drm/i915: Simplify most HAS_BSD() checks
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
67
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
70
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74 {
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77 }
78
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81 {
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84 }
85
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
88 {
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
91 }
92
93 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
95 {
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
98 }
99
100 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
102 {
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
105 }
106
107 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
109 {
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
112 }
113
114 int
115 i915_gem_check_is_wedged(struct drm_device *dev)
116 {
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
121
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
124
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
128
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
132
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
137 */
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
142 }
143
144 static int i915_mutex_lock_interruptible(struct drm_device *dev)
145 {
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
148
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
152
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
156
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
160 }
161
162 WARN_ON(i915_verify_lists(dev));
163 return 0;
164 }
165
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
168 {
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
172 }
173
174 int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
176 unsigned long end)
177 {
178 drm_i915_private_t *dev_priv = dev->dev_private;
179
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
183 return -EINVAL;
184 }
185
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
188
189 dev_priv->mm.gtt_total = end - start;
190
191 return 0;
192 }
193
194 int
195 i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
197 {
198 struct drm_i915_gem_init *args = data;
199 int ret;
200
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 mutex_unlock(&dev->struct_mutex);
204
205 return ret;
206 }
207
208 int
209 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
211 {
212 struct drm_i915_private *dev_priv = dev->dev_private;
213 struct drm_i915_gem_get_aperture *args = data;
214
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
217
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
222
223 return 0;
224 }
225
226
227 /**
228 * Creates a new mm object and returns a handle to it.
229 */
230 int
231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
233 {
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 args->size = roundup(args->size, PAGE_SIZE);
240
241 /* Allocate the new object */
242 obj = i915_gem_alloc_object(dev, args->size);
243 if (obj == NULL)
244 return -ENOMEM;
245
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
247 if (ret) {
248 drm_gem_object_release(obj);
249 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250 kfree(obj);
251 return ret;
252 }
253
254 /* drop reference from allocate - handle holds it now */
255 drm_gem_object_unreference(obj);
256 trace_i915_gem_object_create(obj);
257
258 args->handle = handle;
259 return 0;
260 }
261
262 static inline int
263 fast_shmem_read(struct page **pages,
264 loff_t page_base, int page_offset,
265 char __user *data,
266 int length)
267 {
268 char *vaddr;
269 int ret;
270
271 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
272 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
273 kunmap_atomic(vaddr, KM_USER0);
274
275 return ret;
276 }
277
278 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
279 {
280 drm_i915_private_t *dev_priv = obj->dev->dev_private;
281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
282
283 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284 obj_priv->tiling_mode != I915_TILING_NONE;
285 }
286
287 static inline void
288 slow_shmem_copy(struct page *dst_page,
289 int dst_offset,
290 struct page *src_page,
291 int src_offset,
292 int length)
293 {
294 char *dst_vaddr, *src_vaddr;
295
296 dst_vaddr = kmap(dst_page);
297 src_vaddr = kmap(src_page);
298
299 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
300
301 kunmap(src_page);
302 kunmap(dst_page);
303 }
304
305 static inline void
306 slow_shmem_bit17_copy(struct page *gpu_page,
307 int gpu_offset,
308 struct page *cpu_page,
309 int cpu_offset,
310 int length,
311 int is_read)
312 {
313 char *gpu_vaddr, *cpu_vaddr;
314
315 /* Use the unswizzled path if this page isn't affected. */
316 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317 if (is_read)
318 return slow_shmem_copy(cpu_page, cpu_offset,
319 gpu_page, gpu_offset, length);
320 else
321 return slow_shmem_copy(gpu_page, gpu_offset,
322 cpu_page, cpu_offset, length);
323 }
324
325 gpu_vaddr = kmap(gpu_page);
326 cpu_vaddr = kmap(cpu_page);
327
328 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329 * XORing with the other bits (A9 for Y, A9 and A10 for X)
330 */
331 while (length > 0) {
332 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333 int this_length = min(cacheline_end - gpu_offset, length);
334 int swizzled_gpu_offset = gpu_offset ^ 64;
335
336 if (is_read) {
337 memcpy(cpu_vaddr + cpu_offset,
338 gpu_vaddr + swizzled_gpu_offset,
339 this_length);
340 } else {
341 memcpy(gpu_vaddr + swizzled_gpu_offset,
342 cpu_vaddr + cpu_offset,
343 this_length);
344 }
345 cpu_offset += this_length;
346 gpu_offset += this_length;
347 length -= this_length;
348 }
349
350 kunmap(cpu_page);
351 kunmap(gpu_page);
352 }
353
354 /**
355 * This is the fast shmem pread path, which attempts to copy_from_user directly
356 * from the backing pages of the object to the user's address space. On a
357 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
358 */
359 static int
360 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361 struct drm_i915_gem_pread *args,
362 struct drm_file *file_priv)
363 {
364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 ssize_t remain;
366 loff_t offset, page_base;
367 char __user *user_data;
368 int page_offset, page_length;
369
370 user_data = (char __user *) (uintptr_t) args->data_ptr;
371 remain = args->size;
372
373 obj_priv = to_intel_bo(obj);
374 offset = args->offset;
375
376 while (remain > 0) {
377 /* Operation in this page
378 *
379 * page_base = page offset within aperture
380 * page_offset = offset within page
381 * page_length = bytes to copy for this page
382 */
383 page_base = (offset & ~(PAGE_SIZE-1));
384 page_offset = offset & (PAGE_SIZE-1);
385 page_length = remain;
386 if ((page_offset + remain) > PAGE_SIZE)
387 page_length = PAGE_SIZE - page_offset;
388
389 if (fast_shmem_read(obj_priv->pages,
390 page_base, page_offset,
391 user_data, page_length))
392 return -EFAULT;
393
394 remain -= page_length;
395 user_data += page_length;
396 offset += page_length;
397 }
398
399 return 0;
400 }
401
402 static int
403 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
404 {
405 int ret;
406
407 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
408
409 /* If we've insufficient memory to map in the pages, attempt
410 * to make some space by throwing out some old buffers.
411 */
412 if (ret == -ENOMEM) {
413 struct drm_device *dev = obj->dev;
414
415 ret = i915_gem_evict_something(dev, obj->size,
416 i915_gem_get_gtt_alignment(obj));
417 if (ret)
418 return ret;
419
420 ret = i915_gem_object_get_pages(obj, 0);
421 }
422
423 return ret;
424 }
425
426 /**
427 * This is the fallback shmem pread path, which allocates temporary storage
428 * in kernel space to copy_to_user into outside of the struct_mutex, so we
429 * can copy out of the object's backing pages while holding the struct mutex
430 * and not take page faults.
431 */
432 static int
433 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
434 struct drm_i915_gem_pread *args,
435 struct drm_file *file_priv)
436 {
437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
438 struct mm_struct *mm = current->mm;
439 struct page **user_pages;
440 ssize_t remain;
441 loff_t offset, pinned_pages, i;
442 loff_t first_data_page, last_data_page, num_pages;
443 int shmem_page_index, shmem_page_offset;
444 int data_page_index, data_page_offset;
445 int page_length;
446 int ret;
447 uint64_t data_ptr = args->data_ptr;
448 int do_bit17_swizzling;
449
450 remain = args->size;
451
452 /* Pin the user pages containing the data. We can't fault while
453 * holding the struct mutex, yet we want to hold it while
454 * dereferencing the user data.
455 */
456 first_data_page = data_ptr / PAGE_SIZE;
457 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
458 num_pages = last_data_page - first_data_page + 1;
459
460 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
461 if (user_pages == NULL)
462 return -ENOMEM;
463
464 mutex_unlock(&dev->struct_mutex);
465 down_read(&mm->mmap_sem);
466 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
467 num_pages, 1, 0, user_pages, NULL);
468 up_read(&mm->mmap_sem);
469 mutex_lock(&dev->struct_mutex);
470 if (pinned_pages < num_pages) {
471 ret = -EFAULT;
472 goto out;
473 }
474
475 ret = i915_gem_object_set_cpu_read_domain_range(obj,
476 args->offset,
477 args->size);
478 if (ret)
479 goto out;
480
481 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
482
483 obj_priv = to_intel_bo(obj);
484 offset = args->offset;
485
486 while (remain > 0) {
487 /* Operation in this page
488 *
489 * shmem_page_index = page number within shmem file
490 * shmem_page_offset = offset within page in shmem file
491 * data_page_index = page number in get_user_pages return
492 * data_page_offset = offset with data_page_index page.
493 * page_length = bytes to copy for this page
494 */
495 shmem_page_index = offset / PAGE_SIZE;
496 shmem_page_offset = offset & ~PAGE_MASK;
497 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
498 data_page_offset = data_ptr & ~PAGE_MASK;
499
500 page_length = remain;
501 if ((shmem_page_offset + page_length) > PAGE_SIZE)
502 page_length = PAGE_SIZE - shmem_page_offset;
503 if ((data_page_offset + page_length) > PAGE_SIZE)
504 page_length = PAGE_SIZE - data_page_offset;
505
506 if (do_bit17_swizzling) {
507 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
508 shmem_page_offset,
509 user_pages[data_page_index],
510 data_page_offset,
511 page_length,
512 1);
513 } else {
514 slow_shmem_copy(user_pages[data_page_index],
515 data_page_offset,
516 obj_priv->pages[shmem_page_index],
517 shmem_page_offset,
518 page_length);
519 }
520
521 remain -= page_length;
522 data_ptr += page_length;
523 offset += page_length;
524 }
525
526 out:
527 for (i = 0; i < pinned_pages; i++) {
528 SetPageDirty(user_pages[i]);
529 page_cache_release(user_pages[i]);
530 }
531 drm_free_large(user_pages);
532
533 return ret;
534 }
535
536 /**
537 * Reads data from the object referenced by handle.
538 *
539 * On error, the contents of *data are undefined.
540 */
541 int
542 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
543 struct drm_file *file_priv)
544 {
545 struct drm_i915_gem_pread *args = data;
546 struct drm_gem_object *obj;
547 struct drm_i915_gem_object *obj_priv;
548 int ret = 0;
549
550 ret = i915_mutex_lock_interruptible(dev);
551 if (ret)
552 return ret;
553
554 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
555 if (obj == NULL) {
556 ret = -ENOENT;
557 goto unlock;
558 }
559 obj_priv = to_intel_bo(obj);
560
561 /* Bounds check source. */
562 if (args->offset > obj->size || args->size > obj->size - args->offset) {
563 ret = -EINVAL;
564 goto out;
565 }
566
567 if (args->size == 0)
568 goto out;
569
570 if (!access_ok(VERIFY_WRITE,
571 (char __user *)(uintptr_t)args->data_ptr,
572 args->size)) {
573 ret = -EFAULT;
574 goto out;
575 }
576
577 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
578 args->size);
579 if (ret) {
580 ret = -EFAULT;
581 goto out;
582 }
583
584 ret = i915_gem_object_get_pages_or_evict(obj);
585 if (ret)
586 goto out;
587
588 ret = i915_gem_object_set_cpu_read_domain_range(obj,
589 args->offset,
590 args->size);
591 if (ret)
592 goto out_put;
593
594 ret = -EFAULT;
595 if (!i915_gem_object_needs_bit17_swizzle(obj))
596 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
597 if (ret == -EFAULT)
598 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
599
600 out_put:
601 i915_gem_object_put_pages(obj);
602 out:
603 drm_gem_object_unreference(obj);
604 unlock:
605 mutex_unlock(&dev->struct_mutex);
606 return ret;
607 }
608
609 /* This is the fast write path which cannot handle
610 * page faults in the source data
611 */
612
613 static inline int
614 fast_user_write(struct io_mapping *mapping,
615 loff_t page_base, int page_offset,
616 char __user *user_data,
617 int length)
618 {
619 char *vaddr_atomic;
620 unsigned long unwritten;
621
622 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
623 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
624 user_data, length);
625 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
626 return unwritten;
627 }
628
629 /* Here's the write path which can sleep for
630 * page faults
631 */
632
633 static inline void
634 slow_kernel_write(struct io_mapping *mapping,
635 loff_t gtt_base, int gtt_offset,
636 struct page *user_page, int user_offset,
637 int length)
638 {
639 char __iomem *dst_vaddr;
640 char *src_vaddr;
641
642 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
643 src_vaddr = kmap(user_page);
644
645 memcpy_toio(dst_vaddr + gtt_offset,
646 src_vaddr + user_offset,
647 length);
648
649 kunmap(user_page);
650 io_mapping_unmap(dst_vaddr);
651 }
652
653 static inline int
654 fast_shmem_write(struct page **pages,
655 loff_t page_base, int page_offset,
656 char __user *data,
657 int length)
658 {
659 char *vaddr;
660 int ret;
661
662 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
663 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
664 kunmap_atomic(vaddr, KM_USER0);
665
666 return ret;
667 }
668
669 /**
670 * This is the fast pwrite path, where we copy the data directly from the
671 * user into the GTT, uncached.
672 */
673 static int
674 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
675 struct drm_i915_gem_pwrite *args,
676 struct drm_file *file_priv)
677 {
678 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t offset, page_base;
682 char __user *user_data;
683 int page_offset, page_length;
684
685 user_data = (char __user *) (uintptr_t) args->data_ptr;
686 remain = args->size;
687
688 obj_priv = to_intel_bo(obj);
689 offset = obj_priv->gtt_offset + args->offset;
690
691 while (remain > 0) {
692 /* Operation in this page
693 *
694 * page_base = page offset within aperture
695 * page_offset = offset within page
696 * page_length = bytes to copy for this page
697 */
698 page_base = (offset & ~(PAGE_SIZE-1));
699 page_offset = offset & (PAGE_SIZE-1);
700 page_length = remain;
701 if ((page_offset + remain) > PAGE_SIZE)
702 page_length = PAGE_SIZE - page_offset;
703
704 /* If we get a fault while copying data, then (presumably) our
705 * source page isn't available. Return the error and we'll
706 * retry in the slow path.
707 */
708 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
709 page_offset, user_data, page_length))
710
711 return -EFAULT;
712
713 remain -= page_length;
714 user_data += page_length;
715 offset += page_length;
716 }
717
718 return 0;
719 }
720
721 /**
722 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
723 * the memory and maps it using kmap_atomic for copying.
724 *
725 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
726 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
727 */
728 static int
729 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file_priv)
732 {
733 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
734 drm_i915_private_t *dev_priv = dev->dev_private;
735 ssize_t remain;
736 loff_t gtt_page_base, offset;
737 loff_t first_data_page, last_data_page, num_pages;
738 loff_t pinned_pages, i;
739 struct page **user_pages;
740 struct mm_struct *mm = current->mm;
741 int gtt_page_offset, data_page_offset, data_page_index, page_length;
742 int ret;
743 uint64_t data_ptr = args->data_ptr;
744
745 remain = args->size;
746
747 /* Pin the user pages containing the data. We can't fault while
748 * holding the struct mutex, and all of the pwrite implementations
749 * want to hold it while dereferencing the user data.
750 */
751 first_data_page = data_ptr / PAGE_SIZE;
752 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
753 num_pages = last_data_page - first_data_page + 1;
754
755 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
756 if (user_pages == NULL)
757 return -ENOMEM;
758
759 mutex_unlock(&dev->struct_mutex);
760 down_read(&mm->mmap_sem);
761 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
762 num_pages, 0, 0, user_pages, NULL);
763 up_read(&mm->mmap_sem);
764 mutex_lock(&dev->struct_mutex);
765 if (pinned_pages < num_pages) {
766 ret = -EFAULT;
767 goto out_unpin_pages;
768 }
769
770 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
771 if (ret)
772 goto out_unpin_pages;
773
774 obj_priv = to_intel_bo(obj);
775 offset = obj_priv->gtt_offset + args->offset;
776
777 while (remain > 0) {
778 /* Operation in this page
779 *
780 * gtt_page_base = page offset within aperture
781 * gtt_page_offset = offset within page in aperture
782 * data_page_index = page number in get_user_pages return
783 * data_page_offset = offset with data_page_index page.
784 * page_length = bytes to copy for this page
785 */
786 gtt_page_base = offset & PAGE_MASK;
787 gtt_page_offset = offset & ~PAGE_MASK;
788 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
789 data_page_offset = data_ptr & ~PAGE_MASK;
790
791 page_length = remain;
792 if ((gtt_page_offset + page_length) > PAGE_SIZE)
793 page_length = PAGE_SIZE - gtt_page_offset;
794 if ((data_page_offset + page_length) > PAGE_SIZE)
795 page_length = PAGE_SIZE - data_page_offset;
796
797 slow_kernel_write(dev_priv->mm.gtt_mapping,
798 gtt_page_base, gtt_page_offset,
799 user_pages[data_page_index],
800 data_page_offset,
801 page_length);
802
803 remain -= page_length;
804 offset += page_length;
805 data_ptr += page_length;
806 }
807
808 out_unpin_pages:
809 for (i = 0; i < pinned_pages; i++)
810 page_cache_release(user_pages[i]);
811 drm_free_large(user_pages);
812
813 return ret;
814 }
815
816 /**
817 * This is the fast shmem pwrite path, which attempts to directly
818 * copy_from_user into the kmapped pages backing the object.
819 */
820 static int
821 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
822 struct drm_i915_gem_pwrite *args,
823 struct drm_file *file_priv)
824 {
825 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
826 ssize_t remain;
827 loff_t offset, page_base;
828 char __user *user_data;
829 int page_offset, page_length;
830
831 user_data = (char __user *) (uintptr_t) args->data_ptr;
832 remain = args->size;
833
834 obj_priv = to_intel_bo(obj);
835 offset = args->offset;
836 obj_priv->dirty = 1;
837
838 while (remain > 0) {
839 /* Operation in this page
840 *
841 * page_base = page offset within aperture
842 * page_offset = offset within page
843 * page_length = bytes to copy for this page
844 */
845 page_base = (offset & ~(PAGE_SIZE-1));
846 page_offset = offset & (PAGE_SIZE-1);
847 page_length = remain;
848 if ((page_offset + remain) > PAGE_SIZE)
849 page_length = PAGE_SIZE - page_offset;
850
851 if (fast_shmem_write(obj_priv->pages,
852 page_base, page_offset,
853 user_data, page_length))
854 return -EFAULT;
855
856 remain -= page_length;
857 user_data += page_length;
858 offset += page_length;
859 }
860
861 return 0;
862 }
863
864 /**
865 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
866 * the memory and maps it using kmap_atomic for copying.
867 *
868 * This avoids taking mmap_sem for faulting on the user's address while the
869 * struct_mutex is held.
870 */
871 static int
872 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
873 struct drm_i915_gem_pwrite *args,
874 struct drm_file *file_priv)
875 {
876 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
877 struct mm_struct *mm = current->mm;
878 struct page **user_pages;
879 ssize_t remain;
880 loff_t offset, pinned_pages, i;
881 loff_t first_data_page, last_data_page, num_pages;
882 int shmem_page_index, shmem_page_offset;
883 int data_page_index, data_page_offset;
884 int page_length;
885 int ret;
886 uint64_t data_ptr = args->data_ptr;
887 int do_bit17_swizzling;
888
889 remain = args->size;
890
891 /* Pin the user pages containing the data. We can't fault while
892 * holding the struct mutex, and all of the pwrite implementations
893 * want to hold it while dereferencing the user data.
894 */
895 first_data_page = data_ptr / PAGE_SIZE;
896 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
897 num_pages = last_data_page - first_data_page + 1;
898
899 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
900 if (user_pages == NULL)
901 return -ENOMEM;
902
903 mutex_unlock(&dev->struct_mutex);
904 down_read(&mm->mmap_sem);
905 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
906 num_pages, 0, 0, user_pages, NULL);
907 up_read(&mm->mmap_sem);
908 mutex_lock(&dev->struct_mutex);
909 if (pinned_pages < num_pages) {
910 ret = -EFAULT;
911 goto out;
912 }
913
914 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
915 if (ret)
916 goto out;
917
918 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
919
920 obj_priv = to_intel_bo(obj);
921 offset = args->offset;
922 obj_priv->dirty = 1;
923
924 while (remain > 0) {
925 /* Operation in this page
926 *
927 * shmem_page_index = page number within shmem file
928 * shmem_page_offset = offset within page in shmem file
929 * data_page_index = page number in get_user_pages return
930 * data_page_offset = offset with data_page_index page.
931 * page_length = bytes to copy for this page
932 */
933 shmem_page_index = offset / PAGE_SIZE;
934 shmem_page_offset = offset & ~PAGE_MASK;
935 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
936 data_page_offset = data_ptr & ~PAGE_MASK;
937
938 page_length = remain;
939 if ((shmem_page_offset + page_length) > PAGE_SIZE)
940 page_length = PAGE_SIZE - shmem_page_offset;
941 if ((data_page_offset + page_length) > PAGE_SIZE)
942 page_length = PAGE_SIZE - data_page_offset;
943
944 if (do_bit17_swizzling) {
945 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
946 shmem_page_offset,
947 user_pages[data_page_index],
948 data_page_offset,
949 page_length,
950 0);
951 } else {
952 slow_shmem_copy(obj_priv->pages[shmem_page_index],
953 shmem_page_offset,
954 user_pages[data_page_index],
955 data_page_offset,
956 page_length);
957 }
958
959 remain -= page_length;
960 data_ptr += page_length;
961 offset += page_length;
962 }
963
964 out:
965 for (i = 0; i < pinned_pages; i++)
966 page_cache_release(user_pages[i]);
967 drm_free_large(user_pages);
968
969 return ret;
970 }
971
972 /**
973 * Writes data to the object referenced by handle.
974 *
975 * On error, the contents of the buffer that were to be modified are undefined.
976 */
977 int
978 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
979 struct drm_file *file)
980 {
981 struct drm_i915_gem_pwrite *args = data;
982 struct drm_gem_object *obj;
983 struct drm_i915_gem_object *obj_priv;
984 int ret = 0;
985
986 ret = i915_mutex_lock_interruptible(dev);
987 if (ret)
988 return ret;
989
990 obj = drm_gem_object_lookup(dev, file, args->handle);
991 if (obj == NULL) {
992 ret = -ENOENT;
993 goto unlock;
994 }
995 obj_priv = to_intel_bo(obj);
996
997
998 /* Bounds check destination. */
999 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1000 ret = -EINVAL;
1001 goto out;
1002 }
1003
1004 if (args->size == 0)
1005 goto out;
1006
1007 if (!access_ok(VERIFY_READ,
1008 (char __user *)(uintptr_t)args->data_ptr,
1009 args->size)) {
1010 ret = -EFAULT;
1011 goto out;
1012 }
1013
1014 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1015 args->size);
1016 if (ret) {
1017 ret = -EFAULT;
1018 goto out;
1019 }
1020
1021 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1022 * it would end up going through the fenced access, and we'll get
1023 * different detiling behavior between reading and writing.
1024 * pread/pwrite currently are reading and writing from the CPU
1025 * perspective, requiring manual detiling by the client.
1026 */
1027 if (obj_priv->phys_obj)
1028 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1029 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1030 obj_priv->gtt_space &&
1031 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1032 ret = i915_gem_object_pin(obj, 0);
1033 if (ret)
1034 goto out;
1035
1036 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1037 if (ret)
1038 goto out_unpin;
1039
1040 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1041 if (ret == -EFAULT)
1042 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1043
1044 out_unpin:
1045 i915_gem_object_unpin(obj);
1046 } else {
1047 ret = i915_gem_object_get_pages_or_evict(obj);
1048 if (ret)
1049 goto out;
1050
1051 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1052 if (ret)
1053 goto out_put;
1054
1055 ret = -EFAULT;
1056 if (!i915_gem_object_needs_bit17_swizzle(obj))
1057 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1058 if (ret == -EFAULT)
1059 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1060
1061 out_put:
1062 i915_gem_object_put_pages(obj);
1063 }
1064
1065 out:
1066 drm_gem_object_unreference(obj);
1067 unlock:
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070 }
1071
1072 /**
1073 * Called when user space prepares to use an object with the CPU, either
1074 * through the mmap ioctl's mapping or a GTT mapping.
1075 */
1076 int
1077 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1078 struct drm_file *file_priv)
1079 {
1080 struct drm_i915_private *dev_priv = dev->dev_private;
1081 struct drm_i915_gem_set_domain *args = data;
1082 struct drm_gem_object *obj;
1083 struct drm_i915_gem_object *obj_priv;
1084 uint32_t read_domains = args->read_domains;
1085 uint32_t write_domain = args->write_domain;
1086 int ret;
1087
1088 if (!(dev->driver->driver_features & DRIVER_GEM))
1089 return -ENODEV;
1090
1091 /* Only handle setting domains to types used by the CPU. */
1092 if (write_domain & I915_GEM_GPU_DOMAINS)
1093 return -EINVAL;
1094
1095 if (read_domains & I915_GEM_GPU_DOMAINS)
1096 return -EINVAL;
1097
1098 /* Having something in the write domain implies it's in the read
1099 * domain, and only that read domain. Enforce that in the request.
1100 */
1101 if (write_domain != 0 && read_domains != write_domain)
1102 return -EINVAL;
1103
1104 ret = i915_mutex_lock_interruptible(dev);
1105 if (ret)
1106 return ret;
1107
1108 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1109 if (obj == NULL) {
1110 ret = -ENOENT;
1111 goto unlock;
1112 }
1113 obj_priv = to_intel_bo(obj);
1114
1115 intel_mark_busy(dev, obj);
1116
1117 if (read_domains & I915_GEM_DOMAIN_GTT) {
1118 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1119
1120 /* Update the LRU on the fence for the CPU access that's
1121 * about to occur.
1122 */
1123 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1124 struct drm_i915_fence_reg *reg =
1125 &dev_priv->fence_regs[obj_priv->fence_reg];
1126 list_move_tail(&reg->lru_list,
1127 &dev_priv->mm.fence_list);
1128 }
1129
1130 /* Silently promote "you're not bound, there was nothing to do"
1131 * to success, since the client was just asking us to
1132 * make sure everything was done.
1133 */
1134 if (ret == -EINVAL)
1135 ret = 0;
1136 } else {
1137 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1138 }
1139
1140 /* Maintain LRU order of "inactive" objects */
1141 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1142 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1143
1144 drm_gem_object_unreference(obj);
1145 unlock:
1146 mutex_unlock(&dev->struct_mutex);
1147 return ret;
1148 }
1149
1150 /**
1151 * Called when user space has done writes to this buffer
1152 */
1153 int
1154 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1155 struct drm_file *file_priv)
1156 {
1157 struct drm_i915_gem_sw_finish *args = data;
1158 struct drm_gem_object *obj;
1159 int ret = 0;
1160
1161 if (!(dev->driver->driver_features & DRIVER_GEM))
1162 return -ENODEV;
1163
1164 ret = i915_mutex_lock_interruptible(dev);
1165 if (ret)
1166 return ret;
1167
1168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1169 if (obj == NULL) {
1170 ret = -ENOENT;
1171 goto unlock;
1172 }
1173
1174 /* Pinned buffers may be scanout, so flush the cache */
1175 if (to_intel_bo(obj)->pin_count)
1176 i915_gem_object_flush_cpu_write_domain(obj);
1177
1178 drm_gem_object_unreference(obj);
1179 unlock:
1180 mutex_unlock(&dev->struct_mutex);
1181 return ret;
1182 }
1183
1184 /**
1185 * Maps the contents of an object, returning the address it is mapped
1186 * into.
1187 *
1188 * While the mapping holds a reference on the contents of the object, it doesn't
1189 * imply a ref on the object itself.
1190 */
1191 int
1192 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1193 struct drm_file *file_priv)
1194 {
1195 struct drm_i915_gem_mmap *args = data;
1196 struct drm_gem_object *obj;
1197 loff_t offset;
1198 unsigned long addr;
1199
1200 if (!(dev->driver->driver_features & DRIVER_GEM))
1201 return -ENODEV;
1202
1203 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1204 if (obj == NULL)
1205 return -ENOENT;
1206
1207 offset = args->offset;
1208
1209 down_write(&current->mm->mmap_sem);
1210 addr = do_mmap(obj->filp, 0, args->size,
1211 PROT_READ | PROT_WRITE, MAP_SHARED,
1212 args->offset);
1213 up_write(&current->mm->mmap_sem);
1214 drm_gem_object_unreference_unlocked(obj);
1215 if (IS_ERR((void *)addr))
1216 return addr;
1217
1218 args->addr_ptr = (uint64_t) addr;
1219
1220 return 0;
1221 }
1222
1223 /**
1224 * i915_gem_fault - fault a page into the GTT
1225 * vma: VMA in question
1226 * vmf: fault info
1227 *
1228 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1229 * from userspace. The fault handler takes care of binding the object to
1230 * the GTT (if needed), allocating and programming a fence register (again,
1231 * only if needed based on whether the old reg is still valid or the object
1232 * is tiled) and inserting a new PTE into the faulting process.
1233 *
1234 * Note that the faulting process may involve evicting existing objects
1235 * from the GTT and/or fence registers to make room. So performance may
1236 * suffer if the GTT working set is large or there are few fence registers
1237 * left.
1238 */
1239 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1240 {
1241 struct drm_gem_object *obj = vma->vm_private_data;
1242 struct drm_device *dev = obj->dev;
1243 drm_i915_private_t *dev_priv = dev->dev_private;
1244 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1245 pgoff_t page_offset;
1246 unsigned long pfn;
1247 int ret = 0;
1248 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1249
1250 /* We don't use vmf->pgoff since that has the fake offset */
1251 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1252 PAGE_SHIFT;
1253
1254 /* Now bind it into the GTT if needed */
1255 mutex_lock(&dev->struct_mutex);
1256 if (!obj_priv->gtt_space) {
1257 ret = i915_gem_object_bind_to_gtt(obj, 0);
1258 if (ret)
1259 goto unlock;
1260
1261 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1262 if (ret)
1263 goto unlock;
1264 }
1265
1266 /* Need a new fence register? */
1267 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1268 ret = i915_gem_object_get_fence_reg(obj, true);
1269 if (ret)
1270 goto unlock;
1271 }
1272
1273 if (i915_gem_object_is_inactive(obj_priv))
1274 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1275
1276 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1277 page_offset;
1278
1279 /* Finally, remap it using the new GTT offset */
1280 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1281 unlock:
1282 mutex_unlock(&dev->struct_mutex);
1283
1284 switch (ret) {
1285 case 0:
1286 case -ERESTARTSYS:
1287 return VM_FAULT_NOPAGE;
1288 case -ENOMEM:
1289 case -EAGAIN:
1290 return VM_FAULT_OOM;
1291 default:
1292 return VM_FAULT_SIGBUS;
1293 }
1294 }
1295
1296 /**
1297 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1298 * @obj: obj in question
1299 *
1300 * GEM memory mapping works by handing back to userspace a fake mmap offset
1301 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1302 * up the object based on the offset and sets up the various memory mapping
1303 * structures.
1304 *
1305 * This routine allocates and attaches a fake offset for @obj.
1306 */
1307 static int
1308 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1309 {
1310 struct drm_device *dev = obj->dev;
1311 struct drm_gem_mm *mm = dev->mm_private;
1312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1313 struct drm_map_list *list;
1314 struct drm_local_map *map;
1315 int ret = 0;
1316
1317 /* Set the object up for mmap'ing */
1318 list = &obj->map_list;
1319 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1320 if (!list->map)
1321 return -ENOMEM;
1322
1323 map = list->map;
1324 map->type = _DRM_GEM;
1325 map->size = obj->size;
1326 map->handle = obj;
1327
1328 /* Get a DRM GEM mmap offset allocated... */
1329 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1330 obj->size / PAGE_SIZE, 0, 0);
1331 if (!list->file_offset_node) {
1332 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1333 ret = -ENOSPC;
1334 goto out_free_list;
1335 }
1336
1337 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1338 obj->size / PAGE_SIZE, 0);
1339 if (!list->file_offset_node) {
1340 ret = -ENOMEM;
1341 goto out_free_list;
1342 }
1343
1344 list->hash.key = list->file_offset_node->start;
1345 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1346 if (ret) {
1347 DRM_ERROR("failed to add to map hash\n");
1348 goto out_free_mm;
1349 }
1350
1351 /* By now we should be all set, any drm_mmap request on the offset
1352 * below will get to our mmap & fault handler */
1353 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1354
1355 return 0;
1356
1357 out_free_mm:
1358 drm_mm_put_block(list->file_offset_node);
1359 out_free_list:
1360 kfree(list->map);
1361
1362 return ret;
1363 }
1364
1365 /**
1366 * i915_gem_release_mmap - remove physical page mappings
1367 * @obj: obj in question
1368 *
1369 * Preserve the reservation of the mmapping with the DRM core code, but
1370 * relinquish ownership of the pages back to the system.
1371 *
1372 * It is vital that we remove the page mapping if we have mapped a tiled
1373 * object through the GTT and then lose the fence register due to
1374 * resource pressure. Similarly if the object has been moved out of the
1375 * aperture, than pages mapped into userspace must be revoked. Removing the
1376 * mapping will then trigger a page fault on the next user access, allowing
1377 * fixup by i915_gem_fault().
1378 */
1379 void
1380 i915_gem_release_mmap(struct drm_gem_object *obj)
1381 {
1382 struct drm_device *dev = obj->dev;
1383 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1384
1385 if (dev->dev_mapping)
1386 unmap_mapping_range(dev->dev_mapping,
1387 obj_priv->mmap_offset, obj->size, 1);
1388 }
1389
1390 static void
1391 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1392 {
1393 struct drm_device *dev = obj->dev;
1394 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1395 struct drm_gem_mm *mm = dev->mm_private;
1396 struct drm_map_list *list;
1397
1398 list = &obj->map_list;
1399 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1400
1401 if (list->file_offset_node) {
1402 drm_mm_put_block(list->file_offset_node);
1403 list->file_offset_node = NULL;
1404 }
1405
1406 if (list->map) {
1407 kfree(list->map);
1408 list->map = NULL;
1409 }
1410
1411 obj_priv->mmap_offset = 0;
1412 }
1413
1414 /**
1415 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1416 * @obj: object to check
1417 *
1418 * Return the required GTT alignment for an object, taking into account
1419 * potential fence register mapping if needed.
1420 */
1421 static uint32_t
1422 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1423 {
1424 struct drm_device *dev = obj->dev;
1425 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1426 int start, i;
1427
1428 /*
1429 * Minimum alignment is 4k (GTT page size), but might be greater
1430 * if a fence register is needed for the object.
1431 */
1432 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1433 return 4096;
1434
1435 /*
1436 * Previous chips need to be aligned to the size of the smallest
1437 * fence register that can contain the object.
1438 */
1439 if (INTEL_INFO(dev)->gen == 3)
1440 start = 1024*1024;
1441 else
1442 start = 512*1024;
1443
1444 for (i = start; i < obj->size; i <<= 1)
1445 ;
1446
1447 return i;
1448 }
1449
1450 /**
1451 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1452 * @dev: DRM device
1453 * @data: GTT mapping ioctl data
1454 * @file_priv: GEM object info
1455 *
1456 * Simply returns the fake offset to userspace so it can mmap it.
1457 * The mmap call will end up in drm_gem_mmap(), which will set things
1458 * up so we can get faults in the handler above.
1459 *
1460 * The fault handler will take care of binding the object into the GTT
1461 * (since it may have been evicted to make room for something), allocating
1462 * a fence register, and mapping the appropriate aperture address into
1463 * userspace.
1464 */
1465 int
1466 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1467 struct drm_file *file_priv)
1468 {
1469 struct drm_i915_gem_mmap_gtt *args = data;
1470 struct drm_gem_object *obj;
1471 struct drm_i915_gem_object *obj_priv;
1472 int ret;
1473
1474 if (!(dev->driver->driver_features & DRIVER_GEM))
1475 return -ENODEV;
1476
1477 ret = i915_mutex_lock_interruptible(dev);
1478 if (ret)
1479 return ret;
1480
1481 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1482 if (obj == NULL) {
1483 ret = -ENOENT;
1484 goto unlock;
1485 }
1486 obj_priv = to_intel_bo(obj);
1487
1488 if (obj_priv->madv != I915_MADV_WILLNEED) {
1489 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1490 ret = -EINVAL;
1491 goto out;
1492 }
1493
1494 if (!obj_priv->mmap_offset) {
1495 ret = i915_gem_create_mmap_offset(obj);
1496 if (ret)
1497 goto out;
1498 }
1499
1500 args->offset = obj_priv->mmap_offset;
1501
1502 /*
1503 * Pull it into the GTT so that we have a page list (makes the
1504 * initial fault faster and any subsequent flushing possible).
1505 */
1506 if (!obj_priv->agp_mem) {
1507 ret = i915_gem_object_bind_to_gtt(obj, 0);
1508 if (ret)
1509 goto out;
1510 }
1511
1512 out:
1513 drm_gem_object_unreference(obj);
1514 unlock:
1515 mutex_unlock(&dev->struct_mutex);
1516 return ret;
1517 }
1518
1519 static void
1520 i915_gem_object_put_pages(struct drm_gem_object *obj)
1521 {
1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1523 int page_count = obj->size / PAGE_SIZE;
1524 int i;
1525
1526 BUG_ON(obj_priv->pages_refcount == 0);
1527 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1528
1529 if (--obj_priv->pages_refcount != 0)
1530 return;
1531
1532 if (obj_priv->tiling_mode != I915_TILING_NONE)
1533 i915_gem_object_save_bit_17_swizzle(obj);
1534
1535 if (obj_priv->madv == I915_MADV_DONTNEED)
1536 obj_priv->dirty = 0;
1537
1538 for (i = 0; i < page_count; i++) {
1539 if (obj_priv->dirty)
1540 set_page_dirty(obj_priv->pages[i]);
1541
1542 if (obj_priv->madv == I915_MADV_WILLNEED)
1543 mark_page_accessed(obj_priv->pages[i]);
1544
1545 page_cache_release(obj_priv->pages[i]);
1546 }
1547 obj_priv->dirty = 0;
1548
1549 drm_free_large(obj_priv->pages);
1550 obj_priv->pages = NULL;
1551 }
1552
1553 static uint32_t
1554 i915_gem_next_request_seqno(struct drm_device *dev,
1555 struct intel_ring_buffer *ring)
1556 {
1557 drm_i915_private_t *dev_priv = dev->dev_private;
1558
1559 ring->outstanding_lazy_request = true;
1560 return dev_priv->next_seqno;
1561 }
1562
1563 static void
1564 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1565 struct intel_ring_buffer *ring)
1566 {
1567 struct drm_device *dev = obj->dev;
1568 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1569 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1570
1571 BUG_ON(ring == NULL);
1572 obj_priv->ring = ring;
1573
1574 /* Add a reference if we're newly entering the active list. */
1575 if (!obj_priv->active) {
1576 drm_gem_object_reference(obj);
1577 obj_priv->active = 1;
1578 }
1579
1580 /* Move from whatever list we were on to the tail of execution. */
1581 list_move_tail(&obj_priv->list, &ring->active_list);
1582 obj_priv->last_rendering_seqno = seqno;
1583 }
1584
1585 static void
1586 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1587 {
1588 struct drm_device *dev = obj->dev;
1589 drm_i915_private_t *dev_priv = dev->dev_private;
1590 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1591
1592 BUG_ON(!obj_priv->active);
1593 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1594 obj_priv->last_rendering_seqno = 0;
1595 }
1596
1597 /* Immediately discard the backing storage */
1598 static void
1599 i915_gem_object_truncate(struct drm_gem_object *obj)
1600 {
1601 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1602 struct inode *inode;
1603
1604 /* Our goal here is to return as much of the memory as
1605 * is possible back to the system as we are called from OOM.
1606 * To do this we must instruct the shmfs to drop all of its
1607 * backing pages, *now*. Here we mirror the actions taken
1608 * when by shmem_delete_inode() to release the backing store.
1609 */
1610 inode = obj->filp->f_path.dentry->d_inode;
1611 truncate_inode_pages(inode->i_mapping, 0);
1612 if (inode->i_op->truncate_range)
1613 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1614
1615 obj_priv->madv = __I915_MADV_PURGED;
1616 }
1617
1618 static inline int
1619 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1620 {
1621 return obj_priv->madv == I915_MADV_DONTNEED;
1622 }
1623
1624 static void
1625 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1626 {
1627 struct drm_device *dev = obj->dev;
1628 drm_i915_private_t *dev_priv = dev->dev_private;
1629 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1630
1631 if (obj_priv->pin_count != 0)
1632 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1633 else
1634 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1635
1636 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1637
1638 obj_priv->last_rendering_seqno = 0;
1639 obj_priv->ring = NULL;
1640 if (obj_priv->active) {
1641 obj_priv->active = 0;
1642 drm_gem_object_unreference(obj);
1643 }
1644 WARN_ON(i915_verify_lists(dev));
1645 }
1646
1647 static void
1648 i915_gem_process_flushing_list(struct drm_device *dev,
1649 uint32_t flush_domains,
1650 struct intel_ring_buffer *ring)
1651 {
1652 drm_i915_private_t *dev_priv = dev->dev_private;
1653 struct drm_i915_gem_object *obj_priv, *next;
1654
1655 list_for_each_entry_safe(obj_priv, next,
1656 &dev_priv->mm.gpu_write_list,
1657 gpu_write_list) {
1658 struct drm_gem_object *obj = &obj_priv->base;
1659
1660 if (obj->write_domain & flush_domains &&
1661 obj_priv->ring == ring) {
1662 uint32_t old_write_domain = obj->write_domain;
1663
1664 obj->write_domain = 0;
1665 list_del_init(&obj_priv->gpu_write_list);
1666 i915_gem_object_move_to_active(obj, ring);
1667
1668 /* update the fence lru list */
1669 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1670 struct drm_i915_fence_reg *reg =
1671 &dev_priv->fence_regs[obj_priv->fence_reg];
1672 list_move_tail(&reg->lru_list,
1673 &dev_priv->mm.fence_list);
1674 }
1675
1676 trace_i915_gem_object_change_domain(obj,
1677 obj->read_domains,
1678 old_write_domain);
1679 }
1680 }
1681 }
1682
1683 uint32_t
1684 i915_add_request(struct drm_device *dev,
1685 struct drm_file *file,
1686 struct drm_i915_gem_request *request,
1687 struct intel_ring_buffer *ring)
1688 {
1689 drm_i915_private_t *dev_priv = dev->dev_private;
1690 struct drm_i915_file_private *file_priv = NULL;
1691 uint32_t seqno;
1692 int was_empty;
1693
1694 if (file != NULL)
1695 file_priv = file->driver_priv;
1696
1697 if (request == NULL) {
1698 request = kzalloc(sizeof(*request), GFP_KERNEL);
1699 if (request == NULL)
1700 return 0;
1701 }
1702
1703 seqno = ring->add_request(dev, ring, 0);
1704 ring->outstanding_lazy_request = false;
1705
1706 request->seqno = seqno;
1707 request->ring = ring;
1708 request->emitted_jiffies = jiffies;
1709 was_empty = list_empty(&ring->request_list);
1710 list_add_tail(&request->list, &ring->request_list);
1711
1712 if (file_priv) {
1713 spin_lock(&file_priv->mm.lock);
1714 request->file_priv = file_priv;
1715 list_add_tail(&request->client_list,
1716 &file_priv->mm.request_list);
1717 spin_unlock(&file_priv->mm.lock);
1718 }
1719
1720 if (!dev_priv->mm.suspended) {
1721 mod_timer(&dev_priv->hangcheck_timer,
1722 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1723 if (was_empty)
1724 queue_delayed_work(dev_priv->wq,
1725 &dev_priv->mm.retire_work, HZ);
1726 }
1727 return seqno;
1728 }
1729
1730 /**
1731 * Command execution barrier
1732 *
1733 * Ensures that all commands in the ring are finished
1734 * before signalling the CPU
1735 */
1736 static void
1737 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1738 {
1739 uint32_t flush_domains = 0;
1740
1741 /* The sampler always gets flushed on i965 (sigh) */
1742 if (INTEL_INFO(dev)->gen >= 4)
1743 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1744
1745 ring->flush(dev, ring,
1746 I915_GEM_DOMAIN_COMMAND, flush_domains);
1747 }
1748
1749 static inline void
1750 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1751 {
1752 struct drm_i915_file_private *file_priv = request->file_priv;
1753
1754 if (!file_priv)
1755 return;
1756
1757 spin_lock(&file_priv->mm.lock);
1758 list_del(&request->client_list);
1759 request->file_priv = NULL;
1760 spin_unlock(&file_priv->mm.lock);
1761 }
1762
1763 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1764 struct intel_ring_buffer *ring)
1765 {
1766 while (!list_empty(&ring->request_list)) {
1767 struct drm_i915_gem_request *request;
1768
1769 request = list_first_entry(&ring->request_list,
1770 struct drm_i915_gem_request,
1771 list);
1772
1773 list_del(&request->list);
1774 i915_gem_request_remove_from_client(request);
1775 kfree(request);
1776 }
1777
1778 while (!list_empty(&ring->active_list)) {
1779 struct drm_i915_gem_object *obj_priv;
1780
1781 obj_priv = list_first_entry(&ring->active_list,
1782 struct drm_i915_gem_object,
1783 list);
1784
1785 obj_priv->base.write_domain = 0;
1786 list_del_init(&obj_priv->gpu_write_list);
1787 i915_gem_object_move_to_inactive(&obj_priv->base);
1788 }
1789 }
1790
1791 void i915_gem_reset(struct drm_device *dev)
1792 {
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 struct drm_i915_gem_object *obj_priv;
1795 int i;
1796
1797 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1798 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1799
1800 /* Remove anything from the flushing lists. The GPU cache is likely
1801 * to be lost on reset along with the data, so simply move the
1802 * lost bo to the inactive list.
1803 */
1804 while (!list_empty(&dev_priv->mm.flushing_list)) {
1805 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1806 struct drm_i915_gem_object,
1807 list);
1808
1809 obj_priv->base.write_domain = 0;
1810 list_del_init(&obj_priv->gpu_write_list);
1811 i915_gem_object_move_to_inactive(&obj_priv->base);
1812 }
1813
1814 /* Move everything out of the GPU domains to ensure we do any
1815 * necessary invalidation upon reuse.
1816 */
1817 list_for_each_entry(obj_priv,
1818 &dev_priv->mm.inactive_list,
1819 list)
1820 {
1821 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1822 }
1823
1824 /* The fence registers are invalidated so clear them out */
1825 for (i = 0; i < 16; i++) {
1826 struct drm_i915_fence_reg *reg;
1827
1828 reg = &dev_priv->fence_regs[i];
1829 if (!reg->obj)
1830 continue;
1831
1832 i915_gem_clear_fence_reg(reg->obj);
1833 }
1834 }
1835
1836 /**
1837 * This function clears the request list as sequence numbers are passed.
1838 */
1839 static void
1840 i915_gem_retire_requests_ring(struct drm_device *dev,
1841 struct intel_ring_buffer *ring)
1842 {
1843 drm_i915_private_t *dev_priv = dev->dev_private;
1844 uint32_t seqno;
1845
1846 if (!ring->status_page.page_addr ||
1847 list_empty(&ring->request_list))
1848 return;
1849
1850 WARN_ON(i915_verify_lists(dev));
1851
1852 seqno = ring->get_seqno(dev, ring);
1853 while (!list_empty(&ring->request_list)) {
1854 struct drm_i915_gem_request *request;
1855
1856 request = list_first_entry(&ring->request_list,
1857 struct drm_i915_gem_request,
1858 list);
1859
1860 if (!i915_seqno_passed(seqno, request->seqno))
1861 break;
1862
1863 trace_i915_gem_request_retire(dev, request->seqno);
1864
1865 list_del(&request->list);
1866 i915_gem_request_remove_from_client(request);
1867 kfree(request);
1868 }
1869
1870 /* Move any buffers on the active list that are no longer referenced
1871 * by the ringbuffer to the flushing/inactive lists as appropriate.
1872 */
1873 while (!list_empty(&ring->active_list)) {
1874 struct drm_gem_object *obj;
1875 struct drm_i915_gem_object *obj_priv;
1876
1877 obj_priv = list_first_entry(&ring->active_list,
1878 struct drm_i915_gem_object,
1879 list);
1880
1881 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1882 break;
1883
1884 obj = &obj_priv->base;
1885 if (obj->write_domain != 0)
1886 i915_gem_object_move_to_flushing(obj);
1887 else
1888 i915_gem_object_move_to_inactive(obj);
1889 }
1890
1891 if (unlikely (dev_priv->trace_irq_seqno &&
1892 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1893 ring->user_irq_put(dev, ring);
1894 dev_priv->trace_irq_seqno = 0;
1895 }
1896
1897 WARN_ON(i915_verify_lists(dev));
1898 }
1899
1900 void
1901 i915_gem_retire_requests(struct drm_device *dev)
1902 {
1903 drm_i915_private_t *dev_priv = dev->dev_private;
1904
1905 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1906 struct drm_i915_gem_object *obj_priv, *tmp;
1907
1908 /* We must be careful that during unbind() we do not
1909 * accidentally infinitely recurse into retire requests.
1910 * Currently:
1911 * retire -> free -> unbind -> wait -> retire_ring
1912 */
1913 list_for_each_entry_safe(obj_priv, tmp,
1914 &dev_priv->mm.deferred_free_list,
1915 list)
1916 i915_gem_free_object_tail(&obj_priv->base);
1917 }
1918
1919 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1920 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1921 }
1922
1923 static void
1924 i915_gem_retire_work_handler(struct work_struct *work)
1925 {
1926 drm_i915_private_t *dev_priv;
1927 struct drm_device *dev;
1928
1929 dev_priv = container_of(work, drm_i915_private_t,
1930 mm.retire_work.work);
1931 dev = dev_priv->dev;
1932
1933 /* Come back later if the device is busy... */
1934 if (!mutex_trylock(&dev->struct_mutex)) {
1935 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1936 return;
1937 }
1938
1939 i915_gem_retire_requests(dev);
1940
1941 if (!dev_priv->mm.suspended &&
1942 (!list_empty(&dev_priv->render_ring.request_list) ||
1943 !list_empty(&dev_priv->bsd_ring.request_list)))
1944 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1945 mutex_unlock(&dev->struct_mutex);
1946 }
1947
1948 int
1949 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1950 bool interruptible, struct intel_ring_buffer *ring)
1951 {
1952 drm_i915_private_t *dev_priv = dev->dev_private;
1953 u32 ier;
1954 int ret = 0;
1955
1956 BUG_ON(seqno == 0);
1957
1958 if (atomic_read(&dev_priv->mm.wedged))
1959 return -EAGAIN;
1960
1961 if (ring->outstanding_lazy_request) {
1962 seqno = i915_add_request(dev, NULL, NULL, ring);
1963 if (seqno == 0)
1964 return -ENOMEM;
1965 }
1966 BUG_ON(seqno == dev_priv->next_seqno);
1967
1968 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1969 if (HAS_PCH_SPLIT(dev))
1970 ier = I915_READ(DEIER) | I915_READ(GTIER);
1971 else
1972 ier = I915_READ(IER);
1973 if (!ier) {
1974 DRM_ERROR("something (likely vbetool) disabled "
1975 "interrupts, re-enabling\n");
1976 i915_driver_irq_preinstall(dev);
1977 i915_driver_irq_postinstall(dev);
1978 }
1979
1980 trace_i915_gem_request_wait_begin(dev, seqno);
1981
1982 ring->waiting_gem_seqno = seqno;
1983 ring->user_irq_get(dev, ring);
1984 if (interruptible)
1985 ret = wait_event_interruptible(ring->irq_queue,
1986 i915_seqno_passed(
1987 ring->get_seqno(dev, ring), seqno)
1988 || atomic_read(&dev_priv->mm.wedged));
1989 else
1990 wait_event(ring->irq_queue,
1991 i915_seqno_passed(
1992 ring->get_seqno(dev, ring), seqno)
1993 || atomic_read(&dev_priv->mm.wedged));
1994
1995 ring->user_irq_put(dev, ring);
1996 ring->waiting_gem_seqno = 0;
1997
1998 trace_i915_gem_request_wait_end(dev, seqno);
1999 }
2000 if (atomic_read(&dev_priv->mm.wedged))
2001 ret = -EAGAIN;
2002
2003 if (ret && ret != -ERESTARTSYS)
2004 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2005 __func__, ret, seqno, ring->get_seqno(dev, ring),
2006 dev_priv->next_seqno);
2007
2008 /* Directly dispatch request retiring. While we have the work queue
2009 * to handle this, the waiter on a request often wants an associated
2010 * buffer to have made it to the inactive list, and we would need
2011 * a separate wait queue to handle that.
2012 */
2013 if (ret == 0)
2014 i915_gem_retire_requests_ring(dev, ring);
2015
2016 return ret;
2017 }
2018
2019 /**
2020 * Waits for a sequence number to be signaled, and cleans up the
2021 * request and object lists appropriately for that event.
2022 */
2023 static int
2024 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2025 struct intel_ring_buffer *ring)
2026 {
2027 return i915_do_wait_request(dev, seqno, 1, ring);
2028 }
2029
2030 static void
2031 i915_gem_flush_ring(struct drm_device *dev,
2032 struct drm_file *file_priv,
2033 struct intel_ring_buffer *ring,
2034 uint32_t invalidate_domains,
2035 uint32_t flush_domains)
2036 {
2037 ring->flush(dev, ring, invalidate_domains, flush_domains);
2038 i915_gem_process_flushing_list(dev, flush_domains, ring);
2039 }
2040
2041 static void
2042 i915_gem_flush(struct drm_device *dev,
2043 struct drm_file *file_priv,
2044 uint32_t invalidate_domains,
2045 uint32_t flush_domains,
2046 uint32_t flush_rings)
2047 {
2048 drm_i915_private_t *dev_priv = dev->dev_private;
2049
2050 if (flush_domains & I915_GEM_DOMAIN_CPU)
2051 drm_agp_chipset_flush(dev);
2052
2053 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2054 if (flush_rings & RING_RENDER)
2055 i915_gem_flush_ring(dev, file_priv,
2056 &dev_priv->render_ring,
2057 invalidate_domains, flush_domains);
2058 if (flush_rings & RING_BSD)
2059 i915_gem_flush_ring(dev, file_priv,
2060 &dev_priv->bsd_ring,
2061 invalidate_domains, flush_domains);
2062 }
2063 }
2064
2065 /**
2066 * Ensures that all rendering to the object has completed and the object is
2067 * safe to unbind from the GTT or access from the CPU.
2068 */
2069 static int
2070 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2071 bool interruptible)
2072 {
2073 struct drm_device *dev = obj->dev;
2074 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2075 int ret;
2076
2077 /* This function only exists to support waiting for existing rendering,
2078 * not for emitting required flushes.
2079 */
2080 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2081
2082 /* If there is rendering queued on the buffer being evicted, wait for
2083 * it.
2084 */
2085 if (obj_priv->active) {
2086 ret = i915_do_wait_request(dev,
2087 obj_priv->last_rendering_seqno,
2088 interruptible,
2089 obj_priv->ring);
2090 if (ret)
2091 return ret;
2092 }
2093
2094 return 0;
2095 }
2096
2097 /**
2098 * Unbinds an object from the GTT aperture.
2099 */
2100 int
2101 i915_gem_object_unbind(struct drm_gem_object *obj)
2102 {
2103 struct drm_device *dev = obj->dev;
2104 struct drm_i915_private *dev_priv = dev->dev_private;
2105 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2106 int ret = 0;
2107
2108 if (obj_priv->gtt_space == NULL)
2109 return 0;
2110
2111 if (obj_priv->pin_count != 0) {
2112 DRM_ERROR("Attempting to unbind pinned buffer\n");
2113 return -EINVAL;
2114 }
2115
2116 /* blow away mappings if mapped through GTT */
2117 i915_gem_release_mmap(obj);
2118
2119 /* Move the object to the CPU domain to ensure that
2120 * any possible CPU writes while it's not in the GTT
2121 * are flushed when we go to remap it. This will
2122 * also ensure that all pending GPU writes are finished
2123 * before we unbind.
2124 */
2125 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2126 if (ret == -ERESTARTSYS)
2127 return ret;
2128 /* Continue on if we fail due to EIO, the GPU is hung so we
2129 * should be safe and we need to cleanup or else we might
2130 * cause memory corruption through use-after-free.
2131 */
2132 if (ret) {
2133 i915_gem_clflush_object(obj);
2134 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2135 }
2136
2137 /* release the fence reg _after_ flushing */
2138 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2139 i915_gem_clear_fence_reg(obj);
2140
2141 drm_unbind_agp(obj_priv->agp_mem);
2142 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2143
2144 i915_gem_object_put_pages(obj);
2145 BUG_ON(obj_priv->pages_refcount);
2146
2147 i915_gem_info_remove_gtt(dev_priv, obj->size);
2148 list_del_init(&obj_priv->list);
2149
2150 drm_mm_put_block(obj_priv->gtt_space);
2151 obj_priv->gtt_space = NULL;
2152 obj_priv->gtt_offset = 0;
2153
2154 if (i915_gem_object_is_purgeable(obj_priv))
2155 i915_gem_object_truncate(obj);
2156
2157 trace_i915_gem_object_unbind(obj);
2158
2159 return ret;
2160 }
2161
2162 static int i915_ring_idle(struct drm_device *dev,
2163 struct intel_ring_buffer *ring)
2164 {
2165 i915_gem_flush_ring(dev, NULL, ring,
2166 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2167 return i915_wait_request(dev,
2168 i915_gem_next_request_seqno(dev, ring),
2169 ring);
2170 }
2171
2172 int
2173 i915_gpu_idle(struct drm_device *dev)
2174 {
2175 drm_i915_private_t *dev_priv = dev->dev_private;
2176 bool lists_empty;
2177 int ret;
2178
2179 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2180 list_empty(&dev_priv->render_ring.active_list) &&
2181 list_empty(&dev_priv->bsd_ring.active_list));
2182 if (lists_empty)
2183 return 0;
2184
2185 /* Flush everything onto the inactive list. */
2186 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2187 if (ret)
2188 return ret;
2189
2190 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2191 if (ret)
2192 return ret;
2193
2194 return 0;
2195 }
2196
2197 static int
2198 i915_gem_object_get_pages(struct drm_gem_object *obj,
2199 gfp_t gfpmask)
2200 {
2201 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2202 int page_count, i;
2203 struct address_space *mapping;
2204 struct inode *inode;
2205 struct page *page;
2206
2207 BUG_ON(obj_priv->pages_refcount
2208 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2209
2210 if (obj_priv->pages_refcount++ != 0)
2211 return 0;
2212
2213 /* Get the list of pages out of our struct file. They'll be pinned
2214 * at this point until we release them.
2215 */
2216 page_count = obj->size / PAGE_SIZE;
2217 BUG_ON(obj_priv->pages != NULL);
2218 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2219 if (obj_priv->pages == NULL) {
2220 obj_priv->pages_refcount--;
2221 return -ENOMEM;
2222 }
2223
2224 inode = obj->filp->f_path.dentry->d_inode;
2225 mapping = inode->i_mapping;
2226 for (i = 0; i < page_count; i++) {
2227 page = read_cache_page_gfp(mapping, i,
2228 GFP_HIGHUSER |
2229 __GFP_COLD |
2230 __GFP_RECLAIMABLE |
2231 gfpmask);
2232 if (IS_ERR(page))
2233 goto err_pages;
2234
2235 obj_priv->pages[i] = page;
2236 }
2237
2238 if (obj_priv->tiling_mode != I915_TILING_NONE)
2239 i915_gem_object_do_bit_17_swizzle(obj);
2240
2241 return 0;
2242
2243 err_pages:
2244 while (i--)
2245 page_cache_release(obj_priv->pages[i]);
2246
2247 drm_free_large(obj_priv->pages);
2248 obj_priv->pages = NULL;
2249 obj_priv->pages_refcount--;
2250 return PTR_ERR(page);
2251 }
2252
2253 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2254 {
2255 struct drm_gem_object *obj = reg->obj;
2256 struct drm_device *dev = obj->dev;
2257 drm_i915_private_t *dev_priv = dev->dev_private;
2258 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2259 int regnum = obj_priv->fence_reg;
2260 uint64_t val;
2261
2262 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2263 0xfffff000) << 32;
2264 val |= obj_priv->gtt_offset & 0xfffff000;
2265 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2266 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2267
2268 if (obj_priv->tiling_mode == I915_TILING_Y)
2269 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2270 val |= I965_FENCE_REG_VALID;
2271
2272 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2273 }
2274
2275 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2276 {
2277 struct drm_gem_object *obj = reg->obj;
2278 struct drm_device *dev = obj->dev;
2279 drm_i915_private_t *dev_priv = dev->dev_private;
2280 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2281 int regnum = obj_priv->fence_reg;
2282 uint64_t val;
2283
2284 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2285 0xfffff000) << 32;
2286 val |= obj_priv->gtt_offset & 0xfffff000;
2287 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2288 if (obj_priv->tiling_mode == I915_TILING_Y)
2289 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2290 val |= I965_FENCE_REG_VALID;
2291
2292 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2293 }
2294
2295 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2296 {
2297 struct drm_gem_object *obj = reg->obj;
2298 struct drm_device *dev = obj->dev;
2299 drm_i915_private_t *dev_priv = dev->dev_private;
2300 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2301 int regnum = obj_priv->fence_reg;
2302 int tile_width;
2303 uint32_t fence_reg, val;
2304 uint32_t pitch_val;
2305
2306 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2307 (obj_priv->gtt_offset & (obj->size - 1))) {
2308 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2309 __func__, obj_priv->gtt_offset, obj->size);
2310 return;
2311 }
2312
2313 if (obj_priv->tiling_mode == I915_TILING_Y &&
2314 HAS_128_BYTE_Y_TILING(dev))
2315 tile_width = 128;
2316 else
2317 tile_width = 512;
2318
2319 /* Note: pitch better be a power of two tile widths */
2320 pitch_val = obj_priv->stride / tile_width;
2321 pitch_val = ffs(pitch_val) - 1;
2322
2323 if (obj_priv->tiling_mode == I915_TILING_Y &&
2324 HAS_128_BYTE_Y_TILING(dev))
2325 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2326 else
2327 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2328
2329 val = obj_priv->gtt_offset;
2330 if (obj_priv->tiling_mode == I915_TILING_Y)
2331 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2332 val |= I915_FENCE_SIZE_BITS(obj->size);
2333 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2334 val |= I830_FENCE_REG_VALID;
2335
2336 if (regnum < 8)
2337 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2338 else
2339 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2340 I915_WRITE(fence_reg, val);
2341 }
2342
2343 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2344 {
2345 struct drm_gem_object *obj = reg->obj;
2346 struct drm_device *dev = obj->dev;
2347 drm_i915_private_t *dev_priv = dev->dev_private;
2348 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2349 int regnum = obj_priv->fence_reg;
2350 uint32_t val;
2351 uint32_t pitch_val;
2352 uint32_t fence_size_bits;
2353
2354 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2355 (obj_priv->gtt_offset & (obj->size - 1))) {
2356 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2357 __func__, obj_priv->gtt_offset);
2358 return;
2359 }
2360
2361 pitch_val = obj_priv->stride / 128;
2362 pitch_val = ffs(pitch_val) - 1;
2363 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2364
2365 val = obj_priv->gtt_offset;
2366 if (obj_priv->tiling_mode == I915_TILING_Y)
2367 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2368 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2369 WARN_ON(fence_size_bits & ~0x00000f00);
2370 val |= fence_size_bits;
2371 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2372 val |= I830_FENCE_REG_VALID;
2373
2374 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2375 }
2376
2377 static int i915_find_fence_reg(struct drm_device *dev,
2378 bool interruptible)
2379 {
2380 struct drm_i915_fence_reg *reg = NULL;
2381 struct drm_i915_gem_object *obj_priv = NULL;
2382 struct drm_i915_private *dev_priv = dev->dev_private;
2383 struct drm_gem_object *obj = NULL;
2384 int i, avail, ret;
2385
2386 /* First try to find a free reg */
2387 avail = 0;
2388 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2389 reg = &dev_priv->fence_regs[i];
2390 if (!reg->obj)
2391 return i;
2392
2393 obj_priv = to_intel_bo(reg->obj);
2394 if (!obj_priv->pin_count)
2395 avail++;
2396 }
2397
2398 if (avail == 0)
2399 return -ENOSPC;
2400
2401 /* None available, try to steal one or wait for a user to finish */
2402 i = I915_FENCE_REG_NONE;
2403 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2404 lru_list) {
2405 obj = reg->obj;
2406 obj_priv = to_intel_bo(obj);
2407
2408 if (obj_priv->pin_count)
2409 continue;
2410
2411 /* found one! */
2412 i = obj_priv->fence_reg;
2413 break;
2414 }
2415
2416 BUG_ON(i == I915_FENCE_REG_NONE);
2417
2418 /* We only have a reference on obj from the active list. put_fence_reg
2419 * might drop that one, causing a use-after-free in it. So hold a
2420 * private reference to obj like the other callers of put_fence_reg
2421 * (set_tiling ioctl) do. */
2422 drm_gem_object_reference(obj);
2423 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2424 drm_gem_object_unreference(obj);
2425 if (ret != 0)
2426 return ret;
2427
2428 return i;
2429 }
2430
2431 /**
2432 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2433 * @obj: object to map through a fence reg
2434 *
2435 * When mapping objects through the GTT, userspace wants to be able to write
2436 * to them without having to worry about swizzling if the object is tiled.
2437 *
2438 * This function walks the fence regs looking for a free one for @obj,
2439 * stealing one if it can't find any.
2440 *
2441 * It then sets up the reg based on the object's properties: address, pitch
2442 * and tiling format.
2443 */
2444 int
2445 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2446 bool interruptible)
2447 {
2448 struct drm_device *dev = obj->dev;
2449 struct drm_i915_private *dev_priv = dev->dev_private;
2450 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2451 struct drm_i915_fence_reg *reg = NULL;
2452 int ret;
2453
2454 /* Just update our place in the LRU if our fence is getting used. */
2455 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2456 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2457 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2458 return 0;
2459 }
2460
2461 switch (obj_priv->tiling_mode) {
2462 case I915_TILING_NONE:
2463 WARN(1, "allocating a fence for non-tiled object?\n");
2464 break;
2465 case I915_TILING_X:
2466 if (!obj_priv->stride)
2467 return -EINVAL;
2468 WARN((obj_priv->stride & (512 - 1)),
2469 "object 0x%08x is X tiled but has non-512B pitch\n",
2470 obj_priv->gtt_offset);
2471 break;
2472 case I915_TILING_Y:
2473 if (!obj_priv->stride)
2474 return -EINVAL;
2475 WARN((obj_priv->stride & (128 - 1)),
2476 "object 0x%08x is Y tiled but has non-128B pitch\n",
2477 obj_priv->gtt_offset);
2478 break;
2479 }
2480
2481 ret = i915_find_fence_reg(dev, interruptible);
2482 if (ret < 0)
2483 return ret;
2484
2485 obj_priv->fence_reg = ret;
2486 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2487 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2488
2489 reg->obj = obj;
2490
2491 switch (INTEL_INFO(dev)->gen) {
2492 case 6:
2493 sandybridge_write_fence_reg(reg);
2494 break;
2495 case 5:
2496 case 4:
2497 i965_write_fence_reg(reg);
2498 break;
2499 case 3:
2500 i915_write_fence_reg(reg);
2501 break;
2502 case 2:
2503 i830_write_fence_reg(reg);
2504 break;
2505 }
2506
2507 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2508 obj_priv->tiling_mode);
2509
2510 return 0;
2511 }
2512
2513 /**
2514 * i915_gem_clear_fence_reg - clear out fence register info
2515 * @obj: object to clear
2516 *
2517 * Zeroes out the fence register itself and clears out the associated
2518 * data structures in dev_priv and obj_priv.
2519 */
2520 static void
2521 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2522 {
2523 struct drm_device *dev = obj->dev;
2524 drm_i915_private_t *dev_priv = dev->dev_private;
2525 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2526 struct drm_i915_fence_reg *reg =
2527 &dev_priv->fence_regs[obj_priv->fence_reg];
2528 uint32_t fence_reg;
2529
2530 switch (INTEL_INFO(dev)->gen) {
2531 case 6:
2532 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2533 (obj_priv->fence_reg * 8), 0);
2534 break;
2535 case 5:
2536 case 4:
2537 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2538 break;
2539 case 3:
2540 if (obj_priv->fence_reg >= 8)
2541 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2542 else
2543 case 2:
2544 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2545
2546 I915_WRITE(fence_reg, 0);
2547 break;
2548 }
2549
2550 reg->obj = NULL;
2551 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2552 list_del_init(&reg->lru_list);
2553 }
2554
2555 /**
2556 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2557 * to the buffer to finish, and then resets the fence register.
2558 * @obj: tiled object holding a fence register.
2559 * @bool: whether the wait upon the fence is interruptible
2560 *
2561 * Zeroes out the fence register itself and clears out the associated
2562 * data structures in dev_priv and obj_priv.
2563 */
2564 int
2565 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2566 bool interruptible)
2567 {
2568 struct drm_device *dev = obj->dev;
2569 struct drm_i915_private *dev_priv = dev->dev_private;
2570 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2571 struct drm_i915_fence_reg *reg;
2572
2573 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2574 return 0;
2575
2576 /* If we've changed tiling, GTT-mappings of the object
2577 * need to re-fault to ensure that the correct fence register
2578 * setup is in place.
2579 */
2580 i915_gem_release_mmap(obj);
2581
2582 /* On the i915, GPU access to tiled buffers is via a fence,
2583 * therefore we must wait for any outstanding access to complete
2584 * before clearing the fence.
2585 */
2586 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2587 if (reg->gpu) {
2588 int ret;
2589
2590 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2591 if (ret)
2592 return ret;
2593
2594 ret = i915_gem_object_wait_rendering(obj, interruptible);
2595 if (ret)
2596 return ret;
2597
2598 reg->gpu = false;
2599 }
2600
2601 i915_gem_object_flush_gtt_write_domain(obj);
2602 i915_gem_clear_fence_reg(obj);
2603
2604 return 0;
2605 }
2606
2607 /**
2608 * Finds free space in the GTT aperture and binds the object there.
2609 */
2610 static int
2611 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2612 {
2613 struct drm_device *dev = obj->dev;
2614 drm_i915_private_t *dev_priv = dev->dev_private;
2615 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2616 struct drm_mm_node *free_space;
2617 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2618 int ret;
2619
2620 if (obj_priv->madv != I915_MADV_WILLNEED) {
2621 DRM_ERROR("Attempting to bind a purgeable object\n");
2622 return -EINVAL;
2623 }
2624
2625 if (alignment == 0)
2626 alignment = i915_gem_get_gtt_alignment(obj);
2627 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2628 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2629 return -EINVAL;
2630 }
2631
2632 /* If the object is bigger than the entire aperture, reject it early
2633 * before evicting everything in a vain attempt to find space.
2634 */
2635 if (obj->size > dev_priv->mm.gtt_total) {
2636 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2637 return -E2BIG;
2638 }
2639
2640 search_free:
2641 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2642 obj->size, alignment, 0);
2643 if (free_space != NULL)
2644 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2645 alignment);
2646 if (obj_priv->gtt_space == NULL) {
2647 /* If the gtt is empty and we're still having trouble
2648 * fitting our object in, we're out of memory.
2649 */
2650 ret = i915_gem_evict_something(dev, obj->size, alignment);
2651 if (ret)
2652 return ret;
2653
2654 goto search_free;
2655 }
2656
2657 ret = i915_gem_object_get_pages(obj, gfpmask);
2658 if (ret) {
2659 drm_mm_put_block(obj_priv->gtt_space);
2660 obj_priv->gtt_space = NULL;
2661
2662 if (ret == -ENOMEM) {
2663 /* first try to clear up some space from the GTT */
2664 ret = i915_gem_evict_something(dev, obj->size,
2665 alignment);
2666 if (ret) {
2667 /* now try to shrink everyone else */
2668 if (gfpmask) {
2669 gfpmask = 0;
2670 goto search_free;
2671 }
2672
2673 return ret;
2674 }
2675
2676 goto search_free;
2677 }
2678
2679 return ret;
2680 }
2681
2682 /* Create an AGP memory structure pointing at our pages, and bind it
2683 * into the GTT.
2684 */
2685 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2686 obj_priv->pages,
2687 obj->size >> PAGE_SHIFT,
2688 obj_priv->gtt_space->start,
2689 obj_priv->agp_type);
2690 if (obj_priv->agp_mem == NULL) {
2691 i915_gem_object_put_pages(obj);
2692 drm_mm_put_block(obj_priv->gtt_space);
2693 obj_priv->gtt_space = NULL;
2694
2695 ret = i915_gem_evict_something(dev, obj->size, alignment);
2696 if (ret)
2697 return ret;
2698
2699 goto search_free;
2700 }
2701
2702 /* keep track of bounds object by adding it to the inactive list */
2703 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2704 i915_gem_info_add_gtt(dev_priv, obj->size);
2705
2706 /* Assert that the object is not currently in any GPU domain. As it
2707 * wasn't in the GTT, there shouldn't be any way it could have been in
2708 * a GPU cache
2709 */
2710 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2711 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2712
2713 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2714 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2715
2716 return 0;
2717 }
2718
2719 void
2720 i915_gem_clflush_object(struct drm_gem_object *obj)
2721 {
2722 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2723
2724 /* If we don't have a page list set up, then we're not pinned
2725 * to GPU, and we can ignore the cache flush because it'll happen
2726 * again at bind time.
2727 */
2728 if (obj_priv->pages == NULL)
2729 return;
2730
2731 trace_i915_gem_object_clflush(obj);
2732
2733 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2734 }
2735
2736 /** Flushes any GPU write domain for the object if it's dirty. */
2737 static int
2738 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2739 bool pipelined)
2740 {
2741 struct drm_device *dev = obj->dev;
2742 uint32_t old_write_domain;
2743
2744 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2745 return 0;
2746
2747 /* Queue the GPU write cache flushing we need. */
2748 old_write_domain = obj->write_domain;
2749 i915_gem_flush_ring(dev, NULL,
2750 to_intel_bo(obj)->ring,
2751 0, obj->write_domain);
2752 BUG_ON(obj->write_domain);
2753
2754 trace_i915_gem_object_change_domain(obj,
2755 obj->read_domains,
2756 old_write_domain);
2757
2758 if (pipelined)
2759 return 0;
2760
2761 return i915_gem_object_wait_rendering(obj, true);
2762 }
2763
2764 /** Flushes the GTT write domain for the object if it's dirty. */
2765 static void
2766 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2767 {
2768 uint32_t old_write_domain;
2769
2770 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2771 return;
2772
2773 /* No actual flushing is required for the GTT write domain. Writes
2774 * to it immediately go to main memory as far as we know, so there's
2775 * no chipset flush. It also doesn't land in render cache.
2776 */
2777 old_write_domain = obj->write_domain;
2778 obj->write_domain = 0;
2779
2780 trace_i915_gem_object_change_domain(obj,
2781 obj->read_domains,
2782 old_write_domain);
2783 }
2784
2785 /** Flushes the CPU write domain for the object if it's dirty. */
2786 static void
2787 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2788 {
2789 struct drm_device *dev = obj->dev;
2790 uint32_t old_write_domain;
2791
2792 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2793 return;
2794
2795 i915_gem_clflush_object(obj);
2796 drm_agp_chipset_flush(dev);
2797 old_write_domain = obj->write_domain;
2798 obj->write_domain = 0;
2799
2800 trace_i915_gem_object_change_domain(obj,
2801 obj->read_domains,
2802 old_write_domain);
2803 }
2804
2805 /**
2806 * Moves a single object to the GTT read, and possibly write domain.
2807 *
2808 * This function returns when the move is complete, including waiting on
2809 * flushes to occur.
2810 */
2811 int
2812 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2813 {
2814 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2815 uint32_t old_write_domain, old_read_domains;
2816 int ret;
2817
2818 /* Not valid to be called on unbound objects. */
2819 if (obj_priv->gtt_space == NULL)
2820 return -EINVAL;
2821
2822 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2823 if (ret != 0)
2824 return ret;
2825
2826 i915_gem_object_flush_cpu_write_domain(obj);
2827
2828 if (write) {
2829 ret = i915_gem_object_wait_rendering(obj, true);
2830 if (ret)
2831 return ret;
2832 }
2833
2834 old_write_domain = obj->write_domain;
2835 old_read_domains = obj->read_domains;
2836
2837 /* It should now be out of any other write domains, and we can update
2838 * the domain values for our changes.
2839 */
2840 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2841 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2842 if (write) {
2843 obj->read_domains = I915_GEM_DOMAIN_GTT;
2844 obj->write_domain = I915_GEM_DOMAIN_GTT;
2845 obj_priv->dirty = 1;
2846 }
2847
2848 trace_i915_gem_object_change_domain(obj,
2849 old_read_domains,
2850 old_write_domain);
2851
2852 return 0;
2853 }
2854
2855 /*
2856 * Prepare buffer for display plane. Use uninterruptible for possible flush
2857 * wait, as in modesetting process we're not supposed to be interrupted.
2858 */
2859 int
2860 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2861 bool pipelined)
2862 {
2863 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2864 uint32_t old_read_domains;
2865 int ret;
2866
2867 /* Not valid to be called on unbound objects. */
2868 if (obj_priv->gtt_space == NULL)
2869 return -EINVAL;
2870
2871 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2872 if (ret)
2873 return ret;
2874
2875 /* Currently, we are always called from an non-interruptible context. */
2876 if (!pipelined) {
2877 ret = i915_gem_object_wait_rendering(obj, false);
2878 if (ret)
2879 return ret;
2880 }
2881
2882 i915_gem_object_flush_cpu_write_domain(obj);
2883
2884 old_read_domains = obj->read_domains;
2885 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2886
2887 trace_i915_gem_object_change_domain(obj,
2888 old_read_domains,
2889 obj->write_domain);
2890
2891 return 0;
2892 }
2893
2894 /**
2895 * Moves a single object to the CPU read, and possibly write domain.
2896 *
2897 * This function returns when the move is complete, including waiting on
2898 * flushes to occur.
2899 */
2900 static int
2901 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2902 {
2903 uint32_t old_write_domain, old_read_domains;
2904 int ret;
2905
2906 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2907 if (ret != 0)
2908 return ret;
2909
2910 i915_gem_object_flush_gtt_write_domain(obj);
2911
2912 /* If we have a partially-valid cache of the object in the CPU,
2913 * finish invalidating it and free the per-page flags.
2914 */
2915 i915_gem_object_set_to_full_cpu_read_domain(obj);
2916
2917 if (write) {
2918 ret = i915_gem_object_wait_rendering(obj, true);
2919 if (ret)
2920 return ret;
2921 }
2922
2923 old_write_domain = obj->write_domain;
2924 old_read_domains = obj->read_domains;
2925
2926 /* Flush the CPU cache if it's still invalid. */
2927 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2928 i915_gem_clflush_object(obj);
2929
2930 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2931 }
2932
2933 /* It should now be out of any other write domains, and we can update
2934 * the domain values for our changes.
2935 */
2936 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2937
2938 /* If we're writing through the CPU, then the GPU read domains will
2939 * need to be invalidated at next use.
2940 */
2941 if (write) {
2942 obj->read_domains = I915_GEM_DOMAIN_CPU;
2943 obj->write_domain = I915_GEM_DOMAIN_CPU;
2944 }
2945
2946 trace_i915_gem_object_change_domain(obj,
2947 old_read_domains,
2948 old_write_domain);
2949
2950 return 0;
2951 }
2952
2953 /*
2954 * Set the next domain for the specified object. This
2955 * may not actually perform the necessary flushing/invaliding though,
2956 * as that may want to be batched with other set_domain operations
2957 *
2958 * This is (we hope) the only really tricky part of gem. The goal
2959 * is fairly simple -- track which caches hold bits of the object
2960 * and make sure they remain coherent. A few concrete examples may
2961 * help to explain how it works. For shorthand, we use the notation
2962 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2963 * a pair of read and write domain masks.
2964 *
2965 * Case 1: the batch buffer
2966 *
2967 * 1. Allocated
2968 * 2. Written by CPU
2969 * 3. Mapped to GTT
2970 * 4. Read by GPU
2971 * 5. Unmapped from GTT
2972 * 6. Freed
2973 *
2974 * Let's take these a step at a time
2975 *
2976 * 1. Allocated
2977 * Pages allocated from the kernel may still have
2978 * cache contents, so we set them to (CPU, CPU) always.
2979 * 2. Written by CPU (using pwrite)
2980 * The pwrite function calls set_domain (CPU, CPU) and
2981 * this function does nothing (as nothing changes)
2982 * 3. Mapped by GTT
2983 * This function asserts that the object is not
2984 * currently in any GPU-based read or write domains
2985 * 4. Read by GPU
2986 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2987 * As write_domain is zero, this function adds in the
2988 * current read domains (CPU+COMMAND, 0).
2989 * flush_domains is set to CPU.
2990 * invalidate_domains is set to COMMAND
2991 * clflush is run to get data out of the CPU caches
2992 * then i915_dev_set_domain calls i915_gem_flush to
2993 * emit an MI_FLUSH and drm_agp_chipset_flush
2994 * 5. Unmapped from GTT
2995 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2996 * flush_domains and invalidate_domains end up both zero
2997 * so no flushing/invalidating happens
2998 * 6. Freed
2999 * yay, done
3000 *
3001 * Case 2: The shared render buffer
3002 *
3003 * 1. Allocated
3004 * 2. Mapped to GTT
3005 * 3. Read/written by GPU
3006 * 4. set_domain to (CPU,CPU)
3007 * 5. Read/written by CPU
3008 * 6. Read/written by GPU
3009 *
3010 * 1. Allocated
3011 * Same as last example, (CPU, CPU)
3012 * 2. Mapped to GTT
3013 * Nothing changes (assertions find that it is not in the GPU)
3014 * 3. Read/written by GPU
3015 * execbuffer calls set_domain (RENDER, RENDER)
3016 * flush_domains gets CPU
3017 * invalidate_domains gets GPU
3018 * clflush (obj)
3019 * MI_FLUSH and drm_agp_chipset_flush
3020 * 4. set_domain (CPU, CPU)
3021 * flush_domains gets GPU
3022 * invalidate_domains gets CPU
3023 * wait_rendering (obj) to make sure all drawing is complete.
3024 * This will include an MI_FLUSH to get the data from GPU
3025 * to memory
3026 * clflush (obj) to invalidate the CPU cache
3027 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3028 * 5. Read/written by CPU
3029 * cache lines are loaded and dirtied
3030 * 6. Read written by GPU
3031 * Same as last GPU access
3032 *
3033 * Case 3: The constant buffer
3034 *
3035 * 1. Allocated
3036 * 2. Written by CPU
3037 * 3. Read by GPU
3038 * 4. Updated (written) by CPU again
3039 * 5. Read by GPU
3040 *
3041 * 1. Allocated
3042 * (CPU, CPU)
3043 * 2. Written by CPU
3044 * (CPU, CPU)
3045 * 3. Read by GPU
3046 * (CPU+RENDER, 0)
3047 * flush_domains = CPU
3048 * invalidate_domains = RENDER
3049 * clflush (obj)
3050 * MI_FLUSH
3051 * drm_agp_chipset_flush
3052 * 4. Updated (written) by CPU again
3053 * (CPU, CPU)
3054 * flush_domains = 0 (no previous write domain)
3055 * invalidate_domains = 0 (no new read domains)
3056 * 5. Read by GPU
3057 * (CPU+RENDER, 0)
3058 * flush_domains = CPU
3059 * invalidate_domains = RENDER
3060 * clflush (obj)
3061 * MI_FLUSH
3062 * drm_agp_chipset_flush
3063 */
3064 static void
3065 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3066 {
3067 struct drm_device *dev = obj->dev;
3068 struct drm_i915_private *dev_priv = dev->dev_private;
3069 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3070 uint32_t invalidate_domains = 0;
3071 uint32_t flush_domains = 0;
3072 uint32_t old_read_domains;
3073
3074 intel_mark_busy(dev, obj);
3075
3076 /*
3077 * If the object isn't moving to a new write domain,
3078 * let the object stay in multiple read domains
3079 */
3080 if (obj->pending_write_domain == 0)
3081 obj->pending_read_domains |= obj->read_domains;
3082 else
3083 obj_priv->dirty = 1;
3084
3085 /*
3086 * Flush the current write domain if
3087 * the new read domains don't match. Invalidate
3088 * any read domains which differ from the old
3089 * write domain
3090 */
3091 if (obj->write_domain &&
3092 obj->write_domain != obj->pending_read_domains) {
3093 flush_domains |= obj->write_domain;
3094 invalidate_domains |=
3095 obj->pending_read_domains & ~obj->write_domain;
3096 }
3097 /*
3098 * Invalidate any read caches which may have
3099 * stale data. That is, any new read domains.
3100 */
3101 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3102 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3103 i915_gem_clflush_object(obj);
3104
3105 old_read_domains = obj->read_domains;
3106
3107 /* The actual obj->write_domain will be updated with
3108 * pending_write_domain after we emit the accumulated flush for all
3109 * of our domain changes in execbuffers (which clears objects'
3110 * write_domains). So if we have a current write domain that we
3111 * aren't changing, set pending_write_domain to that.
3112 */
3113 if (flush_domains == 0 && obj->pending_write_domain == 0)
3114 obj->pending_write_domain = obj->write_domain;
3115 obj->read_domains = obj->pending_read_domains;
3116
3117 dev->invalidate_domains |= invalidate_domains;
3118 dev->flush_domains |= flush_domains;
3119 if (obj_priv->ring)
3120 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3121
3122 trace_i915_gem_object_change_domain(obj,
3123 old_read_domains,
3124 obj->write_domain);
3125 }
3126
3127 /**
3128 * Moves the object from a partially CPU read to a full one.
3129 *
3130 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3131 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3132 */
3133 static void
3134 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3135 {
3136 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3137
3138 if (!obj_priv->page_cpu_valid)
3139 return;
3140
3141 /* If we're partially in the CPU read domain, finish moving it in.
3142 */
3143 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3144 int i;
3145
3146 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3147 if (obj_priv->page_cpu_valid[i])
3148 continue;
3149 drm_clflush_pages(obj_priv->pages + i, 1);
3150 }
3151 }
3152
3153 /* Free the page_cpu_valid mappings which are now stale, whether
3154 * or not we've got I915_GEM_DOMAIN_CPU.
3155 */
3156 kfree(obj_priv->page_cpu_valid);
3157 obj_priv->page_cpu_valid = NULL;
3158 }
3159
3160 /**
3161 * Set the CPU read domain on a range of the object.
3162 *
3163 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3164 * not entirely valid. The page_cpu_valid member of the object flags which
3165 * pages have been flushed, and will be respected by
3166 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3167 * of the whole object.
3168 *
3169 * This function returns when the move is complete, including waiting on
3170 * flushes to occur.
3171 */
3172 static int
3173 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3174 uint64_t offset, uint64_t size)
3175 {
3176 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3177 uint32_t old_read_domains;
3178 int i, ret;
3179
3180 if (offset == 0 && size == obj->size)
3181 return i915_gem_object_set_to_cpu_domain(obj, 0);
3182
3183 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3184 if (ret != 0)
3185 return ret;
3186 i915_gem_object_flush_gtt_write_domain(obj);
3187
3188 /* If we're already fully in the CPU read domain, we're done. */
3189 if (obj_priv->page_cpu_valid == NULL &&
3190 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3191 return 0;
3192
3193 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3194 * newly adding I915_GEM_DOMAIN_CPU
3195 */
3196 if (obj_priv->page_cpu_valid == NULL) {
3197 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3198 GFP_KERNEL);
3199 if (obj_priv->page_cpu_valid == NULL)
3200 return -ENOMEM;
3201 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3202 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3203
3204 /* Flush the cache on any pages that are still invalid from the CPU's
3205 * perspective.
3206 */
3207 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3208 i++) {
3209 if (obj_priv->page_cpu_valid[i])
3210 continue;
3211
3212 drm_clflush_pages(obj_priv->pages + i, 1);
3213
3214 obj_priv->page_cpu_valid[i] = 1;
3215 }
3216
3217 /* It should now be out of any other write domains, and we can update
3218 * the domain values for our changes.
3219 */
3220 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3221
3222 old_read_domains = obj->read_domains;
3223 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3224
3225 trace_i915_gem_object_change_domain(obj,
3226 old_read_domains,
3227 obj->write_domain);
3228
3229 return 0;
3230 }
3231
3232 /**
3233 * Pin an object to the GTT and evaluate the relocations landing in it.
3234 */
3235 static int
3236 i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3237 struct drm_file *file_priv,
3238 struct drm_i915_gem_exec_object2 *entry)
3239 {
3240 struct drm_device *dev = obj->base.dev;
3241 drm_i915_private_t *dev_priv = dev->dev_private;
3242 struct drm_i915_gem_relocation_entry __user *user_relocs;
3243 struct drm_gem_object *target_obj = NULL;
3244 uint32_t target_handle = 0;
3245 int i, ret = 0;
3246
3247 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3248 for (i = 0; i < entry->relocation_count; i++) {
3249 struct drm_i915_gem_relocation_entry reloc;
3250 uint32_t target_offset;
3251
3252 if (__copy_from_user_inatomic(&reloc,
3253 user_relocs+i,
3254 sizeof(reloc))) {
3255 ret = -EFAULT;
3256 break;
3257 }
3258
3259 if (reloc.target_handle != target_handle) {
3260 drm_gem_object_unreference(target_obj);
3261
3262 target_obj = drm_gem_object_lookup(dev, file_priv,
3263 reloc.target_handle);
3264 if (target_obj == NULL) {
3265 ret = -ENOENT;
3266 break;
3267 }
3268
3269 target_handle = reloc.target_handle;
3270 }
3271 target_offset = to_intel_bo(target_obj)->gtt_offset;
3272
3273 #if WATCH_RELOC
3274 DRM_INFO("%s: obj %p offset %08x target %d "
3275 "read %08x write %08x gtt %08x "
3276 "presumed %08x delta %08x\n",
3277 __func__,
3278 obj,
3279 (int) reloc.offset,
3280 (int) reloc.target_handle,
3281 (int) reloc.read_domains,
3282 (int) reloc.write_domain,
3283 (int) target_offset,
3284 (int) reloc.presumed_offset,
3285 reloc.delta);
3286 #endif
3287
3288 /* The target buffer should have appeared before us in the
3289 * exec_object list, so it should have a GTT space bound by now.
3290 */
3291 if (target_offset == 0) {
3292 DRM_ERROR("No GTT space found for object %d\n",
3293 reloc.target_handle);
3294 ret = -EINVAL;
3295 break;
3296 }
3297
3298 /* Validate that the target is in a valid r/w GPU domain */
3299 if (reloc.write_domain & (reloc.write_domain - 1)) {
3300 DRM_ERROR("reloc with multiple write domains: "
3301 "obj %p target %d offset %d "
3302 "read %08x write %08x",
3303 obj, reloc.target_handle,
3304 (int) reloc.offset,
3305 reloc.read_domains,
3306 reloc.write_domain);
3307 ret = -EINVAL;
3308 break;
3309 }
3310 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3311 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3312 DRM_ERROR("reloc with read/write CPU domains: "
3313 "obj %p target %d offset %d "
3314 "read %08x write %08x",
3315 obj, reloc.target_handle,
3316 (int) reloc.offset,
3317 reloc.read_domains,
3318 reloc.write_domain);
3319 ret = -EINVAL;
3320 break;
3321 }
3322 if (reloc.write_domain && target_obj->pending_write_domain &&
3323 reloc.write_domain != target_obj->pending_write_domain) {
3324 DRM_ERROR("Write domain conflict: "
3325 "obj %p target %d offset %d "
3326 "new %08x old %08x\n",
3327 obj, reloc.target_handle,
3328 (int) reloc.offset,
3329 reloc.write_domain,
3330 target_obj->pending_write_domain);
3331 ret = -EINVAL;
3332 break;
3333 }
3334
3335 target_obj->pending_read_domains |= reloc.read_domains;
3336 target_obj->pending_write_domain = reloc.write_domain;
3337
3338 /* If the relocation already has the right value in it, no
3339 * more work needs to be done.
3340 */
3341 if (target_offset == reloc.presumed_offset)
3342 continue;
3343
3344 /* Check that the relocation address is valid... */
3345 if (reloc.offset > obj->base.size - 4) {
3346 DRM_ERROR("Relocation beyond object bounds: "
3347 "obj %p target %d offset %d size %d.\n",
3348 obj, reloc.target_handle,
3349 (int) reloc.offset, (int) obj->base.size);
3350 ret = -EINVAL;
3351 break;
3352 }
3353 if (reloc.offset & 3) {
3354 DRM_ERROR("Relocation not 4-byte aligned: "
3355 "obj %p target %d offset %d.\n",
3356 obj, reloc.target_handle,
3357 (int) reloc.offset);
3358 ret = -EINVAL;
3359 break;
3360 }
3361
3362 /* and points to somewhere within the target object. */
3363 if (reloc.delta >= target_obj->size) {
3364 DRM_ERROR("Relocation beyond target object bounds: "
3365 "obj %p target %d delta %d size %d.\n",
3366 obj, reloc.target_handle,
3367 (int) reloc.delta, (int) target_obj->size);
3368 ret = -EINVAL;
3369 break;
3370 }
3371
3372 reloc.delta += target_offset;
3373 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3374 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3375 char *vaddr;
3376
3377 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
3378 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3379 kunmap_atomic(vaddr, KM_USER0);
3380 } else {
3381 uint32_t __iomem *reloc_entry;
3382 void __iomem *reloc_page;
3383
3384 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3385 if (ret)
3386 break;
3387
3388 /* Map the page containing the relocation we're going to perform. */
3389 reloc.offset += obj->gtt_offset;
3390 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3391 reloc.offset & PAGE_MASK,
3392 KM_USER0);
3393 reloc_entry = (uint32_t __iomem *)
3394 (reloc_page + (reloc.offset & ~PAGE_MASK));
3395 iowrite32(reloc.delta, reloc_entry);
3396 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3397 }
3398 }
3399
3400 drm_gem_object_unreference(target_obj);
3401 return ret;
3402 }
3403
3404 static int
3405 i915_gem_execbuffer_pin(struct drm_device *dev,
3406 struct drm_file *file,
3407 struct drm_gem_object **object_list,
3408 struct drm_i915_gem_exec_object2 *exec_list,
3409 int count)
3410 {
3411 struct drm_i915_private *dev_priv = dev->dev_private;
3412 int ret, i, retry;
3413
3414 /* attempt to pin all of the buffers into the GTT */
3415 for (retry = 0; retry < 2; retry++) {
3416 ret = 0;
3417 for (i = 0; i < count; i++) {
3418 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3419 struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
3420 bool need_fence =
3421 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3422 obj->tiling_mode != I915_TILING_NONE;
3423
3424 /* Check fence reg constraints and rebind if necessary */
3425 if (need_fence &&
3426 !i915_gem_object_fence_offset_ok(&obj->base,
3427 obj->tiling_mode)) {
3428 ret = i915_gem_object_unbind(&obj->base);
3429 if (ret)
3430 break;
3431 }
3432
3433 ret = i915_gem_object_pin(&obj->base, entry->alignment);
3434 if (ret)
3435 break;
3436
3437 /*
3438 * Pre-965 chips need a fence register set up in order
3439 * to properly handle blits to/from tiled surfaces.
3440 */
3441 if (need_fence) {
3442 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3443 if (ret) {
3444 i915_gem_object_unpin(&obj->base);
3445 break;
3446 }
3447
3448 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3449 }
3450
3451 entry->offset = obj->gtt_offset;
3452 }
3453
3454 while (i--)
3455 i915_gem_object_unpin(object_list[i]);
3456
3457 if (ret == 0)
3458 break;
3459
3460 if (ret != -ENOSPC || retry)
3461 return ret;
3462
3463 ret = i915_gem_evict_everything(dev);
3464 if (ret)
3465 return ret;
3466 }
3467
3468 return 0;
3469 }
3470
3471 /* Throttle our rendering by waiting until the ring has completed our requests
3472 * emitted over 20 msec ago.
3473 *
3474 * Note that if we were to use the current jiffies each time around the loop,
3475 * we wouldn't escape the function with any frames outstanding if the time to
3476 * render a frame was over 20ms.
3477 *
3478 * This should get us reasonable parallelism between CPU and GPU but also
3479 * relatively low latency when blocking on a particular request to finish.
3480 */
3481 static int
3482 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3483 {
3484 struct drm_i915_private *dev_priv = dev->dev_private;
3485 struct drm_i915_file_private *file_priv = file->driver_priv;
3486 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3487 struct drm_i915_gem_request *request;
3488 struct intel_ring_buffer *ring = NULL;
3489 u32 seqno = 0;
3490 int ret;
3491
3492 spin_lock(&file_priv->mm.lock);
3493 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3494 if (time_after_eq(request->emitted_jiffies, recent_enough))
3495 break;
3496
3497 ring = request->ring;
3498 seqno = request->seqno;
3499 }
3500 spin_unlock(&file_priv->mm.lock);
3501
3502 if (seqno == 0)
3503 return 0;
3504
3505 ret = 0;
3506 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3507 /* And wait for the seqno passing without holding any locks and
3508 * causing extra latency for others. This is safe as the irq
3509 * generation is designed to be run atomically and so is
3510 * lockless.
3511 */
3512 ring->user_irq_get(dev, ring);
3513 ret = wait_event_interruptible(ring->irq_queue,
3514 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3515 || atomic_read(&dev_priv->mm.wedged));
3516 ring->user_irq_put(dev, ring);
3517
3518 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3519 ret = -EIO;
3520 }
3521
3522 if (ret == 0)
3523 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3524
3525 return ret;
3526 }
3527
3528 static int
3529 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3530 uint64_t exec_offset)
3531 {
3532 uint32_t exec_start, exec_len;
3533
3534 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3535 exec_len = (uint32_t) exec->batch_len;
3536
3537 if ((exec_start | exec_len) & 0x7)
3538 return -EINVAL;
3539
3540 if (!exec_start)
3541 return -EINVAL;
3542
3543 return 0;
3544 }
3545
3546 static int
3547 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3548 int count)
3549 {
3550 int i;
3551
3552 for (i = 0; i < count; i++) {
3553 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3554 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3555
3556 if (!access_ok(VERIFY_READ, ptr, length))
3557 return -EFAULT;
3558
3559 if (fault_in_pages_readable(ptr, length))
3560 return -EFAULT;
3561 }
3562
3563 return 0;
3564 }
3565
3566 static int
3567 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3568 struct drm_file *file,
3569 struct drm_i915_gem_execbuffer2 *args,
3570 struct drm_i915_gem_exec_object2 *exec_list)
3571 {
3572 drm_i915_private_t *dev_priv = dev->dev_private;
3573 struct drm_gem_object **object_list = NULL;
3574 struct drm_gem_object *batch_obj;
3575 struct drm_i915_gem_object *obj_priv;
3576 struct drm_clip_rect *cliprects = NULL;
3577 struct drm_i915_gem_request *request = NULL;
3578 int ret, i, flips;
3579 uint64_t exec_offset;
3580
3581 struct intel_ring_buffer *ring = NULL;
3582
3583 ret = i915_gem_check_is_wedged(dev);
3584 if (ret)
3585 return ret;
3586
3587 ret = validate_exec_list(exec_list, args->buffer_count);
3588 if (ret)
3589 return ret;
3590
3591 #if WATCH_EXEC
3592 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3593 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3594 #endif
3595 if (args->flags & I915_EXEC_BSD) {
3596 if (!HAS_BSD(dev)) {
3597 DRM_ERROR("execbuf with wrong flag\n");
3598 return -EINVAL;
3599 }
3600 ring = &dev_priv->bsd_ring;
3601 } else {
3602 ring = &dev_priv->render_ring;
3603 }
3604
3605 if (args->buffer_count < 1) {
3606 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3607 return -EINVAL;
3608 }
3609 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3610 if (object_list == NULL) {
3611 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3612 args->buffer_count);
3613 ret = -ENOMEM;
3614 goto pre_mutex_err;
3615 }
3616
3617 if (args->num_cliprects != 0) {
3618 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3619 GFP_KERNEL);
3620 if (cliprects == NULL) {
3621 ret = -ENOMEM;
3622 goto pre_mutex_err;
3623 }
3624
3625 ret = copy_from_user(cliprects,
3626 (struct drm_clip_rect __user *)
3627 (uintptr_t) args->cliprects_ptr,
3628 sizeof(*cliprects) * args->num_cliprects);
3629 if (ret != 0) {
3630 DRM_ERROR("copy %d cliprects failed: %d\n",
3631 args->num_cliprects, ret);
3632 ret = -EFAULT;
3633 goto pre_mutex_err;
3634 }
3635 }
3636
3637 request = kzalloc(sizeof(*request), GFP_KERNEL);
3638 if (request == NULL) {
3639 ret = -ENOMEM;
3640 goto pre_mutex_err;
3641 }
3642
3643 ret = i915_mutex_lock_interruptible(dev);
3644 if (ret)
3645 goto pre_mutex_err;
3646
3647 if (dev_priv->mm.suspended) {
3648 mutex_unlock(&dev->struct_mutex);
3649 ret = -EBUSY;
3650 goto pre_mutex_err;
3651 }
3652
3653 /* Look up object handles */
3654 for (i = 0; i < args->buffer_count; i++) {
3655 object_list[i] = drm_gem_object_lookup(dev, file,
3656 exec_list[i].handle);
3657 if (object_list[i] == NULL) {
3658 DRM_ERROR("Invalid object handle %d at index %d\n",
3659 exec_list[i].handle, i);
3660 /* prevent error path from reading uninitialized data */
3661 args->buffer_count = i + 1;
3662 ret = -ENOENT;
3663 goto err;
3664 }
3665
3666 obj_priv = to_intel_bo(object_list[i]);
3667 if (obj_priv->in_execbuffer) {
3668 DRM_ERROR("Object %p appears more than once in object list\n",
3669 object_list[i]);
3670 /* prevent error path from reading uninitialized data */
3671 args->buffer_count = i + 1;
3672 ret = -EINVAL;
3673 goto err;
3674 }
3675 obj_priv->in_execbuffer = true;
3676 }
3677
3678 /* Move the objects en-masse into the GTT, evicting if necessary. */
3679 ret = i915_gem_execbuffer_pin(dev, file,
3680 object_list, exec_list,
3681 args->buffer_count);
3682 if (ret)
3683 goto err;
3684
3685 /* The objects are in their final locations, apply the relocations. */
3686 for (i = 0; i < args->buffer_count; i++) {
3687 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3688 obj->base.pending_read_domains = 0;
3689 obj->base.pending_write_domain = 0;
3690 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3691 if (ret)
3692 goto err;
3693 }
3694
3695 /* Set the pending read domains for the batch buffer to COMMAND */
3696 batch_obj = object_list[args->buffer_count-1];
3697 if (batch_obj->pending_write_domain) {
3698 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3699 ret = -EINVAL;
3700 goto err;
3701 }
3702 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3703
3704 /* Sanity check the batch buffer */
3705 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3706 ret = i915_gem_check_execbuffer(args, exec_offset);
3707 if (ret != 0) {
3708 DRM_ERROR("execbuf with invalid offset/length\n");
3709 goto err;
3710 }
3711
3712 /* Zero the global flush/invalidate flags. These
3713 * will be modified as new domains are computed
3714 * for each object
3715 */
3716 dev->invalidate_domains = 0;
3717 dev->flush_domains = 0;
3718 dev_priv->mm.flush_rings = 0;
3719
3720 for (i = 0; i < args->buffer_count; i++) {
3721 struct drm_gem_object *obj = object_list[i];
3722
3723 /* Compute new gpu domains and update invalidate/flush */
3724 i915_gem_object_set_to_gpu_domain(obj);
3725 }
3726
3727 if (dev->invalidate_domains | dev->flush_domains) {
3728 #if WATCH_EXEC
3729 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3730 __func__,
3731 dev->invalidate_domains,
3732 dev->flush_domains);
3733 #endif
3734 i915_gem_flush(dev, file,
3735 dev->invalidate_domains,
3736 dev->flush_domains,
3737 dev_priv->mm.flush_rings);
3738 }
3739
3740 for (i = 0; i < args->buffer_count; i++) {
3741 struct drm_gem_object *obj = object_list[i];
3742 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3743 uint32_t old_write_domain = obj->write_domain;
3744
3745 obj->write_domain = obj->pending_write_domain;
3746 if (obj->write_domain)
3747 list_move_tail(&obj_priv->gpu_write_list,
3748 &dev_priv->mm.gpu_write_list);
3749
3750 trace_i915_gem_object_change_domain(obj,
3751 obj->read_domains,
3752 old_write_domain);
3753 }
3754
3755 #if WATCH_COHERENCY
3756 for (i = 0; i < args->buffer_count; i++) {
3757 i915_gem_object_check_coherency(object_list[i],
3758 exec_list[i].handle);
3759 }
3760 #endif
3761
3762 #if WATCH_EXEC
3763 i915_gem_dump_object(batch_obj,
3764 args->batch_len,
3765 __func__,
3766 ~0);
3767 #endif
3768
3769 /* Check for any pending flips. As we only maintain a flip queue depth
3770 * of 1, we can simply insert a WAIT for the next display flip prior
3771 * to executing the batch and avoid stalling the CPU.
3772 */
3773 flips = 0;
3774 for (i = 0; i < args->buffer_count; i++) {
3775 if (object_list[i]->write_domain)
3776 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3777 }
3778 if (flips) {
3779 int plane, flip_mask;
3780
3781 for (plane = 0; flips >> plane; plane++) {
3782 if (((flips >> plane) & 1) == 0)
3783 continue;
3784
3785 if (plane)
3786 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3787 else
3788 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3789
3790 intel_ring_begin(dev, ring, 2);
3791 intel_ring_emit(dev, ring,
3792 MI_WAIT_FOR_EVENT | flip_mask);
3793 intel_ring_emit(dev, ring, MI_NOOP);
3794 intel_ring_advance(dev, ring);
3795 }
3796 }
3797
3798 /* Exec the batchbuffer */
3799 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3800 cliprects, exec_offset);
3801 if (ret) {
3802 DRM_ERROR("dispatch failed %d\n", ret);
3803 goto err;
3804 }
3805
3806 /*
3807 * Ensure that the commands in the batch buffer are
3808 * finished before the interrupt fires
3809 */
3810 i915_retire_commands(dev, ring);
3811
3812 for (i = 0; i < args->buffer_count; i++) {
3813 struct drm_gem_object *obj = object_list[i];
3814 obj_priv = to_intel_bo(obj);
3815
3816 i915_gem_object_move_to_active(obj, ring);
3817 }
3818
3819 i915_add_request(dev, file, request, ring);
3820 request = NULL;
3821
3822 err:
3823 for (i = 0; i < args->buffer_count; i++) {
3824 if (object_list[i]) {
3825 obj_priv = to_intel_bo(object_list[i]);
3826 obj_priv->in_execbuffer = false;
3827 }
3828 drm_gem_object_unreference(object_list[i]);
3829 }
3830
3831 mutex_unlock(&dev->struct_mutex);
3832
3833 pre_mutex_err:
3834 drm_free_large(object_list);
3835 kfree(cliprects);
3836 kfree(request);
3837
3838 return ret;
3839 }
3840
3841 /*
3842 * Legacy execbuffer just creates an exec2 list from the original exec object
3843 * list array and passes it to the real function.
3844 */
3845 int
3846 i915_gem_execbuffer(struct drm_device *dev, void *data,
3847 struct drm_file *file_priv)
3848 {
3849 struct drm_i915_gem_execbuffer *args = data;
3850 struct drm_i915_gem_execbuffer2 exec2;
3851 struct drm_i915_gem_exec_object *exec_list = NULL;
3852 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3853 int ret, i;
3854
3855 #if WATCH_EXEC
3856 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3857 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3858 #endif
3859
3860 if (args->buffer_count < 1) {
3861 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3862 return -EINVAL;
3863 }
3864
3865 /* Copy in the exec list from userland */
3866 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3867 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3868 if (exec_list == NULL || exec2_list == NULL) {
3869 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3870 args->buffer_count);
3871 drm_free_large(exec_list);
3872 drm_free_large(exec2_list);
3873 return -ENOMEM;
3874 }
3875 ret = copy_from_user(exec_list,
3876 (struct drm_i915_relocation_entry __user *)
3877 (uintptr_t) args->buffers_ptr,
3878 sizeof(*exec_list) * args->buffer_count);
3879 if (ret != 0) {
3880 DRM_ERROR("copy %d exec entries failed %d\n",
3881 args->buffer_count, ret);
3882 drm_free_large(exec_list);
3883 drm_free_large(exec2_list);
3884 return -EFAULT;
3885 }
3886
3887 for (i = 0; i < args->buffer_count; i++) {
3888 exec2_list[i].handle = exec_list[i].handle;
3889 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3890 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3891 exec2_list[i].alignment = exec_list[i].alignment;
3892 exec2_list[i].offset = exec_list[i].offset;
3893 if (INTEL_INFO(dev)->gen < 4)
3894 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3895 else
3896 exec2_list[i].flags = 0;
3897 }
3898
3899 exec2.buffers_ptr = args->buffers_ptr;
3900 exec2.buffer_count = args->buffer_count;
3901 exec2.batch_start_offset = args->batch_start_offset;
3902 exec2.batch_len = args->batch_len;
3903 exec2.DR1 = args->DR1;
3904 exec2.DR4 = args->DR4;
3905 exec2.num_cliprects = args->num_cliprects;
3906 exec2.cliprects_ptr = args->cliprects_ptr;
3907 exec2.flags = I915_EXEC_RENDER;
3908
3909 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3910 if (!ret) {
3911 /* Copy the new buffer offsets back to the user's exec list. */
3912 for (i = 0; i < args->buffer_count; i++)
3913 exec_list[i].offset = exec2_list[i].offset;
3914 /* ... and back out to userspace */
3915 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3916 (uintptr_t) args->buffers_ptr,
3917 exec_list,
3918 sizeof(*exec_list) * args->buffer_count);
3919 if (ret) {
3920 ret = -EFAULT;
3921 DRM_ERROR("failed to copy %d exec entries "
3922 "back to user (%d)\n",
3923 args->buffer_count, ret);
3924 }
3925 }
3926
3927 drm_free_large(exec_list);
3928 drm_free_large(exec2_list);
3929 return ret;
3930 }
3931
3932 int
3933 i915_gem_execbuffer2(struct drm_device *dev, void *data,
3934 struct drm_file *file_priv)
3935 {
3936 struct drm_i915_gem_execbuffer2 *args = data;
3937 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3938 int ret;
3939
3940 #if WATCH_EXEC
3941 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3942 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3943 #endif
3944
3945 if (args->buffer_count < 1) {
3946 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3947 return -EINVAL;
3948 }
3949
3950 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3951 if (exec2_list == NULL) {
3952 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3953 args->buffer_count);
3954 return -ENOMEM;
3955 }
3956 ret = copy_from_user(exec2_list,
3957 (struct drm_i915_relocation_entry __user *)
3958 (uintptr_t) args->buffers_ptr,
3959 sizeof(*exec2_list) * args->buffer_count);
3960 if (ret != 0) {
3961 DRM_ERROR("copy %d exec entries failed %d\n",
3962 args->buffer_count, ret);
3963 drm_free_large(exec2_list);
3964 return -EFAULT;
3965 }
3966
3967 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
3968 if (!ret) {
3969 /* Copy the new buffer offsets back to the user's exec list. */
3970 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3971 (uintptr_t) args->buffers_ptr,
3972 exec2_list,
3973 sizeof(*exec2_list) * args->buffer_count);
3974 if (ret) {
3975 ret = -EFAULT;
3976 DRM_ERROR("failed to copy %d exec entries "
3977 "back to user (%d)\n",
3978 args->buffer_count, ret);
3979 }
3980 }
3981
3982 drm_free_large(exec2_list);
3983 return ret;
3984 }
3985
3986 int
3987 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3988 {
3989 struct drm_device *dev = obj->dev;
3990 struct drm_i915_private *dev_priv = dev->dev_private;
3991 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3992 int ret;
3993
3994 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3995 WARN_ON(i915_verify_lists(dev));
3996
3997 if (obj_priv->gtt_space != NULL) {
3998 if (alignment == 0)
3999 alignment = i915_gem_get_gtt_alignment(obj);
4000 if (obj_priv->gtt_offset & (alignment - 1)) {
4001 WARN(obj_priv->pin_count,
4002 "bo is already pinned with incorrect alignment:"
4003 " offset=%x, req.alignment=%x\n",
4004 obj_priv->gtt_offset, alignment);
4005 ret = i915_gem_object_unbind(obj);
4006 if (ret)
4007 return ret;
4008 }
4009 }
4010
4011 if (obj_priv->gtt_space == NULL) {
4012 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4013 if (ret)
4014 return ret;
4015 }
4016
4017 obj_priv->pin_count++;
4018
4019 /* If the object is not active and not pending a flush,
4020 * remove it from the inactive list
4021 */
4022 if (obj_priv->pin_count == 1) {
4023 i915_gem_info_add_pin(dev_priv, obj->size);
4024 if (!obj_priv->active)
4025 list_move_tail(&obj_priv->list,
4026 &dev_priv->mm.pinned_list);
4027 }
4028
4029 WARN_ON(i915_verify_lists(dev));
4030 return 0;
4031 }
4032
4033 void
4034 i915_gem_object_unpin(struct drm_gem_object *obj)
4035 {
4036 struct drm_device *dev = obj->dev;
4037 drm_i915_private_t *dev_priv = dev->dev_private;
4038 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4039
4040 WARN_ON(i915_verify_lists(dev));
4041 obj_priv->pin_count--;
4042 BUG_ON(obj_priv->pin_count < 0);
4043 BUG_ON(obj_priv->gtt_space == NULL);
4044
4045 /* If the object is no longer pinned, and is
4046 * neither active nor being flushed, then stick it on
4047 * the inactive list
4048 */
4049 if (obj_priv->pin_count == 0) {
4050 if (!obj_priv->active)
4051 list_move_tail(&obj_priv->list,
4052 &dev_priv->mm.inactive_list);
4053 i915_gem_info_remove_pin(dev_priv, obj->size);
4054 }
4055 WARN_ON(i915_verify_lists(dev));
4056 }
4057
4058 int
4059 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4060 struct drm_file *file_priv)
4061 {
4062 struct drm_i915_gem_pin *args = data;
4063 struct drm_gem_object *obj;
4064 struct drm_i915_gem_object *obj_priv;
4065 int ret;
4066
4067 ret = i915_mutex_lock_interruptible(dev);
4068 if (ret)
4069 return ret;
4070
4071 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4072 if (obj == NULL) {
4073 ret = -ENOENT;
4074 goto unlock;
4075 }
4076 obj_priv = to_intel_bo(obj);
4077
4078 if (obj_priv->madv != I915_MADV_WILLNEED) {
4079 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4080 ret = -EINVAL;
4081 goto out;
4082 }
4083
4084 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4085 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4086 args->handle);
4087 ret = -EINVAL;
4088 goto out;
4089 }
4090
4091 obj_priv->user_pin_count++;
4092 obj_priv->pin_filp = file_priv;
4093 if (obj_priv->user_pin_count == 1) {
4094 ret = i915_gem_object_pin(obj, args->alignment);
4095 if (ret)
4096 goto out;
4097 }
4098
4099 /* XXX - flush the CPU caches for pinned objects
4100 * as the X server doesn't manage domains yet
4101 */
4102 i915_gem_object_flush_cpu_write_domain(obj);
4103 args->offset = obj_priv->gtt_offset;
4104 out:
4105 drm_gem_object_unreference(obj);
4106 unlock:
4107 mutex_unlock(&dev->struct_mutex);
4108 return ret;
4109 }
4110
4111 int
4112 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4113 struct drm_file *file_priv)
4114 {
4115 struct drm_i915_gem_pin *args = data;
4116 struct drm_gem_object *obj;
4117 struct drm_i915_gem_object *obj_priv;
4118 int ret;
4119
4120 ret = i915_mutex_lock_interruptible(dev);
4121 if (ret)
4122 return ret;
4123
4124 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4125 if (obj == NULL) {
4126 ret = -ENOENT;
4127 goto unlock;
4128 }
4129 obj_priv = to_intel_bo(obj);
4130
4131 if (obj_priv->pin_filp != file_priv) {
4132 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4133 args->handle);
4134 ret = -EINVAL;
4135 goto out;
4136 }
4137 obj_priv->user_pin_count--;
4138 if (obj_priv->user_pin_count == 0) {
4139 obj_priv->pin_filp = NULL;
4140 i915_gem_object_unpin(obj);
4141 }
4142
4143 out:
4144 drm_gem_object_unreference(obj);
4145 unlock:
4146 mutex_unlock(&dev->struct_mutex);
4147 return ret;
4148 }
4149
4150 int
4151 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4152 struct drm_file *file_priv)
4153 {
4154 struct drm_i915_gem_busy *args = data;
4155 struct drm_gem_object *obj;
4156 struct drm_i915_gem_object *obj_priv;
4157 int ret;
4158
4159 ret = i915_mutex_lock_interruptible(dev);
4160 if (ret)
4161 return ret;
4162
4163 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4164 if (obj == NULL) {
4165 ret = -ENOENT;
4166 goto unlock;
4167 }
4168 obj_priv = to_intel_bo(obj);
4169
4170 /* Count all active objects as busy, even if they are currently not used
4171 * by the gpu. Users of this interface expect objects to eventually
4172 * become non-busy without any further actions, therefore emit any
4173 * necessary flushes here.
4174 */
4175 args->busy = obj_priv->active;
4176 if (args->busy) {
4177 /* Unconditionally flush objects, even when the gpu still uses this
4178 * object. Userspace calling this function indicates that it wants to
4179 * use this buffer rather sooner than later, so issuing the required
4180 * flush earlier is beneficial.
4181 */
4182 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4183 i915_gem_flush_ring(dev, file_priv,
4184 obj_priv->ring,
4185 0, obj->write_domain);
4186
4187 /* Update the active list for the hardware's current position.
4188 * Otherwise this only updates on a delayed timer or when irqs
4189 * are actually unmasked, and our working set ends up being
4190 * larger than required.
4191 */
4192 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4193
4194 args->busy = obj_priv->active;
4195 }
4196
4197 drm_gem_object_unreference(obj);
4198 unlock:
4199 mutex_unlock(&dev->struct_mutex);
4200 return ret;
4201 }
4202
4203 int
4204 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4205 struct drm_file *file_priv)
4206 {
4207 return i915_gem_ring_throttle(dev, file_priv);
4208 }
4209
4210 int
4211 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4212 struct drm_file *file_priv)
4213 {
4214 struct drm_i915_gem_madvise *args = data;
4215 struct drm_gem_object *obj;
4216 struct drm_i915_gem_object *obj_priv;
4217 int ret;
4218
4219 switch (args->madv) {
4220 case I915_MADV_DONTNEED:
4221 case I915_MADV_WILLNEED:
4222 break;
4223 default:
4224 return -EINVAL;
4225 }
4226
4227 ret = i915_mutex_lock_interruptible(dev);
4228 if (ret)
4229 return ret;
4230
4231 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4232 if (obj == NULL) {
4233 ret = -ENOENT;
4234 goto unlock;
4235 }
4236 obj_priv = to_intel_bo(obj);
4237
4238 if (obj_priv->pin_count) {
4239 ret = -EINVAL;
4240 goto out;
4241 }
4242
4243 if (obj_priv->madv != __I915_MADV_PURGED)
4244 obj_priv->madv = args->madv;
4245
4246 /* if the object is no longer bound, discard its backing storage */
4247 if (i915_gem_object_is_purgeable(obj_priv) &&
4248 obj_priv->gtt_space == NULL)
4249 i915_gem_object_truncate(obj);
4250
4251 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4252
4253 out:
4254 drm_gem_object_unreference(obj);
4255 unlock:
4256 mutex_unlock(&dev->struct_mutex);
4257 return ret;
4258 }
4259
4260 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4261 size_t size)
4262 {
4263 struct drm_i915_private *dev_priv = dev->dev_private;
4264 struct drm_i915_gem_object *obj;
4265
4266 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4267 if (obj == NULL)
4268 return NULL;
4269
4270 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4271 kfree(obj);
4272 return NULL;
4273 }
4274
4275 i915_gem_info_add_obj(dev_priv, size);
4276
4277 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4278 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4279
4280 obj->agp_type = AGP_USER_MEMORY;
4281 obj->base.driver_private = NULL;
4282 obj->fence_reg = I915_FENCE_REG_NONE;
4283 INIT_LIST_HEAD(&obj->list);
4284 INIT_LIST_HEAD(&obj->gpu_write_list);
4285 obj->madv = I915_MADV_WILLNEED;
4286
4287 return &obj->base;
4288 }
4289
4290 int i915_gem_init_object(struct drm_gem_object *obj)
4291 {
4292 BUG();
4293
4294 return 0;
4295 }
4296
4297 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4298 {
4299 struct drm_device *dev = obj->dev;
4300 drm_i915_private_t *dev_priv = dev->dev_private;
4301 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4302 int ret;
4303
4304 ret = i915_gem_object_unbind(obj);
4305 if (ret == -ERESTARTSYS) {
4306 list_move(&obj_priv->list,
4307 &dev_priv->mm.deferred_free_list);
4308 return;
4309 }
4310
4311 if (obj_priv->mmap_offset)
4312 i915_gem_free_mmap_offset(obj);
4313
4314 drm_gem_object_release(obj);
4315 i915_gem_info_remove_obj(dev_priv, obj->size);
4316
4317 kfree(obj_priv->page_cpu_valid);
4318 kfree(obj_priv->bit_17);
4319 kfree(obj_priv);
4320 }
4321
4322 void i915_gem_free_object(struct drm_gem_object *obj)
4323 {
4324 struct drm_device *dev = obj->dev;
4325 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4326
4327 trace_i915_gem_object_destroy(obj);
4328
4329 while (obj_priv->pin_count > 0)
4330 i915_gem_object_unpin(obj);
4331
4332 if (obj_priv->phys_obj)
4333 i915_gem_detach_phys_object(dev, obj);
4334
4335 i915_gem_free_object_tail(obj);
4336 }
4337
4338 int
4339 i915_gem_idle(struct drm_device *dev)
4340 {
4341 drm_i915_private_t *dev_priv = dev->dev_private;
4342 int ret;
4343
4344 mutex_lock(&dev->struct_mutex);
4345
4346 if (dev_priv->mm.suspended) {
4347 mutex_unlock(&dev->struct_mutex);
4348 return 0;
4349 }
4350
4351 ret = i915_gpu_idle(dev);
4352 if (ret) {
4353 mutex_unlock(&dev->struct_mutex);
4354 return ret;
4355 }
4356
4357 /* Under UMS, be paranoid and evict. */
4358 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4359 ret = i915_gem_evict_inactive(dev);
4360 if (ret) {
4361 mutex_unlock(&dev->struct_mutex);
4362 return ret;
4363 }
4364 }
4365
4366 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4367 * We need to replace this with a semaphore, or something.
4368 * And not confound mm.suspended!
4369 */
4370 dev_priv->mm.suspended = 1;
4371 del_timer_sync(&dev_priv->hangcheck_timer);
4372
4373 i915_kernel_lost_context(dev);
4374 i915_gem_cleanup_ringbuffer(dev);
4375
4376 mutex_unlock(&dev->struct_mutex);
4377
4378 /* Cancel the retire work handler, which should be idle now. */
4379 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4380
4381 return 0;
4382 }
4383
4384 /*
4385 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4386 * over cache flushing.
4387 */
4388 static int
4389 i915_gem_init_pipe_control(struct drm_device *dev)
4390 {
4391 drm_i915_private_t *dev_priv = dev->dev_private;
4392 struct drm_gem_object *obj;
4393 struct drm_i915_gem_object *obj_priv;
4394 int ret;
4395
4396 obj = i915_gem_alloc_object(dev, 4096);
4397 if (obj == NULL) {
4398 DRM_ERROR("Failed to allocate seqno page\n");
4399 ret = -ENOMEM;
4400 goto err;
4401 }
4402 obj_priv = to_intel_bo(obj);
4403 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4404
4405 ret = i915_gem_object_pin(obj, 4096);
4406 if (ret)
4407 goto err_unref;
4408
4409 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4410 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4411 if (dev_priv->seqno_page == NULL)
4412 goto err_unpin;
4413
4414 dev_priv->seqno_obj = obj;
4415 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4416
4417 return 0;
4418
4419 err_unpin:
4420 i915_gem_object_unpin(obj);
4421 err_unref:
4422 drm_gem_object_unreference(obj);
4423 err:
4424 return ret;
4425 }
4426
4427
4428 static void
4429 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4430 {
4431 drm_i915_private_t *dev_priv = dev->dev_private;
4432 struct drm_gem_object *obj;
4433 struct drm_i915_gem_object *obj_priv;
4434
4435 obj = dev_priv->seqno_obj;
4436 obj_priv = to_intel_bo(obj);
4437 kunmap(obj_priv->pages[0]);
4438 i915_gem_object_unpin(obj);
4439 drm_gem_object_unreference(obj);
4440 dev_priv->seqno_obj = NULL;
4441
4442 dev_priv->seqno_page = NULL;
4443 }
4444
4445 int
4446 i915_gem_init_ringbuffer(struct drm_device *dev)
4447 {
4448 drm_i915_private_t *dev_priv = dev->dev_private;
4449 int ret;
4450
4451 if (HAS_PIPE_CONTROL(dev)) {
4452 ret = i915_gem_init_pipe_control(dev);
4453 if (ret)
4454 return ret;
4455 }
4456
4457 ret = intel_init_render_ring_buffer(dev);
4458 if (ret)
4459 goto cleanup_pipe_control;
4460
4461 if (HAS_BSD(dev)) {
4462 ret = intel_init_bsd_ring_buffer(dev);
4463 if (ret)
4464 goto cleanup_render_ring;
4465 }
4466
4467 dev_priv->next_seqno = 1;
4468
4469 return 0;
4470
4471 cleanup_render_ring:
4472 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4473 cleanup_pipe_control:
4474 if (HAS_PIPE_CONTROL(dev))
4475 i915_gem_cleanup_pipe_control(dev);
4476 return ret;
4477 }
4478
4479 void
4480 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4481 {
4482 drm_i915_private_t *dev_priv = dev->dev_private;
4483
4484 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4485 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4486 if (HAS_PIPE_CONTROL(dev))
4487 i915_gem_cleanup_pipe_control(dev);
4488 }
4489
4490 int
4491 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4492 struct drm_file *file_priv)
4493 {
4494 drm_i915_private_t *dev_priv = dev->dev_private;
4495 int ret;
4496
4497 if (drm_core_check_feature(dev, DRIVER_MODESET))
4498 return 0;
4499
4500 if (atomic_read(&dev_priv->mm.wedged)) {
4501 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4502 atomic_set(&dev_priv->mm.wedged, 0);
4503 }
4504
4505 mutex_lock(&dev->struct_mutex);
4506 dev_priv->mm.suspended = 0;
4507
4508 ret = i915_gem_init_ringbuffer(dev);
4509 if (ret != 0) {
4510 mutex_unlock(&dev->struct_mutex);
4511 return ret;
4512 }
4513
4514 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4515 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4516 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4517 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4518 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4519 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4520 mutex_unlock(&dev->struct_mutex);
4521
4522 ret = drm_irq_install(dev);
4523 if (ret)
4524 goto cleanup_ringbuffer;
4525
4526 return 0;
4527
4528 cleanup_ringbuffer:
4529 mutex_lock(&dev->struct_mutex);
4530 i915_gem_cleanup_ringbuffer(dev);
4531 dev_priv->mm.suspended = 1;
4532 mutex_unlock(&dev->struct_mutex);
4533
4534 return ret;
4535 }
4536
4537 int
4538 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4539 struct drm_file *file_priv)
4540 {
4541 if (drm_core_check_feature(dev, DRIVER_MODESET))
4542 return 0;
4543
4544 drm_irq_uninstall(dev);
4545 return i915_gem_idle(dev);
4546 }
4547
4548 void
4549 i915_gem_lastclose(struct drm_device *dev)
4550 {
4551 int ret;
4552
4553 if (drm_core_check_feature(dev, DRIVER_MODESET))
4554 return;
4555
4556 ret = i915_gem_idle(dev);
4557 if (ret)
4558 DRM_ERROR("failed to idle hardware: %d\n", ret);
4559 }
4560
4561 void
4562 i915_gem_load(struct drm_device *dev)
4563 {
4564 int i;
4565 drm_i915_private_t *dev_priv = dev->dev_private;
4566
4567 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4568 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4569 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4570 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4571 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4572 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4573 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4574 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4575 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4576 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4577 for (i = 0; i < 16; i++)
4578 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4579 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4580 i915_gem_retire_work_handler);
4581 init_completion(&dev_priv->error_completion);
4582 spin_lock(&shrink_list_lock);
4583 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4584 spin_unlock(&shrink_list_lock);
4585
4586 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4587 if (IS_GEN3(dev)) {
4588 u32 tmp = I915_READ(MI_ARB_STATE);
4589 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4590 /* arb state is a masked write, so set bit + bit in mask */
4591 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4592 I915_WRITE(MI_ARB_STATE, tmp);
4593 }
4594 }
4595
4596 /* Old X drivers will take 0-2 for front, back, depth buffers */
4597 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4598 dev_priv->fence_reg_start = 3;
4599
4600 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4601 dev_priv->num_fence_regs = 16;
4602 else
4603 dev_priv->num_fence_regs = 8;
4604
4605 /* Initialize fence registers to zero */
4606 switch (INTEL_INFO(dev)->gen) {
4607 case 6:
4608 for (i = 0; i < 16; i++)
4609 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4610 break;
4611 case 5:
4612 case 4:
4613 for (i = 0; i < 16; i++)
4614 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4615 break;
4616 case 3:
4617 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4618 for (i = 0; i < 8; i++)
4619 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4620 case 2:
4621 for (i = 0; i < 8; i++)
4622 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4623 break;
4624 }
4625 i915_gem_detect_bit_6_swizzle(dev);
4626 init_waitqueue_head(&dev_priv->pending_flip_queue);
4627 }
4628
4629 /*
4630 * Create a physically contiguous memory object for this object
4631 * e.g. for cursor + overlay regs
4632 */
4633 static int i915_gem_init_phys_object(struct drm_device *dev,
4634 int id, int size, int align)
4635 {
4636 drm_i915_private_t *dev_priv = dev->dev_private;
4637 struct drm_i915_gem_phys_object *phys_obj;
4638 int ret;
4639
4640 if (dev_priv->mm.phys_objs[id - 1] || !size)
4641 return 0;
4642
4643 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4644 if (!phys_obj)
4645 return -ENOMEM;
4646
4647 phys_obj->id = id;
4648
4649 phys_obj->handle = drm_pci_alloc(dev, size, align);
4650 if (!phys_obj->handle) {
4651 ret = -ENOMEM;
4652 goto kfree_obj;
4653 }
4654 #ifdef CONFIG_X86
4655 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4656 #endif
4657
4658 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4659
4660 return 0;
4661 kfree_obj:
4662 kfree(phys_obj);
4663 return ret;
4664 }
4665
4666 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4667 {
4668 drm_i915_private_t *dev_priv = dev->dev_private;
4669 struct drm_i915_gem_phys_object *phys_obj;
4670
4671 if (!dev_priv->mm.phys_objs[id - 1])
4672 return;
4673
4674 phys_obj = dev_priv->mm.phys_objs[id - 1];
4675 if (phys_obj->cur_obj) {
4676 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4677 }
4678
4679 #ifdef CONFIG_X86
4680 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4681 #endif
4682 drm_pci_free(dev, phys_obj->handle);
4683 kfree(phys_obj);
4684 dev_priv->mm.phys_objs[id - 1] = NULL;
4685 }
4686
4687 void i915_gem_free_all_phys_object(struct drm_device *dev)
4688 {
4689 int i;
4690
4691 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4692 i915_gem_free_phys_object(dev, i);
4693 }
4694
4695 void i915_gem_detach_phys_object(struct drm_device *dev,
4696 struct drm_gem_object *obj)
4697 {
4698 struct drm_i915_gem_object *obj_priv;
4699 int i;
4700 int ret;
4701 int page_count;
4702
4703 obj_priv = to_intel_bo(obj);
4704 if (!obj_priv->phys_obj)
4705 return;
4706
4707 ret = i915_gem_object_get_pages(obj, 0);
4708 if (ret)
4709 goto out;
4710
4711 page_count = obj->size / PAGE_SIZE;
4712
4713 for (i = 0; i < page_count; i++) {
4714 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4715 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4716
4717 memcpy(dst, src, PAGE_SIZE);
4718 kunmap_atomic(dst, KM_USER0);
4719 }
4720 drm_clflush_pages(obj_priv->pages, page_count);
4721 drm_agp_chipset_flush(dev);
4722
4723 i915_gem_object_put_pages(obj);
4724 out:
4725 obj_priv->phys_obj->cur_obj = NULL;
4726 obj_priv->phys_obj = NULL;
4727 }
4728
4729 int
4730 i915_gem_attach_phys_object(struct drm_device *dev,
4731 struct drm_gem_object *obj,
4732 int id,
4733 int align)
4734 {
4735 drm_i915_private_t *dev_priv = dev->dev_private;
4736 struct drm_i915_gem_object *obj_priv;
4737 int ret = 0;
4738 int page_count;
4739 int i;
4740
4741 if (id > I915_MAX_PHYS_OBJECT)
4742 return -EINVAL;
4743
4744 obj_priv = to_intel_bo(obj);
4745
4746 if (obj_priv->phys_obj) {
4747 if (obj_priv->phys_obj->id == id)
4748 return 0;
4749 i915_gem_detach_phys_object(dev, obj);
4750 }
4751
4752 /* create a new object */
4753 if (!dev_priv->mm.phys_objs[id - 1]) {
4754 ret = i915_gem_init_phys_object(dev, id,
4755 obj->size, align);
4756 if (ret) {
4757 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4758 goto out;
4759 }
4760 }
4761
4762 /* bind to the object */
4763 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4764 obj_priv->phys_obj->cur_obj = obj;
4765
4766 ret = i915_gem_object_get_pages(obj, 0);
4767 if (ret) {
4768 DRM_ERROR("failed to get page list\n");
4769 goto out;
4770 }
4771
4772 page_count = obj->size / PAGE_SIZE;
4773
4774 for (i = 0; i < page_count; i++) {
4775 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4776 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4777
4778 memcpy(dst, src, PAGE_SIZE);
4779 kunmap_atomic(src, KM_USER0);
4780 }
4781
4782 i915_gem_object_put_pages(obj);
4783
4784 return 0;
4785 out:
4786 return ret;
4787 }
4788
4789 static int
4790 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4791 struct drm_i915_gem_pwrite *args,
4792 struct drm_file *file_priv)
4793 {
4794 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4795 void *obj_addr;
4796 int ret;
4797 char __user *user_data;
4798
4799 user_data = (char __user *) (uintptr_t) args->data_ptr;
4800 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4801
4802 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4803 ret = copy_from_user(obj_addr, user_data, args->size);
4804 if (ret)
4805 return -EFAULT;
4806
4807 drm_agp_chipset_flush(dev);
4808 return 0;
4809 }
4810
4811 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4812 {
4813 struct drm_i915_file_private *file_priv = file->driver_priv;
4814
4815 /* Clean up our request list when the client is going away, so that
4816 * later retire_requests won't dereference our soon-to-be-gone
4817 * file_priv.
4818 */
4819 spin_lock(&file_priv->mm.lock);
4820 while (!list_empty(&file_priv->mm.request_list)) {
4821 struct drm_i915_gem_request *request;
4822
4823 request = list_first_entry(&file_priv->mm.request_list,
4824 struct drm_i915_gem_request,
4825 client_list);
4826 list_del(&request->client_list);
4827 request->file_priv = NULL;
4828 }
4829 spin_unlock(&file_priv->mm.lock);
4830 }
4831
4832 static int
4833 i915_gpu_is_active(struct drm_device *dev)
4834 {
4835 drm_i915_private_t *dev_priv = dev->dev_private;
4836 int lists_empty;
4837
4838 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4839 list_empty(&dev_priv->render_ring.active_list) &&
4840 list_empty(&dev_priv->bsd_ring.active_list);
4841
4842 return !lists_empty;
4843 }
4844
4845 static int
4846 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4847 {
4848 drm_i915_private_t *dev_priv, *next_dev;
4849 struct drm_i915_gem_object *obj_priv, *next_obj;
4850 int cnt = 0;
4851 int would_deadlock = 1;
4852
4853 /* "fast-path" to count number of available objects */
4854 if (nr_to_scan == 0) {
4855 spin_lock(&shrink_list_lock);
4856 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4857 struct drm_device *dev = dev_priv->dev;
4858
4859 if (mutex_trylock(&dev->struct_mutex)) {
4860 list_for_each_entry(obj_priv,
4861 &dev_priv->mm.inactive_list,
4862 list)
4863 cnt++;
4864 mutex_unlock(&dev->struct_mutex);
4865 }
4866 }
4867 spin_unlock(&shrink_list_lock);
4868
4869 return (cnt / 100) * sysctl_vfs_cache_pressure;
4870 }
4871
4872 spin_lock(&shrink_list_lock);
4873
4874 rescan:
4875 /* first scan for clean buffers */
4876 list_for_each_entry_safe(dev_priv, next_dev,
4877 &shrink_list, mm.shrink_list) {
4878 struct drm_device *dev = dev_priv->dev;
4879
4880 if (! mutex_trylock(&dev->struct_mutex))
4881 continue;
4882
4883 spin_unlock(&shrink_list_lock);
4884 i915_gem_retire_requests(dev);
4885
4886 list_for_each_entry_safe(obj_priv, next_obj,
4887 &dev_priv->mm.inactive_list,
4888 list) {
4889 if (i915_gem_object_is_purgeable(obj_priv)) {
4890 i915_gem_object_unbind(&obj_priv->base);
4891 if (--nr_to_scan <= 0)
4892 break;
4893 }
4894 }
4895
4896 spin_lock(&shrink_list_lock);
4897 mutex_unlock(&dev->struct_mutex);
4898
4899 would_deadlock = 0;
4900
4901 if (nr_to_scan <= 0)
4902 break;
4903 }
4904
4905 /* second pass, evict/count anything still on the inactive list */
4906 list_for_each_entry_safe(dev_priv, next_dev,
4907 &shrink_list, mm.shrink_list) {
4908 struct drm_device *dev = dev_priv->dev;
4909
4910 if (! mutex_trylock(&dev->struct_mutex))
4911 continue;
4912
4913 spin_unlock(&shrink_list_lock);
4914
4915 list_for_each_entry_safe(obj_priv, next_obj,
4916 &dev_priv->mm.inactive_list,
4917 list) {
4918 if (nr_to_scan > 0) {
4919 i915_gem_object_unbind(&obj_priv->base);
4920 nr_to_scan--;
4921 } else
4922 cnt++;
4923 }
4924
4925 spin_lock(&shrink_list_lock);
4926 mutex_unlock(&dev->struct_mutex);
4927
4928 would_deadlock = 0;
4929 }
4930
4931 if (nr_to_scan) {
4932 int active = 0;
4933
4934 /*
4935 * We are desperate for pages, so as a last resort, wait
4936 * for the GPU to finish and discard whatever we can.
4937 * This has a dramatic impact to reduce the number of
4938 * OOM-killer events whilst running the GPU aggressively.
4939 */
4940 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4941 struct drm_device *dev = dev_priv->dev;
4942
4943 if (!mutex_trylock(&dev->struct_mutex))
4944 continue;
4945
4946 spin_unlock(&shrink_list_lock);
4947
4948 if (i915_gpu_is_active(dev)) {
4949 i915_gpu_idle(dev);
4950 active++;
4951 }
4952
4953 spin_lock(&shrink_list_lock);
4954 mutex_unlock(&dev->struct_mutex);
4955 }
4956
4957 if (active)
4958 goto rescan;
4959 }
4960
4961 spin_unlock(&shrink_list_lock);
4962
4963 if (would_deadlock)
4964 return -1;
4965 else if (cnt > 0)
4966 return (cnt / 100) * sysctl_vfs_cache_pressure;
4967 else
4968 return 0;
4969 }
4970
4971 static struct shrinker shrinker = {
4972 .shrink = i915_gem_shrink,
4973 .seeks = DEFAULT_SEEKS,
4974 };
4975
4976 __init void
4977 i915_gem_shrinker_init(void)
4978 {
4979 register_shrinker(&shrinker);
4980 }
4981
4982 __exit void
4983 i915_gem_shrinker_exit(void)
4984 {
4985 unregister_shrinker(&shrinker);
4986 }
This page took 0.285994 seconds and 6 git commands to generate.