((obj_priv->stride & (128 - 1)),
2549 "object 0x%08x is Y tiled but has non-128B pitch\n",
2550 obj_priv->gtt_offset);
2551 break;
2552 }
2553
2554 ret = i915_find_fence_reg(dev, interruptible);
2555 if (ret < 0)
2556 return ret;
2557
2558 obj_priv->fence_reg = ret;
2559 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2560 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2561
2562 reg->obj = obj;
2563
2564 switch (INTEL_INFO(dev)->gen) {
2565 case 6:
2566 sandybridge_write_fence_reg(obj);
2567 break;
2568 case 5:
2569 case 4:
2570 i965_write_fence_reg(obj);
2571 break;
2572 case 3:
2573 i915_write_fence_reg(obj);
2574 break;
2575 case 2:
2576 i830_write_fence_reg(obj);
2577 break;
2578 }
2579
2580 trace_i915_gem_object_get_fence(obj,
2581 obj_priv->fence_reg,
2582 obj_priv->tiling_mode);
2583
2584 return 0;
2585 }
2586
2587 /**
2588 * i915_gem_clear_fence_reg - clear out fence register info
2589 * @obj: object to clear
2590 *
2591 * Zeroes out the fence register itself and clears out the associated
2592 * data structures in dev_priv and obj_priv.
2593 */
2594 static void
2595 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2596 {
2597 struct drm_device *dev = obj->dev;
2598 drm_i915_private_t *dev_priv = dev->dev_private;
2599 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2600 struct drm_i915_fence_reg *reg =
2601 &dev_priv->fence_regs[obj_priv->fence_reg];
2602 uint32_t fence_reg;
2603
2604 switch (INTEL_INFO(dev)->gen) {
2605 case 6:
2606 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2607 (obj_priv->fence_reg * 8), 0);
2608 break;
2609 case 5:
2610 case 4:
2611 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2612 break;
2613 case 3:
2614 if (obj_priv->fence_reg >= 8)
2615 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2616 else
2617 case 2:
2618 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2619
2620 I915_WRITE(fence_reg, 0);
2621 break;
2622 }
2623
2624 reg->obj = NULL;
2625 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2626 list_del_init(&reg->lru_list);
2627 }
2628
2629 /**
2630 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2631 * to the buffer to finish, and then resets the fence register.
2632 * @obj: tiled object holding a fence register.
2633 * @bool: whether the wait upon the fence is interruptible
2634 *
2635 * Zeroes out the fence register itself and clears out the associated
2636 * data structures in dev_priv and obj_priv.
2637 */
2638 int
2639 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2640 bool interruptible)
2641 {
2642 struct drm_device *dev = obj->dev;
2643 struct drm_i915_private *dev_priv = dev->dev_private;
2644 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2645 struct drm_i915_fence_reg *reg;
2646
2647 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2648 return 0;
2649
2650 /* If we've changed tiling, GTT-mappings of the object
2651 * need to re-fault to ensure that the correct fence register
2652 * setup is in place.
2653 */
2654 i915_gem_release_mmap(obj);
2655
2656 /* On the i915, GPU access to tiled buffers is via a fence,
2657 * therefore we must wait for any outstanding access to complete
2658 * before clearing the fence.
2659 */
2660 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2661 if (reg->gpu) {
2662 int ret;
2663
2664 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2665 if (ret)
2666 return ret;
2667
2668 ret = i915_gem_object_wait_rendering(obj, interruptible);
2669 if (ret)
2670 return ret;
2671
2672 reg->gpu = false;
2673 }
2674
2675 i915_gem_object_flush_gtt_write_domain(obj);
2676 i915_gem_clear_fence_reg(obj);
2677
2678 return 0;
2679 }
2680
2681 /**
2682 * Finds free space in the GTT aperture and binds the object there.
2683 */
2684 static int
2685 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2686 unsigned alignment,
2687 bool map_and_fenceable)
2688 {
2689 struct drm_device *dev = obj->dev;
2690 drm_i915_private_t *dev_priv = dev->dev_private;
2691 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2692 struct drm_mm_node *free_space;
2693 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2694 u32 size, fence_size, fence_alignment;
2695 bool mappable, fenceable;
2696 int ret;
2697
2698 if (obj_priv->madv != I915_MADV_WILLNEED) {
2699 DRM_ERROR("Attempting to bind a purgeable object\n");
2700 return -EINVAL;
2701 }
2702
2703 fence_size = i915_gem_get_gtt_size(obj_priv);
2704 fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
2705
2706 if (alignment == 0)
2707 alignment = map_and_fenceable ? fence_alignment : 4096;
2708 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2709 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2710 return -EINVAL;
2711 }
2712
2713 size = map_and_fenceable ? fence_size : obj->size;
2714
2715 /* If the object is bigger than the entire aperture, reject it early
2716 * before evicting everything in a vain attempt to find space.
2717 */
2718 if (obj->size >
2719 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2720 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2721 return -E2BIG;
2722 }
2723
2724 search_free:
2725 if (map_and_fenceable)
2726 free_space =
2727 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2728 size, alignment, 0,
2729 dev_priv->mm.gtt_mappable_end,
2730 0);
2731 else
2732 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2733 size, alignment, 0);
2734
2735 if (free_space != NULL) {
2736 if (map_and_fenceable)
2737 obj_priv->gtt_space =
2738 drm_mm_get_block_range_generic(free_space,
2739 size, alignment, 0,
2740 dev_priv->mm.gtt_mappable_end,
2741 0);
2742 else
2743 obj_priv->gtt_space =
2744 drm_mm_get_block(free_space, size, alignment);
2745 }
2746 if (obj_priv->gtt_space == NULL) {
2747 /* If the gtt is empty and we're still having trouble
2748 * fitting our object in, we're out of memory.
2749 */
2750 ret = i915_gem_evict_something(dev, size, alignment,
2751 map_and_fenceable);
2752 if (ret)
2753 return ret;
2754
2755 goto search_free;
2756 }
2757
2758 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2759 if (ret) {
2760 drm_mm_put_block(obj_priv->gtt_space);
2761 obj_priv->gtt_space = NULL;
2762
2763 if (ret == -ENOMEM) {
2764 /* first try to clear up some space from the GTT */
2765 ret = i915_gem_evict_something(dev, size,
2766 alignment,
2767 map_and_fenceable);
2768 if (ret) {
2769 /* now try to shrink everyone else */
2770 if (gfpmask) {
2771 gfpmask = 0;
2772 goto search_free;
2773 }
2774
2775 return ret;
2776 }
2777
2778 goto search_free;
2779 }
2780
2781 return ret;
2782 }
2783
2784 /* Create an AGP memory structure pointing at our pages, and bind it
2785 * into the GTT.
2786 */
2787 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2788 obj_priv->pages,
2789 obj->size >> PAGE_SHIFT,
2790 obj_priv->gtt_space->start,
2791 obj_priv->agp_type);
2792 if (obj_priv->agp_mem == NULL) {
2793 i915_gem_object_put_pages_gtt(obj);
2794 drm_mm_put_block(obj_priv->gtt_space);
2795 obj_priv->gtt_space = NULL;
2796
2797 ret = i915_gem_evict_something(dev, size,
2798 alignment, map_and_fenceable);
2799 if (ret)
2800 return ret;
2801
2802 goto search_free;
2803 }
2804
2805 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2806
2807 /* keep track of bounds object by adding it to the inactive list */
2808 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2809 i915_gem_info_add_gtt(dev_priv, obj_priv);
2810
2811 /* Assert that the object is not currently in any GPU domain. As it
2812 * wasn't in the GTT, there shouldn't be any way it could have been in
2813 * a GPU cache
2814 */
2815 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2816 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2817
2818 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
2819
2820 fenceable =
2821 obj_priv->gtt_space->size == fence_size &&
2822 (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
2823
2824 mappable =
2825 obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
2826
2827 obj_priv->map_and_fenceable = mappable && fenceable;
2828
2829 return 0;
2830 }
2831
2832 void
2833 i915_gem_clflush_object(struct drm_gem_object *obj)
2834 {
2835 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2836
2837 /* If we don't have a page list set up, then we're not pinned
2838 * to GPU, and we can ignore the cache flush because it'll happen
2839 * again at bind time.
2840 */
2841 if (obj_priv->pages == NULL)
2842 return;
2843
2844 trace_i915_gem_object_clflush(obj);
2845
2846 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2847 }
2848
2849 /** Flushes any GPU write domain for the object if it's dirty. */
2850 static int
2851 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2852 bool pipelined)
2853 {
2854 struct drm_device *dev = obj->dev;
2855
2856 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2857 return 0;
2858
2859 /* Queue the GPU write cache flushing we need. */
2860 i915_gem_flush_ring(dev, NULL,
2861 to_intel_bo(obj)->ring,
2862 0, obj->write_domain);
2863 BUG_ON(obj->write_domain);
2864
2865 if (pipelined)
2866 return 0;
2867
2868 return i915_gem_object_wait_rendering(obj, true);
2869 }
2870
2871 /** Flushes the GTT write domain for the object if it's dirty. */
2872 static void
2873 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2874 {
2875 uint32_t old_write_domain;
2876
2877 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2878 return;
2879
2880 /* No actual flushing is required for the GTT write domain. Writes
2881 * to it immediately go to main memory as far as we know, so there's
2882 * no chipset flush. It also doesn't land in render cache.
2883 */
2884 i915_gem_release_mmap(obj);
2885
2886 old_write_domain = obj->write_domain;
2887 obj->write_domain = 0;
2888
2889 trace_i915_gem_object_change_domain(obj,
2890 obj->read_domains,
2891 old_write_domain);
2892 }
2893
2894 /** Flushes the CPU write domain for the object if it's dirty. */
2895 static void
2896 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2897 {
2898 struct drm_device *dev = obj->dev;
2899 uint32_t old_write_domain;
2900
2901 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2902 return;
2903
2904 i915_gem_clflush_object(obj);
2905 drm_agp_chipset_flush(dev);
2906 old_write_domain = obj->write_domain;
2907 obj->write_domain = 0;
2908
2909 trace_i915_gem_object_change_domain(obj,
2910 obj->read_domains,
2911 old_write_domain);
2912 }
2913
2914 /**
2915 * Moves a single object to the GTT read, and possibly write domain.
2916 *
2917 * This function returns when the move is complete, including waiting on
2918 * flushes to occur.
2919 */
2920 int
2921 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2922 {
2923 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2924 uint32_t old_write_domain, old_read_domains;
2925 int ret;
2926
2927 /* Not valid to be called on unbound objects. */
2928 if (obj_priv->gtt_space == NULL)
2929 return -EINVAL;
2930
2931 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2932 if (ret != 0)
2933 return ret;
2934
2935 i915_gem_object_flush_cpu_write_domain(obj);
2936
2937 if (write) {
2938 ret = i915_gem_object_wait_rendering(obj, true);
2939 if (ret)
2940 return ret;
2941 }
2942
2943 old_write_domain = obj->write_domain;
2944 old_read_domains = obj->read_domains;
2945
2946 /* It should now be out of any other write domains, and we can update
2947 * the domain values for our changes.
2948 */
2949 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2950 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2951 if (write) {
2952 obj->read_domains = I915_GEM_DOMAIN_GTT;
2953 obj->write_domain = I915_GEM_DOMAIN_GTT;
2954 obj_priv->dirty = 1;
2955 }
2956
2957 trace_i915_gem_object_change_domain(obj,
2958 old_read_domains,
2959 old_write_domain);
2960
2961 return 0;
2962 }
2963
2964 /*
2965 * Prepare buffer for display plane. Use uninterruptible for possible flush
2966 * wait, as in modesetting process we're not supposed to be interrupted.
2967 */
2968 int
2969 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2970 bool pipelined)
2971 {
2972 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2973 uint32_t old_read_domains;
2974 int ret;
2975
2976 /* Not valid to be called on unbound objects. */
2977 if (obj_priv->gtt_space == NULL)
2978 return -EINVAL;
2979
2980 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2981 if (ret)
2982 return ret;
2983
2984 /* Currently, we are always called from an non-interruptible context. */
2985 if (!pipelined) {
2986 ret = i915_gem_object_wait_rendering(obj, false);
2987 if (ret)
2988 return ret;
2989 }
2990
2991 i915_gem_object_flush_cpu_write_domain(obj);
2992
2993 old_read_domains = obj->read_domains;
2994 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2995
2996 trace_i915_gem_object_change_domain(obj,
2997 old_read_domains,
2998 obj->write_domain);
2999
3000 return 0;
3001 }
3002
3003 /**
3004 * Moves a single object to the CPU read, and possibly write domain.
3005 *
3006 * This function returns when the move is complete, including waiting on
3007 * flushes to occur.
3008 */
3009 static int
3010 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3011 {
3012 uint32_t old_write_domain, old_read_domains;
3013 int ret;
3014
3015 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3016 if (ret != 0)
3017 return ret;
3018
3019 i915_gem_object_flush_gtt_write_domain(obj);
3020
3021 /* If we have a partially-valid cache of the object in the CPU,
3022 * finish invalidating it and free the per-page flags.
3023 */
3024 i915_gem_object_set_to_full_cpu_read_domain(obj);
3025
3026 if (write) {
3027 ret = i915_gem_object_wait_rendering(obj, true);
3028 if (ret)
3029 return ret;
3030 }
3031
3032 old_write_domain = obj->write_domain;
3033 old_read_domains = obj->read_domains;
3034
3035 /* Flush the CPU cache if it's still invalid. */
3036 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3037 i915_gem_clflush_object(obj);
3038
3039 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3040 }
3041
3042 /* It should now be out of any other write domains, and we can update
3043 * the domain values for our changes.
3044 */
3045 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3046
3047 /* If we're writing through the CPU, then the GPU read domains will
3048 * need to be invalidated at next use.
3049 */
3050 if (write) {
3051 obj->read_domains = I915_GEM_DOMAIN_CPU;
3052 obj->write_domain = I915_GEM_DOMAIN_CPU;
3053 }
3054
3055 trace_i915_gem_object_change_domain(obj,
3056 old_read_domains,
3057 old_write_domain);
3058
3059 return 0;
3060 }
3061
3062 /*
3063 * Set the next domain for the specified object. This
3064 * may not actually perform the necessary flushing/invaliding though,
3065 * as that may want to be batched with other set_domain operations
3066 *
3067 * This is (we hope) the only really tricky part of gem. The goal
3068 * is fairly simple -- track which caches hold bits of the object
3069 * and make sure they remain coherent. A few concrete examples may
3070 * help to explain how it works. For shorthand, we use the notation
3071 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3072 * a pair of read and write domain masks.
3073 *
3074 * Case 1: the batch buffer
3075 *
3076 * 1. Allocated
3077 * 2. Written by CPU
3078 * 3. Mapped to GTT
3079 * 4. Read by GPU
3080 * 5. Unmapped from GTT
3081 * 6. Freed
3082 *
3083 * Let's take these a step at a time
3084 *
3085 * 1. Allocated
3086 * Pages allocated from the kernel may still have
3087 * cache contents, so we set them to (CPU, CPU) always.
3088 * 2. Written by CPU (using pwrite)
3089 * The pwrite function calls set_domain (CPU, CPU) and
3090 * this function does nothing (as nothing changes)
3091 * 3. Mapped by GTT
3092 * This function asserts that the object is not
3093 * currently in any GPU-based read or write domains
3094 * 4. Read by GPU
3095 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3096 * As write_domain is zero, this function adds in the
3097 * current read domains (CPU+COMMAND, 0).
3098 * flush_domains is set to CPU.
3099 * invalidate_domains is set to COMMAND
3100 * clflush is run to get data out of the CPU caches
3101 * then i915_dev_set_domain calls i915_gem_flush to
3102 * emit an MI_FLUSH and drm_agp_chipset_flush
3103 * 5. Unmapped from GTT
3104 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3105 * flush_domains and invalidate_domains end up both zero
3106 * so no flushing/invalidating happens
3107 * 6. Freed
3108 * yay, done
3109 *
3110 * Case 2: The shared render buffer
3111 *
3112 * 1. Allocated
3113 * 2. Mapped to GTT
3114 * 3. Read/written by GPU
3115 * 4. set_domain to (CPU,CPU)
3116 * 5. Read/written by CPU
3117 * 6. Read/written by GPU
3118 *
3119 * 1. Allocated
3120 * Same as last example, (CPU, CPU)
3121 * 2. Mapped to GTT
3122 * Nothing changes (assertions find that it is not in the GPU)
3123 * 3. Read/written by GPU
3124 * execbuffer calls set_domain (RENDER, RENDER)
3125 * flush_domains gets CPU
3126 * invalidate_domains gets GPU
3127 * clflush (obj)
3128 * MI_FLUSH and drm_agp_chipset_flush
3129 * 4. set_domain (CPU, CPU)
3130 * flush_domains gets GPU
3131 * invalidate_domains gets CPU
3132 * wait_rendering (obj) to make sure all drawing is complete.
3133 * This will include an MI_FLUSH to get the data from GPU
3134 * to memory
3135 * clflush (obj) to invalidate the CPU cache
3136 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3137 * 5. Read/written by CPU
3138 * cache lines are loaded and dirtied
3139 * 6. Read written by GPU
3140 * Same as last GPU access
3141 *
3142 * Case 3: The constant buffer
3143 *
3144 * 1. Allocated
3145 * 2. Written by CPU
3146 * 3. Read by GPU
3147 * 4. Updated (written) by CPU again
3148 * 5. Read by GPU
3149 *
3150 * 1. Allocated
3151 * (CPU, CPU)
3152 * 2. Written by CPU
3153 * (CPU, CPU)
3154 * 3. Read by GPU
3155 * (CPU+RENDER, 0)
3156 * flush_domains = CPU
3157 * invalidate_domains = RENDER
3158 * clflush (obj)
3159 * MI_FLUSH
3160 * drm_agp_chipset_flush
3161 * 4. Updated (written) by CPU again
3162 * (CPU, CPU)
3163 * flush_domains = 0 (no previous write domain)
3164 * invalidate_domains = 0 (no new read domains)
3165 * 5. Read by GPU
3166 * (CPU+RENDER, 0)
3167 * flush_domains = CPU
3168 * invalidate_domains = RENDER
3169 * clflush (obj)
3170 * MI_FLUSH
3171 * drm_agp_chipset_flush
3172 */
3173 static void
3174 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3175 struct intel_ring_buffer *ring,
3176 struct change_domains *cd)
3177 {
3178 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3179 uint32_t invalidate_domains = 0;
3180 uint32_t flush_domains = 0;
3181
3182 /*
3183 * If the object isn't moving to a new write domain,
3184 * let the object stay in multiple read domains
3185 */
3186 if (obj->pending_write_domain == 0)
3187 obj->pending_read_domains |= obj->read_domains;
3188
3189 /*
3190 * Flush the current write domain if
3191 * the new read domains don't match. Invalidate
3192 * any read domains which differ from the old
3193 * write domain
3194 */
3195 if (obj->write_domain &&
3196 (obj->write_domain != obj->pending_read_domains ||
3197 obj_priv->ring != ring)) {
3198 flush_domains |= obj->write_domain;
3199 invalidate_domains |=
3200 obj->pending_read_domains & ~obj->write_domain;
3201 }
3202 /*
3203 * Invalidate any read caches which may have
3204 * stale data. That is, any new read domains.
3205 */
3206 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3207 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3208 i915_gem_clflush_object(obj);
3209
3210 /* blow away mappings if mapped through GTT */
3211 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
3212 i915_gem_release_mmap(obj);
3213
3214 /* The actual obj->write_domain will be updated with
3215 * pending_write_domain after we emit the accumulated flush for all
3216 * of our domain changes in execbuffers (which clears objects'
3217 * write_domains). So if we have a current write domain that we
3218 * aren't changing, set pending_write_domain to that.
3219 */
3220 if (flush_domains == 0 && obj->pending_write_domain == 0)
3221 obj->pending_write_domain = obj->write_domain;
3222
3223 cd->invalidate_domains |= invalidate_domains;
3224 cd->flush_domains |= flush_domains;
3225 if (flush_domains & I915_GEM_GPU_DOMAINS)
3226 cd->flush_rings |= obj_priv->ring->id;
3227 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3228 cd->flush_rings |= ring->id;
3229 }
3230
3231 /**
3232 * Moves the object from a partially CPU read to a full one.
3233 *
3234 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3235 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3236 */
3237 static void
3238 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3239 {
3240 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3241
3242 if (!obj_priv->page_cpu_valid)
3243 return;
3244
3245 /* If we're partially in the CPU read domain, finish moving it in.
3246 */
3247 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3248 int i;
3249
3250 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3251 if (obj_priv->page_cpu_valid[i])
3252 continue;
3253 drm_clflush_pages(obj_priv->pages + i, 1);
3254 }
3255 }
3256
3257 /* Free the page_cpu_valid mappings which are now stale, whether
3258 * or not we've got I915_GEM_DOMAIN_CPU.
3259 */
3260 kfree(obj_priv->page_cpu_valid);
3261 obj_priv->page_cpu_valid = NULL;
3262 }
3263
3264 /**
3265 * Set the CPU read domain on a range of the object.
3266 *
3267 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3268 * not entirely valid. The page_cpu_valid member of the object flags which
3269 * pages have been flushed, and will be respected by
3270 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3271 * of the whole object.
3272 *
3273 * This function returns when the move is complete, including waiting on
3274 * flushes to occur.
3275 */
3276 static int
3277 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3278 uint64_t offset, uint64_t size)
3279 {
3280 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3281 uint32_t old_read_domains;
3282 int i, ret;
3283
3284 if (offset == 0 && size == obj->size)
3285 return i915_gem_object_set_to_cpu_domain(obj, 0);
3286
3287 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3288 if (ret != 0)
3289 return ret;
3290 i915_gem_object_flush_gtt_write_domain(obj);
3291
3292 /* If we're already fully in the CPU read domain, we're done. */
3293 if (obj_priv->page_cpu_valid == NULL &&
3294 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3295 return 0;
3296
3297 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3298 * newly adding I915_GEM_DOMAIN_CPU
3299 */
3300 if (obj_priv->page_cpu_valid == NULL) {
3301 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3302 GFP_KERNEL);
3303 if (obj_priv->page_cpu_valid == NULL)
3304 return -ENOMEM;
3305 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3306 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3307
3308 /* Flush the cache on any pages that are still invalid from the CPU's
3309 * perspective.
3310 */
3311 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3312 i++) {
3313 if (obj_priv->page_cpu_valid[i])
3314 continue;
3315
3316 drm_clflush_pages(obj_priv->pages + i, 1);
3317
3318 obj_priv->page_cpu_valid[i] = 1;
3319 }
3320
3321 /* It should now be out of any other write domains, and we can update
3322 * the domain values for our changes.
3323 */
3324 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3325
3326 old_read_domains = obj->read_domains;
3327 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3328
3329 trace_i915_gem_object_change_domain(obj,
3330 old_read_domains,
3331 obj->write_domain);
3332
3333 return 0;
3334 }
3335
3336 /**
3337 * Pin an object to the GTT and evaluate the relocations landing in it.
3338 */
3339 static int
3340 i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3341 struct drm_file *file_priv,
3342 struct drm_i915_gem_exec_object2 *entry)
3343 {
3344 struct drm_device *dev = obj->base.dev;
3345 drm_i915_private_t *dev_priv = dev->dev_private;
3346 struct drm_i915_gem_relocation_entry __user *user_relocs;
3347 struct drm_gem_object *target_obj = NULL;
3348 uint32_t target_handle = 0;
3349 int i, ret = 0;
3350
3351 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3352 for (i = 0; i < entry->relocation_count; i++) {
3353 struct drm_i915_gem_relocation_entry reloc;
3354 uint32_t target_offset;
3355
3356 if (__copy_from_user_inatomic(&reloc,
3357 user_relocs+i,
3358 sizeof(reloc))) {
3359 ret = -EFAULT;
3360 break;
3361 }
3362
3363 if (reloc.target_handle != target_handle) {
3364 drm_gem_object_unreference(target_obj);
3365
3366 target_obj = drm_gem_object_lookup(dev, file_priv,
3367 reloc.target_handle);
3368 if (target_obj == NULL) {
3369 ret = -ENOENT;
3370 break;
3371 }
3372
3373 target_handle = reloc.target_handle;
3374 }
3375 target_offset = to_intel_bo(target_obj)->gtt_offset;
3376
3377 #if WATCH_RELOC
3378 DRM_INFO("%s: obj %p offset %08x target %d "
3379 "read %08x write %08x gtt %08x "
3380 "presumed %08x delta %08x\n",
3381 __func__,
3382 obj,
3383 (int) reloc.offset,
3384 (int) reloc.target_handle,
3385 (int) reloc.read_domains,
3386 (int) reloc.write_domain,
3387 (int) target_offset,
3388 (int) reloc.presumed_offset,
3389 reloc.delta);
3390 #endif
3391
3392 /* The target buffer should have appeared before us in the
3393 * exec_object list, so it should have a GTT space bound by now.
3394 */
3395 if (target_offset == 0) {
3396 DRM_ERROR("No GTT space found for object %d\n",
3397 reloc.target_handle);
3398 ret = -EINVAL;
3399 break;
3400 }
3401
3402 /* Validate that the target is in a valid r/w GPU domain */
3403 if (reloc.write_domain & (reloc.write_domain - 1)) {
3404 DRM_ERROR("reloc with multiple write domains: "
3405 "obj %p target %d offset %d "
3406 "read %08x write %08x",
3407 obj, reloc.target_handle,
3408 (int) reloc.offset,
3409 reloc.read_domains,
3410 reloc.write_domain);
3411 ret = -EINVAL;
3412 break;
3413 }
3414 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3415 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3416 DRM_ERROR("reloc with read/write CPU domains: "
3417 "obj %p target %d offset %d "
3418 "read %08x write %08x",
3419 obj, reloc.target_handle,
3420 (int) reloc.offset,
3421 reloc.read_domains,
3422 reloc.write_domain);
3423 ret = -EINVAL;
3424 break;
3425 }
3426 if (reloc.write_domain && target_obj->pending_write_domain &&
3427 reloc.write_domain != target_obj->pending_write_domain) {
3428 DRM_ERROR("Write domain conflict: "
3429 "obj %p target %d offset %d "
3430 "new %08x old %08x\n",
3431 obj, reloc.target_handle,
3432 (int) reloc.offset,
3433 reloc.write_domain,
3434 target_obj->pending_write_domain);
3435 ret = -EINVAL;
3436 break;
3437 }
3438
3439 target_obj->pending_read_domains |= reloc.read_domains;
3440 target_obj->pending_write_domain |= reloc.write_domain;
3441
3442 /* If the relocation already has the right value in it, no
3443 * more work needs to be done.
3444 */
3445 if (target_offset == reloc.presumed_offset)
3446 continue;
3447
3448 /* Check that the relocation address is valid... */
3449 if (reloc.offset > obj->base.size - 4) {
3450 DRM_ERROR("Relocation beyond object bounds: "
3451 "obj %p target %d offset %d size %d.\n",
3452 obj, reloc.target_handle,
3453 (int) reloc.offset, (int) obj->base.size);
3454 ret = -EINVAL;
3455 break;
3456 }
3457 if (reloc.offset & 3) {
3458 DRM_ERROR("Relocation not 4-byte aligned: "
3459 "obj %p target %d offset %d.\n",
3460 obj, reloc.target_handle,
3461 (int) reloc.offset);
3462 ret = -EINVAL;
3463 break;
3464 }
3465
3466 /* and points to somewhere within the target object. */
3467 if (reloc.delta >= target_obj->size) {
3468 DRM_ERROR("Relocation beyond target object bounds: "
3469 "obj %p target %d delta %d size %d.\n",
3470 obj, reloc.target_handle,
3471 (int) reloc.delta, (int) target_obj->size);
3472 ret = -EINVAL;
3473 break;
3474 }
3475
3476 reloc.delta += target_offset;
3477 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3478 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3479 char *vaddr;
3480
3481 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3482 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3483 kunmap_atomic(vaddr);
3484 } else {
3485 uint32_t __iomem *reloc_entry;
3486 void __iomem *reloc_page;
3487
3488 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3489 if (ret)
3490 break;
3491
3492 /* Map the page containing the relocation we're going to perform. */
3493 reloc.offset += obj->gtt_offset;
3494 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3495 reloc.offset & PAGE_MASK);
3496 reloc_entry = (uint32_t __iomem *)
3497 (reloc_page + (reloc.offset & ~PAGE_MASK));
3498 iowrite32(reloc.delta, reloc_entry);
3499 io_mapping_unmap_atomic(reloc_page);
3500 }
3501
3502 /* and update the user's relocation entry */
3503 reloc.presumed_offset = target_offset;
3504 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3505 &reloc.presumed_offset,
3506 sizeof(reloc.presumed_offset))) {
3507 ret = -EFAULT;
3508 break;
3509 }
3510 }
3511
3512 drm_gem_object_unreference(target_obj);
3513 return ret;
3514 }
3515
3516 static int
3517 i915_gem_execbuffer_pin(struct drm_device *dev,
3518 struct drm_file *file,
3519 struct drm_gem_object **object_list,
3520 struct drm_i915_gem_exec_object2 *exec_list,
3521 int count)
3522 {
3523 struct drm_i915_private *dev_priv = dev->dev_private;
3524 int ret, i, retry;
3525
3526 /* attempt to pin all of the buffers into the GTT */
3527 retry = 0;
3528 do {
3529 ret = 0;
3530 for (i = 0; i < count; i++) {
3531 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3532 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3533 bool need_fence =
3534 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3535 obj->tiling_mode != I915_TILING_NONE;
3536
3537 /* g33/pnv can't fence buffers in the unmappable part */
3538 bool need_mappable =
3539 entry->relocation_count ? true : need_fence;
3540
3541 /* Check fence reg constraints and rebind if necessary */
3542 if (need_mappable && !obj->map_and_fenceable) {
3543 ret = i915_gem_object_unbind(&obj->base);
3544 if (ret)
3545 break;
3546 }
3547
3548 ret = i915_gem_object_pin(&obj->base,
3549 entry->alignment,
3550 need_mappable);
3551 if (ret)
3552 break;
3553
3554 /*
3555 * Pre-965 chips need a fence register set up in order
3556 * to properly handle blits to/from tiled surfaces.
3557 */
3558 if (need_fence) {
3559 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3560 if (ret) {
3561 i915_gem_object_unpin(&obj->base);
3562 break;
3563 }
3564
3565 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3566 }
3567
3568 entry->offset = obj->gtt_offset;
3569 }
3570
3571 while (i--)
3572 i915_gem_object_unpin(object_list[i]);
3573
3574 if (ret != -ENOSPC || retry > 1)
3575 return ret;
3576
3577 /* First attempt, just clear anything that is purgeable.
3578 * Second attempt, clear the entire GTT.
3579 */
3580 ret = i915_gem_evict_everything(dev, retry == 0);
3581 if (ret)
3582 return ret;
3583
3584 retry++;
3585 } while (1);
3586 }
3587
3588 static int
3589 i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3590 struct drm_file *file,
3591 struct intel_ring_buffer *ring,
3592 struct drm_gem_object **objects,
3593 int count)
3594 {
3595 struct change_domains cd;
3596 int ret, i;
3597
3598 cd.invalidate_domains = 0;
3599 cd.flush_domains = 0;
3600 cd.flush_rings = 0;
3601 for (i = 0; i < count; i++)
3602 i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
3603
3604 if (cd.invalidate_domains | cd.flush_domains) {
3605 #if WATCH_EXEC
3606 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3607 __func__,
3608 cd.invalidate_domains,
3609 cd.flush_domains);
3610 #endif
3611 i915_gem_flush(dev, file,
3612 cd.invalidate_domains,
3613 cd.flush_domains,
3614 cd.flush_rings);
3615 }
3616
3617 for (i = 0; i < count; i++) {
3618 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3619 /* XXX replace with semaphores */
3620 if (obj->ring && ring != obj->ring) {
3621 ret = i915_gem_object_wait_rendering(&obj->base, true);
3622 if (ret)
3623 return ret;
3624 }
3625 }
3626
3627 return 0;
3628 }
3629
3630 /* Throttle our rendering by waiting until the ring has completed our requests
3631 * emitted over 20 msec ago.
3632 *
3633 * Note that if we were to use the current jiffies each time around the loop,
3634 * we wouldn't escape the function with any frames outstanding if the time to
3635 * render a frame was over 20ms.
3636 *
3637 * This should get us reasonable parallelism between CPU and GPU but also
3638 * relatively low latency when blocking on a particular request to finish.
3639 */
3640 static int
3641 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3642 {
3643 struct drm_i915_private *dev_priv = dev->dev_private;
3644 struct drm_i915_file_private *file_priv = file->driver_priv;
3645 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3646 struct drm_i915_gem_request *request;
3647 struct intel_ring_buffer *ring = NULL;
3648 u32 seqno = 0;
3649 int ret;
3650
3651 spin_lock(&file_priv->mm.lock);
3652 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3653 if (time_after_eq(request->emitted_jiffies, recent_enough))
3654 break;
3655
3656 ring = request->ring;
3657 seqno = request->seqno;
3658 }
3659 spin_unlock(&file_priv->mm.lock);
3660
3661 if (seqno == 0)
3662 return 0;
3663
3664 ret = 0;
3665 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3666 /* And wait for the seqno passing without holding any locks and
3667 * causing extra latency for others. This is safe as the irq
3668 * generation is designed to be run atomically and so is
3669 * lockless.
3670 */
3671 ring->user_irq_get(ring);
3672 ret = wait_event_interruptible(ring->irq_queue,
3673 i915_seqno_passed(ring->get_seqno(ring), seqno)
3674 || atomic_read(&dev_priv->mm.wedged));
3675 ring->user_irq_put(ring);
3676
3677 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3678 ret = -EIO;
3679 }
3680
3681 if (ret == 0)
3682 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3683
3684 return ret;
3685 }
3686
3687 static int
3688 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3689 uint64_t exec_offset)
3690 {
3691 uint32_t exec_start, exec_len;
3692
3693 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3694 exec_len = (uint32_t) exec->batch_len;
3695
3696 if ((exec_start | exec_len) & 0x7)
3697 return -EINVAL;
3698
3699 if (!exec_start)
3700 return -EINVAL;
3701
3702 return 0;
3703 }
3704
3705 static int
3706 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3707 int count)
3708 {
3709 int i;
3710
3711 for (i = 0; i < count; i++) {
3712 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3713 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3714
3715 if (!access_ok(VERIFY_READ, ptr, length))
3716 return -EFAULT;
3717
3718 /* we may also need to update the presumed offsets */
3719 if (!access_ok(VERIFY_WRITE, ptr, length))
3720 return -EFAULT;
3721
3722 if (fault_in_pages_readable(ptr, length))
3723 return -EFAULT;
3724 }
3725
3726 return 0;
3727 }
3728
3729 static int
3730 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3731 struct drm_file *file,
3732 struct drm_i915_gem_execbuffer2 *args,
3733 struct drm_i915_gem_exec_object2 *exec_list)
3734 {
3735 drm_i915_private_t *dev_priv = dev->dev_private;
3736 struct drm_gem_object **object_list = NULL;
3737 struct drm_gem_object *batch_obj;
3738 struct drm_clip_rect *cliprects = NULL;
3739 struct drm_i915_gem_request *request = NULL;
3740 int ret, i, flips;
3741 uint64_t exec_offset;
3742
3743 struct intel_ring_buffer *ring = NULL;
3744
3745 ret = i915_gem_check_is_wedged(dev);
3746 if (ret)
3747 return ret;
3748
3749 ret = validate_exec_list(exec_list, args->buffer_count);
3750 if (ret)
3751 return ret;
3752
3753 #if WATCH_EXEC
3754 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3755 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3756 #endif
3757 switch (args->flags & I915_EXEC_RING_MASK) {
3758 case I915_EXEC_DEFAULT:
3759 case I915_EXEC_RENDER:
3760 ring = &dev_priv->render_ring;
3761 break;
3762 case I915_EXEC_BSD:
3763 if (!HAS_BSD(dev)) {
3764 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3765 return -EINVAL;
3766 }
3767 ring = &dev_priv->bsd_ring;
3768 break;
3769 case I915_EXEC_BLT:
3770 if (!HAS_BLT(dev)) {
3771 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3772 return -EINVAL;
3773 }
3774 ring = &dev_priv->blt_ring;
3775 break;
3776 default:
3777 DRM_ERROR("execbuf with unknown ring: %d\n",
3778 (int)(args->flags & I915_EXEC_RING_MASK));
3779 return -EINVAL;
3780 }
3781
3782 if (args->buffer_count < 1) {
3783 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3784 return -EINVAL;
3785 }
3786 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3787 if (object_list == NULL) {
3788 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3789 args->buffer_count);
3790 ret = -ENOMEM;
3791 goto pre_mutex_err;
3792 }
3793
3794 if (args->num_cliprects != 0) {
3795 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3796 GFP_KERNEL);
3797 if (cliprects == NULL) {
3798 ret = -ENOMEM;
3799 goto pre_mutex_err;
3800 }
3801
3802 ret = copy_from_user(cliprects,
3803 (struct drm_clip_rect __user *)
3804 (uintptr_t) args->cliprects_ptr,
3805 sizeof(*cliprects) * args->num_cliprects);
3806 if (ret != 0) {
3807 DRM_ERROR("copy %d cliprects failed: %d\n",
3808 args->num_cliprects, ret);
3809 ret = -EFAULT;
3810 goto pre_mutex_err;
3811 }
3812 }
3813
3814 request = kzalloc(sizeof(*request), GFP_KERNEL);
3815 if (request == NULL) {
3816 ret = -ENOMEM;
3817 goto pre_mutex_err;
3818 }
3819
3820 ret = i915_mutex_lock_interruptible(dev);
3821 if (ret)
3822 goto pre_mutex_err;
3823
3824 if (dev_priv->mm.suspended) {
3825 mutex_unlock(&dev->struct_mutex);
3826 ret = -EBUSY;
3827 goto pre_mutex_err;
3828 }
3829
3830 /* Look up object handles */
3831 for (i = 0; i < args->buffer_count; i++) {
3832 struct drm_i915_gem_object *obj_priv;
3833
3834 object_list[i] = drm_gem_object_lookup(dev, file,
3835 exec_list[i].handle);
3836 if (object_list[i] == NULL) {
3837 DRM_ERROR("Invalid object handle %d at index %d\n",
3838 exec_list[i].handle, i);
3839 /* prevent error path from reading uninitialized data */
3840 args->buffer_count = i + 1;
3841 ret = -ENOENT;
3842 goto err;
3843 }
3844
3845 obj_priv = to_intel_bo(object_list[i]);
3846 if (obj_priv->in_execbuffer) {
3847 DRM_ERROR("Object %p appears more than once in object list\n",
3848 object_list[i]);
3849 /* prevent error path from reading uninitialized data */
3850 args->buffer_count = i + 1;
3851 ret = -EINVAL;
3852 goto err;
3853 }
3854 obj_priv->in_execbuffer = true;
3855 }
3856
3857 /* Move the objects en-masse into the GTT, evicting if necessary. */
3858 ret = i915_gem_execbuffer_pin(dev, file,
3859 object_list, exec_list,
3860 args->buffer_count);
3861 if (ret)
3862 goto err;
3863
3864 /* The objects are in their final locations, apply the relocations. */
3865 for (i = 0; i < args->buffer_count; i++) {
3866 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3867 obj->base.pending_read_domains = 0;
3868 obj->base.pending_write_domain = 0;
3869 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3870 if (ret)
3871 goto err;
3872 }
3873
3874 /* Set the pending read domains for the batch buffer to COMMAND */
3875 batch_obj = object_list[args->buffer_count-1];
3876 if (batch_obj->pending_write_domain) {
3877 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3878 ret = -EINVAL;
3879 goto err;
3880 }
3881 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3882
3883 /* Sanity check the batch buffer */
3884 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3885 ret = i915_gem_check_execbuffer(args, exec_offset);
3886 if (ret != 0) {
3887 DRM_ERROR("execbuf with invalid offset/length\n");
3888 goto err;
3889 }
3890
3891 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
3892 object_list, args->buffer_count);
3893 if (ret)
3894 goto err;
3895
3896 #if WATCH_COHERENCY
3897 for (i = 0; i < args->buffer_count; i++) {
3898 i915_gem_object_check_coherency(object_list[i],
3899 exec_list[i].handle);
3900 }
3901 #endif
3902
3903 #if WATCH_EXEC
3904 i915_gem_dump_object(batch_obj,
3905 args->batch_len,
3906 __func__,
3907 ~0);
3908 #endif
3909
3910 /* Check for any pending flips. As we only maintain a flip queue depth
3911 * of 1, we can simply insert a WAIT for the next display flip prior
3912 * to executing the batch and avoid stalling the CPU.
3913 */
3914 flips = 0;
3915 for (i = 0; i < args->buffer_count; i++) {
3916 if (object_list[i]->write_domain)
3917 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3918 }
3919 if (flips) {
3920 int plane, flip_mask;
3921
3922 for (plane = 0; flips >> plane; plane++) {
3923 if (((flips >> plane) & 1) == 0)
3924 continue;
3925
3926 if (plane)
3927 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3928 else
3929 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3930
3931 ret = intel_ring_begin(ring, 2);
3932 if (ret)
3933 goto err;
3934
3935 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3936 intel_ring_emit(ring, MI_NOOP);
3937 intel_ring_advance(ring);
3938 }
3939 }
3940
3941 /* Exec the batchbuffer */
3942 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
3943 if (ret) {
3944 DRM_ERROR("dispatch failed %d\n", ret);
3945 goto err;
3946 }
3947
3948 for (i = 0; i < args->buffer_count; i++) {
3949 struct drm_gem_object *obj = object_list[i];
3950
3951 obj->read_domains = obj->pending_read_domains;
3952 obj->write_domain = obj->pending_write_domain;
3953
3954 i915_gem_object_move_to_active(obj, ring);
3955 if (obj->write_domain) {
3956 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3957 obj_priv->dirty = 1;
3958 list_move_tail(&obj_priv->gpu_write_list,
3959 &ring->gpu_write_list);
3960 intel_mark_busy(dev, obj);
3961 }
3962
3963 trace_i915_gem_object_change_domain(obj,
3964 obj->read_domains,
3965 obj->write_domain);
3966 }
3967
3968 /*
3969 * Ensure that the commands in the batch buffer are
3970 * finished before the interrupt fires
3971 */
3972 i915_retire_commands(dev, ring);
3973
3974 if (i915_add_request(dev, file, request, ring))
3975 ring->outstanding_lazy_request = true;
3976 else
3977 request = NULL;
3978
3979 err:
3980 for (i = 0; i < args->buffer_count; i++) {
3981 if (object_list[i] == NULL)
3982 break;
3983
3984 to_intel_bo(object_list[i])->in_execbuffer = false;
3985 drm_gem_object_unreference(object_list[i]);
3986 }
3987
3988 mutex_unlock(&dev->struct_mutex);
3989
3990 pre_mutex_err:
3991 drm_free_large(object_list);
3992 kfree(cliprects);
3993 kfree(request);
3994
3995 return ret;
3996 }
3997
3998 /*
3999 * Legacy execbuffer just creates an exec2 list from the original exec object
4000 * list array and passes it to the real function.
4001 */
4002 int
4003 i915_gem_execbuffer(struct drm_device *dev, void *data,
4004 struct drm_file *file_priv)
4005 {
4006 struct drm_i915_gem_execbuffer *args = data;
4007 struct drm_i915_gem_execbuffer2 exec2;
4008 struct drm_i915_gem_exec_object *exec_list = NULL;
4009 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4010 int ret, i;
4011
4012 #if WATCH_EXEC
4013 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4014 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4015 #endif
4016
4017 if (args->buffer_count < 1) {
4018 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4019 return -EINVAL;
4020 }
4021
4022 /* Copy in the exec list from userland */
4023 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4024 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4025 if (exec_list == NULL || exec2_list == NULL) {
4026 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4027 args->buffer_count);
4028 drm_free_large(exec_list);
4029 drm_free_large(exec2_list);
4030 return -ENOMEM;
4031 }
4032 ret = copy_from_user(exec_list,
4033 (struct drm_i915_relocation_entry __user *)
4034 (uintptr_t) args->buffers_ptr,
4035 sizeof(*exec_list) * args->buffer_count);
4036 if (ret != 0) {
4037 DRM_ERROR("copy %d exec entries failed %d\n",
4038 args->buffer_count, ret);
4039 drm_free_large(exec_list);
4040 drm_free_large(exec2_list);
4041 return -EFAULT;
4042 }
4043
4044 for (i = 0; i < args->buffer_count; i++) {
4045 exec2_list[i].handle = exec_list[i].handle;
4046 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4047 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4048 exec2_list[i].alignment = exec_list[i].alignment;
4049 exec2_list[i].offset = exec_list[i].offset;
4050 if (INTEL_INFO(dev)->gen < 4)
4051 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4052 else
4053 exec2_list[i].flags = 0;
4054 }
4055
4056 exec2.buffers_ptr = args->buffers_ptr;
4057 exec2.buffer_count = args->buffer_count;
4058 exec2.batch_start_offset = args->batch_start_offset;
4059 exec2.batch_len = args->batch_len;
4060 exec2.DR1 = args->DR1;
4061 exec2.DR4 = args->DR4;
4062 exec2.num_cliprects = args->num_cliprects;
4063 exec2.cliprects_ptr = args->cliprects_ptr;
4064 exec2.flags = I915_EXEC_RENDER;
4065
4066 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4067 if (!ret) {
4068 /* Copy the new buffer offsets back to the user's exec list. */
4069 for (i = 0; i < args->buffer_count; i++)
4070 exec_list[i].offset = exec2_list[i].offset;
4071 /* ... and back out to userspace */
4072 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4073 (uintptr_t) args->buffers_ptr,
4074 exec_list,
4075 sizeof(*exec_list) * args->buffer_count);
4076 if (ret) {
4077 ret = -EFAULT;
4078 DRM_ERROR("failed to copy %d exec entries "
4079 "back to user (%d)\n",
4080 args->buffer_count, ret);
4081 }
4082 }
4083
4084 drm_free_large(exec_list);
4085 drm_free_large(exec2_list);
4086 return ret;
4087 }
4088
4089 int
4090 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4091 struct drm_file *file_priv)
4092 {
4093 struct drm_i915_gem_execbuffer2 *args = data;
4094 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4095 int ret;
4096
4097 #if WATCH_EXEC
4098 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4099 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4100 #endif
4101
4102 if (args->buffer_count < 1) {
4103 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4104 return -EINVAL;
4105 }
4106
4107 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4108 if (exec2_list == NULL) {
4109 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4110 args->buffer_count);
4111 return -ENOMEM;
4112 }
4113 ret = copy_from_user(exec2_list,
4114 (struct drm_i915_relocation_entry __user *)
4115 (uintptr_t) args->buffers_ptr,
4116 sizeof(*exec2_list) * args->buffer_count);
4117 if (ret != 0) {
4118 DRM_ERROR("copy %d exec entries failed %d\n",
4119 args->buffer_count, ret);
4120 drm_free_large(exec2_list);
4121 return -EFAULT;
4122 }
4123
4124 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4125 if (!ret) {
4126 /* Copy the new buffer offsets back to the user's exec list. */
4127 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4128 (uintptr_t) args->buffers_ptr,
4129 exec2_list,
4130 sizeof(*exec2_list) * args->buffer_count);
4131 if (ret) {
4132 ret = -EFAULT;
4133 DRM_ERROR("failed to copy %d exec entries "
4134 "back to user (%d)\n",
4135 args->buffer_count, ret);
4136 }
4137 }
4138
4139 drm_free_large(exec2_list);
4140 return ret;
4141 }
4142
4143 int
4144 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4145 bool map_and_fenceable)
4146 {
4147 struct drm_device *dev = obj->dev;
4148 struct drm_i915_private *dev_priv = dev->dev_private;
4149 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4150 int ret;
4151
4152 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4153 BUG_ON(map_and_fenceable && !map_and_fenceable);
4154 WARN_ON(i915_verify_lists(dev));
4155
4156 if (obj_priv->gtt_space != NULL) {
4157 if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
4158 (map_and_fenceable && !obj_priv->map_and_fenceable)) {
4159 WARN(obj_priv->pin_count,
4160 "bo is already pinned with incorrect alignment:"
4161 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
4162 " obj->map_and_fenceable=%d\n",
4163 obj_priv->gtt_offset, alignment,
4164 map_and_fenceable,
4165 obj_priv->map_and_fenceable);
4166 ret = i915_gem_object_unbind(obj);
4167 if (ret)
4168 return ret;
4169 }
4170 }
4171
4172 if (obj_priv->gtt_space == NULL) {
4173 ret = i915_gem_object_bind_to_gtt(obj, alignment,
4174 map_and_fenceable);
4175 if (ret)
4176 return ret;
4177 }
4178
4179 if (obj_priv->pin_count++ == 0) {
4180 i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
4181 if (!obj_priv->active)
4182 list_move_tail(&obj_priv->mm_list,
4183 &dev_priv->mm.pinned_list);
4184 }
4185 BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
4186
4187 WARN_ON(i915_verify_lists(dev));
4188 return 0;
4189 }
4190
4191 void
4192 i915_gem_object_unpin(struct drm_gem_object *obj)
4193 {
4194 struct drm_device *dev = obj->dev;
4195 drm_i915_private_t *dev_priv = dev->dev_private;
4196 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4197
4198 WARN_ON(i915_verify_lists(dev));
4199 BUG_ON(obj_priv->pin_count == 0);
4200 BUG_ON(obj_priv->gtt_space == NULL);
4201
4202 if (--obj_priv->pin_count == 0) {
4203 if (!obj_priv->active)
4204 list_move_tail(&obj_priv->mm_list,
4205 &dev_priv->mm.inactive_list);
4206 i915_gem_info_remove_pin(dev_priv, obj_priv);
4207 }
4208 WARN_ON(i915_verify_lists(dev));
4209 }
4210
4211 int
4212 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4213 struct drm_file *file_priv)
4214 {
4215 struct drm_i915_gem_pin *args = data;
4216 struct drm_gem_object *obj;
4217 struct drm_i915_gem_object *obj_priv;
4218 int ret;
4219
4220 ret = i915_mutex_lock_interruptible(dev);
4221 if (ret)
4222 return ret;
4223
4224 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4225 if (obj == NULL) {
4226 ret = -ENOENT;
4227 goto unlock;
4228 }
4229 obj_priv = to_intel_bo(obj);
4230
4231 if (obj_priv->madv != I915_MADV_WILLNEED) {
4232 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4233 ret = -EINVAL;
4234 goto out;
4235 }
4236
4237 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4238 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4239 args->handle);
4240 ret = -EINVAL;
4241 goto out;
4242 }
4243
4244 obj_priv->user_pin_count++;
4245 obj_priv->pin_filp = file_priv;
4246 if (obj_priv->user_pin_count == 1) {
4247 ret = i915_gem_object_pin(obj, args->alignment, true);
4248 if (ret)
4249 goto out;
4250 }
4251
4252 /* XXX - flush the CPU caches for pinned objects
4253 * as the X server doesn't manage domains yet
4254 */
4255 i915_gem_object_flush_cpu_write_domain(obj);
4256 args->offset = obj_priv->gtt_offset;
4257 out:
4258 drm_gem_object_unreference(obj);
4259 unlock:
4260 mutex_unlock(&dev->struct_mutex);
4261 return ret;
4262 }
4263
4264 int
4265 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4266 struct drm_file *file_priv)
4267 {
4268 struct drm_i915_gem_pin *args = data;
4269 struct drm_gem_object *obj;
4270 struct drm_i915_gem_object *obj_priv;
4271 int ret;
4272
4273 ret = i915_mutex_lock_interruptible(dev);
4274 if (ret)
4275 return ret;
4276
4277 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4278 if (obj == NULL) {
4279 ret = -ENOENT;
4280 goto unlock;
4281 }
4282 obj_priv = to_intel_bo(obj);
4283
4284 if (obj_priv->pin_filp != file_priv) {
4285 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4286 args->handle);
4287 ret = -EINVAL;
4288 goto out;
4289 }
4290 obj_priv->user_pin_count--;
4291 if (obj_priv->user_pin_count == 0) {
4292 obj_priv->pin_filp = NULL;
4293 i915_gem_object_unpin(obj);
4294 }
4295
4296 out:
4297 drm_gem_object_unreference(obj);
4298 unlock:
4299 mutex_unlock(&dev->struct_mutex);
4300 return ret;
4301 }
4302
4303 int
4304 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4305 struct drm_file *file_priv)
4306 {
4307 struct drm_i915_gem_busy *args = data;
4308 struct drm_gem_object *obj;
4309 struct drm_i915_gem_object *obj_priv;
4310 int ret;
4311
4312 ret = i915_mutex_lock_interruptible(dev);
4313 if (ret)
4314 return ret;
4315
4316 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4317 if (obj == NULL) {
4318 ret = -ENOENT;
4319 goto unlock;
4320 }
4321 obj_priv = to_intel_bo(obj);
4322
4323 /* Count all active objects as busy, even if they are currently not used
4324 * by the gpu. Users of this interface expect objects to eventually
4325 * become non-busy without any further actions, therefore emit any
4326 * necessary flushes here.
4327 */
4328 args->busy = obj_priv->active;
4329 if (args->busy) {
4330 /* Unconditionally flush objects, even when the gpu still uses this
4331 * object. Userspace calling this function indicates that it wants to
4332 * use this buffer rather sooner than later, so issuing the required
4333 * flush earlier is beneficial.
4334 */
4335 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4336 i915_gem_flush_ring(dev, file_priv,
4337 obj_priv->ring,
4338 0, obj->write_domain);
4339
4340 /* Update the active list for the hardware's current position.
4341 * Otherwise this only updates on a delayed timer or when irqs
4342 * are actually unmasked, and our working set ends up being
4343 * larger than required.
4344 */
4345 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4346
4347 args->busy = obj_priv->active;
4348 }
4349
4350 drm_gem_object_unreference(obj);
4351 unlock:
4352 mutex_unlock(&dev->struct_mutex);
4353 return ret;
4354 }
4355
4356 int
4357 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4358 struct drm_file *file_priv)
4359 {
4360 return i915_gem_ring_throttle(dev, file_priv);
4361 }
4362
4363 int
4364 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4365 struct drm_file *file_priv)
4366 {
4367 struct drm_i915_gem_madvise *args = data;
4368 struct drm_gem_object *obj;
4369 struct drm_i915_gem_object *obj_priv;
4370 int ret;
4371
4372 switch (args->madv) {
4373 case I915_MADV_DONTNEED:
4374 case I915_MADV_WILLNEED:
4375 break;
4376 default:
4377 return -EINVAL;
4378 }
4379
4380 ret = i915_mutex_lock_interruptible(dev);
4381 if (ret)
4382 return ret;
4383
4384 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4385 if (obj == NULL) {
4386 ret = -ENOENT;
4387 goto unlock;
4388 }
4389 obj_priv = to_intel_bo(obj);
4390
4391 if (obj_priv->pin_count) {
4392 ret = -EINVAL;
4393 goto out;
4394 }
4395
4396 if (obj_priv->madv != __I915_MADV_PURGED)
4397 obj_priv->madv = args->madv;
4398
4399 /* if the object is no longer bound, discard its backing storage */
4400 if (i915_gem_object_is_purgeable(obj_priv) &&
4401 obj_priv->gtt_space == NULL)
4402 i915_gem_object_truncate(obj);
4403
4404 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4405
4406 out:
4407 drm_gem_object_unreference(obj);
4408 unlock:
4409 mutex_unlock(&dev->struct_mutex);
4410 return ret;
4411 }
4412
4413 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4414 size_t size)
4415 {
4416 struct drm_i915_private *dev_priv = dev->dev_private;
4417 struct drm_i915_gem_object *obj;
4418
4419 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4420 if (obj == NULL)
4421 return NULL;
4422
4423 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4424 kfree(obj);
4425 return NULL;
4426 }
4427
4428 i915_gem_info_add_obj(dev_priv, size);
4429
4430 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4431 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4432
4433 obj->agp_type = AGP_USER_MEMORY;
4434 obj->base.driver_private = NULL;
4435 obj->fence_reg = I915_FENCE_REG_NONE;
4436 INIT_LIST_HEAD(&obj->mm_list);
4437 INIT_LIST_HEAD(&obj->ring_list);
4438 INIT_LIST_HEAD(&obj->gpu_write_list);
4439 obj->madv = I915_MADV_WILLNEED;
4440 /* Avoid an unnecessary call to unbind on the first bind. */
4441 obj->map_and_fenceable = true;
4442
4443 return &obj->base;
4444 }
4445
4446 int i915_gem_init_object(struct drm_gem_object *obj)
4447 {
4448 BUG();
4449
4450 return 0;
4451 }
4452
4453 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4454 {
4455 struct drm_device *dev = obj->dev;
4456 drm_i915_private_t *dev_priv = dev->dev_private;
4457 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4458 int ret;
4459
4460 ret = i915_gem_object_unbind(obj);
4461 if (ret == -ERESTARTSYS) {
4462 list_move(&obj_priv->mm_list,
4463 &dev_priv->mm.deferred_free_list);
4464 return;
4465 }
4466
4467 if (obj->map_list.map)
4468 i915_gem_free_mmap_offset(obj);
4469
4470 drm_gem_object_release(obj);
4471 i915_gem_info_remove_obj(dev_priv, obj->size);
4472
4473 kfree(obj_priv->page_cpu_valid);
4474 kfree(obj_priv->bit_17);
4475 kfree(obj_priv);
4476 }
4477
4478 void i915_gem_free_object(struct drm_gem_object *obj)
4479 {
4480 struct drm_device *dev = obj->dev;
4481 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4482
4483 trace_i915_gem_object_destroy(obj);
4484
4485 while (obj_priv->pin_count > 0)
4486 i915_gem_object_unpin(obj);
4487
4488 if (obj_priv->phys_obj)
4489 i915_gem_detach_phys_object(dev, obj);
4490
4491 i915_gem_free_object_tail(obj);
4492 }
4493
4494 int
4495 i915_gem_idle(struct drm_device *dev)
4496 {
4497 drm_i915_private_t *dev_priv = dev->dev_private;
4498 int ret;
4499
4500 mutex_lock(&dev->struct_mutex);
4501
4502 if (dev_priv->mm.suspended) {
4503 mutex_unlock(&dev->struct_mutex);
4504 return 0;
4505 }
4506
4507 ret = i915_gpu_idle(dev);
4508 if (ret) {
4509 mutex_unlock(&dev->struct_mutex);
4510 return ret;
4511 }
4512
4513 /* Under UMS, be paranoid and evict. */
4514 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4515 ret = i915_gem_evict_inactive(dev, false);
4516 if (ret) {
4517 mutex_unlock(&dev->struct_mutex);
4518 return ret;
4519 }
4520 }
4521
4522 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4523 * We need to replace this with a semaphore, or something.
4524 * And not confound mm.suspended!
4525 */
4526 dev_priv->mm.suspended = 1;
4527 del_timer_sync(&dev_priv->hangcheck_timer);
4528
4529 i915_kernel_lost_context(dev);
4530 i915_gem_cleanup_ringbuffer(dev);
4531
4532 mutex_unlock(&dev->struct_mutex);
4533
4534 /* Cancel the retire work handler, which should be idle now. */
4535 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4536
4537 return 0;
4538 }
4539
4540 /*
4541 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4542 * over cache flushing.
4543 */
4544 static int
4545 i915_gem_init_pipe_control(struct drm_device *dev)
4546 {
4547 drm_i915_private_t *dev_priv = dev->dev_private;
4548 struct drm_gem_object *obj;
4549 struct drm_i915_gem_object *obj_priv;
4550 int ret;
4551
4552 obj = i915_gem_alloc_object(dev, 4096);
4553 if (obj == NULL) {
4554 DRM_ERROR("Failed to allocate seqno page\n");
4555 ret = -ENOMEM;
4556 goto err;
4557 }
4558 obj_priv = to_intel_bo(obj);
4559 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4560
4561 ret = i915_gem_object_pin(obj, 4096, true);
4562 if (ret)
4563 goto err_unref;
4564
4565 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4566 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4567 if (dev_priv->seqno_page == NULL)
4568 goto err_unpin;
4569
4570 dev_priv->seqno_obj = obj;
4571 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4572
4573 return 0;
4574
4575 err_unpin:
4576 i915_gem_object_unpin(obj);
4577 err_unref:
4578 drm_gem_object_unreference(obj);
4579 err:
4580 return ret;
4581 }
4582
4583
4584 static void
4585 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4586 {
4587 drm_i915_private_t *dev_priv = dev->dev_private;
4588 struct drm_gem_object *obj;
4589 struct drm_i915_gem_object *obj_priv;
4590
4591 obj = dev_priv->seqno_obj;
4592 obj_priv = to_intel_bo(obj);
4593 kunmap(obj_priv->pages[0]);
4594 i915_gem_object_unpin(obj);
4595 drm_gem_object_unreference(obj);
4596 dev_priv->seqno_obj = NULL;
4597
4598 dev_priv->seqno_page = NULL;
4599 }
4600
4601 int
4602 i915_gem_init_ringbuffer(struct drm_device *dev)
4603 {
4604 drm_i915_private_t *dev_priv = dev->dev_private;
4605 int ret;
4606
4607 if (HAS_PIPE_CONTROL(dev)) {
4608 ret = i915_gem_init_pipe_control(dev);
4609 if (ret)
4610 return ret;
4611 }
4612
4613 ret = intel_init_render_ring_buffer(dev);
4614 if (ret)
4615 goto cleanup_pipe_control;
4616
4617 if (HAS_BSD(dev)) {
4618 ret = intel_init_bsd_ring_buffer(dev);
4619 if (ret)
4620 goto cleanup_render_ring;
4621 }
4622
4623 if (HAS_BLT(dev)) {
4624 ret = intel_init_blt_ring_buffer(dev);
4625 if (ret)
4626 goto cleanup_bsd_ring;
4627 }
4628
4629 dev_priv->next_seqno = 1;
4630
4631 return 0;
4632
4633 cleanup_bsd_ring:
4634 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4635 cleanup_render_ring:
4636 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4637 cleanup_pipe_control:
4638 if (HAS_PIPE_CONTROL(dev))
4639 i915_gem_cleanup_pipe_control(dev);
4640 return ret;
4641 }
4642
4643 void
4644 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4645 {
4646 drm_i915_private_t *dev_priv = dev->dev_private;
4647
4648 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4649 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4650 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4651 if (HAS_PIPE_CONTROL(dev))
4652 i915_gem_cleanup_pipe_control(dev);
4653 }
4654
4655 int
4656 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4657 struct drm_file *file_priv)
4658 {
4659 drm_i915_private_t *dev_priv = dev->dev_private;
4660 int ret;
4661
4662 if (drm_core_check_feature(dev, DRIVER_MODESET))
4663 return 0;
4664
4665 if (atomic_read(&dev_priv->mm.wedged)) {
4666 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4667 atomic_set(&dev_priv->mm.wedged, 0);
4668 }
4669
4670 mutex_lock(&dev->struct_mutex);
4671 dev_priv->mm.suspended = 0;
4672
4673 ret = i915_gem_init_ringbuffer(dev);
4674 if (ret != 0) {
4675 mutex_unlock(&dev->struct_mutex);
4676 return ret;
4677 }
4678
4679 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4680 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4681 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4682 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4683 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4684 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4685 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4686 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4687 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4688 mutex_unlock(&dev->struct_mutex);
4689
4690 ret = drm_irq_install(dev);
4691 if (ret)
4692 goto cleanup_ringbuffer;
4693
4694 return 0;
4695
4696 cleanup_ringbuffer:
4697 mutex_lock(&dev->struct_mutex);
4698 i915_gem_cleanup_ringbuffer(dev);
4699 dev_priv->mm.suspended = 1;
4700 mutex_unlock(&dev->struct_mutex);
4701
4702 return ret;
4703 }
4704
4705 int
4706 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4707 struct drm_file *file_priv)
4708 {
4709 if (drm_core_check_feature(dev, DRIVER_MODESET))
4710 return 0;
4711
4712 drm_irq_uninstall(dev);
4713 return i915_gem_idle(dev);
4714 }
4715
4716 void
4717 i915_gem_lastclose(struct drm_device *dev)
4718 {
4719 int ret;
4720
4721 if (drm_core_check_feature(dev, DRIVER_MODESET))
4722 return;
4723
4724 ret = i915_gem_idle(dev);
4725 if (ret)
4726 DRM_ERROR("failed to idle hardware: %d\n", ret);
4727 }
4728
4729 static void
4730 init_ring_lists(struct intel_ring_buffer *ring)
4731 {
4732 INIT_LIST_HEAD(&ring->active_list);
4733 INIT_LIST_HEAD(&ring->request_list);
4734 INIT_LIST_HEAD(&ring->gpu_write_list);
4735 }
4736
4737 void
4738 i915_gem_load(struct drm_device *dev)
4739 {
4740 int i;
4741 drm_i915_private_t *dev_priv = dev->dev_private;
4742
4743 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4744 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4745 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4746 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4747 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4748 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4749 init_ring_lists(&dev_priv->render_ring);
4750 init_ring_lists(&dev_priv->bsd_ring);
4751 init_ring_lists(&dev_priv->blt_ring);
4752 for (i = 0; i < 16; i++)
4753 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4754 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4755 i915_gem_retire_work_handler);
4756 init_completion(&dev_priv->error_completion);
4757
4758 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4759 if (IS_GEN3(dev)) {
4760 u32 tmp = I915_READ(MI_ARB_STATE);
4761 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4762 /* arb state is a masked write, so set bit + bit in mask */
4763 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4764 I915_WRITE(MI_ARB_STATE, tmp);
4765 }
4766 }
4767
4768 /* Old X drivers will take 0-2 for front, back, depth buffers */
4769 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4770 dev_priv->fence_reg_start = 3;
4771
4772 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4773 dev_priv->num_fence_regs = 16;
4774 else
4775 dev_priv->num_fence_regs = 8;
4776
4777 /* Initialize fence registers to zero */
4778 switch (INTEL_INFO(dev)->gen) {
4779 case 6:
4780 for (i = 0; i < 16; i++)
4781 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4782 break;
4783 case 5:
4784 case 4:
4785 for (i = 0; i < 16; i++)
4786 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4787 break;
4788 case 3:
4789 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4790 for (i = 0; i < 8; i++)
4791 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4792 case 2:
4793 for (i = 0; i < 8; i++)
4794 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4795 break;
4796 }
4797 i915_gem_detect_bit_6_swizzle(dev);
4798 init_waitqueue_head(&dev_priv->pending_flip_queue);
4799
4800 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4801 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4802 register_shrinker(&dev_priv->mm.inactive_shrinker);
4803 }
4804
4805 /*
4806 * Create a physically contiguous memory object for this object
4807 * e.g. for cursor + overlay regs
4808 */
4809 static int i915_gem_init_phys_object(struct drm_device *dev,
4810 int id, int size, int align)
4811 {
4812 drm_i915_private_t *dev_priv = dev->dev_private;
4813 struct drm_i915_gem_phys_object *phys_obj;
4814 int ret;
4815
4816 if (dev_priv->mm.phys_objs[id - 1] || !size)
4817 return 0;
4818
4819 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4820 if (!phys_obj)
4821 return -ENOMEM;
4822
4823 phys_obj->id = id;
4824
4825 phys_obj->handle = drm_pci_alloc(dev, size, align);
4826 if (!phys_obj->handle) {
4827 ret = -ENOMEM;
4828 goto kfree_obj;
4829 }
4830 #ifdef CONFIG_X86
4831 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4832 #endif
4833
4834 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4835
4836 return 0;
4837 kfree_obj:
4838 kfree(phys_obj);
4839 return ret;
4840 }
4841
4842 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4843 {
4844 drm_i915_private_t *dev_priv = dev->dev_private;
4845 struct drm_i915_gem_phys_object *phys_obj;
4846
4847 if (!dev_priv->mm.phys_objs[id - 1])
4848 return;
4849
4850 phys_obj = dev_priv->mm.phys_objs[id - 1];
4851 if (phys_obj->cur_obj) {
4852 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4853 }
4854
4855 #ifdef CONFIG_X86
4856 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4857 #endif
4858 drm_pci_free(dev, phys_obj->handle);
4859 kfree(phys_obj);
4860 dev_priv->mm.phys_objs[id - 1] = NULL;
4861 }
4862
4863 void i915_gem_free_all_phys_object(struct drm_device *dev)
4864 {
4865 int i;
4866
4867 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4868 i915_gem_free_phys_object(dev, i);
4869 }
4870
4871 void i915_gem_detach_phys_object(struct drm_device *dev,
4872 struct drm_gem_object *obj)
4873 {
4874 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4875 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4876 char *vaddr;
4877 int i;
4878 int page_count;
4879
4880 if (!obj_priv->phys_obj)
4881 return;
4882 vaddr = obj_priv->phys_obj->handle->vaddr;
4883
4884 page_count = obj->size / PAGE_SIZE;
4885
4886 for (i = 0; i < page_count; i++) {
4887 struct page *page = read_cache_page_gfp(mapping, i,
4888 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4889 if (!IS_ERR(page)) {
4890 char *dst = kmap_atomic(page);
4891 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4892 kunmap_atomic(dst);
4893
4894 drm_clflush_pages(&page, 1);
4895
4896 set_page_dirty(page);
4897 mark_page_accessed(page);
4898 page_cache_release(page);
4899 }
4900 }
4901 drm_agp_chipset_flush(dev);
4902
4903 obj_priv->phys_obj->cur_obj = NULL;
4904 obj_priv->phys_obj = NULL;
4905 }
4906
4907 int
4908 i915_gem_attach_phys_object(struct drm_device *dev,
4909 struct drm_gem_object *obj,
4910 int id,
4911 int align)
4912 {
4913 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4914 drm_i915_private_t *dev_priv = dev->dev_private;
4915 struct drm_i915_gem_object *obj_priv;
4916 int ret = 0;
4917 int page_count;
4918 int i;
4919
4920 if (id > I915_MAX_PHYS_OBJECT)
4921 return -EINVAL;
4922
4923 obj_priv = to_intel_bo(obj);
4924
4925 if (obj_priv->phys_obj) {
4926 if (obj_priv->phys_obj->id == id)
4927 return 0;
4928 i915_gem_detach_phys_object(dev, obj);
4929 }
4930
4931 /* create a new object */
4932 if (!dev_priv->mm.phys_objs[id - 1]) {
4933 ret = i915_gem_init_phys_object(dev, id,
4934 obj->size, align);
4935 if (ret) {
4936 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4937 return ret;
4938 }
4939 }
4940
4941 /* bind to the object */
4942 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4943 obj_priv->phys_obj->cur_obj = obj;
4944
4945 page_count = obj->size / PAGE_SIZE;
4946
4947 for (i = 0; i < page_count; i++) {
4948 struct page *page;
4949 char *dst, *src;
4950
4951 page = read_cache_page_gfp(mapping, i,
4952 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4953 if (IS_ERR(page))
4954 return PTR_ERR(page);
4955
4956 src = kmap_atomic(page);
4957 dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4958 memcpy(dst, src, PAGE_SIZE);
4959 kunmap_atomic(src);
4960
4961 mark_page_accessed(page);
4962 page_cache_release(page);
4963 }
4964
4965 return 0;
4966 }
4967
4968 static int
4969 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4970 struct drm_i915_gem_pwrite *args,
4971 struct drm_file *file_priv)
4972 {
4973 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4974 void *obj_addr;
4975 int ret;
4976 char __user *user_data;
4977
4978 user_data = (char __user *) (uintptr_t) args->data_ptr;
4979 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4980
4981 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4982 ret = copy_from_user(obj_addr, user_data, args->size);
4983 if (ret)
4984 return -EFAULT;
4985
4986 drm_agp_chipset_flush(dev);
4987 return 0;
4988 }
4989
4990 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4991 {
4992 struct drm_i915_file_private *file_priv = file->driver_priv;
4993
4994 /* Clean up our request list when the client is going away, so that
4995 * later retire_requests won't dereference our soon-to-be-gone
4996 * file_priv.
4997 */
4998 spin_lock(&file_priv->mm.lock);
4999 while (!list_empty(&file_priv->mm.request_list)) {
5000 struct drm_i915_gem_request *request;
5001
5002 request = list_first_entry(&file_priv->mm.request_list,
5003 struct drm_i915_gem_request,
5004 client_list);
5005 list_del(&request->client_list);
5006 request->file_priv = NULL;
5007 }
5008 spin_unlock(&file_priv->mm.lock);
5009 }
5010
5011 static int
5012 i915_gpu_is_active(struct drm_device *dev)
5013 {
5014 drm_i915_private_t *dev_priv = dev->dev_private;
5015 int lists_empty;
5016
5017 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5018 list_empty(&dev_priv->mm.active_list);
5019
5020 return !lists_empty;
5021 }
5022
5023 static int
5024 i915_gem_inactive_shrink(struct shrinker *shrinker,
5025 int nr_to_scan,
5026 gfp_t gfp_mask)
5027 {
5028 struct drm_i915_private *dev_priv =
5029 container_of(shrinker,
5030 struct drm_i915_private,
5031 mm.inactive_shrinker);
5032 struct drm_device *dev = dev_priv->dev;
5033 struct drm_i915_gem_object *obj, *next;
5034 int cnt;
5035
5036 if (!mutex_trylock(&dev->struct_mutex))
5037 return 0;
5038
5039 /* "fast-path" to count number of available objects */
5040 if (nr_to_scan == 0) {
5041 cnt = 0;
5042 list_for_each_entry(obj,
5043 &dev_priv->mm.inactive_list,
5044 mm_list)
5045 cnt++;
5046 mutex_unlock(&dev->struct_mutex);
5047 return cnt / 100 * sysctl_vfs_cache_pressure;
5048 }
5049
5050 rescan:
5051 /* first scan for clean buffers */
5052 i915_gem_retire_requests(dev);
5053
5054 list_for_each_entry_safe(obj, next,
5055 &dev_priv->mm.inactive_list,
5056 mm_list) {
5057 if (i915_gem_object_is_purgeable(obj)) {
5058 i915_gem_object_unbind(&obj->base);
5059 if (--nr_to_scan == 0)
5060 break;
5061 }
5062 }
5063
5064 /* second pass, evict/count anything still on the inactive list */
5065 cnt = 0;
5066 list_for_each_entry_safe(obj, next,
5067 &dev_priv->mm.inactive_list,
5068 mm_list) {
5069 if (nr_to_scan) {
5070 i915_gem_object_unbind(&obj->base);
5071 nr_to_scan--;
5072 } else
5073 cnt++;
5074 }
5075
5076 if (nr_to_scan && i915_gpu_is_active(dev)) {
5077 /*
5078 * We are desperate for pages, so as a last resort, wait
5079 * for the GPU to finish and discard whatever we can.
5080 * This has a dramatic impact to reduce the number of
5081 * OOM-killer events whilst running the GPU aggressively.
5082 */
5083 if (i915_gpu_idle(dev) == 0)
5084 goto rescan;
5085 }
5086 mutex_unlock(&dev->struct_mutex);
5087 return cnt / 100 * sysctl_vfs_cache_pressure;
5088 }
This page took 0.134344 seconds and 6 git commands to generate.