Merge branches 'irq-core-for-linus' and 'core-locking-for-linus' of git://git.kernel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
67
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
70
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74 {
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77 }
78
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81 {
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84 }
85
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
88 {
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
91 }
92
93 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
95 {
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
98 }
99
100 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
102 {
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
105 }
106
107 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
109 {
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
112 }
113
114 int
115 i915_gem_check_is_wedged(struct drm_device *dev)
116 {
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
121
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
124
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
128
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
132
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
137 */
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
142 }
143
144 static int i915_mutex_lock_interruptible(struct drm_device *dev)
145 {
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
148
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
152
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
156
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
160 }
161
162 WARN_ON(i915_verify_lists(dev));
163 return 0;
164 }
165
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
168 {
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
172 }
173
174 int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
176 unsigned long end)
177 {
178 drm_i915_private_t *dev_priv = dev->dev_private;
179
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
183 return -EINVAL;
184 }
185
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
188
189 dev_priv->mm.gtt_total = end - start;
190
191 return 0;
192 }
193
194 int
195 i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
197 {
198 struct drm_i915_gem_init *args = data;
199 int ret;
200
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 mutex_unlock(&dev->struct_mutex);
204
205 return ret;
206 }
207
208 int
209 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
211 {
212 struct drm_i915_private *dev_priv = dev->dev_private;
213 struct drm_i915_gem_get_aperture *args = data;
214
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
217
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
222
223 return 0;
224 }
225
226
227 /**
228 * Creates a new mm object and returns a handle to it.
229 */
230 int
231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
233 {
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 args->size = roundup(args->size, PAGE_SIZE);
240
241 /* Allocate the new object */
242 obj = i915_gem_alloc_object(dev, args->size);
243 if (obj == NULL)
244 return -ENOMEM;
245
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
247 if (ret) {
248 drm_gem_object_release(obj);
249 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250 kfree(obj);
251 return ret;
252 }
253
254 /* drop reference from allocate - handle holds it now */
255 drm_gem_object_unreference(obj);
256 trace_i915_gem_object_create(obj);
257
258 args->handle = handle;
259 return 0;
260 }
261
262 static inline int
263 fast_shmem_read(struct page **pages,
264 loff_t page_base, int page_offset,
265 char __user *data,
266 int length)
267 {
268 char *vaddr;
269 int ret;
270
271 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
272 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
273 kunmap_atomic(vaddr);
274
275 return ret;
276 }
277
278 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
279 {
280 drm_i915_private_t *dev_priv = obj->dev->dev_private;
281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
282
283 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284 obj_priv->tiling_mode != I915_TILING_NONE;
285 }
286
287 static inline void
288 slow_shmem_copy(struct page *dst_page,
289 int dst_offset,
290 struct page *src_page,
291 int src_offset,
292 int length)
293 {
294 char *dst_vaddr, *src_vaddr;
295
296 dst_vaddr = kmap(dst_page);
297 src_vaddr = kmap(src_page);
298
299 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
300
301 kunmap(src_page);
302 kunmap(dst_page);
303 }
304
305 static inline void
306 slow_shmem_bit17_copy(struct page *gpu_page,
307 int gpu_offset,
308 struct page *cpu_page,
309 int cpu_offset,
310 int length,
311 int is_read)
312 {
313 char *gpu_vaddr, *cpu_vaddr;
314
315 /* Use the unswizzled path if this page isn't affected. */
316 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317 if (is_read)
318 return slow_shmem_copy(cpu_page, cpu_offset,
319 gpu_page, gpu_offset, length);
320 else
321 return slow_shmem_copy(gpu_page, gpu_offset,
322 cpu_page, cpu_offset, length);
323 }
324
325 gpu_vaddr = kmap(gpu_page);
326 cpu_vaddr = kmap(cpu_page);
327
328 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329 * XORing with the other bits (A9 for Y, A9 and A10 for X)
330 */
331 while (length > 0) {
332 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333 int this_length = min(cacheline_end - gpu_offset, length);
334 int swizzled_gpu_offset = gpu_offset ^ 64;
335
336 if (is_read) {
337 memcpy(cpu_vaddr + cpu_offset,
338 gpu_vaddr + swizzled_gpu_offset,
339 this_length);
340 } else {
341 memcpy(gpu_vaddr + swizzled_gpu_offset,
342 cpu_vaddr + cpu_offset,
343 this_length);
344 }
345 cpu_offset += this_length;
346 gpu_offset += this_length;
347 length -= this_length;
348 }
349
350 kunmap(cpu_page);
351 kunmap(gpu_page);
352 }
353
354 /**
355 * This is the fast shmem pread path, which attempts to copy_from_user directly
356 * from the backing pages of the object to the user's address space. On a
357 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
358 */
359 static int
360 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361 struct drm_i915_gem_pread *args,
362 struct drm_file *file_priv)
363 {
364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 ssize_t remain;
366 loff_t offset, page_base;
367 char __user *user_data;
368 int page_offset, page_length;
369
370 user_data = (char __user *) (uintptr_t) args->data_ptr;
371 remain = args->size;
372
373 obj_priv = to_intel_bo(obj);
374 offset = args->offset;
375
376 while (remain > 0) {
377 /* Operation in this page
378 *
379 * page_base = page offset within aperture
380 * page_offset = offset within page
381 * page_length = bytes to copy for this page
382 */
383 page_base = (offset & ~(PAGE_SIZE-1));
384 page_offset = offset & (PAGE_SIZE-1);
385 page_length = remain;
386 if ((page_offset + remain) > PAGE_SIZE)
387 page_length = PAGE_SIZE - page_offset;
388
389 if (fast_shmem_read(obj_priv->pages,
390 page_base, page_offset,
391 user_data, page_length))
392 return -EFAULT;
393
394 remain -= page_length;
395 user_data += page_length;
396 offset += page_length;
397 }
398
399 return 0;
400 }
401
402 static int
403 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
404 {
405 int ret;
406
407 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
408
409 /* If we've insufficient memory to map in the pages, attempt
410 * to make some space by throwing out some old buffers.
411 */
412 if (ret == -ENOMEM) {
413 struct drm_device *dev = obj->dev;
414
415 ret = i915_gem_evict_something(dev, obj->size,
416 i915_gem_get_gtt_alignment(obj));
417 if (ret)
418 return ret;
419
420 ret = i915_gem_object_get_pages(obj, 0);
421 }
422
423 return ret;
424 }
425
426 /**
427 * This is the fallback shmem pread path, which allocates temporary storage
428 * in kernel space to copy_to_user into outside of the struct_mutex, so we
429 * can copy out of the object's backing pages while holding the struct mutex
430 * and not take page faults.
431 */
432 static int
433 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
434 struct drm_i915_gem_pread *args,
435 struct drm_file *file_priv)
436 {
437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
438 struct mm_struct *mm = current->mm;
439 struct page **user_pages;
440 ssize_t remain;
441 loff_t offset, pinned_pages, i;
442 loff_t first_data_page, last_data_page, num_pages;
443 int shmem_page_index, shmem_page_offset;
444 int data_page_index, data_page_offset;
445 int page_length;
446 int ret;
447 uint64_t data_ptr = args->data_ptr;
448 int do_bit17_swizzling;
449
450 remain = args->size;
451
452 /* Pin the user pages containing the data. We can't fault while
453 * holding the struct mutex, yet we want to hold it while
454 * dereferencing the user data.
455 */
456 first_data_page = data_ptr / PAGE_SIZE;
457 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
458 num_pages = last_data_page - first_data_page + 1;
459
460 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
461 if (user_pages == NULL)
462 return -ENOMEM;
463
464 mutex_unlock(&dev->struct_mutex);
465 down_read(&mm->mmap_sem);
466 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
467 num_pages, 1, 0, user_pages, NULL);
468 up_read(&mm->mmap_sem);
469 mutex_lock(&dev->struct_mutex);
470 if (pinned_pages < num_pages) {
471 ret = -EFAULT;
472 goto out;
473 }
474
475 ret = i915_gem_object_set_cpu_read_domain_range(obj,
476 args->offset,
477 args->size);
478 if (ret)
479 goto out;
480
481 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
482
483 obj_priv = to_intel_bo(obj);
484 offset = args->offset;
485
486 while (remain > 0) {
487 /* Operation in this page
488 *
489 * shmem_page_index = page number within shmem file
490 * shmem_page_offset = offset within page in shmem file
491 * data_page_index = page number in get_user_pages return
492 * data_page_offset = offset with data_page_index page.
493 * page_length = bytes to copy for this page
494 */
495 shmem_page_index = offset / PAGE_SIZE;
496 shmem_page_offset = offset & ~PAGE_MASK;
497 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
498 data_page_offset = data_ptr & ~PAGE_MASK;
499
500 page_length = remain;
501 if ((shmem_page_offset + page_length) > PAGE_SIZE)
502 page_length = PAGE_SIZE - shmem_page_offset;
503 if ((data_page_offset + page_length) > PAGE_SIZE)
504 page_length = PAGE_SIZE - data_page_offset;
505
506 if (do_bit17_swizzling) {
507 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
508 shmem_page_offset,
509 user_pages[data_page_index],
510 data_page_offset,
511 page_length,
512 1);
513 } else {
514 slow_shmem_copy(user_pages[data_page_index],
515 data_page_offset,
516 obj_priv->pages[shmem_page_index],
517 shmem_page_offset,
518 page_length);
519 }
520
521 remain -= page_length;
522 data_ptr += page_length;
523 offset += page_length;
524 }
525
526 out:
527 for (i = 0; i < pinned_pages; i++) {
528 SetPageDirty(user_pages[i]);
529 page_cache_release(user_pages[i]);
530 }
531 drm_free_large(user_pages);
532
533 return ret;
534 }
535
536 /**
537 * Reads data from the object referenced by handle.
538 *
539 * On error, the contents of *data are undefined.
540 */
541 int
542 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
543 struct drm_file *file_priv)
544 {
545 struct drm_i915_gem_pread *args = data;
546 struct drm_gem_object *obj;
547 struct drm_i915_gem_object *obj_priv;
548 int ret = 0;
549
550 ret = i915_mutex_lock_interruptible(dev);
551 if (ret)
552 return ret;
553
554 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
555 if (obj == NULL) {
556 ret = -ENOENT;
557 goto unlock;
558 }
559 obj_priv = to_intel_bo(obj);
560
561 /* Bounds check source. */
562 if (args->offset > obj->size || args->size > obj->size - args->offset) {
563 ret = -EINVAL;
564 goto out;
565 }
566
567 if (args->size == 0)
568 goto out;
569
570 if (!access_ok(VERIFY_WRITE,
571 (char __user *)(uintptr_t)args->data_ptr,
572 args->size)) {
573 ret = -EFAULT;
574 goto out;
575 }
576
577 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
578 args->size);
579 if (ret) {
580 ret = -EFAULT;
581 goto out;
582 }
583
584 ret = i915_gem_object_get_pages_or_evict(obj);
585 if (ret)
586 goto out;
587
588 ret = i915_gem_object_set_cpu_read_domain_range(obj,
589 args->offset,
590 args->size);
591 if (ret)
592 goto out_put;
593
594 ret = -EFAULT;
595 if (!i915_gem_object_needs_bit17_swizzle(obj))
596 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
597 if (ret == -EFAULT)
598 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
599
600 out_put:
601 i915_gem_object_put_pages(obj);
602 out:
603 drm_gem_object_unreference(obj);
604 unlock:
605 mutex_unlock(&dev->struct_mutex);
606 return ret;
607 }
608
609 /* This is the fast write path which cannot handle
610 * page faults in the source data
611 */
612
613 static inline int
614 fast_user_write(struct io_mapping *mapping,
615 loff_t page_base, int page_offset,
616 char __user *user_data,
617 int length)
618 {
619 char *vaddr_atomic;
620 unsigned long unwritten;
621
622 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
623 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
624 user_data, length);
625 io_mapping_unmap_atomic(vaddr_atomic);
626 return unwritten;
627 }
628
629 /* Here's the write path which can sleep for
630 * page faults
631 */
632
633 static inline void
634 slow_kernel_write(struct io_mapping *mapping,
635 loff_t gtt_base, int gtt_offset,
636 struct page *user_page, int user_offset,
637 int length)
638 {
639 char __iomem *dst_vaddr;
640 char *src_vaddr;
641
642 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
643 src_vaddr = kmap(user_page);
644
645 memcpy_toio(dst_vaddr + gtt_offset,
646 src_vaddr + user_offset,
647 length);
648
649 kunmap(user_page);
650 io_mapping_unmap(dst_vaddr);
651 }
652
653 static inline int
654 fast_shmem_write(struct page **pages,
655 loff_t page_base, int page_offset,
656 char __user *data,
657 int length)
658 {
659 char *vaddr;
660 int ret;
661
662 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
663 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
664 kunmap_atomic(vaddr);
665
666 return ret;
667 }
668
669 /**
670 * This is the fast pwrite path, where we copy the data directly from the
671 * user into the GTT, uncached.
672 */
673 static int
674 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
675 struct drm_i915_gem_pwrite *args,
676 struct drm_file *file_priv)
677 {
678 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t offset, page_base;
682 char __user *user_data;
683 int page_offset, page_length;
684
685 user_data = (char __user *) (uintptr_t) args->data_ptr;
686 remain = args->size;
687
688 obj_priv = to_intel_bo(obj);
689 offset = obj_priv->gtt_offset + args->offset;
690
691 while (remain > 0) {
692 /* Operation in this page
693 *
694 * page_base = page offset within aperture
695 * page_offset = offset within page
696 * page_length = bytes to copy for this page
697 */
698 page_base = (offset & ~(PAGE_SIZE-1));
699 page_offset = offset & (PAGE_SIZE-1);
700 page_length = remain;
701 if ((page_offset + remain) > PAGE_SIZE)
702 page_length = PAGE_SIZE - page_offset;
703
704 /* If we get a fault while copying data, then (presumably) our
705 * source page isn't available. Return the error and we'll
706 * retry in the slow path.
707 */
708 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
709 page_offset, user_data, page_length))
710
711 return -EFAULT;
712
713 remain -= page_length;
714 user_data += page_length;
715 offset += page_length;
716 }
717
718 return 0;
719 }
720
721 /**
722 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
723 * the memory and maps it using kmap_atomic for copying.
724 *
725 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
726 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
727 */
728 static int
729 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file_priv)
732 {
733 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
734 drm_i915_private_t *dev_priv = dev->dev_private;
735 ssize_t remain;
736 loff_t gtt_page_base, offset;
737 loff_t first_data_page, last_data_page, num_pages;
738 loff_t pinned_pages, i;
739 struct page **user_pages;
740 struct mm_struct *mm = current->mm;
741 int gtt_page_offset, data_page_offset, data_page_index, page_length;
742 int ret;
743 uint64_t data_ptr = args->data_ptr;
744
745 remain = args->size;
746
747 /* Pin the user pages containing the data. We can't fault while
748 * holding the struct mutex, and all of the pwrite implementations
749 * want to hold it while dereferencing the user data.
750 */
751 first_data_page = data_ptr / PAGE_SIZE;
752 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
753 num_pages = last_data_page - first_data_page + 1;
754
755 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
756 if (user_pages == NULL)
757 return -ENOMEM;
758
759 mutex_unlock(&dev->struct_mutex);
760 down_read(&mm->mmap_sem);
761 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
762 num_pages, 0, 0, user_pages, NULL);
763 up_read(&mm->mmap_sem);
764 mutex_lock(&dev->struct_mutex);
765 if (pinned_pages < num_pages) {
766 ret = -EFAULT;
767 goto out_unpin_pages;
768 }
769
770 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
771 if (ret)
772 goto out_unpin_pages;
773
774 obj_priv = to_intel_bo(obj);
775 offset = obj_priv->gtt_offset + args->offset;
776
777 while (remain > 0) {
778 /* Operation in this page
779 *
780 * gtt_page_base = page offset within aperture
781 * gtt_page_offset = offset within page in aperture
782 * data_page_index = page number in get_user_pages return
783 * data_page_offset = offset with data_page_index page.
784 * page_length = bytes to copy for this page
785 */
786 gtt_page_base = offset & PAGE_MASK;
787 gtt_page_offset = offset & ~PAGE_MASK;
788 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
789 data_page_offset = data_ptr & ~PAGE_MASK;
790
791 page_length = remain;
792 if ((gtt_page_offset + page_length) > PAGE_SIZE)
793 page_length = PAGE_SIZE - gtt_page_offset;
794 if ((data_page_offset + page_length) > PAGE_SIZE)
795 page_length = PAGE_SIZE - data_page_offset;
796
797 slow_kernel_write(dev_priv->mm.gtt_mapping,
798 gtt_page_base, gtt_page_offset,
799 user_pages[data_page_index],
800 data_page_offset,
801 page_length);
802
803 remain -= page_length;
804 offset += page_length;
805 data_ptr += page_length;
806 }
807
808 out_unpin_pages:
809 for (i = 0; i < pinned_pages; i++)
810 page_cache_release(user_pages[i]);
811 drm_free_large(user_pages);
812
813 return ret;
814 }
815
816 /**
817 * This is the fast shmem pwrite path, which attempts to directly
818 * copy_from_user into the kmapped pages backing the object.
819 */
820 static int
821 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
822 struct drm_i915_gem_pwrite *args,
823 struct drm_file *file_priv)
824 {
825 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
826 ssize_t remain;
827 loff_t offset, page_base;
828 char __user *user_data;
829 int page_offset, page_length;
830
831 user_data = (char __user *) (uintptr_t) args->data_ptr;
832 remain = args->size;
833
834 obj_priv = to_intel_bo(obj);
835 offset = args->offset;
836 obj_priv->dirty = 1;
837
838 while (remain > 0) {
839 /* Operation in this page
840 *
841 * page_base = page offset within aperture
842 * page_offset = offset within page
843 * page_length = bytes to copy for this page
844 */
845 page_base = (offset & ~(PAGE_SIZE-1));
846 page_offset = offset & (PAGE_SIZE-1);
847 page_length = remain;
848 if ((page_offset + remain) > PAGE_SIZE)
849 page_length = PAGE_SIZE - page_offset;
850
851 if (fast_shmem_write(obj_priv->pages,
852 page_base, page_offset,
853 user_data, page_length))
854 return -EFAULT;
855
856 remain -= page_length;
857 user_data += page_length;
858 offset += page_length;
859 }
860
861 return 0;
862 }
863
864 /**
865 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
866 * the memory and maps it using kmap_atomic for copying.
867 *
868 * This avoids taking mmap_sem for faulting on the user's address while the
869 * struct_mutex is held.
870 */
871 static int
872 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
873 struct drm_i915_gem_pwrite *args,
874 struct drm_file *file_priv)
875 {
876 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
877 struct mm_struct *mm = current->mm;
878 struct page **user_pages;
879 ssize_t remain;
880 loff_t offset, pinned_pages, i;
881 loff_t first_data_page, last_data_page, num_pages;
882 int shmem_page_index, shmem_page_offset;
883 int data_page_index, data_page_offset;
884 int page_length;
885 int ret;
886 uint64_t data_ptr = args->data_ptr;
887 int do_bit17_swizzling;
888
889 remain = args->size;
890
891 /* Pin the user pages containing the data. We can't fault while
892 * holding the struct mutex, and all of the pwrite implementations
893 * want to hold it while dereferencing the user data.
894 */
895 first_data_page = data_ptr / PAGE_SIZE;
896 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
897 num_pages = last_data_page - first_data_page + 1;
898
899 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
900 if (user_pages == NULL)
901 return -ENOMEM;
902
903 mutex_unlock(&dev->struct_mutex);
904 down_read(&mm->mmap_sem);
905 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
906 num_pages, 0, 0, user_pages, NULL);
907 up_read(&mm->mmap_sem);
908 mutex_lock(&dev->struct_mutex);
909 if (pinned_pages < num_pages) {
910 ret = -EFAULT;
911 goto out;
912 }
913
914 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
915 if (ret)
916 goto out;
917
918 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
919
920 obj_priv = to_intel_bo(obj);
921 offset = args->offset;
922 obj_priv->dirty = 1;
923
924 while (remain > 0) {
925 /* Operation in this page
926 *
927 * shmem_page_index = page number within shmem file
928 * shmem_page_offset = offset within page in shmem file
929 * data_page_index = page number in get_user_pages return
930 * data_page_offset = offset with data_page_index page.
931 * page_length = bytes to copy for this page
932 */
933 shmem_page_index = offset / PAGE_SIZE;
934 shmem_page_offset = offset & ~PAGE_MASK;
935 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
936 data_page_offset = data_ptr & ~PAGE_MASK;
937
938 page_length = remain;
939 if ((shmem_page_offset + page_length) > PAGE_SIZE)
940 page_length = PAGE_SIZE - shmem_page_offset;
941 if ((data_page_offset + page_length) > PAGE_SIZE)
942 page_length = PAGE_SIZE - data_page_offset;
943
944 if (do_bit17_swizzling) {
945 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
946 shmem_page_offset,
947 user_pages[data_page_index],
948 data_page_offset,
949 page_length,
950 0);
951 } else {
952 slow_shmem_copy(obj_priv->pages[shmem_page_index],
953 shmem_page_offset,
954 user_pages[data_page_index],
955 data_page_offset,
956 page_length);
957 }
958
959 remain -= page_length;
960 data_ptr += page_length;
961 offset += page_length;
962 }
963
964 out:
965 for (i = 0; i < pinned_pages; i++)
966 page_cache_release(user_pages[i]);
967 drm_free_large(user_pages);
968
969 return ret;
970 }
971
972 /**
973 * Writes data to the object referenced by handle.
974 *
975 * On error, the contents of the buffer that were to be modified are undefined.
976 */
977 int
978 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
979 struct drm_file *file)
980 {
981 struct drm_i915_gem_pwrite *args = data;
982 struct drm_gem_object *obj;
983 struct drm_i915_gem_object *obj_priv;
984 int ret = 0;
985
986 ret = i915_mutex_lock_interruptible(dev);
987 if (ret)
988 return ret;
989
990 obj = drm_gem_object_lookup(dev, file, args->handle);
991 if (obj == NULL) {
992 ret = -ENOENT;
993 goto unlock;
994 }
995 obj_priv = to_intel_bo(obj);
996
997
998 /* Bounds check destination. */
999 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1000 ret = -EINVAL;
1001 goto out;
1002 }
1003
1004 if (args->size == 0)
1005 goto out;
1006
1007 if (!access_ok(VERIFY_READ,
1008 (char __user *)(uintptr_t)args->data_ptr,
1009 args->size)) {
1010 ret = -EFAULT;
1011 goto out;
1012 }
1013
1014 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1015 args->size);
1016 if (ret) {
1017 ret = -EFAULT;
1018 goto out;
1019 }
1020
1021 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1022 * it would end up going through the fenced access, and we'll get
1023 * different detiling behavior between reading and writing.
1024 * pread/pwrite currently are reading and writing from the CPU
1025 * perspective, requiring manual detiling by the client.
1026 */
1027 if (obj_priv->phys_obj)
1028 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1029 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1030 obj_priv->gtt_space &&
1031 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1032 ret = i915_gem_object_pin(obj, 0);
1033 if (ret)
1034 goto out;
1035
1036 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1037 if (ret)
1038 goto out_unpin;
1039
1040 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1041 if (ret == -EFAULT)
1042 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1043
1044 out_unpin:
1045 i915_gem_object_unpin(obj);
1046 } else {
1047 ret = i915_gem_object_get_pages_or_evict(obj);
1048 if (ret)
1049 goto out;
1050
1051 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1052 if (ret)
1053 goto out_put;
1054
1055 ret = -EFAULT;
1056 if (!i915_gem_object_needs_bit17_swizzle(obj))
1057 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1058 if (ret == -EFAULT)
1059 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1060
1061 out_put:
1062 i915_gem_object_put_pages(obj);
1063 }
1064
1065 out:
1066 drm_gem_object_unreference(obj);
1067 unlock:
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070 }
1071
1072 /**
1073 * Called when user space prepares to use an object with the CPU, either
1074 * through the mmap ioctl's mapping or a GTT mapping.
1075 */
1076 int
1077 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1078 struct drm_file *file_priv)
1079 {
1080 struct drm_i915_private *dev_priv = dev->dev_private;
1081 struct drm_i915_gem_set_domain *args = data;
1082 struct drm_gem_object *obj;
1083 struct drm_i915_gem_object *obj_priv;
1084 uint32_t read_domains = args->read_domains;
1085 uint32_t write_domain = args->write_domain;
1086 int ret;
1087
1088 if (!(dev->driver->driver_features & DRIVER_GEM))
1089 return -ENODEV;
1090
1091 /* Only handle setting domains to types used by the CPU. */
1092 if (write_domain & I915_GEM_GPU_DOMAINS)
1093 return -EINVAL;
1094
1095 if (read_domains & I915_GEM_GPU_DOMAINS)
1096 return -EINVAL;
1097
1098 /* Having something in the write domain implies it's in the read
1099 * domain, and only that read domain. Enforce that in the request.
1100 */
1101 if (write_domain != 0 && read_domains != write_domain)
1102 return -EINVAL;
1103
1104 ret = i915_mutex_lock_interruptible(dev);
1105 if (ret)
1106 return ret;
1107
1108 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1109 if (obj == NULL) {
1110 ret = -ENOENT;
1111 goto unlock;
1112 }
1113 obj_priv = to_intel_bo(obj);
1114
1115 intel_mark_busy(dev, obj);
1116
1117 if (read_domains & I915_GEM_DOMAIN_GTT) {
1118 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1119
1120 /* Update the LRU on the fence for the CPU access that's
1121 * about to occur.
1122 */
1123 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1124 struct drm_i915_fence_reg *reg =
1125 &dev_priv->fence_regs[obj_priv->fence_reg];
1126 list_move_tail(&reg->lru_list,
1127 &dev_priv->mm.fence_list);
1128 }
1129
1130 /* Silently promote "you're not bound, there was nothing to do"
1131 * to success, since the client was just asking us to
1132 * make sure everything was done.
1133 */
1134 if (ret == -EINVAL)
1135 ret = 0;
1136 } else {
1137 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1138 }
1139
1140 /* Maintain LRU order of "inactive" objects */
1141 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1142 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1143
1144 drm_gem_object_unreference(obj);
1145 unlock:
1146 mutex_unlock(&dev->struct_mutex);
1147 return ret;
1148 }
1149
1150 /**
1151 * Called when user space has done writes to this buffer
1152 */
1153 int
1154 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1155 struct drm_file *file_priv)
1156 {
1157 struct drm_i915_gem_sw_finish *args = data;
1158 struct drm_gem_object *obj;
1159 int ret = 0;
1160
1161 if (!(dev->driver->driver_features & DRIVER_GEM))
1162 return -ENODEV;
1163
1164 ret = i915_mutex_lock_interruptible(dev);
1165 if (ret)
1166 return ret;
1167
1168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1169 if (obj == NULL) {
1170 ret = -ENOENT;
1171 goto unlock;
1172 }
1173
1174 /* Pinned buffers may be scanout, so flush the cache */
1175 if (to_intel_bo(obj)->pin_count)
1176 i915_gem_object_flush_cpu_write_domain(obj);
1177
1178 drm_gem_object_unreference(obj);
1179 unlock:
1180 mutex_unlock(&dev->struct_mutex);
1181 return ret;
1182 }
1183
1184 /**
1185 * Maps the contents of an object, returning the address it is mapped
1186 * into.
1187 *
1188 * While the mapping holds a reference on the contents of the object, it doesn't
1189 * imply a ref on the object itself.
1190 */
1191 int
1192 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1193 struct drm_file *file_priv)
1194 {
1195 struct drm_i915_gem_mmap *args = data;
1196 struct drm_gem_object *obj;
1197 loff_t offset;
1198 unsigned long addr;
1199
1200 if (!(dev->driver->driver_features & DRIVER_GEM))
1201 return -ENODEV;
1202
1203 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1204 if (obj == NULL)
1205 return -ENOENT;
1206
1207 offset = args->offset;
1208
1209 down_write(&current->mm->mmap_sem);
1210 addr = do_mmap(obj->filp, 0, args->size,
1211 PROT_READ | PROT_WRITE, MAP_SHARED,
1212 args->offset);
1213 up_write(&current->mm->mmap_sem);
1214 drm_gem_object_unreference_unlocked(obj);
1215 if (IS_ERR((void *)addr))
1216 return addr;
1217
1218 args->addr_ptr = (uint64_t) addr;
1219
1220 return 0;
1221 }
1222
1223 /**
1224 * i915_gem_fault - fault a page into the GTT
1225 * vma: VMA in question
1226 * vmf: fault info
1227 *
1228 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1229 * from userspace. The fault handler takes care of binding the object to
1230 * the GTT (if needed), allocating and programming a fence register (again,
1231 * only if needed based on whether the old reg is still valid or the object
1232 * is tiled) and inserting a new PTE into the faulting process.
1233 *
1234 * Note that the faulting process may involve evicting existing objects
1235 * from the GTT and/or fence registers to make room. So performance may
1236 * suffer if the GTT working set is large or there are few fence registers
1237 * left.
1238 */
1239 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1240 {
1241 struct drm_gem_object *obj = vma->vm_private_data;
1242 struct drm_device *dev = obj->dev;
1243 drm_i915_private_t *dev_priv = dev->dev_private;
1244 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1245 pgoff_t page_offset;
1246 unsigned long pfn;
1247 int ret = 0;
1248 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1249
1250 /* We don't use vmf->pgoff since that has the fake offset */
1251 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1252 PAGE_SHIFT;
1253
1254 /* Now bind it into the GTT if needed */
1255 mutex_lock(&dev->struct_mutex);
1256 if (!obj_priv->gtt_space) {
1257 ret = i915_gem_object_bind_to_gtt(obj, 0);
1258 if (ret)
1259 goto unlock;
1260
1261 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1262 if (ret)
1263 goto unlock;
1264 }
1265
1266 /* Need a new fence register? */
1267 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1268 ret = i915_gem_object_get_fence_reg(obj, true);
1269 if (ret)
1270 goto unlock;
1271 }
1272
1273 if (i915_gem_object_is_inactive(obj_priv))
1274 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1275
1276 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1277 page_offset;
1278
1279 /* Finally, remap it using the new GTT offset */
1280 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1281 unlock:
1282 mutex_unlock(&dev->struct_mutex);
1283
1284 switch (ret) {
1285 case 0:
1286 case -ERESTARTSYS:
1287 return VM_FAULT_NOPAGE;
1288 case -ENOMEM:
1289 case -EAGAIN:
1290 return VM_FAULT_OOM;
1291 default:
1292 return VM_FAULT_SIGBUS;
1293 }
1294 }
1295
1296 /**
1297 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1298 * @obj: obj in question
1299 *
1300 * GEM memory mapping works by handing back to userspace a fake mmap offset
1301 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1302 * up the object based on the offset and sets up the various memory mapping
1303 * structures.
1304 *
1305 * This routine allocates and attaches a fake offset for @obj.
1306 */
1307 static int
1308 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1309 {
1310 struct drm_device *dev = obj->dev;
1311 struct drm_gem_mm *mm = dev->mm_private;
1312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1313 struct drm_map_list *list;
1314 struct drm_local_map *map;
1315 int ret = 0;
1316
1317 /* Set the object up for mmap'ing */
1318 list = &obj->map_list;
1319 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1320 if (!list->map)
1321 return -ENOMEM;
1322
1323 map = list->map;
1324 map->type = _DRM_GEM;
1325 map->size = obj->size;
1326 map->handle = obj;
1327
1328 /* Get a DRM GEM mmap offset allocated... */
1329 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1330 obj->size / PAGE_SIZE, 0, 0);
1331 if (!list->file_offset_node) {
1332 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1333 ret = -ENOSPC;
1334 goto out_free_list;
1335 }
1336
1337 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1338 obj->size / PAGE_SIZE, 0);
1339 if (!list->file_offset_node) {
1340 ret = -ENOMEM;
1341 goto out_free_list;
1342 }
1343
1344 list->hash.key = list->file_offset_node->start;
1345 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1346 if (ret) {
1347 DRM_ERROR("failed to add to map hash\n");
1348 goto out_free_mm;
1349 }
1350
1351 /* By now we should be all set, any drm_mmap request on the offset
1352 * below will get to our mmap & fault handler */
1353 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1354
1355 return 0;
1356
1357 out_free_mm:
1358 drm_mm_put_block(list->file_offset_node);
1359 out_free_list:
1360 kfree(list->map);
1361
1362 return ret;
1363 }
1364
1365 /**
1366 * i915_gem_release_mmap - remove physical page mappings
1367 * @obj: obj in question
1368 *
1369 * Preserve the reservation of the mmapping with the DRM core code, but
1370 * relinquish ownership of the pages back to the system.
1371 *
1372 * It is vital that we remove the page mapping if we have mapped a tiled
1373 * object through the GTT and then lose the fence register due to
1374 * resource pressure. Similarly if the object has been moved out of the
1375 * aperture, than pages mapped into userspace must be revoked. Removing the
1376 * mapping will then trigger a page fault on the next user access, allowing
1377 * fixup by i915_gem_fault().
1378 */
1379 void
1380 i915_gem_release_mmap(struct drm_gem_object *obj)
1381 {
1382 struct drm_device *dev = obj->dev;
1383 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1384
1385 if (dev->dev_mapping)
1386 unmap_mapping_range(dev->dev_mapping,
1387 obj_priv->mmap_offset, obj->size, 1);
1388 }
1389
1390 static void
1391 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1392 {
1393 struct drm_device *dev = obj->dev;
1394 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1395 struct drm_gem_mm *mm = dev->mm_private;
1396 struct drm_map_list *list;
1397
1398 list = &obj->map_list;
1399 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1400
1401 if (list->file_offset_node) {
1402 drm_mm_put_block(list->file_offset_node);
1403 list->file_offset_node = NULL;
1404 }
1405
1406 if (list->map) {
1407 kfree(list->map);
1408 list->map = NULL;
1409 }
1410
1411 obj_priv->mmap_offset = 0;
1412 }
1413
1414 /**
1415 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1416 * @obj: object to check
1417 *
1418 * Return the required GTT alignment for an object, taking into account
1419 * potential fence register mapping if needed.
1420 */
1421 static uint32_t
1422 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1423 {
1424 struct drm_device *dev = obj->dev;
1425 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1426 int start, i;
1427
1428 /*
1429 * Minimum alignment is 4k (GTT page size), but might be greater
1430 * if a fence register is needed for the object.
1431 */
1432 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1433 return 4096;
1434
1435 /*
1436 * Previous chips need to be aligned to the size of the smallest
1437 * fence register that can contain the object.
1438 */
1439 if (INTEL_INFO(dev)->gen == 3)
1440 start = 1024*1024;
1441 else
1442 start = 512*1024;
1443
1444 for (i = start; i < obj->size; i <<= 1)
1445 ;
1446
1447 return i;
1448 }
1449
1450 /**
1451 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1452 * @dev: DRM device
1453 * @data: GTT mapping ioctl data
1454 * @file_priv: GEM object info
1455 *
1456 * Simply returns the fake offset to userspace so it can mmap it.
1457 * The mmap call will end up in drm_gem_mmap(), which will set things
1458 * up so we can get faults in the handler above.
1459 *
1460 * The fault handler will take care of binding the object into the GTT
1461 * (since it may have been evicted to make room for something), allocating
1462 * a fence register, and mapping the appropriate aperture address into
1463 * userspace.
1464 */
1465 int
1466 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1467 struct drm_file *file_priv)
1468 {
1469 struct drm_i915_gem_mmap_gtt *args = data;
1470 struct drm_gem_object *obj;
1471 struct drm_i915_gem_object *obj_priv;
1472 int ret;
1473
1474 if (!(dev->driver->driver_features & DRIVER_GEM))
1475 return -ENODEV;
1476
1477 ret = i915_mutex_lock_interruptible(dev);
1478 if (ret)
1479 return ret;
1480
1481 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1482 if (obj == NULL) {
1483 ret = -ENOENT;
1484 goto unlock;
1485 }
1486 obj_priv = to_intel_bo(obj);
1487
1488 if (obj_priv->madv != I915_MADV_WILLNEED) {
1489 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1490 ret = -EINVAL;
1491 goto out;
1492 }
1493
1494 if (!obj_priv->mmap_offset) {
1495 ret = i915_gem_create_mmap_offset(obj);
1496 if (ret)
1497 goto out;
1498 }
1499
1500 args->offset = obj_priv->mmap_offset;
1501
1502 /*
1503 * Pull it into the GTT so that we have a page list (makes the
1504 * initial fault faster and any subsequent flushing possible).
1505 */
1506 if (!obj_priv->agp_mem) {
1507 ret = i915_gem_object_bind_to_gtt(obj, 0);
1508 if (ret)
1509 goto out;
1510 }
1511
1512 out:
1513 drm_gem_object_unreference(obj);
1514 unlock:
1515 mutex_unlock(&dev->struct_mutex);
1516 return ret;
1517 }
1518
1519 static void
1520 i915_gem_object_put_pages(struct drm_gem_object *obj)
1521 {
1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1523 int page_count = obj->size / PAGE_SIZE;
1524 int i;
1525
1526 BUG_ON(obj_priv->pages_refcount == 0);
1527 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1528
1529 if (--obj_priv->pages_refcount != 0)
1530 return;
1531
1532 if (obj_priv->tiling_mode != I915_TILING_NONE)
1533 i915_gem_object_save_bit_17_swizzle(obj);
1534
1535 if (obj_priv->madv == I915_MADV_DONTNEED)
1536 obj_priv->dirty = 0;
1537
1538 for (i = 0; i < page_count; i++) {
1539 if (obj_priv->dirty)
1540 set_page_dirty(obj_priv->pages[i]);
1541
1542 if (obj_priv->madv == I915_MADV_WILLNEED)
1543 mark_page_accessed(obj_priv->pages[i]);
1544
1545 page_cache_release(obj_priv->pages[i]);
1546 }
1547 obj_priv->dirty = 0;
1548
1549 drm_free_large(obj_priv->pages);
1550 obj_priv->pages = NULL;
1551 }
1552
1553 static uint32_t
1554 i915_gem_next_request_seqno(struct drm_device *dev,
1555 struct intel_ring_buffer *ring)
1556 {
1557 drm_i915_private_t *dev_priv = dev->dev_private;
1558
1559 ring->outstanding_lazy_request = true;
1560 return dev_priv->next_seqno;
1561 }
1562
1563 static void
1564 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1565 struct intel_ring_buffer *ring)
1566 {
1567 struct drm_device *dev = obj->dev;
1568 struct drm_i915_private *dev_priv = dev->dev_private;
1569 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1570 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1571
1572 BUG_ON(ring == NULL);
1573 obj_priv->ring = ring;
1574
1575 /* Add a reference if we're newly entering the active list. */
1576 if (!obj_priv->active) {
1577 drm_gem_object_reference(obj);
1578 obj_priv->active = 1;
1579 }
1580
1581 /* Move from whatever list we were on to the tail of execution. */
1582 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1583 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1584 obj_priv->last_rendering_seqno = seqno;
1585 }
1586
1587 static void
1588 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1589 {
1590 struct drm_device *dev = obj->dev;
1591 drm_i915_private_t *dev_priv = dev->dev_private;
1592 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1593
1594 BUG_ON(!obj_priv->active);
1595 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1596 list_del_init(&obj_priv->ring_list);
1597 obj_priv->last_rendering_seqno = 0;
1598 }
1599
1600 /* Immediately discard the backing storage */
1601 static void
1602 i915_gem_object_truncate(struct drm_gem_object *obj)
1603 {
1604 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1605 struct inode *inode;
1606
1607 /* Our goal here is to return as much of the memory as
1608 * is possible back to the system as we are called from OOM.
1609 * To do this we must instruct the shmfs to drop all of its
1610 * backing pages, *now*. Here we mirror the actions taken
1611 * when by shmem_delete_inode() to release the backing store.
1612 */
1613 inode = obj->filp->f_path.dentry->d_inode;
1614 truncate_inode_pages(inode->i_mapping, 0);
1615 if (inode->i_op->truncate_range)
1616 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1617
1618 obj_priv->madv = __I915_MADV_PURGED;
1619 }
1620
1621 static inline int
1622 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1623 {
1624 return obj_priv->madv == I915_MADV_DONTNEED;
1625 }
1626
1627 static void
1628 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1629 {
1630 struct drm_device *dev = obj->dev;
1631 drm_i915_private_t *dev_priv = dev->dev_private;
1632 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1633
1634 if (obj_priv->pin_count != 0)
1635 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1636 else
1637 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1638 list_del_init(&obj_priv->ring_list);
1639
1640 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1641
1642 obj_priv->last_rendering_seqno = 0;
1643 obj_priv->ring = NULL;
1644 if (obj_priv->active) {
1645 obj_priv->active = 0;
1646 drm_gem_object_unreference(obj);
1647 }
1648 WARN_ON(i915_verify_lists(dev));
1649 }
1650
1651 static void
1652 i915_gem_process_flushing_list(struct drm_device *dev,
1653 uint32_t flush_domains,
1654 struct intel_ring_buffer *ring)
1655 {
1656 drm_i915_private_t *dev_priv = dev->dev_private;
1657 struct drm_i915_gem_object *obj_priv, *next;
1658
1659 list_for_each_entry_safe(obj_priv, next,
1660 &ring->gpu_write_list,
1661 gpu_write_list) {
1662 struct drm_gem_object *obj = &obj_priv->base;
1663
1664 if (obj->write_domain & flush_domains) {
1665 uint32_t old_write_domain = obj->write_domain;
1666
1667 obj->write_domain = 0;
1668 list_del_init(&obj_priv->gpu_write_list);
1669 i915_gem_object_move_to_active(obj, ring);
1670
1671 /* update the fence lru list */
1672 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1673 struct drm_i915_fence_reg *reg =
1674 &dev_priv->fence_regs[obj_priv->fence_reg];
1675 list_move_tail(&reg->lru_list,
1676 &dev_priv->mm.fence_list);
1677 }
1678
1679 trace_i915_gem_object_change_domain(obj,
1680 obj->read_domains,
1681 old_write_domain);
1682 }
1683 }
1684 }
1685
1686 uint32_t
1687 i915_add_request(struct drm_device *dev,
1688 struct drm_file *file,
1689 struct drm_i915_gem_request *request,
1690 struct intel_ring_buffer *ring)
1691 {
1692 drm_i915_private_t *dev_priv = dev->dev_private;
1693 struct drm_i915_file_private *file_priv = NULL;
1694 uint32_t seqno;
1695 int was_empty;
1696
1697 if (file != NULL)
1698 file_priv = file->driver_priv;
1699
1700 if (request == NULL) {
1701 request = kzalloc(sizeof(*request), GFP_KERNEL);
1702 if (request == NULL)
1703 return 0;
1704 }
1705
1706 seqno = ring->add_request(dev, ring, 0);
1707 ring->outstanding_lazy_request = false;
1708
1709 request->seqno = seqno;
1710 request->ring = ring;
1711 request->emitted_jiffies = jiffies;
1712 was_empty = list_empty(&ring->request_list);
1713 list_add_tail(&request->list, &ring->request_list);
1714
1715 if (file_priv) {
1716 spin_lock(&file_priv->mm.lock);
1717 request->file_priv = file_priv;
1718 list_add_tail(&request->client_list,
1719 &file_priv->mm.request_list);
1720 spin_unlock(&file_priv->mm.lock);
1721 }
1722
1723 if (!dev_priv->mm.suspended) {
1724 mod_timer(&dev_priv->hangcheck_timer,
1725 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1726 if (was_empty)
1727 queue_delayed_work(dev_priv->wq,
1728 &dev_priv->mm.retire_work, HZ);
1729 }
1730 return seqno;
1731 }
1732
1733 /**
1734 * Command execution barrier
1735 *
1736 * Ensures that all commands in the ring are finished
1737 * before signalling the CPU
1738 */
1739 static void
1740 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1741 {
1742 uint32_t flush_domains = 0;
1743
1744 /* The sampler always gets flushed on i965 (sigh) */
1745 if (INTEL_INFO(dev)->gen >= 4)
1746 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1747
1748 ring->flush(dev, ring,
1749 I915_GEM_DOMAIN_COMMAND, flush_domains);
1750 }
1751
1752 static inline void
1753 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1754 {
1755 struct drm_i915_file_private *file_priv = request->file_priv;
1756
1757 if (!file_priv)
1758 return;
1759
1760 spin_lock(&file_priv->mm.lock);
1761 list_del(&request->client_list);
1762 request->file_priv = NULL;
1763 spin_unlock(&file_priv->mm.lock);
1764 }
1765
1766 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1767 struct intel_ring_buffer *ring)
1768 {
1769 while (!list_empty(&ring->request_list)) {
1770 struct drm_i915_gem_request *request;
1771
1772 request = list_first_entry(&ring->request_list,
1773 struct drm_i915_gem_request,
1774 list);
1775
1776 list_del(&request->list);
1777 i915_gem_request_remove_from_client(request);
1778 kfree(request);
1779 }
1780
1781 while (!list_empty(&ring->active_list)) {
1782 struct drm_i915_gem_object *obj_priv;
1783
1784 obj_priv = list_first_entry(&ring->active_list,
1785 struct drm_i915_gem_object,
1786 ring_list);
1787
1788 obj_priv->base.write_domain = 0;
1789 list_del_init(&obj_priv->gpu_write_list);
1790 i915_gem_object_move_to_inactive(&obj_priv->base);
1791 }
1792 }
1793
1794 void i915_gem_reset(struct drm_device *dev)
1795 {
1796 struct drm_i915_private *dev_priv = dev->dev_private;
1797 struct drm_i915_gem_object *obj_priv;
1798 int i;
1799
1800 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1801 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1802 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1803
1804 /* Remove anything from the flushing lists. The GPU cache is likely
1805 * to be lost on reset along with the data, so simply move the
1806 * lost bo to the inactive list.
1807 */
1808 while (!list_empty(&dev_priv->mm.flushing_list)) {
1809 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1810 struct drm_i915_gem_object,
1811 mm_list);
1812
1813 obj_priv->base.write_domain = 0;
1814 list_del_init(&obj_priv->gpu_write_list);
1815 i915_gem_object_move_to_inactive(&obj_priv->base);
1816 }
1817
1818 /* Move everything out of the GPU domains to ensure we do any
1819 * necessary invalidation upon reuse.
1820 */
1821 list_for_each_entry(obj_priv,
1822 &dev_priv->mm.inactive_list,
1823 mm_list)
1824 {
1825 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1826 }
1827
1828 /* The fence registers are invalidated so clear them out */
1829 for (i = 0; i < 16; i++) {
1830 struct drm_i915_fence_reg *reg;
1831
1832 reg = &dev_priv->fence_regs[i];
1833 if (!reg->obj)
1834 continue;
1835
1836 i915_gem_clear_fence_reg(reg->obj);
1837 }
1838 }
1839
1840 /**
1841 * This function clears the request list as sequence numbers are passed.
1842 */
1843 static void
1844 i915_gem_retire_requests_ring(struct drm_device *dev,
1845 struct intel_ring_buffer *ring)
1846 {
1847 drm_i915_private_t *dev_priv = dev->dev_private;
1848 uint32_t seqno;
1849
1850 if (!ring->status_page.page_addr ||
1851 list_empty(&ring->request_list))
1852 return;
1853
1854 WARN_ON(i915_verify_lists(dev));
1855
1856 seqno = ring->get_seqno(dev, ring);
1857 while (!list_empty(&ring->request_list)) {
1858 struct drm_i915_gem_request *request;
1859
1860 request = list_first_entry(&ring->request_list,
1861 struct drm_i915_gem_request,
1862 list);
1863
1864 if (!i915_seqno_passed(seqno, request->seqno))
1865 break;
1866
1867 trace_i915_gem_request_retire(dev, request->seqno);
1868
1869 list_del(&request->list);
1870 i915_gem_request_remove_from_client(request);
1871 kfree(request);
1872 }
1873
1874 /* Move any buffers on the active list that are no longer referenced
1875 * by the ringbuffer to the flushing/inactive lists as appropriate.
1876 */
1877 while (!list_empty(&ring->active_list)) {
1878 struct drm_gem_object *obj;
1879 struct drm_i915_gem_object *obj_priv;
1880
1881 obj_priv = list_first_entry(&ring->active_list,
1882 struct drm_i915_gem_object,
1883 ring_list);
1884
1885 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1886 break;
1887
1888 obj = &obj_priv->base;
1889 if (obj->write_domain != 0)
1890 i915_gem_object_move_to_flushing(obj);
1891 else
1892 i915_gem_object_move_to_inactive(obj);
1893 }
1894
1895 if (unlikely (dev_priv->trace_irq_seqno &&
1896 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1897 ring->user_irq_put(dev, ring);
1898 dev_priv->trace_irq_seqno = 0;
1899 }
1900
1901 WARN_ON(i915_verify_lists(dev));
1902 }
1903
1904 void
1905 i915_gem_retire_requests(struct drm_device *dev)
1906 {
1907 drm_i915_private_t *dev_priv = dev->dev_private;
1908
1909 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1910 struct drm_i915_gem_object *obj_priv, *tmp;
1911
1912 /* We must be careful that during unbind() we do not
1913 * accidentally infinitely recurse into retire requests.
1914 * Currently:
1915 * retire -> free -> unbind -> wait -> retire_ring
1916 */
1917 list_for_each_entry_safe(obj_priv, tmp,
1918 &dev_priv->mm.deferred_free_list,
1919 mm_list)
1920 i915_gem_free_object_tail(&obj_priv->base);
1921 }
1922
1923 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1924 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1925 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
1926 }
1927
1928 static void
1929 i915_gem_retire_work_handler(struct work_struct *work)
1930 {
1931 drm_i915_private_t *dev_priv;
1932 struct drm_device *dev;
1933
1934 dev_priv = container_of(work, drm_i915_private_t,
1935 mm.retire_work.work);
1936 dev = dev_priv->dev;
1937
1938 /* Come back later if the device is busy... */
1939 if (!mutex_trylock(&dev->struct_mutex)) {
1940 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1941 return;
1942 }
1943
1944 i915_gem_retire_requests(dev);
1945
1946 if (!dev_priv->mm.suspended &&
1947 (!list_empty(&dev_priv->render_ring.request_list) ||
1948 !list_empty(&dev_priv->bsd_ring.request_list) ||
1949 !list_empty(&dev_priv->blt_ring.request_list)))
1950 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1951 mutex_unlock(&dev->struct_mutex);
1952 }
1953
1954 int
1955 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1956 bool interruptible, struct intel_ring_buffer *ring)
1957 {
1958 drm_i915_private_t *dev_priv = dev->dev_private;
1959 u32 ier;
1960 int ret = 0;
1961
1962 BUG_ON(seqno == 0);
1963
1964 if (atomic_read(&dev_priv->mm.wedged))
1965 return -EAGAIN;
1966
1967 if (ring->outstanding_lazy_request) {
1968 seqno = i915_add_request(dev, NULL, NULL, ring);
1969 if (seqno == 0)
1970 return -ENOMEM;
1971 }
1972 BUG_ON(seqno == dev_priv->next_seqno);
1973
1974 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1975 if (HAS_PCH_SPLIT(dev))
1976 ier = I915_READ(DEIER) | I915_READ(GTIER);
1977 else
1978 ier = I915_READ(IER);
1979 if (!ier) {
1980 DRM_ERROR("something (likely vbetool) disabled "
1981 "interrupts, re-enabling\n");
1982 i915_driver_irq_preinstall(dev);
1983 i915_driver_irq_postinstall(dev);
1984 }
1985
1986 trace_i915_gem_request_wait_begin(dev, seqno);
1987
1988 ring->waiting_gem_seqno = seqno;
1989 ring->user_irq_get(dev, ring);
1990 if (interruptible)
1991 ret = wait_event_interruptible(ring->irq_queue,
1992 i915_seqno_passed(
1993 ring->get_seqno(dev, ring), seqno)
1994 || atomic_read(&dev_priv->mm.wedged));
1995 else
1996 wait_event(ring->irq_queue,
1997 i915_seqno_passed(
1998 ring->get_seqno(dev, ring), seqno)
1999 || atomic_read(&dev_priv->mm.wedged));
2000
2001 ring->user_irq_put(dev, ring);
2002 ring->waiting_gem_seqno = 0;
2003
2004 trace_i915_gem_request_wait_end(dev, seqno);
2005 }
2006 if (atomic_read(&dev_priv->mm.wedged))
2007 ret = -EAGAIN;
2008
2009 if (ret && ret != -ERESTARTSYS)
2010 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2011 __func__, ret, seqno, ring->get_seqno(dev, ring),
2012 dev_priv->next_seqno);
2013
2014 /* Directly dispatch request retiring. While we have the work queue
2015 * to handle this, the waiter on a request often wants an associated
2016 * buffer to have made it to the inactive list, and we would need
2017 * a separate wait queue to handle that.
2018 */
2019 if (ret == 0)
2020 i915_gem_retire_requests_ring(dev, ring);
2021
2022 return ret;
2023 }
2024
2025 /**
2026 * Waits for a sequence number to be signaled, and cleans up the
2027 * request and object lists appropriately for that event.
2028 */
2029 static int
2030 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2031 struct intel_ring_buffer *ring)
2032 {
2033 return i915_do_wait_request(dev, seqno, 1, ring);
2034 }
2035
2036 static void
2037 i915_gem_flush_ring(struct drm_device *dev,
2038 struct drm_file *file_priv,
2039 struct intel_ring_buffer *ring,
2040 uint32_t invalidate_domains,
2041 uint32_t flush_domains)
2042 {
2043 ring->flush(dev, ring, invalidate_domains, flush_domains);
2044 i915_gem_process_flushing_list(dev, flush_domains, ring);
2045 }
2046
2047 static void
2048 i915_gem_flush(struct drm_device *dev,
2049 struct drm_file *file_priv,
2050 uint32_t invalidate_domains,
2051 uint32_t flush_domains,
2052 uint32_t flush_rings)
2053 {
2054 drm_i915_private_t *dev_priv = dev->dev_private;
2055
2056 if (flush_domains & I915_GEM_DOMAIN_CPU)
2057 drm_agp_chipset_flush(dev);
2058
2059 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2060 if (flush_rings & RING_RENDER)
2061 i915_gem_flush_ring(dev, file_priv,
2062 &dev_priv->render_ring,
2063 invalidate_domains, flush_domains);
2064 if (flush_rings & RING_BSD)
2065 i915_gem_flush_ring(dev, file_priv,
2066 &dev_priv->bsd_ring,
2067 invalidate_domains, flush_domains);
2068 if (flush_rings & RING_BLT)
2069 i915_gem_flush_ring(dev, file_priv,
2070 &dev_priv->blt_ring,
2071 invalidate_domains, flush_domains);
2072 }
2073 }
2074
2075 /**
2076 * Ensures that all rendering to the object has completed and the object is
2077 * safe to unbind from the GTT or access from the CPU.
2078 */
2079 static int
2080 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2081 bool interruptible)
2082 {
2083 struct drm_device *dev = obj->dev;
2084 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2085 int ret;
2086
2087 /* This function only exists to support waiting for existing rendering,
2088 * not for emitting required flushes.
2089 */
2090 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2091
2092 /* If there is rendering queued on the buffer being evicted, wait for
2093 * it.
2094 */
2095 if (obj_priv->active) {
2096 ret = i915_do_wait_request(dev,
2097 obj_priv->last_rendering_seqno,
2098 interruptible,
2099 obj_priv->ring);
2100 if (ret)
2101 return ret;
2102 }
2103
2104 return 0;
2105 }
2106
2107 /**
2108 * Unbinds an object from the GTT aperture.
2109 */
2110 int
2111 i915_gem_object_unbind(struct drm_gem_object *obj)
2112 {
2113 struct drm_device *dev = obj->dev;
2114 struct drm_i915_private *dev_priv = dev->dev_private;
2115 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2116 int ret = 0;
2117
2118 if (obj_priv->gtt_space == NULL)
2119 return 0;
2120
2121 if (obj_priv->pin_count != 0) {
2122 DRM_ERROR("Attempting to unbind pinned buffer\n");
2123 return -EINVAL;
2124 }
2125
2126 /* blow away mappings if mapped through GTT */
2127 i915_gem_release_mmap(obj);
2128
2129 /* Move the object to the CPU domain to ensure that
2130 * any possible CPU writes while it's not in the GTT
2131 * are flushed when we go to remap it. This will
2132 * also ensure that all pending GPU writes are finished
2133 * before we unbind.
2134 */
2135 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2136 if (ret == -ERESTARTSYS)
2137 return ret;
2138 /* Continue on if we fail due to EIO, the GPU is hung so we
2139 * should be safe and we need to cleanup or else we might
2140 * cause memory corruption through use-after-free.
2141 */
2142 if (ret) {
2143 i915_gem_clflush_object(obj);
2144 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2145 }
2146
2147 /* release the fence reg _after_ flushing */
2148 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2149 i915_gem_clear_fence_reg(obj);
2150
2151 drm_unbind_agp(obj_priv->agp_mem);
2152 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2153
2154 i915_gem_object_put_pages(obj);
2155 BUG_ON(obj_priv->pages_refcount);
2156
2157 i915_gem_info_remove_gtt(dev_priv, obj->size);
2158 list_del_init(&obj_priv->mm_list);
2159
2160 drm_mm_put_block(obj_priv->gtt_space);
2161 obj_priv->gtt_space = NULL;
2162 obj_priv->gtt_offset = 0;
2163
2164 if (i915_gem_object_is_purgeable(obj_priv))
2165 i915_gem_object_truncate(obj);
2166
2167 trace_i915_gem_object_unbind(obj);
2168
2169 return ret;
2170 }
2171
2172 static int i915_ring_idle(struct drm_device *dev,
2173 struct intel_ring_buffer *ring)
2174 {
2175 if (list_empty(&ring->gpu_write_list))
2176 return 0;
2177
2178 i915_gem_flush_ring(dev, NULL, ring,
2179 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2180 return i915_wait_request(dev,
2181 i915_gem_next_request_seqno(dev, ring),
2182 ring);
2183 }
2184
2185 int
2186 i915_gpu_idle(struct drm_device *dev)
2187 {
2188 drm_i915_private_t *dev_priv = dev->dev_private;
2189 bool lists_empty;
2190 int ret;
2191
2192 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2193 list_empty(&dev_priv->render_ring.active_list) &&
2194 list_empty(&dev_priv->bsd_ring.active_list) &&
2195 list_empty(&dev_priv->blt_ring.active_list));
2196 if (lists_empty)
2197 return 0;
2198
2199 /* Flush everything onto the inactive list. */
2200 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2201 if (ret)
2202 return ret;
2203
2204 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2205 if (ret)
2206 return ret;
2207
2208 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2209 if (ret)
2210 return ret;
2211
2212 return 0;
2213 }
2214
2215 static int
2216 i915_gem_object_get_pages(struct drm_gem_object *obj,
2217 gfp_t gfpmask)
2218 {
2219 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2220 int page_count, i;
2221 struct address_space *mapping;
2222 struct inode *inode;
2223 struct page *page;
2224
2225 BUG_ON(obj_priv->pages_refcount
2226 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2227
2228 if (obj_priv->pages_refcount++ != 0)
2229 return 0;
2230
2231 /* Get the list of pages out of our struct file. They'll be pinned
2232 * at this point until we release them.
2233 */
2234 page_count = obj->size / PAGE_SIZE;
2235 BUG_ON(obj_priv->pages != NULL);
2236 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2237 if (obj_priv->pages == NULL) {
2238 obj_priv->pages_refcount--;
2239 return -ENOMEM;
2240 }
2241
2242 inode = obj->filp->f_path.dentry->d_inode;
2243 mapping = inode->i_mapping;
2244 for (i = 0; i < page_count; i++) {
2245 page = read_cache_page_gfp(mapping, i,
2246 GFP_HIGHUSER |
2247 __GFP_COLD |
2248 __GFP_RECLAIMABLE |
2249 gfpmask);
2250 if (IS_ERR(page))
2251 goto err_pages;
2252
2253 obj_priv->pages[i] = page;
2254 }
2255
2256 if (obj_priv->tiling_mode != I915_TILING_NONE)
2257 i915_gem_object_do_bit_17_swizzle(obj);
2258
2259 return 0;
2260
2261 err_pages:
2262 while (i--)
2263 page_cache_release(obj_priv->pages[i]);
2264
2265 drm_free_large(obj_priv->pages);
2266 obj_priv->pages = NULL;
2267 obj_priv->pages_refcount--;
2268 return PTR_ERR(page);
2269 }
2270
2271 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2272 {
2273 struct drm_gem_object *obj = reg->obj;
2274 struct drm_device *dev = obj->dev;
2275 drm_i915_private_t *dev_priv = dev->dev_private;
2276 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2277 int regnum = obj_priv->fence_reg;
2278 uint64_t val;
2279
2280 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2281 0xfffff000) << 32;
2282 val |= obj_priv->gtt_offset & 0xfffff000;
2283 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2284 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2285
2286 if (obj_priv->tiling_mode == I915_TILING_Y)
2287 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2288 val |= I965_FENCE_REG_VALID;
2289
2290 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2291 }
2292
2293 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2294 {
2295 struct drm_gem_object *obj = reg->obj;
2296 struct drm_device *dev = obj->dev;
2297 drm_i915_private_t *dev_priv = dev->dev_private;
2298 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2299 int regnum = obj_priv->fence_reg;
2300 uint64_t val;
2301
2302 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2303 0xfffff000) << 32;
2304 val |= obj_priv->gtt_offset & 0xfffff000;
2305 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2306 if (obj_priv->tiling_mode == I915_TILING_Y)
2307 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2308 val |= I965_FENCE_REG_VALID;
2309
2310 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2311 }
2312
2313 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2314 {
2315 struct drm_gem_object *obj = reg->obj;
2316 struct drm_device *dev = obj->dev;
2317 drm_i915_private_t *dev_priv = dev->dev_private;
2318 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2319 int regnum = obj_priv->fence_reg;
2320 int tile_width;
2321 uint32_t fence_reg, val;
2322 uint32_t pitch_val;
2323
2324 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2325 (obj_priv->gtt_offset & (obj->size - 1))) {
2326 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2327 __func__, obj_priv->gtt_offset, obj->size);
2328 return;
2329 }
2330
2331 if (obj_priv->tiling_mode == I915_TILING_Y &&
2332 HAS_128_BYTE_Y_TILING(dev))
2333 tile_width = 128;
2334 else
2335 tile_width = 512;
2336
2337 /* Note: pitch better be a power of two tile widths */
2338 pitch_val = obj_priv->stride / tile_width;
2339 pitch_val = ffs(pitch_val) - 1;
2340
2341 if (obj_priv->tiling_mode == I915_TILING_Y &&
2342 HAS_128_BYTE_Y_TILING(dev))
2343 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2344 else
2345 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2346
2347 val = obj_priv->gtt_offset;
2348 if (obj_priv->tiling_mode == I915_TILING_Y)
2349 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2350 val |= I915_FENCE_SIZE_BITS(obj->size);
2351 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2352 val |= I830_FENCE_REG_VALID;
2353
2354 if (regnum < 8)
2355 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2356 else
2357 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2358 I915_WRITE(fence_reg, val);
2359 }
2360
2361 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2362 {
2363 struct drm_gem_object *obj = reg->obj;
2364 struct drm_device *dev = obj->dev;
2365 drm_i915_private_t *dev_priv = dev->dev_private;
2366 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2367 int regnum = obj_priv->fence_reg;
2368 uint32_t val;
2369 uint32_t pitch_val;
2370 uint32_t fence_size_bits;
2371
2372 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2373 (obj_priv->gtt_offset & (obj->size - 1))) {
2374 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2375 __func__, obj_priv->gtt_offset);
2376 return;
2377 }
2378
2379 pitch_val = obj_priv->stride / 128;
2380 pitch_val = ffs(pitch_val) - 1;
2381 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2382
2383 val = obj_priv->gtt_offset;
2384 if (obj_priv->tiling_mode == I915_TILING_Y)
2385 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2386 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2387 WARN_ON(fence_size_bits & ~0x00000f00);
2388 val |= fence_size_bits;
2389 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2390 val |= I830_FENCE_REG_VALID;
2391
2392 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2393 }
2394
2395 static int i915_find_fence_reg(struct drm_device *dev,
2396 bool interruptible)
2397 {
2398 struct drm_i915_fence_reg *reg = NULL;
2399 struct drm_i915_gem_object *obj_priv = NULL;
2400 struct drm_i915_private *dev_priv = dev->dev_private;
2401 struct drm_gem_object *obj = NULL;
2402 int i, avail, ret;
2403
2404 /* First try to find a free reg */
2405 avail = 0;
2406 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2407 reg = &dev_priv->fence_regs[i];
2408 if (!reg->obj)
2409 return i;
2410
2411 obj_priv = to_intel_bo(reg->obj);
2412 if (!obj_priv->pin_count)
2413 avail++;
2414 }
2415
2416 if (avail == 0)
2417 return -ENOSPC;
2418
2419 /* None available, try to steal one or wait for a user to finish */
2420 i = I915_FENCE_REG_NONE;
2421 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2422 lru_list) {
2423 obj = reg->obj;
2424 obj_priv = to_intel_bo(obj);
2425
2426 if (obj_priv->pin_count)
2427 continue;
2428
2429 /* found one! */
2430 i = obj_priv->fence_reg;
2431 break;
2432 }
2433
2434 BUG_ON(i == I915_FENCE_REG_NONE);
2435
2436 /* We only have a reference on obj from the active list. put_fence_reg
2437 * might drop that one, causing a use-after-free in it. So hold a
2438 * private reference to obj like the other callers of put_fence_reg
2439 * (set_tiling ioctl) do. */
2440 drm_gem_object_reference(obj);
2441 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2442 drm_gem_object_unreference(obj);
2443 if (ret != 0)
2444 return ret;
2445
2446 return i;
2447 }
2448
2449 /**
2450 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2451 * @obj: object to map through a fence reg
2452 *
2453 * When mapping objects through the GTT, userspace wants to be able to write
2454 * to them without having to worry about swizzling if the object is tiled.
2455 *
2456 * This function walks the fence regs looking for a free one for @obj,
2457 * stealing one if it can't find any.
2458 *
2459 * It then sets up the reg based on the object's properties: address, pitch
2460 * and tiling format.
2461 */
2462 int
2463 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2464 bool interruptible)
2465 {
2466 struct drm_device *dev = obj->dev;
2467 struct drm_i915_private *dev_priv = dev->dev_private;
2468 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2469 struct drm_i915_fence_reg *reg = NULL;
2470 int ret;
2471
2472 /* Just update our place in the LRU if our fence is getting used. */
2473 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2474 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2475 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2476 return 0;
2477 }
2478
2479 switch (obj_priv->tiling_mode) {
2480 case I915_TILING_NONE:
2481 WARN(1, "allocating a fence for non-tiled object?\n");
2482 break;
2483 case I915_TILING_X:
2484 if (!obj_priv->stride)
2485 return -EINVAL;
2486 WARN((obj_priv->stride & (512 - 1)),
2487 "object 0x%08x is X tiled but has non-512B pitch\n",
2488 obj_priv->gtt_offset);
2489 break;
2490 case I915_TILING_Y:
2491 if (!obj_priv->stride)
2492 return -EINVAL;
2493 WARN((obj_priv->stride & (128 - 1)),
2494 "object 0x%08x is Y tiled but has non-128B pitch\n",
2495 obj_priv->gtt_offset);
2496 break;
2497 }
2498
2499 ret = i915_find_fence_reg(dev, interruptible);
2500 if (ret < 0)
2501 return ret;
2502
2503 obj_priv->fence_reg = ret;
2504 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2505 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2506
2507 reg->obj = obj;
2508
2509 switch (INTEL_INFO(dev)->gen) {
2510 case 6:
2511 sandybridge_write_fence_reg(reg);
2512 break;
2513 case 5:
2514 case 4:
2515 i965_write_fence_reg(reg);
2516 break;
2517 case 3:
2518 i915_write_fence_reg(reg);
2519 break;
2520 case 2:
2521 i830_write_fence_reg(reg);
2522 break;
2523 }
2524
2525 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2526 obj_priv->tiling_mode);
2527
2528 return 0;
2529 }
2530
2531 /**
2532 * i915_gem_clear_fence_reg - clear out fence register info
2533 * @obj: object to clear
2534 *
2535 * Zeroes out the fence register itself and clears out the associated
2536 * data structures in dev_priv and obj_priv.
2537 */
2538 static void
2539 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2540 {
2541 struct drm_device *dev = obj->dev;
2542 drm_i915_private_t *dev_priv = dev->dev_private;
2543 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2544 struct drm_i915_fence_reg *reg =
2545 &dev_priv->fence_regs[obj_priv->fence_reg];
2546 uint32_t fence_reg;
2547
2548 switch (INTEL_INFO(dev)->gen) {
2549 case 6:
2550 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2551 (obj_priv->fence_reg * 8), 0);
2552 break;
2553 case 5:
2554 case 4:
2555 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2556 break;
2557 case 3:
2558 if (obj_priv->fence_reg >= 8)
2559 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2560 else
2561 case 2:
2562 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2563
2564 I915_WRITE(fence_reg, 0);
2565 break;
2566 }
2567
2568 reg->obj = NULL;
2569 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2570 list_del_init(&reg->lru_list);
2571 }
2572
2573 /**
2574 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2575 * to the buffer to finish, and then resets the fence register.
2576 * @obj: tiled object holding a fence register.
2577 * @bool: whether the wait upon the fence is interruptible
2578 *
2579 * Zeroes out the fence register itself and clears out the associated
2580 * data structures in dev_priv and obj_priv.
2581 */
2582 int
2583 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2584 bool interruptible)
2585 {
2586 struct drm_device *dev = obj->dev;
2587 struct drm_i915_private *dev_priv = dev->dev_private;
2588 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2589 struct drm_i915_fence_reg *reg;
2590
2591 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2592 return 0;
2593
2594 /* If we've changed tiling, GTT-mappings of the object
2595 * need to re-fault to ensure that the correct fence register
2596 * setup is in place.
2597 */
2598 i915_gem_release_mmap(obj);
2599
2600 /* On the i915, GPU access to tiled buffers is via a fence,
2601 * therefore we must wait for any outstanding access to complete
2602 * before clearing the fence.
2603 */
2604 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2605 if (reg->gpu) {
2606 int ret;
2607
2608 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2609 if (ret)
2610 return ret;
2611
2612 ret = i915_gem_object_wait_rendering(obj, interruptible);
2613 if (ret)
2614 return ret;
2615
2616 reg->gpu = false;
2617 }
2618
2619 i915_gem_object_flush_gtt_write_domain(obj);
2620 i915_gem_clear_fence_reg(obj);
2621
2622 return 0;
2623 }
2624
2625 /**
2626 * Finds free space in the GTT aperture and binds the object there.
2627 */
2628 static int
2629 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2630 {
2631 struct drm_device *dev = obj->dev;
2632 drm_i915_private_t *dev_priv = dev->dev_private;
2633 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2634 struct drm_mm_node *free_space;
2635 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2636 int ret;
2637
2638 if (obj_priv->madv != I915_MADV_WILLNEED) {
2639 DRM_ERROR("Attempting to bind a purgeable object\n");
2640 return -EINVAL;
2641 }
2642
2643 if (alignment == 0)
2644 alignment = i915_gem_get_gtt_alignment(obj);
2645 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2646 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2647 return -EINVAL;
2648 }
2649
2650 /* If the object is bigger than the entire aperture, reject it early
2651 * before evicting everything in a vain attempt to find space.
2652 */
2653 if (obj->size > dev_priv->mm.gtt_total) {
2654 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2655 return -E2BIG;
2656 }
2657
2658 search_free:
2659 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2660 obj->size, alignment, 0);
2661 if (free_space != NULL)
2662 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2663 alignment);
2664 if (obj_priv->gtt_space == NULL) {
2665 /* If the gtt is empty and we're still having trouble
2666 * fitting our object in, we're out of memory.
2667 */
2668 ret = i915_gem_evict_something(dev, obj->size, alignment);
2669 if (ret)
2670 return ret;
2671
2672 goto search_free;
2673 }
2674
2675 ret = i915_gem_object_get_pages(obj, gfpmask);
2676 if (ret) {
2677 drm_mm_put_block(obj_priv->gtt_space);
2678 obj_priv->gtt_space = NULL;
2679
2680 if (ret == -ENOMEM) {
2681 /* first try to clear up some space from the GTT */
2682 ret = i915_gem_evict_something(dev, obj->size,
2683 alignment);
2684 if (ret) {
2685 /* now try to shrink everyone else */
2686 if (gfpmask) {
2687 gfpmask = 0;
2688 goto search_free;
2689 }
2690
2691 return ret;
2692 }
2693
2694 goto search_free;
2695 }
2696
2697 return ret;
2698 }
2699
2700 /* Create an AGP memory structure pointing at our pages, and bind it
2701 * into the GTT.
2702 */
2703 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2704 obj_priv->pages,
2705 obj->size >> PAGE_SHIFT,
2706 obj_priv->gtt_space->start,
2707 obj_priv->agp_type);
2708 if (obj_priv->agp_mem == NULL) {
2709 i915_gem_object_put_pages(obj);
2710 drm_mm_put_block(obj_priv->gtt_space);
2711 obj_priv->gtt_space = NULL;
2712
2713 ret = i915_gem_evict_something(dev, obj->size, alignment);
2714 if (ret)
2715 return ret;
2716
2717 goto search_free;
2718 }
2719
2720 /* keep track of bounds object by adding it to the inactive list */
2721 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2722 i915_gem_info_add_gtt(dev_priv, obj->size);
2723
2724 /* Assert that the object is not currently in any GPU domain. As it
2725 * wasn't in the GTT, there shouldn't be any way it could have been in
2726 * a GPU cache
2727 */
2728 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2729 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2730
2731 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2732 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2733
2734 return 0;
2735 }
2736
2737 void
2738 i915_gem_clflush_object(struct drm_gem_object *obj)
2739 {
2740 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2741
2742 /* If we don't have a page list set up, then we're not pinned
2743 * to GPU, and we can ignore the cache flush because it'll happen
2744 * again at bind time.
2745 */
2746 if (obj_priv->pages == NULL)
2747 return;
2748
2749 trace_i915_gem_object_clflush(obj);
2750
2751 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2752 }
2753
2754 /** Flushes any GPU write domain for the object if it's dirty. */
2755 static int
2756 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2757 bool pipelined)
2758 {
2759 struct drm_device *dev = obj->dev;
2760 uint32_t old_write_domain;
2761
2762 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2763 return 0;
2764
2765 /* Queue the GPU write cache flushing we need. */
2766 old_write_domain = obj->write_domain;
2767 i915_gem_flush_ring(dev, NULL,
2768 to_intel_bo(obj)->ring,
2769 0, obj->write_domain);
2770 BUG_ON(obj->write_domain);
2771
2772 trace_i915_gem_object_change_domain(obj,
2773 obj->read_domains,
2774 old_write_domain);
2775
2776 if (pipelined)
2777 return 0;
2778
2779 return i915_gem_object_wait_rendering(obj, true);
2780 }
2781
2782 /** Flushes the GTT write domain for the object if it's dirty. */
2783 static void
2784 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2785 {
2786 uint32_t old_write_domain;
2787
2788 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2789 return;
2790
2791 /* No actual flushing is required for the GTT write domain. Writes
2792 * to it immediately go to main memory as far as we know, so there's
2793 * no chipset flush. It also doesn't land in render cache.
2794 */
2795 old_write_domain = obj->write_domain;
2796 obj->write_domain = 0;
2797
2798 trace_i915_gem_object_change_domain(obj,
2799 obj->read_domains,
2800 old_write_domain);
2801 }
2802
2803 /** Flushes the CPU write domain for the object if it's dirty. */
2804 static void
2805 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2806 {
2807 struct drm_device *dev = obj->dev;
2808 uint32_t old_write_domain;
2809
2810 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2811 return;
2812
2813 i915_gem_clflush_object(obj);
2814 drm_agp_chipset_flush(dev);
2815 old_write_domain = obj->write_domain;
2816 obj->write_domain = 0;
2817
2818 trace_i915_gem_object_change_domain(obj,
2819 obj->read_domains,
2820 old_write_domain);
2821 }
2822
2823 /**
2824 * Moves a single object to the GTT read, and possibly write domain.
2825 *
2826 * This function returns when the move is complete, including waiting on
2827 * flushes to occur.
2828 */
2829 int
2830 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2831 {
2832 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2833 uint32_t old_write_domain, old_read_domains;
2834 int ret;
2835
2836 /* Not valid to be called on unbound objects. */
2837 if (obj_priv->gtt_space == NULL)
2838 return -EINVAL;
2839
2840 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2841 if (ret != 0)
2842 return ret;
2843
2844 i915_gem_object_flush_cpu_write_domain(obj);
2845
2846 if (write) {
2847 ret = i915_gem_object_wait_rendering(obj, true);
2848 if (ret)
2849 return ret;
2850 }
2851
2852 old_write_domain = obj->write_domain;
2853 old_read_domains = obj->read_domains;
2854
2855 /* It should now be out of any other write domains, and we can update
2856 * the domain values for our changes.
2857 */
2858 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2859 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2860 if (write) {
2861 obj->read_domains = I915_GEM_DOMAIN_GTT;
2862 obj->write_domain = I915_GEM_DOMAIN_GTT;
2863 obj_priv->dirty = 1;
2864 }
2865
2866 trace_i915_gem_object_change_domain(obj,
2867 old_read_domains,
2868 old_write_domain);
2869
2870 return 0;
2871 }
2872
2873 /*
2874 * Prepare buffer for display plane. Use uninterruptible for possible flush
2875 * wait, as in modesetting process we're not supposed to be interrupted.
2876 */
2877 int
2878 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2879 bool pipelined)
2880 {
2881 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2882 uint32_t old_read_domains;
2883 int ret;
2884
2885 /* Not valid to be called on unbound objects. */
2886 if (obj_priv->gtt_space == NULL)
2887 return -EINVAL;
2888
2889 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2890 if (ret)
2891 return ret;
2892
2893 /* Currently, we are always called from an non-interruptible context. */
2894 if (!pipelined) {
2895 ret = i915_gem_object_wait_rendering(obj, false);
2896 if (ret)
2897 return ret;
2898 }
2899
2900 i915_gem_object_flush_cpu_write_domain(obj);
2901
2902 old_read_domains = obj->read_domains;
2903 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2904
2905 trace_i915_gem_object_change_domain(obj,
2906 old_read_domains,
2907 obj->write_domain);
2908
2909 return 0;
2910 }
2911
2912 /**
2913 * Moves a single object to the CPU read, and possibly write domain.
2914 *
2915 * This function returns when the move is complete, including waiting on
2916 * flushes to occur.
2917 */
2918 static int
2919 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2920 {
2921 uint32_t old_write_domain, old_read_domains;
2922 int ret;
2923
2924 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2925 if (ret != 0)
2926 return ret;
2927
2928 i915_gem_object_flush_gtt_write_domain(obj);
2929
2930 /* If we have a partially-valid cache of the object in the CPU,
2931 * finish invalidating it and free the per-page flags.
2932 */
2933 i915_gem_object_set_to_full_cpu_read_domain(obj);
2934
2935 if (write) {
2936 ret = i915_gem_object_wait_rendering(obj, true);
2937 if (ret)
2938 return ret;
2939 }
2940
2941 old_write_domain = obj->write_domain;
2942 old_read_domains = obj->read_domains;
2943
2944 /* Flush the CPU cache if it's still invalid. */
2945 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2946 i915_gem_clflush_object(obj);
2947
2948 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2949 }
2950
2951 /* It should now be out of any other write domains, and we can update
2952 * the domain values for our changes.
2953 */
2954 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2955
2956 /* If we're writing through the CPU, then the GPU read domains will
2957 * need to be invalidated at next use.
2958 */
2959 if (write) {
2960 obj->read_domains = I915_GEM_DOMAIN_CPU;
2961 obj->write_domain = I915_GEM_DOMAIN_CPU;
2962 }
2963
2964 trace_i915_gem_object_change_domain(obj,
2965 old_read_domains,
2966 old_write_domain);
2967
2968 return 0;
2969 }
2970
2971 /*
2972 * Set the next domain for the specified object. This
2973 * may not actually perform the necessary flushing/invaliding though,
2974 * as that may want to be batched with other set_domain operations
2975 *
2976 * This is (we hope) the only really tricky part of gem. The goal
2977 * is fairly simple -- track which caches hold bits of the object
2978 * and make sure they remain coherent. A few concrete examples may
2979 * help to explain how it works. For shorthand, we use the notation
2980 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2981 * a pair of read and write domain masks.
2982 *
2983 * Case 1: the batch buffer
2984 *
2985 * 1. Allocated
2986 * 2. Written by CPU
2987 * 3. Mapped to GTT
2988 * 4. Read by GPU
2989 * 5. Unmapped from GTT
2990 * 6. Freed
2991 *
2992 * Let's take these a step at a time
2993 *
2994 * 1. Allocated
2995 * Pages allocated from the kernel may still have
2996 * cache contents, so we set them to (CPU, CPU) always.
2997 * 2. Written by CPU (using pwrite)
2998 * The pwrite function calls set_domain (CPU, CPU) and
2999 * this function does nothing (as nothing changes)
3000 * 3. Mapped by GTT
3001 * This function asserts that the object is not
3002 * currently in any GPU-based read or write domains
3003 * 4. Read by GPU
3004 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3005 * As write_domain is zero, this function adds in the
3006 * current read domains (CPU+COMMAND, 0).
3007 * flush_domains is set to CPU.
3008 * invalidate_domains is set to COMMAND
3009 * clflush is run to get data out of the CPU caches
3010 * then i915_dev_set_domain calls i915_gem_flush to
3011 * emit an MI_FLUSH and drm_agp_chipset_flush
3012 * 5. Unmapped from GTT
3013 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3014 * flush_domains and invalidate_domains end up both zero
3015 * so no flushing/invalidating happens
3016 * 6. Freed
3017 * yay, done
3018 *
3019 * Case 2: The shared render buffer
3020 *
3021 * 1. Allocated
3022 * 2. Mapped to GTT
3023 * 3. Read/written by GPU
3024 * 4. set_domain to (CPU,CPU)
3025 * 5. Read/written by CPU
3026 * 6. Read/written by GPU
3027 *
3028 * 1. Allocated
3029 * Same as last example, (CPU, CPU)
3030 * 2. Mapped to GTT
3031 * Nothing changes (assertions find that it is not in the GPU)
3032 * 3. Read/written by GPU
3033 * execbuffer calls set_domain (RENDER, RENDER)
3034 * flush_domains gets CPU
3035 * invalidate_domains gets GPU
3036 * clflush (obj)
3037 * MI_FLUSH and drm_agp_chipset_flush
3038 * 4. set_domain (CPU, CPU)
3039 * flush_domains gets GPU
3040 * invalidate_domains gets CPU
3041 * wait_rendering (obj) to make sure all drawing is complete.
3042 * This will include an MI_FLUSH to get the data from GPU
3043 * to memory
3044 * clflush (obj) to invalidate the CPU cache
3045 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3046 * 5. Read/written by CPU
3047 * cache lines are loaded and dirtied
3048 * 6. Read written by GPU
3049 * Same as last GPU access
3050 *
3051 * Case 3: The constant buffer
3052 *
3053 * 1. Allocated
3054 * 2. Written by CPU
3055 * 3. Read by GPU
3056 * 4. Updated (written) by CPU again
3057 * 5. Read by GPU
3058 *
3059 * 1. Allocated
3060 * (CPU, CPU)
3061 * 2. Written by CPU
3062 * (CPU, CPU)
3063 * 3. Read by GPU
3064 * (CPU+RENDER, 0)
3065 * flush_domains = CPU
3066 * invalidate_domains = RENDER
3067 * clflush (obj)
3068 * MI_FLUSH
3069 * drm_agp_chipset_flush
3070 * 4. Updated (written) by CPU again
3071 * (CPU, CPU)
3072 * flush_domains = 0 (no previous write domain)
3073 * invalidate_domains = 0 (no new read domains)
3074 * 5. Read by GPU
3075 * (CPU+RENDER, 0)
3076 * flush_domains = CPU
3077 * invalidate_domains = RENDER
3078 * clflush (obj)
3079 * MI_FLUSH
3080 * drm_agp_chipset_flush
3081 */
3082 static void
3083 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3084 struct intel_ring_buffer *ring)
3085 {
3086 struct drm_device *dev = obj->dev;
3087 struct drm_i915_private *dev_priv = dev->dev_private;
3088 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3089 uint32_t invalidate_domains = 0;
3090 uint32_t flush_domains = 0;
3091 uint32_t old_read_domains;
3092
3093 intel_mark_busy(dev, obj);
3094
3095 /*
3096 * If the object isn't moving to a new write domain,
3097 * let the object stay in multiple read domains
3098 */
3099 if (obj->pending_write_domain == 0)
3100 obj->pending_read_domains |= obj->read_domains;
3101 else
3102 obj_priv->dirty = 1;
3103
3104 /*
3105 * Flush the current write domain if
3106 * the new read domains don't match. Invalidate
3107 * any read domains which differ from the old
3108 * write domain
3109 */
3110 if (obj->write_domain &&
3111 obj->write_domain != obj->pending_read_domains) {
3112 flush_domains |= obj->write_domain;
3113 invalidate_domains |=
3114 obj->pending_read_domains & ~obj->write_domain;
3115 }
3116 /*
3117 * Invalidate any read caches which may have
3118 * stale data. That is, any new read domains.
3119 */
3120 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3121 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3122 i915_gem_clflush_object(obj);
3123
3124 old_read_domains = obj->read_domains;
3125
3126 /* The actual obj->write_domain will be updated with
3127 * pending_write_domain after we emit the accumulated flush for all
3128 * of our domain changes in execbuffers (which clears objects'
3129 * write_domains). So if we have a current write domain that we
3130 * aren't changing, set pending_write_domain to that.
3131 */
3132 if (flush_domains == 0 && obj->pending_write_domain == 0)
3133 obj->pending_write_domain = obj->write_domain;
3134 obj->read_domains = obj->pending_read_domains;
3135
3136 dev->invalidate_domains |= invalidate_domains;
3137 dev->flush_domains |= flush_domains;
3138 if (flush_domains & I915_GEM_GPU_DOMAINS)
3139 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3140 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3141 dev_priv->mm.flush_rings |= ring->id;
3142
3143 trace_i915_gem_object_change_domain(obj,
3144 old_read_domains,
3145 obj->write_domain);
3146 }
3147
3148 /**
3149 * Moves the object from a partially CPU read to a full one.
3150 *
3151 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3152 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3153 */
3154 static void
3155 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3156 {
3157 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3158
3159 if (!obj_priv->page_cpu_valid)
3160 return;
3161
3162 /* If we're partially in the CPU read domain, finish moving it in.
3163 */
3164 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3165 int i;
3166
3167 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3168 if (obj_priv->page_cpu_valid[i])
3169 continue;
3170 drm_clflush_pages(obj_priv->pages + i, 1);
3171 }
3172 }
3173
3174 /* Free the page_cpu_valid mappings which are now stale, whether
3175 * or not we've got I915_GEM_DOMAIN_CPU.
3176 */
3177 kfree(obj_priv->page_cpu_valid);
3178 obj_priv->page_cpu_valid = NULL;
3179 }
3180
3181 /**
3182 * Set the CPU read domain on a range of the object.
3183 *
3184 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3185 * not entirely valid. The page_cpu_valid member of the object flags which
3186 * pages have been flushed, and will be respected by
3187 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3188 * of the whole object.
3189 *
3190 * This function returns when the move is complete, including waiting on
3191 * flushes to occur.
3192 */
3193 static int
3194 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3195 uint64_t offset, uint64_t size)
3196 {
3197 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3198 uint32_t old_read_domains;
3199 int i, ret;
3200
3201 if (offset == 0 && size == obj->size)
3202 return i915_gem_object_set_to_cpu_domain(obj, 0);
3203
3204 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3205 if (ret != 0)
3206 return ret;
3207 i915_gem_object_flush_gtt_write_domain(obj);
3208
3209 /* If we're already fully in the CPU read domain, we're done. */
3210 if (obj_priv->page_cpu_valid == NULL &&
3211 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3212 return 0;
3213
3214 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3215 * newly adding I915_GEM_DOMAIN_CPU
3216 */
3217 if (obj_priv->page_cpu_valid == NULL) {
3218 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3219 GFP_KERNEL);
3220 if (obj_priv->page_cpu_valid == NULL)
3221 return -ENOMEM;
3222 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3223 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3224
3225 /* Flush the cache on any pages that are still invalid from the CPU's
3226 * perspective.
3227 */
3228 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3229 i++) {
3230 if (obj_priv->page_cpu_valid[i])
3231 continue;
3232
3233 drm_clflush_pages(obj_priv->pages + i, 1);
3234
3235 obj_priv->page_cpu_valid[i] = 1;
3236 }
3237
3238 /* It should now be out of any other write domains, and we can update
3239 * the domain values for our changes.
3240 */
3241 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3242
3243 old_read_domains = obj->read_domains;
3244 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3245
3246 trace_i915_gem_object_change_domain(obj,
3247 old_read_domains,
3248 obj->write_domain);
3249
3250 return 0;
3251 }
3252
3253 /**
3254 * Pin an object to the GTT and evaluate the relocations landing in it.
3255 */
3256 static int
3257 i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3258 struct drm_file *file_priv,
3259 struct drm_i915_gem_exec_object2 *entry)
3260 {
3261 struct drm_device *dev = obj->base.dev;
3262 drm_i915_private_t *dev_priv = dev->dev_private;
3263 struct drm_i915_gem_relocation_entry __user *user_relocs;
3264 struct drm_gem_object *target_obj = NULL;
3265 uint32_t target_handle = 0;
3266 int i, ret = 0;
3267
3268 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3269 for (i = 0; i < entry->relocation_count; i++) {
3270 struct drm_i915_gem_relocation_entry reloc;
3271 uint32_t target_offset;
3272
3273 if (__copy_from_user_inatomic(&reloc,
3274 user_relocs+i,
3275 sizeof(reloc))) {
3276 ret = -EFAULT;
3277 break;
3278 }
3279
3280 if (reloc.target_handle != target_handle) {
3281 drm_gem_object_unreference(target_obj);
3282
3283 target_obj = drm_gem_object_lookup(dev, file_priv,
3284 reloc.target_handle);
3285 if (target_obj == NULL) {
3286 ret = -ENOENT;
3287 break;
3288 }
3289
3290 target_handle = reloc.target_handle;
3291 }
3292 target_offset = to_intel_bo(target_obj)->gtt_offset;
3293
3294 #if WATCH_RELOC
3295 DRM_INFO("%s: obj %p offset %08x target %d "
3296 "read %08x write %08x gtt %08x "
3297 "presumed %08x delta %08x\n",
3298 __func__,
3299 obj,
3300 (int) reloc.offset,
3301 (int) reloc.target_handle,
3302 (int) reloc.read_domains,
3303 (int) reloc.write_domain,
3304 (int) target_offset,
3305 (int) reloc.presumed_offset,
3306 reloc.delta);
3307 #endif
3308
3309 /* The target buffer should have appeared before us in the
3310 * exec_object list, so it should have a GTT space bound by now.
3311 */
3312 if (target_offset == 0) {
3313 DRM_ERROR("No GTT space found for object %d\n",
3314 reloc.target_handle);
3315 ret = -EINVAL;
3316 break;
3317 }
3318
3319 /* Validate that the target is in a valid r/w GPU domain */
3320 if (reloc.write_domain & (reloc.write_domain - 1)) {
3321 DRM_ERROR("reloc with multiple write domains: "
3322 "obj %p target %d offset %d "
3323 "read %08x write %08x",
3324 obj, reloc.target_handle,
3325 (int) reloc.offset,
3326 reloc.read_domains,
3327 reloc.write_domain);
3328 ret = -EINVAL;
3329 break;
3330 }
3331 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3332 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3333 DRM_ERROR("reloc with read/write CPU domains: "
3334 "obj %p target %d offset %d "
3335 "read %08x write %08x",
3336 obj, reloc.target_handle,
3337 (int) reloc.offset,
3338 reloc.read_domains,
3339 reloc.write_domain);
3340 ret = -EINVAL;
3341 break;
3342 }
3343 if (reloc.write_domain && target_obj->pending_write_domain &&
3344 reloc.write_domain != target_obj->pending_write_domain) {
3345 DRM_ERROR("Write domain conflict: "
3346 "obj %p target %d offset %d "
3347 "new %08x old %08x\n",
3348 obj, reloc.target_handle,
3349 (int) reloc.offset,
3350 reloc.write_domain,
3351 target_obj->pending_write_domain);
3352 ret = -EINVAL;
3353 break;
3354 }
3355
3356 target_obj->pending_read_domains |= reloc.read_domains;
3357 target_obj->pending_write_domain |= reloc.write_domain;
3358
3359 /* If the relocation already has the right value in it, no
3360 * more work needs to be done.
3361 */
3362 if (target_offset == reloc.presumed_offset)
3363 continue;
3364
3365 /* Check that the relocation address is valid... */
3366 if (reloc.offset > obj->base.size - 4) {
3367 DRM_ERROR("Relocation beyond object bounds: "
3368 "obj %p target %d offset %d size %d.\n",
3369 obj, reloc.target_handle,
3370 (int) reloc.offset, (int) obj->base.size);
3371 ret = -EINVAL;
3372 break;
3373 }
3374 if (reloc.offset & 3) {
3375 DRM_ERROR("Relocation not 4-byte aligned: "
3376 "obj %p target %d offset %d.\n",
3377 obj, reloc.target_handle,
3378 (int) reloc.offset);
3379 ret = -EINVAL;
3380 break;
3381 }
3382
3383 /* and points to somewhere within the target object. */
3384 if (reloc.delta >= target_obj->size) {
3385 DRM_ERROR("Relocation beyond target object bounds: "
3386 "obj %p target %d delta %d size %d.\n",
3387 obj, reloc.target_handle,
3388 (int) reloc.delta, (int) target_obj->size);
3389 ret = -EINVAL;
3390 break;
3391 }
3392
3393 reloc.delta += target_offset;
3394 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3395 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3396 char *vaddr;
3397
3398 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3399 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3400 kunmap_atomic(vaddr);
3401 } else {
3402 uint32_t __iomem *reloc_entry;
3403 void __iomem *reloc_page;
3404
3405 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3406 if (ret)
3407 break;
3408
3409 /* Map the page containing the relocation we're going to perform. */
3410 reloc.offset += obj->gtt_offset;
3411 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3412 reloc.offset & PAGE_MASK);
3413 reloc_entry = (uint32_t __iomem *)
3414 (reloc_page + (reloc.offset & ~PAGE_MASK));
3415 iowrite32(reloc.delta, reloc_entry);
3416 io_mapping_unmap_atomic(reloc_page);
3417 }
3418
3419 /* and update the user's relocation entry */
3420 reloc.presumed_offset = target_offset;
3421 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3422 &reloc.presumed_offset,
3423 sizeof(reloc.presumed_offset))) {
3424 ret = -EFAULT;
3425 break;
3426 }
3427 }
3428
3429 drm_gem_object_unreference(target_obj);
3430 return ret;
3431 }
3432
3433 static int
3434 i915_gem_execbuffer_pin(struct drm_device *dev,
3435 struct drm_file *file,
3436 struct drm_gem_object **object_list,
3437 struct drm_i915_gem_exec_object2 *exec_list,
3438 int count)
3439 {
3440 struct drm_i915_private *dev_priv = dev->dev_private;
3441 int ret, i, retry;
3442
3443 /* attempt to pin all of the buffers into the GTT */
3444 for (retry = 0; retry < 2; retry++) {
3445 ret = 0;
3446 for (i = 0; i < count; i++) {
3447 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3448 struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
3449 bool need_fence =
3450 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3451 obj->tiling_mode != I915_TILING_NONE;
3452
3453 /* Check fence reg constraints and rebind if necessary */
3454 if (need_fence &&
3455 !i915_gem_object_fence_offset_ok(&obj->base,
3456 obj->tiling_mode)) {
3457 ret = i915_gem_object_unbind(&obj->base);
3458 if (ret)
3459 break;
3460 }
3461
3462 ret = i915_gem_object_pin(&obj->base, entry->alignment);
3463 if (ret)
3464 break;
3465
3466 /*
3467 * Pre-965 chips need a fence register set up in order
3468 * to properly handle blits to/from tiled surfaces.
3469 */
3470 if (need_fence) {
3471 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3472 if (ret) {
3473 i915_gem_object_unpin(&obj->base);
3474 break;
3475 }
3476
3477 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3478 }
3479
3480 entry->offset = obj->gtt_offset;
3481 }
3482
3483 while (i--)
3484 i915_gem_object_unpin(object_list[i]);
3485
3486 if (ret == 0)
3487 break;
3488
3489 if (ret != -ENOSPC || retry)
3490 return ret;
3491
3492 ret = i915_gem_evict_everything(dev);
3493 if (ret)
3494 return ret;
3495 }
3496
3497 return 0;
3498 }
3499
3500 /* Throttle our rendering by waiting until the ring has completed our requests
3501 * emitted over 20 msec ago.
3502 *
3503 * Note that if we were to use the current jiffies each time around the loop,
3504 * we wouldn't escape the function with any frames outstanding if the time to
3505 * render a frame was over 20ms.
3506 *
3507 * This should get us reasonable parallelism between CPU and GPU but also
3508 * relatively low latency when blocking on a particular request to finish.
3509 */
3510 static int
3511 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3512 {
3513 struct drm_i915_private *dev_priv = dev->dev_private;
3514 struct drm_i915_file_private *file_priv = file->driver_priv;
3515 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3516 struct drm_i915_gem_request *request;
3517 struct intel_ring_buffer *ring = NULL;
3518 u32 seqno = 0;
3519 int ret;
3520
3521 spin_lock(&file_priv->mm.lock);
3522 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3523 if (time_after_eq(request->emitted_jiffies, recent_enough))
3524 break;
3525
3526 ring = request->ring;
3527 seqno = request->seqno;
3528 }
3529 spin_unlock(&file_priv->mm.lock);
3530
3531 if (seqno == 0)
3532 return 0;
3533
3534 ret = 0;
3535 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3536 /* And wait for the seqno passing without holding any locks and
3537 * causing extra latency for others. This is safe as the irq
3538 * generation is designed to be run atomically and so is
3539 * lockless.
3540 */
3541 ring->user_irq_get(dev, ring);
3542 ret = wait_event_interruptible(ring->irq_queue,
3543 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3544 || atomic_read(&dev_priv->mm.wedged));
3545 ring->user_irq_put(dev, ring);
3546
3547 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3548 ret = -EIO;
3549 }
3550
3551 if (ret == 0)
3552 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3553
3554 return ret;
3555 }
3556
3557 static int
3558 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3559 uint64_t exec_offset)
3560 {
3561 uint32_t exec_start, exec_len;
3562
3563 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3564 exec_len = (uint32_t) exec->batch_len;
3565
3566 if ((exec_start | exec_len) & 0x7)
3567 return -EINVAL;
3568
3569 if (!exec_start)
3570 return -EINVAL;
3571
3572 return 0;
3573 }
3574
3575 static int
3576 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3577 int count)
3578 {
3579 int i;
3580
3581 for (i = 0; i < count; i++) {
3582 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3583 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3584
3585 if (!access_ok(VERIFY_READ, ptr, length))
3586 return -EFAULT;
3587
3588 /* we may also need to update the presumed offsets */
3589 if (!access_ok(VERIFY_WRITE, ptr, length))
3590 return -EFAULT;
3591
3592 if (fault_in_pages_readable(ptr, length))
3593 return -EFAULT;
3594 }
3595
3596 return 0;
3597 }
3598
3599 static int
3600 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3601 struct drm_file *file,
3602 struct drm_i915_gem_execbuffer2 *args,
3603 struct drm_i915_gem_exec_object2 *exec_list)
3604 {
3605 drm_i915_private_t *dev_priv = dev->dev_private;
3606 struct drm_gem_object **object_list = NULL;
3607 struct drm_gem_object *batch_obj;
3608 struct drm_i915_gem_object *obj_priv;
3609 struct drm_clip_rect *cliprects = NULL;
3610 struct drm_i915_gem_request *request = NULL;
3611 int ret, i, flips;
3612 uint64_t exec_offset;
3613
3614 struct intel_ring_buffer *ring = NULL;
3615
3616 ret = i915_gem_check_is_wedged(dev);
3617 if (ret)
3618 return ret;
3619
3620 ret = validate_exec_list(exec_list, args->buffer_count);
3621 if (ret)
3622 return ret;
3623
3624 #if WATCH_EXEC
3625 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3626 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3627 #endif
3628 switch (args->flags & I915_EXEC_RING_MASK) {
3629 case I915_EXEC_DEFAULT:
3630 case I915_EXEC_RENDER:
3631 ring = &dev_priv->render_ring;
3632 break;
3633 case I915_EXEC_BSD:
3634 if (!HAS_BSD(dev)) {
3635 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3636 return -EINVAL;
3637 }
3638 ring = &dev_priv->bsd_ring;
3639 break;
3640 case I915_EXEC_BLT:
3641 if (!HAS_BLT(dev)) {
3642 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3643 return -EINVAL;
3644 }
3645 ring = &dev_priv->blt_ring;
3646 break;
3647 default:
3648 DRM_ERROR("execbuf with unknown ring: %d\n",
3649 (int)(args->flags & I915_EXEC_RING_MASK));
3650 return -EINVAL;
3651 }
3652
3653 if (args->buffer_count < 1) {
3654 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3655 return -EINVAL;
3656 }
3657 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3658 if (object_list == NULL) {
3659 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3660 args->buffer_count);
3661 ret = -ENOMEM;
3662 goto pre_mutex_err;
3663 }
3664
3665 if (args->num_cliprects != 0) {
3666 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3667 GFP_KERNEL);
3668 if (cliprects == NULL) {
3669 ret = -ENOMEM;
3670 goto pre_mutex_err;
3671 }
3672
3673 ret = copy_from_user(cliprects,
3674 (struct drm_clip_rect __user *)
3675 (uintptr_t) args->cliprects_ptr,
3676 sizeof(*cliprects) * args->num_cliprects);
3677 if (ret != 0) {
3678 DRM_ERROR("copy %d cliprects failed: %d\n",
3679 args->num_cliprects, ret);
3680 ret = -EFAULT;
3681 goto pre_mutex_err;
3682 }
3683 }
3684
3685 request = kzalloc(sizeof(*request), GFP_KERNEL);
3686 if (request == NULL) {
3687 ret = -ENOMEM;
3688 goto pre_mutex_err;
3689 }
3690
3691 ret = i915_mutex_lock_interruptible(dev);
3692 if (ret)
3693 goto pre_mutex_err;
3694
3695 if (dev_priv->mm.suspended) {
3696 mutex_unlock(&dev->struct_mutex);
3697 ret = -EBUSY;
3698 goto pre_mutex_err;
3699 }
3700
3701 /* Look up object handles */
3702 for (i = 0; i < args->buffer_count; i++) {
3703 object_list[i] = drm_gem_object_lookup(dev, file,
3704 exec_list[i].handle);
3705 if (object_list[i] == NULL) {
3706 DRM_ERROR("Invalid object handle %d at index %d\n",
3707 exec_list[i].handle, i);
3708 /* prevent error path from reading uninitialized data */
3709 args->buffer_count = i + 1;
3710 ret = -ENOENT;
3711 goto err;
3712 }
3713
3714 obj_priv = to_intel_bo(object_list[i]);
3715 if (obj_priv->in_execbuffer) {
3716 DRM_ERROR("Object %p appears more than once in object list\n",
3717 object_list[i]);
3718 /* prevent error path from reading uninitialized data */
3719 args->buffer_count = i + 1;
3720 ret = -EINVAL;
3721 goto err;
3722 }
3723 obj_priv->in_execbuffer = true;
3724 }
3725
3726 /* Move the objects en-masse into the GTT, evicting if necessary. */
3727 ret = i915_gem_execbuffer_pin(dev, file,
3728 object_list, exec_list,
3729 args->buffer_count);
3730 if (ret)
3731 goto err;
3732
3733 /* The objects are in their final locations, apply the relocations. */
3734 for (i = 0; i < args->buffer_count; i++) {
3735 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3736 obj->base.pending_read_domains = 0;
3737 obj->base.pending_write_domain = 0;
3738 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3739 if (ret)
3740 goto err;
3741 }
3742
3743 /* Set the pending read domains for the batch buffer to COMMAND */
3744 batch_obj = object_list[args->buffer_count-1];
3745 if (batch_obj->pending_write_domain) {
3746 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3747 ret = -EINVAL;
3748 goto err;
3749 }
3750 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3751
3752 /* Sanity check the batch buffer */
3753 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3754 ret = i915_gem_check_execbuffer(args, exec_offset);
3755 if (ret != 0) {
3756 DRM_ERROR("execbuf with invalid offset/length\n");
3757 goto err;
3758 }
3759
3760 /* Zero the global flush/invalidate flags. These
3761 * will be modified as new domains are computed
3762 * for each object
3763 */
3764 dev->invalidate_domains = 0;
3765 dev->flush_domains = 0;
3766 dev_priv->mm.flush_rings = 0;
3767
3768 for (i = 0; i < args->buffer_count; i++) {
3769 struct drm_gem_object *obj = object_list[i];
3770
3771 /* Compute new gpu domains and update invalidate/flush */
3772 i915_gem_object_set_to_gpu_domain(obj, ring);
3773 }
3774
3775 if (dev->invalidate_domains | dev->flush_domains) {
3776 #if WATCH_EXEC
3777 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3778 __func__,
3779 dev->invalidate_domains,
3780 dev->flush_domains);
3781 #endif
3782 i915_gem_flush(dev, file,
3783 dev->invalidate_domains,
3784 dev->flush_domains,
3785 dev_priv->mm.flush_rings);
3786 }
3787
3788 for (i = 0; i < args->buffer_count; i++) {
3789 struct drm_gem_object *obj = object_list[i];
3790 uint32_t old_write_domain = obj->write_domain;
3791 obj->write_domain = obj->pending_write_domain;
3792 trace_i915_gem_object_change_domain(obj,
3793 obj->read_domains,
3794 old_write_domain);
3795 }
3796
3797 #if WATCH_COHERENCY
3798 for (i = 0; i < args->buffer_count; i++) {
3799 i915_gem_object_check_coherency(object_list[i],
3800 exec_list[i].handle);
3801 }
3802 #endif
3803
3804 #if WATCH_EXEC
3805 i915_gem_dump_object(batch_obj,
3806 args->batch_len,
3807 __func__,
3808 ~0);
3809 #endif
3810
3811 /* Check for any pending flips. As we only maintain a flip queue depth
3812 * of 1, we can simply insert a WAIT for the next display flip prior
3813 * to executing the batch and avoid stalling the CPU.
3814 */
3815 flips = 0;
3816 for (i = 0; i < args->buffer_count; i++) {
3817 if (object_list[i]->write_domain)
3818 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3819 }
3820 if (flips) {
3821 int plane, flip_mask;
3822
3823 for (plane = 0; flips >> plane; plane++) {
3824 if (((flips >> plane) & 1) == 0)
3825 continue;
3826
3827 if (plane)
3828 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3829 else
3830 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3831
3832 intel_ring_begin(dev, ring, 2);
3833 intel_ring_emit(dev, ring,
3834 MI_WAIT_FOR_EVENT | flip_mask);
3835 intel_ring_emit(dev, ring, MI_NOOP);
3836 intel_ring_advance(dev, ring);
3837 }
3838 }
3839
3840 /* Exec the batchbuffer */
3841 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3842 cliprects, exec_offset);
3843 if (ret) {
3844 DRM_ERROR("dispatch failed %d\n", ret);
3845 goto err;
3846 }
3847
3848 /*
3849 * Ensure that the commands in the batch buffer are
3850 * finished before the interrupt fires
3851 */
3852 i915_retire_commands(dev, ring);
3853
3854 for (i = 0; i < args->buffer_count; i++) {
3855 struct drm_gem_object *obj = object_list[i];
3856
3857 i915_gem_object_move_to_active(obj, ring);
3858 if (obj->write_domain)
3859 list_move_tail(&to_intel_bo(obj)->gpu_write_list,
3860 &ring->gpu_write_list);
3861 }
3862
3863 i915_add_request(dev, file, request, ring);
3864 request = NULL;
3865
3866 err:
3867 for (i = 0; i < args->buffer_count; i++) {
3868 if (object_list[i]) {
3869 obj_priv = to_intel_bo(object_list[i]);
3870 obj_priv->in_execbuffer = false;
3871 }
3872 drm_gem_object_unreference(object_list[i]);
3873 }
3874
3875 mutex_unlock(&dev->struct_mutex);
3876
3877 pre_mutex_err:
3878 drm_free_large(object_list);
3879 kfree(cliprects);
3880 kfree(request);
3881
3882 return ret;
3883 }
3884
3885 /*
3886 * Legacy execbuffer just creates an exec2 list from the original exec object
3887 * list array and passes it to the real function.
3888 */
3889 int
3890 i915_gem_execbuffer(struct drm_device *dev, void *data,
3891 struct drm_file *file_priv)
3892 {
3893 struct drm_i915_gem_execbuffer *args = data;
3894 struct drm_i915_gem_execbuffer2 exec2;
3895 struct drm_i915_gem_exec_object *exec_list = NULL;
3896 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3897 int ret, i;
3898
3899 #if WATCH_EXEC
3900 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3901 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3902 #endif
3903
3904 if (args->buffer_count < 1) {
3905 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3906 return -EINVAL;
3907 }
3908
3909 /* Copy in the exec list from userland */
3910 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3911 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3912 if (exec_list == NULL || exec2_list == NULL) {
3913 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3914 args->buffer_count);
3915 drm_free_large(exec_list);
3916 drm_free_large(exec2_list);
3917 return -ENOMEM;
3918 }
3919 ret = copy_from_user(exec_list,
3920 (struct drm_i915_relocation_entry __user *)
3921 (uintptr_t) args->buffers_ptr,
3922 sizeof(*exec_list) * args->buffer_count);
3923 if (ret != 0) {
3924 DRM_ERROR("copy %d exec entries failed %d\n",
3925 args->buffer_count, ret);
3926 drm_free_large(exec_list);
3927 drm_free_large(exec2_list);
3928 return -EFAULT;
3929 }
3930
3931 for (i = 0; i < args->buffer_count; i++) {
3932 exec2_list[i].handle = exec_list[i].handle;
3933 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3934 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3935 exec2_list[i].alignment = exec_list[i].alignment;
3936 exec2_list[i].offset = exec_list[i].offset;
3937 if (INTEL_INFO(dev)->gen < 4)
3938 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3939 else
3940 exec2_list[i].flags = 0;
3941 }
3942
3943 exec2.buffers_ptr = args->buffers_ptr;
3944 exec2.buffer_count = args->buffer_count;
3945 exec2.batch_start_offset = args->batch_start_offset;
3946 exec2.batch_len = args->batch_len;
3947 exec2.DR1 = args->DR1;
3948 exec2.DR4 = args->DR4;
3949 exec2.num_cliprects = args->num_cliprects;
3950 exec2.cliprects_ptr = args->cliprects_ptr;
3951 exec2.flags = I915_EXEC_RENDER;
3952
3953 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3954 if (!ret) {
3955 /* Copy the new buffer offsets back to the user's exec list. */
3956 for (i = 0; i < args->buffer_count; i++)
3957 exec_list[i].offset = exec2_list[i].offset;
3958 /* ... and back out to userspace */
3959 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3960 (uintptr_t) args->buffers_ptr,
3961 exec_list,
3962 sizeof(*exec_list) * args->buffer_count);
3963 if (ret) {
3964 ret = -EFAULT;
3965 DRM_ERROR("failed to copy %d exec entries "
3966 "back to user (%d)\n",
3967 args->buffer_count, ret);
3968 }
3969 }
3970
3971 drm_free_large(exec_list);
3972 drm_free_large(exec2_list);
3973 return ret;
3974 }
3975
3976 int
3977 i915_gem_execbuffer2(struct drm_device *dev, void *data,
3978 struct drm_file *file_priv)
3979 {
3980 struct drm_i915_gem_execbuffer2 *args = data;
3981 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3982 int ret;
3983
3984 #if WATCH_EXEC
3985 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3986 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3987 #endif
3988
3989 if (args->buffer_count < 1) {
3990 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3991 return -EINVAL;
3992 }
3993
3994 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3995 if (exec2_list == NULL) {
3996 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3997 args->buffer_count);
3998 return -ENOMEM;
3999 }
4000 ret = copy_from_user(exec2_list,
4001 (struct drm_i915_relocation_entry __user *)
4002 (uintptr_t) args->buffers_ptr,
4003 sizeof(*exec2_list) * args->buffer_count);
4004 if (ret != 0) {
4005 DRM_ERROR("copy %d exec entries failed %d\n",
4006 args->buffer_count, ret);
4007 drm_free_large(exec2_list);
4008 return -EFAULT;
4009 }
4010
4011 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4012 if (!ret) {
4013 /* Copy the new buffer offsets back to the user's exec list. */
4014 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4015 (uintptr_t) args->buffers_ptr,
4016 exec2_list,
4017 sizeof(*exec2_list) * args->buffer_count);
4018 if (ret) {
4019 ret = -EFAULT;
4020 DRM_ERROR("failed to copy %d exec entries "
4021 "back to user (%d)\n",
4022 args->buffer_count, ret);
4023 }
4024 }
4025
4026 drm_free_large(exec2_list);
4027 return ret;
4028 }
4029
4030 int
4031 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4032 {
4033 struct drm_device *dev = obj->dev;
4034 struct drm_i915_private *dev_priv = dev->dev_private;
4035 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4036 int ret;
4037
4038 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4039 WARN_ON(i915_verify_lists(dev));
4040
4041 if (obj_priv->gtt_space != NULL) {
4042 if (alignment == 0)
4043 alignment = i915_gem_get_gtt_alignment(obj);
4044 if (obj_priv->gtt_offset & (alignment - 1)) {
4045 WARN(obj_priv->pin_count,
4046 "bo is already pinned with incorrect alignment:"
4047 " offset=%x, req.alignment=%x\n",
4048 obj_priv->gtt_offset, alignment);
4049 ret = i915_gem_object_unbind(obj);
4050 if (ret)
4051 return ret;
4052 }
4053 }
4054
4055 if (obj_priv->gtt_space == NULL) {
4056 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4057 if (ret)
4058 return ret;
4059 }
4060
4061 obj_priv->pin_count++;
4062
4063 /* If the object is not active and not pending a flush,
4064 * remove it from the inactive list
4065 */
4066 if (obj_priv->pin_count == 1) {
4067 i915_gem_info_add_pin(dev_priv, obj->size);
4068 if (!obj_priv->active)
4069 list_move_tail(&obj_priv->mm_list,
4070 &dev_priv->mm.pinned_list);
4071 }
4072
4073 WARN_ON(i915_verify_lists(dev));
4074 return 0;
4075 }
4076
4077 void
4078 i915_gem_object_unpin(struct drm_gem_object *obj)
4079 {
4080 struct drm_device *dev = obj->dev;
4081 drm_i915_private_t *dev_priv = dev->dev_private;
4082 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4083
4084 WARN_ON(i915_verify_lists(dev));
4085 obj_priv->pin_count--;
4086 BUG_ON(obj_priv->pin_count < 0);
4087 BUG_ON(obj_priv->gtt_space == NULL);
4088
4089 /* If the object is no longer pinned, and is
4090 * neither active nor being flushed, then stick it on
4091 * the inactive list
4092 */
4093 if (obj_priv->pin_count == 0) {
4094 if (!obj_priv->active)
4095 list_move_tail(&obj_priv->mm_list,
4096 &dev_priv->mm.inactive_list);
4097 i915_gem_info_remove_pin(dev_priv, obj->size);
4098 }
4099 WARN_ON(i915_verify_lists(dev));
4100 }
4101
4102 int
4103 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4104 struct drm_file *file_priv)
4105 {
4106 struct drm_i915_gem_pin *args = data;
4107 struct drm_gem_object *obj;
4108 struct drm_i915_gem_object *obj_priv;
4109 int ret;
4110
4111 ret = i915_mutex_lock_interruptible(dev);
4112 if (ret)
4113 return ret;
4114
4115 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4116 if (obj == NULL) {
4117 ret = -ENOENT;
4118 goto unlock;
4119 }
4120 obj_priv = to_intel_bo(obj);
4121
4122 if (obj_priv->madv != I915_MADV_WILLNEED) {
4123 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4124 ret = -EINVAL;
4125 goto out;
4126 }
4127
4128 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4129 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4130 args->handle);
4131 ret = -EINVAL;
4132 goto out;
4133 }
4134
4135 obj_priv->user_pin_count++;
4136 obj_priv->pin_filp = file_priv;
4137 if (obj_priv->user_pin_count == 1) {
4138 ret = i915_gem_object_pin(obj, args->alignment);
4139 if (ret)
4140 goto out;
4141 }
4142
4143 /* XXX - flush the CPU caches for pinned objects
4144 * as the X server doesn't manage domains yet
4145 */
4146 i915_gem_object_flush_cpu_write_domain(obj);
4147 args->offset = obj_priv->gtt_offset;
4148 out:
4149 drm_gem_object_unreference(obj);
4150 unlock:
4151 mutex_unlock(&dev->struct_mutex);
4152 return ret;
4153 }
4154
4155 int
4156 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4157 struct drm_file *file_priv)
4158 {
4159 struct drm_i915_gem_pin *args = data;
4160 struct drm_gem_object *obj;
4161 struct drm_i915_gem_object *obj_priv;
4162 int ret;
4163
4164 ret = i915_mutex_lock_interruptible(dev);
4165 if (ret)
4166 return ret;
4167
4168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4169 if (obj == NULL) {
4170 ret = -ENOENT;
4171 goto unlock;
4172 }
4173 obj_priv = to_intel_bo(obj);
4174
4175 if (obj_priv->pin_filp != file_priv) {
4176 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4177 args->handle);
4178 ret = -EINVAL;
4179 goto out;
4180 }
4181 obj_priv->user_pin_count--;
4182 if (obj_priv->user_pin_count == 0) {
4183 obj_priv->pin_filp = NULL;
4184 i915_gem_object_unpin(obj);
4185 }
4186
4187 out:
4188 drm_gem_object_unreference(obj);
4189 unlock:
4190 mutex_unlock(&dev->struct_mutex);
4191 return ret;
4192 }
4193
4194 int
4195 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4196 struct drm_file *file_priv)
4197 {
4198 struct drm_i915_gem_busy *args = data;
4199 struct drm_gem_object *obj;
4200 struct drm_i915_gem_object *obj_priv;
4201 int ret;
4202
4203 ret = i915_mutex_lock_interruptible(dev);
4204 if (ret)
4205 return ret;
4206
4207 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4208 if (obj == NULL) {
4209 ret = -ENOENT;
4210 goto unlock;
4211 }
4212 obj_priv = to_intel_bo(obj);
4213
4214 /* Count all active objects as busy, even if they are currently not used
4215 * by the gpu. Users of this interface expect objects to eventually
4216 * become non-busy without any further actions, therefore emit any
4217 * necessary flushes here.
4218 */
4219 args->busy = obj_priv->active;
4220 if (args->busy) {
4221 /* Unconditionally flush objects, even when the gpu still uses this
4222 * object. Userspace calling this function indicates that it wants to
4223 * use this buffer rather sooner than later, so issuing the required
4224 * flush earlier is beneficial.
4225 */
4226 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4227 i915_gem_flush_ring(dev, file_priv,
4228 obj_priv->ring,
4229 0, obj->write_domain);
4230
4231 /* Update the active list for the hardware's current position.
4232 * Otherwise this only updates on a delayed timer or when irqs
4233 * are actually unmasked, and our working set ends up being
4234 * larger than required.
4235 */
4236 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4237
4238 args->busy = obj_priv->active;
4239 }
4240
4241 drm_gem_object_unreference(obj);
4242 unlock:
4243 mutex_unlock(&dev->struct_mutex);
4244 return ret;
4245 }
4246
4247 int
4248 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4249 struct drm_file *file_priv)
4250 {
4251 return i915_gem_ring_throttle(dev, file_priv);
4252 }
4253
4254 int
4255 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4256 struct drm_file *file_priv)
4257 {
4258 struct drm_i915_gem_madvise *args = data;
4259 struct drm_gem_object *obj;
4260 struct drm_i915_gem_object *obj_priv;
4261 int ret;
4262
4263 switch (args->madv) {
4264 case I915_MADV_DONTNEED:
4265 case I915_MADV_WILLNEED:
4266 break;
4267 default:
4268 return -EINVAL;
4269 }
4270
4271 ret = i915_mutex_lock_interruptible(dev);
4272 if (ret)
4273 return ret;
4274
4275 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4276 if (obj == NULL) {
4277 ret = -ENOENT;
4278 goto unlock;
4279 }
4280 obj_priv = to_intel_bo(obj);
4281
4282 if (obj_priv->pin_count) {
4283 ret = -EINVAL;
4284 goto out;
4285 }
4286
4287 if (obj_priv->madv != __I915_MADV_PURGED)
4288 obj_priv->madv = args->madv;
4289
4290 /* if the object is no longer bound, discard its backing storage */
4291 if (i915_gem_object_is_purgeable(obj_priv) &&
4292 obj_priv->gtt_space == NULL)
4293 i915_gem_object_truncate(obj);
4294
4295 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4296
4297 out:
4298 drm_gem_object_unreference(obj);
4299 unlock:
4300 mutex_unlock(&dev->struct_mutex);
4301 return ret;
4302 }
4303
4304 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4305 size_t size)
4306 {
4307 struct drm_i915_private *dev_priv = dev->dev_private;
4308 struct drm_i915_gem_object *obj;
4309
4310 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4311 if (obj == NULL)
4312 return NULL;
4313
4314 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4315 kfree(obj);
4316 return NULL;
4317 }
4318
4319 i915_gem_info_add_obj(dev_priv, size);
4320
4321 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4322 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4323
4324 obj->agp_type = AGP_USER_MEMORY;
4325 obj->base.driver_private = NULL;
4326 obj->fence_reg = I915_FENCE_REG_NONE;
4327 INIT_LIST_HEAD(&obj->mm_list);
4328 INIT_LIST_HEAD(&obj->ring_list);
4329 INIT_LIST_HEAD(&obj->gpu_write_list);
4330 obj->madv = I915_MADV_WILLNEED;
4331
4332 return &obj->base;
4333 }
4334
4335 int i915_gem_init_object(struct drm_gem_object *obj)
4336 {
4337 BUG();
4338
4339 return 0;
4340 }
4341
4342 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4343 {
4344 struct drm_device *dev = obj->dev;
4345 drm_i915_private_t *dev_priv = dev->dev_private;
4346 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4347 int ret;
4348
4349 ret = i915_gem_object_unbind(obj);
4350 if (ret == -ERESTARTSYS) {
4351 list_move(&obj_priv->mm_list,
4352 &dev_priv->mm.deferred_free_list);
4353 return;
4354 }
4355
4356 if (obj_priv->mmap_offset)
4357 i915_gem_free_mmap_offset(obj);
4358
4359 drm_gem_object_release(obj);
4360 i915_gem_info_remove_obj(dev_priv, obj->size);
4361
4362 kfree(obj_priv->page_cpu_valid);
4363 kfree(obj_priv->bit_17);
4364 kfree(obj_priv);
4365 }
4366
4367 void i915_gem_free_object(struct drm_gem_object *obj)
4368 {
4369 struct drm_device *dev = obj->dev;
4370 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4371
4372 trace_i915_gem_object_destroy(obj);
4373
4374 while (obj_priv->pin_count > 0)
4375 i915_gem_object_unpin(obj);
4376
4377 if (obj_priv->phys_obj)
4378 i915_gem_detach_phys_object(dev, obj);
4379
4380 i915_gem_free_object_tail(obj);
4381 }
4382
4383 int
4384 i915_gem_idle(struct drm_device *dev)
4385 {
4386 drm_i915_private_t *dev_priv = dev->dev_private;
4387 int ret;
4388
4389 mutex_lock(&dev->struct_mutex);
4390
4391 if (dev_priv->mm.suspended) {
4392 mutex_unlock(&dev->struct_mutex);
4393 return 0;
4394 }
4395
4396 ret = i915_gpu_idle(dev);
4397 if (ret) {
4398 mutex_unlock(&dev->struct_mutex);
4399 return ret;
4400 }
4401
4402 /* Under UMS, be paranoid and evict. */
4403 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4404 ret = i915_gem_evict_inactive(dev);
4405 if (ret) {
4406 mutex_unlock(&dev->struct_mutex);
4407 return ret;
4408 }
4409 }
4410
4411 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4412 * We need to replace this with a semaphore, or something.
4413 * And not confound mm.suspended!
4414 */
4415 dev_priv->mm.suspended = 1;
4416 del_timer_sync(&dev_priv->hangcheck_timer);
4417
4418 i915_kernel_lost_context(dev);
4419 i915_gem_cleanup_ringbuffer(dev);
4420
4421 mutex_unlock(&dev->struct_mutex);
4422
4423 /* Cancel the retire work handler, which should be idle now. */
4424 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4425
4426 return 0;
4427 }
4428
4429 /*
4430 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4431 * over cache flushing.
4432 */
4433 static int
4434 i915_gem_init_pipe_control(struct drm_device *dev)
4435 {
4436 drm_i915_private_t *dev_priv = dev->dev_private;
4437 struct drm_gem_object *obj;
4438 struct drm_i915_gem_object *obj_priv;
4439 int ret;
4440
4441 obj = i915_gem_alloc_object(dev, 4096);
4442 if (obj == NULL) {
4443 DRM_ERROR("Failed to allocate seqno page\n");
4444 ret = -ENOMEM;
4445 goto err;
4446 }
4447 obj_priv = to_intel_bo(obj);
4448 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4449
4450 ret = i915_gem_object_pin(obj, 4096);
4451 if (ret)
4452 goto err_unref;
4453
4454 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4455 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4456 if (dev_priv->seqno_page == NULL)
4457 goto err_unpin;
4458
4459 dev_priv->seqno_obj = obj;
4460 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4461
4462 return 0;
4463
4464 err_unpin:
4465 i915_gem_object_unpin(obj);
4466 err_unref:
4467 drm_gem_object_unreference(obj);
4468 err:
4469 return ret;
4470 }
4471
4472
4473 static void
4474 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4475 {
4476 drm_i915_private_t *dev_priv = dev->dev_private;
4477 struct drm_gem_object *obj;
4478 struct drm_i915_gem_object *obj_priv;
4479
4480 obj = dev_priv->seqno_obj;
4481 obj_priv = to_intel_bo(obj);
4482 kunmap(obj_priv->pages[0]);
4483 i915_gem_object_unpin(obj);
4484 drm_gem_object_unreference(obj);
4485 dev_priv->seqno_obj = NULL;
4486
4487 dev_priv->seqno_page = NULL;
4488 }
4489
4490 int
4491 i915_gem_init_ringbuffer(struct drm_device *dev)
4492 {
4493 drm_i915_private_t *dev_priv = dev->dev_private;
4494 int ret;
4495
4496 if (HAS_PIPE_CONTROL(dev)) {
4497 ret = i915_gem_init_pipe_control(dev);
4498 if (ret)
4499 return ret;
4500 }
4501
4502 ret = intel_init_render_ring_buffer(dev);
4503 if (ret)
4504 goto cleanup_pipe_control;
4505
4506 if (HAS_BSD(dev)) {
4507 ret = intel_init_bsd_ring_buffer(dev);
4508 if (ret)
4509 goto cleanup_render_ring;
4510 }
4511
4512 if (HAS_BLT(dev)) {
4513 ret = intel_init_blt_ring_buffer(dev);
4514 if (ret)
4515 goto cleanup_bsd_ring;
4516 }
4517
4518 dev_priv->next_seqno = 1;
4519
4520 return 0;
4521
4522 cleanup_bsd_ring:
4523 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4524 cleanup_render_ring:
4525 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4526 cleanup_pipe_control:
4527 if (HAS_PIPE_CONTROL(dev))
4528 i915_gem_cleanup_pipe_control(dev);
4529 return ret;
4530 }
4531
4532 void
4533 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4534 {
4535 drm_i915_private_t *dev_priv = dev->dev_private;
4536
4537 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4538 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4539 intel_cleanup_ring_buffer(dev, &dev_priv->blt_ring);
4540 if (HAS_PIPE_CONTROL(dev))
4541 i915_gem_cleanup_pipe_control(dev);
4542 }
4543
4544 int
4545 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4546 struct drm_file *file_priv)
4547 {
4548 drm_i915_private_t *dev_priv = dev->dev_private;
4549 int ret;
4550
4551 if (drm_core_check_feature(dev, DRIVER_MODESET))
4552 return 0;
4553
4554 if (atomic_read(&dev_priv->mm.wedged)) {
4555 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4556 atomic_set(&dev_priv->mm.wedged, 0);
4557 }
4558
4559 mutex_lock(&dev->struct_mutex);
4560 dev_priv->mm.suspended = 0;
4561
4562 ret = i915_gem_init_ringbuffer(dev);
4563 if (ret != 0) {
4564 mutex_unlock(&dev->struct_mutex);
4565 return ret;
4566 }
4567
4568 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4569 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4570 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4571 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4572 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4573 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4574 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4575 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4576 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4577 mutex_unlock(&dev->struct_mutex);
4578
4579 ret = drm_irq_install(dev);
4580 if (ret)
4581 goto cleanup_ringbuffer;
4582
4583 return 0;
4584
4585 cleanup_ringbuffer:
4586 mutex_lock(&dev->struct_mutex);
4587 i915_gem_cleanup_ringbuffer(dev);
4588 dev_priv->mm.suspended = 1;
4589 mutex_unlock(&dev->struct_mutex);
4590
4591 return ret;
4592 }
4593
4594 int
4595 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4596 struct drm_file *file_priv)
4597 {
4598 if (drm_core_check_feature(dev, DRIVER_MODESET))
4599 return 0;
4600
4601 drm_irq_uninstall(dev);
4602 return i915_gem_idle(dev);
4603 }
4604
4605 void
4606 i915_gem_lastclose(struct drm_device *dev)
4607 {
4608 int ret;
4609
4610 if (drm_core_check_feature(dev, DRIVER_MODESET))
4611 return;
4612
4613 ret = i915_gem_idle(dev);
4614 if (ret)
4615 DRM_ERROR("failed to idle hardware: %d\n", ret);
4616 }
4617
4618 static void
4619 init_ring_lists(struct intel_ring_buffer *ring)
4620 {
4621 INIT_LIST_HEAD(&ring->active_list);
4622 INIT_LIST_HEAD(&ring->request_list);
4623 INIT_LIST_HEAD(&ring->gpu_write_list);
4624 }
4625
4626 void
4627 i915_gem_load(struct drm_device *dev)
4628 {
4629 int i;
4630 drm_i915_private_t *dev_priv = dev->dev_private;
4631
4632 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4633 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4634 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4635 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4636 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4637 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4638 init_ring_lists(&dev_priv->render_ring);
4639 init_ring_lists(&dev_priv->bsd_ring);
4640 init_ring_lists(&dev_priv->blt_ring);
4641 for (i = 0; i < 16; i++)
4642 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4643 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4644 i915_gem_retire_work_handler);
4645 init_completion(&dev_priv->error_completion);
4646 spin_lock(&shrink_list_lock);
4647 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4648 spin_unlock(&shrink_list_lock);
4649
4650 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4651 if (IS_GEN3(dev)) {
4652 u32 tmp = I915_READ(MI_ARB_STATE);
4653 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4654 /* arb state is a masked write, so set bit + bit in mask */
4655 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4656 I915_WRITE(MI_ARB_STATE, tmp);
4657 }
4658 }
4659
4660 /* Old X drivers will take 0-2 for front, back, depth buffers */
4661 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4662 dev_priv->fence_reg_start = 3;
4663
4664 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4665 dev_priv->num_fence_regs = 16;
4666 else
4667 dev_priv->num_fence_regs = 8;
4668
4669 /* Initialize fence registers to zero */
4670 switch (INTEL_INFO(dev)->gen) {
4671 case 6:
4672 for (i = 0; i < 16; i++)
4673 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4674 break;
4675 case 5:
4676 case 4:
4677 for (i = 0; i < 16; i++)
4678 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4679 break;
4680 case 3:
4681 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4682 for (i = 0; i < 8; i++)
4683 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4684 case 2:
4685 for (i = 0; i < 8; i++)
4686 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4687 break;
4688 }
4689 i915_gem_detect_bit_6_swizzle(dev);
4690 init_waitqueue_head(&dev_priv->pending_flip_queue);
4691 }
4692
4693 /*
4694 * Create a physically contiguous memory object for this object
4695 * e.g. for cursor + overlay regs
4696 */
4697 static int i915_gem_init_phys_object(struct drm_device *dev,
4698 int id, int size, int align)
4699 {
4700 drm_i915_private_t *dev_priv = dev->dev_private;
4701 struct drm_i915_gem_phys_object *phys_obj;
4702 int ret;
4703
4704 if (dev_priv->mm.phys_objs[id - 1] || !size)
4705 return 0;
4706
4707 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4708 if (!phys_obj)
4709 return -ENOMEM;
4710
4711 phys_obj->id = id;
4712
4713 phys_obj->handle = drm_pci_alloc(dev, size, align);
4714 if (!phys_obj->handle) {
4715 ret = -ENOMEM;
4716 goto kfree_obj;
4717 }
4718 #ifdef CONFIG_X86
4719 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4720 #endif
4721
4722 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4723
4724 return 0;
4725 kfree_obj:
4726 kfree(phys_obj);
4727 return ret;
4728 }
4729
4730 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4731 {
4732 drm_i915_private_t *dev_priv = dev->dev_private;
4733 struct drm_i915_gem_phys_object *phys_obj;
4734
4735 if (!dev_priv->mm.phys_objs[id - 1])
4736 return;
4737
4738 phys_obj = dev_priv->mm.phys_objs[id - 1];
4739 if (phys_obj->cur_obj) {
4740 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4741 }
4742
4743 #ifdef CONFIG_X86
4744 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4745 #endif
4746 drm_pci_free(dev, phys_obj->handle);
4747 kfree(phys_obj);
4748 dev_priv->mm.phys_objs[id - 1] = NULL;
4749 }
4750
4751 void i915_gem_free_all_phys_object(struct drm_device *dev)
4752 {
4753 int i;
4754
4755 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4756 i915_gem_free_phys_object(dev, i);
4757 }
4758
4759 void i915_gem_detach_phys_object(struct drm_device *dev,
4760 struct drm_gem_object *obj)
4761 {
4762 struct drm_i915_gem_object *obj_priv;
4763 int i;
4764 int ret;
4765 int page_count;
4766
4767 obj_priv = to_intel_bo(obj);
4768 if (!obj_priv->phys_obj)
4769 return;
4770
4771 ret = i915_gem_object_get_pages(obj, 0);
4772 if (ret)
4773 goto out;
4774
4775 page_count = obj->size / PAGE_SIZE;
4776
4777 for (i = 0; i < page_count; i++) {
4778 char *dst = kmap_atomic(obj_priv->pages[i]);
4779 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4780
4781 memcpy(dst, src, PAGE_SIZE);
4782 kunmap_atomic(dst);
4783 }
4784 drm_clflush_pages(obj_priv->pages, page_count);
4785 drm_agp_chipset_flush(dev);
4786
4787 i915_gem_object_put_pages(obj);
4788 out:
4789 obj_priv->phys_obj->cur_obj = NULL;
4790 obj_priv->phys_obj = NULL;
4791 }
4792
4793 int
4794 i915_gem_attach_phys_object(struct drm_device *dev,
4795 struct drm_gem_object *obj,
4796 int id,
4797 int align)
4798 {
4799 drm_i915_private_t *dev_priv = dev->dev_private;
4800 struct drm_i915_gem_object *obj_priv;
4801 int ret = 0;
4802 int page_count;
4803 int i;
4804
4805 if (id > I915_MAX_PHYS_OBJECT)
4806 return -EINVAL;
4807
4808 obj_priv = to_intel_bo(obj);
4809
4810 if (obj_priv->phys_obj) {
4811 if (obj_priv->phys_obj->id == id)
4812 return 0;
4813 i915_gem_detach_phys_object(dev, obj);
4814 }
4815
4816 /* create a new object */
4817 if (!dev_priv->mm.phys_objs[id - 1]) {
4818 ret = i915_gem_init_phys_object(dev, id,
4819 obj->size, align);
4820 if (ret) {
4821 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4822 goto out;
4823 }
4824 }
4825
4826 /* bind to the object */
4827 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4828 obj_priv->phys_obj->cur_obj = obj;
4829
4830 ret = i915_gem_object_get_pages(obj, 0);
4831 if (ret) {
4832 DRM_ERROR("failed to get page list\n");
4833 goto out;
4834 }
4835
4836 page_count = obj->size / PAGE_SIZE;
4837
4838 for (i = 0; i < page_count; i++) {
4839 char *src = kmap_atomic(obj_priv->pages[i]);
4840 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4841
4842 memcpy(dst, src, PAGE_SIZE);
4843 kunmap_atomic(src);
4844 }
4845
4846 i915_gem_object_put_pages(obj);
4847
4848 return 0;
4849 out:
4850 return ret;
4851 }
4852
4853 static int
4854 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4855 struct drm_i915_gem_pwrite *args,
4856 struct drm_file *file_priv)
4857 {
4858 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4859 void *obj_addr;
4860 int ret;
4861 char __user *user_data;
4862
4863 user_data = (char __user *) (uintptr_t) args->data_ptr;
4864 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4865
4866 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4867 ret = copy_from_user(obj_addr, user_data, args->size);
4868 if (ret)
4869 return -EFAULT;
4870
4871 drm_agp_chipset_flush(dev);
4872 return 0;
4873 }
4874
4875 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4876 {
4877 struct drm_i915_file_private *file_priv = file->driver_priv;
4878
4879 /* Clean up our request list when the client is going away, so that
4880 * later retire_requests won't dereference our soon-to-be-gone
4881 * file_priv.
4882 */
4883 spin_lock(&file_priv->mm.lock);
4884 while (!list_empty(&file_priv->mm.request_list)) {
4885 struct drm_i915_gem_request *request;
4886
4887 request = list_first_entry(&file_priv->mm.request_list,
4888 struct drm_i915_gem_request,
4889 client_list);
4890 list_del(&request->client_list);
4891 request->file_priv = NULL;
4892 }
4893 spin_unlock(&file_priv->mm.lock);
4894 }
4895
4896 static int
4897 i915_gpu_is_active(struct drm_device *dev)
4898 {
4899 drm_i915_private_t *dev_priv = dev->dev_private;
4900 int lists_empty;
4901
4902 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4903 list_empty(&dev_priv->render_ring.active_list) &&
4904 list_empty(&dev_priv->bsd_ring.active_list) &&
4905 list_empty(&dev_priv->blt_ring.active_list);
4906
4907 return !lists_empty;
4908 }
4909
4910 static int
4911 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4912 {
4913 drm_i915_private_t *dev_priv, *next_dev;
4914 struct drm_i915_gem_object *obj_priv, *next_obj;
4915 int cnt = 0;
4916 int would_deadlock = 1;
4917
4918 /* "fast-path" to count number of available objects */
4919 if (nr_to_scan == 0) {
4920 spin_lock(&shrink_list_lock);
4921 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4922 struct drm_device *dev = dev_priv->dev;
4923
4924 if (mutex_trylock(&dev->struct_mutex)) {
4925 list_for_each_entry(obj_priv,
4926 &dev_priv->mm.inactive_list,
4927 mm_list)
4928 cnt++;
4929 mutex_unlock(&dev->struct_mutex);
4930 }
4931 }
4932 spin_unlock(&shrink_list_lock);
4933
4934 return (cnt / 100) * sysctl_vfs_cache_pressure;
4935 }
4936
4937 spin_lock(&shrink_list_lock);
4938
4939 rescan:
4940 /* first scan for clean buffers */
4941 list_for_each_entry_safe(dev_priv, next_dev,
4942 &shrink_list, mm.shrink_list) {
4943 struct drm_device *dev = dev_priv->dev;
4944
4945 if (! mutex_trylock(&dev->struct_mutex))
4946 continue;
4947
4948 spin_unlock(&shrink_list_lock);
4949 i915_gem_retire_requests(dev);
4950
4951 list_for_each_entry_safe(obj_priv, next_obj,
4952 &dev_priv->mm.inactive_list,
4953 mm_list) {
4954 if (i915_gem_object_is_purgeable(obj_priv)) {
4955 i915_gem_object_unbind(&obj_priv->base);
4956 if (--nr_to_scan <= 0)
4957 break;
4958 }
4959 }
4960
4961 spin_lock(&shrink_list_lock);
4962 mutex_unlock(&dev->struct_mutex);
4963
4964 would_deadlock = 0;
4965
4966 if (nr_to_scan <= 0)
4967 break;
4968 }
4969
4970 /* second pass, evict/count anything still on the inactive list */
4971 list_for_each_entry_safe(dev_priv, next_dev,
4972 &shrink_list, mm.shrink_list) {
4973 struct drm_device *dev = dev_priv->dev;
4974
4975 if (! mutex_trylock(&dev->struct_mutex))
4976 continue;
4977
4978 spin_unlock(&shrink_list_lock);
4979
4980 list_for_each_entry_safe(obj_priv, next_obj,
4981 &dev_priv->mm.inactive_list,
4982 mm_list) {
4983 if (nr_to_scan > 0) {
4984 i915_gem_object_unbind(&obj_priv->base);
4985 nr_to_scan--;
4986 } else
4987 cnt++;
4988 }
4989
4990 spin_lock(&shrink_list_lock);
4991 mutex_unlock(&dev->struct_mutex);
4992
4993 would_deadlock = 0;
4994 }
4995
4996 if (nr_to_scan) {
4997 int active = 0;
4998
4999 /*
5000 * We are desperate for pages, so as a last resort, wait
5001 * for the GPU to finish and discard whatever we can.
5002 * This has a dramatic impact to reduce the number of
5003 * OOM-killer events whilst running the GPU aggressively.
5004 */
5005 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5006 struct drm_device *dev = dev_priv->dev;
5007
5008 if (!mutex_trylock(&dev->struct_mutex))
5009 continue;
5010
5011 spin_unlock(&shrink_list_lock);
5012
5013 if (i915_gpu_is_active(dev)) {
5014 i915_gpu_idle(dev);
5015 active++;
5016 }
5017
5018 spin_lock(&shrink_list_lock);
5019 mutex_unlock(&dev->struct_mutex);
5020 }
5021
5022 if (active)
5023 goto rescan;
5024 }
5025
5026 spin_unlock(&shrink_list_lock);
5027
5028 if (would_deadlock)
5029 return -1;
5030 else if (cnt > 0)
5031 return (cnt / 100) * sysctl_vfs_cache_pressure;
5032 else
5033 return 0;
5034 }
5035
5036 static struct shrinker shrinker = {
5037 .shrink = i915_gem_shrink,
5038 .seeks = DEFAULT_SEEKS,
5039 };
5040
5041 __init void
5042 i915_gem_shrinker_init(void)
5043 {
5044 register_shrinker(&shrinker);
5045 }
5046
5047 __exit void
5048 i915_gem_shrinker_exit(void)
5049 {
5050 unregister_shrinker(&shrinker);
5051 }
This page took 0.192129 seconds and 6 git commands to generate.