drm/i915: move gtt handling to i915_gem_gtt.c
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 struct change_domains {
39 uint32_t invalidate_domains;
40 uint32_t flush_domains;
41 uint32_t flush_rings;
42 };
43
44 static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
45 static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
46
47 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
48 bool pipelined);
49 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
50 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
52 int write);
53 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
54 uint64_t offset,
55 uint64_t size);
56 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
57 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
58 bool interruptible);
59 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
60 unsigned alignment,
61 bool map_and_fenceable);
62 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
63 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
64 struct drm_i915_gem_pwrite *args,
65 struct drm_file *file_priv);
66 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
67
68 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
69 int nr_to_scan,
70 gfp_t gfp_mask);
71
72
73 /* some bookkeeping */
74 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79 }
80
81 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83 {
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86 }
87
88 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
89 struct drm_i915_gem_object *obj)
90 {
91 dev_priv->mm.gtt_count++;
92 dev_priv->mm.gtt_memory += obj->gtt_space->size;
93 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
94 dev_priv->mm.mappable_gtt_used +=
95 min_t(size_t, obj->gtt_space->size,
96 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
97 }
98 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
99 }
100
101 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
102 struct drm_i915_gem_object *obj)
103 {
104 dev_priv->mm.gtt_count--;
105 dev_priv->mm.gtt_memory -= obj->gtt_space->size;
106 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
107 dev_priv->mm.mappable_gtt_used -=
108 min_t(size_t, obj->gtt_space->size,
109 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
110 }
111 list_del_init(&obj->gtt_list);
112 }
113
114 /**
115 * Update the mappable working set counters. Call _only_ when there is a change
116 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
117 * @mappable: new state the changed mappable flag (either pin_ or fault_).
118 */
119 static void
120 i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
121 struct drm_i915_gem_object *obj,
122 bool mappable)
123 {
124 if (mappable) {
125 if (obj->pin_mappable && obj->fault_mappable)
126 /* Combined state was already mappable. */
127 return;
128 dev_priv->mm.gtt_mappable_count++;
129 dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
130 } else {
131 if (obj->pin_mappable || obj->fault_mappable)
132 /* Combined state still mappable. */
133 return;
134 dev_priv->mm.gtt_mappable_count--;
135 dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
136 }
137 }
138
139 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
140 struct drm_i915_gem_object *obj,
141 bool mappable)
142 {
143 dev_priv->mm.pin_count++;
144 dev_priv->mm.pin_memory += obj->gtt_space->size;
145 if (mappable) {
146 obj->pin_mappable = true;
147 i915_gem_info_update_mappable(dev_priv, obj, true);
148 }
149 }
150
151 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
152 struct drm_i915_gem_object *obj)
153 {
154 dev_priv->mm.pin_count--;
155 dev_priv->mm.pin_memory -= obj->gtt_space->size;
156 if (obj->pin_mappable) {
157 obj->pin_mappable = false;
158 i915_gem_info_update_mappable(dev_priv, obj, false);
159 }
160 }
161
162 int
163 i915_gem_check_is_wedged(struct drm_device *dev)
164 {
165 struct drm_i915_private *dev_priv = dev->dev_private;
166 struct completion *x = &dev_priv->error_completion;
167 unsigned long flags;
168 int ret;
169
170 if (!atomic_read(&dev_priv->mm.wedged))
171 return 0;
172
173 ret = wait_for_completion_interruptible(x);
174 if (ret)
175 return ret;
176
177 /* Success, we reset the GPU! */
178 if (!atomic_read(&dev_priv->mm.wedged))
179 return 0;
180
181 /* GPU is hung, bump the completion count to account for
182 * the token we just consumed so that we never hit zero and
183 * end up waiting upon a subsequent completion event that
184 * will never happen.
185 */
186 spin_lock_irqsave(&x->wait.lock, flags);
187 x->done++;
188 spin_unlock_irqrestore(&x->wait.lock, flags);
189 return -EIO;
190 }
191
192 static int i915_mutex_lock_interruptible(struct drm_device *dev)
193 {
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 int ret;
196
197 ret = i915_gem_check_is_wedged(dev);
198 if (ret)
199 return ret;
200
201 ret = mutex_lock_interruptible(&dev->struct_mutex);
202 if (ret)
203 return ret;
204
205 if (atomic_read(&dev_priv->mm.wedged)) {
206 mutex_unlock(&dev->struct_mutex);
207 return -EAGAIN;
208 }
209
210 WARN_ON(i915_verify_lists(dev));
211 return 0;
212 }
213
214 static inline bool
215 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
216 {
217 return obj_priv->gtt_space &&
218 !obj_priv->active &&
219 obj_priv->pin_count == 0;
220 }
221
222 int i915_gem_do_init(struct drm_device *dev,
223 unsigned long start,
224 unsigned long mappable_end,
225 unsigned long end)
226 {
227 drm_i915_private_t *dev_priv = dev->dev_private;
228
229 if (start >= end ||
230 (start & (PAGE_SIZE - 1)) != 0 ||
231 (end & (PAGE_SIZE - 1)) != 0) {
232 return -EINVAL;
233 }
234
235 drm_mm_init(&dev_priv->mm.gtt_space, start,
236 end - start);
237
238 dev_priv->mm.gtt_total = end - start;
239 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
240 dev_priv->mm.gtt_mappable_end = mappable_end;
241
242 return 0;
243 }
244
245 int
246 i915_gem_init_ioctl(struct drm_device *dev, void *data,
247 struct drm_file *file_priv)
248 {
249 struct drm_i915_gem_init *args = data;
250 int ret;
251
252 mutex_lock(&dev->struct_mutex);
253 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
254 mutex_unlock(&dev->struct_mutex);
255
256 return ret;
257 }
258
259 int
260 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file_priv)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 struct drm_i915_gem_get_aperture *args = data;
265
266 if (!(dev->driver->driver_features & DRIVER_GEM))
267 return -ENODEV;
268
269 mutex_lock(&dev->struct_mutex);
270 args->aper_size = dev_priv->mm.gtt_total;
271 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
272 mutex_unlock(&dev->struct_mutex);
273
274 return 0;
275 }
276
277
278 /**
279 * Creates a new mm object and returns a handle to it.
280 */
281 int
282 i915_gem_create_ioctl(struct drm_device *dev, void *data,
283 struct drm_file *file_priv)
284 {
285 struct drm_i915_gem_create *args = data;
286 struct drm_gem_object *obj;
287 int ret;
288 u32 handle;
289
290 args->size = roundup(args->size, PAGE_SIZE);
291
292 /* Allocate the new object */
293 obj = i915_gem_alloc_object(dev, args->size);
294 if (obj == NULL)
295 return -ENOMEM;
296
297 ret = drm_gem_handle_create(file_priv, obj, &handle);
298 if (ret) {
299 drm_gem_object_release(obj);
300 i915_gem_info_remove_obj(dev->dev_private, obj->size);
301 kfree(obj);
302 return ret;
303 }
304
305 /* drop reference from allocate - handle holds it now */
306 drm_gem_object_unreference(obj);
307 trace_i915_gem_object_create(obj);
308
309 args->handle = handle;
310 return 0;
311 }
312
313 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
314 {
315 drm_i915_private_t *dev_priv = obj->dev->dev_private;
316 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
317
318 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
319 obj_priv->tiling_mode != I915_TILING_NONE;
320 }
321
322 static inline void
323 slow_shmem_copy(struct page *dst_page,
324 int dst_offset,
325 struct page *src_page,
326 int src_offset,
327 int length)
328 {
329 char *dst_vaddr, *src_vaddr;
330
331 dst_vaddr = kmap(dst_page);
332 src_vaddr = kmap(src_page);
333
334 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
335
336 kunmap(src_page);
337 kunmap(dst_page);
338 }
339
340 static inline void
341 slow_shmem_bit17_copy(struct page *gpu_page,
342 int gpu_offset,
343 struct page *cpu_page,
344 int cpu_offset,
345 int length,
346 int is_read)
347 {
348 char *gpu_vaddr, *cpu_vaddr;
349
350 /* Use the unswizzled path if this page isn't affected. */
351 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
352 if (is_read)
353 return slow_shmem_copy(cpu_page, cpu_offset,
354 gpu_page, gpu_offset, length);
355 else
356 return slow_shmem_copy(gpu_page, gpu_offset,
357 cpu_page, cpu_offset, length);
358 }
359
360 gpu_vaddr = kmap(gpu_page);
361 cpu_vaddr = kmap(cpu_page);
362
363 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
364 * XORing with the other bits (A9 for Y, A9 and A10 for X)
365 */
366 while (length > 0) {
367 int cacheline_end = ALIGN(gpu_offset + 1, 64);
368 int this_length = min(cacheline_end - gpu_offset, length);
369 int swizzled_gpu_offset = gpu_offset ^ 64;
370
371 if (is_read) {
372 memcpy(cpu_vaddr + cpu_offset,
373 gpu_vaddr + swizzled_gpu_offset,
374 this_length);
375 } else {
376 memcpy(gpu_vaddr + swizzled_gpu_offset,
377 cpu_vaddr + cpu_offset,
378 this_length);
379 }
380 cpu_offset += this_length;
381 gpu_offset += this_length;
382 length -= this_length;
383 }
384
385 kunmap(cpu_page);
386 kunmap(gpu_page);
387 }
388
389 /**
390 * This is the fast shmem pread path, which attempts to copy_from_user directly
391 * from the backing pages of the object to the user's address space. On a
392 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
393 */
394 static int
395 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
396 struct drm_i915_gem_pread *args,
397 struct drm_file *file_priv)
398 {
399 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
400 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
401 ssize_t remain;
402 loff_t offset;
403 char __user *user_data;
404 int page_offset, page_length;
405
406 user_data = (char __user *) (uintptr_t) args->data_ptr;
407 remain = args->size;
408
409 obj_priv = to_intel_bo(obj);
410 offset = args->offset;
411
412 while (remain > 0) {
413 struct page *page;
414 char *vaddr;
415 int ret;
416
417 /* Operation in this page
418 *
419 * page_offset = offset within page
420 * page_length = bytes to copy for this page
421 */
422 page_offset = offset & (PAGE_SIZE-1);
423 page_length = remain;
424 if ((page_offset + remain) > PAGE_SIZE)
425 page_length = PAGE_SIZE - page_offset;
426
427 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
428 GFP_HIGHUSER | __GFP_RECLAIMABLE);
429 if (IS_ERR(page))
430 return PTR_ERR(page);
431
432 vaddr = kmap_atomic(page);
433 ret = __copy_to_user_inatomic(user_data,
434 vaddr + page_offset,
435 page_length);
436 kunmap_atomic(vaddr);
437
438 mark_page_accessed(page);
439 page_cache_release(page);
440 if (ret)
441 return -EFAULT;
442
443 remain -= page_length;
444 user_data += page_length;
445 offset += page_length;
446 }
447
448 return 0;
449 }
450
451 /**
452 * This is the fallback shmem pread path, which allocates temporary storage
453 * in kernel space to copy_to_user into outside of the struct_mutex, so we
454 * can copy out of the object's backing pages while holding the struct mutex
455 * and not take page faults.
456 */
457 static int
458 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
459 struct drm_i915_gem_pread *args,
460 struct drm_file *file_priv)
461 {
462 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
463 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
464 struct mm_struct *mm = current->mm;
465 struct page **user_pages;
466 ssize_t remain;
467 loff_t offset, pinned_pages, i;
468 loff_t first_data_page, last_data_page, num_pages;
469 int shmem_page_offset;
470 int data_page_index, data_page_offset;
471 int page_length;
472 int ret;
473 uint64_t data_ptr = args->data_ptr;
474 int do_bit17_swizzling;
475
476 remain = args->size;
477
478 /* Pin the user pages containing the data. We can't fault while
479 * holding the struct mutex, yet we want to hold it while
480 * dereferencing the user data.
481 */
482 first_data_page = data_ptr / PAGE_SIZE;
483 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
484 num_pages = last_data_page - first_data_page + 1;
485
486 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
487 if (user_pages == NULL)
488 return -ENOMEM;
489
490 mutex_unlock(&dev->struct_mutex);
491 down_read(&mm->mmap_sem);
492 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
493 num_pages, 1, 0, user_pages, NULL);
494 up_read(&mm->mmap_sem);
495 mutex_lock(&dev->struct_mutex);
496 if (pinned_pages < num_pages) {
497 ret = -EFAULT;
498 goto out;
499 }
500
501 ret = i915_gem_object_set_cpu_read_domain_range(obj,
502 args->offset,
503 args->size);
504 if (ret)
505 goto out;
506
507 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
508
509 obj_priv = to_intel_bo(obj);
510 offset = args->offset;
511
512 while (remain > 0) {
513 struct page *page;
514
515 /* Operation in this page
516 *
517 * shmem_page_offset = offset within page in shmem file
518 * data_page_index = page number in get_user_pages return
519 * data_page_offset = offset with data_page_index page.
520 * page_length = bytes to copy for this page
521 */
522 shmem_page_offset = offset & ~PAGE_MASK;
523 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
524 data_page_offset = data_ptr & ~PAGE_MASK;
525
526 page_length = remain;
527 if ((shmem_page_offset + page_length) > PAGE_SIZE)
528 page_length = PAGE_SIZE - shmem_page_offset;
529 if ((data_page_offset + page_length) > PAGE_SIZE)
530 page_length = PAGE_SIZE - data_page_offset;
531
532 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
533 GFP_HIGHUSER | __GFP_RECLAIMABLE);
534 if (IS_ERR(page))
535 return PTR_ERR(page);
536
537 if (do_bit17_swizzling) {
538 slow_shmem_bit17_copy(page,
539 shmem_page_offset,
540 user_pages[data_page_index],
541 data_page_offset,
542 page_length,
543 1);
544 } else {
545 slow_shmem_copy(user_pages[data_page_index],
546 data_page_offset,
547 page,
548 shmem_page_offset,
549 page_length);
550 }
551
552 mark_page_accessed(page);
553 page_cache_release(page);
554
555 remain -= page_length;
556 data_ptr += page_length;
557 offset += page_length;
558 }
559
560 out:
561 for (i = 0; i < pinned_pages; i++) {
562 SetPageDirty(user_pages[i]);
563 mark_page_accessed(user_pages[i]);
564 page_cache_release(user_pages[i]);
565 }
566 drm_free_large(user_pages);
567
568 return ret;
569 }
570
571 /**
572 * Reads data from the object referenced by handle.
573 *
574 * On error, the contents of *data are undefined.
575 */
576 int
577 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
578 struct drm_file *file_priv)
579 {
580 struct drm_i915_gem_pread *args = data;
581 struct drm_gem_object *obj;
582 struct drm_i915_gem_object *obj_priv;
583 int ret = 0;
584
585 if (args->size == 0)
586 return 0;
587
588 if (!access_ok(VERIFY_WRITE,
589 (char __user *)(uintptr_t)args->data_ptr,
590 args->size))
591 return -EFAULT;
592
593 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
594 args->size);
595 if (ret)
596 return -EFAULT;
597
598 ret = i915_mutex_lock_interruptible(dev);
599 if (ret)
600 return ret;
601
602 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
603 if (obj == NULL) {
604 ret = -ENOENT;
605 goto unlock;
606 }
607 obj_priv = to_intel_bo(obj);
608
609 /* Bounds check source. */
610 if (args->offset > obj->size || args->size > obj->size - args->offset) {
611 ret = -EINVAL;
612 goto out;
613 }
614
615 ret = i915_gem_object_set_cpu_read_domain_range(obj,
616 args->offset,
617 args->size);
618 if (ret)
619 goto out;
620
621 ret = -EFAULT;
622 if (!i915_gem_object_needs_bit17_swizzle(obj))
623 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
624 if (ret == -EFAULT)
625 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
626
627 out:
628 drm_gem_object_unreference(obj);
629 unlock:
630 mutex_unlock(&dev->struct_mutex);
631 return ret;
632 }
633
634 /* This is the fast write path which cannot handle
635 * page faults in the source data
636 */
637
638 static inline int
639 fast_user_write(struct io_mapping *mapping,
640 loff_t page_base, int page_offset,
641 char __user *user_data,
642 int length)
643 {
644 char *vaddr_atomic;
645 unsigned long unwritten;
646
647 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
648 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
649 user_data, length);
650 io_mapping_unmap_atomic(vaddr_atomic);
651 return unwritten;
652 }
653
654 /* Here's the write path which can sleep for
655 * page faults
656 */
657
658 static inline void
659 slow_kernel_write(struct io_mapping *mapping,
660 loff_t gtt_base, int gtt_offset,
661 struct page *user_page, int user_offset,
662 int length)
663 {
664 char __iomem *dst_vaddr;
665 char *src_vaddr;
666
667 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
668 src_vaddr = kmap(user_page);
669
670 memcpy_toio(dst_vaddr + gtt_offset,
671 src_vaddr + user_offset,
672 length);
673
674 kunmap(user_page);
675 io_mapping_unmap(dst_vaddr);
676 }
677
678 /**
679 * This is the fast pwrite path, where we copy the data directly from the
680 * user into the GTT, uncached.
681 */
682 static int
683 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
684 struct drm_i915_gem_pwrite *args,
685 struct drm_file *file_priv)
686 {
687 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
688 drm_i915_private_t *dev_priv = dev->dev_private;
689 ssize_t remain;
690 loff_t offset, page_base;
691 char __user *user_data;
692 int page_offset, page_length;
693
694 user_data = (char __user *) (uintptr_t) args->data_ptr;
695 remain = args->size;
696
697 obj_priv = to_intel_bo(obj);
698 offset = obj_priv->gtt_offset + args->offset;
699
700 while (remain > 0) {
701 /* Operation in this page
702 *
703 * page_base = page offset within aperture
704 * page_offset = offset within page
705 * page_length = bytes to copy for this page
706 */
707 page_base = (offset & ~(PAGE_SIZE-1));
708 page_offset = offset & (PAGE_SIZE-1);
709 page_length = remain;
710 if ((page_offset + remain) > PAGE_SIZE)
711 page_length = PAGE_SIZE - page_offset;
712
713 /* If we get a fault while copying data, then (presumably) our
714 * source page isn't available. Return the error and we'll
715 * retry in the slow path.
716 */
717 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
718 page_offset, user_data, page_length))
719
720 return -EFAULT;
721
722 remain -= page_length;
723 user_data += page_length;
724 offset += page_length;
725 }
726
727 return 0;
728 }
729
730 /**
731 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
732 * the memory and maps it using kmap_atomic for copying.
733 *
734 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
735 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
736 */
737 static int
738 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
739 struct drm_i915_gem_pwrite *args,
740 struct drm_file *file_priv)
741 {
742 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
743 drm_i915_private_t *dev_priv = dev->dev_private;
744 ssize_t remain;
745 loff_t gtt_page_base, offset;
746 loff_t first_data_page, last_data_page, num_pages;
747 loff_t pinned_pages, i;
748 struct page **user_pages;
749 struct mm_struct *mm = current->mm;
750 int gtt_page_offset, data_page_offset, data_page_index, page_length;
751 int ret;
752 uint64_t data_ptr = args->data_ptr;
753
754 remain = args->size;
755
756 /* Pin the user pages containing the data. We can't fault while
757 * holding the struct mutex, and all of the pwrite implementations
758 * want to hold it while dereferencing the user data.
759 */
760 first_data_page = data_ptr / PAGE_SIZE;
761 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
762 num_pages = last_data_page - first_data_page + 1;
763
764 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
765 if (user_pages == NULL)
766 return -ENOMEM;
767
768 mutex_unlock(&dev->struct_mutex);
769 down_read(&mm->mmap_sem);
770 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
771 num_pages, 0, 0, user_pages, NULL);
772 up_read(&mm->mmap_sem);
773 mutex_lock(&dev->struct_mutex);
774 if (pinned_pages < num_pages) {
775 ret = -EFAULT;
776 goto out_unpin_pages;
777 }
778
779 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
780 if (ret)
781 goto out_unpin_pages;
782
783 obj_priv = to_intel_bo(obj);
784 offset = obj_priv->gtt_offset + args->offset;
785
786 while (remain > 0) {
787 /* Operation in this page
788 *
789 * gtt_page_base = page offset within aperture
790 * gtt_page_offset = offset within page in aperture
791 * data_page_index = page number in get_user_pages return
792 * data_page_offset = offset with data_page_index page.
793 * page_length = bytes to copy for this page
794 */
795 gtt_page_base = offset & PAGE_MASK;
796 gtt_page_offset = offset & ~PAGE_MASK;
797 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
798 data_page_offset = data_ptr & ~PAGE_MASK;
799
800 page_length = remain;
801 if ((gtt_page_offset + page_length) > PAGE_SIZE)
802 page_length = PAGE_SIZE - gtt_page_offset;
803 if ((data_page_offset + page_length) > PAGE_SIZE)
804 page_length = PAGE_SIZE - data_page_offset;
805
806 slow_kernel_write(dev_priv->mm.gtt_mapping,
807 gtt_page_base, gtt_page_offset,
808 user_pages[data_page_index],
809 data_page_offset,
810 page_length);
811
812 remain -= page_length;
813 offset += page_length;
814 data_ptr += page_length;
815 }
816
817 out_unpin_pages:
818 for (i = 0; i < pinned_pages; i++)
819 page_cache_release(user_pages[i]);
820 drm_free_large(user_pages);
821
822 return ret;
823 }
824
825 /**
826 * This is the fast shmem pwrite path, which attempts to directly
827 * copy_from_user into the kmapped pages backing the object.
828 */
829 static int
830 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
831 struct drm_i915_gem_pwrite *args,
832 struct drm_file *file_priv)
833 {
834 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
835 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
836 ssize_t remain;
837 loff_t offset;
838 char __user *user_data;
839 int page_offset, page_length;
840
841 user_data = (char __user *) (uintptr_t) args->data_ptr;
842 remain = args->size;
843
844 obj_priv = to_intel_bo(obj);
845 offset = args->offset;
846 obj_priv->dirty = 1;
847
848 while (remain > 0) {
849 struct page *page;
850 char *vaddr;
851 int ret;
852
853 /* Operation in this page
854 *
855 * page_offset = offset within page
856 * page_length = bytes to copy for this page
857 */
858 page_offset = offset & (PAGE_SIZE-1);
859 page_length = remain;
860 if ((page_offset + remain) > PAGE_SIZE)
861 page_length = PAGE_SIZE - page_offset;
862
863 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
864 GFP_HIGHUSER | __GFP_RECLAIMABLE);
865 if (IS_ERR(page))
866 return PTR_ERR(page);
867
868 vaddr = kmap_atomic(page, KM_USER0);
869 ret = __copy_from_user_inatomic(vaddr + page_offset,
870 user_data,
871 page_length);
872 kunmap_atomic(vaddr, KM_USER0);
873
874 set_page_dirty(page);
875 mark_page_accessed(page);
876 page_cache_release(page);
877
878 /* If we get a fault while copying data, then (presumably) our
879 * source page isn't available. Return the error and we'll
880 * retry in the slow path.
881 */
882 if (ret)
883 return -EFAULT;
884
885 remain -= page_length;
886 user_data += page_length;
887 offset += page_length;
888 }
889
890 return 0;
891 }
892
893 /**
894 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
895 * the memory and maps it using kmap_atomic for copying.
896 *
897 * This avoids taking mmap_sem for faulting on the user's address while the
898 * struct_mutex is held.
899 */
900 static int
901 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
902 struct drm_i915_gem_pwrite *args,
903 struct drm_file *file_priv)
904 {
905 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
906 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
907 struct mm_struct *mm = current->mm;
908 struct page **user_pages;
909 ssize_t remain;
910 loff_t offset, pinned_pages, i;
911 loff_t first_data_page, last_data_page, num_pages;
912 int shmem_page_offset;
913 int data_page_index, data_page_offset;
914 int page_length;
915 int ret;
916 uint64_t data_ptr = args->data_ptr;
917 int do_bit17_swizzling;
918
919 remain = args->size;
920
921 /* Pin the user pages containing the data. We can't fault while
922 * holding the struct mutex, and all of the pwrite implementations
923 * want to hold it while dereferencing the user data.
924 */
925 first_data_page = data_ptr / PAGE_SIZE;
926 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
927 num_pages = last_data_page - first_data_page + 1;
928
929 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
930 if (user_pages == NULL)
931 return -ENOMEM;
932
933 mutex_unlock(&dev->struct_mutex);
934 down_read(&mm->mmap_sem);
935 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
936 num_pages, 0, 0, user_pages, NULL);
937 up_read(&mm->mmap_sem);
938 mutex_lock(&dev->struct_mutex);
939 if (pinned_pages < num_pages) {
940 ret = -EFAULT;
941 goto out;
942 }
943
944 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
945 if (ret)
946 goto out;
947
948 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
949
950 obj_priv = to_intel_bo(obj);
951 offset = args->offset;
952 obj_priv->dirty = 1;
953
954 while (remain > 0) {
955 struct page *page;
956
957 /* Operation in this page
958 *
959 * shmem_page_offset = offset within page in shmem file
960 * data_page_index = page number in get_user_pages return
961 * data_page_offset = offset with data_page_index page.
962 * page_length = bytes to copy for this page
963 */
964 shmem_page_offset = offset & ~PAGE_MASK;
965 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
966 data_page_offset = data_ptr & ~PAGE_MASK;
967
968 page_length = remain;
969 if ((shmem_page_offset + page_length) > PAGE_SIZE)
970 page_length = PAGE_SIZE - shmem_page_offset;
971 if ((data_page_offset + page_length) > PAGE_SIZE)
972 page_length = PAGE_SIZE - data_page_offset;
973
974 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
975 GFP_HIGHUSER | __GFP_RECLAIMABLE);
976 if (IS_ERR(page)) {
977 ret = PTR_ERR(page);
978 goto out;
979 }
980
981 if (do_bit17_swizzling) {
982 slow_shmem_bit17_copy(page,
983 shmem_page_offset,
984 user_pages[data_page_index],
985 data_page_offset,
986 page_length,
987 0);
988 } else {
989 slow_shmem_copy(page,
990 shmem_page_offset,
991 user_pages[data_page_index],
992 data_page_offset,
993 page_length);
994 }
995
996 set_page_dirty(page);
997 mark_page_accessed(page);
998 page_cache_release(page);
999
1000 remain -= page_length;
1001 data_ptr += page_length;
1002 offset += page_length;
1003 }
1004
1005 out:
1006 for (i = 0; i < pinned_pages; i++)
1007 page_cache_release(user_pages[i]);
1008 drm_free_large(user_pages);
1009
1010 return ret;
1011 }
1012
1013 /**
1014 * Writes data to the object referenced by handle.
1015 *
1016 * On error, the contents of the buffer that were to be modified are undefined.
1017 */
1018 int
1019 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1020 struct drm_file *file)
1021 {
1022 struct drm_i915_gem_pwrite *args = data;
1023 struct drm_gem_object *obj;
1024 struct drm_i915_gem_object *obj_priv;
1025 int ret;
1026
1027 if (args->size == 0)
1028 return 0;
1029
1030 if (!access_ok(VERIFY_READ,
1031 (char __user *)(uintptr_t)args->data_ptr,
1032 args->size))
1033 return -EFAULT;
1034
1035 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1036 args->size);
1037 if (ret)
1038 return -EFAULT;
1039
1040 ret = i915_mutex_lock_interruptible(dev);
1041 if (ret)
1042 return ret;
1043
1044 obj = drm_gem_object_lookup(dev, file, args->handle);
1045 if (obj == NULL) {
1046 ret = -ENOENT;
1047 goto unlock;
1048 }
1049 obj_priv = to_intel_bo(obj);
1050
1051 /* Bounds check destination. */
1052 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1053 ret = -EINVAL;
1054 goto out;
1055 }
1056
1057 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1058 * it would end up going through the fenced access, and we'll get
1059 * different detiling behavior between reading and writing.
1060 * pread/pwrite currently are reading and writing from the CPU
1061 * perspective, requiring manual detiling by the client.
1062 */
1063 if (obj_priv->phys_obj)
1064 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1065 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1066 obj_priv->gtt_space &&
1067 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1068 ret = i915_gem_object_pin(obj, 0, true);
1069 if (ret)
1070 goto out;
1071
1072 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1073 if (ret)
1074 goto out_unpin;
1075
1076 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1077 if (ret == -EFAULT)
1078 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1079
1080 out_unpin:
1081 i915_gem_object_unpin(obj);
1082 } else {
1083 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1084 if (ret)
1085 goto out;
1086
1087 ret = -EFAULT;
1088 if (!i915_gem_object_needs_bit17_swizzle(obj))
1089 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1090 if (ret == -EFAULT)
1091 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1092 }
1093
1094 out:
1095 drm_gem_object_unreference(obj);
1096 unlock:
1097 mutex_unlock(&dev->struct_mutex);
1098 return ret;
1099 }
1100
1101 /**
1102 * Called when user space prepares to use an object with the CPU, either
1103 * through the mmap ioctl's mapping or a GTT mapping.
1104 */
1105 int
1106 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1107 struct drm_file *file_priv)
1108 {
1109 struct drm_i915_private *dev_priv = dev->dev_private;
1110 struct drm_i915_gem_set_domain *args = data;
1111 struct drm_gem_object *obj;
1112 struct drm_i915_gem_object *obj_priv;
1113 uint32_t read_domains = args->read_domains;
1114 uint32_t write_domain = args->write_domain;
1115 int ret;
1116
1117 if (!(dev->driver->driver_features & DRIVER_GEM))
1118 return -ENODEV;
1119
1120 /* Only handle setting domains to types used by the CPU. */
1121 if (write_domain & I915_GEM_GPU_DOMAINS)
1122 return -EINVAL;
1123
1124 if (read_domains & I915_GEM_GPU_DOMAINS)
1125 return -EINVAL;
1126
1127 /* Having something in the write domain implies it's in the read
1128 * domain, and only that read domain. Enforce that in the request.
1129 */
1130 if (write_domain != 0 && read_domains != write_domain)
1131 return -EINVAL;
1132
1133 ret = i915_mutex_lock_interruptible(dev);
1134 if (ret)
1135 return ret;
1136
1137 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1138 if (obj == NULL) {
1139 ret = -ENOENT;
1140 goto unlock;
1141 }
1142 obj_priv = to_intel_bo(obj);
1143
1144 intel_mark_busy(dev, obj);
1145
1146 if (read_domains & I915_GEM_DOMAIN_GTT) {
1147 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1148
1149 /* Update the LRU on the fence for the CPU access that's
1150 * about to occur.
1151 */
1152 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1153 struct drm_i915_fence_reg *reg =
1154 &dev_priv->fence_regs[obj_priv->fence_reg];
1155 list_move_tail(&reg->lru_list,
1156 &dev_priv->mm.fence_list);
1157 }
1158
1159 /* Silently promote "you're not bound, there was nothing to do"
1160 * to success, since the client was just asking us to
1161 * make sure everything was done.
1162 */
1163 if (ret == -EINVAL)
1164 ret = 0;
1165 } else {
1166 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1167 }
1168
1169 /* Maintain LRU order of "inactive" objects */
1170 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1171 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1172
1173 drm_gem_object_unreference(obj);
1174 unlock:
1175 mutex_unlock(&dev->struct_mutex);
1176 return ret;
1177 }
1178
1179 /**
1180 * Called when user space has done writes to this buffer
1181 */
1182 int
1183 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1184 struct drm_file *file_priv)
1185 {
1186 struct drm_i915_gem_sw_finish *args = data;
1187 struct drm_gem_object *obj;
1188 int ret = 0;
1189
1190 if (!(dev->driver->driver_features & DRIVER_GEM))
1191 return -ENODEV;
1192
1193 ret = i915_mutex_lock_interruptible(dev);
1194 if (ret)
1195 return ret;
1196
1197 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1198 if (obj == NULL) {
1199 ret = -ENOENT;
1200 goto unlock;
1201 }
1202
1203 /* Pinned buffers may be scanout, so flush the cache */
1204 if (to_intel_bo(obj)->pin_count)
1205 i915_gem_object_flush_cpu_write_domain(obj);
1206
1207 drm_gem_object_unreference(obj);
1208 unlock:
1209 mutex_unlock(&dev->struct_mutex);
1210 return ret;
1211 }
1212
1213 /**
1214 * Maps the contents of an object, returning the address it is mapped
1215 * into.
1216 *
1217 * While the mapping holds a reference on the contents of the object, it doesn't
1218 * imply a ref on the object itself.
1219 */
1220 int
1221 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1222 struct drm_file *file_priv)
1223 {
1224 struct drm_i915_private *dev_priv = dev->dev_private;
1225 struct drm_i915_gem_mmap *args = data;
1226 struct drm_gem_object *obj;
1227 loff_t offset;
1228 unsigned long addr;
1229
1230 if (!(dev->driver->driver_features & DRIVER_GEM))
1231 return -ENODEV;
1232
1233 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1234 if (obj == NULL)
1235 return -ENOENT;
1236
1237 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1238 drm_gem_object_unreference_unlocked(obj);
1239 return -E2BIG;
1240 }
1241
1242 offset = args->offset;
1243
1244 down_write(&current->mm->mmap_sem);
1245 addr = do_mmap(obj->filp, 0, args->size,
1246 PROT_READ | PROT_WRITE, MAP_SHARED,
1247 args->offset);
1248 up_write(&current->mm->mmap_sem);
1249 drm_gem_object_unreference_unlocked(obj);
1250 if (IS_ERR((void *)addr))
1251 return addr;
1252
1253 args->addr_ptr = (uint64_t) addr;
1254
1255 return 0;
1256 }
1257
1258 /**
1259 * i915_gem_fault - fault a page into the GTT
1260 * vma: VMA in question
1261 * vmf: fault info
1262 *
1263 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1264 * from userspace. The fault handler takes care of binding the object to
1265 * the GTT (if needed), allocating and programming a fence register (again,
1266 * only if needed based on whether the old reg is still valid or the object
1267 * is tiled) and inserting a new PTE into the faulting process.
1268 *
1269 * Note that the faulting process may involve evicting existing objects
1270 * from the GTT and/or fence registers to make room. So performance may
1271 * suffer if the GTT working set is large or there are few fence registers
1272 * left.
1273 */
1274 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1275 {
1276 struct drm_gem_object *obj = vma->vm_private_data;
1277 struct drm_device *dev = obj->dev;
1278 drm_i915_private_t *dev_priv = dev->dev_private;
1279 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1280 pgoff_t page_offset;
1281 unsigned long pfn;
1282 int ret = 0;
1283 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1284
1285 /* We don't use vmf->pgoff since that has the fake offset */
1286 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1287 PAGE_SHIFT;
1288
1289 /* Now bind it into the GTT if needed */
1290 mutex_lock(&dev->struct_mutex);
1291 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
1292
1293 if (obj_priv->gtt_space) {
1294 if (!obj_priv->map_and_fenceable) {
1295 ret = i915_gem_object_unbind(obj);
1296 if (ret)
1297 goto unlock;
1298 }
1299 }
1300
1301 if (!obj_priv->gtt_space) {
1302 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1303 if (ret)
1304 goto unlock;
1305 }
1306
1307 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1308 if (ret)
1309 goto unlock;
1310
1311 if (!obj_priv->fault_mappable) {
1312 obj_priv->fault_mappable = true;
1313 i915_gem_info_update_mappable(dev_priv, obj_priv, true);
1314 }
1315
1316 /* Need a new fence register? */
1317 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1318 ret = i915_gem_object_get_fence_reg(obj, true);
1319 if (ret)
1320 goto unlock;
1321 }
1322
1323 if (i915_gem_object_is_inactive(obj_priv))
1324 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1325
1326 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1327 page_offset;
1328
1329 /* Finally, remap it using the new GTT offset */
1330 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1331 unlock:
1332 mutex_unlock(&dev->struct_mutex);
1333
1334 switch (ret) {
1335 case -EAGAIN:
1336 set_need_resched();
1337 case 0:
1338 case -ERESTARTSYS:
1339 return VM_FAULT_NOPAGE;
1340 case -ENOMEM:
1341 return VM_FAULT_OOM;
1342 default:
1343 return VM_FAULT_SIGBUS;
1344 }
1345 }
1346
1347 /**
1348 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1349 * @obj: obj in question
1350 *
1351 * GEM memory mapping works by handing back to userspace a fake mmap offset
1352 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1353 * up the object based on the offset and sets up the various memory mapping
1354 * structures.
1355 *
1356 * This routine allocates and attaches a fake offset for @obj.
1357 */
1358 static int
1359 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1360 {
1361 struct drm_device *dev = obj->dev;
1362 struct drm_gem_mm *mm = dev->mm_private;
1363 struct drm_map_list *list;
1364 struct drm_local_map *map;
1365 int ret = 0;
1366
1367 /* Set the object up for mmap'ing */
1368 list = &obj->map_list;
1369 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1370 if (!list->map)
1371 return -ENOMEM;
1372
1373 map = list->map;
1374 map->type = _DRM_GEM;
1375 map->size = obj->size;
1376 map->handle = obj;
1377
1378 /* Get a DRM GEM mmap offset allocated... */
1379 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1380 obj->size / PAGE_SIZE, 0, 0);
1381 if (!list->file_offset_node) {
1382 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1383 ret = -ENOSPC;
1384 goto out_free_list;
1385 }
1386
1387 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1388 obj->size / PAGE_SIZE, 0);
1389 if (!list->file_offset_node) {
1390 ret = -ENOMEM;
1391 goto out_free_list;
1392 }
1393
1394 list->hash.key = list->file_offset_node->start;
1395 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1396 if (ret) {
1397 DRM_ERROR("failed to add to map hash\n");
1398 goto out_free_mm;
1399 }
1400
1401 return 0;
1402
1403 out_free_mm:
1404 drm_mm_put_block(list->file_offset_node);
1405 out_free_list:
1406 kfree(list->map);
1407 list->map = NULL;
1408
1409 return ret;
1410 }
1411
1412 /**
1413 * i915_gem_release_mmap - remove physical page mappings
1414 * @obj: obj in question
1415 *
1416 * Preserve the reservation of the mmapping with the DRM core code, but
1417 * relinquish ownership of the pages back to the system.
1418 *
1419 * It is vital that we remove the page mapping if we have mapped a tiled
1420 * object through the GTT and then lose the fence register due to
1421 * resource pressure. Similarly if the object has been moved out of the
1422 * aperture, than pages mapped into userspace must be revoked. Removing the
1423 * mapping will then trigger a page fault on the next user access, allowing
1424 * fixup by i915_gem_fault().
1425 */
1426 void
1427 i915_gem_release_mmap(struct drm_gem_object *obj)
1428 {
1429 struct drm_device *dev = obj->dev;
1430 struct drm_i915_private *dev_priv = dev->dev_private;
1431 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1432
1433 if (unlikely(obj->map_list.map && dev->dev_mapping))
1434 unmap_mapping_range(dev->dev_mapping,
1435 (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
1436 obj->size, 1);
1437
1438 if (obj_priv->fault_mappable) {
1439 obj_priv->fault_mappable = false;
1440 i915_gem_info_update_mappable(dev_priv, obj_priv, false);
1441 }
1442 }
1443
1444 static void
1445 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1446 {
1447 struct drm_device *dev = obj->dev;
1448 struct drm_gem_mm *mm = dev->mm_private;
1449 struct drm_map_list *list = &obj->map_list;
1450
1451 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1452 drm_mm_put_block(list->file_offset_node);
1453 kfree(list->map);
1454 list->map = NULL;
1455 }
1456
1457 /**
1458 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1459 * @obj: object to check
1460 *
1461 * Return the required GTT alignment for an object, taking into account
1462 * potential fence register mapping.
1463 */
1464 static uint32_t
1465 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
1466 {
1467 struct drm_device *dev = obj_priv->base.dev;
1468
1469 /*
1470 * Minimum alignment is 4k (GTT page size), but might be greater
1471 * if a fence register is needed for the object.
1472 */
1473 if (INTEL_INFO(dev)->gen >= 4 ||
1474 obj_priv->tiling_mode == I915_TILING_NONE)
1475 return 4096;
1476
1477 /*
1478 * Previous chips need to be aligned to the size of the smallest
1479 * fence register that can contain the object.
1480 */
1481 return i915_gem_get_gtt_size(obj_priv);
1482 }
1483
1484 /**
1485 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1486 * unfenced object
1487 * @obj: object to check
1488 *
1489 * Return the required GTT alignment for an object, only taking into account
1490 * unfenced tiled surface requirements.
1491 */
1492 static uint32_t
1493 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj_priv)
1494 {
1495 struct drm_device *dev = obj_priv->base.dev;
1496 int tile_height;
1497
1498 /*
1499 * Minimum alignment is 4k (GTT page size) for sane hw.
1500 */
1501 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1502 obj_priv->tiling_mode == I915_TILING_NONE)
1503 return 4096;
1504
1505 /*
1506 * Older chips need unfenced tiled buffers to be aligned to the left
1507 * edge of an even tile row (where tile rows are counted as if the bo is
1508 * placed in a fenced gtt region).
1509 */
1510 if (IS_GEN2(dev) ||
1511 (obj_priv->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1512 tile_height = 32;
1513 else
1514 tile_height = 8;
1515
1516 return tile_height * obj_priv->stride * 2;
1517 }
1518
1519 static uint32_t
1520 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
1521 {
1522 struct drm_device *dev = obj_priv->base.dev;
1523 uint32_t size;
1524
1525 /*
1526 * Minimum alignment is 4k (GTT page size), but might be greater
1527 * if a fence register is needed for the object.
1528 */
1529 if (INTEL_INFO(dev)->gen >= 4)
1530 return obj_priv->base.size;
1531
1532 /*
1533 * Previous chips need to be aligned to the size of the smallest
1534 * fence register that can contain the object.
1535 */
1536 if (INTEL_INFO(dev)->gen == 3)
1537 size = 1024*1024;
1538 else
1539 size = 512*1024;
1540
1541 while (size < obj_priv->base.size)
1542 size <<= 1;
1543
1544 return size;
1545 }
1546
1547 /**
1548 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1549 * @dev: DRM device
1550 * @data: GTT mapping ioctl data
1551 * @file_priv: GEM object info
1552 *
1553 * Simply returns the fake offset to userspace so it can mmap it.
1554 * The mmap call will end up in drm_gem_mmap(), which will set things
1555 * up so we can get faults in the handler above.
1556 *
1557 * The fault handler will take care of binding the object into the GTT
1558 * (since it may have been evicted to make room for something), allocating
1559 * a fence register, and mapping the appropriate aperture address into
1560 * userspace.
1561 */
1562 int
1563 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1564 struct drm_file *file_priv)
1565 {
1566 struct drm_i915_private *dev_priv = dev->dev_private;
1567 struct drm_i915_gem_mmap_gtt *args = data;
1568 struct drm_gem_object *obj;
1569 struct drm_i915_gem_object *obj_priv;
1570 int ret;
1571
1572 if (!(dev->driver->driver_features & DRIVER_GEM))
1573 return -ENODEV;
1574
1575 ret = i915_mutex_lock_interruptible(dev);
1576 if (ret)
1577 return ret;
1578
1579 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1580 if (obj == NULL) {
1581 ret = -ENOENT;
1582 goto unlock;
1583 }
1584 obj_priv = to_intel_bo(obj);
1585
1586 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1587 ret = -E2BIG;
1588 goto unlock;
1589 }
1590
1591 if (obj_priv->madv != I915_MADV_WILLNEED) {
1592 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1593 ret = -EINVAL;
1594 goto out;
1595 }
1596
1597 if (!obj->map_list.map) {
1598 ret = i915_gem_create_mmap_offset(obj);
1599 if (ret)
1600 goto out;
1601 }
1602
1603 args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
1604
1605 out:
1606 drm_gem_object_unreference(obj);
1607 unlock:
1608 mutex_unlock(&dev->struct_mutex);
1609 return ret;
1610 }
1611
1612 static int
1613 i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
1614 gfp_t gfpmask)
1615 {
1616 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1617 int page_count, i;
1618 struct address_space *mapping;
1619 struct inode *inode;
1620 struct page *page;
1621
1622 /* Get the list of pages out of our struct file. They'll be pinned
1623 * at this point until we release them.
1624 */
1625 page_count = obj->size / PAGE_SIZE;
1626 BUG_ON(obj_priv->pages != NULL);
1627 obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1628 if (obj_priv->pages == NULL)
1629 return -ENOMEM;
1630
1631 inode = obj->filp->f_path.dentry->d_inode;
1632 mapping = inode->i_mapping;
1633 for (i = 0; i < page_count; i++) {
1634 page = read_cache_page_gfp(mapping, i,
1635 GFP_HIGHUSER |
1636 __GFP_COLD |
1637 __GFP_RECLAIMABLE |
1638 gfpmask);
1639 if (IS_ERR(page))
1640 goto err_pages;
1641
1642 obj_priv->pages[i] = page;
1643 }
1644
1645 if (obj_priv->tiling_mode != I915_TILING_NONE)
1646 i915_gem_object_do_bit_17_swizzle(obj);
1647
1648 return 0;
1649
1650 err_pages:
1651 while (i--)
1652 page_cache_release(obj_priv->pages[i]);
1653
1654 drm_free_large(obj_priv->pages);
1655 obj_priv->pages = NULL;
1656 return PTR_ERR(page);
1657 }
1658
1659 static void
1660 i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
1661 {
1662 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1663 int page_count = obj->size / PAGE_SIZE;
1664 int i;
1665
1666 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1667
1668 if (obj_priv->tiling_mode != I915_TILING_NONE)
1669 i915_gem_object_save_bit_17_swizzle(obj);
1670
1671 if (obj_priv->madv == I915_MADV_DONTNEED)
1672 obj_priv->dirty = 0;
1673
1674 for (i = 0; i < page_count; i++) {
1675 if (obj_priv->dirty)
1676 set_page_dirty(obj_priv->pages[i]);
1677
1678 if (obj_priv->madv == I915_MADV_WILLNEED)
1679 mark_page_accessed(obj_priv->pages[i]);
1680
1681 page_cache_release(obj_priv->pages[i]);
1682 }
1683 obj_priv->dirty = 0;
1684
1685 drm_free_large(obj_priv->pages);
1686 obj_priv->pages = NULL;
1687 }
1688
1689 static uint32_t
1690 i915_gem_next_request_seqno(struct drm_device *dev,
1691 struct intel_ring_buffer *ring)
1692 {
1693 drm_i915_private_t *dev_priv = dev->dev_private;
1694 return ring->outstanding_lazy_request = dev_priv->next_seqno;
1695 }
1696
1697 static void
1698 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1699 struct intel_ring_buffer *ring)
1700 {
1701 struct drm_device *dev = obj->dev;
1702 struct drm_i915_private *dev_priv = dev->dev_private;
1703 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1704 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1705
1706 BUG_ON(ring == NULL);
1707 obj_priv->ring = ring;
1708
1709 /* Add a reference if we're newly entering the active list. */
1710 if (!obj_priv->active) {
1711 drm_gem_object_reference(obj);
1712 obj_priv->active = 1;
1713 }
1714
1715 /* Move from whatever list we were on to the tail of execution. */
1716 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1717 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1718 obj_priv->last_rendering_seqno = seqno;
1719 }
1720
1721 static void
1722 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1723 {
1724 struct drm_device *dev = obj->dev;
1725 drm_i915_private_t *dev_priv = dev->dev_private;
1726 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1727
1728 BUG_ON(!obj_priv->active);
1729 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1730 list_del_init(&obj_priv->ring_list);
1731 obj_priv->last_rendering_seqno = 0;
1732 }
1733
1734 /* Immediately discard the backing storage */
1735 static void
1736 i915_gem_object_truncate(struct drm_gem_object *obj)
1737 {
1738 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1739 struct inode *inode;
1740
1741 /* Our goal here is to return as much of the memory as
1742 * is possible back to the system as we are called from OOM.
1743 * To do this we must instruct the shmfs to drop all of its
1744 * backing pages, *now*. Here we mirror the actions taken
1745 * when by shmem_delete_inode() to release the backing store.
1746 */
1747 inode = obj->filp->f_path.dentry->d_inode;
1748 truncate_inode_pages(inode->i_mapping, 0);
1749 if (inode->i_op->truncate_range)
1750 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1751
1752 obj_priv->madv = __I915_MADV_PURGED;
1753 }
1754
1755 static inline int
1756 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1757 {
1758 return obj_priv->madv == I915_MADV_DONTNEED;
1759 }
1760
1761 static void
1762 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1763 {
1764 struct drm_device *dev = obj->dev;
1765 drm_i915_private_t *dev_priv = dev->dev_private;
1766 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1767
1768 if (obj_priv->pin_count != 0)
1769 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1770 else
1771 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1772 list_del_init(&obj_priv->ring_list);
1773
1774 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1775
1776 obj_priv->last_rendering_seqno = 0;
1777 obj_priv->ring = NULL;
1778 if (obj_priv->active) {
1779 obj_priv->active = 0;
1780 drm_gem_object_unreference(obj);
1781 }
1782 WARN_ON(i915_verify_lists(dev));
1783 }
1784
1785 static void
1786 i915_gem_process_flushing_list(struct drm_device *dev,
1787 uint32_t flush_domains,
1788 struct intel_ring_buffer *ring)
1789 {
1790 drm_i915_private_t *dev_priv = dev->dev_private;
1791 struct drm_i915_gem_object *obj_priv, *next;
1792
1793 list_for_each_entry_safe(obj_priv, next,
1794 &ring->gpu_write_list,
1795 gpu_write_list) {
1796 struct drm_gem_object *obj = &obj_priv->base;
1797
1798 if (obj->write_domain & flush_domains) {
1799 uint32_t old_write_domain = obj->write_domain;
1800
1801 obj->write_domain = 0;
1802 list_del_init(&obj_priv->gpu_write_list);
1803 i915_gem_object_move_to_active(obj, ring);
1804
1805 /* update the fence lru list */
1806 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1807 struct drm_i915_fence_reg *reg =
1808 &dev_priv->fence_regs[obj_priv->fence_reg];
1809 list_move_tail(&reg->lru_list,
1810 &dev_priv->mm.fence_list);
1811 }
1812
1813 trace_i915_gem_object_change_domain(obj,
1814 obj->read_domains,
1815 old_write_domain);
1816 }
1817 }
1818 }
1819
1820 int
1821 i915_add_request(struct drm_device *dev,
1822 struct drm_file *file,
1823 struct drm_i915_gem_request *request,
1824 struct intel_ring_buffer *ring)
1825 {
1826 drm_i915_private_t *dev_priv = dev->dev_private;
1827 struct drm_i915_file_private *file_priv = NULL;
1828 uint32_t seqno;
1829 int was_empty;
1830 int ret;
1831
1832 BUG_ON(request == NULL);
1833
1834 if (file != NULL)
1835 file_priv = file->driver_priv;
1836
1837 ret = ring->add_request(ring, &seqno);
1838 if (ret)
1839 return ret;
1840
1841 ring->outstanding_lazy_request = false;
1842
1843 request->seqno = seqno;
1844 request->ring = ring;
1845 request->emitted_jiffies = jiffies;
1846 was_empty = list_empty(&ring->request_list);
1847 list_add_tail(&request->list, &ring->request_list);
1848
1849 if (file_priv) {
1850 spin_lock(&file_priv->mm.lock);
1851 request->file_priv = file_priv;
1852 list_add_tail(&request->client_list,
1853 &file_priv->mm.request_list);
1854 spin_unlock(&file_priv->mm.lock);
1855 }
1856
1857 if (!dev_priv->mm.suspended) {
1858 mod_timer(&dev_priv->hangcheck_timer,
1859 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1860 if (was_empty)
1861 queue_delayed_work(dev_priv->wq,
1862 &dev_priv->mm.retire_work, HZ);
1863 }
1864 return 0;
1865 }
1866
1867 /**
1868 * Command execution barrier
1869 *
1870 * Ensures that all commands in the ring are finished
1871 * before signalling the CPU
1872 */
1873 static void
1874 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1875 {
1876 uint32_t flush_domains = 0;
1877
1878 /* The sampler always gets flushed on i965 (sigh) */
1879 if (INTEL_INFO(dev)->gen >= 4)
1880 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1881
1882 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1883 }
1884
1885 static inline void
1886 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1887 {
1888 struct drm_i915_file_private *file_priv = request->file_priv;
1889
1890 if (!file_priv)
1891 return;
1892
1893 spin_lock(&file_priv->mm.lock);
1894 list_del(&request->client_list);
1895 request->file_priv = NULL;
1896 spin_unlock(&file_priv->mm.lock);
1897 }
1898
1899 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1900 struct intel_ring_buffer *ring)
1901 {
1902 while (!list_empty(&ring->request_list)) {
1903 struct drm_i915_gem_request *request;
1904
1905 request = list_first_entry(&ring->request_list,
1906 struct drm_i915_gem_request,
1907 list);
1908
1909 list_del(&request->list);
1910 i915_gem_request_remove_from_client(request);
1911 kfree(request);
1912 }
1913
1914 while (!list_empty(&ring->active_list)) {
1915 struct drm_i915_gem_object *obj_priv;
1916
1917 obj_priv = list_first_entry(&ring->active_list,
1918 struct drm_i915_gem_object,
1919 ring_list);
1920
1921 obj_priv->base.write_domain = 0;
1922 list_del_init(&obj_priv->gpu_write_list);
1923 i915_gem_object_move_to_inactive(&obj_priv->base);
1924 }
1925 }
1926
1927 void i915_gem_reset(struct drm_device *dev)
1928 {
1929 struct drm_i915_private *dev_priv = dev->dev_private;
1930 struct drm_i915_gem_object *obj_priv;
1931 int i;
1932
1933 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1934 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1935 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1936
1937 /* Remove anything from the flushing lists. The GPU cache is likely
1938 * to be lost on reset along with the data, so simply move the
1939 * lost bo to the inactive list.
1940 */
1941 while (!list_empty(&dev_priv->mm.flushing_list)) {
1942 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1943 struct drm_i915_gem_object,
1944 mm_list);
1945
1946 obj_priv->base.write_domain = 0;
1947 list_del_init(&obj_priv->gpu_write_list);
1948 i915_gem_object_move_to_inactive(&obj_priv->base);
1949 }
1950
1951 /* Move everything out of the GPU domains to ensure we do any
1952 * necessary invalidation upon reuse.
1953 */
1954 list_for_each_entry(obj_priv,
1955 &dev_priv->mm.inactive_list,
1956 mm_list)
1957 {
1958 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1959 }
1960
1961 /* The fence registers are invalidated so clear them out */
1962 for (i = 0; i < 16; i++) {
1963 struct drm_i915_fence_reg *reg;
1964
1965 reg = &dev_priv->fence_regs[i];
1966 if (!reg->obj)
1967 continue;
1968
1969 i915_gem_clear_fence_reg(reg->obj);
1970 }
1971 }
1972
1973 /**
1974 * This function clears the request list as sequence numbers are passed.
1975 */
1976 static void
1977 i915_gem_retire_requests_ring(struct drm_device *dev,
1978 struct intel_ring_buffer *ring)
1979 {
1980 drm_i915_private_t *dev_priv = dev->dev_private;
1981 uint32_t seqno;
1982
1983 if (!ring->status_page.page_addr ||
1984 list_empty(&ring->request_list))
1985 return;
1986
1987 WARN_ON(i915_verify_lists(dev));
1988
1989 seqno = ring->get_seqno(ring);
1990 while (!list_empty(&ring->request_list)) {
1991 struct drm_i915_gem_request *request;
1992
1993 request = list_first_entry(&ring->request_list,
1994 struct drm_i915_gem_request,
1995 list);
1996
1997 if (!i915_seqno_passed(seqno, request->seqno))
1998 break;
1999
2000 trace_i915_gem_request_retire(dev, request->seqno);
2001
2002 list_del(&request->list);
2003 i915_gem_request_remove_from_client(request);
2004 kfree(request);
2005 }
2006
2007 /* Move any buffers on the active list that are no longer referenced
2008 * by the ringbuffer to the flushing/inactive lists as appropriate.
2009 */
2010 while (!list_empty(&ring->active_list)) {
2011 struct drm_gem_object *obj;
2012 struct drm_i915_gem_object *obj_priv;
2013
2014 obj_priv = list_first_entry(&ring->active_list,
2015 struct drm_i915_gem_object,
2016 ring_list);
2017
2018 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
2019 break;
2020
2021 obj = &obj_priv->base;
2022 if (obj->write_domain != 0)
2023 i915_gem_object_move_to_flushing(obj);
2024 else
2025 i915_gem_object_move_to_inactive(obj);
2026 }
2027
2028 if (unlikely (dev_priv->trace_irq_seqno &&
2029 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
2030 ring->user_irq_put(ring);
2031 dev_priv->trace_irq_seqno = 0;
2032 }
2033
2034 WARN_ON(i915_verify_lists(dev));
2035 }
2036
2037 void
2038 i915_gem_retire_requests(struct drm_device *dev)
2039 {
2040 drm_i915_private_t *dev_priv = dev->dev_private;
2041
2042 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
2043 struct drm_i915_gem_object *obj_priv, *tmp;
2044
2045 /* We must be careful that during unbind() we do not
2046 * accidentally infinitely recurse into retire requests.
2047 * Currently:
2048 * retire -> free -> unbind -> wait -> retire_ring
2049 */
2050 list_for_each_entry_safe(obj_priv, tmp,
2051 &dev_priv->mm.deferred_free_list,
2052 mm_list)
2053 i915_gem_free_object_tail(&obj_priv->base);
2054 }
2055
2056 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
2057 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
2058 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
2059 }
2060
2061 static void
2062 i915_gem_retire_work_handler(struct work_struct *work)
2063 {
2064 drm_i915_private_t *dev_priv;
2065 struct drm_device *dev;
2066
2067 dev_priv = container_of(work, drm_i915_private_t,
2068 mm.retire_work.work);
2069 dev = dev_priv->dev;
2070
2071 /* Come back later if the device is busy... */
2072 if (!mutex_trylock(&dev->struct_mutex)) {
2073 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2074 return;
2075 }
2076
2077 i915_gem_retire_requests(dev);
2078
2079 if (!dev_priv->mm.suspended &&
2080 (!list_empty(&dev_priv->render_ring.request_list) ||
2081 !list_empty(&dev_priv->bsd_ring.request_list) ||
2082 !list_empty(&dev_priv->blt_ring.request_list)))
2083 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2084 mutex_unlock(&dev->struct_mutex);
2085 }
2086
2087 int
2088 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2089 bool interruptible, struct intel_ring_buffer *ring)
2090 {
2091 drm_i915_private_t *dev_priv = dev->dev_private;
2092 u32 ier;
2093 int ret = 0;
2094
2095 BUG_ON(seqno == 0);
2096
2097 if (atomic_read(&dev_priv->mm.wedged))
2098 return -EAGAIN;
2099
2100 if (seqno == ring->outstanding_lazy_request) {
2101 struct drm_i915_gem_request *request;
2102
2103 request = kzalloc(sizeof(*request), GFP_KERNEL);
2104 if (request == NULL)
2105 return -ENOMEM;
2106
2107 ret = i915_add_request(dev, NULL, request, ring);
2108 if (ret) {
2109 kfree(request);
2110 return ret;
2111 }
2112
2113 seqno = request->seqno;
2114 }
2115
2116 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2117 if (HAS_PCH_SPLIT(dev))
2118 ier = I915_READ(DEIER) | I915_READ(GTIER);
2119 else
2120 ier = I915_READ(IER);
2121 if (!ier) {
2122 DRM_ERROR("something (likely vbetool) disabled "
2123 "interrupts, re-enabling\n");
2124 i915_driver_irq_preinstall(dev);
2125 i915_driver_irq_postinstall(dev);
2126 }
2127
2128 trace_i915_gem_request_wait_begin(dev, seqno);
2129
2130 ring->waiting_seqno = seqno;
2131 ring->user_irq_get(ring);
2132 if (interruptible)
2133 ret = wait_event_interruptible(ring->irq_queue,
2134 i915_seqno_passed(ring->get_seqno(ring), seqno)
2135 || atomic_read(&dev_priv->mm.wedged));
2136 else
2137 wait_event(ring->irq_queue,
2138 i915_seqno_passed(ring->get_seqno(ring), seqno)
2139 || atomic_read(&dev_priv->mm.wedged));
2140
2141 ring->user_irq_put(ring);
2142 ring->waiting_seqno = 0;
2143
2144 trace_i915_gem_request_wait_end(dev, seqno);
2145 }
2146 if (atomic_read(&dev_priv->mm.wedged))
2147 ret = -EAGAIN;
2148
2149 if (ret && ret != -ERESTARTSYS)
2150 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2151 __func__, ret, seqno, ring->get_seqno(ring),
2152 dev_priv->next_seqno);
2153
2154 /* Directly dispatch request retiring. While we have the work queue
2155 * to handle this, the waiter on a request often wants an associated
2156 * buffer to have made it to the inactive list, and we would need
2157 * a separate wait queue to handle that.
2158 */
2159 if (ret == 0)
2160 i915_gem_retire_requests_ring(dev, ring);
2161
2162 return ret;
2163 }
2164
2165 /**
2166 * Waits for a sequence number to be signaled, and cleans up the
2167 * request and object lists appropriately for that event.
2168 */
2169 static int
2170 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2171 struct intel_ring_buffer *ring)
2172 {
2173 return i915_do_wait_request(dev, seqno, 1, ring);
2174 }
2175
2176 static void
2177 i915_gem_flush_ring(struct drm_device *dev,
2178 struct drm_file *file_priv,
2179 struct intel_ring_buffer *ring,
2180 uint32_t invalidate_domains,
2181 uint32_t flush_domains)
2182 {
2183 ring->flush(ring, invalidate_domains, flush_domains);
2184 i915_gem_process_flushing_list(dev, flush_domains, ring);
2185 }
2186
2187 static void
2188 i915_gem_flush(struct drm_device *dev,
2189 struct drm_file *file_priv,
2190 uint32_t invalidate_domains,
2191 uint32_t flush_domains,
2192 uint32_t flush_rings)
2193 {
2194 drm_i915_private_t *dev_priv = dev->dev_private;
2195
2196 if (flush_domains & I915_GEM_DOMAIN_CPU)
2197 intel_gtt_chipset_flush();
2198
2199 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2200 if (flush_rings & RING_RENDER)
2201 i915_gem_flush_ring(dev, file_priv,
2202 &dev_priv->render_ring,
2203 invalidate_domains, flush_domains);
2204 if (flush_rings & RING_BSD)
2205 i915_gem_flush_ring(dev, file_priv,
2206 &dev_priv->bsd_ring,
2207 invalidate_domains, flush_domains);
2208 if (flush_rings & RING_BLT)
2209 i915_gem_flush_ring(dev, file_priv,
2210 &dev_priv->blt_ring,
2211 invalidate_domains, flush_domains);
2212 }
2213 }
2214
2215 /**
2216 * Ensures that all rendering to the object has completed and the object is
2217 * safe to unbind from the GTT or access from the CPU.
2218 */
2219 static int
2220 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2221 bool interruptible)
2222 {
2223 struct drm_device *dev = obj->dev;
2224 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2225 int ret;
2226
2227 /* This function only exists to support waiting for existing rendering,
2228 * not for emitting required flushes.
2229 */
2230 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2231
2232 /* If there is rendering queued on the buffer being evicted, wait for
2233 * it.
2234 */
2235 if (obj_priv->active) {
2236 ret = i915_do_wait_request(dev,
2237 obj_priv->last_rendering_seqno,
2238 interruptible,
2239 obj_priv->ring);
2240 if (ret)
2241 return ret;
2242 }
2243
2244 return 0;
2245 }
2246
2247 /**
2248 * Unbinds an object from the GTT aperture.
2249 */
2250 int
2251 i915_gem_object_unbind(struct drm_gem_object *obj)
2252 {
2253 struct drm_device *dev = obj->dev;
2254 struct drm_i915_private *dev_priv = dev->dev_private;
2255 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2256 int ret = 0;
2257
2258 if (obj_priv->gtt_space == NULL)
2259 return 0;
2260
2261 if (obj_priv->pin_count != 0) {
2262 DRM_ERROR("Attempting to unbind pinned buffer\n");
2263 return -EINVAL;
2264 }
2265
2266 /* blow away mappings if mapped through GTT */
2267 i915_gem_release_mmap(obj);
2268
2269 /* Move the object to the CPU domain to ensure that
2270 * any possible CPU writes while it's not in the GTT
2271 * are flushed when we go to remap it. This will
2272 * also ensure that all pending GPU writes are finished
2273 * before we unbind.
2274 */
2275 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2276 if (ret == -ERESTARTSYS)
2277 return ret;
2278 /* Continue on if we fail due to EIO, the GPU is hung so we
2279 * should be safe and we need to cleanup or else we might
2280 * cause memory corruption through use-after-free.
2281 */
2282 if (ret) {
2283 i915_gem_clflush_object(obj);
2284 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2285 }
2286
2287 /* release the fence reg _after_ flushing */
2288 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2289 i915_gem_clear_fence_reg(obj);
2290
2291 i915_gem_gtt_unbind_object(obj);
2292
2293 i915_gem_object_put_pages_gtt(obj);
2294
2295 i915_gem_info_remove_gtt(dev_priv, obj_priv);
2296 list_del_init(&obj_priv->mm_list);
2297 /* Avoid an unnecessary call to unbind on rebind. */
2298 obj_priv->map_and_fenceable = true;
2299
2300 drm_mm_put_block(obj_priv->gtt_space);
2301 obj_priv->gtt_space = NULL;
2302 obj_priv->gtt_offset = 0;
2303
2304 if (i915_gem_object_is_purgeable(obj_priv))
2305 i915_gem_object_truncate(obj);
2306
2307 trace_i915_gem_object_unbind(obj);
2308
2309 return ret;
2310 }
2311
2312 static int i915_ring_idle(struct drm_device *dev,
2313 struct intel_ring_buffer *ring)
2314 {
2315 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2316 return 0;
2317
2318 i915_gem_flush_ring(dev, NULL, ring,
2319 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2320 return i915_wait_request(dev,
2321 i915_gem_next_request_seqno(dev, ring),
2322 ring);
2323 }
2324
2325 int
2326 i915_gpu_idle(struct drm_device *dev)
2327 {
2328 drm_i915_private_t *dev_priv = dev->dev_private;
2329 bool lists_empty;
2330 int ret;
2331
2332 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2333 list_empty(&dev_priv->mm.active_list));
2334 if (lists_empty)
2335 return 0;
2336
2337 /* Flush everything onto the inactive list. */
2338 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2339 if (ret)
2340 return ret;
2341
2342 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2343 if (ret)
2344 return ret;
2345
2346 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2347 if (ret)
2348 return ret;
2349
2350 return 0;
2351 }
2352
2353 static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
2354 {
2355 struct drm_device *dev = obj->dev;
2356 drm_i915_private_t *dev_priv = dev->dev_private;
2357 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2358 u32 size = i915_gem_get_gtt_size(obj_priv);
2359 int regnum = obj_priv->fence_reg;
2360 uint64_t val;
2361
2362 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2363 0xfffff000) << 32;
2364 val |= obj_priv->gtt_offset & 0xfffff000;
2365 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2366 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2367
2368 if (obj_priv->tiling_mode == I915_TILING_Y)
2369 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2370 val |= I965_FENCE_REG_VALID;
2371
2372 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2373 }
2374
2375 static void i965_write_fence_reg(struct drm_gem_object *obj)
2376 {
2377 struct drm_device *dev = obj->dev;
2378 drm_i915_private_t *dev_priv = dev->dev_private;
2379 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2380 u32 size = i915_gem_get_gtt_size(obj_priv);
2381 int regnum = obj_priv->fence_reg;
2382 uint64_t val;
2383
2384 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2385 0xfffff000) << 32;
2386 val |= obj_priv->gtt_offset & 0xfffff000;
2387 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2388 if (obj_priv->tiling_mode == I915_TILING_Y)
2389 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2390 val |= I965_FENCE_REG_VALID;
2391
2392 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2393 }
2394
2395 static void i915_write_fence_reg(struct drm_gem_object *obj)
2396 {
2397 struct drm_device *dev = obj->dev;
2398 drm_i915_private_t *dev_priv = dev->dev_private;
2399 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2400 u32 size = i915_gem_get_gtt_size(obj_priv);
2401 uint32_t fence_reg, val, pitch_val;
2402 int tile_width;
2403
2404 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2405 (obj_priv->gtt_offset & (size - 1))) {
2406 WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
2407 __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
2408 obj_priv->gtt_space->start, obj_priv->gtt_space->size);
2409 return;
2410 }
2411
2412 if (obj_priv->tiling_mode == I915_TILING_Y &&
2413 HAS_128_BYTE_Y_TILING(dev))
2414 tile_width = 128;
2415 else
2416 tile_width = 512;
2417
2418 /* Note: pitch better be a power of two tile widths */
2419 pitch_val = obj_priv->stride / tile_width;
2420 pitch_val = ffs(pitch_val) - 1;
2421
2422 if (obj_priv->tiling_mode == I915_TILING_Y &&
2423 HAS_128_BYTE_Y_TILING(dev))
2424 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2425 else
2426 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2427
2428 val = obj_priv->gtt_offset;
2429 if (obj_priv->tiling_mode == I915_TILING_Y)
2430 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2431 val |= I915_FENCE_SIZE_BITS(size);
2432 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2433 val |= I830_FENCE_REG_VALID;
2434
2435 fence_reg = obj_priv->fence_reg;
2436 if (fence_reg < 8)
2437 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2438 else
2439 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2440 I915_WRITE(fence_reg, val);
2441 }
2442
2443 static void i830_write_fence_reg(struct drm_gem_object *obj)
2444 {
2445 struct drm_device *dev = obj->dev;
2446 drm_i915_private_t *dev_priv = dev->dev_private;
2447 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2448 u32 size = i915_gem_get_gtt_size(obj_priv);
2449 int regnum = obj_priv->fence_reg;
2450 uint32_t val;
2451 uint32_t pitch_val;
2452 uint32_t fence_size_bits;
2453
2454 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2455 (obj_priv->gtt_offset & (obj->size - 1))) {
2456 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2457 __func__, obj_priv->gtt_offset);
2458 return;
2459 }
2460
2461 pitch_val = obj_priv->stride / 128;
2462 pitch_val = ffs(pitch_val) - 1;
2463 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2464
2465 val = obj_priv->gtt_offset;
2466 if (obj_priv->tiling_mode == I915_TILING_Y)
2467 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2468 fence_size_bits = I830_FENCE_SIZE_BITS(size);
2469 WARN_ON(fence_size_bits & ~0x00000f00);
2470 val |= fence_size_bits;
2471 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2472 val |= I830_FENCE_REG_VALID;
2473
2474 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2475 }
2476
2477 static int i915_find_fence_reg(struct drm_device *dev,
2478 bool interruptible)
2479 {
2480 struct drm_i915_private *dev_priv = dev->dev_private;
2481 struct drm_i915_fence_reg *reg;
2482 struct drm_i915_gem_object *obj_priv = NULL;
2483 int i, avail, ret;
2484
2485 /* First try to find a free reg */
2486 avail = 0;
2487 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2488 reg = &dev_priv->fence_regs[i];
2489 if (!reg->obj)
2490 return i;
2491
2492 obj_priv = to_intel_bo(reg->obj);
2493 if (!obj_priv->pin_count)
2494 avail++;
2495 }
2496
2497 if (avail == 0)
2498 return -ENOSPC;
2499
2500 /* None available, try to steal one or wait for a user to finish */
2501 avail = I915_FENCE_REG_NONE;
2502 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2503 lru_list) {
2504 obj_priv = to_intel_bo(reg->obj);
2505 if (obj_priv->pin_count)
2506 continue;
2507
2508 /* found one! */
2509 avail = obj_priv->fence_reg;
2510 break;
2511 }
2512
2513 BUG_ON(avail == I915_FENCE_REG_NONE);
2514
2515 /* We only have a reference on obj from the active list. put_fence_reg
2516 * might drop that one, causing a use-after-free in it. So hold a
2517 * private reference to obj like the other callers of put_fence_reg
2518 * (set_tiling ioctl) do. */
2519 drm_gem_object_reference(&obj_priv->base);
2520 ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
2521 drm_gem_object_unreference(&obj_priv->base);
2522 if (ret != 0)
2523 return ret;
2524
2525 return avail;
2526 }
2527
2528 /**
2529 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2530 * @obj: object to map through a fence reg
2531 *
2532 * When mapping objects through the GTT, userspace wants to be able to write
2533 * to them without having to worry about swizzling if the object is tiled.
2534 *
2535 * This function walks the fence regs looking for a free one for @obj,
2536 * stealing one if it can't find any.
2537 *
2538 * It then sets up the reg based on the object's properties: address, pitch
2539 * and tiling format.
2540 */
2541 int
2542 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2543 bool interruptible)
2544 {
2545 struct drm_device *dev = obj->dev;
2546 struct drm_i915_private *dev_priv = dev->dev_private;
2547 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2548 struct drm_i915_fence_reg *reg = NULL;
2549 int ret;
2550
2551 /* Just update our place in the LRU if our fence is getting used. */
2552 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2553 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2554 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2555 return 0;
2556 }
2557
2558 switch (obj_priv->tiling_mode) {
2559 case I915_TILING_NONE:
2560 WARN(1, "allocating a fence for non-tiled object?\n");
2561 break;
2562 case I915_TILING_X:
2563 if (!obj_priv->stride)
2564 return -EINVAL;
2565 WARN((obj_priv->stride & (512 - 1)),
2566 "object 0x%08x is X tiled but has non-512B pitch\n",
2567 obj_priv->gtt_offset);
2568 break;
2569 case I915_TILING_Y:
2570 if (!obj_priv->stride)
2571 return -EINVAL;
2572 WARN((obj_priv->stride & (128 - 1)),
2573 "object 0x%08x is Y tiled but has non-128B pitch\n",
2574 obj_priv->gtt_offset);
2575 break;
2576 }
2577
2578 ret = i915_find_fence_reg(dev, interruptible);
2579 if (ret < 0)
2580 return ret;
2581
2582 obj_priv->fence_reg = ret;
2583 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2584 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2585
2586 reg->obj = obj;
2587
2588 switch (INTEL_INFO(dev)->gen) {
2589 case 6:
2590 sandybridge_write_fence_reg(obj);
2591 break;
2592 case 5:
2593 case 4:
2594 i965_write_fence_reg(obj);
2595 break;
2596 case 3:
2597 i915_write_fence_reg(obj);
2598 break;
2599 case 2:
2600 i830_write_fence_reg(obj);
2601 break;
2602 }
2603
2604 trace_i915_gem_object_get_fence(obj,
2605 obj_priv->fence_reg,
2606 obj_priv->tiling_mode);
2607
2608 return 0;
2609 }
2610
2611 /**
2612 * i915_gem_clear_fence_reg - clear out fence register info
2613 * @obj: object to clear
2614 *
2615 * Zeroes out the fence register itself and clears out the associated
2616 * data structures in dev_priv and obj_priv.
2617 */
2618 static void
2619 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2620 {
2621 struct drm_device *dev = obj->dev;
2622 drm_i915_private_t *dev_priv = dev->dev_private;
2623 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2624 struct drm_i915_fence_reg *reg =
2625 &dev_priv->fence_regs[obj_priv->fence_reg];
2626 uint32_t fence_reg;
2627
2628 switch (INTEL_INFO(dev)->gen) {
2629 case 6:
2630 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2631 (obj_priv->fence_reg * 8), 0);
2632 break;
2633 case 5:
2634 case 4:
2635 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2636 break;
2637 case 3:
2638 if (obj_priv->fence_reg >= 8)
2639 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2640 else
2641 case 2:
2642 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2643
2644 I915_WRITE(fence_reg, 0);
2645 break;
2646 }
2647
2648 reg->obj = NULL;
2649 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2650 list_del_init(&reg->lru_list);
2651 }
2652
2653 /**
2654 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2655 * to the buffer to finish, and then resets the fence register.
2656 * @obj: tiled object holding a fence register.
2657 * @bool: whether the wait upon the fence is interruptible
2658 *
2659 * Zeroes out the fence register itself and clears out the associated
2660 * data structures in dev_priv and obj_priv.
2661 */
2662 int
2663 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2664 bool interruptible)
2665 {
2666 struct drm_device *dev = obj->dev;
2667 struct drm_i915_private *dev_priv = dev->dev_private;
2668 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2669 struct drm_i915_fence_reg *reg;
2670
2671 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2672 return 0;
2673
2674 /* If we've changed tiling, GTT-mappings of the object
2675 * need to re-fault to ensure that the correct fence register
2676 * setup is in place.
2677 */
2678 i915_gem_release_mmap(obj);
2679
2680 /* On the i915, GPU access to tiled buffers is via a fence,
2681 * therefore we must wait for any outstanding access to complete
2682 * before clearing the fence.
2683 */
2684 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2685 if (reg->gpu) {
2686 int ret;
2687
2688 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2689 if (ret)
2690 return ret;
2691
2692 ret = i915_gem_object_wait_rendering(obj, interruptible);
2693 if (ret)
2694 return ret;
2695
2696 reg->gpu = false;
2697 }
2698
2699 i915_gem_object_flush_gtt_write_domain(obj);
2700 i915_gem_clear_fence_reg(obj);
2701
2702 return 0;
2703 }
2704
2705 /**
2706 * Finds free space in the GTT aperture and binds the object there.
2707 */
2708 static int
2709 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2710 unsigned alignment,
2711 bool map_and_fenceable)
2712 {
2713 struct drm_device *dev = obj->dev;
2714 drm_i915_private_t *dev_priv = dev->dev_private;
2715 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2716 struct drm_mm_node *free_space;
2717 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2718 u32 size, fence_size, fence_alignment, unfenced_alignment;
2719 bool mappable, fenceable;
2720 int ret;
2721
2722 if (obj_priv->madv != I915_MADV_WILLNEED) {
2723 DRM_ERROR("Attempting to bind a purgeable object\n");
2724 return -EINVAL;
2725 }
2726
2727 fence_size = i915_gem_get_gtt_size(obj_priv);
2728 fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
2729 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj_priv);
2730
2731 if (alignment == 0)
2732 alignment = map_and_fenceable ? fence_alignment :
2733 unfenced_alignment;
2734 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2735 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2736 return -EINVAL;
2737 }
2738
2739 size = map_and_fenceable ? fence_size : obj->size;
2740
2741 /* If the object is bigger than the entire aperture, reject it early
2742 * before evicting everything in a vain attempt to find space.
2743 */
2744 if (obj->size >
2745 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2746 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2747 return -E2BIG;
2748 }
2749
2750 search_free:
2751 if (map_and_fenceable)
2752 free_space =
2753 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2754 size, alignment, 0,
2755 dev_priv->mm.gtt_mappable_end,
2756 0);
2757 else
2758 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2759 size, alignment, 0);
2760
2761 if (free_space != NULL) {
2762 if (map_and_fenceable)
2763 obj_priv->gtt_space =
2764 drm_mm_get_block_range_generic(free_space,
2765 size, alignment, 0,
2766 dev_priv->mm.gtt_mappable_end,
2767 0);
2768 else
2769 obj_priv->gtt_space =
2770 drm_mm_get_block(free_space, size, alignment);
2771 }
2772 if (obj_priv->gtt_space == NULL) {
2773 /* If the gtt is empty and we're still having trouble
2774 * fitting our object in, we're out of memory.
2775 */
2776 ret = i915_gem_evict_something(dev, size, alignment,
2777 map_and_fenceable);
2778 if (ret)
2779 return ret;
2780
2781 goto search_free;
2782 }
2783
2784 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2785 if (ret) {
2786 drm_mm_put_block(obj_priv->gtt_space);
2787 obj_priv->gtt_space = NULL;
2788
2789 if (ret == -ENOMEM) {
2790 /* first try to clear up some space from the GTT */
2791 ret = i915_gem_evict_something(dev, size,
2792 alignment,
2793 map_and_fenceable);
2794 if (ret) {
2795 /* now try to shrink everyone else */
2796 if (gfpmask) {
2797 gfpmask = 0;
2798 goto search_free;
2799 }
2800
2801 return ret;
2802 }
2803
2804 goto search_free;
2805 }
2806
2807 return ret;
2808 }
2809
2810 ret = i915_gem_gtt_bind_object(obj);
2811 if (ret) {
2812 i915_gem_object_put_pages_gtt(obj);
2813 drm_mm_put_block(obj_priv->gtt_space);
2814 obj_priv->gtt_space = NULL;
2815
2816 ret = i915_gem_evict_something(dev, size,
2817 alignment, map_and_fenceable);
2818 if (ret)
2819 return ret;
2820
2821 goto search_free;
2822 }
2823
2824 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2825
2826 /* keep track of bounds object by adding it to the inactive list */
2827 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2828 i915_gem_info_add_gtt(dev_priv, obj_priv);
2829
2830 /* Assert that the object is not currently in any GPU domain. As it
2831 * wasn't in the GTT, there shouldn't be any way it could have been in
2832 * a GPU cache
2833 */
2834 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2835 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2836
2837 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
2838
2839 fenceable =
2840 obj_priv->gtt_space->size == fence_size &&
2841 (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
2842
2843 mappable =
2844 obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
2845
2846 obj_priv->map_and_fenceable = mappable && fenceable;
2847
2848 return 0;
2849 }
2850
2851 void
2852 i915_gem_clflush_object(struct drm_gem_object *obj)
2853 {
2854 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2855
2856 /* If we don't have a page list set up, then we're not pinned
2857 * to GPU, and we can ignore the cache flush because it'll happen
2858 * again at bind time.
2859 */
2860 if (obj_priv->pages == NULL)
2861 return;
2862
2863 trace_i915_gem_object_clflush(obj);
2864
2865 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2866 }
2867
2868 /** Flushes any GPU write domain for the object if it's dirty. */
2869 static int
2870 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2871 bool pipelined)
2872 {
2873 struct drm_device *dev = obj->dev;
2874
2875 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2876 return 0;
2877
2878 /* Queue the GPU write cache flushing we need. */
2879 i915_gem_flush_ring(dev, NULL,
2880 to_intel_bo(obj)->ring,
2881 0, obj->write_domain);
2882 BUG_ON(obj->write_domain);
2883
2884 if (pipelined)
2885 return 0;
2886
2887 return i915_gem_object_wait_rendering(obj, true);
2888 }
2889
2890 /** Flushes the GTT write domain for the object if it's dirty. */
2891 static void
2892 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2893 {
2894 uint32_t old_write_domain;
2895
2896 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2897 return;
2898
2899 /* No actual flushing is required for the GTT write domain. Writes
2900 * to it immediately go to main memory as far as we know, so there's
2901 * no chipset flush. It also doesn't land in render cache.
2902 */
2903 i915_gem_release_mmap(obj);
2904
2905 old_write_domain = obj->write_domain;
2906 obj->write_domain = 0;
2907
2908 trace_i915_gem_object_change_domain(obj,
2909 obj->read_domains,
2910 old_write_domain);
2911 }
2912
2913 /** Flushes the CPU write domain for the object if it's dirty. */
2914 static void
2915 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2916 {
2917 uint32_t old_write_domain;
2918
2919 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2920 return;
2921
2922 i915_gem_clflush_object(obj);
2923 intel_gtt_chipset_flush();
2924 old_write_domain = obj->write_domain;
2925 obj->write_domain = 0;
2926
2927 trace_i915_gem_object_change_domain(obj,
2928 obj->read_domains,
2929 old_write_domain);
2930 }
2931
2932 /**
2933 * Moves a single object to the GTT read, and possibly write domain.
2934 *
2935 * This function returns when the move is complete, including waiting on
2936 * flushes to occur.
2937 */
2938 int
2939 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2940 {
2941 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2942 uint32_t old_write_domain, old_read_domains;
2943 int ret;
2944
2945 /* Not valid to be called on unbound objects. */
2946 if (obj_priv->gtt_space == NULL)
2947 return -EINVAL;
2948
2949 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2950 if (ret != 0)
2951 return ret;
2952
2953 i915_gem_object_flush_cpu_write_domain(obj);
2954
2955 if (write) {
2956 ret = i915_gem_object_wait_rendering(obj, true);
2957 if (ret)
2958 return ret;
2959 }
2960
2961 old_write_domain = obj->write_domain;
2962 old_read_domains = obj->read_domains;
2963
2964 /* It should now be out of any other write domains, and we can update
2965 * the domain values for our changes.
2966 */
2967 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2968 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2969 if (write) {
2970 obj->read_domains = I915_GEM_DOMAIN_GTT;
2971 obj->write_domain = I915_GEM_DOMAIN_GTT;
2972 obj_priv->dirty = 1;
2973 }
2974
2975 trace_i915_gem_object_change_domain(obj,
2976 old_read_domains,
2977 old_write_domain);
2978
2979 return 0;
2980 }
2981
2982 /*
2983 * Prepare buffer for display plane. Use uninterruptible for possible flush
2984 * wait, as in modesetting process we're not supposed to be interrupted.
2985 */
2986 int
2987 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2988 bool pipelined)
2989 {
2990 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2991 uint32_t old_read_domains;
2992 int ret;
2993
2994 /* Not valid to be called on unbound objects. */
2995 if (obj_priv->gtt_space == NULL)
2996 return -EINVAL;
2997
2998 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2999 if (ret)
3000 return ret;
3001
3002 /* Currently, we are always called from an non-interruptible context. */
3003 if (!pipelined) {
3004 ret = i915_gem_object_wait_rendering(obj, false);
3005 if (ret)
3006 return ret;
3007 }
3008
3009 i915_gem_object_flush_cpu_write_domain(obj);
3010
3011 old_read_domains = obj->read_domains;
3012 obj->read_domains |= I915_GEM_DOMAIN_GTT;
3013
3014 trace_i915_gem_object_change_domain(obj,
3015 old_read_domains,
3016 obj->write_domain);
3017
3018 return 0;
3019 }
3020
3021 int
3022 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
3023 bool interruptible)
3024 {
3025 if (!obj->active)
3026 return 0;
3027
3028 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
3029 i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
3030 0, obj->base.write_domain);
3031
3032 return i915_gem_object_wait_rendering(&obj->base, interruptible);
3033 }
3034
3035 /**
3036 * Moves a single object to the CPU read, and possibly write domain.
3037 *
3038 * This function returns when the move is complete, including waiting on
3039 * flushes to occur.
3040 */
3041 static int
3042 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3043 {
3044 uint32_t old_write_domain, old_read_domains;
3045 int ret;
3046
3047 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3048 if (ret != 0)
3049 return ret;
3050
3051 i915_gem_object_flush_gtt_write_domain(obj);
3052
3053 /* If we have a partially-valid cache of the object in the CPU,
3054 * finish invalidating it and free the per-page flags.
3055 */
3056 i915_gem_object_set_to_full_cpu_read_domain(obj);
3057
3058 if (write) {
3059 ret = i915_gem_object_wait_rendering(obj, true);
3060 if (ret)
3061 return ret;
3062 }
3063
3064 old_write_domain = obj->write_domain;
3065 old_read_domains = obj->read_domains;
3066
3067 /* Flush the CPU cache if it's still invalid. */
3068 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3069 i915_gem_clflush_object(obj);
3070
3071 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3072 }
3073
3074 /* It should now be out of any other write domains, and we can update
3075 * the domain values for our changes.
3076 */
3077 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3078
3079 /* If we're writing through the CPU, then the GPU read domains will
3080 * need to be invalidated at next use.
3081 */
3082 if (write) {
3083 obj->read_domains = I915_GEM_DOMAIN_CPU;
3084 obj->write_domain = I915_GEM_DOMAIN_CPU;
3085 }
3086
3087 trace_i915_gem_object_change_domain(obj,
3088 old_read_domains,
3089 old_write_domain);
3090
3091 return 0;
3092 }
3093
3094 /*
3095 * Set the next domain for the specified object. This
3096 * may not actually perform the necessary flushing/invaliding though,
3097 * as that may want to be batched with other set_domain operations
3098 *
3099 * This is (we hope) the only really tricky part of gem. The goal
3100 * is fairly simple -- track which caches hold bits of the object
3101 * and make sure they remain coherent. A few concrete examples may
3102 * help to explain how it works. For shorthand, we use the notation
3103 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3104 * a pair of read and write domain masks.
3105 *
3106 * Case 1: the batch buffer
3107 *
3108 * 1. Allocated
3109 * 2. Written by CPU
3110 * 3. Mapped to GTT
3111 * 4. Read by GPU
3112 * 5. Unmapped from GTT
3113 * 6. Freed
3114 *
3115 * Let's take these a step at a time
3116 *
3117 * 1. Allocated
3118 * Pages allocated from the kernel may still have
3119 * cache contents, so we set them to (CPU, CPU) always.
3120 * 2. Written by CPU (using pwrite)
3121 * The pwrite function calls set_domain (CPU, CPU) and
3122 * this function does nothing (as nothing changes)
3123 * 3. Mapped by GTT
3124 * This function asserts that the object is not
3125 * currently in any GPU-based read or write domains
3126 * 4. Read by GPU
3127 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3128 * As write_domain is zero, this function adds in the
3129 * current read domains (CPU+COMMAND, 0).
3130 * flush_domains is set to CPU.
3131 * invalidate_domains is set to COMMAND
3132 * clflush is run to get data out of the CPU caches
3133 * then i915_dev_set_domain calls i915_gem_flush to
3134 * emit an MI_FLUSH and drm_agp_chipset_flush
3135 * 5. Unmapped from GTT
3136 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3137 * flush_domains and invalidate_domains end up both zero
3138 * so no flushing/invalidating happens
3139 * 6. Freed
3140 * yay, done
3141 *
3142 * Case 2: The shared render buffer
3143 *
3144 * 1. Allocated
3145 * 2. Mapped to GTT
3146 * 3. Read/written by GPU
3147 * 4. set_domain to (CPU,CPU)
3148 * 5. Read/written by CPU
3149 * 6. Read/written by GPU
3150 *
3151 * 1. Allocated
3152 * Same as last example, (CPU, CPU)
3153 * 2. Mapped to GTT
3154 * Nothing changes (assertions find that it is not in the GPU)
3155 * 3. Read/written by GPU
3156 * execbuffer calls set_domain (RENDER, RENDER)
3157 * flush_domains gets CPU
3158 * invalidate_domains gets GPU
3159 * clflush (obj)
3160 * MI_FLUSH and drm_agp_chipset_flush
3161 * 4. set_domain (CPU, CPU)
3162 * flush_domains gets GPU
3163 * invalidate_domains gets CPU
3164 * wait_rendering (obj) to make sure all drawing is complete.
3165 * This will include an MI_FLUSH to get the data from GPU
3166 * to memory
3167 * clflush (obj) to invalidate the CPU cache
3168 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3169 * 5. Read/written by CPU
3170 * cache lines are loaded and dirtied
3171 * 6. Read written by GPU
3172 * Same as last GPU access
3173 *
3174 * Case 3: The constant buffer
3175 *
3176 * 1. Allocated
3177 * 2. Written by CPU
3178 * 3. Read by GPU
3179 * 4. Updated (written) by CPU again
3180 * 5. Read by GPU
3181 *
3182 * 1. Allocated
3183 * (CPU, CPU)
3184 * 2. Written by CPU
3185 * (CPU, CPU)
3186 * 3. Read by GPU
3187 * (CPU+RENDER, 0)
3188 * flush_domains = CPU
3189 * invalidate_domains = RENDER
3190 * clflush (obj)
3191 * MI_FLUSH
3192 * drm_agp_chipset_flush
3193 * 4. Updated (written) by CPU again
3194 * (CPU, CPU)
3195 * flush_domains = 0 (no previous write domain)
3196 * invalidate_domains = 0 (no new read domains)
3197 * 5. Read by GPU
3198 * (CPU+RENDER, 0)
3199 * flush_domains = CPU
3200 * invalidate_domains = RENDER
3201 * clflush (obj)
3202 * MI_FLUSH
3203 * drm_agp_chipset_flush
3204 */
3205 static void
3206 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3207 struct intel_ring_buffer *ring,
3208 struct change_domains *cd)
3209 {
3210 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3211 uint32_t invalidate_domains = 0;
3212 uint32_t flush_domains = 0;
3213
3214 /*
3215 * If the object isn't moving to a new write domain,
3216 * let the object stay in multiple read domains
3217 */
3218 if (obj->pending_write_domain == 0)
3219 obj->pending_read_domains |= obj->read_domains;
3220
3221 /*
3222 * Flush the current write domain if
3223 * the new read domains don't match. Invalidate
3224 * any read domains which differ from the old
3225 * write domain
3226 */
3227 if (obj->write_domain &&
3228 (obj->write_domain != obj->pending_read_domains ||
3229 obj_priv->ring != ring)) {
3230 flush_domains |= obj->write_domain;
3231 invalidate_domains |=
3232 obj->pending_read_domains & ~obj->write_domain;
3233 }
3234 /*
3235 * Invalidate any read caches which may have
3236 * stale data. That is, any new read domains.
3237 */
3238 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3239 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3240 i915_gem_clflush_object(obj);
3241
3242 /* blow away mappings if mapped through GTT */
3243 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
3244 i915_gem_release_mmap(obj);
3245
3246 /* The actual obj->write_domain will be updated with
3247 * pending_write_domain after we emit the accumulated flush for all
3248 * of our domain changes in execbuffers (which clears objects'
3249 * write_domains). So if we have a current write domain that we
3250 * aren't changing, set pending_write_domain to that.
3251 */
3252 if (flush_domains == 0 && obj->pending_write_domain == 0)
3253 obj->pending_write_domain = obj->write_domain;
3254
3255 cd->invalidate_domains |= invalidate_domains;
3256 cd->flush_domains |= flush_domains;
3257 if (flush_domains & I915_GEM_GPU_DOMAINS)
3258 cd->flush_rings |= obj_priv->ring->id;
3259 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3260 cd->flush_rings |= ring->id;
3261 }
3262
3263 /**
3264 * Moves the object from a partially CPU read to a full one.
3265 *
3266 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3267 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3268 */
3269 static void
3270 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3271 {
3272 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3273
3274 if (!obj_priv->page_cpu_valid)
3275 return;
3276
3277 /* If we're partially in the CPU read domain, finish moving it in.
3278 */
3279 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3280 int i;
3281
3282 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3283 if (obj_priv->page_cpu_valid[i])
3284 continue;
3285 drm_clflush_pages(obj_priv->pages + i, 1);
3286 }
3287 }
3288
3289 /* Free the page_cpu_valid mappings which are now stale, whether
3290 * or not we've got I915_GEM_DOMAIN_CPU.
3291 */
3292 kfree(obj_priv->page_cpu_valid);
3293 obj_priv->page_cpu_valid = NULL;
3294 }
3295
3296 /**
3297 * Set the CPU read domain on a range of the object.
3298 *
3299 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3300 * not entirely valid. The page_cpu_valid member of the object flags which
3301 * pages have been flushed, and will be respected by
3302 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3303 * of the whole object.
3304 *
3305 * This function returns when the move is complete, including waiting on
3306 * flushes to occur.
3307 */
3308 static int
3309 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3310 uint64_t offset, uint64_t size)
3311 {
3312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3313 uint32_t old_read_domains;
3314 int i, ret;
3315
3316 if (offset == 0 && size == obj->size)
3317 return i915_gem_object_set_to_cpu_domain(obj, 0);
3318
3319 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3320 if (ret != 0)
3321 return ret;
3322 i915_gem_object_flush_gtt_write_domain(obj);
3323
3324 /* If we're already fully in the CPU read domain, we're done. */
3325 if (obj_priv->page_cpu_valid == NULL &&
3326 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3327 return 0;
3328
3329 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3330 * newly adding I915_GEM_DOMAIN_CPU
3331 */
3332 if (obj_priv->page_cpu_valid == NULL) {
3333 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3334 GFP_KERNEL);
3335 if (obj_priv->page_cpu_valid == NULL)
3336 return -ENOMEM;
3337 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3338 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3339
3340 /* Flush the cache on any pages that are still invalid from the CPU's
3341 * perspective.
3342 */
3343 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3344 i++) {
3345 if (obj_priv->page_cpu_valid[i])
3346 continue;
3347
3348 drm_clflush_pages(obj_priv->pages + i, 1);
3349
3350 obj_priv->page_cpu_valid[i] = 1;
3351 }
3352
3353 /* It should now be out of any other write domains, and we can update
3354 * the domain values for our changes.
3355 */
3356 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3357
3358 old_read_domains = obj->read_domains;
3359 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3360
3361 trace_i915_gem_object_change_domain(obj,
3362 old_read_domains,
3363 obj->write_domain);
3364
3365 return 0;
3366 }
3367
3368 static int
3369 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
3370 struct drm_file *file_priv,
3371 struct drm_i915_gem_exec_object2 *entry,
3372 struct drm_i915_gem_relocation_entry *reloc)
3373 {
3374 struct drm_device *dev = obj->base.dev;
3375 struct drm_gem_object *target_obj;
3376 uint32_t target_offset;
3377 int ret = -EINVAL;
3378
3379 target_obj = drm_gem_object_lookup(dev, file_priv,
3380 reloc->target_handle);
3381 if (target_obj == NULL)
3382 return -ENOENT;
3383
3384 target_offset = to_intel_bo(target_obj)->gtt_offset;
3385
3386 #if WATCH_RELOC
3387 DRM_INFO("%s: obj %p offset %08x target %d "
3388 "read %08x write %08x gtt %08x "
3389 "presumed %08x delta %08x\n",
3390 __func__,
3391 obj,
3392 (int) reloc->offset,
3393 (int) reloc->target_handle,
3394 (int) reloc->read_domains,
3395 (int) reloc->write_domain,
3396 (int) target_offset,
3397 (int) reloc->presumed_offset,
3398 reloc->delta);
3399 #endif
3400
3401 /* The target buffer should have appeared before us in the
3402 * exec_object list, so it should have a GTT space bound by now.
3403 */
3404 if (target_offset == 0) {
3405 DRM_ERROR("No GTT space found for object %d\n",
3406 reloc->target_handle);
3407 goto err;
3408 }
3409
3410 /* Validate that the target is in a valid r/w GPU domain */
3411 if (reloc->write_domain & (reloc->write_domain - 1)) {
3412 DRM_ERROR("reloc with multiple write domains: "
3413 "obj %p target %d offset %d "
3414 "read %08x write %08x",
3415 obj, reloc->target_handle,
3416 (int) reloc->offset,
3417 reloc->read_domains,
3418 reloc->write_domain);
3419 goto err;
3420 }
3421 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3422 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3423 DRM_ERROR("reloc with read/write CPU domains: "
3424 "obj %p target %d offset %d "
3425 "read %08x write %08x",
3426 obj, reloc->target_handle,
3427 (int) reloc->offset,
3428 reloc->read_domains,
3429 reloc->write_domain);
3430 goto err;
3431 }
3432 if (reloc->write_domain && target_obj->pending_write_domain &&
3433 reloc->write_domain != target_obj->pending_write_domain) {
3434 DRM_ERROR("Write domain conflict: "
3435 "obj %p target %d offset %d "
3436 "new %08x old %08x\n",
3437 obj, reloc->target_handle,
3438 (int) reloc->offset,
3439 reloc->write_domain,
3440 target_obj->pending_write_domain);
3441 goto err;
3442 }
3443
3444 target_obj->pending_read_domains |= reloc->read_domains;
3445 target_obj->pending_write_domain |= reloc->write_domain;
3446
3447 /* If the relocation already has the right value in it, no
3448 * more work needs to be done.
3449 */
3450 if (target_offset == reloc->presumed_offset)
3451 goto out;
3452
3453 /* Check that the relocation address is valid... */
3454 if (reloc->offset > obj->base.size - 4) {
3455 DRM_ERROR("Relocation beyond object bounds: "
3456 "obj %p target %d offset %d size %d.\n",
3457 obj, reloc->target_handle,
3458 (int) reloc->offset,
3459 (int) obj->base.size);
3460 goto err;
3461 }
3462 if (reloc->offset & 3) {
3463 DRM_ERROR("Relocation not 4-byte aligned: "
3464 "obj %p target %d offset %d.\n",
3465 obj, reloc->target_handle,
3466 (int) reloc->offset);
3467 goto err;
3468 }
3469
3470 /* and points to somewhere within the target object. */
3471 if (reloc->delta >= target_obj->size) {
3472 DRM_ERROR("Relocation beyond target object bounds: "
3473 "obj %p target %d delta %d size %d.\n",
3474 obj, reloc->target_handle,
3475 (int) reloc->delta,
3476 (int) target_obj->size);
3477 goto err;
3478 }
3479
3480 reloc->delta += target_offset;
3481 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3482 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
3483 char *vaddr;
3484
3485 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
3486 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
3487 kunmap_atomic(vaddr);
3488 } else {
3489 struct drm_i915_private *dev_priv = dev->dev_private;
3490 uint32_t __iomem *reloc_entry;
3491 void __iomem *reloc_page;
3492
3493 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3494 if (ret)
3495 goto err;
3496
3497 /* Map the page containing the relocation we're going to perform. */
3498 reloc->offset += obj->gtt_offset;
3499 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3500 reloc->offset & PAGE_MASK);
3501 reloc_entry = (uint32_t __iomem *)
3502 (reloc_page + (reloc->offset & ~PAGE_MASK));
3503 iowrite32(reloc->delta, reloc_entry);
3504 io_mapping_unmap_atomic(reloc_page);
3505 }
3506
3507 /* and update the user's relocation entry */
3508 reloc->presumed_offset = target_offset;
3509
3510 out:
3511 ret = 0;
3512 err:
3513 drm_gem_object_unreference(target_obj);
3514 return ret;
3515 }
3516
3517 static int
3518 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
3519 struct drm_file *file_priv,
3520 struct drm_i915_gem_exec_object2 *entry)
3521 {
3522 struct drm_i915_gem_relocation_entry __user *user_relocs;
3523 int i, ret;
3524
3525 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3526 for (i = 0; i < entry->relocation_count; i++) {
3527 struct drm_i915_gem_relocation_entry reloc;
3528
3529 if (__copy_from_user_inatomic(&reloc,
3530 user_relocs+i,
3531 sizeof(reloc)))
3532 return -EFAULT;
3533
3534 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
3535 if (ret)
3536 return ret;
3537
3538 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3539 &reloc.presumed_offset,
3540 sizeof(reloc.presumed_offset)))
3541 return -EFAULT;
3542 }
3543
3544 return 0;
3545 }
3546
3547 static int
3548 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
3549 struct drm_file *file_priv,
3550 struct drm_i915_gem_exec_object2 *entry,
3551 struct drm_i915_gem_relocation_entry *relocs)
3552 {
3553 int i, ret;
3554
3555 for (i = 0; i < entry->relocation_count; i++) {
3556 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
3557 if (ret)
3558 return ret;
3559 }
3560
3561 return 0;
3562 }
3563
3564 static int
3565 i915_gem_execbuffer_relocate(struct drm_device *dev,
3566 struct drm_file *file,
3567 struct drm_gem_object **object_list,
3568 struct drm_i915_gem_exec_object2 *exec_list,
3569 int count)
3570 {
3571 int i, ret;
3572
3573 for (i = 0; i < count; i++) {
3574 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3575 obj->base.pending_read_domains = 0;
3576 obj->base.pending_write_domain = 0;
3577 ret = i915_gem_execbuffer_relocate_object(obj, file,
3578 &exec_list[i]);
3579 if (ret)
3580 return ret;
3581 }
3582
3583 return 0;
3584 }
3585
3586 static int
3587 i915_gem_execbuffer_reserve(struct drm_device *dev,
3588 struct drm_file *file,
3589 struct drm_gem_object **object_list,
3590 struct drm_i915_gem_exec_object2 *exec_list,
3591 int count)
3592 {
3593 struct drm_i915_private *dev_priv = dev->dev_private;
3594 int ret, i, retry;
3595
3596 /* attempt to pin all of the buffers into the GTT */
3597 retry = 0;
3598 do {
3599 ret = 0;
3600 for (i = 0; i < count; i++) {
3601 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3602 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3603 bool need_fence =
3604 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3605 obj->tiling_mode != I915_TILING_NONE;
3606
3607 /* g33/pnv can't fence buffers in the unmappable part */
3608 bool need_mappable =
3609 entry->relocation_count ? true : need_fence;
3610
3611 /* Check fence reg constraints and rebind if necessary */
3612 if (need_mappable && !obj->map_and_fenceable) {
3613 ret = i915_gem_object_unbind(&obj->base);
3614 if (ret)
3615 break;
3616 }
3617
3618 ret = i915_gem_object_pin(&obj->base,
3619 entry->alignment,
3620 need_mappable);
3621 if (ret)
3622 break;
3623
3624 /*
3625 * Pre-965 chips need a fence register set up in order
3626 * to properly handle blits to/from tiled surfaces.
3627 */
3628 if (need_fence) {
3629 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3630 if (ret) {
3631 i915_gem_object_unpin(&obj->base);
3632 break;
3633 }
3634
3635 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3636 }
3637
3638 entry->offset = obj->gtt_offset;
3639 }
3640
3641 while (i--)
3642 i915_gem_object_unpin(object_list[i]);
3643
3644 if (ret != -ENOSPC || retry > 1)
3645 return ret;
3646
3647 /* First attempt, just clear anything that is purgeable.
3648 * Second attempt, clear the entire GTT.
3649 */
3650 ret = i915_gem_evict_everything(dev, retry == 0);
3651 if (ret)
3652 return ret;
3653
3654 retry++;
3655 } while (1);
3656 }
3657
3658 static int
3659 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
3660 struct drm_file *file,
3661 struct drm_gem_object **object_list,
3662 struct drm_i915_gem_exec_object2 *exec_list,
3663 int count)
3664 {
3665 struct drm_i915_gem_relocation_entry *reloc;
3666 int i, total, ret;
3667
3668 for (i = 0; i < count; i++) {
3669 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3670 obj->in_execbuffer = false;
3671 }
3672
3673 mutex_unlock(&dev->struct_mutex);
3674
3675 total = 0;
3676 for (i = 0; i < count; i++)
3677 total += exec_list[i].relocation_count;
3678
3679 reloc = drm_malloc_ab(total, sizeof(*reloc));
3680 if (reloc == NULL) {
3681 mutex_lock(&dev->struct_mutex);
3682 return -ENOMEM;
3683 }
3684
3685 total = 0;
3686 for (i = 0; i < count; i++) {
3687 struct drm_i915_gem_relocation_entry __user *user_relocs;
3688
3689 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3690
3691 if (copy_from_user(reloc+total, user_relocs,
3692 exec_list[i].relocation_count *
3693 sizeof(*reloc))) {
3694 ret = -EFAULT;
3695 mutex_lock(&dev->struct_mutex);
3696 goto err;
3697 }
3698
3699 total += exec_list[i].relocation_count;
3700 }
3701
3702 ret = i915_mutex_lock_interruptible(dev);
3703 if (ret) {
3704 mutex_lock(&dev->struct_mutex);
3705 goto err;
3706 }
3707
3708 ret = i915_gem_execbuffer_reserve(dev, file,
3709 object_list, exec_list,
3710 count);
3711 if (ret)
3712 goto err;
3713
3714 total = 0;
3715 for (i = 0; i < count; i++) {
3716 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3717 obj->base.pending_read_domains = 0;
3718 obj->base.pending_write_domain = 0;
3719 ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
3720 &exec_list[i],
3721 reloc + total);
3722 if (ret)
3723 goto err;
3724
3725 total += exec_list[i].relocation_count;
3726 }
3727
3728 /* Leave the user relocations as are, this is the painfully slow path,
3729 * and we want to avoid the complication of dropping the lock whilst
3730 * having buffers reserved in the aperture and so causing spurious
3731 * ENOSPC for random operations.
3732 */
3733
3734 err:
3735 drm_free_large(reloc);
3736 return ret;
3737 }
3738
3739 static int
3740 i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3741 struct drm_file *file,
3742 struct intel_ring_buffer *ring,
3743 struct drm_gem_object **objects,
3744 int count)
3745 {
3746 struct change_domains cd;
3747 int ret, i;
3748
3749 cd.invalidate_domains = 0;
3750 cd.flush_domains = 0;
3751 cd.flush_rings = 0;
3752 for (i = 0; i < count; i++)
3753 i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
3754
3755 if (cd.invalidate_domains | cd.flush_domains) {
3756 #if WATCH_EXEC
3757 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3758 __func__,
3759 cd.invalidate_domains,
3760 cd.flush_domains);
3761 #endif
3762 i915_gem_flush(dev, file,
3763 cd.invalidate_domains,
3764 cd.flush_domains,
3765 cd.flush_rings);
3766 }
3767
3768 for (i = 0; i < count; i++) {
3769 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3770 /* XXX replace with semaphores */
3771 if (obj->ring && ring != obj->ring) {
3772 ret = i915_gem_object_wait_rendering(&obj->base, true);
3773 if (ret)
3774 return ret;
3775 }
3776 }
3777
3778 return 0;
3779 }
3780
3781 /* Throttle our rendering by waiting until the ring has completed our requests
3782 * emitted over 20 msec ago.
3783 *
3784 * Note that if we were to use the current jiffies each time around the loop,
3785 * we wouldn't escape the function with any frames outstanding if the time to
3786 * render a frame was over 20ms.
3787 *
3788 * This should get us reasonable parallelism between CPU and GPU but also
3789 * relatively low latency when blocking on a particular request to finish.
3790 */
3791 static int
3792 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3793 {
3794 struct drm_i915_private *dev_priv = dev->dev_private;
3795 struct drm_i915_file_private *file_priv = file->driver_priv;
3796 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3797 struct drm_i915_gem_request *request;
3798 struct intel_ring_buffer *ring = NULL;
3799 u32 seqno = 0;
3800 int ret;
3801
3802 spin_lock(&file_priv->mm.lock);
3803 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3804 if (time_after_eq(request->emitted_jiffies, recent_enough))
3805 break;
3806
3807 ring = request->ring;
3808 seqno = request->seqno;
3809 }
3810 spin_unlock(&file_priv->mm.lock);
3811
3812 if (seqno == 0)
3813 return 0;
3814
3815 ret = 0;
3816 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3817 /* And wait for the seqno passing without holding any locks and
3818 * causing extra latency for others. This is safe as the irq
3819 * generation is designed to be run atomically and so is
3820 * lockless.
3821 */
3822 ring->user_irq_get(ring);
3823 ret = wait_event_interruptible(ring->irq_queue,
3824 i915_seqno_passed(ring->get_seqno(ring), seqno)
3825 || atomic_read(&dev_priv->mm.wedged));
3826 ring->user_irq_put(ring);
3827
3828 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3829 ret = -EIO;
3830 }
3831
3832 if (ret == 0)
3833 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3834
3835 return ret;
3836 }
3837
3838 static int
3839 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3840 uint64_t exec_offset)
3841 {
3842 uint32_t exec_start, exec_len;
3843
3844 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3845 exec_len = (uint32_t) exec->batch_len;
3846
3847 if ((exec_start | exec_len) & 0x7)
3848 return -EINVAL;
3849
3850 if (!exec_start)
3851 return -EINVAL;
3852
3853 return 0;
3854 }
3855
3856 static int
3857 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3858 int count)
3859 {
3860 int i;
3861
3862 for (i = 0; i < count; i++) {
3863 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3864 int length; /* limited by fault_in_pages_readable() */
3865
3866 /* First check for malicious input causing overflow */
3867 if (exec[i].relocation_count >
3868 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
3869 return -EINVAL;
3870
3871 length = exec[i].relocation_count *
3872 sizeof(struct drm_i915_gem_relocation_entry);
3873 if (!access_ok(VERIFY_READ, ptr, length))
3874 return -EFAULT;
3875
3876 /* we may also need to update the presumed offsets */
3877 if (!access_ok(VERIFY_WRITE, ptr, length))
3878 return -EFAULT;
3879
3880 if (fault_in_pages_readable(ptr, length))
3881 return -EFAULT;
3882 }
3883
3884 return 0;
3885 }
3886
3887 static int
3888 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3889 struct drm_file *file,
3890 struct drm_i915_gem_execbuffer2 *args,
3891 struct drm_i915_gem_exec_object2 *exec_list)
3892 {
3893 drm_i915_private_t *dev_priv = dev->dev_private;
3894 struct drm_gem_object **object_list = NULL;
3895 struct drm_gem_object *batch_obj;
3896 struct drm_clip_rect *cliprects = NULL;
3897 struct drm_i915_gem_request *request = NULL;
3898 int ret, i, flips;
3899 uint64_t exec_offset;
3900
3901 struct intel_ring_buffer *ring = NULL;
3902
3903 ret = i915_gem_check_is_wedged(dev);
3904 if (ret)
3905 return ret;
3906
3907 ret = validate_exec_list(exec_list, args->buffer_count);
3908 if (ret)
3909 return ret;
3910
3911 #if WATCH_EXEC
3912 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3913 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3914 #endif
3915 switch (args->flags & I915_EXEC_RING_MASK) {
3916 case I915_EXEC_DEFAULT:
3917 case I915_EXEC_RENDER:
3918 ring = &dev_priv->render_ring;
3919 break;
3920 case I915_EXEC_BSD:
3921 if (!HAS_BSD(dev)) {
3922 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3923 return -EINVAL;
3924 }
3925 ring = &dev_priv->bsd_ring;
3926 break;
3927 case I915_EXEC_BLT:
3928 if (!HAS_BLT(dev)) {
3929 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3930 return -EINVAL;
3931 }
3932 ring = &dev_priv->blt_ring;
3933 break;
3934 default:
3935 DRM_ERROR("execbuf with unknown ring: %d\n",
3936 (int)(args->flags & I915_EXEC_RING_MASK));
3937 return -EINVAL;
3938 }
3939
3940 if (args->buffer_count < 1) {
3941 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3942 return -EINVAL;
3943 }
3944 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3945 if (object_list == NULL) {
3946 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3947 args->buffer_count);
3948 ret = -ENOMEM;
3949 goto pre_mutex_err;
3950 }
3951
3952 if (args->num_cliprects != 0) {
3953 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3954 GFP_KERNEL);
3955 if (cliprects == NULL) {
3956 ret = -ENOMEM;
3957 goto pre_mutex_err;
3958 }
3959
3960 ret = copy_from_user(cliprects,
3961 (struct drm_clip_rect __user *)
3962 (uintptr_t) args->cliprects_ptr,
3963 sizeof(*cliprects) * args->num_cliprects);
3964 if (ret != 0) {
3965 DRM_ERROR("copy %d cliprects failed: %d\n",
3966 args->num_cliprects, ret);
3967 ret = -EFAULT;
3968 goto pre_mutex_err;
3969 }
3970 }
3971
3972 request = kzalloc(sizeof(*request), GFP_KERNEL);
3973 if (request == NULL) {
3974 ret = -ENOMEM;
3975 goto pre_mutex_err;
3976 }
3977
3978 ret = i915_mutex_lock_interruptible(dev);
3979 if (ret)
3980 goto pre_mutex_err;
3981
3982 if (dev_priv->mm.suspended) {
3983 mutex_unlock(&dev->struct_mutex);
3984 ret = -EBUSY;
3985 goto pre_mutex_err;
3986 }
3987
3988 /* Look up object handles */
3989 for (i = 0; i < args->buffer_count; i++) {
3990 struct drm_i915_gem_object *obj_priv;
3991
3992 object_list[i] = drm_gem_object_lookup(dev, file,
3993 exec_list[i].handle);
3994 if (object_list[i] == NULL) {
3995 DRM_ERROR("Invalid object handle %d at index %d\n",
3996 exec_list[i].handle, i);
3997 /* prevent error path from reading uninitialized data */
3998 args->buffer_count = i + 1;
3999 ret = -ENOENT;
4000 goto err;
4001 }
4002
4003 obj_priv = to_intel_bo(object_list[i]);
4004 if (obj_priv->in_execbuffer) {
4005 DRM_ERROR("Object %p appears more than once in object list\n",
4006 object_list[i]);
4007 /* prevent error path from reading uninitialized data */
4008 args->buffer_count = i + 1;
4009 ret = -EINVAL;
4010 goto err;
4011 }
4012 obj_priv->in_execbuffer = true;
4013 }
4014
4015 /* Move the objects en-masse into the GTT, evicting if necessary. */
4016 ret = i915_gem_execbuffer_reserve(dev, file,
4017 object_list, exec_list,
4018 args->buffer_count);
4019 if (ret)
4020 goto err;
4021
4022 /* The objects are in their final locations, apply the relocations. */
4023 ret = i915_gem_execbuffer_relocate(dev, file,
4024 object_list, exec_list,
4025 args->buffer_count);
4026 if (ret) {
4027 if (ret == -EFAULT) {
4028 ret = i915_gem_execbuffer_relocate_slow(dev, file,
4029 object_list,
4030 exec_list,
4031 args->buffer_count);
4032 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
4033 }
4034 if (ret)
4035 goto err;
4036 }
4037
4038 /* Set the pending read domains for the batch buffer to COMMAND */
4039 batch_obj = object_list[args->buffer_count-1];
4040 if (batch_obj->pending_write_domain) {
4041 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
4042 ret = -EINVAL;
4043 goto err;
4044 }
4045 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
4046
4047 /* Sanity check the batch buffer */
4048 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
4049 ret = i915_gem_check_execbuffer(args, exec_offset);
4050 if (ret != 0) {
4051 DRM_ERROR("execbuf with invalid offset/length\n");
4052 goto err;
4053 }
4054
4055 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
4056 object_list, args->buffer_count);
4057 if (ret)
4058 goto err;
4059
4060 #if WATCH_COHERENCY
4061 for (i = 0; i < args->buffer_count; i++) {
4062 i915_gem_object_check_coherency(object_list[i],
4063 exec_list[i].handle);
4064 }
4065 #endif
4066
4067 #if WATCH_EXEC
4068 i915_gem_dump_object(batch_obj,
4069 args->batch_len,
4070 __func__,
4071 ~0);
4072 #endif
4073
4074 /* Check for any pending flips. As we only maintain a flip queue depth
4075 * of 1, we can simply insert a WAIT for the next display flip prior
4076 * to executing the batch and avoid stalling the CPU.
4077 */
4078 flips = 0;
4079 for (i = 0; i < args->buffer_count; i++) {
4080 if (object_list[i]->write_domain)
4081 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
4082 }
4083 if (flips) {
4084 int plane, flip_mask;
4085
4086 for (plane = 0; flips >> plane; plane++) {
4087 if (((flips >> plane) & 1) == 0)
4088 continue;
4089
4090 if (plane)
4091 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
4092 else
4093 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
4094
4095 ret = intel_ring_begin(ring, 2);
4096 if (ret)
4097 goto err;
4098
4099 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
4100 intel_ring_emit(ring, MI_NOOP);
4101 intel_ring_advance(ring);
4102 }
4103 }
4104
4105 /* Exec the batchbuffer */
4106 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
4107 if (ret) {
4108 DRM_ERROR("dispatch failed %d\n", ret);
4109 goto err;
4110 }
4111
4112 for (i = 0; i < args->buffer_count; i++) {
4113 struct drm_gem_object *obj = object_list[i];
4114
4115 obj->read_domains = obj->pending_read_domains;
4116 obj->write_domain = obj->pending_write_domain;
4117
4118 i915_gem_object_move_to_active(obj, ring);
4119 if (obj->write_domain) {
4120 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4121 obj_priv->dirty = 1;
4122 list_move_tail(&obj_priv->gpu_write_list,
4123 &ring->gpu_write_list);
4124 intel_mark_busy(dev, obj);
4125 }
4126
4127 trace_i915_gem_object_change_domain(obj,
4128 obj->read_domains,
4129 obj->write_domain);
4130 }
4131
4132 /*
4133 * Ensure that the commands in the batch buffer are
4134 * finished before the interrupt fires
4135 */
4136 i915_retire_commands(dev, ring);
4137
4138 if (i915_add_request(dev, file, request, ring))
4139 i915_gem_next_request_seqno(dev, ring);
4140 else
4141 request = NULL;
4142
4143 err:
4144 for (i = 0; i < args->buffer_count; i++) {
4145 if (object_list[i] == NULL)
4146 break;
4147
4148 to_intel_bo(object_list[i])->in_execbuffer = false;
4149 drm_gem_object_unreference(object_list[i]);
4150 }
4151
4152 mutex_unlock(&dev->struct_mutex);
4153
4154 pre_mutex_err:
4155 drm_free_large(object_list);
4156 kfree(cliprects);
4157 kfree(request);
4158
4159 return ret;
4160 }
4161
4162 /*
4163 * Legacy execbuffer just creates an exec2 list from the original exec object
4164 * list array and passes it to the real function.
4165 */
4166 int
4167 i915_gem_execbuffer(struct drm_device *dev, void *data,
4168 struct drm_file *file_priv)
4169 {
4170 struct drm_i915_gem_execbuffer *args = data;
4171 struct drm_i915_gem_execbuffer2 exec2;
4172 struct drm_i915_gem_exec_object *exec_list = NULL;
4173 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4174 int ret, i;
4175
4176 #if WATCH_EXEC
4177 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4178 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4179 #endif
4180
4181 if (args->buffer_count < 1) {
4182 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4183 return -EINVAL;
4184 }
4185
4186 /* Copy in the exec list from userland */
4187 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4188 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4189 if (exec_list == NULL || exec2_list == NULL) {
4190 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4191 args->buffer_count);
4192 drm_free_large(exec_list);
4193 drm_free_large(exec2_list);
4194 return -ENOMEM;
4195 }
4196 ret = copy_from_user(exec_list,
4197 (struct drm_i915_relocation_entry __user *)
4198 (uintptr_t) args->buffers_ptr,
4199 sizeof(*exec_list) * args->buffer_count);
4200 if (ret != 0) {
4201 DRM_ERROR("copy %d exec entries failed %d\n",
4202 args->buffer_count, ret);
4203 drm_free_large(exec_list);
4204 drm_free_large(exec2_list);
4205 return -EFAULT;
4206 }
4207
4208 for (i = 0; i < args->buffer_count; i++) {
4209 exec2_list[i].handle = exec_list[i].handle;
4210 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4211 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4212 exec2_list[i].alignment = exec_list[i].alignment;
4213 exec2_list[i].offset = exec_list[i].offset;
4214 if (INTEL_INFO(dev)->gen < 4)
4215 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4216 else
4217 exec2_list[i].flags = 0;
4218 }
4219
4220 exec2.buffers_ptr = args->buffers_ptr;
4221 exec2.buffer_count = args->buffer_count;
4222 exec2.batch_start_offset = args->batch_start_offset;
4223 exec2.batch_len = args->batch_len;
4224 exec2.DR1 = args->DR1;
4225 exec2.DR4 = args->DR4;
4226 exec2.num_cliprects = args->num_cliprects;
4227 exec2.cliprects_ptr = args->cliprects_ptr;
4228 exec2.flags = I915_EXEC_RENDER;
4229
4230 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4231 if (!ret) {
4232 /* Copy the new buffer offsets back to the user's exec list. */
4233 for (i = 0; i < args->buffer_count; i++)
4234 exec_list[i].offset = exec2_list[i].offset;
4235 /* ... and back out to userspace */
4236 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4237 (uintptr_t) args->buffers_ptr,
4238 exec_list,
4239 sizeof(*exec_list) * args->buffer_count);
4240 if (ret) {
4241 ret = -EFAULT;
4242 DRM_ERROR("failed to copy %d exec entries "
4243 "back to user (%d)\n",
4244 args->buffer_count, ret);
4245 }
4246 }
4247
4248 drm_free_large(exec_list);
4249 drm_free_large(exec2_list);
4250 return ret;
4251 }
4252
4253 int
4254 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4255 struct drm_file *file_priv)
4256 {
4257 struct drm_i915_gem_execbuffer2 *args = data;
4258 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4259 int ret;
4260
4261 #if WATCH_EXEC
4262 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4263 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4264 #endif
4265
4266 if (args->buffer_count < 1) {
4267 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4268 return -EINVAL;
4269 }
4270
4271 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4272 if (exec2_list == NULL) {
4273 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4274 args->buffer_count);
4275 return -ENOMEM;
4276 }
4277 ret = copy_from_user(exec2_list,
4278 (struct drm_i915_relocation_entry __user *)
4279 (uintptr_t) args->buffers_ptr,
4280 sizeof(*exec2_list) * args->buffer_count);
4281 if (ret != 0) {
4282 DRM_ERROR("copy %d exec entries failed %d\n",
4283 args->buffer_count, ret);
4284 drm_free_large(exec2_list);
4285 return -EFAULT;
4286 }
4287
4288 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4289 if (!ret) {
4290 /* Copy the new buffer offsets back to the user's exec list. */
4291 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4292 (uintptr_t) args->buffers_ptr,
4293 exec2_list,
4294 sizeof(*exec2_list) * args->buffer_count);
4295 if (ret) {
4296 ret = -EFAULT;
4297 DRM_ERROR("failed to copy %d exec entries "
4298 "back to user (%d)\n",
4299 args->buffer_count, ret);
4300 }
4301 }
4302
4303 drm_free_large(exec2_list);
4304 return ret;
4305 }
4306
4307 int
4308 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4309 bool map_and_fenceable)
4310 {
4311 struct drm_device *dev = obj->dev;
4312 struct drm_i915_private *dev_priv = dev->dev_private;
4313 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4314 int ret;
4315
4316 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4317 BUG_ON(map_and_fenceable && !map_and_fenceable);
4318 WARN_ON(i915_verify_lists(dev));
4319
4320 if (obj_priv->gtt_space != NULL) {
4321 if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
4322 (map_and_fenceable && !obj_priv->map_and_fenceable)) {
4323 WARN(obj_priv->pin_count,
4324 "bo is already pinned with incorrect alignment:"
4325 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
4326 " obj->map_and_fenceable=%d\n",
4327 obj_priv->gtt_offset, alignment,
4328 map_and_fenceable,
4329 obj_priv->map_and_fenceable);
4330 ret = i915_gem_object_unbind(obj);
4331 if (ret)
4332 return ret;
4333 }
4334 }
4335
4336 if (obj_priv->gtt_space == NULL) {
4337 ret = i915_gem_object_bind_to_gtt(obj, alignment,
4338 map_and_fenceable);
4339 if (ret)
4340 return ret;
4341 }
4342
4343 if (obj_priv->pin_count++ == 0) {
4344 i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
4345 if (!obj_priv->active)
4346 list_move_tail(&obj_priv->mm_list,
4347 &dev_priv->mm.pinned_list);
4348 }
4349 BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
4350
4351 WARN_ON(i915_verify_lists(dev));
4352 return 0;
4353 }
4354
4355 void
4356 i915_gem_object_unpin(struct drm_gem_object *obj)
4357 {
4358 struct drm_device *dev = obj->dev;
4359 drm_i915_private_t *dev_priv = dev->dev_private;
4360 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4361
4362 WARN_ON(i915_verify_lists(dev));
4363 BUG_ON(obj_priv->pin_count == 0);
4364 BUG_ON(obj_priv->gtt_space == NULL);
4365
4366 if (--obj_priv->pin_count == 0) {
4367 if (!obj_priv->active)
4368 list_move_tail(&obj_priv->mm_list,
4369 &dev_priv->mm.inactive_list);
4370 i915_gem_info_remove_pin(dev_priv, obj_priv);
4371 }
4372 WARN_ON(i915_verify_lists(dev));
4373 }
4374
4375 int
4376 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4377 struct drm_file *file_priv)
4378 {
4379 struct drm_i915_gem_pin *args = data;
4380 struct drm_gem_object *obj;
4381 struct drm_i915_gem_object *obj_priv;
4382 int ret;
4383
4384 ret = i915_mutex_lock_interruptible(dev);
4385 if (ret)
4386 return ret;
4387
4388 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4389 if (obj == NULL) {
4390 ret = -ENOENT;
4391 goto unlock;
4392 }
4393 obj_priv = to_intel_bo(obj);
4394
4395 if (obj_priv->madv != I915_MADV_WILLNEED) {
4396 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4397 ret = -EINVAL;
4398 goto out;
4399 }
4400
4401 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4402 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4403 args->handle);
4404 ret = -EINVAL;
4405 goto out;
4406 }
4407
4408 obj_priv->user_pin_count++;
4409 obj_priv->pin_filp = file_priv;
4410 if (obj_priv->user_pin_count == 1) {
4411 ret = i915_gem_object_pin(obj, args->alignment, true);
4412 if (ret)
4413 goto out;
4414 }
4415
4416 /* XXX - flush the CPU caches for pinned objects
4417 * as the X server doesn't manage domains yet
4418 */
4419 i915_gem_object_flush_cpu_write_domain(obj);
4420 args->offset = obj_priv->gtt_offset;
4421 out:
4422 drm_gem_object_unreference(obj);
4423 unlock:
4424 mutex_unlock(&dev->struct_mutex);
4425 return ret;
4426 }
4427
4428 int
4429 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4430 struct drm_file *file_priv)
4431 {
4432 struct drm_i915_gem_pin *args = data;
4433 struct drm_gem_object *obj;
4434 struct drm_i915_gem_object *obj_priv;
4435 int ret;
4436
4437 ret = i915_mutex_lock_interruptible(dev);
4438 if (ret)
4439 return ret;
4440
4441 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4442 if (obj == NULL) {
4443 ret = -ENOENT;
4444 goto unlock;
4445 }
4446 obj_priv = to_intel_bo(obj);
4447
4448 if (obj_priv->pin_filp != file_priv) {
4449 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4450 args->handle);
4451 ret = -EINVAL;
4452 goto out;
4453 }
4454 obj_priv->user_pin_count--;
4455 if (obj_priv->user_pin_count == 0) {
4456 obj_priv->pin_filp = NULL;
4457 i915_gem_object_unpin(obj);
4458 }
4459
4460 out:
4461 drm_gem_object_unreference(obj);
4462 unlock:
4463 mutex_unlock(&dev->struct_mutex);
4464 return ret;
4465 }
4466
4467 int
4468 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4469 struct drm_file *file_priv)
4470 {
4471 struct drm_i915_gem_busy *args = data;
4472 struct drm_gem_object *obj;
4473 struct drm_i915_gem_object *obj_priv;
4474 int ret;
4475
4476 ret = i915_mutex_lock_interruptible(dev);
4477 if (ret)
4478 return ret;
4479
4480 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4481 if (obj == NULL) {
4482 ret = -ENOENT;
4483 goto unlock;
4484 }
4485 obj_priv = to_intel_bo(obj);
4486
4487 /* Count all active objects as busy, even if they are currently not used
4488 * by the gpu. Users of this interface expect objects to eventually
4489 * become non-busy without any further actions, therefore emit any
4490 * necessary flushes here.
4491 */
4492 args->busy = obj_priv->active;
4493 if (args->busy) {
4494 /* Unconditionally flush objects, even when the gpu still uses this
4495 * object. Userspace calling this function indicates that it wants to
4496 * use this buffer rather sooner than later, so issuing the required
4497 * flush earlier is beneficial.
4498 */
4499 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4500 i915_gem_flush_ring(dev, file_priv,
4501 obj_priv->ring,
4502 0, obj->write_domain);
4503
4504 /* Update the active list for the hardware's current position.
4505 * Otherwise this only updates on a delayed timer or when irqs
4506 * are actually unmasked, and our working set ends up being
4507 * larger than required.
4508 */
4509 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4510
4511 args->busy = obj_priv->active;
4512 }
4513
4514 drm_gem_object_unreference(obj);
4515 unlock:
4516 mutex_unlock(&dev->struct_mutex);
4517 return ret;
4518 }
4519
4520 int
4521 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4522 struct drm_file *file_priv)
4523 {
4524 return i915_gem_ring_throttle(dev, file_priv);
4525 }
4526
4527 int
4528 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4529 struct drm_file *file_priv)
4530 {
4531 struct drm_i915_gem_madvise *args = data;
4532 struct drm_gem_object *obj;
4533 struct drm_i915_gem_object *obj_priv;
4534 int ret;
4535
4536 switch (args->madv) {
4537 case I915_MADV_DONTNEED:
4538 case I915_MADV_WILLNEED:
4539 break;
4540 default:
4541 return -EINVAL;
4542 }
4543
4544 ret = i915_mutex_lock_interruptible(dev);
4545 if (ret)
4546 return ret;
4547
4548 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4549 if (obj == NULL) {
4550 ret = -ENOENT;
4551 goto unlock;
4552 }
4553 obj_priv = to_intel_bo(obj);
4554
4555 if (obj_priv->pin_count) {
4556 ret = -EINVAL;
4557 goto out;
4558 }
4559
4560 if (obj_priv->madv != __I915_MADV_PURGED)
4561 obj_priv->madv = args->madv;
4562
4563 /* if the object is no longer bound, discard its backing storage */
4564 if (i915_gem_object_is_purgeable(obj_priv) &&
4565 obj_priv->gtt_space == NULL)
4566 i915_gem_object_truncate(obj);
4567
4568 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4569
4570 out:
4571 drm_gem_object_unreference(obj);
4572 unlock:
4573 mutex_unlock(&dev->struct_mutex);
4574 return ret;
4575 }
4576
4577 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4578 size_t size)
4579 {
4580 struct drm_i915_private *dev_priv = dev->dev_private;
4581 struct drm_i915_gem_object *obj;
4582
4583 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4584 if (obj == NULL)
4585 return NULL;
4586
4587 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4588 kfree(obj);
4589 return NULL;
4590 }
4591
4592 i915_gem_info_add_obj(dev_priv, size);
4593
4594 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4595 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4596
4597 obj->agp_type = AGP_USER_MEMORY;
4598 obj->base.driver_private = NULL;
4599 obj->fence_reg = I915_FENCE_REG_NONE;
4600 INIT_LIST_HEAD(&obj->mm_list);
4601 INIT_LIST_HEAD(&obj->gtt_list);
4602 INIT_LIST_HEAD(&obj->ring_list);
4603 INIT_LIST_HEAD(&obj->gpu_write_list);
4604 obj->madv = I915_MADV_WILLNEED;
4605 /* Avoid an unnecessary call to unbind on the first bind. */
4606 obj->map_and_fenceable = true;
4607
4608 return &obj->base;
4609 }
4610
4611 int i915_gem_init_object(struct drm_gem_object *obj)
4612 {
4613 BUG();
4614
4615 return 0;
4616 }
4617
4618 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4619 {
4620 struct drm_device *dev = obj->dev;
4621 drm_i915_private_t *dev_priv = dev->dev_private;
4622 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4623 int ret;
4624
4625 ret = i915_gem_object_unbind(obj);
4626 if (ret == -ERESTARTSYS) {
4627 list_move(&obj_priv->mm_list,
4628 &dev_priv->mm.deferred_free_list);
4629 return;
4630 }
4631
4632 if (obj->map_list.map)
4633 i915_gem_free_mmap_offset(obj);
4634
4635 drm_gem_object_release(obj);
4636 i915_gem_info_remove_obj(dev_priv, obj->size);
4637
4638 kfree(obj_priv->page_cpu_valid);
4639 kfree(obj_priv->bit_17);
4640 kfree(obj_priv);
4641 }
4642
4643 void i915_gem_free_object(struct drm_gem_object *obj)
4644 {
4645 struct drm_device *dev = obj->dev;
4646 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4647
4648 trace_i915_gem_object_destroy(obj);
4649
4650 while (obj_priv->pin_count > 0)
4651 i915_gem_object_unpin(obj);
4652
4653 if (obj_priv->phys_obj)
4654 i915_gem_detach_phys_object(dev, obj);
4655
4656 i915_gem_free_object_tail(obj);
4657 }
4658
4659 int
4660 i915_gem_idle(struct drm_device *dev)
4661 {
4662 drm_i915_private_t *dev_priv = dev->dev_private;
4663 int ret;
4664
4665 mutex_lock(&dev->struct_mutex);
4666
4667 if (dev_priv->mm.suspended) {
4668 mutex_unlock(&dev->struct_mutex);
4669 return 0;
4670 }
4671
4672 ret = i915_gpu_idle(dev);
4673 if (ret) {
4674 mutex_unlock(&dev->struct_mutex);
4675 return ret;
4676 }
4677
4678 /* Under UMS, be paranoid and evict. */
4679 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4680 ret = i915_gem_evict_inactive(dev, false);
4681 if (ret) {
4682 mutex_unlock(&dev->struct_mutex);
4683 return ret;
4684 }
4685 }
4686
4687 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4688 * We need to replace this with a semaphore, or something.
4689 * And not confound mm.suspended!
4690 */
4691 dev_priv->mm.suspended = 1;
4692 del_timer_sync(&dev_priv->hangcheck_timer);
4693
4694 i915_kernel_lost_context(dev);
4695 i915_gem_cleanup_ringbuffer(dev);
4696
4697 mutex_unlock(&dev->struct_mutex);
4698
4699 /* Cancel the retire work handler, which should be idle now. */
4700 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4701
4702 return 0;
4703 }
4704
4705 /*
4706 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4707 * over cache flushing.
4708 */
4709 static int
4710 i915_gem_init_pipe_control(struct drm_device *dev)
4711 {
4712 drm_i915_private_t *dev_priv = dev->dev_private;
4713 struct drm_gem_object *obj;
4714 struct drm_i915_gem_object *obj_priv;
4715 int ret;
4716
4717 obj = i915_gem_alloc_object(dev, 4096);
4718 if (obj == NULL) {
4719 DRM_ERROR("Failed to allocate seqno page\n");
4720 ret = -ENOMEM;
4721 goto err;
4722 }
4723 obj_priv = to_intel_bo(obj);
4724 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4725
4726 ret = i915_gem_object_pin(obj, 4096, true);
4727 if (ret)
4728 goto err_unref;
4729
4730 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4731 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4732 if (dev_priv->seqno_page == NULL)
4733 goto err_unpin;
4734
4735 dev_priv->seqno_obj = obj;
4736 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4737
4738 return 0;
4739
4740 err_unpin:
4741 i915_gem_object_unpin(obj);
4742 err_unref:
4743 drm_gem_object_unreference(obj);
4744 err:
4745 return ret;
4746 }
4747
4748
4749 static void
4750 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4751 {
4752 drm_i915_private_t *dev_priv = dev->dev_private;
4753 struct drm_gem_object *obj;
4754 struct drm_i915_gem_object *obj_priv;
4755
4756 obj = dev_priv->seqno_obj;
4757 obj_priv = to_intel_bo(obj);
4758 kunmap(obj_priv->pages[0]);
4759 i915_gem_object_unpin(obj);
4760 drm_gem_object_unreference(obj);
4761 dev_priv->seqno_obj = NULL;
4762
4763 dev_priv->seqno_page = NULL;
4764 }
4765
4766 int
4767 i915_gem_init_ringbuffer(struct drm_device *dev)
4768 {
4769 drm_i915_private_t *dev_priv = dev->dev_private;
4770 int ret;
4771
4772 if (HAS_PIPE_CONTROL(dev)) {
4773 ret = i915_gem_init_pipe_control(dev);
4774 if (ret)
4775 return ret;
4776 }
4777
4778 ret = intel_init_render_ring_buffer(dev);
4779 if (ret)
4780 goto cleanup_pipe_control;
4781
4782 if (HAS_BSD(dev)) {
4783 ret = intel_init_bsd_ring_buffer(dev);
4784 if (ret)
4785 goto cleanup_render_ring;
4786 }
4787
4788 if (HAS_BLT(dev)) {
4789 ret = intel_init_blt_ring_buffer(dev);
4790 if (ret)
4791 goto cleanup_bsd_ring;
4792 }
4793
4794 dev_priv->next_seqno = 1;
4795
4796 return 0;
4797
4798 cleanup_bsd_ring:
4799 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4800 cleanup_render_ring:
4801 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4802 cleanup_pipe_control:
4803 if (HAS_PIPE_CONTROL(dev))
4804 i915_gem_cleanup_pipe_control(dev);
4805 return ret;
4806 }
4807
4808 void
4809 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4810 {
4811 drm_i915_private_t *dev_priv = dev->dev_private;
4812
4813 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4814 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4815 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4816 if (HAS_PIPE_CONTROL(dev))
4817 i915_gem_cleanup_pipe_control(dev);
4818 }
4819
4820 int
4821 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4822 struct drm_file *file_priv)
4823 {
4824 drm_i915_private_t *dev_priv = dev->dev_private;
4825 int ret;
4826
4827 if (drm_core_check_feature(dev, DRIVER_MODESET))
4828 return 0;
4829
4830 if (atomic_read(&dev_priv->mm.wedged)) {
4831 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4832 atomic_set(&dev_priv->mm.wedged, 0);
4833 }
4834
4835 mutex_lock(&dev->struct_mutex);
4836 dev_priv->mm.suspended = 0;
4837
4838 ret = i915_gem_init_ringbuffer(dev);
4839 if (ret != 0) {
4840 mutex_unlock(&dev->struct_mutex);
4841 return ret;
4842 }
4843
4844 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4845 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4846 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4847 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4848 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4849 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4850 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4851 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4852 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4853 mutex_unlock(&dev->struct_mutex);
4854
4855 ret = drm_irq_install(dev);
4856 if (ret)
4857 goto cleanup_ringbuffer;
4858
4859 return 0;
4860
4861 cleanup_ringbuffer:
4862 mutex_lock(&dev->struct_mutex);
4863 i915_gem_cleanup_ringbuffer(dev);
4864 dev_priv->mm.suspended = 1;
4865 mutex_unlock(&dev->struct_mutex);
4866
4867 return ret;
4868 }
4869
4870 int
4871 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4872 struct drm_file *file_priv)
4873 {
4874 if (drm_core_check_feature(dev, DRIVER_MODESET))
4875 return 0;
4876
4877 drm_irq_uninstall(dev);
4878 return i915_gem_idle(dev);
4879 }
4880
4881 void
4882 i915_gem_lastclose(struct drm_device *dev)
4883 {
4884 int ret;
4885
4886 if (drm_core_check_feature(dev, DRIVER_MODESET))
4887 return;
4888
4889 ret = i915_gem_idle(dev);
4890 if (ret)
4891 DRM_ERROR("failed to idle hardware: %d\n", ret);
4892 }
4893
4894 static void
4895 init_ring_lists(struct intel_ring_buffer *ring)
4896 {
4897 INIT_LIST_HEAD(&ring->active_list);
4898 INIT_LIST_HEAD(&ring->request_list);
4899 INIT_LIST_HEAD(&ring->gpu_write_list);
4900 }
4901
4902 void
4903 i915_gem_load(struct drm_device *dev)
4904 {
4905 int i;
4906 drm_i915_private_t *dev_priv = dev->dev_private;
4907
4908 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4909 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4910 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4911 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4912 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4913 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4914 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
4915 init_ring_lists(&dev_priv->render_ring);
4916 init_ring_lists(&dev_priv->bsd_ring);
4917 init_ring_lists(&dev_priv->blt_ring);
4918 for (i = 0; i < 16; i++)
4919 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4920 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4921 i915_gem_retire_work_handler);
4922 init_completion(&dev_priv->error_completion);
4923
4924 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4925 if (IS_GEN3(dev)) {
4926 u32 tmp = I915_READ(MI_ARB_STATE);
4927 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4928 /* arb state is a masked write, so set bit + bit in mask */
4929 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4930 I915_WRITE(MI_ARB_STATE, tmp);
4931 }
4932 }
4933
4934 /* Old X drivers will take 0-2 for front, back, depth buffers */
4935 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4936 dev_priv->fence_reg_start = 3;
4937
4938 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4939 dev_priv->num_fence_regs = 16;
4940 else
4941 dev_priv->num_fence_regs = 8;
4942
4943 /* Initialize fence registers to zero */
4944 switch (INTEL_INFO(dev)->gen) {
4945 case 6:
4946 for (i = 0; i < 16; i++)
4947 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4948 break;
4949 case 5:
4950 case 4:
4951 for (i = 0; i < 16; i++)
4952 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4953 break;
4954 case 3:
4955 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4956 for (i = 0; i < 8; i++)
4957 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4958 case 2:
4959 for (i = 0; i < 8; i++)
4960 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4961 break;
4962 }
4963 i915_gem_detect_bit_6_swizzle(dev);
4964 init_waitqueue_head(&dev_priv->pending_flip_queue);
4965
4966 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4967 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4968 register_shrinker(&dev_priv->mm.inactive_shrinker);
4969 }
4970
4971 /*
4972 * Create a physically contiguous memory object for this object
4973 * e.g. for cursor + overlay regs
4974 */
4975 static int i915_gem_init_phys_object(struct drm_device *dev,
4976 int id, int size, int align)
4977 {
4978 drm_i915_private_t *dev_priv = dev->dev_private;
4979 struct drm_i915_gem_phys_object *phys_obj;
4980 int ret;
4981
4982 if (dev_priv->mm.phys_objs[id - 1] || !size)
4983 return 0;
4984
4985 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4986 if (!phys_obj)
4987 return -ENOMEM;
4988
4989 phys_obj->id = id;
4990
4991 phys_obj->handle = drm_pci_alloc(dev, size, align);
4992 if (!phys_obj->handle) {
4993 ret = -ENOMEM;
4994 goto kfree_obj;
4995 }
4996 #ifdef CONFIG_X86
4997 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4998 #endif
4999
5000 dev_priv->mm.phys_objs[id - 1] = phys_obj;
5001
5002 return 0;
5003 kfree_obj:
5004 kfree(phys_obj);
5005 return ret;
5006 }
5007
5008 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
5009 {
5010 drm_i915_private_t *dev_priv = dev->dev_private;
5011 struct drm_i915_gem_phys_object *phys_obj;
5012
5013 if (!dev_priv->mm.phys_objs[id - 1])
5014 return;
5015
5016 phys_obj = dev_priv->mm.phys_objs[id - 1];
5017 if (phys_obj->cur_obj) {
5018 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
5019 }
5020
5021 #ifdef CONFIG_X86
5022 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
5023 #endif
5024 drm_pci_free(dev, phys_obj->handle);
5025 kfree(phys_obj);
5026 dev_priv->mm.phys_objs[id - 1] = NULL;
5027 }
5028
5029 void i915_gem_free_all_phys_object(struct drm_device *dev)
5030 {
5031 int i;
5032
5033 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
5034 i915_gem_free_phys_object(dev, i);
5035 }
5036
5037 void i915_gem_detach_phys_object(struct drm_device *dev,
5038 struct drm_gem_object *obj)
5039 {
5040 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
5041 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5042 char *vaddr;
5043 int i;
5044 int page_count;
5045
5046 if (!obj_priv->phys_obj)
5047 return;
5048 vaddr = obj_priv->phys_obj->handle->vaddr;
5049
5050 page_count = obj->size / PAGE_SIZE;
5051
5052 for (i = 0; i < page_count; i++) {
5053 struct page *page = read_cache_page_gfp(mapping, i,
5054 GFP_HIGHUSER | __GFP_RECLAIMABLE);
5055 if (!IS_ERR(page)) {
5056 char *dst = kmap_atomic(page);
5057 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
5058 kunmap_atomic(dst);
5059
5060 drm_clflush_pages(&page, 1);
5061
5062 set_page_dirty(page);
5063 mark_page_accessed(page);
5064 page_cache_release(page);
5065 }
5066 }
5067 intel_gtt_chipset_flush();
5068
5069 obj_priv->phys_obj->cur_obj = NULL;
5070 obj_priv->phys_obj = NULL;
5071 }
5072
5073 int
5074 i915_gem_attach_phys_object(struct drm_device *dev,
5075 struct drm_gem_object *obj,
5076 int id,
5077 int align)
5078 {
5079 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
5080 drm_i915_private_t *dev_priv = dev->dev_private;
5081 struct drm_i915_gem_object *obj_priv;
5082 int ret = 0;
5083 int page_count;
5084 int i;
5085
5086 if (id > I915_MAX_PHYS_OBJECT)
5087 return -EINVAL;
5088
5089 obj_priv = to_intel_bo(obj);
5090
5091 if (obj_priv->phys_obj) {
5092 if (obj_priv->phys_obj->id == id)
5093 return 0;
5094 i915_gem_detach_phys_object(dev, obj);
5095 }
5096
5097 /* create a new object */
5098 if (!dev_priv->mm.phys_objs[id - 1]) {
5099 ret = i915_gem_init_phys_object(dev, id,
5100 obj->size, align);
5101 if (ret) {
5102 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
5103 return ret;
5104 }
5105 }
5106
5107 /* bind to the object */
5108 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
5109 obj_priv->phys_obj->cur_obj = obj;
5110
5111 page_count = obj->size / PAGE_SIZE;
5112
5113 for (i = 0; i < page_count; i++) {
5114 struct page *page;
5115 char *dst, *src;
5116
5117 page = read_cache_page_gfp(mapping, i,
5118 GFP_HIGHUSER | __GFP_RECLAIMABLE);
5119 if (IS_ERR(page))
5120 return PTR_ERR(page);
5121
5122 src = kmap_atomic(page);
5123 dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5124 memcpy(dst, src, PAGE_SIZE);
5125 kunmap_atomic(src);
5126
5127 mark_page_accessed(page);
5128 page_cache_release(page);
5129 }
5130
5131 return 0;
5132 }
5133
5134 static int
5135 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5136 struct drm_i915_gem_pwrite *args,
5137 struct drm_file *file_priv)
5138 {
5139 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5140 void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
5141 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
5142
5143 DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
5144
5145 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
5146 unsigned long unwritten;
5147
5148 /* The physical object once assigned is fixed for the lifetime
5149 * of the obj, so we can safely drop the lock and continue
5150 * to access vaddr.
5151 */
5152 mutex_unlock(&dev->struct_mutex);
5153 unwritten = copy_from_user(vaddr, user_data, args->size);
5154 mutex_lock(&dev->struct_mutex);
5155 if (unwritten)
5156 return -EFAULT;
5157 }
5158
5159 intel_gtt_chipset_flush();
5160 return 0;
5161 }
5162
5163 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5164 {
5165 struct drm_i915_file_private *file_priv = file->driver_priv;
5166
5167 /* Clean up our request list when the client is going away, so that
5168 * later retire_requests won't dereference our soon-to-be-gone
5169 * file_priv.
5170 */
5171 spin_lock(&file_priv->mm.lock);
5172 while (!list_empty(&file_priv->mm.request_list)) {
5173 struct drm_i915_gem_request *request;
5174
5175 request = list_first_entry(&file_priv->mm.request_list,
5176 struct drm_i915_gem_request,
5177 client_list);
5178 list_del(&request->client_list);
5179 request->file_priv = NULL;
5180 }
5181 spin_unlock(&file_priv->mm.lock);
5182 }
5183
5184 static int
5185 i915_gpu_is_active(struct drm_device *dev)
5186 {
5187 drm_i915_private_t *dev_priv = dev->dev_private;
5188 int lists_empty;
5189
5190 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5191 list_empty(&dev_priv->mm.active_list);
5192
5193 return !lists_empty;
5194 }
5195
5196 static int
5197 i915_gem_inactive_shrink(struct shrinker *shrinker,
5198 int nr_to_scan,
5199 gfp_t gfp_mask)
5200 {
5201 struct drm_i915_private *dev_priv =
5202 container_of(shrinker,
5203 struct drm_i915_private,
5204 mm.inactive_shrinker);
5205 struct drm_device *dev = dev_priv->dev;
5206 struct drm_i915_gem_object *obj, *next;
5207 int cnt;
5208
5209 if (!mutex_trylock(&dev->struct_mutex))
5210 return 0;
5211
5212 /* "fast-path" to count number of available objects */
5213 if (nr_to_scan == 0) {
5214 cnt = 0;
5215 list_for_each_entry(obj,
5216 &dev_priv->mm.inactive_list,
5217 mm_list)
5218 cnt++;
5219 mutex_unlock(&dev->struct_mutex);
5220 return cnt / 100 * sysctl_vfs_cache_pressure;
5221 }
5222
5223 rescan:
5224 /* first scan for clean buffers */
5225 i915_gem_retire_requests(dev);
5226
5227 list_for_each_entry_safe(obj, next,
5228 &dev_priv->mm.inactive_list,
5229 mm_list) {
5230 if (i915_gem_object_is_purgeable(obj)) {
5231 i915_gem_object_unbind(&obj->base);
5232 if (--nr_to_scan == 0)
5233 break;
5234 }
5235 }
5236
5237 /* second pass, evict/count anything still on the inactive list */
5238 cnt = 0;
5239 list_for_each_entry_safe(obj, next,
5240 &dev_priv->mm.inactive_list,
5241 mm_list) {
5242 if (nr_to_scan) {
5243 i915_gem_object_unbind(&obj->base);
5244 nr_to_scan--;
5245 } else
5246 cnt++;
5247 }
5248
5249 if (nr_to_scan && i915_gpu_is_active(dev)) {
5250 /*
5251 * We are desperate for pages, so as a last resort, wait
5252 * for the GPU to finish and discard whatever we can.
5253 * This has a dramatic impact to reduce the number of
5254 * OOM-killer events whilst running the GPU aggressively.
5255 */
5256 if (i915_gpu_idle(dev) == 0)
5257 goto rescan;
5258 }
5259 mutex_unlock(&dev->struct_mutex);
5260 return cnt / 100 * sysctl_vfs_cache_pressure;
5261 }
This page took 0.13384 seconds and 6 git commands to generate.