Merge remote branch 'korg/drm-core-next' into drm-next-stage
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
63 {
64 drm_i915_private_t *dev_priv = dev->dev_private;
65
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
69 return -EINVAL;
70 }
71
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
74
75 dev->gtt_total = (uint32_t) (end - start);
76
77 return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
83 {
84 struct drm_i915_gem_init *args = data;
85 int ret;
86
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 mutex_unlock(&dev->struct_mutex);
90
91 return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
97 {
98 struct drm_i915_gem_get_aperture *args = data;
99
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
102
103 args->aper_size = dev->gtt_total;
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
106
107 return 0;
108 }
109
110
111 /**
112 * Creates a new mm object and returns a handle to it.
113 */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
117 {
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
120 int ret;
121 u32 handle;
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 drm_gem_object_handle_unreference_unlocked(obj);
132
133 if (ret)
134 return ret;
135
136 args->handle = handle;
137
138 return 0;
139 }
140
141 static inline int
142 fast_shmem_read(struct page **pages,
143 loff_t page_base, int page_offset,
144 char __user *data,
145 int length)
146 {
147 char __iomem *vaddr;
148 int unwritten;
149
150 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
151 if (vaddr == NULL)
152 return -ENOMEM;
153 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
154 kunmap_atomic(vaddr, KM_USER0);
155
156 if (unwritten)
157 return -EFAULT;
158
159 return 0;
160 }
161
162 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163 {
164 drm_i915_private_t *dev_priv = obj->dev->dev_private;
165 struct drm_i915_gem_object *obj_priv = obj->driver_private;
166
167 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
168 obj_priv->tiling_mode != I915_TILING_NONE;
169 }
170
171 static inline int
172 slow_shmem_copy(struct page *dst_page,
173 int dst_offset,
174 struct page *src_page,
175 int src_offset,
176 int length)
177 {
178 char *dst_vaddr, *src_vaddr;
179
180 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
181 if (dst_vaddr == NULL)
182 return -ENOMEM;
183
184 src_vaddr = kmap_atomic(src_page, KM_USER1);
185 if (src_vaddr == NULL) {
186 kunmap_atomic(dst_vaddr, KM_USER0);
187 return -ENOMEM;
188 }
189
190 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
191
192 kunmap_atomic(src_vaddr, KM_USER1);
193 kunmap_atomic(dst_vaddr, KM_USER0);
194
195 return 0;
196 }
197
198 static inline int
199 slow_shmem_bit17_copy(struct page *gpu_page,
200 int gpu_offset,
201 struct page *cpu_page,
202 int cpu_offset,
203 int length,
204 int is_read)
205 {
206 char *gpu_vaddr, *cpu_vaddr;
207
208 /* Use the unswizzled path if this page isn't affected. */
209 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
210 if (is_read)
211 return slow_shmem_copy(cpu_page, cpu_offset,
212 gpu_page, gpu_offset, length);
213 else
214 return slow_shmem_copy(gpu_page, gpu_offset,
215 cpu_page, cpu_offset, length);
216 }
217
218 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
219 if (gpu_vaddr == NULL)
220 return -ENOMEM;
221
222 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
223 if (cpu_vaddr == NULL) {
224 kunmap_atomic(gpu_vaddr, KM_USER0);
225 return -ENOMEM;
226 }
227
228 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
229 * XORing with the other bits (A9 for Y, A9 and A10 for X)
230 */
231 while (length > 0) {
232 int cacheline_end = ALIGN(gpu_offset + 1, 64);
233 int this_length = min(cacheline_end - gpu_offset, length);
234 int swizzled_gpu_offset = gpu_offset ^ 64;
235
236 if (is_read) {
237 memcpy(cpu_vaddr + cpu_offset,
238 gpu_vaddr + swizzled_gpu_offset,
239 this_length);
240 } else {
241 memcpy(gpu_vaddr + swizzled_gpu_offset,
242 cpu_vaddr + cpu_offset,
243 this_length);
244 }
245 cpu_offset += this_length;
246 gpu_offset += this_length;
247 length -= this_length;
248 }
249
250 kunmap_atomic(cpu_vaddr, KM_USER1);
251 kunmap_atomic(gpu_vaddr, KM_USER0);
252
253 return 0;
254 }
255
256 /**
257 * This is the fast shmem pread path, which attempts to copy_from_user directly
258 * from the backing pages of the object to the user's address space. On a
259 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
260 */
261 static int
262 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
263 struct drm_i915_gem_pread *args,
264 struct drm_file *file_priv)
265 {
266 struct drm_i915_gem_object *obj_priv = obj->driver_private;
267 ssize_t remain;
268 loff_t offset, page_base;
269 char __user *user_data;
270 int page_offset, page_length;
271 int ret;
272
273 user_data = (char __user *) (uintptr_t) args->data_ptr;
274 remain = args->size;
275
276 mutex_lock(&dev->struct_mutex);
277
278 ret = i915_gem_object_get_pages(obj, 0);
279 if (ret != 0)
280 goto fail_unlock;
281
282 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283 args->size);
284 if (ret != 0)
285 goto fail_put_pages;
286
287 obj_priv = obj->driver_private;
288 offset = args->offset;
289
290 while (remain > 0) {
291 /* Operation in this page
292 *
293 * page_base = page offset within aperture
294 * page_offset = offset within page
295 * page_length = bytes to copy for this page
296 */
297 page_base = (offset & ~(PAGE_SIZE-1));
298 page_offset = offset & (PAGE_SIZE-1);
299 page_length = remain;
300 if ((page_offset + remain) > PAGE_SIZE)
301 page_length = PAGE_SIZE - page_offset;
302
303 ret = fast_shmem_read(obj_priv->pages,
304 page_base, page_offset,
305 user_data, page_length);
306 if (ret)
307 goto fail_put_pages;
308
309 remain -= page_length;
310 user_data += page_length;
311 offset += page_length;
312 }
313
314 fail_put_pages:
315 i915_gem_object_put_pages(obj);
316 fail_unlock:
317 mutex_unlock(&dev->struct_mutex);
318
319 return ret;
320 }
321
322 static int
323 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
324 {
325 int ret;
326
327 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
328
329 /* If we've insufficient memory to map in the pages, attempt
330 * to make some space by throwing out some old buffers.
331 */
332 if (ret == -ENOMEM) {
333 struct drm_device *dev = obj->dev;
334
335 ret = i915_gem_evict_something(dev, obj->size);
336 if (ret)
337 return ret;
338
339 ret = i915_gem_object_get_pages(obj, 0);
340 }
341
342 return ret;
343 }
344
345 /**
346 * This is the fallback shmem pread path, which allocates temporary storage
347 * in kernel space to copy_to_user into outside of the struct_mutex, so we
348 * can copy out of the object's backing pages while holding the struct mutex
349 * and not take page faults.
350 */
351 static int
352 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
353 struct drm_i915_gem_pread *args,
354 struct drm_file *file_priv)
355 {
356 struct drm_i915_gem_object *obj_priv = obj->driver_private;
357 struct mm_struct *mm = current->mm;
358 struct page **user_pages;
359 ssize_t remain;
360 loff_t offset, pinned_pages, i;
361 loff_t first_data_page, last_data_page, num_pages;
362 int shmem_page_index, shmem_page_offset;
363 int data_page_index, data_page_offset;
364 int page_length;
365 int ret;
366 uint64_t data_ptr = args->data_ptr;
367 int do_bit17_swizzling;
368
369 remain = args->size;
370
371 /* Pin the user pages containing the data. We can't fault while
372 * holding the struct mutex, yet we want to hold it while
373 * dereferencing the user data.
374 */
375 first_data_page = data_ptr / PAGE_SIZE;
376 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
377 num_pages = last_data_page - first_data_page + 1;
378
379 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
380 if (user_pages == NULL)
381 return -ENOMEM;
382
383 down_read(&mm->mmap_sem);
384 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
385 num_pages, 1, 0, user_pages, NULL);
386 up_read(&mm->mmap_sem);
387 if (pinned_pages < num_pages) {
388 ret = -EFAULT;
389 goto fail_put_user_pages;
390 }
391
392 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
393
394 mutex_lock(&dev->struct_mutex);
395
396 ret = i915_gem_object_get_pages_or_evict(obj);
397 if (ret)
398 goto fail_unlock;
399
400 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
401 args->size);
402 if (ret != 0)
403 goto fail_put_pages;
404
405 obj_priv = obj->driver_private;
406 offset = args->offset;
407
408 while (remain > 0) {
409 /* Operation in this page
410 *
411 * shmem_page_index = page number within shmem file
412 * shmem_page_offset = offset within page in shmem file
413 * data_page_index = page number in get_user_pages return
414 * data_page_offset = offset with data_page_index page.
415 * page_length = bytes to copy for this page
416 */
417 shmem_page_index = offset / PAGE_SIZE;
418 shmem_page_offset = offset & ~PAGE_MASK;
419 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
420 data_page_offset = data_ptr & ~PAGE_MASK;
421
422 page_length = remain;
423 if ((shmem_page_offset + page_length) > PAGE_SIZE)
424 page_length = PAGE_SIZE - shmem_page_offset;
425 if ((data_page_offset + page_length) > PAGE_SIZE)
426 page_length = PAGE_SIZE - data_page_offset;
427
428 if (do_bit17_swizzling) {
429 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
430 shmem_page_offset,
431 user_pages[data_page_index],
432 data_page_offset,
433 page_length,
434 1);
435 } else {
436 ret = slow_shmem_copy(user_pages[data_page_index],
437 data_page_offset,
438 obj_priv->pages[shmem_page_index],
439 shmem_page_offset,
440 page_length);
441 }
442 if (ret)
443 goto fail_put_pages;
444
445 remain -= page_length;
446 data_ptr += page_length;
447 offset += page_length;
448 }
449
450 fail_put_pages:
451 i915_gem_object_put_pages(obj);
452 fail_unlock:
453 mutex_unlock(&dev->struct_mutex);
454 fail_put_user_pages:
455 for (i = 0; i < pinned_pages; i++) {
456 SetPageDirty(user_pages[i]);
457 page_cache_release(user_pages[i]);
458 }
459 drm_free_large(user_pages);
460
461 return ret;
462 }
463
464 /**
465 * Reads data from the object referenced by handle.
466 *
467 * On error, the contents of *data are undefined.
468 */
469 int
470 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
471 struct drm_file *file_priv)
472 {
473 struct drm_i915_gem_pread *args = data;
474 struct drm_gem_object *obj;
475 struct drm_i915_gem_object *obj_priv;
476 int ret;
477
478 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
479 if (obj == NULL)
480 return -EBADF;
481 obj_priv = obj->driver_private;
482
483 /* Bounds check source.
484 *
485 * XXX: This could use review for overflow issues...
486 */
487 if (args->offset > obj->size || args->size > obj->size ||
488 args->offset + args->size > obj->size) {
489 drm_gem_object_unreference_unlocked(obj);
490 return -EINVAL;
491 }
492
493 if (i915_gem_object_needs_bit17_swizzle(obj)) {
494 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
495 } else {
496 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
497 if (ret != 0)
498 ret = i915_gem_shmem_pread_slow(dev, obj, args,
499 file_priv);
500 }
501
502 drm_gem_object_unreference_unlocked(obj);
503
504 return ret;
505 }
506
507 /* This is the fast write path which cannot handle
508 * page faults in the source data
509 */
510
511 static inline int
512 fast_user_write(struct io_mapping *mapping,
513 loff_t page_base, int page_offset,
514 char __user *user_data,
515 int length)
516 {
517 char *vaddr_atomic;
518 unsigned long unwritten;
519
520 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
521 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
522 user_data, length);
523 io_mapping_unmap_atomic(vaddr_atomic);
524 if (unwritten)
525 return -EFAULT;
526 return 0;
527 }
528
529 /* Here's the write path which can sleep for
530 * page faults
531 */
532
533 static inline int
534 slow_kernel_write(struct io_mapping *mapping,
535 loff_t gtt_base, int gtt_offset,
536 struct page *user_page, int user_offset,
537 int length)
538 {
539 char *src_vaddr, *dst_vaddr;
540 unsigned long unwritten;
541
542 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
543 src_vaddr = kmap_atomic(user_page, KM_USER1);
544 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
545 src_vaddr + user_offset,
546 length);
547 kunmap_atomic(src_vaddr, KM_USER1);
548 io_mapping_unmap_atomic(dst_vaddr);
549 if (unwritten)
550 return -EFAULT;
551 return 0;
552 }
553
554 static inline int
555 fast_shmem_write(struct page **pages,
556 loff_t page_base, int page_offset,
557 char __user *data,
558 int length)
559 {
560 char __iomem *vaddr;
561 unsigned long unwritten;
562
563 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
564 if (vaddr == NULL)
565 return -ENOMEM;
566 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
567 kunmap_atomic(vaddr, KM_USER0);
568
569 if (unwritten)
570 return -EFAULT;
571 return 0;
572 }
573
574 /**
575 * This is the fast pwrite path, where we copy the data directly from the
576 * user into the GTT, uncached.
577 */
578 static int
579 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
580 struct drm_i915_gem_pwrite *args,
581 struct drm_file *file_priv)
582 {
583 struct drm_i915_gem_object *obj_priv = obj->driver_private;
584 drm_i915_private_t *dev_priv = dev->dev_private;
585 ssize_t remain;
586 loff_t offset, page_base;
587 char __user *user_data;
588 int page_offset, page_length;
589 int ret;
590
591 user_data = (char __user *) (uintptr_t) args->data_ptr;
592 remain = args->size;
593 if (!access_ok(VERIFY_READ, user_data, remain))
594 return -EFAULT;
595
596
597 mutex_lock(&dev->struct_mutex);
598 ret = i915_gem_object_pin(obj, 0);
599 if (ret) {
600 mutex_unlock(&dev->struct_mutex);
601 return ret;
602 }
603 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
604 if (ret)
605 goto fail;
606
607 obj_priv = obj->driver_private;
608 offset = obj_priv->gtt_offset + args->offset;
609
610 while (remain > 0) {
611 /* Operation in this page
612 *
613 * page_base = page offset within aperture
614 * page_offset = offset within page
615 * page_length = bytes to copy for this page
616 */
617 page_base = (offset & ~(PAGE_SIZE-1));
618 page_offset = offset & (PAGE_SIZE-1);
619 page_length = remain;
620 if ((page_offset + remain) > PAGE_SIZE)
621 page_length = PAGE_SIZE - page_offset;
622
623 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
624 page_offset, user_data, page_length);
625
626 /* If we get a fault while copying data, then (presumably) our
627 * source page isn't available. Return the error and we'll
628 * retry in the slow path.
629 */
630 if (ret)
631 goto fail;
632
633 remain -= page_length;
634 user_data += page_length;
635 offset += page_length;
636 }
637
638 fail:
639 i915_gem_object_unpin(obj);
640 mutex_unlock(&dev->struct_mutex);
641
642 return ret;
643 }
644
645 /**
646 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
647 * the memory and maps it using kmap_atomic for copying.
648 *
649 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
650 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
651 */
652 static int
653 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
654 struct drm_i915_gem_pwrite *args,
655 struct drm_file *file_priv)
656 {
657 struct drm_i915_gem_object *obj_priv = obj->driver_private;
658 drm_i915_private_t *dev_priv = dev->dev_private;
659 ssize_t remain;
660 loff_t gtt_page_base, offset;
661 loff_t first_data_page, last_data_page, num_pages;
662 loff_t pinned_pages, i;
663 struct page **user_pages;
664 struct mm_struct *mm = current->mm;
665 int gtt_page_offset, data_page_offset, data_page_index, page_length;
666 int ret;
667 uint64_t data_ptr = args->data_ptr;
668
669 remain = args->size;
670
671 /* Pin the user pages containing the data. We can't fault while
672 * holding the struct mutex, and all of the pwrite implementations
673 * want to hold it while dereferencing the user data.
674 */
675 first_data_page = data_ptr / PAGE_SIZE;
676 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
677 num_pages = last_data_page - first_data_page + 1;
678
679 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
680 if (user_pages == NULL)
681 return -ENOMEM;
682
683 down_read(&mm->mmap_sem);
684 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
685 num_pages, 0, 0, user_pages, NULL);
686 up_read(&mm->mmap_sem);
687 if (pinned_pages < num_pages) {
688 ret = -EFAULT;
689 goto out_unpin_pages;
690 }
691
692 mutex_lock(&dev->struct_mutex);
693 ret = i915_gem_object_pin(obj, 0);
694 if (ret)
695 goto out_unlock;
696
697 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
698 if (ret)
699 goto out_unpin_object;
700
701 obj_priv = obj->driver_private;
702 offset = obj_priv->gtt_offset + args->offset;
703
704 while (remain > 0) {
705 /* Operation in this page
706 *
707 * gtt_page_base = page offset within aperture
708 * gtt_page_offset = offset within page in aperture
709 * data_page_index = page number in get_user_pages return
710 * data_page_offset = offset with data_page_index page.
711 * page_length = bytes to copy for this page
712 */
713 gtt_page_base = offset & PAGE_MASK;
714 gtt_page_offset = offset & ~PAGE_MASK;
715 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
716 data_page_offset = data_ptr & ~PAGE_MASK;
717
718 page_length = remain;
719 if ((gtt_page_offset + page_length) > PAGE_SIZE)
720 page_length = PAGE_SIZE - gtt_page_offset;
721 if ((data_page_offset + page_length) > PAGE_SIZE)
722 page_length = PAGE_SIZE - data_page_offset;
723
724 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
725 gtt_page_base, gtt_page_offset,
726 user_pages[data_page_index],
727 data_page_offset,
728 page_length);
729
730 /* If we get a fault while copying data, then (presumably) our
731 * source page isn't available. Return the error and we'll
732 * retry in the slow path.
733 */
734 if (ret)
735 goto out_unpin_object;
736
737 remain -= page_length;
738 offset += page_length;
739 data_ptr += page_length;
740 }
741
742 out_unpin_object:
743 i915_gem_object_unpin(obj);
744 out_unlock:
745 mutex_unlock(&dev->struct_mutex);
746 out_unpin_pages:
747 for (i = 0; i < pinned_pages; i++)
748 page_cache_release(user_pages[i]);
749 drm_free_large(user_pages);
750
751 return ret;
752 }
753
754 /**
755 * This is the fast shmem pwrite path, which attempts to directly
756 * copy_from_user into the kmapped pages backing the object.
757 */
758 static int
759 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file_priv)
762 {
763 struct drm_i915_gem_object *obj_priv = obj->driver_private;
764 ssize_t remain;
765 loff_t offset, page_base;
766 char __user *user_data;
767 int page_offset, page_length;
768 int ret;
769
770 user_data = (char __user *) (uintptr_t) args->data_ptr;
771 remain = args->size;
772
773 mutex_lock(&dev->struct_mutex);
774
775 ret = i915_gem_object_get_pages(obj, 0);
776 if (ret != 0)
777 goto fail_unlock;
778
779 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
780 if (ret != 0)
781 goto fail_put_pages;
782
783 obj_priv = obj->driver_private;
784 offset = args->offset;
785 obj_priv->dirty = 1;
786
787 while (remain > 0) {
788 /* Operation in this page
789 *
790 * page_base = page offset within aperture
791 * page_offset = offset within page
792 * page_length = bytes to copy for this page
793 */
794 page_base = (offset & ~(PAGE_SIZE-1));
795 page_offset = offset & (PAGE_SIZE-1);
796 page_length = remain;
797 if ((page_offset + remain) > PAGE_SIZE)
798 page_length = PAGE_SIZE - page_offset;
799
800 ret = fast_shmem_write(obj_priv->pages,
801 page_base, page_offset,
802 user_data, page_length);
803 if (ret)
804 goto fail_put_pages;
805
806 remain -= page_length;
807 user_data += page_length;
808 offset += page_length;
809 }
810
811 fail_put_pages:
812 i915_gem_object_put_pages(obj);
813 fail_unlock:
814 mutex_unlock(&dev->struct_mutex);
815
816 return ret;
817 }
818
819 /**
820 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
821 * the memory and maps it using kmap_atomic for copying.
822 *
823 * This avoids taking mmap_sem for faulting on the user's address while the
824 * struct_mutex is held.
825 */
826 static int
827 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
828 struct drm_i915_gem_pwrite *args,
829 struct drm_file *file_priv)
830 {
831 struct drm_i915_gem_object *obj_priv = obj->driver_private;
832 struct mm_struct *mm = current->mm;
833 struct page **user_pages;
834 ssize_t remain;
835 loff_t offset, pinned_pages, i;
836 loff_t first_data_page, last_data_page, num_pages;
837 int shmem_page_index, shmem_page_offset;
838 int data_page_index, data_page_offset;
839 int page_length;
840 int ret;
841 uint64_t data_ptr = args->data_ptr;
842 int do_bit17_swizzling;
843
844 remain = args->size;
845
846 /* Pin the user pages containing the data. We can't fault while
847 * holding the struct mutex, and all of the pwrite implementations
848 * want to hold it while dereferencing the user data.
849 */
850 first_data_page = data_ptr / PAGE_SIZE;
851 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
852 num_pages = last_data_page - first_data_page + 1;
853
854 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
855 if (user_pages == NULL)
856 return -ENOMEM;
857
858 down_read(&mm->mmap_sem);
859 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
860 num_pages, 0, 0, user_pages, NULL);
861 up_read(&mm->mmap_sem);
862 if (pinned_pages < num_pages) {
863 ret = -EFAULT;
864 goto fail_put_user_pages;
865 }
866
867 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
868
869 mutex_lock(&dev->struct_mutex);
870
871 ret = i915_gem_object_get_pages_or_evict(obj);
872 if (ret)
873 goto fail_unlock;
874
875 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
876 if (ret != 0)
877 goto fail_put_pages;
878
879 obj_priv = obj->driver_private;
880 offset = args->offset;
881 obj_priv->dirty = 1;
882
883 while (remain > 0) {
884 /* Operation in this page
885 *
886 * shmem_page_index = page number within shmem file
887 * shmem_page_offset = offset within page in shmem file
888 * data_page_index = page number in get_user_pages return
889 * data_page_offset = offset with data_page_index page.
890 * page_length = bytes to copy for this page
891 */
892 shmem_page_index = offset / PAGE_SIZE;
893 shmem_page_offset = offset & ~PAGE_MASK;
894 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
895 data_page_offset = data_ptr & ~PAGE_MASK;
896
897 page_length = remain;
898 if ((shmem_page_offset + page_length) > PAGE_SIZE)
899 page_length = PAGE_SIZE - shmem_page_offset;
900 if ((data_page_offset + page_length) > PAGE_SIZE)
901 page_length = PAGE_SIZE - data_page_offset;
902
903 if (do_bit17_swizzling) {
904 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
905 shmem_page_offset,
906 user_pages[data_page_index],
907 data_page_offset,
908 page_length,
909 0);
910 } else {
911 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
912 shmem_page_offset,
913 user_pages[data_page_index],
914 data_page_offset,
915 page_length);
916 }
917 if (ret)
918 goto fail_put_pages;
919
920 remain -= page_length;
921 data_ptr += page_length;
922 offset += page_length;
923 }
924
925 fail_put_pages:
926 i915_gem_object_put_pages(obj);
927 fail_unlock:
928 mutex_unlock(&dev->struct_mutex);
929 fail_put_user_pages:
930 for (i = 0; i < pinned_pages; i++)
931 page_cache_release(user_pages[i]);
932 drm_free_large(user_pages);
933
934 return ret;
935 }
936
937 /**
938 * Writes data to the object referenced by handle.
939 *
940 * On error, the contents of the buffer that were to be modified are undefined.
941 */
942 int
943 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
944 struct drm_file *file_priv)
945 {
946 struct drm_i915_gem_pwrite *args = data;
947 struct drm_gem_object *obj;
948 struct drm_i915_gem_object *obj_priv;
949 int ret = 0;
950
951 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
952 if (obj == NULL)
953 return -EBADF;
954 obj_priv = obj->driver_private;
955
956 /* Bounds check destination.
957 *
958 * XXX: This could use review for overflow issues...
959 */
960 if (args->offset > obj->size || args->size > obj->size ||
961 args->offset + args->size > obj->size) {
962 drm_gem_object_unreference_unlocked(obj);
963 return -EINVAL;
964 }
965
966 /* We can only do the GTT pwrite on untiled buffers, as otherwise
967 * it would end up going through the fenced access, and we'll get
968 * different detiling behavior between reading and writing.
969 * pread/pwrite currently are reading and writing from the CPU
970 * perspective, requiring manual detiling by the client.
971 */
972 if (obj_priv->phys_obj)
973 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
974 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
975 dev->gtt_total != 0) {
976 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
977 if (ret == -EFAULT) {
978 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
979 file_priv);
980 }
981 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
982 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
983 } else {
984 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
985 if (ret == -EFAULT) {
986 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
987 file_priv);
988 }
989 }
990
991 #if WATCH_PWRITE
992 if (ret)
993 DRM_INFO("pwrite failed %d\n", ret);
994 #endif
995
996 drm_gem_object_unreference_unlocked(obj);
997
998 return ret;
999 }
1000
1001 /**
1002 * Called when user space prepares to use an object with the CPU, either
1003 * through the mmap ioctl's mapping or a GTT mapping.
1004 */
1005 int
1006 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1007 struct drm_file *file_priv)
1008 {
1009 struct drm_i915_private *dev_priv = dev->dev_private;
1010 struct drm_i915_gem_set_domain *args = data;
1011 struct drm_gem_object *obj;
1012 struct drm_i915_gem_object *obj_priv;
1013 uint32_t read_domains = args->read_domains;
1014 uint32_t write_domain = args->write_domain;
1015 int ret;
1016
1017 if (!(dev->driver->driver_features & DRIVER_GEM))
1018 return -ENODEV;
1019
1020 /* Only handle setting domains to types used by the CPU. */
1021 if (write_domain & I915_GEM_GPU_DOMAINS)
1022 return -EINVAL;
1023
1024 if (read_domains & I915_GEM_GPU_DOMAINS)
1025 return -EINVAL;
1026
1027 /* Having something in the write domain implies it's in the read
1028 * domain, and only that read domain. Enforce that in the request.
1029 */
1030 if (write_domain != 0 && read_domains != write_domain)
1031 return -EINVAL;
1032
1033 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1034 if (obj == NULL)
1035 return -EBADF;
1036 obj_priv = obj->driver_private;
1037
1038 mutex_lock(&dev->struct_mutex);
1039
1040 intel_mark_busy(dev, obj);
1041
1042 #if WATCH_BUF
1043 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1044 obj, obj->size, read_domains, write_domain);
1045 #endif
1046 if (read_domains & I915_GEM_DOMAIN_GTT) {
1047 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1048
1049 /* Update the LRU on the fence for the CPU access that's
1050 * about to occur.
1051 */
1052 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1053 list_move_tail(&obj_priv->fence_list,
1054 &dev_priv->mm.fence_list);
1055 }
1056
1057 /* Silently promote "you're not bound, there was nothing to do"
1058 * to success, since the client was just asking us to
1059 * make sure everything was done.
1060 */
1061 if (ret == -EINVAL)
1062 ret = 0;
1063 } else {
1064 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1065 }
1066
1067 drm_gem_object_unreference(obj);
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070 }
1071
1072 /**
1073 * Called when user space has done writes to this buffer
1074 */
1075 int
1076 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078 {
1079 struct drm_i915_gem_sw_finish *args = data;
1080 struct drm_gem_object *obj;
1081 struct drm_i915_gem_object *obj_priv;
1082 int ret = 0;
1083
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1085 return -ENODEV;
1086
1087 mutex_lock(&dev->struct_mutex);
1088 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1089 if (obj == NULL) {
1090 mutex_unlock(&dev->struct_mutex);
1091 return -EBADF;
1092 }
1093
1094 #if WATCH_BUF
1095 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1096 __func__, args->handle, obj, obj->size);
1097 #endif
1098 obj_priv = obj->driver_private;
1099
1100 /* Pinned buffers may be scanout, so flush the cache */
1101 if (obj_priv->pin_count)
1102 i915_gem_object_flush_cpu_write_domain(obj);
1103
1104 drm_gem_object_unreference(obj);
1105 mutex_unlock(&dev->struct_mutex);
1106 return ret;
1107 }
1108
1109 /**
1110 * Maps the contents of an object, returning the address it is mapped
1111 * into.
1112 *
1113 * While the mapping holds a reference on the contents of the object, it doesn't
1114 * imply a ref on the object itself.
1115 */
1116 int
1117 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1118 struct drm_file *file_priv)
1119 {
1120 struct drm_i915_gem_mmap *args = data;
1121 struct drm_gem_object *obj;
1122 loff_t offset;
1123 unsigned long addr;
1124
1125 if (!(dev->driver->driver_features & DRIVER_GEM))
1126 return -ENODEV;
1127
1128 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1129 if (obj == NULL)
1130 return -EBADF;
1131
1132 offset = args->offset;
1133
1134 down_write(&current->mm->mmap_sem);
1135 addr = do_mmap(obj->filp, 0, args->size,
1136 PROT_READ | PROT_WRITE, MAP_SHARED,
1137 args->offset);
1138 up_write(&current->mm->mmap_sem);
1139 drm_gem_object_unreference_unlocked(obj);
1140 if (IS_ERR((void *)addr))
1141 return addr;
1142
1143 args->addr_ptr = (uint64_t) addr;
1144
1145 return 0;
1146 }
1147
1148 /**
1149 * i915_gem_fault - fault a page into the GTT
1150 * vma: VMA in question
1151 * vmf: fault info
1152 *
1153 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1154 * from userspace. The fault handler takes care of binding the object to
1155 * the GTT (if needed), allocating and programming a fence register (again,
1156 * only if needed based on whether the old reg is still valid or the object
1157 * is tiled) and inserting a new PTE into the faulting process.
1158 *
1159 * Note that the faulting process may involve evicting existing objects
1160 * from the GTT and/or fence registers to make room. So performance may
1161 * suffer if the GTT working set is large or there are few fence registers
1162 * left.
1163 */
1164 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1165 {
1166 struct drm_gem_object *obj = vma->vm_private_data;
1167 struct drm_device *dev = obj->dev;
1168 struct drm_i915_private *dev_priv = dev->dev_private;
1169 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1170 pgoff_t page_offset;
1171 unsigned long pfn;
1172 int ret = 0;
1173 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1174
1175 /* We don't use vmf->pgoff since that has the fake offset */
1176 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1177 PAGE_SHIFT;
1178
1179 /* Now bind it into the GTT if needed */
1180 mutex_lock(&dev->struct_mutex);
1181 if (!obj_priv->gtt_space) {
1182 ret = i915_gem_object_bind_to_gtt(obj, 0);
1183 if (ret)
1184 goto unlock;
1185
1186 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1187
1188 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1189 if (ret)
1190 goto unlock;
1191 }
1192
1193 /* Need a new fence register? */
1194 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1195 ret = i915_gem_object_get_fence_reg(obj);
1196 if (ret)
1197 goto unlock;
1198 }
1199
1200 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1201 page_offset;
1202
1203 /* Finally, remap it using the new GTT offset */
1204 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1205 unlock:
1206 mutex_unlock(&dev->struct_mutex);
1207
1208 switch (ret) {
1209 case 0:
1210 case -ERESTARTSYS:
1211 return VM_FAULT_NOPAGE;
1212 case -ENOMEM:
1213 case -EAGAIN:
1214 return VM_FAULT_OOM;
1215 default:
1216 return VM_FAULT_SIGBUS;
1217 }
1218 }
1219
1220 /**
1221 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1222 * @obj: obj in question
1223 *
1224 * GEM memory mapping works by handing back to userspace a fake mmap offset
1225 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1226 * up the object based on the offset and sets up the various memory mapping
1227 * structures.
1228 *
1229 * This routine allocates and attaches a fake offset for @obj.
1230 */
1231 static int
1232 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1233 {
1234 struct drm_device *dev = obj->dev;
1235 struct drm_gem_mm *mm = dev->mm_private;
1236 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1237 struct drm_map_list *list;
1238 struct drm_local_map *map;
1239 int ret = 0;
1240
1241 /* Set the object up for mmap'ing */
1242 list = &obj->map_list;
1243 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1244 if (!list->map)
1245 return -ENOMEM;
1246
1247 map = list->map;
1248 map->type = _DRM_GEM;
1249 map->size = obj->size;
1250 map->handle = obj;
1251
1252 /* Get a DRM GEM mmap offset allocated... */
1253 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1254 obj->size / PAGE_SIZE, 0, 0);
1255 if (!list->file_offset_node) {
1256 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1257 ret = -ENOMEM;
1258 goto out_free_list;
1259 }
1260
1261 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1262 obj->size / PAGE_SIZE, 0);
1263 if (!list->file_offset_node) {
1264 ret = -ENOMEM;
1265 goto out_free_list;
1266 }
1267
1268 list->hash.key = list->file_offset_node->start;
1269 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1270 DRM_ERROR("failed to add to map hash\n");
1271 ret = -ENOMEM;
1272 goto out_free_mm;
1273 }
1274
1275 /* By now we should be all set, any drm_mmap request on the offset
1276 * below will get to our mmap & fault handler */
1277 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1278
1279 return 0;
1280
1281 out_free_mm:
1282 drm_mm_put_block(list->file_offset_node);
1283 out_free_list:
1284 kfree(list->map);
1285
1286 return ret;
1287 }
1288
1289 /**
1290 * i915_gem_release_mmap - remove physical page mappings
1291 * @obj: obj in question
1292 *
1293 * Preserve the reservation of the mmapping with the DRM core code, but
1294 * relinquish ownership of the pages back to the system.
1295 *
1296 * It is vital that we remove the page mapping if we have mapped a tiled
1297 * object through the GTT and then lose the fence register due to
1298 * resource pressure. Similarly if the object has been moved out of the
1299 * aperture, than pages mapped into userspace must be revoked. Removing the
1300 * mapping will then trigger a page fault on the next user access, allowing
1301 * fixup by i915_gem_fault().
1302 */
1303 void
1304 i915_gem_release_mmap(struct drm_gem_object *obj)
1305 {
1306 struct drm_device *dev = obj->dev;
1307 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1308
1309 if (dev->dev_mapping)
1310 unmap_mapping_range(dev->dev_mapping,
1311 obj_priv->mmap_offset, obj->size, 1);
1312 }
1313
1314 static void
1315 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1316 {
1317 struct drm_device *dev = obj->dev;
1318 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1319 struct drm_gem_mm *mm = dev->mm_private;
1320 struct drm_map_list *list;
1321
1322 list = &obj->map_list;
1323 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1324
1325 if (list->file_offset_node) {
1326 drm_mm_put_block(list->file_offset_node);
1327 list->file_offset_node = NULL;
1328 }
1329
1330 if (list->map) {
1331 kfree(list->map);
1332 list->map = NULL;
1333 }
1334
1335 obj_priv->mmap_offset = 0;
1336 }
1337
1338 /**
1339 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1340 * @obj: object to check
1341 *
1342 * Return the required GTT alignment for an object, taking into account
1343 * potential fence register mapping if needed.
1344 */
1345 static uint32_t
1346 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1347 {
1348 struct drm_device *dev = obj->dev;
1349 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1350 int start, i;
1351
1352 /*
1353 * Minimum alignment is 4k (GTT page size), but might be greater
1354 * if a fence register is needed for the object.
1355 */
1356 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1357 return 4096;
1358
1359 /*
1360 * Previous chips need to be aligned to the size of the smallest
1361 * fence register that can contain the object.
1362 */
1363 if (IS_I9XX(dev))
1364 start = 1024*1024;
1365 else
1366 start = 512*1024;
1367
1368 for (i = start; i < obj->size; i <<= 1)
1369 ;
1370
1371 return i;
1372 }
1373
1374 /**
1375 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1376 * @dev: DRM device
1377 * @data: GTT mapping ioctl data
1378 * @file_priv: GEM object info
1379 *
1380 * Simply returns the fake offset to userspace so it can mmap it.
1381 * The mmap call will end up in drm_gem_mmap(), which will set things
1382 * up so we can get faults in the handler above.
1383 *
1384 * The fault handler will take care of binding the object into the GTT
1385 * (since it may have been evicted to make room for something), allocating
1386 * a fence register, and mapping the appropriate aperture address into
1387 * userspace.
1388 */
1389 int
1390 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1391 struct drm_file *file_priv)
1392 {
1393 struct drm_i915_gem_mmap_gtt *args = data;
1394 struct drm_i915_private *dev_priv = dev->dev_private;
1395 struct drm_gem_object *obj;
1396 struct drm_i915_gem_object *obj_priv;
1397 int ret;
1398
1399 if (!(dev->driver->driver_features & DRIVER_GEM))
1400 return -ENODEV;
1401
1402 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1403 if (obj == NULL)
1404 return -EBADF;
1405
1406 mutex_lock(&dev->struct_mutex);
1407
1408 obj_priv = obj->driver_private;
1409
1410 if (obj_priv->madv != I915_MADV_WILLNEED) {
1411 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
1414 return -EINVAL;
1415 }
1416
1417
1418 if (!obj_priv->mmap_offset) {
1419 ret = i915_gem_create_mmap_offset(obj);
1420 if (ret) {
1421 drm_gem_object_unreference(obj);
1422 mutex_unlock(&dev->struct_mutex);
1423 return ret;
1424 }
1425 }
1426
1427 args->offset = obj_priv->mmap_offset;
1428
1429 /*
1430 * Pull it into the GTT so that we have a page list (makes the
1431 * initial fault faster and any subsequent flushing possible).
1432 */
1433 if (!obj_priv->agp_mem) {
1434 ret = i915_gem_object_bind_to_gtt(obj, 0);
1435 if (ret) {
1436 drm_gem_object_unreference(obj);
1437 mutex_unlock(&dev->struct_mutex);
1438 return ret;
1439 }
1440 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1441 }
1442
1443 drm_gem_object_unreference(obj);
1444 mutex_unlock(&dev->struct_mutex);
1445
1446 return 0;
1447 }
1448
1449 void
1450 i915_gem_object_put_pages(struct drm_gem_object *obj)
1451 {
1452 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1453 int page_count = obj->size / PAGE_SIZE;
1454 int i;
1455
1456 BUG_ON(obj_priv->pages_refcount == 0);
1457 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1458
1459 if (--obj_priv->pages_refcount != 0)
1460 return;
1461
1462 if (obj_priv->tiling_mode != I915_TILING_NONE)
1463 i915_gem_object_save_bit_17_swizzle(obj);
1464
1465 if (obj_priv->madv == I915_MADV_DONTNEED)
1466 obj_priv->dirty = 0;
1467
1468 for (i = 0; i < page_count; i++) {
1469 if (obj_priv->pages[i] == NULL)
1470 break;
1471
1472 if (obj_priv->dirty)
1473 set_page_dirty(obj_priv->pages[i]);
1474
1475 if (obj_priv->madv == I915_MADV_WILLNEED)
1476 mark_page_accessed(obj_priv->pages[i]);
1477
1478 page_cache_release(obj_priv->pages[i]);
1479 }
1480 obj_priv->dirty = 0;
1481
1482 drm_free_large(obj_priv->pages);
1483 obj_priv->pages = NULL;
1484 }
1485
1486 static void
1487 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1488 {
1489 struct drm_device *dev = obj->dev;
1490 drm_i915_private_t *dev_priv = dev->dev_private;
1491 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1492
1493 /* Add a reference if we're newly entering the active list. */
1494 if (!obj_priv->active) {
1495 drm_gem_object_reference(obj);
1496 obj_priv->active = 1;
1497 }
1498 /* Move from whatever list we were on to the tail of execution. */
1499 spin_lock(&dev_priv->mm.active_list_lock);
1500 list_move_tail(&obj_priv->list,
1501 &dev_priv->mm.active_list);
1502 spin_unlock(&dev_priv->mm.active_list_lock);
1503 obj_priv->last_rendering_seqno = seqno;
1504 }
1505
1506 static void
1507 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1508 {
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
1511 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512
1513 BUG_ON(!obj_priv->active);
1514 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1515 obj_priv->last_rendering_seqno = 0;
1516 }
1517
1518 /* Immediately discard the backing storage */
1519 static void
1520 i915_gem_object_truncate(struct drm_gem_object *obj)
1521 {
1522 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1523 struct inode *inode;
1524
1525 inode = obj->filp->f_path.dentry->d_inode;
1526 if (inode->i_op->truncate)
1527 inode->i_op->truncate (inode);
1528
1529 obj_priv->madv = __I915_MADV_PURGED;
1530 }
1531
1532 static inline int
1533 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1534 {
1535 return obj_priv->madv == I915_MADV_DONTNEED;
1536 }
1537
1538 static void
1539 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1540 {
1541 struct drm_device *dev = obj->dev;
1542 drm_i915_private_t *dev_priv = dev->dev_private;
1543 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1544
1545 i915_verify_inactive(dev, __FILE__, __LINE__);
1546 if (obj_priv->pin_count != 0)
1547 list_del_init(&obj_priv->list);
1548 else
1549 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1550
1551 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1552
1553 obj_priv->last_rendering_seqno = 0;
1554 if (obj_priv->active) {
1555 obj_priv->active = 0;
1556 drm_gem_object_unreference(obj);
1557 }
1558 i915_verify_inactive(dev, __FILE__, __LINE__);
1559 }
1560
1561 /**
1562 * Creates a new sequence number, emitting a write of it to the status page
1563 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1564 *
1565 * Must be called with struct_lock held.
1566 *
1567 * Returned sequence numbers are nonzero on success.
1568 */
1569 uint32_t
1570 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1571 uint32_t flush_domains)
1572 {
1573 drm_i915_private_t *dev_priv = dev->dev_private;
1574 struct drm_i915_file_private *i915_file_priv = NULL;
1575 struct drm_i915_gem_request *request;
1576 uint32_t seqno;
1577 int was_empty;
1578 RING_LOCALS;
1579
1580 if (file_priv != NULL)
1581 i915_file_priv = file_priv->driver_priv;
1582
1583 request = kzalloc(sizeof(*request), GFP_KERNEL);
1584 if (request == NULL)
1585 return 0;
1586
1587 /* Grab the seqno we're going to make this request be, and bump the
1588 * next (skipping 0 so it can be the reserved no-seqno value).
1589 */
1590 seqno = dev_priv->mm.next_gem_seqno;
1591 dev_priv->mm.next_gem_seqno++;
1592 if (dev_priv->mm.next_gem_seqno == 0)
1593 dev_priv->mm.next_gem_seqno++;
1594
1595 BEGIN_LP_RING(4);
1596 OUT_RING(MI_STORE_DWORD_INDEX);
1597 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1598 OUT_RING(seqno);
1599
1600 OUT_RING(MI_USER_INTERRUPT);
1601 ADVANCE_LP_RING();
1602
1603 DRM_DEBUG_DRIVER("%d\n", seqno);
1604
1605 request->seqno = seqno;
1606 request->emitted_jiffies = jiffies;
1607 was_empty = list_empty(&dev_priv->mm.request_list);
1608 list_add_tail(&request->list, &dev_priv->mm.request_list);
1609 if (i915_file_priv) {
1610 list_add_tail(&request->client_list,
1611 &i915_file_priv->mm.request_list);
1612 } else {
1613 INIT_LIST_HEAD(&request->client_list);
1614 }
1615
1616 /* Associate any objects on the flushing list matching the write
1617 * domain we're flushing with our flush.
1618 */
1619 if (flush_domains != 0) {
1620 struct drm_i915_gem_object *obj_priv, *next;
1621
1622 list_for_each_entry_safe(obj_priv, next,
1623 &dev_priv->mm.gpu_write_list,
1624 gpu_write_list) {
1625 struct drm_gem_object *obj = obj_priv->obj;
1626
1627 if ((obj->write_domain & flush_domains) ==
1628 obj->write_domain) {
1629 uint32_t old_write_domain = obj->write_domain;
1630
1631 obj->write_domain = 0;
1632 list_del_init(&obj_priv->gpu_write_list);
1633 i915_gem_object_move_to_active(obj, seqno);
1634
1635 trace_i915_gem_object_change_domain(obj,
1636 obj->read_domains,
1637 old_write_domain);
1638 }
1639 }
1640
1641 }
1642
1643 if (!dev_priv->mm.suspended) {
1644 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1645 if (was_empty)
1646 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1647 }
1648 return seqno;
1649 }
1650
1651 /**
1652 * Command execution barrier
1653 *
1654 * Ensures that all commands in the ring are finished
1655 * before signalling the CPU
1656 */
1657 static uint32_t
1658 i915_retire_commands(struct drm_device *dev)
1659 {
1660 drm_i915_private_t *dev_priv = dev->dev_private;
1661 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1662 uint32_t flush_domains = 0;
1663 RING_LOCALS;
1664
1665 /* The sampler always gets flushed on i965 (sigh) */
1666 if (IS_I965G(dev))
1667 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1668 BEGIN_LP_RING(2);
1669 OUT_RING(cmd);
1670 OUT_RING(0); /* noop */
1671 ADVANCE_LP_RING();
1672 return flush_domains;
1673 }
1674
1675 /**
1676 * Moves buffers associated only with the given active seqno from the active
1677 * to inactive list, potentially freeing them.
1678 */
1679 static void
1680 i915_gem_retire_request(struct drm_device *dev,
1681 struct drm_i915_gem_request *request)
1682 {
1683 drm_i915_private_t *dev_priv = dev->dev_private;
1684
1685 trace_i915_gem_request_retire(dev, request->seqno);
1686
1687 /* Move any buffers on the active list that are no longer referenced
1688 * by the ringbuffer to the flushing/inactive lists as appropriate.
1689 */
1690 spin_lock(&dev_priv->mm.active_list_lock);
1691 while (!list_empty(&dev_priv->mm.active_list)) {
1692 struct drm_gem_object *obj;
1693 struct drm_i915_gem_object *obj_priv;
1694
1695 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1696 struct drm_i915_gem_object,
1697 list);
1698 obj = obj_priv->obj;
1699
1700 /* If the seqno being retired doesn't match the oldest in the
1701 * list, then the oldest in the list must still be newer than
1702 * this seqno.
1703 */
1704 if (obj_priv->last_rendering_seqno != request->seqno)
1705 goto out;
1706
1707 #if WATCH_LRU
1708 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1709 __func__, request->seqno, obj);
1710 #endif
1711
1712 if (obj->write_domain != 0)
1713 i915_gem_object_move_to_flushing(obj);
1714 else {
1715 /* Take a reference on the object so it won't be
1716 * freed while the spinlock is held. The list
1717 * protection for this spinlock is safe when breaking
1718 * the lock like this since the next thing we do
1719 * is just get the head of the list again.
1720 */
1721 drm_gem_object_reference(obj);
1722 i915_gem_object_move_to_inactive(obj);
1723 spin_unlock(&dev_priv->mm.active_list_lock);
1724 drm_gem_object_unreference(obj);
1725 spin_lock(&dev_priv->mm.active_list_lock);
1726 }
1727 }
1728 out:
1729 spin_unlock(&dev_priv->mm.active_list_lock);
1730 }
1731
1732 /**
1733 * Returns true if seq1 is later than seq2.
1734 */
1735 bool
1736 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1737 {
1738 return (int32_t)(seq1 - seq2) >= 0;
1739 }
1740
1741 uint32_t
1742 i915_get_gem_seqno(struct drm_device *dev)
1743 {
1744 drm_i915_private_t *dev_priv = dev->dev_private;
1745
1746 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1747 }
1748
1749 /**
1750 * This function clears the request list as sequence numbers are passed.
1751 */
1752 void
1753 i915_gem_retire_requests(struct drm_device *dev)
1754 {
1755 drm_i915_private_t *dev_priv = dev->dev_private;
1756 uint32_t seqno;
1757
1758 if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1759 return;
1760
1761 seqno = i915_get_gem_seqno(dev);
1762
1763 while (!list_empty(&dev_priv->mm.request_list)) {
1764 struct drm_i915_gem_request *request;
1765 uint32_t retiring_seqno;
1766
1767 request = list_first_entry(&dev_priv->mm.request_list,
1768 struct drm_i915_gem_request,
1769 list);
1770 retiring_seqno = request->seqno;
1771
1772 if (i915_seqno_passed(seqno, retiring_seqno) ||
1773 atomic_read(&dev_priv->mm.wedged)) {
1774 i915_gem_retire_request(dev, request);
1775
1776 list_del(&request->list);
1777 list_del(&request->client_list);
1778 kfree(request);
1779 } else
1780 break;
1781 }
1782
1783 if (unlikely (dev_priv->trace_irq_seqno &&
1784 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1785 i915_user_irq_put(dev);
1786 dev_priv->trace_irq_seqno = 0;
1787 }
1788 }
1789
1790 void
1791 i915_gem_retire_work_handler(struct work_struct *work)
1792 {
1793 drm_i915_private_t *dev_priv;
1794 struct drm_device *dev;
1795
1796 dev_priv = container_of(work, drm_i915_private_t,
1797 mm.retire_work.work);
1798 dev = dev_priv->dev;
1799
1800 mutex_lock(&dev->struct_mutex);
1801 i915_gem_retire_requests(dev);
1802 if (!dev_priv->mm.suspended &&
1803 !list_empty(&dev_priv->mm.request_list))
1804 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1805 mutex_unlock(&dev->struct_mutex);
1806 }
1807
1808 int
1809 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1810 {
1811 drm_i915_private_t *dev_priv = dev->dev_private;
1812 u32 ier;
1813 int ret = 0;
1814
1815 BUG_ON(seqno == 0);
1816
1817 if (atomic_read(&dev_priv->mm.wedged))
1818 return -EIO;
1819
1820 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1821 if (IS_IRONLAKE(dev))
1822 ier = I915_READ(DEIER) | I915_READ(GTIER);
1823 else
1824 ier = I915_READ(IER);
1825 if (!ier) {
1826 DRM_ERROR("something (likely vbetool) disabled "
1827 "interrupts, re-enabling\n");
1828 i915_driver_irq_preinstall(dev);
1829 i915_driver_irq_postinstall(dev);
1830 }
1831
1832 trace_i915_gem_request_wait_begin(dev, seqno);
1833
1834 dev_priv->mm.waiting_gem_seqno = seqno;
1835 i915_user_irq_get(dev);
1836 if (interruptible)
1837 ret = wait_event_interruptible(dev_priv->irq_queue,
1838 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1839 atomic_read(&dev_priv->mm.wedged));
1840 else
1841 wait_event(dev_priv->irq_queue,
1842 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1843 atomic_read(&dev_priv->mm.wedged));
1844
1845 i915_user_irq_put(dev);
1846 dev_priv->mm.waiting_gem_seqno = 0;
1847
1848 trace_i915_gem_request_wait_end(dev, seqno);
1849 }
1850 if (atomic_read(&dev_priv->mm.wedged))
1851 ret = -EIO;
1852
1853 if (ret && ret != -ERESTARTSYS)
1854 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1855 __func__, ret, seqno, i915_get_gem_seqno(dev));
1856
1857 /* Directly dispatch request retiring. While we have the work queue
1858 * to handle this, the waiter on a request often wants an associated
1859 * buffer to have made it to the inactive list, and we would need
1860 * a separate wait queue to handle that.
1861 */
1862 if (ret == 0)
1863 i915_gem_retire_requests(dev);
1864
1865 return ret;
1866 }
1867
1868 /**
1869 * Waits for a sequence number to be signaled, and cleans up the
1870 * request and object lists appropriately for that event.
1871 */
1872 static int
1873 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1874 {
1875 return i915_do_wait_request(dev, seqno, 1);
1876 }
1877
1878 static void
1879 i915_gem_flush(struct drm_device *dev,
1880 uint32_t invalidate_domains,
1881 uint32_t flush_domains)
1882 {
1883 drm_i915_private_t *dev_priv = dev->dev_private;
1884 uint32_t cmd;
1885 RING_LOCALS;
1886
1887 #if WATCH_EXEC
1888 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1889 invalidate_domains, flush_domains);
1890 #endif
1891 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1892 invalidate_domains, flush_domains);
1893
1894 if (flush_domains & I915_GEM_DOMAIN_CPU)
1895 drm_agp_chipset_flush(dev);
1896
1897 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1898 /*
1899 * read/write caches:
1900 *
1901 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1902 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1903 * also flushed at 2d versus 3d pipeline switches.
1904 *
1905 * read-only caches:
1906 *
1907 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1908 * MI_READ_FLUSH is set, and is always flushed on 965.
1909 *
1910 * I915_GEM_DOMAIN_COMMAND may not exist?
1911 *
1912 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1913 * invalidated when MI_EXE_FLUSH is set.
1914 *
1915 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1916 * invalidated with every MI_FLUSH.
1917 *
1918 * TLBs:
1919 *
1920 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1921 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1922 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1923 * are flushed at any MI_FLUSH.
1924 */
1925
1926 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1927 if ((invalidate_domains|flush_domains) &
1928 I915_GEM_DOMAIN_RENDER)
1929 cmd &= ~MI_NO_WRITE_FLUSH;
1930 if (!IS_I965G(dev)) {
1931 /*
1932 * On the 965, the sampler cache always gets flushed
1933 * and this bit is reserved.
1934 */
1935 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1936 cmd |= MI_READ_FLUSH;
1937 }
1938 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1939 cmd |= MI_EXE_FLUSH;
1940
1941 #if WATCH_EXEC
1942 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1943 #endif
1944 BEGIN_LP_RING(2);
1945 OUT_RING(cmd);
1946 OUT_RING(MI_NOOP);
1947 ADVANCE_LP_RING();
1948 }
1949 }
1950
1951 /**
1952 * Ensures that all rendering to the object has completed and the object is
1953 * safe to unbind from the GTT or access from the CPU.
1954 */
1955 static int
1956 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1957 {
1958 struct drm_device *dev = obj->dev;
1959 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1960 int ret;
1961
1962 /* This function only exists to support waiting for existing rendering,
1963 * not for emitting required flushes.
1964 */
1965 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1966
1967 /* If there is rendering queued on the buffer being evicted, wait for
1968 * it.
1969 */
1970 if (obj_priv->active) {
1971 #if WATCH_BUF
1972 DRM_INFO("%s: object %p wait for seqno %08x\n",
1973 __func__, obj, obj_priv->last_rendering_seqno);
1974 #endif
1975 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1976 if (ret != 0)
1977 return ret;
1978 }
1979
1980 return 0;
1981 }
1982
1983 /**
1984 * Unbinds an object from the GTT aperture.
1985 */
1986 int
1987 i915_gem_object_unbind(struct drm_gem_object *obj)
1988 {
1989 struct drm_device *dev = obj->dev;
1990 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1991 int ret = 0;
1992
1993 #if WATCH_BUF
1994 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1995 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1996 #endif
1997 if (obj_priv->gtt_space == NULL)
1998 return 0;
1999
2000 if (obj_priv->pin_count != 0) {
2001 DRM_ERROR("Attempting to unbind pinned buffer\n");
2002 return -EINVAL;
2003 }
2004
2005 /* blow away mappings if mapped through GTT */
2006 i915_gem_release_mmap(obj);
2007
2008 /* Move the object to the CPU domain to ensure that
2009 * any possible CPU writes while it's not in the GTT
2010 * are flushed when we go to remap it. This will
2011 * also ensure that all pending GPU writes are finished
2012 * before we unbind.
2013 */
2014 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2015 if (ret) {
2016 if (ret != -ERESTARTSYS)
2017 DRM_ERROR("set_domain failed: %d\n", ret);
2018 return ret;
2019 }
2020
2021 BUG_ON(obj_priv->active);
2022
2023 /* release the fence reg _after_ flushing */
2024 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2025 i915_gem_clear_fence_reg(obj);
2026
2027 if (obj_priv->agp_mem != NULL) {
2028 drm_unbind_agp(obj_priv->agp_mem);
2029 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2030 obj_priv->agp_mem = NULL;
2031 }
2032
2033 i915_gem_object_put_pages(obj);
2034 BUG_ON(obj_priv->pages_refcount);
2035
2036 if (obj_priv->gtt_space) {
2037 atomic_dec(&dev->gtt_count);
2038 atomic_sub(obj->size, &dev->gtt_memory);
2039
2040 drm_mm_put_block(obj_priv->gtt_space);
2041 obj_priv->gtt_space = NULL;
2042 }
2043
2044 /* Remove ourselves from the LRU list if present. */
2045 if (!list_empty(&obj_priv->list))
2046 list_del_init(&obj_priv->list);
2047
2048 if (i915_gem_object_is_purgeable(obj_priv))
2049 i915_gem_object_truncate(obj);
2050
2051 trace_i915_gem_object_unbind(obj);
2052
2053 return 0;
2054 }
2055
2056 static struct drm_gem_object *
2057 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2058 {
2059 drm_i915_private_t *dev_priv = dev->dev_private;
2060 struct drm_i915_gem_object *obj_priv;
2061 struct drm_gem_object *best = NULL;
2062 struct drm_gem_object *first = NULL;
2063
2064 /* Try to find the smallest clean object */
2065 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2066 struct drm_gem_object *obj = obj_priv->obj;
2067 if (obj->size >= min_size) {
2068 if ((!obj_priv->dirty ||
2069 i915_gem_object_is_purgeable(obj_priv)) &&
2070 (!best || obj->size < best->size)) {
2071 best = obj;
2072 if (best->size == min_size)
2073 return best;
2074 }
2075 if (!first)
2076 first = obj;
2077 }
2078 }
2079
2080 return best ? best : first;
2081 }
2082
2083 static int
2084 i915_gem_evict_everything(struct drm_device *dev)
2085 {
2086 drm_i915_private_t *dev_priv = dev->dev_private;
2087 int ret;
2088 uint32_t seqno;
2089 bool lists_empty;
2090
2091 spin_lock(&dev_priv->mm.active_list_lock);
2092 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2093 list_empty(&dev_priv->mm.flushing_list) &&
2094 list_empty(&dev_priv->mm.active_list));
2095 spin_unlock(&dev_priv->mm.active_list_lock);
2096
2097 if (lists_empty)
2098 return -ENOSPC;
2099
2100 /* Flush everything (on to the inactive lists) and evict */
2101 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2102 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2103 if (seqno == 0)
2104 return -ENOMEM;
2105
2106 ret = i915_wait_request(dev, seqno);
2107 if (ret)
2108 return ret;
2109
2110 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2111
2112 ret = i915_gem_evict_from_inactive_list(dev);
2113 if (ret)
2114 return ret;
2115
2116 spin_lock(&dev_priv->mm.active_list_lock);
2117 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2118 list_empty(&dev_priv->mm.flushing_list) &&
2119 list_empty(&dev_priv->mm.active_list));
2120 spin_unlock(&dev_priv->mm.active_list_lock);
2121 BUG_ON(!lists_empty);
2122
2123 return 0;
2124 }
2125
2126 static int
2127 i915_gem_evict_something(struct drm_device *dev, int min_size)
2128 {
2129 drm_i915_private_t *dev_priv = dev->dev_private;
2130 struct drm_gem_object *obj;
2131 int ret;
2132
2133 for (;;) {
2134 i915_gem_retire_requests(dev);
2135
2136 /* If there's an inactive buffer available now, grab it
2137 * and be done.
2138 */
2139 obj = i915_gem_find_inactive_object(dev, min_size);
2140 if (obj) {
2141 struct drm_i915_gem_object *obj_priv;
2142
2143 #if WATCH_LRU
2144 DRM_INFO("%s: evicting %p\n", __func__, obj);
2145 #endif
2146 obj_priv = obj->driver_private;
2147 BUG_ON(obj_priv->pin_count != 0);
2148 BUG_ON(obj_priv->active);
2149
2150 /* Wait on the rendering and unbind the buffer. */
2151 return i915_gem_object_unbind(obj);
2152 }
2153
2154 /* If we didn't get anything, but the ring is still processing
2155 * things, wait for the next to finish and hopefully leave us
2156 * a buffer to evict.
2157 */
2158 if (!list_empty(&dev_priv->mm.request_list)) {
2159 struct drm_i915_gem_request *request;
2160
2161 request = list_first_entry(&dev_priv->mm.request_list,
2162 struct drm_i915_gem_request,
2163 list);
2164
2165 ret = i915_wait_request(dev, request->seqno);
2166 if (ret)
2167 return ret;
2168
2169 continue;
2170 }
2171
2172 /* If we didn't have anything on the request list but there
2173 * are buffers awaiting a flush, emit one and try again.
2174 * When we wait on it, those buffers waiting for that flush
2175 * will get moved to inactive.
2176 */
2177 if (!list_empty(&dev_priv->mm.flushing_list)) {
2178 struct drm_i915_gem_object *obj_priv;
2179
2180 /* Find an object that we can immediately reuse */
2181 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2182 obj = obj_priv->obj;
2183 if (obj->size >= min_size)
2184 break;
2185
2186 obj = NULL;
2187 }
2188
2189 if (obj != NULL) {
2190 uint32_t seqno;
2191
2192 i915_gem_flush(dev,
2193 obj->write_domain,
2194 obj->write_domain);
2195 seqno = i915_add_request(dev, NULL, obj->write_domain);
2196 if (seqno == 0)
2197 return -ENOMEM;
2198
2199 ret = i915_wait_request(dev, seqno);
2200 if (ret)
2201 return ret;
2202
2203 continue;
2204 }
2205 }
2206
2207 /* If we didn't do any of the above, there's no single buffer
2208 * large enough to swap out for the new one, so just evict
2209 * everything and start again. (This should be rare.)
2210 */
2211 if (!list_empty (&dev_priv->mm.inactive_list))
2212 return i915_gem_evict_from_inactive_list(dev);
2213 else
2214 return i915_gem_evict_everything(dev);
2215 }
2216 }
2217
2218 int
2219 i915_gem_object_get_pages(struct drm_gem_object *obj,
2220 gfp_t gfpmask)
2221 {
2222 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2223 int page_count, i;
2224 struct address_space *mapping;
2225 struct inode *inode;
2226 struct page *page;
2227 int ret;
2228
2229 if (obj_priv->pages_refcount++ != 0)
2230 return 0;
2231
2232 /* Get the list of pages out of our struct file. They'll be pinned
2233 * at this point until we release them.
2234 */
2235 page_count = obj->size / PAGE_SIZE;
2236 BUG_ON(obj_priv->pages != NULL);
2237 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2238 if (obj_priv->pages == NULL) {
2239 obj_priv->pages_refcount--;
2240 return -ENOMEM;
2241 }
2242
2243 inode = obj->filp->f_path.dentry->d_inode;
2244 mapping = inode->i_mapping;
2245 for (i = 0; i < page_count; i++) {
2246 page = read_cache_page_gfp(mapping, i,
2247 mapping_gfp_mask (mapping) |
2248 __GFP_COLD |
2249 gfpmask);
2250 if (IS_ERR(page)) {
2251 ret = PTR_ERR(page);
2252 i915_gem_object_put_pages(obj);
2253 return ret;
2254 }
2255 obj_priv->pages[i] = page;
2256 }
2257
2258 if (obj_priv->tiling_mode != I915_TILING_NONE)
2259 i915_gem_object_do_bit_17_swizzle(obj);
2260
2261 return 0;
2262 }
2263
2264 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2265 {
2266 struct drm_gem_object *obj = reg->obj;
2267 struct drm_device *dev = obj->dev;
2268 drm_i915_private_t *dev_priv = dev->dev_private;
2269 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2270 int regnum = obj_priv->fence_reg;
2271 uint64_t val;
2272
2273 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2274 0xfffff000) << 32;
2275 val |= obj_priv->gtt_offset & 0xfffff000;
2276 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2277 if (obj_priv->tiling_mode == I915_TILING_Y)
2278 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2279 val |= I965_FENCE_REG_VALID;
2280
2281 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2282 }
2283
2284 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2285 {
2286 struct drm_gem_object *obj = reg->obj;
2287 struct drm_device *dev = obj->dev;
2288 drm_i915_private_t *dev_priv = dev->dev_private;
2289 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2290 int regnum = obj_priv->fence_reg;
2291 int tile_width;
2292 uint32_t fence_reg, val;
2293 uint32_t pitch_val;
2294
2295 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2296 (obj_priv->gtt_offset & (obj->size - 1))) {
2297 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2298 __func__, obj_priv->gtt_offset, obj->size);
2299 return;
2300 }
2301
2302 if (obj_priv->tiling_mode == I915_TILING_Y &&
2303 HAS_128_BYTE_Y_TILING(dev))
2304 tile_width = 128;
2305 else
2306 tile_width = 512;
2307
2308 /* Note: pitch better be a power of two tile widths */
2309 pitch_val = obj_priv->stride / tile_width;
2310 pitch_val = ffs(pitch_val) - 1;
2311
2312 val = obj_priv->gtt_offset;
2313 if (obj_priv->tiling_mode == I915_TILING_Y)
2314 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2315 val |= I915_FENCE_SIZE_BITS(obj->size);
2316 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2317 val |= I830_FENCE_REG_VALID;
2318
2319 if (regnum < 8)
2320 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2321 else
2322 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2323 I915_WRITE(fence_reg, val);
2324 }
2325
2326 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2327 {
2328 struct drm_gem_object *obj = reg->obj;
2329 struct drm_device *dev = obj->dev;
2330 drm_i915_private_t *dev_priv = dev->dev_private;
2331 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2332 int regnum = obj_priv->fence_reg;
2333 uint32_t val;
2334 uint32_t pitch_val;
2335 uint32_t fence_size_bits;
2336
2337 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2338 (obj_priv->gtt_offset & (obj->size - 1))) {
2339 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2340 __func__, obj_priv->gtt_offset);
2341 return;
2342 }
2343
2344 pitch_val = obj_priv->stride / 128;
2345 pitch_val = ffs(pitch_val) - 1;
2346 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2347
2348 val = obj_priv->gtt_offset;
2349 if (obj_priv->tiling_mode == I915_TILING_Y)
2350 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2351 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2352 WARN_ON(fence_size_bits & ~0x00000f00);
2353 val |= fence_size_bits;
2354 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2355 val |= I830_FENCE_REG_VALID;
2356
2357 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2358 }
2359
2360 /**
2361 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2362 * @obj: object to map through a fence reg
2363 *
2364 * When mapping objects through the GTT, userspace wants to be able to write
2365 * to them without having to worry about swizzling if the object is tiled.
2366 *
2367 * This function walks the fence regs looking for a free one for @obj,
2368 * stealing one if it can't find any.
2369 *
2370 * It then sets up the reg based on the object's properties: address, pitch
2371 * and tiling format.
2372 */
2373 int
2374 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2375 {
2376 struct drm_device *dev = obj->dev;
2377 struct drm_i915_private *dev_priv = dev->dev_private;
2378 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2379 struct drm_i915_fence_reg *reg = NULL;
2380 struct drm_i915_gem_object *old_obj_priv = NULL;
2381 int i, ret, avail;
2382
2383 /* Just update our place in the LRU if our fence is getting used. */
2384 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2385 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2386 return 0;
2387 }
2388
2389 switch (obj_priv->tiling_mode) {
2390 case I915_TILING_NONE:
2391 WARN(1, "allocating a fence for non-tiled object?\n");
2392 break;
2393 case I915_TILING_X:
2394 if (!obj_priv->stride)
2395 return -EINVAL;
2396 WARN((obj_priv->stride & (512 - 1)),
2397 "object 0x%08x is X tiled but has non-512B pitch\n",
2398 obj_priv->gtt_offset);
2399 break;
2400 case I915_TILING_Y:
2401 if (!obj_priv->stride)
2402 return -EINVAL;
2403 WARN((obj_priv->stride & (128 - 1)),
2404 "object 0x%08x is Y tiled but has non-128B pitch\n",
2405 obj_priv->gtt_offset);
2406 break;
2407 }
2408
2409 /* First try to find a free reg */
2410 avail = 0;
2411 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2412 reg = &dev_priv->fence_regs[i];
2413 if (!reg->obj)
2414 break;
2415
2416 old_obj_priv = reg->obj->driver_private;
2417 if (!old_obj_priv->pin_count)
2418 avail++;
2419 }
2420
2421 /* None available, try to steal one or wait for a user to finish */
2422 if (i == dev_priv->num_fence_regs) {
2423 struct drm_gem_object *old_obj = NULL;
2424
2425 if (avail == 0)
2426 return -ENOSPC;
2427
2428 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2429 fence_list) {
2430 old_obj = old_obj_priv->obj;
2431
2432 if (old_obj_priv->pin_count)
2433 continue;
2434
2435 /* Take a reference, as otherwise the wait_rendering
2436 * below may cause the object to get freed out from
2437 * under us.
2438 */
2439 drm_gem_object_reference(old_obj);
2440
2441 /* i915 uses fences for GPU access to tiled buffers */
2442 if (IS_I965G(dev) || !old_obj_priv->active)
2443 break;
2444
2445 /* This brings the object to the head of the LRU if it
2446 * had been written to. The only way this should
2447 * result in us waiting longer than the expected
2448 * optimal amount of time is if there was a
2449 * fence-using buffer later that was read-only.
2450 */
2451 i915_gem_object_flush_gpu_write_domain(old_obj);
2452 ret = i915_gem_object_wait_rendering(old_obj);
2453 if (ret != 0) {
2454 drm_gem_object_unreference(old_obj);
2455 return ret;
2456 }
2457
2458 break;
2459 }
2460
2461 /*
2462 * Zap this virtual mapping so we can set up a fence again
2463 * for this object next time we need it.
2464 */
2465 i915_gem_release_mmap(old_obj);
2466
2467 i = old_obj_priv->fence_reg;
2468 reg = &dev_priv->fence_regs[i];
2469
2470 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2471 list_del_init(&old_obj_priv->fence_list);
2472
2473 drm_gem_object_unreference(old_obj);
2474 }
2475
2476 obj_priv->fence_reg = i;
2477 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2478
2479 reg->obj = obj;
2480
2481 if (IS_I965G(dev))
2482 i965_write_fence_reg(reg);
2483 else if (IS_I9XX(dev))
2484 i915_write_fence_reg(reg);
2485 else
2486 i830_write_fence_reg(reg);
2487
2488 trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2489
2490 return 0;
2491 }
2492
2493 /**
2494 * i915_gem_clear_fence_reg - clear out fence register info
2495 * @obj: object to clear
2496 *
2497 * Zeroes out the fence register itself and clears out the associated
2498 * data structures in dev_priv and obj_priv.
2499 */
2500 static void
2501 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2502 {
2503 struct drm_device *dev = obj->dev;
2504 drm_i915_private_t *dev_priv = dev->dev_private;
2505 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2506
2507 if (IS_I965G(dev))
2508 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2509 else {
2510 uint32_t fence_reg;
2511
2512 if (obj_priv->fence_reg < 8)
2513 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2514 else
2515 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2516 8) * 4;
2517
2518 I915_WRITE(fence_reg, 0);
2519 }
2520
2521 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2522 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2523 list_del_init(&obj_priv->fence_list);
2524 }
2525
2526 /**
2527 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2528 * to the buffer to finish, and then resets the fence register.
2529 * @obj: tiled object holding a fence register.
2530 *
2531 * Zeroes out the fence register itself and clears out the associated
2532 * data structures in dev_priv and obj_priv.
2533 */
2534 int
2535 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2536 {
2537 struct drm_device *dev = obj->dev;
2538 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2539
2540 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2541 return 0;
2542
2543 /* On the i915, GPU access to tiled buffers is via a fence,
2544 * therefore we must wait for any outstanding access to complete
2545 * before clearing the fence.
2546 */
2547 if (!IS_I965G(dev)) {
2548 int ret;
2549
2550 i915_gem_object_flush_gpu_write_domain(obj);
2551 i915_gem_object_flush_gtt_write_domain(obj);
2552 ret = i915_gem_object_wait_rendering(obj);
2553 if (ret != 0)
2554 return ret;
2555 }
2556
2557 i915_gem_clear_fence_reg (obj);
2558
2559 return 0;
2560 }
2561
2562 /**
2563 * Finds free space in the GTT aperture and binds the object there.
2564 */
2565 static int
2566 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2567 {
2568 struct drm_device *dev = obj->dev;
2569 drm_i915_private_t *dev_priv = dev->dev_private;
2570 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2571 struct drm_mm_node *free_space;
2572 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2573 int ret;
2574
2575 if (obj_priv->madv != I915_MADV_WILLNEED) {
2576 DRM_ERROR("Attempting to bind a purgeable object\n");
2577 return -EINVAL;
2578 }
2579
2580 if (alignment == 0)
2581 alignment = i915_gem_get_gtt_alignment(obj);
2582 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2583 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2584 return -EINVAL;
2585 }
2586
2587 search_free:
2588 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2589 obj->size, alignment, 0);
2590 if (free_space != NULL) {
2591 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2592 alignment);
2593 if (obj_priv->gtt_space != NULL) {
2594 obj_priv->gtt_space->private = obj;
2595 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2596 }
2597 }
2598 if (obj_priv->gtt_space == NULL) {
2599 /* If the gtt is empty and we're still having trouble
2600 * fitting our object in, we're out of memory.
2601 */
2602 #if WATCH_LRU
2603 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2604 #endif
2605 ret = i915_gem_evict_something(dev, obj->size);
2606 if (ret)
2607 return ret;
2608
2609 goto search_free;
2610 }
2611
2612 #if WATCH_BUF
2613 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2614 obj->size, obj_priv->gtt_offset);
2615 #endif
2616 ret = i915_gem_object_get_pages(obj, gfpmask);
2617 if (ret) {
2618 drm_mm_put_block(obj_priv->gtt_space);
2619 obj_priv->gtt_space = NULL;
2620
2621 if (ret == -ENOMEM) {
2622 /* first try to clear up some space from the GTT */
2623 ret = i915_gem_evict_something(dev, obj->size);
2624 if (ret) {
2625 /* now try to shrink everyone else */
2626 if (gfpmask) {
2627 gfpmask = 0;
2628 goto search_free;
2629 }
2630
2631 return ret;
2632 }
2633
2634 goto search_free;
2635 }
2636
2637 return ret;
2638 }
2639
2640 /* Create an AGP memory structure pointing at our pages, and bind it
2641 * into the GTT.
2642 */
2643 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2644 obj_priv->pages,
2645 obj->size >> PAGE_SHIFT,
2646 obj_priv->gtt_offset,
2647 obj_priv->agp_type);
2648 if (obj_priv->agp_mem == NULL) {
2649 i915_gem_object_put_pages(obj);
2650 drm_mm_put_block(obj_priv->gtt_space);
2651 obj_priv->gtt_space = NULL;
2652
2653 ret = i915_gem_evict_something(dev, obj->size);
2654 if (ret)
2655 return ret;
2656
2657 goto search_free;
2658 }
2659 atomic_inc(&dev->gtt_count);
2660 atomic_add(obj->size, &dev->gtt_memory);
2661
2662 /* Assert that the object is not currently in any GPU domain. As it
2663 * wasn't in the GTT, there shouldn't be any way it could have been in
2664 * a GPU cache
2665 */
2666 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2667 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2668
2669 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2670
2671 return 0;
2672 }
2673
2674 void
2675 i915_gem_clflush_object(struct drm_gem_object *obj)
2676 {
2677 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2678
2679 /* If we don't have a page list set up, then we're not pinned
2680 * to GPU, and we can ignore the cache flush because it'll happen
2681 * again at bind time.
2682 */
2683 if (obj_priv->pages == NULL)
2684 return;
2685
2686 trace_i915_gem_object_clflush(obj);
2687
2688 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2689 }
2690
2691 /** Flushes any GPU write domain for the object if it's dirty. */
2692 static void
2693 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2694 {
2695 struct drm_device *dev = obj->dev;
2696 uint32_t seqno;
2697 uint32_t old_write_domain;
2698
2699 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2700 return;
2701
2702 /* Queue the GPU write cache flushing we need. */
2703 old_write_domain = obj->write_domain;
2704 i915_gem_flush(dev, 0, obj->write_domain);
2705 seqno = i915_add_request(dev, NULL, obj->write_domain);
2706 BUG_ON(obj->write_domain);
2707 i915_gem_object_move_to_active(obj, seqno);
2708
2709 trace_i915_gem_object_change_domain(obj,
2710 obj->read_domains,
2711 old_write_domain);
2712 }
2713
2714 /** Flushes the GTT write domain for the object if it's dirty. */
2715 static void
2716 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2717 {
2718 uint32_t old_write_domain;
2719
2720 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2721 return;
2722
2723 /* No actual flushing is required for the GTT write domain. Writes
2724 * to it immediately go to main memory as far as we know, so there's
2725 * no chipset flush. It also doesn't land in render cache.
2726 */
2727 old_write_domain = obj->write_domain;
2728 obj->write_domain = 0;
2729
2730 trace_i915_gem_object_change_domain(obj,
2731 obj->read_domains,
2732 old_write_domain);
2733 }
2734
2735 /** Flushes the CPU write domain for the object if it's dirty. */
2736 static void
2737 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2738 {
2739 struct drm_device *dev = obj->dev;
2740 uint32_t old_write_domain;
2741
2742 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2743 return;
2744
2745 i915_gem_clflush_object(obj);
2746 drm_agp_chipset_flush(dev);
2747 old_write_domain = obj->write_domain;
2748 obj->write_domain = 0;
2749
2750 trace_i915_gem_object_change_domain(obj,
2751 obj->read_domains,
2752 old_write_domain);
2753 }
2754
2755 void
2756 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2757 {
2758 switch (obj->write_domain) {
2759 case I915_GEM_DOMAIN_GTT:
2760 i915_gem_object_flush_gtt_write_domain(obj);
2761 break;
2762 case I915_GEM_DOMAIN_CPU:
2763 i915_gem_object_flush_cpu_write_domain(obj);
2764 break;
2765 default:
2766 i915_gem_object_flush_gpu_write_domain(obj);
2767 break;
2768 }
2769 }
2770
2771 /**
2772 * Moves a single object to the GTT read, and possibly write domain.
2773 *
2774 * This function returns when the move is complete, including waiting on
2775 * flushes to occur.
2776 */
2777 int
2778 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2779 {
2780 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2781 uint32_t old_write_domain, old_read_domains;
2782 int ret;
2783
2784 /* Not valid to be called on unbound objects. */
2785 if (obj_priv->gtt_space == NULL)
2786 return -EINVAL;
2787
2788 i915_gem_object_flush_gpu_write_domain(obj);
2789 /* Wait on any GPU rendering and flushing to occur. */
2790 ret = i915_gem_object_wait_rendering(obj);
2791 if (ret != 0)
2792 return ret;
2793
2794 old_write_domain = obj->write_domain;
2795 old_read_domains = obj->read_domains;
2796
2797 /* If we're writing through the GTT domain, then CPU and GPU caches
2798 * will need to be invalidated at next use.
2799 */
2800 if (write)
2801 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2802
2803 i915_gem_object_flush_cpu_write_domain(obj);
2804
2805 /* It should now be out of any other write domains, and we can update
2806 * the domain values for our changes.
2807 */
2808 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2809 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2810 if (write) {
2811 obj->write_domain = I915_GEM_DOMAIN_GTT;
2812 obj_priv->dirty = 1;
2813 }
2814
2815 trace_i915_gem_object_change_domain(obj,
2816 old_read_domains,
2817 old_write_domain);
2818
2819 return 0;
2820 }
2821
2822 /*
2823 * Prepare buffer for display plane. Use uninterruptible for possible flush
2824 * wait, as in modesetting process we're not supposed to be interrupted.
2825 */
2826 int
2827 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2828 {
2829 struct drm_device *dev = obj->dev;
2830 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2831 uint32_t old_write_domain, old_read_domains;
2832 int ret;
2833
2834 /* Not valid to be called on unbound objects. */
2835 if (obj_priv->gtt_space == NULL)
2836 return -EINVAL;
2837
2838 i915_gem_object_flush_gpu_write_domain(obj);
2839
2840 /* Wait on any GPU rendering and flushing to occur. */
2841 if (obj_priv->active) {
2842 #if WATCH_BUF
2843 DRM_INFO("%s: object %p wait for seqno %08x\n",
2844 __func__, obj, obj_priv->last_rendering_seqno);
2845 #endif
2846 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2847 if (ret != 0)
2848 return ret;
2849 }
2850
2851 old_write_domain = obj->write_domain;
2852 old_read_domains = obj->read_domains;
2853
2854 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2855
2856 i915_gem_object_flush_cpu_write_domain(obj);
2857
2858 /* It should now be out of any other write domains, and we can update
2859 * the domain values for our changes.
2860 */
2861 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2862 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2863 obj->write_domain = I915_GEM_DOMAIN_GTT;
2864 obj_priv->dirty = 1;
2865
2866 trace_i915_gem_object_change_domain(obj,
2867 old_read_domains,
2868 old_write_domain);
2869
2870 return 0;
2871 }
2872
2873 /**
2874 * Moves a single object to the CPU read, and possibly write domain.
2875 *
2876 * This function returns when the move is complete, including waiting on
2877 * flushes to occur.
2878 */
2879 static int
2880 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2881 {
2882 uint32_t old_write_domain, old_read_domains;
2883 int ret;
2884
2885 i915_gem_object_flush_gpu_write_domain(obj);
2886 /* Wait on any GPU rendering and flushing to occur. */
2887 ret = i915_gem_object_wait_rendering(obj);
2888 if (ret != 0)
2889 return ret;
2890
2891 i915_gem_object_flush_gtt_write_domain(obj);
2892
2893 /* If we have a partially-valid cache of the object in the CPU,
2894 * finish invalidating it and free the per-page flags.
2895 */
2896 i915_gem_object_set_to_full_cpu_read_domain(obj);
2897
2898 old_write_domain = obj->write_domain;
2899 old_read_domains = obj->read_domains;
2900
2901 /* Flush the CPU cache if it's still invalid. */
2902 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2903 i915_gem_clflush_object(obj);
2904
2905 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2906 }
2907
2908 /* It should now be out of any other write domains, and we can update
2909 * the domain values for our changes.
2910 */
2911 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2912
2913 /* If we're writing through the CPU, then the GPU read domains will
2914 * need to be invalidated at next use.
2915 */
2916 if (write) {
2917 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2918 obj->write_domain = I915_GEM_DOMAIN_CPU;
2919 }
2920
2921 trace_i915_gem_object_change_domain(obj,
2922 old_read_domains,
2923 old_write_domain);
2924
2925 return 0;
2926 }
2927
2928 /*
2929 * Set the next domain for the specified object. This
2930 * may not actually perform the necessary flushing/invaliding though,
2931 * as that may want to be batched with other set_domain operations
2932 *
2933 * This is (we hope) the only really tricky part of gem. The goal
2934 * is fairly simple -- track which caches hold bits of the object
2935 * and make sure they remain coherent. A few concrete examples may
2936 * help to explain how it works. For shorthand, we use the notation
2937 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2938 * a pair of read and write domain masks.
2939 *
2940 * Case 1: the batch buffer
2941 *
2942 * 1. Allocated
2943 * 2. Written by CPU
2944 * 3. Mapped to GTT
2945 * 4. Read by GPU
2946 * 5. Unmapped from GTT
2947 * 6. Freed
2948 *
2949 * Let's take these a step at a time
2950 *
2951 * 1. Allocated
2952 * Pages allocated from the kernel may still have
2953 * cache contents, so we set them to (CPU, CPU) always.
2954 * 2. Written by CPU (using pwrite)
2955 * The pwrite function calls set_domain (CPU, CPU) and
2956 * this function does nothing (as nothing changes)
2957 * 3. Mapped by GTT
2958 * This function asserts that the object is not
2959 * currently in any GPU-based read or write domains
2960 * 4. Read by GPU
2961 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2962 * As write_domain is zero, this function adds in the
2963 * current read domains (CPU+COMMAND, 0).
2964 * flush_domains is set to CPU.
2965 * invalidate_domains is set to COMMAND
2966 * clflush is run to get data out of the CPU caches
2967 * then i915_dev_set_domain calls i915_gem_flush to
2968 * emit an MI_FLUSH and drm_agp_chipset_flush
2969 * 5. Unmapped from GTT
2970 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2971 * flush_domains and invalidate_domains end up both zero
2972 * so no flushing/invalidating happens
2973 * 6. Freed
2974 * yay, done
2975 *
2976 * Case 2: The shared render buffer
2977 *
2978 * 1. Allocated
2979 * 2. Mapped to GTT
2980 * 3. Read/written by GPU
2981 * 4. set_domain to (CPU,CPU)
2982 * 5. Read/written by CPU
2983 * 6. Read/written by GPU
2984 *
2985 * 1. Allocated
2986 * Same as last example, (CPU, CPU)
2987 * 2. Mapped to GTT
2988 * Nothing changes (assertions find that it is not in the GPU)
2989 * 3. Read/written by GPU
2990 * execbuffer calls set_domain (RENDER, RENDER)
2991 * flush_domains gets CPU
2992 * invalidate_domains gets GPU
2993 * clflush (obj)
2994 * MI_FLUSH and drm_agp_chipset_flush
2995 * 4. set_domain (CPU, CPU)
2996 * flush_domains gets GPU
2997 * invalidate_domains gets CPU
2998 * wait_rendering (obj) to make sure all drawing is complete.
2999 * This will include an MI_FLUSH to get the data from GPU
3000 * to memory
3001 * clflush (obj) to invalidate the CPU cache
3002 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3003 * 5. Read/written by CPU
3004 * cache lines are loaded and dirtied
3005 * 6. Read written by GPU
3006 * Same as last GPU access
3007 *
3008 * Case 3: The constant buffer
3009 *
3010 * 1. Allocated
3011 * 2. Written by CPU
3012 * 3. Read by GPU
3013 * 4. Updated (written) by CPU again
3014 * 5. Read by GPU
3015 *
3016 * 1. Allocated
3017 * (CPU, CPU)
3018 * 2. Written by CPU
3019 * (CPU, CPU)
3020 * 3. Read by GPU
3021 * (CPU+RENDER, 0)
3022 * flush_domains = CPU
3023 * invalidate_domains = RENDER
3024 * clflush (obj)
3025 * MI_FLUSH
3026 * drm_agp_chipset_flush
3027 * 4. Updated (written) by CPU again
3028 * (CPU, CPU)
3029 * flush_domains = 0 (no previous write domain)
3030 * invalidate_domains = 0 (no new read domains)
3031 * 5. Read by GPU
3032 * (CPU+RENDER, 0)
3033 * flush_domains = CPU
3034 * invalidate_domains = RENDER
3035 * clflush (obj)
3036 * MI_FLUSH
3037 * drm_agp_chipset_flush
3038 */
3039 static void
3040 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3041 {
3042 struct drm_device *dev = obj->dev;
3043 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3044 uint32_t invalidate_domains = 0;
3045 uint32_t flush_domains = 0;
3046 uint32_t old_read_domains;
3047
3048 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3049 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3050
3051 intel_mark_busy(dev, obj);
3052
3053 #if WATCH_BUF
3054 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3055 __func__, obj,
3056 obj->read_domains, obj->pending_read_domains,
3057 obj->write_domain, obj->pending_write_domain);
3058 #endif
3059 /*
3060 * If the object isn't moving to a new write domain,
3061 * let the object stay in multiple read domains
3062 */
3063 if (obj->pending_write_domain == 0)
3064 obj->pending_read_domains |= obj->read_domains;
3065 else
3066 obj_priv->dirty = 1;
3067
3068 /*
3069 * Flush the current write domain if
3070 * the new read domains don't match. Invalidate
3071 * any read domains which differ from the old
3072 * write domain
3073 */
3074 if (obj->write_domain &&
3075 obj->write_domain != obj->pending_read_domains) {
3076 flush_domains |= obj->write_domain;
3077 invalidate_domains |=
3078 obj->pending_read_domains & ~obj->write_domain;
3079 }
3080 /*
3081 * Invalidate any read caches which may have
3082 * stale data. That is, any new read domains.
3083 */
3084 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3085 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3086 #if WATCH_BUF
3087 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3088 __func__, flush_domains, invalidate_domains);
3089 #endif
3090 i915_gem_clflush_object(obj);
3091 }
3092
3093 old_read_domains = obj->read_domains;
3094
3095 /* The actual obj->write_domain will be updated with
3096 * pending_write_domain after we emit the accumulated flush for all
3097 * of our domain changes in execbuffers (which clears objects'
3098 * write_domains). So if we have a current write domain that we
3099 * aren't changing, set pending_write_domain to that.
3100 */
3101 if (flush_domains == 0 && obj->pending_write_domain == 0)
3102 obj->pending_write_domain = obj->write_domain;
3103 obj->read_domains = obj->pending_read_domains;
3104
3105 dev->invalidate_domains |= invalidate_domains;
3106 dev->flush_domains |= flush_domains;
3107 #if WATCH_BUF
3108 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3109 __func__,
3110 obj->read_domains, obj->write_domain,
3111 dev->invalidate_domains, dev->flush_domains);
3112 #endif
3113
3114 trace_i915_gem_object_change_domain(obj,
3115 old_read_domains,
3116 obj->write_domain);
3117 }
3118
3119 /**
3120 * Moves the object from a partially CPU read to a full one.
3121 *
3122 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3123 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3124 */
3125 static void
3126 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3127 {
3128 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3129
3130 if (!obj_priv->page_cpu_valid)
3131 return;
3132
3133 /* If we're partially in the CPU read domain, finish moving it in.
3134 */
3135 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3136 int i;
3137
3138 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3139 if (obj_priv->page_cpu_valid[i])
3140 continue;
3141 drm_clflush_pages(obj_priv->pages + i, 1);
3142 }
3143 }
3144
3145 /* Free the page_cpu_valid mappings which are now stale, whether
3146 * or not we've got I915_GEM_DOMAIN_CPU.
3147 */
3148 kfree(obj_priv->page_cpu_valid);
3149 obj_priv->page_cpu_valid = NULL;
3150 }
3151
3152 /**
3153 * Set the CPU read domain on a range of the object.
3154 *
3155 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3156 * not entirely valid. The page_cpu_valid member of the object flags which
3157 * pages have been flushed, and will be respected by
3158 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3159 * of the whole object.
3160 *
3161 * This function returns when the move is complete, including waiting on
3162 * flushes to occur.
3163 */
3164 static int
3165 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3166 uint64_t offset, uint64_t size)
3167 {
3168 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3169 uint32_t old_read_domains;
3170 int i, ret;
3171
3172 if (offset == 0 && size == obj->size)
3173 return i915_gem_object_set_to_cpu_domain(obj, 0);
3174
3175 i915_gem_object_flush_gpu_write_domain(obj);
3176 /* Wait on any GPU rendering and flushing to occur. */
3177 ret = i915_gem_object_wait_rendering(obj);
3178 if (ret != 0)
3179 return ret;
3180 i915_gem_object_flush_gtt_write_domain(obj);
3181
3182 /* If we're already fully in the CPU read domain, we're done. */
3183 if (obj_priv->page_cpu_valid == NULL &&
3184 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3185 return 0;
3186
3187 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3188 * newly adding I915_GEM_DOMAIN_CPU
3189 */
3190 if (obj_priv->page_cpu_valid == NULL) {
3191 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3192 GFP_KERNEL);
3193 if (obj_priv->page_cpu_valid == NULL)
3194 return -ENOMEM;
3195 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3196 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3197
3198 /* Flush the cache on any pages that are still invalid from the CPU's
3199 * perspective.
3200 */
3201 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3202 i++) {
3203 if (obj_priv->page_cpu_valid[i])
3204 continue;
3205
3206 drm_clflush_pages(obj_priv->pages + i, 1);
3207
3208 obj_priv->page_cpu_valid[i] = 1;
3209 }
3210
3211 /* It should now be out of any other write domains, and we can update
3212 * the domain values for our changes.
3213 */
3214 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3215
3216 old_read_domains = obj->read_domains;
3217 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3218
3219 trace_i915_gem_object_change_domain(obj,
3220 old_read_domains,
3221 obj->write_domain);
3222
3223 return 0;
3224 }
3225
3226 /**
3227 * Pin an object to the GTT and evaluate the relocations landing in it.
3228 */
3229 static int
3230 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3231 struct drm_file *file_priv,
3232 struct drm_i915_gem_exec_object2 *entry,
3233 struct drm_i915_gem_relocation_entry *relocs)
3234 {
3235 struct drm_device *dev = obj->dev;
3236 drm_i915_private_t *dev_priv = dev->dev_private;
3237 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3238 int i, ret;
3239 void __iomem *reloc_page;
3240 bool need_fence;
3241
3242 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3243 obj_priv->tiling_mode != I915_TILING_NONE;
3244
3245 /* Check fence reg constraints and rebind if necessary */
3246 if (need_fence && !i915_obj_fenceable(dev, obj))
3247 i915_gem_object_unbind(obj);
3248
3249 /* Choose the GTT offset for our buffer and put it there. */
3250 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3251 if (ret)
3252 return ret;
3253
3254 /*
3255 * Pre-965 chips need a fence register set up in order to
3256 * properly handle blits to/from tiled surfaces.
3257 */
3258 if (need_fence) {
3259 ret = i915_gem_object_get_fence_reg(obj);
3260 if (ret != 0) {
3261 if (ret != -EBUSY && ret != -ERESTARTSYS)
3262 DRM_ERROR("Failure to install fence: %d\n",
3263 ret);
3264 i915_gem_object_unpin(obj);
3265 return ret;
3266 }
3267 }
3268
3269 entry->offset = obj_priv->gtt_offset;
3270
3271 /* Apply the relocations, using the GTT aperture to avoid cache
3272 * flushing requirements.
3273 */
3274 for (i = 0; i < entry->relocation_count; i++) {
3275 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3276 struct drm_gem_object *target_obj;
3277 struct drm_i915_gem_object *target_obj_priv;
3278 uint32_t reloc_val, reloc_offset;
3279 uint32_t __iomem *reloc_entry;
3280
3281 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3282 reloc->target_handle);
3283 if (target_obj == NULL) {
3284 i915_gem_object_unpin(obj);
3285 return -EBADF;
3286 }
3287 target_obj_priv = target_obj->driver_private;
3288
3289 #if WATCH_RELOC
3290 DRM_INFO("%s: obj %p offset %08x target %d "
3291 "read %08x write %08x gtt %08x "
3292 "presumed %08x delta %08x\n",
3293 __func__,
3294 obj,
3295 (int) reloc->offset,
3296 (int) reloc->target_handle,
3297 (int) reloc->read_domains,
3298 (int) reloc->write_domain,
3299 (int) target_obj_priv->gtt_offset,
3300 (int) reloc->presumed_offset,
3301 reloc->delta);
3302 #endif
3303
3304 /* The target buffer should have appeared before us in the
3305 * exec_object list, so it should have a GTT space bound by now.
3306 */
3307 if (target_obj_priv->gtt_space == NULL) {
3308 DRM_ERROR("No GTT space found for object %d\n",
3309 reloc->target_handle);
3310 drm_gem_object_unreference(target_obj);
3311 i915_gem_object_unpin(obj);
3312 return -EINVAL;
3313 }
3314
3315 /* Validate that the target is in a valid r/w GPU domain */
3316 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3317 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3318 DRM_ERROR("reloc with read/write CPU domains: "
3319 "obj %p target %d offset %d "
3320 "read %08x write %08x",
3321 obj, reloc->target_handle,
3322 (int) reloc->offset,
3323 reloc->read_domains,
3324 reloc->write_domain);
3325 drm_gem_object_unreference(target_obj);
3326 i915_gem_object_unpin(obj);
3327 return -EINVAL;
3328 }
3329 if (reloc->write_domain && target_obj->pending_write_domain &&
3330 reloc->write_domain != target_obj->pending_write_domain) {
3331 DRM_ERROR("Write domain conflict: "
3332 "obj %p target %d offset %d "
3333 "new %08x old %08x\n",
3334 obj, reloc->target_handle,
3335 (int) reloc->offset,
3336 reloc->write_domain,
3337 target_obj->pending_write_domain);
3338 drm_gem_object_unreference(target_obj);
3339 i915_gem_object_unpin(obj);
3340 return -EINVAL;
3341 }
3342
3343 target_obj->pending_read_domains |= reloc->read_domains;
3344 target_obj->pending_write_domain |= reloc->write_domain;
3345
3346 /* If the relocation already has the right value in it, no
3347 * more work needs to be done.
3348 */
3349 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3350 drm_gem_object_unreference(target_obj);
3351 continue;
3352 }
3353
3354 /* Check that the relocation address is valid... */
3355 if (reloc->offset > obj->size - 4) {
3356 DRM_ERROR("Relocation beyond object bounds: "
3357 "obj %p target %d offset %d size %d.\n",
3358 obj, reloc->target_handle,
3359 (int) reloc->offset, (int) obj->size);
3360 drm_gem_object_unreference(target_obj);
3361 i915_gem_object_unpin(obj);
3362 return -EINVAL;
3363 }
3364 if (reloc->offset & 3) {
3365 DRM_ERROR("Relocation not 4-byte aligned: "
3366 "obj %p target %d offset %d.\n",
3367 obj, reloc->target_handle,
3368 (int) reloc->offset);
3369 drm_gem_object_unreference(target_obj);
3370 i915_gem_object_unpin(obj);
3371 return -EINVAL;
3372 }
3373
3374 /* and points to somewhere within the target object. */
3375 if (reloc->delta >= target_obj->size) {
3376 DRM_ERROR("Relocation beyond target object bounds: "
3377 "obj %p target %d delta %d size %d.\n",
3378 obj, reloc->target_handle,
3379 (int) reloc->delta, (int) target_obj->size);
3380 drm_gem_object_unreference(target_obj);
3381 i915_gem_object_unpin(obj);
3382 return -EINVAL;
3383 }
3384
3385 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3386 if (ret != 0) {
3387 drm_gem_object_unreference(target_obj);
3388 i915_gem_object_unpin(obj);
3389 return -EINVAL;
3390 }
3391
3392 /* Map the page containing the relocation we're going to
3393 * perform.
3394 */
3395 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3396 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3397 (reloc_offset &
3398 ~(PAGE_SIZE - 1)));
3399 reloc_entry = (uint32_t __iomem *)(reloc_page +
3400 (reloc_offset & (PAGE_SIZE - 1)));
3401 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3402
3403 #if WATCH_BUF
3404 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3405 obj, (unsigned int) reloc->offset,
3406 readl(reloc_entry), reloc_val);
3407 #endif
3408 writel(reloc_val, reloc_entry);
3409 io_mapping_unmap_atomic(reloc_page);
3410
3411 /* The updated presumed offset for this entry will be
3412 * copied back out to the user.
3413 */
3414 reloc->presumed_offset = target_obj_priv->gtt_offset;
3415
3416 drm_gem_object_unreference(target_obj);
3417 }
3418
3419 #if WATCH_BUF
3420 if (0)
3421 i915_gem_dump_object(obj, 128, __func__, ~0);
3422 #endif
3423 return 0;
3424 }
3425
3426 /** Dispatch a batchbuffer to the ring
3427 */
3428 static int
3429 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3430 struct drm_i915_gem_execbuffer2 *exec,
3431 struct drm_clip_rect *cliprects,
3432 uint64_t exec_offset)
3433 {
3434 drm_i915_private_t *dev_priv = dev->dev_private;
3435 int nbox = exec->num_cliprects;
3436 int i = 0, count;
3437 uint32_t exec_start, exec_len;
3438 RING_LOCALS;
3439
3440 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3441 exec_len = (uint32_t) exec->batch_len;
3442
3443 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3444
3445 count = nbox ? nbox : 1;
3446
3447 for (i = 0; i < count; i++) {
3448 if (i < nbox) {
3449 int ret = i915_emit_box(dev, cliprects, i,
3450 exec->DR1, exec->DR4);
3451 if (ret)
3452 return ret;
3453 }
3454
3455 if (IS_I830(dev) || IS_845G(dev)) {
3456 BEGIN_LP_RING(4);
3457 OUT_RING(MI_BATCH_BUFFER);
3458 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3459 OUT_RING(exec_start + exec_len - 4);
3460 OUT_RING(0);
3461 ADVANCE_LP_RING();
3462 } else {
3463 BEGIN_LP_RING(2);
3464 if (IS_I965G(dev)) {
3465 OUT_RING(MI_BATCH_BUFFER_START |
3466 (2 << 6) |
3467 MI_BATCH_NON_SECURE_I965);
3468 OUT_RING(exec_start);
3469 } else {
3470 OUT_RING(MI_BATCH_BUFFER_START |
3471 (2 << 6));
3472 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3473 }
3474 ADVANCE_LP_RING();
3475 }
3476 }
3477
3478 /* XXX breadcrumb */
3479 return 0;
3480 }
3481
3482 /* Throttle our rendering by waiting until the ring has completed our requests
3483 * emitted over 20 msec ago.
3484 *
3485 * Note that if we were to use the current jiffies each time around the loop,
3486 * we wouldn't escape the function with any frames outstanding if the time to
3487 * render a frame was over 20ms.
3488 *
3489 * This should get us reasonable parallelism between CPU and GPU but also
3490 * relatively low latency when blocking on a particular request to finish.
3491 */
3492 static int
3493 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3494 {
3495 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3496 int ret = 0;
3497 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3498
3499 mutex_lock(&dev->struct_mutex);
3500 while (!list_empty(&i915_file_priv->mm.request_list)) {
3501 struct drm_i915_gem_request *request;
3502
3503 request = list_first_entry(&i915_file_priv->mm.request_list,
3504 struct drm_i915_gem_request,
3505 client_list);
3506
3507 if (time_after_eq(request->emitted_jiffies, recent_enough))
3508 break;
3509
3510 ret = i915_wait_request(dev, request->seqno);
3511 if (ret != 0)
3512 break;
3513 }
3514 mutex_unlock(&dev->struct_mutex);
3515
3516 return ret;
3517 }
3518
3519 static int
3520 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3521 uint32_t buffer_count,
3522 struct drm_i915_gem_relocation_entry **relocs)
3523 {
3524 uint32_t reloc_count = 0, reloc_index = 0, i;
3525 int ret;
3526
3527 *relocs = NULL;
3528 for (i = 0; i < buffer_count; i++) {
3529 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3530 return -EINVAL;
3531 reloc_count += exec_list[i].relocation_count;
3532 }
3533
3534 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3535 if (*relocs == NULL) {
3536 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3537 return -ENOMEM;
3538 }
3539
3540 for (i = 0; i < buffer_count; i++) {
3541 struct drm_i915_gem_relocation_entry __user *user_relocs;
3542
3543 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3544
3545 ret = copy_from_user(&(*relocs)[reloc_index],
3546 user_relocs,
3547 exec_list[i].relocation_count *
3548 sizeof(**relocs));
3549 if (ret != 0) {
3550 drm_free_large(*relocs);
3551 *relocs = NULL;
3552 return -EFAULT;
3553 }
3554
3555 reloc_index += exec_list[i].relocation_count;
3556 }
3557
3558 return 0;
3559 }
3560
3561 static int
3562 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3563 uint32_t buffer_count,
3564 struct drm_i915_gem_relocation_entry *relocs)
3565 {
3566 uint32_t reloc_count = 0, i;
3567 int ret = 0;
3568
3569 if (relocs == NULL)
3570 return 0;
3571
3572 for (i = 0; i < buffer_count; i++) {
3573 struct drm_i915_gem_relocation_entry __user *user_relocs;
3574 int unwritten;
3575
3576 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3577
3578 unwritten = copy_to_user(user_relocs,
3579 &relocs[reloc_count],
3580 exec_list[i].relocation_count *
3581 sizeof(*relocs));
3582
3583 if (unwritten) {
3584 ret = -EFAULT;
3585 goto err;
3586 }
3587
3588 reloc_count += exec_list[i].relocation_count;
3589 }
3590
3591 err:
3592 drm_free_large(relocs);
3593
3594 return ret;
3595 }
3596
3597 static int
3598 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3599 uint64_t exec_offset)
3600 {
3601 uint32_t exec_start, exec_len;
3602
3603 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3604 exec_len = (uint32_t) exec->batch_len;
3605
3606 if ((exec_start | exec_len) & 0x7)
3607 return -EINVAL;
3608
3609 if (!exec_start)
3610 return -EINVAL;
3611
3612 return 0;
3613 }
3614
3615 static int
3616 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3617 struct drm_gem_object **object_list,
3618 int count)
3619 {
3620 drm_i915_private_t *dev_priv = dev->dev_private;
3621 struct drm_i915_gem_object *obj_priv;
3622 DEFINE_WAIT(wait);
3623 int i, ret = 0;
3624
3625 for (;;) {
3626 prepare_to_wait(&dev_priv->pending_flip_queue,
3627 &wait, TASK_INTERRUPTIBLE);
3628 for (i = 0; i < count; i++) {
3629 obj_priv = object_list[i]->driver_private;
3630 if (atomic_read(&obj_priv->pending_flip) > 0)
3631 break;
3632 }
3633 if (i == count)
3634 break;
3635
3636 if (!signal_pending(current)) {
3637 mutex_unlock(&dev->struct_mutex);
3638 schedule();
3639 mutex_lock(&dev->struct_mutex);
3640 continue;
3641 }
3642 ret = -ERESTARTSYS;
3643 break;
3644 }
3645 finish_wait(&dev_priv->pending_flip_queue, &wait);
3646
3647 return ret;
3648 }
3649
3650 int
3651 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3652 struct drm_file *file_priv,
3653 struct drm_i915_gem_execbuffer2 *args,
3654 struct drm_i915_gem_exec_object2 *exec_list)
3655 {
3656 drm_i915_private_t *dev_priv = dev->dev_private;
3657 struct drm_gem_object **object_list = NULL;
3658 struct drm_gem_object *batch_obj;
3659 struct drm_i915_gem_object *obj_priv;
3660 struct drm_clip_rect *cliprects = NULL;
3661 struct drm_i915_gem_relocation_entry *relocs = NULL;
3662 int ret = 0, ret2, i, pinned = 0;
3663 uint64_t exec_offset;
3664 uint32_t seqno, flush_domains, reloc_index;
3665 int pin_tries, flips;
3666
3667 #if WATCH_EXEC
3668 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3669 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3670 #endif
3671
3672 if (args->buffer_count < 1) {
3673 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3674 return -EINVAL;
3675 }
3676 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3677 if (object_list == NULL) {
3678 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3679 args->buffer_count);
3680 ret = -ENOMEM;
3681 goto pre_mutex_err;
3682 }
3683
3684 if (args->num_cliprects != 0) {
3685 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3686 GFP_KERNEL);
3687 if (cliprects == NULL) {
3688 ret = -ENOMEM;
3689 goto pre_mutex_err;
3690 }
3691
3692 ret = copy_from_user(cliprects,
3693 (struct drm_clip_rect __user *)
3694 (uintptr_t) args->cliprects_ptr,
3695 sizeof(*cliprects) * args->num_cliprects);
3696 if (ret != 0) {
3697 DRM_ERROR("copy %d cliprects failed: %d\n",
3698 args->num_cliprects, ret);
3699 goto pre_mutex_err;
3700 }
3701 }
3702
3703 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3704 &relocs);
3705 if (ret != 0)
3706 goto pre_mutex_err;
3707
3708 mutex_lock(&dev->struct_mutex);
3709
3710 i915_verify_inactive(dev, __FILE__, __LINE__);
3711
3712 if (atomic_read(&dev_priv->mm.wedged)) {
3713 mutex_unlock(&dev->struct_mutex);
3714 ret = -EIO;
3715 goto pre_mutex_err;
3716 }
3717
3718 if (dev_priv->mm.suspended) {
3719 mutex_unlock(&dev->struct_mutex);
3720 ret = -EBUSY;
3721 goto pre_mutex_err;
3722 }
3723
3724 /* Look up object handles */
3725 flips = 0;
3726 for (i = 0; i < args->buffer_count; i++) {
3727 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3728 exec_list[i].handle);
3729 if (object_list[i] == NULL) {
3730 DRM_ERROR("Invalid object handle %d at index %d\n",
3731 exec_list[i].handle, i);
3732 /* prevent error path from reading uninitialized data */
3733 args->buffer_count = i + 1;
3734 ret = -EBADF;
3735 goto err;
3736 }
3737
3738 obj_priv = object_list[i]->driver_private;
3739 if (obj_priv->in_execbuffer) {
3740 DRM_ERROR("Object %p appears more than once in object list\n",
3741 object_list[i]);
3742 /* prevent error path from reading uninitialized data */
3743 args->buffer_count = i + 1;
3744 ret = -EBADF;
3745 goto err;
3746 }
3747 obj_priv->in_execbuffer = true;
3748 flips += atomic_read(&obj_priv->pending_flip);
3749 }
3750
3751 if (flips > 0) {
3752 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3753 args->buffer_count);
3754 if (ret)
3755 goto err;
3756 }
3757
3758 /* Pin and relocate */
3759 for (pin_tries = 0; ; pin_tries++) {
3760 ret = 0;
3761 reloc_index = 0;
3762
3763 for (i = 0; i < args->buffer_count; i++) {
3764 object_list[i]->pending_read_domains = 0;
3765 object_list[i]->pending_write_domain = 0;
3766 ret = i915_gem_object_pin_and_relocate(object_list[i],
3767 file_priv,
3768 &exec_list[i],
3769 &relocs[reloc_index]);
3770 if (ret)
3771 break;
3772 pinned = i + 1;
3773 reloc_index += exec_list[i].relocation_count;
3774 }
3775 /* success */
3776 if (ret == 0)
3777 break;
3778
3779 /* error other than GTT full, or we've already tried again */
3780 if (ret != -ENOSPC || pin_tries >= 1) {
3781 if (ret != -ERESTARTSYS) {
3782 unsigned long long total_size = 0;
3783 for (i = 0; i < args->buffer_count; i++)
3784 total_size += object_list[i]->size;
3785 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3786 pinned+1, args->buffer_count,
3787 total_size, ret);
3788 DRM_ERROR("%d objects [%d pinned], "
3789 "%d object bytes [%d pinned], "
3790 "%d/%d gtt bytes\n",
3791 atomic_read(&dev->object_count),
3792 atomic_read(&dev->pin_count),
3793 atomic_read(&dev->object_memory),
3794 atomic_read(&dev->pin_memory),
3795 atomic_read(&dev->gtt_memory),
3796 dev->gtt_total);
3797 }
3798 goto err;
3799 }
3800
3801 /* unpin all of our buffers */
3802 for (i = 0; i < pinned; i++)
3803 i915_gem_object_unpin(object_list[i]);
3804 pinned = 0;
3805
3806 /* evict everyone we can from the aperture */
3807 ret = i915_gem_evict_everything(dev);
3808 if (ret && ret != -ENOSPC)
3809 goto err;
3810 }
3811
3812 /* Set the pending read domains for the batch buffer to COMMAND */
3813 batch_obj = object_list[args->buffer_count-1];
3814 if (batch_obj->pending_write_domain) {
3815 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3816 ret = -EINVAL;
3817 goto err;
3818 }
3819 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3820
3821 /* Sanity check the batch buffer, prior to moving objects */
3822 exec_offset = exec_list[args->buffer_count - 1].offset;
3823 ret = i915_gem_check_execbuffer (args, exec_offset);
3824 if (ret != 0) {
3825 DRM_ERROR("execbuf with invalid offset/length\n");
3826 goto err;
3827 }
3828
3829 i915_verify_inactive(dev, __FILE__, __LINE__);
3830
3831 /* Zero the global flush/invalidate flags. These
3832 * will be modified as new domains are computed
3833 * for each object
3834 */
3835 dev->invalidate_domains = 0;
3836 dev->flush_domains = 0;
3837
3838 for (i = 0; i < args->buffer_count; i++) {
3839 struct drm_gem_object *obj = object_list[i];
3840
3841 /* Compute new gpu domains and update invalidate/flush */
3842 i915_gem_object_set_to_gpu_domain(obj);
3843 }
3844
3845 i915_verify_inactive(dev, __FILE__, __LINE__);
3846
3847 if (dev->invalidate_domains | dev->flush_domains) {
3848 #if WATCH_EXEC
3849 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3850 __func__,
3851 dev->invalidate_domains,
3852 dev->flush_domains);
3853 #endif
3854 i915_gem_flush(dev,
3855 dev->invalidate_domains,
3856 dev->flush_domains);
3857 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
3858 (void)i915_add_request(dev, file_priv,
3859 dev->flush_domains);
3860 }
3861
3862 for (i = 0; i < args->buffer_count; i++) {
3863 struct drm_gem_object *obj = object_list[i];
3864 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3865 uint32_t old_write_domain = obj->write_domain;
3866
3867 obj->write_domain = obj->pending_write_domain;
3868 if (obj->write_domain)
3869 list_move_tail(&obj_priv->gpu_write_list,
3870 &dev_priv->mm.gpu_write_list);
3871 else
3872 list_del_init(&obj_priv->gpu_write_list);
3873
3874 trace_i915_gem_object_change_domain(obj,
3875 obj->read_domains,
3876 old_write_domain);
3877 }
3878
3879 i915_verify_inactive(dev, __FILE__, __LINE__);
3880
3881 #if WATCH_COHERENCY
3882 for (i = 0; i < args->buffer_count; i++) {
3883 i915_gem_object_check_coherency(object_list[i],
3884 exec_list[i].handle);
3885 }
3886 #endif
3887
3888 #if WATCH_EXEC
3889 i915_gem_dump_object(batch_obj,
3890 args->batch_len,
3891 __func__,
3892 ~0);
3893 #endif
3894
3895 /* Exec the batchbuffer */
3896 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3897 if (ret) {
3898 DRM_ERROR("dispatch failed %d\n", ret);
3899 goto err;
3900 }
3901
3902 /*
3903 * Ensure that the commands in the batch buffer are
3904 * finished before the interrupt fires
3905 */
3906 flush_domains = i915_retire_commands(dev);
3907
3908 i915_verify_inactive(dev, __FILE__, __LINE__);
3909
3910 /*
3911 * Get a seqno representing the execution of the current buffer,
3912 * which we can wait on. We would like to mitigate these interrupts,
3913 * likely by only creating seqnos occasionally (so that we have
3914 * *some* interrupts representing completion of buffers that we can
3915 * wait on when trying to clear up gtt space).
3916 */
3917 seqno = i915_add_request(dev, file_priv, flush_domains);
3918 BUG_ON(seqno == 0);
3919 for (i = 0; i < args->buffer_count; i++) {
3920 struct drm_gem_object *obj = object_list[i];
3921
3922 i915_gem_object_move_to_active(obj, seqno);
3923 #if WATCH_LRU
3924 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3925 #endif
3926 }
3927 #if WATCH_LRU
3928 i915_dump_lru(dev, __func__);
3929 #endif
3930
3931 i915_verify_inactive(dev, __FILE__, __LINE__);
3932
3933 err:
3934 for (i = 0; i < pinned; i++)
3935 i915_gem_object_unpin(object_list[i]);
3936
3937 for (i = 0; i < args->buffer_count; i++) {
3938 if (object_list[i]) {
3939 obj_priv = object_list[i]->driver_private;
3940 obj_priv->in_execbuffer = false;
3941 }
3942 drm_gem_object_unreference(object_list[i]);
3943 }
3944
3945 mutex_unlock(&dev->struct_mutex);
3946
3947 pre_mutex_err:
3948 /* Copy the updated relocations out regardless of current error
3949 * state. Failure to update the relocs would mean that the next
3950 * time userland calls execbuf, it would do so with presumed offset
3951 * state that didn't match the actual object state.
3952 */
3953 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3954 relocs);
3955 if (ret2 != 0) {
3956 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3957
3958 if (ret == 0)
3959 ret = ret2;
3960 }
3961
3962 drm_free_large(object_list);
3963 kfree(cliprects);
3964
3965 return ret;
3966 }
3967
3968 /*
3969 * Legacy execbuffer just creates an exec2 list from the original exec object
3970 * list array and passes it to the real function.
3971 */
3972 int
3973 i915_gem_execbuffer(struct drm_device *dev, void *data,
3974 struct drm_file *file_priv)
3975 {
3976 struct drm_i915_gem_execbuffer *args = data;
3977 struct drm_i915_gem_execbuffer2 exec2;
3978 struct drm_i915_gem_exec_object *exec_list = NULL;
3979 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3980 int ret, i;
3981
3982 #if WATCH_EXEC
3983 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3984 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3985 #endif
3986
3987 if (args->buffer_count < 1) {
3988 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3989 return -EINVAL;
3990 }
3991
3992 /* Copy in the exec list from userland */
3993 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3994 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3995 if (exec_list == NULL || exec2_list == NULL) {
3996 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3997 args->buffer_count);
3998 drm_free_large(exec_list);
3999 drm_free_large(exec2_list);
4000 return -ENOMEM;
4001 }
4002 ret = copy_from_user(exec_list,
4003 (struct drm_i915_relocation_entry __user *)
4004 (uintptr_t) args->buffers_ptr,
4005 sizeof(*exec_list) * args->buffer_count);
4006 if (ret != 0) {
4007 DRM_ERROR("copy %d exec entries failed %d\n",
4008 args->buffer_count, ret);
4009 drm_free_large(exec_list);
4010 drm_free_large(exec2_list);
4011 return -EFAULT;
4012 }
4013
4014 for (i = 0; i < args->buffer_count; i++) {
4015 exec2_list[i].handle = exec_list[i].handle;
4016 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4017 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4018 exec2_list[i].alignment = exec_list[i].alignment;
4019 exec2_list[i].offset = exec_list[i].offset;
4020 if (!IS_I965G(dev))
4021 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4022 else
4023 exec2_list[i].flags = 0;
4024 }
4025
4026 exec2.buffers_ptr = args->buffers_ptr;
4027 exec2.buffer_count = args->buffer_count;
4028 exec2.batch_start_offset = args->batch_start_offset;
4029 exec2.batch_len = args->batch_len;
4030 exec2.DR1 = args->DR1;
4031 exec2.DR4 = args->DR4;
4032 exec2.num_cliprects = args->num_cliprects;
4033 exec2.cliprects_ptr = args->cliprects_ptr;
4034 exec2.flags = 0;
4035
4036 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4037 if (!ret) {
4038 /* Copy the new buffer offsets back to the user's exec list. */
4039 for (i = 0; i < args->buffer_count; i++)
4040 exec_list[i].offset = exec2_list[i].offset;
4041 /* ... and back out to userspace */
4042 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4043 (uintptr_t) args->buffers_ptr,
4044 exec_list,
4045 sizeof(*exec_list) * args->buffer_count);
4046 if (ret) {
4047 ret = -EFAULT;
4048 DRM_ERROR("failed to copy %d exec entries "
4049 "back to user (%d)\n",
4050 args->buffer_count, ret);
4051 }
4052 }
4053
4054 drm_free_large(exec_list);
4055 drm_free_large(exec2_list);
4056 return ret;
4057 }
4058
4059 int
4060 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4061 struct drm_file *file_priv)
4062 {
4063 struct drm_i915_gem_execbuffer2 *args = data;
4064 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4065 int ret;
4066
4067 #if WATCH_EXEC
4068 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4069 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4070 #endif
4071
4072 if (args->buffer_count < 1) {
4073 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4074 return -EINVAL;
4075 }
4076
4077 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4078 if (exec2_list == NULL) {
4079 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4080 args->buffer_count);
4081 return -ENOMEM;
4082 }
4083 ret = copy_from_user(exec2_list,
4084 (struct drm_i915_relocation_entry __user *)
4085 (uintptr_t) args->buffers_ptr,
4086 sizeof(*exec2_list) * args->buffer_count);
4087 if (ret != 0) {
4088 DRM_ERROR("copy %d exec entries failed %d\n",
4089 args->buffer_count, ret);
4090 drm_free_large(exec2_list);
4091 return -EFAULT;
4092 }
4093
4094 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4095 if (!ret) {
4096 /* Copy the new buffer offsets back to the user's exec list. */
4097 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4098 (uintptr_t) args->buffers_ptr,
4099 exec2_list,
4100 sizeof(*exec2_list) * args->buffer_count);
4101 if (ret) {
4102 ret = -EFAULT;
4103 DRM_ERROR("failed to copy %d exec entries "
4104 "back to user (%d)\n",
4105 args->buffer_count, ret);
4106 }
4107 }
4108
4109 drm_free_large(exec2_list);
4110 return ret;
4111 }
4112
4113 int
4114 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4115 {
4116 struct drm_device *dev = obj->dev;
4117 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4118 int ret;
4119
4120 i915_verify_inactive(dev, __FILE__, __LINE__);
4121 if (obj_priv->gtt_space == NULL) {
4122 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4123 if (ret)
4124 return ret;
4125 }
4126
4127 obj_priv->pin_count++;
4128
4129 /* If the object is not active and not pending a flush,
4130 * remove it from the inactive list
4131 */
4132 if (obj_priv->pin_count == 1) {
4133 atomic_inc(&dev->pin_count);
4134 atomic_add(obj->size, &dev->pin_memory);
4135 if (!obj_priv->active &&
4136 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4137 !list_empty(&obj_priv->list))
4138 list_del_init(&obj_priv->list);
4139 }
4140 i915_verify_inactive(dev, __FILE__, __LINE__);
4141
4142 return 0;
4143 }
4144
4145 void
4146 i915_gem_object_unpin(struct drm_gem_object *obj)
4147 {
4148 struct drm_device *dev = obj->dev;
4149 drm_i915_private_t *dev_priv = dev->dev_private;
4150 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4151
4152 i915_verify_inactive(dev, __FILE__, __LINE__);
4153 obj_priv->pin_count--;
4154 BUG_ON(obj_priv->pin_count < 0);
4155 BUG_ON(obj_priv->gtt_space == NULL);
4156
4157 /* If the object is no longer pinned, and is
4158 * neither active nor being flushed, then stick it on
4159 * the inactive list
4160 */
4161 if (obj_priv->pin_count == 0) {
4162 if (!obj_priv->active &&
4163 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4164 list_move_tail(&obj_priv->list,
4165 &dev_priv->mm.inactive_list);
4166 atomic_dec(&dev->pin_count);
4167 atomic_sub(obj->size, &dev->pin_memory);
4168 }
4169 i915_verify_inactive(dev, __FILE__, __LINE__);
4170 }
4171
4172 int
4173 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4174 struct drm_file *file_priv)
4175 {
4176 struct drm_i915_gem_pin *args = data;
4177 struct drm_gem_object *obj;
4178 struct drm_i915_gem_object *obj_priv;
4179 int ret;
4180
4181 mutex_lock(&dev->struct_mutex);
4182
4183 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4184 if (obj == NULL) {
4185 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4186 args->handle);
4187 mutex_unlock(&dev->struct_mutex);
4188 return -EBADF;
4189 }
4190 obj_priv = obj->driver_private;
4191
4192 if (obj_priv->madv != I915_MADV_WILLNEED) {
4193 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4194 drm_gem_object_unreference(obj);
4195 mutex_unlock(&dev->struct_mutex);
4196 return -EINVAL;
4197 }
4198
4199 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4200 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4201 args->handle);
4202 drm_gem_object_unreference(obj);
4203 mutex_unlock(&dev->struct_mutex);
4204 return -EINVAL;
4205 }
4206
4207 obj_priv->user_pin_count++;
4208 obj_priv->pin_filp = file_priv;
4209 if (obj_priv->user_pin_count == 1) {
4210 ret = i915_gem_object_pin(obj, args->alignment);
4211 if (ret != 0) {
4212 drm_gem_object_unreference(obj);
4213 mutex_unlock(&dev->struct_mutex);
4214 return ret;
4215 }
4216 }
4217
4218 /* XXX - flush the CPU caches for pinned objects
4219 * as the X server doesn't manage domains yet
4220 */
4221 i915_gem_object_flush_cpu_write_domain(obj);
4222 args->offset = obj_priv->gtt_offset;
4223 drm_gem_object_unreference(obj);
4224 mutex_unlock(&dev->struct_mutex);
4225
4226 return 0;
4227 }
4228
4229 int
4230 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4231 struct drm_file *file_priv)
4232 {
4233 struct drm_i915_gem_pin *args = data;
4234 struct drm_gem_object *obj;
4235 struct drm_i915_gem_object *obj_priv;
4236
4237 mutex_lock(&dev->struct_mutex);
4238
4239 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4240 if (obj == NULL) {
4241 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4242 args->handle);
4243 mutex_unlock(&dev->struct_mutex);
4244 return -EBADF;
4245 }
4246
4247 obj_priv = obj->driver_private;
4248 if (obj_priv->pin_filp != file_priv) {
4249 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4250 args->handle);
4251 drm_gem_object_unreference(obj);
4252 mutex_unlock(&dev->struct_mutex);
4253 return -EINVAL;
4254 }
4255 obj_priv->user_pin_count--;
4256 if (obj_priv->user_pin_count == 0) {
4257 obj_priv->pin_filp = NULL;
4258 i915_gem_object_unpin(obj);
4259 }
4260
4261 drm_gem_object_unreference(obj);
4262 mutex_unlock(&dev->struct_mutex);
4263 return 0;
4264 }
4265
4266 int
4267 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4268 struct drm_file *file_priv)
4269 {
4270 struct drm_i915_gem_busy *args = data;
4271 struct drm_gem_object *obj;
4272 struct drm_i915_gem_object *obj_priv;
4273
4274 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4275 if (obj == NULL) {
4276 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4277 args->handle);
4278 return -EBADF;
4279 }
4280
4281 mutex_lock(&dev->struct_mutex);
4282 /* Update the active list for the hardware's current position.
4283 * Otherwise this only updates on a delayed timer or when irqs are
4284 * actually unmasked, and our working set ends up being larger than
4285 * required.
4286 */
4287 i915_gem_retire_requests(dev);
4288
4289 obj_priv = obj->driver_private;
4290 /* Don't count being on the flushing list against the object being
4291 * done. Otherwise, a buffer left on the flushing list but not getting
4292 * flushed (because nobody's flushing that domain) won't ever return
4293 * unbusy and get reused by libdrm's bo cache. The other expected
4294 * consumer of this interface, OpenGL's occlusion queries, also specs
4295 * that the objects get unbusy "eventually" without any interference.
4296 */
4297 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4298
4299 drm_gem_object_unreference(obj);
4300 mutex_unlock(&dev->struct_mutex);
4301 return 0;
4302 }
4303
4304 int
4305 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4306 struct drm_file *file_priv)
4307 {
4308 return i915_gem_ring_throttle(dev, file_priv);
4309 }
4310
4311 int
4312 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4313 struct drm_file *file_priv)
4314 {
4315 struct drm_i915_gem_madvise *args = data;
4316 struct drm_gem_object *obj;
4317 struct drm_i915_gem_object *obj_priv;
4318
4319 switch (args->madv) {
4320 case I915_MADV_DONTNEED:
4321 case I915_MADV_WILLNEED:
4322 break;
4323 default:
4324 return -EINVAL;
4325 }
4326
4327 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4328 if (obj == NULL) {
4329 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4330 args->handle);
4331 return -EBADF;
4332 }
4333
4334 mutex_lock(&dev->struct_mutex);
4335 obj_priv = obj->driver_private;
4336
4337 if (obj_priv->pin_count) {
4338 drm_gem_object_unreference(obj);
4339 mutex_unlock(&dev->struct_mutex);
4340
4341 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4342 return -EINVAL;
4343 }
4344
4345 if (obj_priv->madv != __I915_MADV_PURGED)
4346 obj_priv->madv = args->madv;
4347
4348 /* if the object is no longer bound, discard its backing storage */
4349 if (i915_gem_object_is_purgeable(obj_priv) &&
4350 obj_priv->gtt_space == NULL)
4351 i915_gem_object_truncate(obj);
4352
4353 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4354
4355 drm_gem_object_unreference(obj);
4356 mutex_unlock(&dev->struct_mutex);
4357
4358 return 0;
4359 }
4360
4361 int i915_gem_init_object(struct drm_gem_object *obj)
4362 {
4363 struct drm_i915_gem_object *obj_priv;
4364
4365 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4366 if (obj_priv == NULL)
4367 return -ENOMEM;
4368
4369 /*
4370 * We've just allocated pages from the kernel,
4371 * so they've just been written by the CPU with
4372 * zeros. They'll need to be clflushed before we
4373 * use them with the GPU.
4374 */
4375 obj->write_domain = I915_GEM_DOMAIN_CPU;
4376 obj->read_domains = I915_GEM_DOMAIN_CPU;
4377
4378 obj_priv->agp_type = AGP_USER_MEMORY;
4379
4380 obj->driver_private = obj_priv;
4381 obj_priv->obj = obj;
4382 obj_priv->fence_reg = I915_FENCE_REG_NONE;
4383 INIT_LIST_HEAD(&obj_priv->list);
4384 INIT_LIST_HEAD(&obj_priv->gpu_write_list);
4385 INIT_LIST_HEAD(&obj_priv->fence_list);
4386 obj_priv->madv = I915_MADV_WILLNEED;
4387
4388 trace_i915_gem_object_create(obj);
4389
4390 return 0;
4391 }
4392
4393 void i915_gem_free_object(struct drm_gem_object *obj)
4394 {
4395 struct drm_device *dev = obj->dev;
4396 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4397
4398 trace_i915_gem_object_destroy(obj);
4399
4400 while (obj_priv->pin_count > 0)
4401 i915_gem_object_unpin(obj);
4402
4403 if (obj_priv->phys_obj)
4404 i915_gem_detach_phys_object(dev, obj);
4405
4406 i915_gem_object_unbind(obj);
4407
4408 if (obj_priv->mmap_offset)
4409 i915_gem_free_mmap_offset(obj);
4410
4411 kfree(obj_priv->page_cpu_valid);
4412 kfree(obj_priv->bit_17);
4413 kfree(obj->driver_private);
4414 }
4415
4416 /** Unbinds all inactive objects. */
4417 static int
4418 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4419 {
4420 drm_i915_private_t *dev_priv = dev->dev_private;
4421
4422 while (!list_empty(&dev_priv->mm.inactive_list)) {
4423 struct drm_gem_object *obj;
4424 int ret;
4425
4426 obj = list_first_entry(&dev_priv->mm.inactive_list,
4427 struct drm_i915_gem_object,
4428 list)->obj;
4429
4430 ret = i915_gem_object_unbind(obj);
4431 if (ret != 0) {
4432 DRM_ERROR("Error unbinding object: %d\n", ret);
4433 return ret;
4434 }
4435 }
4436
4437 return 0;
4438 }
4439
4440 int
4441 i915_gem_idle(struct drm_device *dev)
4442 {
4443 drm_i915_private_t *dev_priv = dev->dev_private;
4444 uint32_t seqno, cur_seqno, last_seqno;
4445 int stuck, ret;
4446
4447 mutex_lock(&dev->struct_mutex);
4448
4449 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4450 mutex_unlock(&dev->struct_mutex);
4451 return 0;
4452 }
4453
4454 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4455 * We need to replace this with a semaphore, or something.
4456 */
4457 dev_priv->mm.suspended = 1;
4458 del_timer(&dev_priv->hangcheck_timer);
4459
4460 /* Cancel the retire work handler, wait for it to finish if running
4461 */
4462 mutex_unlock(&dev->struct_mutex);
4463 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4464 mutex_lock(&dev->struct_mutex);
4465
4466 i915_kernel_lost_context(dev);
4467
4468 /* Flush the GPU along with all non-CPU write domains
4469 */
4470 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4471 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4472
4473 if (seqno == 0) {
4474 mutex_unlock(&dev->struct_mutex);
4475 return -ENOMEM;
4476 }
4477
4478 dev_priv->mm.waiting_gem_seqno = seqno;
4479 last_seqno = 0;
4480 stuck = 0;
4481 for (;;) {
4482 cur_seqno = i915_get_gem_seqno(dev);
4483 if (i915_seqno_passed(cur_seqno, seqno))
4484 break;
4485 if (last_seqno == cur_seqno) {
4486 if (stuck++ > 100) {
4487 DRM_ERROR("hardware wedged\n");
4488 atomic_set(&dev_priv->mm.wedged, 1);
4489 DRM_WAKEUP(&dev_priv->irq_queue);
4490 break;
4491 }
4492 }
4493 msleep(10);
4494 last_seqno = cur_seqno;
4495 }
4496 dev_priv->mm.waiting_gem_seqno = 0;
4497
4498 i915_gem_retire_requests(dev);
4499
4500 spin_lock(&dev_priv->mm.active_list_lock);
4501 if (!atomic_read(&dev_priv->mm.wedged)) {
4502 /* Active and flushing should now be empty as we've
4503 * waited for a sequence higher than any pending execbuffer
4504 */
4505 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4506 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4507 /* Request should now be empty as we've also waited
4508 * for the last request in the list
4509 */
4510 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4511 }
4512
4513 /* Empty the active and flushing lists to inactive. If there's
4514 * anything left at this point, it means that we're wedged and
4515 * nothing good's going to happen by leaving them there. So strip
4516 * the GPU domains and just stuff them onto inactive.
4517 */
4518 while (!list_empty(&dev_priv->mm.active_list)) {
4519 struct drm_gem_object *obj;
4520 uint32_t old_write_domain;
4521
4522 obj = list_first_entry(&dev_priv->mm.active_list,
4523 struct drm_i915_gem_object,
4524 list)->obj;
4525 old_write_domain = obj->write_domain;
4526 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4527 i915_gem_object_move_to_inactive(obj);
4528
4529 trace_i915_gem_object_change_domain(obj,
4530 obj->read_domains,
4531 old_write_domain);
4532 }
4533 spin_unlock(&dev_priv->mm.active_list_lock);
4534
4535 while (!list_empty(&dev_priv->mm.flushing_list)) {
4536 struct drm_gem_object *obj;
4537 uint32_t old_write_domain;
4538
4539 obj = list_first_entry(&dev_priv->mm.flushing_list,
4540 struct drm_i915_gem_object,
4541 list)->obj;
4542 old_write_domain = obj->write_domain;
4543 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4544 i915_gem_object_move_to_inactive(obj);
4545
4546 trace_i915_gem_object_change_domain(obj,
4547 obj->read_domains,
4548 old_write_domain);
4549 }
4550
4551
4552 /* Move all inactive buffers out of the GTT. */
4553 ret = i915_gem_evict_from_inactive_list(dev);
4554 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4555 if (ret) {
4556 mutex_unlock(&dev->struct_mutex);
4557 return ret;
4558 }
4559
4560 i915_gem_cleanup_ringbuffer(dev);
4561 mutex_unlock(&dev->struct_mutex);
4562
4563 return 0;
4564 }
4565
4566 static int
4567 i915_gem_init_hws(struct drm_device *dev)
4568 {
4569 drm_i915_private_t *dev_priv = dev->dev_private;
4570 struct drm_gem_object *obj;
4571 struct drm_i915_gem_object *obj_priv;
4572 int ret;
4573
4574 /* If we need a physical address for the status page, it's already
4575 * initialized at driver load time.
4576 */
4577 if (!I915_NEED_GFX_HWS(dev))
4578 return 0;
4579
4580 obj = drm_gem_object_alloc(dev, 4096);
4581 if (obj == NULL) {
4582 DRM_ERROR("Failed to allocate status page\n");
4583 return -ENOMEM;
4584 }
4585 obj_priv = obj->driver_private;
4586 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4587
4588 ret = i915_gem_object_pin(obj, 4096);
4589 if (ret != 0) {
4590 drm_gem_object_unreference(obj);
4591 return ret;
4592 }
4593
4594 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4595
4596 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4597 if (dev_priv->hw_status_page == NULL) {
4598 DRM_ERROR("Failed to map status page.\n");
4599 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4600 i915_gem_object_unpin(obj);
4601 drm_gem_object_unreference(obj);
4602 return -EINVAL;
4603 }
4604 dev_priv->hws_obj = obj;
4605 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4606 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4607 I915_READ(HWS_PGA); /* posting read */
4608 DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4609
4610 return 0;
4611 }
4612
4613 static void
4614 i915_gem_cleanup_hws(struct drm_device *dev)
4615 {
4616 drm_i915_private_t *dev_priv = dev->dev_private;
4617 struct drm_gem_object *obj;
4618 struct drm_i915_gem_object *obj_priv;
4619
4620 if (dev_priv->hws_obj == NULL)
4621 return;
4622
4623 obj = dev_priv->hws_obj;
4624 obj_priv = obj->driver_private;
4625
4626 kunmap(obj_priv->pages[0]);
4627 i915_gem_object_unpin(obj);
4628 drm_gem_object_unreference(obj);
4629 dev_priv->hws_obj = NULL;
4630
4631 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4632 dev_priv->hw_status_page = NULL;
4633
4634 /* Write high address into HWS_PGA when disabling. */
4635 I915_WRITE(HWS_PGA, 0x1ffff000);
4636 }
4637
4638 int
4639 i915_gem_init_ringbuffer(struct drm_device *dev)
4640 {
4641 drm_i915_private_t *dev_priv = dev->dev_private;
4642 struct drm_gem_object *obj;
4643 struct drm_i915_gem_object *obj_priv;
4644 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4645 int ret;
4646 u32 head;
4647
4648 ret = i915_gem_init_hws(dev);
4649 if (ret != 0)
4650 return ret;
4651
4652 obj = drm_gem_object_alloc(dev, 128 * 1024);
4653 if (obj == NULL) {
4654 DRM_ERROR("Failed to allocate ringbuffer\n");
4655 i915_gem_cleanup_hws(dev);
4656 return -ENOMEM;
4657 }
4658 obj_priv = obj->driver_private;
4659
4660 ret = i915_gem_object_pin(obj, 4096);
4661 if (ret != 0) {
4662 drm_gem_object_unreference(obj);
4663 i915_gem_cleanup_hws(dev);
4664 return ret;
4665 }
4666
4667 /* Set up the kernel mapping for the ring. */
4668 ring->Size = obj->size;
4669
4670 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4671 ring->map.size = obj->size;
4672 ring->map.type = 0;
4673 ring->map.flags = 0;
4674 ring->map.mtrr = 0;
4675
4676 drm_core_ioremap_wc(&ring->map, dev);
4677 if (ring->map.handle == NULL) {
4678 DRM_ERROR("Failed to map ringbuffer.\n");
4679 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4680 i915_gem_object_unpin(obj);
4681 drm_gem_object_unreference(obj);
4682 i915_gem_cleanup_hws(dev);
4683 return -EINVAL;
4684 }
4685 ring->ring_obj = obj;
4686 ring->virtual_start = ring->map.handle;
4687
4688 /* Stop the ring if it's running. */
4689 I915_WRITE(PRB0_CTL, 0);
4690 I915_WRITE(PRB0_TAIL, 0);
4691 I915_WRITE(PRB0_HEAD, 0);
4692
4693 /* Initialize the ring. */
4694 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4695 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4696
4697 /* G45 ring initialization fails to reset head to zero */
4698 if (head != 0) {
4699 DRM_ERROR("Ring head not reset to zero "
4700 "ctl %08x head %08x tail %08x start %08x\n",
4701 I915_READ(PRB0_CTL),
4702 I915_READ(PRB0_HEAD),
4703 I915_READ(PRB0_TAIL),
4704 I915_READ(PRB0_START));
4705 I915_WRITE(PRB0_HEAD, 0);
4706
4707 DRM_ERROR("Ring head forced to zero "
4708 "ctl %08x head %08x tail %08x start %08x\n",
4709 I915_READ(PRB0_CTL),
4710 I915_READ(PRB0_HEAD),
4711 I915_READ(PRB0_TAIL),
4712 I915_READ(PRB0_START));
4713 }
4714
4715 I915_WRITE(PRB0_CTL,
4716 ((obj->size - 4096) & RING_NR_PAGES) |
4717 RING_NO_REPORT |
4718 RING_VALID);
4719
4720 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4721
4722 /* If the head is still not zero, the ring is dead */
4723 if (head != 0) {
4724 DRM_ERROR("Ring initialization failed "
4725 "ctl %08x head %08x tail %08x start %08x\n",
4726 I915_READ(PRB0_CTL),
4727 I915_READ(PRB0_HEAD),
4728 I915_READ(PRB0_TAIL),
4729 I915_READ(PRB0_START));
4730 return -EIO;
4731 }
4732
4733 /* Update our cache of the ring state */
4734 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4735 i915_kernel_lost_context(dev);
4736 else {
4737 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4738 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4739 ring->space = ring->head - (ring->tail + 8);
4740 if (ring->space < 0)
4741 ring->space += ring->Size;
4742 }
4743
4744 return 0;
4745 }
4746
4747 void
4748 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4749 {
4750 drm_i915_private_t *dev_priv = dev->dev_private;
4751
4752 if (dev_priv->ring.ring_obj == NULL)
4753 return;
4754
4755 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4756
4757 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4758 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4759 dev_priv->ring.ring_obj = NULL;
4760 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4761
4762 i915_gem_cleanup_hws(dev);
4763 }
4764
4765 int
4766 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4767 struct drm_file *file_priv)
4768 {
4769 drm_i915_private_t *dev_priv = dev->dev_private;
4770 int ret;
4771
4772 if (drm_core_check_feature(dev, DRIVER_MODESET))
4773 return 0;
4774
4775 if (atomic_read(&dev_priv->mm.wedged)) {
4776 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4777 atomic_set(&dev_priv->mm.wedged, 0);
4778 }
4779
4780 mutex_lock(&dev->struct_mutex);
4781 dev_priv->mm.suspended = 0;
4782
4783 ret = i915_gem_init_ringbuffer(dev);
4784 if (ret != 0) {
4785 mutex_unlock(&dev->struct_mutex);
4786 return ret;
4787 }
4788
4789 spin_lock(&dev_priv->mm.active_list_lock);
4790 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4791 spin_unlock(&dev_priv->mm.active_list_lock);
4792
4793 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4794 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4795 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4796 mutex_unlock(&dev->struct_mutex);
4797
4798 drm_irq_install(dev);
4799
4800 return 0;
4801 }
4802
4803 int
4804 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4805 struct drm_file *file_priv)
4806 {
4807 if (drm_core_check_feature(dev, DRIVER_MODESET))
4808 return 0;
4809
4810 drm_irq_uninstall(dev);
4811 return i915_gem_idle(dev);
4812 }
4813
4814 void
4815 i915_gem_lastclose(struct drm_device *dev)
4816 {
4817 int ret;
4818
4819 if (drm_core_check_feature(dev, DRIVER_MODESET))
4820 return;
4821
4822 ret = i915_gem_idle(dev);
4823 if (ret)
4824 DRM_ERROR("failed to idle hardware: %d\n", ret);
4825 }
4826
4827 void
4828 i915_gem_load(struct drm_device *dev)
4829 {
4830 int i;
4831 drm_i915_private_t *dev_priv = dev->dev_private;
4832
4833 spin_lock_init(&dev_priv->mm.active_list_lock);
4834 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4835 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4836 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4837 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4838 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4839 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4840 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4841 i915_gem_retire_work_handler);
4842 dev_priv->mm.next_gem_seqno = 1;
4843
4844 spin_lock(&shrink_list_lock);
4845 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4846 spin_unlock(&shrink_list_lock);
4847
4848 /* Old X drivers will take 0-2 for front, back, depth buffers */
4849 dev_priv->fence_reg_start = 3;
4850
4851 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4852 dev_priv->num_fence_regs = 16;
4853 else
4854 dev_priv->num_fence_regs = 8;
4855
4856 /* Initialize fence registers to zero */
4857 if (IS_I965G(dev)) {
4858 for (i = 0; i < 16; i++)
4859 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4860 } else {
4861 for (i = 0; i < 8; i++)
4862 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4863 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4864 for (i = 0; i < 8; i++)
4865 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4866 }
4867 i915_gem_detect_bit_6_swizzle(dev);
4868 init_waitqueue_head(&dev_priv->pending_flip_queue);
4869 }
4870
4871 /*
4872 * Create a physically contiguous memory object for this object
4873 * e.g. for cursor + overlay regs
4874 */
4875 int i915_gem_init_phys_object(struct drm_device *dev,
4876 int id, int size)
4877 {
4878 drm_i915_private_t *dev_priv = dev->dev_private;
4879 struct drm_i915_gem_phys_object *phys_obj;
4880 int ret;
4881
4882 if (dev_priv->mm.phys_objs[id - 1] || !size)
4883 return 0;
4884
4885 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4886 if (!phys_obj)
4887 return -ENOMEM;
4888
4889 phys_obj->id = id;
4890
4891 phys_obj->handle = drm_pci_alloc(dev, size, 0);
4892 if (!phys_obj->handle) {
4893 ret = -ENOMEM;
4894 goto kfree_obj;
4895 }
4896 #ifdef CONFIG_X86
4897 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4898 #endif
4899
4900 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4901
4902 return 0;
4903 kfree_obj:
4904 kfree(phys_obj);
4905 return ret;
4906 }
4907
4908 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4909 {
4910 drm_i915_private_t *dev_priv = dev->dev_private;
4911 struct drm_i915_gem_phys_object *phys_obj;
4912
4913 if (!dev_priv->mm.phys_objs[id - 1])
4914 return;
4915
4916 phys_obj = dev_priv->mm.phys_objs[id - 1];
4917 if (phys_obj->cur_obj) {
4918 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4919 }
4920
4921 #ifdef CONFIG_X86
4922 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4923 #endif
4924 drm_pci_free(dev, phys_obj->handle);
4925 kfree(phys_obj);
4926 dev_priv->mm.phys_objs[id - 1] = NULL;
4927 }
4928
4929 void i915_gem_free_all_phys_object(struct drm_device *dev)
4930 {
4931 int i;
4932
4933 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4934 i915_gem_free_phys_object(dev, i);
4935 }
4936
4937 void i915_gem_detach_phys_object(struct drm_device *dev,
4938 struct drm_gem_object *obj)
4939 {
4940 struct drm_i915_gem_object *obj_priv;
4941 int i;
4942 int ret;
4943 int page_count;
4944
4945 obj_priv = obj->driver_private;
4946 if (!obj_priv->phys_obj)
4947 return;
4948
4949 ret = i915_gem_object_get_pages(obj, 0);
4950 if (ret)
4951 goto out;
4952
4953 page_count = obj->size / PAGE_SIZE;
4954
4955 for (i = 0; i < page_count; i++) {
4956 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4957 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4958
4959 memcpy(dst, src, PAGE_SIZE);
4960 kunmap_atomic(dst, KM_USER0);
4961 }
4962 drm_clflush_pages(obj_priv->pages, page_count);
4963 drm_agp_chipset_flush(dev);
4964
4965 i915_gem_object_put_pages(obj);
4966 out:
4967 obj_priv->phys_obj->cur_obj = NULL;
4968 obj_priv->phys_obj = NULL;
4969 }
4970
4971 int
4972 i915_gem_attach_phys_object(struct drm_device *dev,
4973 struct drm_gem_object *obj, int id)
4974 {
4975 drm_i915_private_t *dev_priv = dev->dev_private;
4976 struct drm_i915_gem_object *obj_priv;
4977 int ret = 0;
4978 int page_count;
4979 int i;
4980
4981 if (id > I915_MAX_PHYS_OBJECT)
4982 return -EINVAL;
4983
4984 obj_priv = obj->driver_private;
4985
4986 if (obj_priv->phys_obj) {
4987 if (obj_priv->phys_obj->id == id)
4988 return 0;
4989 i915_gem_detach_phys_object(dev, obj);
4990 }
4991
4992
4993 /* create a new object */
4994 if (!dev_priv->mm.phys_objs[id - 1]) {
4995 ret = i915_gem_init_phys_object(dev, id,
4996 obj->size);
4997 if (ret) {
4998 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4999 goto out;
5000 }
5001 }
5002
5003 /* bind to the object */
5004 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
5005 obj_priv->phys_obj->cur_obj = obj;
5006
5007 ret = i915_gem_object_get_pages(obj, 0);
5008 if (ret) {
5009 DRM_ERROR("failed to get page list\n");
5010 goto out;
5011 }
5012
5013 page_count = obj->size / PAGE_SIZE;
5014
5015 for (i = 0; i < page_count; i++) {
5016 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
5017 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5018
5019 memcpy(dst, src, PAGE_SIZE);
5020 kunmap_atomic(src, KM_USER0);
5021 }
5022
5023 i915_gem_object_put_pages(obj);
5024
5025 return 0;
5026 out:
5027 return ret;
5028 }
5029
5030 static int
5031 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5032 struct drm_i915_gem_pwrite *args,
5033 struct drm_file *file_priv)
5034 {
5035 struct drm_i915_gem_object *obj_priv = obj->driver_private;
5036 void *obj_addr;
5037 int ret;
5038 char __user *user_data;
5039
5040 user_data = (char __user *) (uintptr_t) args->data_ptr;
5041 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5042
5043 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5044 ret = copy_from_user(obj_addr, user_data, args->size);
5045 if (ret)
5046 return -EFAULT;
5047
5048 drm_agp_chipset_flush(dev);
5049 return 0;
5050 }
5051
5052 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5053 {
5054 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5055
5056 /* Clean up our request list when the client is going away, so that
5057 * later retire_requests won't dereference our soon-to-be-gone
5058 * file_priv.
5059 */
5060 mutex_lock(&dev->struct_mutex);
5061 while (!list_empty(&i915_file_priv->mm.request_list))
5062 list_del_init(i915_file_priv->mm.request_list.next);
5063 mutex_unlock(&dev->struct_mutex);
5064 }
5065
5066 static int
5067 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5068 {
5069 drm_i915_private_t *dev_priv, *next_dev;
5070 struct drm_i915_gem_object *obj_priv, *next_obj;
5071 int cnt = 0;
5072 int would_deadlock = 1;
5073
5074 /* "fast-path" to count number of available objects */
5075 if (nr_to_scan == 0) {
5076 spin_lock(&shrink_list_lock);
5077 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5078 struct drm_device *dev = dev_priv->dev;
5079
5080 if (mutex_trylock(&dev->struct_mutex)) {
5081 list_for_each_entry(obj_priv,
5082 &dev_priv->mm.inactive_list,
5083 list)
5084 cnt++;
5085 mutex_unlock(&dev->struct_mutex);
5086 }
5087 }
5088 spin_unlock(&shrink_list_lock);
5089
5090 return (cnt / 100) * sysctl_vfs_cache_pressure;
5091 }
5092
5093 spin_lock(&shrink_list_lock);
5094
5095 /* first scan for clean buffers */
5096 list_for_each_entry_safe(dev_priv, next_dev,
5097 &shrink_list, mm.shrink_list) {
5098 struct drm_device *dev = dev_priv->dev;
5099
5100 if (! mutex_trylock(&dev->struct_mutex))
5101 continue;
5102
5103 spin_unlock(&shrink_list_lock);
5104
5105 i915_gem_retire_requests(dev);
5106
5107 list_for_each_entry_safe(obj_priv, next_obj,
5108 &dev_priv->mm.inactive_list,
5109 list) {
5110 if (i915_gem_object_is_purgeable(obj_priv)) {
5111 i915_gem_object_unbind(obj_priv->obj);
5112 if (--nr_to_scan <= 0)
5113 break;
5114 }
5115 }
5116
5117 spin_lock(&shrink_list_lock);
5118 mutex_unlock(&dev->struct_mutex);
5119
5120 would_deadlock = 0;
5121
5122 if (nr_to_scan <= 0)
5123 break;
5124 }
5125
5126 /* second pass, evict/count anything still on the inactive list */
5127 list_for_each_entry_safe(dev_priv, next_dev,
5128 &shrink_list, mm.shrink_list) {
5129 struct drm_device *dev = dev_priv->dev;
5130
5131 if (! mutex_trylock(&dev->struct_mutex))
5132 continue;
5133
5134 spin_unlock(&shrink_list_lock);
5135
5136 list_for_each_entry_safe(obj_priv, next_obj,
5137 &dev_priv->mm.inactive_list,
5138 list) {
5139 if (nr_to_scan > 0) {
5140 i915_gem_object_unbind(obj_priv->obj);
5141 nr_to_scan--;
5142 } else
5143 cnt++;
5144 }
5145
5146 spin_lock(&shrink_list_lock);
5147 mutex_unlock(&dev->struct_mutex);
5148
5149 would_deadlock = 0;
5150 }
5151
5152 spin_unlock(&shrink_list_lock);
5153
5154 if (would_deadlock)
5155 return -1;
5156 else if (cnt > 0)
5157 return (cnt / 100) * sysctl_vfs_cache_pressure;
5158 else
5159 return 0;
5160 }
5161
5162 static struct shrinker shrinker = {
5163 .shrink = i915_gem_shrink,
5164 .seeks = DEFAULT_SEEKS,
5165 };
5166
5167 __init void
5168 i915_gem_shrinker_init(void)
5169 {
5170 register_shrinker(&shrinker);
5171 }
5172
5173 __exit void
5174 i915_gem_shrinker_exit(void)
5175 {
5176 unregister_shrinker(&shrinker);
5177 }
This page took 0.195352 seconds and 6 git commands to generate.