drm/i915: Break busywaiting for requests on pending signals
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 page_cache_release(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825 out:
826 return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839 {
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868 {
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899 {
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990 next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996 out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 needs_clflush_after = true;
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014 else
1015 obj->cache_dirty = true;
1016
1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 return ret;
1019 }
1020
1021 /**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 struct drm_file *file)
1029 {
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_pwrite *args = data;
1032 struct drm_i915_gem_object *obj;
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
1039 to_user_ptr(args->data_ptr),
1040 args->size))
1041 return -EFAULT;
1042
1043 if (likely(!i915.prefault_disable)) {
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
1049
1050 intel_runtime_pm_get(dev_priv);
1051
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto put_rpm;
1055
1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 if (&obj->base == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1060 }
1061
1062 /* Bounds check destination. */
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
1065 ret = -EINVAL;
1066 goto out;
1067 }
1068
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079 ret = -EFAULT;
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
1093 }
1094
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
1101
1102 out:
1103 drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
1109 return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 bool interruptible)
1115 {
1116 if (i915_reset_in_progress(error)) {
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
1124 return -EIO;
1125
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
1133 }
1134
1135 return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140 wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 struct intel_engine_cs *ring)
1145 {
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1150 {
1151 unsigned long timeout;
1152
1153 if (i915_gem_request_get_ring(req)->irq_refcount)
1154 return -EBUSY;
1155
1156 timeout = jiffies + 1;
1157 while (!need_resched()) {
1158 if (i915_gem_request_completed(req, true))
1159 return 0;
1160
1161 if (signal_pending_state(state, current))
1162 break;
1163
1164 if (time_after_eq(jiffies, timeout))
1165 break;
1166
1167 cpu_relax_lowlatency();
1168 }
1169 if (i915_gem_request_completed(req, false))
1170 return 0;
1171
1172 return -EAGAIN;
1173 }
1174
1175 /**
1176 * __i915_wait_request - wait until execution of request has finished
1177 * @req: duh!
1178 * @reset_counter: reset sequence associated with the given request
1179 * @interruptible: do an interruptible wait (normally yes)
1180 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1181 *
1182 * Note: It is of utmost importance that the passed in seqno and reset_counter
1183 * values have been read by the caller in an smp safe manner. Where read-side
1184 * locks are involved, it is sufficient to read the reset_counter before
1185 * unlocking the lock that protects the seqno. For lockless tricks, the
1186 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1187 * inserted.
1188 *
1189 * Returns 0 if the request was found within the alloted time. Else returns the
1190 * errno with remaining time filled in timeout argument.
1191 */
1192 int __i915_wait_request(struct drm_i915_gem_request *req,
1193 unsigned reset_counter,
1194 bool interruptible,
1195 s64 *timeout,
1196 struct intel_rps_client *rps)
1197 {
1198 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1199 struct drm_device *dev = ring->dev;
1200 struct drm_i915_private *dev_priv = dev->dev_private;
1201 const bool irq_test_in_progress =
1202 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1203 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1204 DEFINE_WAIT(wait);
1205 unsigned long timeout_expire;
1206 s64 before, now;
1207 int ret;
1208
1209 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1210
1211 if (list_empty(&req->list))
1212 return 0;
1213
1214 if (i915_gem_request_completed(req, true))
1215 return 0;
1216
1217 timeout_expire = 0;
1218 if (timeout) {
1219 if (WARN_ON(*timeout < 0))
1220 return -EINVAL;
1221
1222 if (*timeout == 0)
1223 return -ETIME;
1224
1225 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1226 }
1227
1228 if (INTEL_INFO(dev_priv)->gen >= 6)
1229 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1230
1231 /* Record current time in case interrupted by signal, or wedged */
1232 trace_i915_gem_request_wait_begin(req);
1233 before = ktime_get_raw_ns();
1234
1235 /* Optimistic spin for the next jiffie before touching IRQs */
1236 ret = __i915_spin_request(req, state);
1237 if (ret == 0)
1238 goto out;
1239
1240 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1241 ret = -ENODEV;
1242 goto out;
1243 }
1244
1245 for (;;) {
1246 struct timer_list timer;
1247
1248 prepare_to_wait(&ring->irq_queue, &wait, state);
1249
1250 /* We need to check whether any gpu reset happened in between
1251 * the caller grabbing the seqno and now ... */
1252 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1253 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1254 * is truely gone. */
1255 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1256 if (ret == 0)
1257 ret = -EAGAIN;
1258 break;
1259 }
1260
1261 if (i915_gem_request_completed(req, false)) {
1262 ret = 0;
1263 break;
1264 }
1265
1266 if (signal_pending_state(state, current)) {
1267 ret = -ERESTARTSYS;
1268 break;
1269 }
1270
1271 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1272 ret = -ETIME;
1273 break;
1274 }
1275
1276 timer.function = NULL;
1277 if (timeout || missed_irq(dev_priv, ring)) {
1278 unsigned long expire;
1279
1280 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1281 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1282 mod_timer(&timer, expire);
1283 }
1284
1285 io_schedule();
1286
1287 if (timer.function) {
1288 del_singleshot_timer_sync(&timer);
1289 destroy_timer_on_stack(&timer);
1290 }
1291 }
1292 if (!irq_test_in_progress)
1293 ring->irq_put(ring);
1294
1295 finish_wait(&ring->irq_queue, &wait);
1296
1297 out:
1298 now = ktime_get_raw_ns();
1299 trace_i915_gem_request_wait_end(req);
1300
1301 if (timeout) {
1302 s64 tres = *timeout - (now - before);
1303
1304 *timeout = tres < 0 ? 0 : tres;
1305
1306 /*
1307 * Apparently ktime isn't accurate enough and occasionally has a
1308 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1309 * things up to make the test happy. We allow up to 1 jiffy.
1310 *
1311 * This is a regrssion from the timespec->ktime conversion.
1312 */
1313 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1314 *timeout = 0;
1315 }
1316
1317 return ret;
1318 }
1319
1320 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1321 struct drm_file *file)
1322 {
1323 struct drm_i915_private *dev_private;
1324 struct drm_i915_file_private *file_priv;
1325
1326 WARN_ON(!req || !file || req->file_priv);
1327
1328 if (!req || !file)
1329 return -EINVAL;
1330
1331 if (req->file_priv)
1332 return -EINVAL;
1333
1334 dev_private = req->ring->dev->dev_private;
1335 file_priv = file->driver_priv;
1336
1337 spin_lock(&file_priv->mm.lock);
1338 req->file_priv = file_priv;
1339 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1340 spin_unlock(&file_priv->mm.lock);
1341
1342 req->pid = get_pid(task_pid(current));
1343
1344 return 0;
1345 }
1346
1347 static inline void
1348 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1349 {
1350 struct drm_i915_file_private *file_priv = request->file_priv;
1351
1352 if (!file_priv)
1353 return;
1354
1355 spin_lock(&file_priv->mm.lock);
1356 list_del(&request->client_list);
1357 request->file_priv = NULL;
1358 spin_unlock(&file_priv->mm.lock);
1359
1360 put_pid(request->pid);
1361 request->pid = NULL;
1362 }
1363
1364 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1365 {
1366 trace_i915_gem_request_retire(request);
1367
1368 /* We know the GPU must have read the request to have
1369 * sent us the seqno + interrupt, so use the position
1370 * of tail of the request to update the last known position
1371 * of the GPU head.
1372 *
1373 * Note this requires that we are always called in request
1374 * completion order.
1375 */
1376 request->ringbuf->last_retired_head = request->postfix;
1377
1378 list_del_init(&request->list);
1379 i915_gem_request_remove_from_client(request);
1380
1381 i915_gem_request_unreference(request);
1382 }
1383
1384 static void
1385 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1386 {
1387 struct intel_engine_cs *engine = req->ring;
1388 struct drm_i915_gem_request *tmp;
1389
1390 lockdep_assert_held(&engine->dev->struct_mutex);
1391
1392 if (list_empty(&req->list))
1393 return;
1394
1395 do {
1396 tmp = list_first_entry(&engine->request_list,
1397 typeof(*tmp), list);
1398
1399 i915_gem_request_retire(tmp);
1400 } while (tmp != req);
1401
1402 WARN_ON(i915_verify_lists(engine->dev));
1403 }
1404
1405 /**
1406 * Waits for a request to be signaled, and cleans up the
1407 * request and object lists appropriately for that event.
1408 */
1409 int
1410 i915_wait_request(struct drm_i915_gem_request *req)
1411 {
1412 struct drm_device *dev;
1413 struct drm_i915_private *dev_priv;
1414 bool interruptible;
1415 int ret;
1416
1417 BUG_ON(req == NULL);
1418
1419 dev = req->ring->dev;
1420 dev_priv = dev->dev_private;
1421 interruptible = dev_priv->mm.interruptible;
1422
1423 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1424
1425 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1426 if (ret)
1427 return ret;
1428
1429 ret = __i915_wait_request(req,
1430 atomic_read(&dev_priv->gpu_error.reset_counter),
1431 interruptible, NULL, NULL);
1432 if (ret)
1433 return ret;
1434
1435 __i915_gem_request_retire__upto(req);
1436 return 0;
1437 }
1438
1439 /**
1440 * Ensures that all rendering to the object has completed and the object is
1441 * safe to unbind from the GTT or access from the CPU.
1442 */
1443 int
1444 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1445 bool readonly)
1446 {
1447 int ret, i;
1448
1449 if (!obj->active)
1450 return 0;
1451
1452 if (readonly) {
1453 if (obj->last_write_req != NULL) {
1454 ret = i915_wait_request(obj->last_write_req);
1455 if (ret)
1456 return ret;
1457
1458 i = obj->last_write_req->ring->id;
1459 if (obj->last_read_req[i] == obj->last_write_req)
1460 i915_gem_object_retire__read(obj, i);
1461 else
1462 i915_gem_object_retire__write(obj);
1463 }
1464 } else {
1465 for (i = 0; i < I915_NUM_RINGS; i++) {
1466 if (obj->last_read_req[i] == NULL)
1467 continue;
1468
1469 ret = i915_wait_request(obj->last_read_req[i]);
1470 if (ret)
1471 return ret;
1472
1473 i915_gem_object_retire__read(obj, i);
1474 }
1475 RQ_BUG_ON(obj->active);
1476 }
1477
1478 return 0;
1479 }
1480
1481 static void
1482 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1483 struct drm_i915_gem_request *req)
1484 {
1485 int ring = req->ring->id;
1486
1487 if (obj->last_read_req[ring] == req)
1488 i915_gem_object_retire__read(obj, ring);
1489 else if (obj->last_write_req == req)
1490 i915_gem_object_retire__write(obj);
1491
1492 __i915_gem_request_retire__upto(req);
1493 }
1494
1495 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1496 * as the object state may change during this call.
1497 */
1498 static __must_check int
1499 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1500 struct intel_rps_client *rps,
1501 bool readonly)
1502 {
1503 struct drm_device *dev = obj->base.dev;
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1506 unsigned reset_counter;
1507 int ret, i, n = 0;
1508
1509 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1510 BUG_ON(!dev_priv->mm.interruptible);
1511
1512 if (!obj->active)
1513 return 0;
1514
1515 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1516 if (ret)
1517 return ret;
1518
1519 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1520
1521 if (readonly) {
1522 struct drm_i915_gem_request *req;
1523
1524 req = obj->last_write_req;
1525 if (req == NULL)
1526 return 0;
1527
1528 requests[n++] = i915_gem_request_reference(req);
1529 } else {
1530 for (i = 0; i < I915_NUM_RINGS; i++) {
1531 struct drm_i915_gem_request *req;
1532
1533 req = obj->last_read_req[i];
1534 if (req == NULL)
1535 continue;
1536
1537 requests[n++] = i915_gem_request_reference(req);
1538 }
1539 }
1540
1541 mutex_unlock(&dev->struct_mutex);
1542 for (i = 0; ret == 0 && i < n; i++)
1543 ret = __i915_wait_request(requests[i], reset_counter, true,
1544 NULL, rps);
1545 mutex_lock(&dev->struct_mutex);
1546
1547 for (i = 0; i < n; i++) {
1548 if (ret == 0)
1549 i915_gem_object_retire_request(obj, requests[i]);
1550 i915_gem_request_unreference(requests[i]);
1551 }
1552
1553 return ret;
1554 }
1555
1556 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1557 {
1558 struct drm_i915_file_private *fpriv = file->driver_priv;
1559 return &fpriv->rps;
1560 }
1561
1562 /**
1563 * Called when user space prepares to use an object with the CPU, either
1564 * through the mmap ioctl's mapping or a GTT mapping.
1565 */
1566 int
1567 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1568 struct drm_file *file)
1569 {
1570 struct drm_i915_gem_set_domain *args = data;
1571 struct drm_i915_gem_object *obj;
1572 uint32_t read_domains = args->read_domains;
1573 uint32_t write_domain = args->write_domain;
1574 int ret;
1575
1576 /* Only handle setting domains to types used by the CPU. */
1577 if (write_domain & I915_GEM_GPU_DOMAINS)
1578 return -EINVAL;
1579
1580 if (read_domains & I915_GEM_GPU_DOMAINS)
1581 return -EINVAL;
1582
1583 /* Having something in the write domain implies it's in the read
1584 * domain, and only that read domain. Enforce that in the request.
1585 */
1586 if (write_domain != 0 && read_domains != write_domain)
1587 return -EINVAL;
1588
1589 ret = i915_mutex_lock_interruptible(dev);
1590 if (ret)
1591 return ret;
1592
1593 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1594 if (&obj->base == NULL) {
1595 ret = -ENOENT;
1596 goto unlock;
1597 }
1598
1599 /* Try to flush the object off the GPU without holding the lock.
1600 * We will repeat the flush holding the lock in the normal manner
1601 * to catch cases where we are gazumped.
1602 */
1603 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1604 to_rps_client(file),
1605 !write_domain);
1606 if (ret)
1607 goto unref;
1608
1609 if (read_domains & I915_GEM_DOMAIN_GTT)
1610 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1611 else
1612 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1613
1614 if (write_domain != 0)
1615 intel_fb_obj_invalidate(obj,
1616 write_domain == I915_GEM_DOMAIN_GTT ?
1617 ORIGIN_GTT : ORIGIN_CPU);
1618
1619 unref:
1620 drm_gem_object_unreference(&obj->base);
1621 unlock:
1622 mutex_unlock(&dev->struct_mutex);
1623 return ret;
1624 }
1625
1626 /**
1627 * Called when user space has done writes to this buffer
1628 */
1629 int
1630 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1631 struct drm_file *file)
1632 {
1633 struct drm_i915_gem_sw_finish *args = data;
1634 struct drm_i915_gem_object *obj;
1635 int ret = 0;
1636
1637 ret = i915_mutex_lock_interruptible(dev);
1638 if (ret)
1639 return ret;
1640
1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642 if (&obj->base == NULL) {
1643 ret = -ENOENT;
1644 goto unlock;
1645 }
1646
1647 /* Pinned buffers may be scanout, so flush the cache */
1648 if (obj->pin_display)
1649 i915_gem_object_flush_cpu_write_domain(obj);
1650
1651 drm_gem_object_unreference(&obj->base);
1652 unlock:
1653 mutex_unlock(&dev->struct_mutex);
1654 return ret;
1655 }
1656
1657 /**
1658 * Maps the contents of an object, returning the address it is mapped
1659 * into.
1660 *
1661 * While the mapping holds a reference on the contents of the object, it doesn't
1662 * imply a ref on the object itself.
1663 *
1664 * IMPORTANT:
1665 *
1666 * DRM driver writers who look a this function as an example for how to do GEM
1667 * mmap support, please don't implement mmap support like here. The modern way
1668 * to implement DRM mmap support is with an mmap offset ioctl (like
1669 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1670 * That way debug tooling like valgrind will understand what's going on, hiding
1671 * the mmap call in a driver private ioctl will break that. The i915 driver only
1672 * does cpu mmaps this way because we didn't know better.
1673 */
1674 int
1675 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1676 struct drm_file *file)
1677 {
1678 struct drm_i915_gem_mmap *args = data;
1679 struct drm_gem_object *obj;
1680 unsigned long addr;
1681
1682 if (args->flags & ~(I915_MMAP_WC))
1683 return -EINVAL;
1684
1685 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1686 return -ENODEV;
1687
1688 obj = drm_gem_object_lookup(dev, file, args->handle);
1689 if (obj == NULL)
1690 return -ENOENT;
1691
1692 /* prime objects have no backing filp to GEM mmap
1693 * pages from.
1694 */
1695 if (!obj->filp) {
1696 drm_gem_object_unreference_unlocked(obj);
1697 return -EINVAL;
1698 }
1699
1700 addr = vm_mmap(obj->filp, 0, args->size,
1701 PROT_READ | PROT_WRITE, MAP_SHARED,
1702 args->offset);
1703 if (args->flags & I915_MMAP_WC) {
1704 struct mm_struct *mm = current->mm;
1705 struct vm_area_struct *vma;
1706
1707 down_write(&mm->mmap_sem);
1708 vma = find_vma(mm, addr);
1709 if (vma)
1710 vma->vm_page_prot =
1711 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1712 else
1713 addr = -ENOMEM;
1714 up_write(&mm->mmap_sem);
1715 }
1716 drm_gem_object_unreference_unlocked(obj);
1717 if (IS_ERR((void *)addr))
1718 return addr;
1719
1720 args->addr_ptr = (uint64_t) addr;
1721
1722 return 0;
1723 }
1724
1725 /**
1726 * i915_gem_fault - fault a page into the GTT
1727 * @vma: VMA in question
1728 * @vmf: fault info
1729 *
1730 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1731 * from userspace. The fault handler takes care of binding the object to
1732 * the GTT (if needed), allocating and programming a fence register (again,
1733 * only if needed based on whether the old reg is still valid or the object
1734 * is tiled) and inserting a new PTE into the faulting process.
1735 *
1736 * Note that the faulting process may involve evicting existing objects
1737 * from the GTT and/or fence registers to make room. So performance may
1738 * suffer if the GTT working set is large or there are few fence registers
1739 * left.
1740 */
1741 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1742 {
1743 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1744 struct drm_device *dev = obj->base.dev;
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 struct i915_ggtt_view view = i915_ggtt_view_normal;
1747 pgoff_t page_offset;
1748 unsigned long pfn;
1749 int ret = 0;
1750 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1751
1752 intel_runtime_pm_get(dev_priv);
1753
1754 /* We don't use vmf->pgoff since that has the fake offset */
1755 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1756 PAGE_SHIFT;
1757
1758 ret = i915_mutex_lock_interruptible(dev);
1759 if (ret)
1760 goto out;
1761
1762 trace_i915_gem_object_fault(obj, page_offset, true, write);
1763
1764 /* Try to flush the object off the GPU first without holding the lock.
1765 * Upon reacquiring the lock, we will perform our sanity checks and then
1766 * repeat the flush holding the lock in the normal manner to catch cases
1767 * where we are gazumped.
1768 */
1769 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1770 if (ret)
1771 goto unlock;
1772
1773 /* Access to snoopable pages through the GTT is incoherent. */
1774 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1775 ret = -EFAULT;
1776 goto unlock;
1777 }
1778
1779 /* Use a partial view if the object is bigger than the aperture. */
1780 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1781 obj->tiling_mode == I915_TILING_NONE) {
1782 static const unsigned int chunk_size = 256; // 1 MiB
1783
1784 memset(&view, 0, sizeof(view));
1785 view.type = I915_GGTT_VIEW_PARTIAL;
1786 view.params.partial.offset = rounddown(page_offset, chunk_size);
1787 view.params.partial.size =
1788 min_t(unsigned int,
1789 chunk_size,
1790 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1791 view.params.partial.offset);
1792 }
1793
1794 /* Now pin it into the GTT if needed */
1795 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1796 if (ret)
1797 goto unlock;
1798
1799 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1800 if (ret)
1801 goto unpin;
1802
1803 ret = i915_gem_object_get_fence(obj);
1804 if (ret)
1805 goto unpin;
1806
1807 /* Finally, remap it using the new GTT offset */
1808 pfn = dev_priv->gtt.mappable_base +
1809 i915_gem_obj_ggtt_offset_view(obj, &view);
1810 pfn >>= PAGE_SHIFT;
1811
1812 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1813 /* Overriding existing pages in partial view does not cause
1814 * us any trouble as TLBs are still valid because the fault
1815 * is due to userspace losing part of the mapping or never
1816 * having accessed it before (at this partials' range).
1817 */
1818 unsigned long base = vma->vm_start +
1819 (view.params.partial.offset << PAGE_SHIFT);
1820 unsigned int i;
1821
1822 for (i = 0; i < view.params.partial.size; i++) {
1823 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1824 if (ret)
1825 break;
1826 }
1827
1828 obj->fault_mappable = true;
1829 } else {
1830 if (!obj->fault_mappable) {
1831 unsigned long size = min_t(unsigned long,
1832 vma->vm_end - vma->vm_start,
1833 obj->base.size);
1834 int i;
1835
1836 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1837 ret = vm_insert_pfn(vma,
1838 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1839 pfn + i);
1840 if (ret)
1841 break;
1842 }
1843
1844 obj->fault_mappable = true;
1845 } else
1846 ret = vm_insert_pfn(vma,
1847 (unsigned long)vmf->virtual_address,
1848 pfn + page_offset);
1849 }
1850 unpin:
1851 i915_gem_object_ggtt_unpin_view(obj, &view);
1852 unlock:
1853 mutex_unlock(&dev->struct_mutex);
1854 out:
1855 switch (ret) {
1856 case -EIO:
1857 /*
1858 * We eat errors when the gpu is terminally wedged to avoid
1859 * userspace unduly crashing (gl has no provisions for mmaps to
1860 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1861 * and so needs to be reported.
1862 */
1863 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1864 ret = VM_FAULT_SIGBUS;
1865 break;
1866 }
1867 case -EAGAIN:
1868 /*
1869 * EAGAIN means the gpu is hung and we'll wait for the error
1870 * handler to reset everything when re-faulting in
1871 * i915_mutex_lock_interruptible.
1872 */
1873 case 0:
1874 case -ERESTARTSYS:
1875 case -EINTR:
1876 case -EBUSY:
1877 /*
1878 * EBUSY is ok: this just means that another thread
1879 * already did the job.
1880 */
1881 ret = VM_FAULT_NOPAGE;
1882 break;
1883 case -ENOMEM:
1884 ret = VM_FAULT_OOM;
1885 break;
1886 case -ENOSPC:
1887 case -EFAULT:
1888 ret = VM_FAULT_SIGBUS;
1889 break;
1890 default:
1891 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1892 ret = VM_FAULT_SIGBUS;
1893 break;
1894 }
1895
1896 intel_runtime_pm_put(dev_priv);
1897 return ret;
1898 }
1899
1900 /**
1901 * i915_gem_release_mmap - remove physical page mappings
1902 * @obj: obj in question
1903 *
1904 * Preserve the reservation of the mmapping with the DRM core code, but
1905 * relinquish ownership of the pages back to the system.
1906 *
1907 * It is vital that we remove the page mapping if we have mapped a tiled
1908 * object through the GTT and then lose the fence register due to
1909 * resource pressure. Similarly if the object has been moved out of the
1910 * aperture, than pages mapped into userspace must be revoked. Removing the
1911 * mapping will then trigger a page fault on the next user access, allowing
1912 * fixup by i915_gem_fault().
1913 */
1914 void
1915 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1916 {
1917 if (!obj->fault_mappable)
1918 return;
1919
1920 drm_vma_node_unmap(&obj->base.vma_node,
1921 obj->base.dev->anon_inode->i_mapping);
1922 obj->fault_mappable = false;
1923 }
1924
1925 void
1926 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1927 {
1928 struct drm_i915_gem_object *obj;
1929
1930 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1931 i915_gem_release_mmap(obj);
1932 }
1933
1934 uint32_t
1935 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1936 {
1937 uint32_t gtt_size;
1938
1939 if (INTEL_INFO(dev)->gen >= 4 ||
1940 tiling_mode == I915_TILING_NONE)
1941 return size;
1942
1943 /* Previous chips need a power-of-two fence region when tiling */
1944 if (INTEL_INFO(dev)->gen == 3)
1945 gtt_size = 1024*1024;
1946 else
1947 gtt_size = 512*1024;
1948
1949 while (gtt_size < size)
1950 gtt_size <<= 1;
1951
1952 return gtt_size;
1953 }
1954
1955 /**
1956 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1957 * @obj: object to check
1958 *
1959 * Return the required GTT alignment for an object, taking into account
1960 * potential fence register mapping.
1961 */
1962 uint32_t
1963 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1964 int tiling_mode, bool fenced)
1965 {
1966 /*
1967 * Minimum alignment is 4k (GTT page size), but might be greater
1968 * if a fence register is needed for the object.
1969 */
1970 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1971 tiling_mode == I915_TILING_NONE)
1972 return 4096;
1973
1974 /*
1975 * Previous chips need to be aligned to the size of the smallest
1976 * fence register that can contain the object.
1977 */
1978 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1979 }
1980
1981 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1982 {
1983 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1984 int ret;
1985
1986 if (drm_vma_node_has_offset(&obj->base.vma_node))
1987 return 0;
1988
1989 dev_priv->mm.shrinker_no_lock_stealing = true;
1990
1991 ret = drm_gem_create_mmap_offset(&obj->base);
1992 if (ret != -ENOSPC)
1993 goto out;
1994
1995 /* Badly fragmented mmap space? The only way we can recover
1996 * space is by destroying unwanted objects. We can't randomly release
1997 * mmap_offsets as userspace expects them to be persistent for the
1998 * lifetime of the objects. The closest we can is to release the
1999 * offsets on purgeable objects by truncating it and marking it purged,
2000 * which prevents userspace from ever using that object again.
2001 */
2002 i915_gem_shrink(dev_priv,
2003 obj->base.size >> PAGE_SHIFT,
2004 I915_SHRINK_BOUND |
2005 I915_SHRINK_UNBOUND |
2006 I915_SHRINK_PURGEABLE);
2007 ret = drm_gem_create_mmap_offset(&obj->base);
2008 if (ret != -ENOSPC)
2009 goto out;
2010
2011 i915_gem_shrink_all(dev_priv);
2012 ret = drm_gem_create_mmap_offset(&obj->base);
2013 out:
2014 dev_priv->mm.shrinker_no_lock_stealing = false;
2015
2016 return ret;
2017 }
2018
2019 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2020 {
2021 drm_gem_free_mmap_offset(&obj->base);
2022 }
2023
2024 int
2025 i915_gem_mmap_gtt(struct drm_file *file,
2026 struct drm_device *dev,
2027 uint32_t handle,
2028 uint64_t *offset)
2029 {
2030 struct drm_i915_gem_object *obj;
2031 int ret;
2032
2033 ret = i915_mutex_lock_interruptible(dev);
2034 if (ret)
2035 return ret;
2036
2037 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2038 if (&obj->base == NULL) {
2039 ret = -ENOENT;
2040 goto unlock;
2041 }
2042
2043 if (obj->madv != I915_MADV_WILLNEED) {
2044 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2045 ret = -EFAULT;
2046 goto out;
2047 }
2048
2049 ret = i915_gem_object_create_mmap_offset(obj);
2050 if (ret)
2051 goto out;
2052
2053 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2054
2055 out:
2056 drm_gem_object_unreference(&obj->base);
2057 unlock:
2058 mutex_unlock(&dev->struct_mutex);
2059 return ret;
2060 }
2061
2062 /**
2063 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2064 * @dev: DRM device
2065 * @data: GTT mapping ioctl data
2066 * @file: GEM object info
2067 *
2068 * Simply returns the fake offset to userspace so it can mmap it.
2069 * The mmap call will end up in drm_gem_mmap(), which will set things
2070 * up so we can get faults in the handler above.
2071 *
2072 * The fault handler will take care of binding the object into the GTT
2073 * (since it may have been evicted to make room for something), allocating
2074 * a fence register, and mapping the appropriate aperture address into
2075 * userspace.
2076 */
2077 int
2078 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2079 struct drm_file *file)
2080 {
2081 struct drm_i915_gem_mmap_gtt *args = data;
2082
2083 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2084 }
2085
2086 /* Immediately discard the backing storage */
2087 static void
2088 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2089 {
2090 i915_gem_object_free_mmap_offset(obj);
2091
2092 if (obj->base.filp == NULL)
2093 return;
2094
2095 /* Our goal here is to return as much of the memory as
2096 * is possible back to the system as we are called from OOM.
2097 * To do this we must instruct the shmfs to drop all of its
2098 * backing pages, *now*.
2099 */
2100 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2101 obj->madv = __I915_MADV_PURGED;
2102 }
2103
2104 /* Try to discard unwanted pages */
2105 static void
2106 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2107 {
2108 struct address_space *mapping;
2109
2110 switch (obj->madv) {
2111 case I915_MADV_DONTNEED:
2112 i915_gem_object_truncate(obj);
2113 case __I915_MADV_PURGED:
2114 return;
2115 }
2116
2117 if (obj->base.filp == NULL)
2118 return;
2119
2120 mapping = file_inode(obj->base.filp)->i_mapping,
2121 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2122 }
2123
2124 static void
2125 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2126 {
2127 struct sg_page_iter sg_iter;
2128 int ret;
2129
2130 BUG_ON(obj->madv == __I915_MADV_PURGED);
2131
2132 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2133 if (ret) {
2134 /* In the event of a disaster, abandon all caches and
2135 * hope for the best.
2136 */
2137 WARN_ON(ret != -EIO);
2138 i915_gem_clflush_object(obj, true);
2139 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2140 }
2141
2142 i915_gem_gtt_finish_object(obj);
2143
2144 if (i915_gem_object_needs_bit17_swizzle(obj))
2145 i915_gem_object_save_bit_17_swizzle(obj);
2146
2147 if (obj->madv == I915_MADV_DONTNEED)
2148 obj->dirty = 0;
2149
2150 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2151 struct page *page = sg_page_iter_page(&sg_iter);
2152
2153 if (obj->dirty)
2154 set_page_dirty(page);
2155
2156 if (obj->madv == I915_MADV_WILLNEED)
2157 mark_page_accessed(page);
2158
2159 page_cache_release(page);
2160 }
2161 obj->dirty = 0;
2162
2163 sg_free_table(obj->pages);
2164 kfree(obj->pages);
2165 }
2166
2167 int
2168 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2169 {
2170 const struct drm_i915_gem_object_ops *ops = obj->ops;
2171
2172 if (obj->pages == NULL)
2173 return 0;
2174
2175 if (obj->pages_pin_count)
2176 return -EBUSY;
2177
2178 BUG_ON(i915_gem_obj_bound_any(obj));
2179
2180 /* ->put_pages might need to allocate memory for the bit17 swizzle
2181 * array, hence protect them from being reaped by removing them from gtt
2182 * lists early. */
2183 list_del(&obj->global_list);
2184
2185 ops->put_pages(obj);
2186 obj->pages = NULL;
2187
2188 i915_gem_object_invalidate(obj);
2189
2190 return 0;
2191 }
2192
2193 static int
2194 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2195 {
2196 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2197 int page_count, i;
2198 struct address_space *mapping;
2199 struct sg_table *st;
2200 struct scatterlist *sg;
2201 struct sg_page_iter sg_iter;
2202 struct page *page;
2203 unsigned long last_pfn = 0; /* suppress gcc warning */
2204 int ret;
2205 gfp_t gfp;
2206
2207 /* Assert that the object is not currently in any GPU domain. As it
2208 * wasn't in the GTT, there shouldn't be any way it could have been in
2209 * a GPU cache
2210 */
2211 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2212 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2213
2214 st = kmalloc(sizeof(*st), GFP_KERNEL);
2215 if (st == NULL)
2216 return -ENOMEM;
2217
2218 page_count = obj->base.size / PAGE_SIZE;
2219 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2220 kfree(st);
2221 return -ENOMEM;
2222 }
2223
2224 /* Get the list of pages out of our struct file. They'll be pinned
2225 * at this point until we release them.
2226 *
2227 * Fail silently without starting the shrinker
2228 */
2229 mapping = file_inode(obj->base.filp)->i_mapping;
2230 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2231 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2232 sg = st->sgl;
2233 st->nents = 0;
2234 for (i = 0; i < page_count; i++) {
2235 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2236 if (IS_ERR(page)) {
2237 i915_gem_shrink(dev_priv,
2238 page_count,
2239 I915_SHRINK_BOUND |
2240 I915_SHRINK_UNBOUND |
2241 I915_SHRINK_PURGEABLE);
2242 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2243 }
2244 if (IS_ERR(page)) {
2245 /* We've tried hard to allocate the memory by reaping
2246 * our own buffer, now let the real VM do its job and
2247 * go down in flames if truly OOM.
2248 */
2249 i915_gem_shrink_all(dev_priv);
2250 page = shmem_read_mapping_page(mapping, i);
2251 if (IS_ERR(page)) {
2252 ret = PTR_ERR(page);
2253 goto err_pages;
2254 }
2255 }
2256 #ifdef CONFIG_SWIOTLB
2257 if (swiotlb_nr_tbl()) {
2258 st->nents++;
2259 sg_set_page(sg, page, PAGE_SIZE, 0);
2260 sg = sg_next(sg);
2261 continue;
2262 }
2263 #endif
2264 if (!i || page_to_pfn(page) != last_pfn + 1) {
2265 if (i)
2266 sg = sg_next(sg);
2267 st->nents++;
2268 sg_set_page(sg, page, PAGE_SIZE, 0);
2269 } else {
2270 sg->length += PAGE_SIZE;
2271 }
2272 last_pfn = page_to_pfn(page);
2273
2274 /* Check that the i965g/gm workaround works. */
2275 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2276 }
2277 #ifdef CONFIG_SWIOTLB
2278 if (!swiotlb_nr_tbl())
2279 #endif
2280 sg_mark_end(sg);
2281 obj->pages = st;
2282
2283 ret = i915_gem_gtt_prepare_object(obj);
2284 if (ret)
2285 goto err_pages;
2286
2287 if (i915_gem_object_needs_bit17_swizzle(obj))
2288 i915_gem_object_do_bit_17_swizzle(obj);
2289
2290 if (obj->tiling_mode != I915_TILING_NONE &&
2291 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2292 i915_gem_object_pin_pages(obj);
2293
2294 return 0;
2295
2296 err_pages:
2297 sg_mark_end(sg);
2298 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2299 page_cache_release(sg_page_iter_page(&sg_iter));
2300 sg_free_table(st);
2301 kfree(st);
2302
2303 /* shmemfs first checks if there is enough memory to allocate the page
2304 * and reports ENOSPC should there be insufficient, along with the usual
2305 * ENOMEM for a genuine allocation failure.
2306 *
2307 * We use ENOSPC in our driver to mean that we have run out of aperture
2308 * space and so want to translate the error from shmemfs back to our
2309 * usual understanding of ENOMEM.
2310 */
2311 if (ret == -ENOSPC)
2312 ret = -ENOMEM;
2313
2314 return ret;
2315 }
2316
2317 /* Ensure that the associated pages are gathered from the backing storage
2318 * and pinned into our object. i915_gem_object_get_pages() may be called
2319 * multiple times before they are released by a single call to
2320 * i915_gem_object_put_pages() - once the pages are no longer referenced
2321 * either as a result of memory pressure (reaping pages under the shrinker)
2322 * or as the object is itself released.
2323 */
2324 int
2325 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2326 {
2327 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2328 const struct drm_i915_gem_object_ops *ops = obj->ops;
2329 int ret;
2330
2331 if (obj->pages)
2332 return 0;
2333
2334 if (obj->madv != I915_MADV_WILLNEED) {
2335 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2336 return -EFAULT;
2337 }
2338
2339 BUG_ON(obj->pages_pin_count);
2340
2341 ret = ops->get_pages(obj);
2342 if (ret)
2343 return ret;
2344
2345 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2346
2347 obj->get_page.sg = obj->pages->sgl;
2348 obj->get_page.last = 0;
2349
2350 return 0;
2351 }
2352
2353 void i915_vma_move_to_active(struct i915_vma *vma,
2354 struct drm_i915_gem_request *req)
2355 {
2356 struct drm_i915_gem_object *obj = vma->obj;
2357 struct intel_engine_cs *ring;
2358
2359 ring = i915_gem_request_get_ring(req);
2360
2361 /* Add a reference if we're newly entering the active list. */
2362 if (obj->active == 0)
2363 drm_gem_object_reference(&obj->base);
2364 obj->active |= intel_ring_flag(ring);
2365
2366 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2367 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2368
2369 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2370 }
2371
2372 static void
2373 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2374 {
2375 RQ_BUG_ON(obj->last_write_req == NULL);
2376 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2377
2378 i915_gem_request_assign(&obj->last_write_req, NULL);
2379 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2380 }
2381
2382 static void
2383 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2384 {
2385 struct i915_vma *vma;
2386
2387 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2388 RQ_BUG_ON(!(obj->active & (1 << ring)));
2389
2390 list_del_init(&obj->ring_list[ring]);
2391 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2392
2393 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2394 i915_gem_object_retire__write(obj);
2395
2396 obj->active &= ~(1 << ring);
2397 if (obj->active)
2398 return;
2399
2400 /* Bump our place on the bound list to keep it roughly in LRU order
2401 * so that we don't steal from recently used but inactive objects
2402 * (unless we are forced to ofc!)
2403 */
2404 list_move_tail(&obj->global_list,
2405 &to_i915(obj->base.dev)->mm.bound_list);
2406
2407 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2408 if (!list_empty(&vma->mm_list))
2409 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2410 }
2411
2412 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2413 drm_gem_object_unreference(&obj->base);
2414 }
2415
2416 static int
2417 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2418 {
2419 struct drm_i915_private *dev_priv = dev->dev_private;
2420 struct intel_engine_cs *ring;
2421 int ret, i, j;
2422
2423 /* Carefully retire all requests without writing to the rings */
2424 for_each_ring(ring, dev_priv, i) {
2425 ret = intel_ring_idle(ring);
2426 if (ret)
2427 return ret;
2428 }
2429 i915_gem_retire_requests(dev);
2430
2431 /* Finally reset hw state */
2432 for_each_ring(ring, dev_priv, i) {
2433 intel_ring_init_seqno(ring, seqno);
2434
2435 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2436 ring->semaphore.sync_seqno[j] = 0;
2437 }
2438
2439 return 0;
2440 }
2441
2442 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2443 {
2444 struct drm_i915_private *dev_priv = dev->dev_private;
2445 int ret;
2446
2447 if (seqno == 0)
2448 return -EINVAL;
2449
2450 /* HWS page needs to be set less than what we
2451 * will inject to ring
2452 */
2453 ret = i915_gem_init_seqno(dev, seqno - 1);
2454 if (ret)
2455 return ret;
2456
2457 /* Carefully set the last_seqno value so that wrap
2458 * detection still works
2459 */
2460 dev_priv->next_seqno = seqno;
2461 dev_priv->last_seqno = seqno - 1;
2462 if (dev_priv->last_seqno == 0)
2463 dev_priv->last_seqno--;
2464
2465 return 0;
2466 }
2467
2468 int
2469 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2470 {
2471 struct drm_i915_private *dev_priv = dev->dev_private;
2472
2473 /* reserve 0 for non-seqno */
2474 if (dev_priv->next_seqno == 0) {
2475 int ret = i915_gem_init_seqno(dev, 0);
2476 if (ret)
2477 return ret;
2478
2479 dev_priv->next_seqno = 1;
2480 }
2481
2482 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2483 return 0;
2484 }
2485
2486 /*
2487 * NB: This function is not allowed to fail. Doing so would mean the the
2488 * request is not being tracked for completion but the work itself is
2489 * going to happen on the hardware. This would be a Bad Thing(tm).
2490 */
2491 void __i915_add_request(struct drm_i915_gem_request *request,
2492 struct drm_i915_gem_object *obj,
2493 bool flush_caches)
2494 {
2495 struct intel_engine_cs *ring;
2496 struct drm_i915_private *dev_priv;
2497 struct intel_ringbuffer *ringbuf;
2498 u32 request_start;
2499 int ret;
2500
2501 if (WARN_ON(request == NULL))
2502 return;
2503
2504 ring = request->ring;
2505 dev_priv = ring->dev->dev_private;
2506 ringbuf = request->ringbuf;
2507
2508 /*
2509 * To ensure that this call will not fail, space for its emissions
2510 * should already have been reserved in the ring buffer. Let the ring
2511 * know that it is time to use that space up.
2512 */
2513 intel_ring_reserved_space_use(ringbuf);
2514
2515 request_start = intel_ring_get_tail(ringbuf);
2516 /*
2517 * Emit any outstanding flushes - execbuf can fail to emit the flush
2518 * after having emitted the batchbuffer command. Hence we need to fix
2519 * things up similar to emitting the lazy request. The difference here
2520 * is that the flush _must_ happen before the next request, no matter
2521 * what.
2522 */
2523 if (flush_caches) {
2524 if (i915.enable_execlists)
2525 ret = logical_ring_flush_all_caches(request);
2526 else
2527 ret = intel_ring_flush_all_caches(request);
2528 /* Not allowed to fail! */
2529 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2530 }
2531
2532 /* Record the position of the start of the request so that
2533 * should we detect the updated seqno part-way through the
2534 * GPU processing the request, we never over-estimate the
2535 * position of the head.
2536 */
2537 request->postfix = intel_ring_get_tail(ringbuf);
2538
2539 if (i915.enable_execlists)
2540 ret = ring->emit_request(request);
2541 else {
2542 ret = ring->add_request(request);
2543
2544 request->tail = intel_ring_get_tail(ringbuf);
2545 }
2546 /* Not allowed to fail! */
2547 WARN(ret, "emit|add_request failed: %d!\n", ret);
2548
2549 request->head = request_start;
2550
2551 /* Whilst this request exists, batch_obj will be on the
2552 * active_list, and so will hold the active reference. Only when this
2553 * request is retired will the the batch_obj be moved onto the
2554 * inactive_list and lose its active reference. Hence we do not need
2555 * to explicitly hold another reference here.
2556 */
2557 request->batch_obj = obj;
2558
2559 request->emitted_jiffies = jiffies;
2560 ring->last_submitted_seqno = request->seqno;
2561 list_add_tail(&request->list, &ring->request_list);
2562
2563 trace_i915_gem_request_add(request);
2564
2565 i915_queue_hangcheck(ring->dev);
2566
2567 queue_delayed_work(dev_priv->wq,
2568 &dev_priv->mm.retire_work,
2569 round_jiffies_up_relative(HZ));
2570 intel_mark_busy(dev_priv->dev);
2571
2572 /* Sanity check that the reserved size was large enough. */
2573 intel_ring_reserved_space_end(ringbuf);
2574 }
2575
2576 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2577 const struct intel_context *ctx)
2578 {
2579 unsigned long elapsed;
2580
2581 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2582
2583 if (ctx->hang_stats.banned)
2584 return true;
2585
2586 if (ctx->hang_stats.ban_period_seconds &&
2587 elapsed <= ctx->hang_stats.ban_period_seconds) {
2588 if (!i915_gem_context_is_default(ctx)) {
2589 DRM_DEBUG("context hanging too fast, banning!\n");
2590 return true;
2591 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2592 if (i915_stop_ring_allow_warn(dev_priv))
2593 DRM_ERROR("gpu hanging too fast, banning!\n");
2594 return true;
2595 }
2596 }
2597
2598 return false;
2599 }
2600
2601 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2602 struct intel_context *ctx,
2603 const bool guilty)
2604 {
2605 struct i915_ctx_hang_stats *hs;
2606
2607 if (WARN_ON(!ctx))
2608 return;
2609
2610 hs = &ctx->hang_stats;
2611
2612 if (guilty) {
2613 hs->banned = i915_context_is_banned(dev_priv, ctx);
2614 hs->batch_active++;
2615 hs->guilty_ts = get_seconds();
2616 } else {
2617 hs->batch_pending++;
2618 }
2619 }
2620
2621 void i915_gem_request_free(struct kref *req_ref)
2622 {
2623 struct drm_i915_gem_request *req = container_of(req_ref,
2624 typeof(*req), ref);
2625 struct intel_context *ctx = req->ctx;
2626
2627 if (req->file_priv)
2628 i915_gem_request_remove_from_client(req);
2629
2630 if (ctx) {
2631 if (i915.enable_execlists) {
2632 if (ctx != req->ring->default_context)
2633 intel_lr_context_unpin(req);
2634 }
2635
2636 i915_gem_context_unreference(ctx);
2637 }
2638
2639 kmem_cache_free(req->i915->requests, req);
2640 }
2641
2642 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2643 struct intel_context *ctx,
2644 struct drm_i915_gem_request **req_out)
2645 {
2646 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2647 struct drm_i915_gem_request *req;
2648 int ret;
2649
2650 if (!req_out)
2651 return -EINVAL;
2652
2653 *req_out = NULL;
2654
2655 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2656 if (req == NULL)
2657 return -ENOMEM;
2658
2659 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2660 if (ret)
2661 goto err;
2662
2663 kref_init(&req->ref);
2664 req->i915 = dev_priv;
2665 req->ring = ring;
2666 req->ctx = ctx;
2667 i915_gem_context_reference(req->ctx);
2668
2669 if (i915.enable_execlists)
2670 ret = intel_logical_ring_alloc_request_extras(req);
2671 else
2672 ret = intel_ring_alloc_request_extras(req);
2673 if (ret) {
2674 i915_gem_context_unreference(req->ctx);
2675 goto err;
2676 }
2677
2678 /*
2679 * Reserve space in the ring buffer for all the commands required to
2680 * eventually emit this request. This is to guarantee that the
2681 * i915_add_request() call can't fail. Note that the reserve may need
2682 * to be redone if the request is not actually submitted straight
2683 * away, e.g. because a GPU scheduler has deferred it.
2684 */
2685 if (i915.enable_execlists)
2686 ret = intel_logical_ring_reserve_space(req);
2687 else
2688 ret = intel_ring_reserve_space(req);
2689 if (ret) {
2690 /*
2691 * At this point, the request is fully allocated even if not
2692 * fully prepared. Thus it can be cleaned up using the proper
2693 * free code.
2694 */
2695 i915_gem_request_cancel(req);
2696 return ret;
2697 }
2698
2699 *req_out = req;
2700 return 0;
2701
2702 err:
2703 kmem_cache_free(dev_priv->requests, req);
2704 return ret;
2705 }
2706
2707 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2708 {
2709 intel_ring_reserved_space_cancel(req->ringbuf);
2710
2711 i915_gem_request_unreference(req);
2712 }
2713
2714 struct drm_i915_gem_request *
2715 i915_gem_find_active_request(struct intel_engine_cs *ring)
2716 {
2717 struct drm_i915_gem_request *request;
2718
2719 list_for_each_entry(request, &ring->request_list, list) {
2720 if (i915_gem_request_completed(request, false))
2721 continue;
2722
2723 return request;
2724 }
2725
2726 return NULL;
2727 }
2728
2729 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2730 struct intel_engine_cs *ring)
2731 {
2732 struct drm_i915_gem_request *request;
2733 bool ring_hung;
2734
2735 request = i915_gem_find_active_request(ring);
2736
2737 if (request == NULL)
2738 return;
2739
2740 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2741
2742 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2743
2744 list_for_each_entry_continue(request, &ring->request_list, list)
2745 i915_set_reset_status(dev_priv, request->ctx, false);
2746 }
2747
2748 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2749 struct intel_engine_cs *ring)
2750 {
2751 struct intel_ringbuffer *buffer;
2752
2753 while (!list_empty(&ring->active_list)) {
2754 struct drm_i915_gem_object *obj;
2755
2756 obj = list_first_entry(&ring->active_list,
2757 struct drm_i915_gem_object,
2758 ring_list[ring->id]);
2759
2760 i915_gem_object_retire__read(obj, ring->id);
2761 }
2762
2763 /*
2764 * Clear the execlists queue up before freeing the requests, as those
2765 * are the ones that keep the context and ringbuffer backing objects
2766 * pinned in place.
2767 */
2768
2769 if (i915.enable_execlists) {
2770 spin_lock_irq(&ring->execlist_lock);
2771
2772 /* list_splice_tail_init checks for empty lists */
2773 list_splice_tail_init(&ring->execlist_queue,
2774 &ring->execlist_retired_req_list);
2775
2776 spin_unlock_irq(&ring->execlist_lock);
2777 intel_execlists_retire_requests(ring);
2778 }
2779
2780 /*
2781 * We must free the requests after all the corresponding objects have
2782 * been moved off active lists. Which is the same order as the normal
2783 * retire_requests function does. This is important if object hold
2784 * implicit references on things like e.g. ppgtt address spaces through
2785 * the request.
2786 */
2787 while (!list_empty(&ring->request_list)) {
2788 struct drm_i915_gem_request *request;
2789
2790 request = list_first_entry(&ring->request_list,
2791 struct drm_i915_gem_request,
2792 list);
2793
2794 i915_gem_request_retire(request);
2795 }
2796
2797 /* Having flushed all requests from all queues, we know that all
2798 * ringbuffers must now be empty. However, since we do not reclaim
2799 * all space when retiring the request (to prevent HEADs colliding
2800 * with rapid ringbuffer wraparound) the amount of available space
2801 * upon reset is less than when we start. Do one more pass over
2802 * all the ringbuffers to reset last_retired_head.
2803 */
2804 list_for_each_entry(buffer, &ring->buffers, link) {
2805 buffer->last_retired_head = buffer->tail;
2806 intel_ring_update_space(buffer);
2807 }
2808 }
2809
2810 void i915_gem_reset(struct drm_device *dev)
2811 {
2812 struct drm_i915_private *dev_priv = dev->dev_private;
2813 struct intel_engine_cs *ring;
2814 int i;
2815
2816 /*
2817 * Before we free the objects from the requests, we need to inspect
2818 * them for finding the guilty party. As the requests only borrow
2819 * their reference to the objects, the inspection must be done first.
2820 */
2821 for_each_ring(ring, dev_priv, i)
2822 i915_gem_reset_ring_status(dev_priv, ring);
2823
2824 for_each_ring(ring, dev_priv, i)
2825 i915_gem_reset_ring_cleanup(dev_priv, ring);
2826
2827 i915_gem_context_reset(dev);
2828
2829 i915_gem_restore_fences(dev);
2830
2831 WARN_ON(i915_verify_lists(dev));
2832 }
2833
2834 /**
2835 * This function clears the request list as sequence numbers are passed.
2836 */
2837 void
2838 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2839 {
2840 WARN_ON(i915_verify_lists(ring->dev));
2841
2842 /* Retire requests first as we use it above for the early return.
2843 * If we retire requests last, we may use a later seqno and so clear
2844 * the requests lists without clearing the active list, leading to
2845 * confusion.
2846 */
2847 while (!list_empty(&ring->request_list)) {
2848 struct drm_i915_gem_request *request;
2849
2850 request = list_first_entry(&ring->request_list,
2851 struct drm_i915_gem_request,
2852 list);
2853
2854 if (!i915_gem_request_completed(request, true))
2855 break;
2856
2857 i915_gem_request_retire(request);
2858 }
2859
2860 /* Move any buffers on the active list that are no longer referenced
2861 * by the ringbuffer to the flushing/inactive lists as appropriate,
2862 * before we free the context associated with the requests.
2863 */
2864 while (!list_empty(&ring->active_list)) {
2865 struct drm_i915_gem_object *obj;
2866
2867 obj = list_first_entry(&ring->active_list,
2868 struct drm_i915_gem_object,
2869 ring_list[ring->id]);
2870
2871 if (!list_empty(&obj->last_read_req[ring->id]->list))
2872 break;
2873
2874 i915_gem_object_retire__read(obj, ring->id);
2875 }
2876
2877 if (unlikely(ring->trace_irq_req &&
2878 i915_gem_request_completed(ring->trace_irq_req, true))) {
2879 ring->irq_put(ring);
2880 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2881 }
2882
2883 WARN_ON(i915_verify_lists(ring->dev));
2884 }
2885
2886 bool
2887 i915_gem_retire_requests(struct drm_device *dev)
2888 {
2889 struct drm_i915_private *dev_priv = dev->dev_private;
2890 struct intel_engine_cs *ring;
2891 bool idle = true;
2892 int i;
2893
2894 for_each_ring(ring, dev_priv, i) {
2895 i915_gem_retire_requests_ring(ring);
2896 idle &= list_empty(&ring->request_list);
2897 if (i915.enable_execlists) {
2898 unsigned long flags;
2899
2900 spin_lock_irqsave(&ring->execlist_lock, flags);
2901 idle &= list_empty(&ring->execlist_queue);
2902 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2903
2904 intel_execlists_retire_requests(ring);
2905 }
2906 }
2907
2908 if (idle)
2909 mod_delayed_work(dev_priv->wq,
2910 &dev_priv->mm.idle_work,
2911 msecs_to_jiffies(100));
2912
2913 return idle;
2914 }
2915
2916 static void
2917 i915_gem_retire_work_handler(struct work_struct *work)
2918 {
2919 struct drm_i915_private *dev_priv =
2920 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2921 struct drm_device *dev = dev_priv->dev;
2922 bool idle;
2923
2924 /* Come back later if the device is busy... */
2925 idle = false;
2926 if (mutex_trylock(&dev->struct_mutex)) {
2927 idle = i915_gem_retire_requests(dev);
2928 mutex_unlock(&dev->struct_mutex);
2929 }
2930 if (!idle)
2931 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2932 round_jiffies_up_relative(HZ));
2933 }
2934
2935 static void
2936 i915_gem_idle_work_handler(struct work_struct *work)
2937 {
2938 struct drm_i915_private *dev_priv =
2939 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2940 struct drm_device *dev = dev_priv->dev;
2941 struct intel_engine_cs *ring;
2942 int i;
2943
2944 for_each_ring(ring, dev_priv, i)
2945 if (!list_empty(&ring->request_list))
2946 return;
2947
2948 intel_mark_idle(dev);
2949
2950 if (mutex_trylock(&dev->struct_mutex)) {
2951 struct intel_engine_cs *ring;
2952 int i;
2953
2954 for_each_ring(ring, dev_priv, i)
2955 i915_gem_batch_pool_fini(&ring->batch_pool);
2956
2957 mutex_unlock(&dev->struct_mutex);
2958 }
2959 }
2960
2961 /**
2962 * Ensures that an object will eventually get non-busy by flushing any required
2963 * write domains, emitting any outstanding lazy request and retiring and
2964 * completed requests.
2965 */
2966 static int
2967 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2968 {
2969 int i;
2970
2971 if (!obj->active)
2972 return 0;
2973
2974 for (i = 0; i < I915_NUM_RINGS; i++) {
2975 struct drm_i915_gem_request *req;
2976
2977 req = obj->last_read_req[i];
2978 if (req == NULL)
2979 continue;
2980
2981 if (list_empty(&req->list))
2982 goto retire;
2983
2984 if (i915_gem_request_completed(req, true)) {
2985 __i915_gem_request_retire__upto(req);
2986 retire:
2987 i915_gem_object_retire__read(obj, i);
2988 }
2989 }
2990
2991 return 0;
2992 }
2993
2994 /**
2995 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2996 * @DRM_IOCTL_ARGS: standard ioctl arguments
2997 *
2998 * Returns 0 if successful, else an error is returned with the remaining time in
2999 * the timeout parameter.
3000 * -ETIME: object is still busy after timeout
3001 * -ERESTARTSYS: signal interrupted the wait
3002 * -ENONENT: object doesn't exist
3003 * Also possible, but rare:
3004 * -EAGAIN: GPU wedged
3005 * -ENOMEM: damn
3006 * -ENODEV: Internal IRQ fail
3007 * -E?: The add request failed
3008 *
3009 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3010 * non-zero timeout parameter the wait ioctl will wait for the given number of
3011 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3012 * without holding struct_mutex the object may become re-busied before this
3013 * function completes. A similar but shorter * race condition exists in the busy
3014 * ioctl
3015 */
3016 int
3017 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3018 {
3019 struct drm_i915_private *dev_priv = dev->dev_private;
3020 struct drm_i915_gem_wait *args = data;
3021 struct drm_i915_gem_object *obj;
3022 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3023 unsigned reset_counter;
3024 int i, n = 0;
3025 int ret;
3026
3027 if (args->flags != 0)
3028 return -EINVAL;
3029
3030 ret = i915_mutex_lock_interruptible(dev);
3031 if (ret)
3032 return ret;
3033
3034 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3035 if (&obj->base == NULL) {
3036 mutex_unlock(&dev->struct_mutex);
3037 return -ENOENT;
3038 }
3039
3040 /* Need to make sure the object gets inactive eventually. */
3041 ret = i915_gem_object_flush_active(obj);
3042 if (ret)
3043 goto out;
3044
3045 if (!obj->active)
3046 goto out;
3047
3048 /* Do this after OLR check to make sure we make forward progress polling
3049 * on this IOCTL with a timeout == 0 (like busy ioctl)
3050 */
3051 if (args->timeout_ns == 0) {
3052 ret = -ETIME;
3053 goto out;
3054 }
3055
3056 drm_gem_object_unreference(&obj->base);
3057 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3058
3059 for (i = 0; i < I915_NUM_RINGS; i++) {
3060 if (obj->last_read_req[i] == NULL)
3061 continue;
3062
3063 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3064 }
3065
3066 mutex_unlock(&dev->struct_mutex);
3067
3068 for (i = 0; i < n; i++) {
3069 if (ret == 0)
3070 ret = __i915_wait_request(req[i], reset_counter, true,
3071 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3072 to_rps_client(file));
3073 i915_gem_request_unreference__unlocked(req[i]);
3074 }
3075 return ret;
3076
3077 out:
3078 drm_gem_object_unreference(&obj->base);
3079 mutex_unlock(&dev->struct_mutex);
3080 return ret;
3081 }
3082
3083 static int
3084 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3085 struct intel_engine_cs *to,
3086 struct drm_i915_gem_request *from_req,
3087 struct drm_i915_gem_request **to_req)
3088 {
3089 struct intel_engine_cs *from;
3090 int ret;
3091
3092 from = i915_gem_request_get_ring(from_req);
3093 if (to == from)
3094 return 0;
3095
3096 if (i915_gem_request_completed(from_req, true))
3097 return 0;
3098
3099 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3100 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3101 ret = __i915_wait_request(from_req,
3102 atomic_read(&i915->gpu_error.reset_counter),
3103 i915->mm.interruptible,
3104 NULL,
3105 &i915->rps.semaphores);
3106 if (ret)
3107 return ret;
3108
3109 i915_gem_object_retire_request(obj, from_req);
3110 } else {
3111 int idx = intel_ring_sync_index(from, to);
3112 u32 seqno = i915_gem_request_get_seqno(from_req);
3113
3114 WARN_ON(!to_req);
3115
3116 if (seqno <= from->semaphore.sync_seqno[idx])
3117 return 0;
3118
3119 if (*to_req == NULL) {
3120 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3121 if (ret)
3122 return ret;
3123 }
3124
3125 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3126 ret = to->semaphore.sync_to(*to_req, from, seqno);
3127 if (ret)
3128 return ret;
3129
3130 /* We use last_read_req because sync_to()
3131 * might have just caused seqno wrap under
3132 * the radar.
3133 */
3134 from->semaphore.sync_seqno[idx] =
3135 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3136 }
3137
3138 return 0;
3139 }
3140
3141 /**
3142 * i915_gem_object_sync - sync an object to a ring.
3143 *
3144 * @obj: object which may be in use on another ring.
3145 * @to: ring we wish to use the object on. May be NULL.
3146 * @to_req: request we wish to use the object for. See below.
3147 * This will be allocated and returned if a request is
3148 * required but not passed in.
3149 *
3150 * This code is meant to abstract object synchronization with the GPU.
3151 * Calling with NULL implies synchronizing the object with the CPU
3152 * rather than a particular GPU ring. Conceptually we serialise writes
3153 * between engines inside the GPU. We only allow one engine to write
3154 * into a buffer at any time, but multiple readers. To ensure each has
3155 * a coherent view of memory, we must:
3156 *
3157 * - If there is an outstanding write request to the object, the new
3158 * request must wait for it to complete (either CPU or in hw, requests
3159 * on the same ring will be naturally ordered).
3160 *
3161 * - If we are a write request (pending_write_domain is set), the new
3162 * request must wait for outstanding read requests to complete.
3163 *
3164 * For CPU synchronisation (NULL to) no request is required. For syncing with
3165 * rings to_req must be non-NULL. However, a request does not have to be
3166 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3167 * request will be allocated automatically and returned through *to_req. Note
3168 * that it is not guaranteed that commands will be emitted (because the system
3169 * might already be idle). Hence there is no need to create a request that
3170 * might never have any work submitted. Note further that if a request is
3171 * returned in *to_req, it is the responsibility of the caller to submit
3172 * that request (after potentially adding more work to it).
3173 *
3174 * Returns 0 if successful, else propagates up the lower layer error.
3175 */
3176 int
3177 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3178 struct intel_engine_cs *to,
3179 struct drm_i915_gem_request **to_req)
3180 {
3181 const bool readonly = obj->base.pending_write_domain == 0;
3182 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3183 int ret, i, n;
3184
3185 if (!obj->active)
3186 return 0;
3187
3188 if (to == NULL)
3189 return i915_gem_object_wait_rendering(obj, readonly);
3190
3191 n = 0;
3192 if (readonly) {
3193 if (obj->last_write_req)
3194 req[n++] = obj->last_write_req;
3195 } else {
3196 for (i = 0; i < I915_NUM_RINGS; i++)
3197 if (obj->last_read_req[i])
3198 req[n++] = obj->last_read_req[i];
3199 }
3200 for (i = 0; i < n; i++) {
3201 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3202 if (ret)
3203 return ret;
3204 }
3205
3206 return 0;
3207 }
3208
3209 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3210 {
3211 u32 old_write_domain, old_read_domains;
3212
3213 /* Force a pagefault for domain tracking on next user access */
3214 i915_gem_release_mmap(obj);
3215
3216 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3217 return;
3218
3219 /* Wait for any direct GTT access to complete */
3220 mb();
3221
3222 old_read_domains = obj->base.read_domains;
3223 old_write_domain = obj->base.write_domain;
3224
3225 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3226 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3227
3228 trace_i915_gem_object_change_domain(obj,
3229 old_read_domains,
3230 old_write_domain);
3231 }
3232
3233 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3234 {
3235 struct drm_i915_gem_object *obj = vma->obj;
3236 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3237 int ret;
3238
3239 if (list_empty(&vma->vma_link))
3240 return 0;
3241
3242 if (!drm_mm_node_allocated(&vma->node)) {
3243 i915_gem_vma_destroy(vma);
3244 return 0;
3245 }
3246
3247 if (vma->pin_count)
3248 return -EBUSY;
3249
3250 BUG_ON(obj->pages == NULL);
3251
3252 if (wait) {
3253 ret = i915_gem_object_wait_rendering(obj, false);
3254 if (ret)
3255 return ret;
3256 }
3257
3258 if (i915_is_ggtt(vma->vm) &&
3259 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3260 i915_gem_object_finish_gtt(obj);
3261
3262 /* release the fence reg _after_ flushing */
3263 ret = i915_gem_object_put_fence(obj);
3264 if (ret)
3265 return ret;
3266 }
3267
3268 trace_i915_vma_unbind(vma);
3269
3270 vma->vm->unbind_vma(vma);
3271 vma->bound = 0;
3272
3273 list_del_init(&vma->mm_list);
3274 if (i915_is_ggtt(vma->vm)) {
3275 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3276 obj->map_and_fenceable = false;
3277 } else if (vma->ggtt_view.pages) {
3278 sg_free_table(vma->ggtt_view.pages);
3279 kfree(vma->ggtt_view.pages);
3280 }
3281 vma->ggtt_view.pages = NULL;
3282 }
3283
3284 drm_mm_remove_node(&vma->node);
3285 i915_gem_vma_destroy(vma);
3286
3287 /* Since the unbound list is global, only move to that list if
3288 * no more VMAs exist. */
3289 if (list_empty(&obj->vma_list))
3290 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3291
3292 /* And finally now the object is completely decoupled from this vma,
3293 * we can drop its hold on the backing storage and allow it to be
3294 * reaped by the shrinker.
3295 */
3296 i915_gem_object_unpin_pages(obj);
3297
3298 return 0;
3299 }
3300
3301 int i915_vma_unbind(struct i915_vma *vma)
3302 {
3303 return __i915_vma_unbind(vma, true);
3304 }
3305
3306 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3307 {
3308 return __i915_vma_unbind(vma, false);
3309 }
3310
3311 int i915_gpu_idle(struct drm_device *dev)
3312 {
3313 struct drm_i915_private *dev_priv = dev->dev_private;
3314 struct intel_engine_cs *ring;
3315 int ret, i;
3316
3317 /* Flush everything onto the inactive list. */
3318 for_each_ring(ring, dev_priv, i) {
3319 if (!i915.enable_execlists) {
3320 struct drm_i915_gem_request *req;
3321
3322 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3323 if (ret)
3324 return ret;
3325
3326 ret = i915_switch_context(req);
3327 if (ret) {
3328 i915_gem_request_cancel(req);
3329 return ret;
3330 }
3331
3332 i915_add_request_no_flush(req);
3333 }
3334
3335 ret = intel_ring_idle(ring);
3336 if (ret)
3337 return ret;
3338 }
3339
3340 WARN_ON(i915_verify_lists(dev));
3341 return 0;
3342 }
3343
3344 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3345 unsigned long cache_level)
3346 {
3347 struct drm_mm_node *gtt_space = &vma->node;
3348 struct drm_mm_node *other;
3349
3350 /*
3351 * On some machines we have to be careful when putting differing types
3352 * of snoopable memory together to avoid the prefetcher crossing memory
3353 * domains and dying. During vm initialisation, we decide whether or not
3354 * these constraints apply and set the drm_mm.color_adjust
3355 * appropriately.
3356 */
3357 if (vma->vm->mm.color_adjust == NULL)
3358 return true;
3359
3360 if (!drm_mm_node_allocated(gtt_space))
3361 return true;
3362
3363 if (list_empty(&gtt_space->node_list))
3364 return true;
3365
3366 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3367 if (other->allocated && !other->hole_follows && other->color != cache_level)
3368 return false;
3369
3370 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3371 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3372 return false;
3373
3374 return true;
3375 }
3376
3377 /**
3378 * Finds free space in the GTT aperture and binds the object or a view of it
3379 * there.
3380 */
3381 static struct i915_vma *
3382 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3383 struct i915_address_space *vm,
3384 const struct i915_ggtt_view *ggtt_view,
3385 unsigned alignment,
3386 uint64_t flags)
3387 {
3388 struct drm_device *dev = obj->base.dev;
3389 struct drm_i915_private *dev_priv = dev->dev_private;
3390 u32 fence_alignment, unfenced_alignment;
3391 u32 search_flag, alloc_flag;
3392 u64 start, end;
3393 u64 size, fence_size;
3394 struct i915_vma *vma;
3395 int ret;
3396
3397 if (i915_is_ggtt(vm)) {
3398 u32 view_size;
3399
3400 if (WARN_ON(!ggtt_view))
3401 return ERR_PTR(-EINVAL);
3402
3403 view_size = i915_ggtt_view_size(obj, ggtt_view);
3404
3405 fence_size = i915_gem_get_gtt_size(dev,
3406 view_size,
3407 obj->tiling_mode);
3408 fence_alignment = i915_gem_get_gtt_alignment(dev,
3409 view_size,
3410 obj->tiling_mode,
3411 true);
3412 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3413 view_size,
3414 obj->tiling_mode,
3415 false);
3416 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3417 } else {
3418 fence_size = i915_gem_get_gtt_size(dev,
3419 obj->base.size,
3420 obj->tiling_mode);
3421 fence_alignment = i915_gem_get_gtt_alignment(dev,
3422 obj->base.size,
3423 obj->tiling_mode,
3424 true);
3425 unfenced_alignment =
3426 i915_gem_get_gtt_alignment(dev,
3427 obj->base.size,
3428 obj->tiling_mode,
3429 false);
3430 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3431 }
3432
3433 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3434 end = vm->total;
3435 if (flags & PIN_MAPPABLE)
3436 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3437 if (flags & PIN_ZONE_4G)
3438 end = min_t(u64, end, (1ULL << 32));
3439
3440 if (alignment == 0)
3441 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3442 unfenced_alignment;
3443 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3444 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3445 ggtt_view ? ggtt_view->type : 0,
3446 alignment);
3447 return ERR_PTR(-EINVAL);
3448 }
3449
3450 /* If binding the object/GGTT view requires more space than the entire
3451 * aperture has, reject it early before evicting everything in a vain
3452 * attempt to find space.
3453 */
3454 if (size > end) {
3455 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3456 ggtt_view ? ggtt_view->type : 0,
3457 size,
3458 flags & PIN_MAPPABLE ? "mappable" : "total",
3459 end);
3460 return ERR_PTR(-E2BIG);
3461 }
3462
3463 ret = i915_gem_object_get_pages(obj);
3464 if (ret)
3465 return ERR_PTR(ret);
3466
3467 i915_gem_object_pin_pages(obj);
3468
3469 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3470 i915_gem_obj_lookup_or_create_vma(obj, vm);
3471
3472 if (IS_ERR(vma))
3473 goto err_unpin;
3474
3475 if (flags & PIN_OFFSET_FIXED) {
3476 uint64_t offset = flags & PIN_OFFSET_MASK;
3477
3478 if (offset & (alignment - 1) || offset + size > end) {
3479 ret = -EINVAL;
3480 goto err_free_vma;
3481 }
3482 vma->node.start = offset;
3483 vma->node.size = size;
3484 vma->node.color = obj->cache_level;
3485 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3486 if (ret) {
3487 ret = i915_gem_evict_for_vma(vma);
3488 if (ret == 0)
3489 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3490 }
3491 if (ret)
3492 goto err_free_vma;
3493 } else {
3494 if (flags & PIN_HIGH) {
3495 search_flag = DRM_MM_SEARCH_BELOW;
3496 alloc_flag = DRM_MM_CREATE_TOP;
3497 } else {
3498 search_flag = DRM_MM_SEARCH_DEFAULT;
3499 alloc_flag = DRM_MM_CREATE_DEFAULT;
3500 }
3501
3502 search_free:
3503 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3504 size, alignment,
3505 obj->cache_level,
3506 start, end,
3507 search_flag,
3508 alloc_flag);
3509 if (ret) {
3510 ret = i915_gem_evict_something(dev, vm, size, alignment,
3511 obj->cache_level,
3512 start, end,
3513 flags);
3514 if (ret == 0)
3515 goto search_free;
3516
3517 goto err_free_vma;
3518 }
3519 }
3520 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3521 ret = -EINVAL;
3522 goto err_remove_node;
3523 }
3524
3525 trace_i915_vma_bind(vma, flags);
3526 ret = i915_vma_bind(vma, obj->cache_level, flags);
3527 if (ret)
3528 goto err_remove_node;
3529
3530 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3531 list_add_tail(&vma->mm_list, &vm->inactive_list);
3532
3533 return vma;
3534
3535 err_remove_node:
3536 drm_mm_remove_node(&vma->node);
3537 err_free_vma:
3538 i915_gem_vma_destroy(vma);
3539 vma = ERR_PTR(ret);
3540 err_unpin:
3541 i915_gem_object_unpin_pages(obj);
3542 return vma;
3543 }
3544
3545 bool
3546 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3547 bool force)
3548 {
3549 /* If we don't have a page list set up, then we're not pinned
3550 * to GPU, and we can ignore the cache flush because it'll happen
3551 * again at bind time.
3552 */
3553 if (obj->pages == NULL)
3554 return false;
3555
3556 /*
3557 * Stolen memory is always coherent with the GPU as it is explicitly
3558 * marked as wc by the system, or the system is cache-coherent.
3559 */
3560 if (obj->stolen || obj->phys_handle)
3561 return false;
3562
3563 /* If the GPU is snooping the contents of the CPU cache,
3564 * we do not need to manually clear the CPU cache lines. However,
3565 * the caches are only snooped when the render cache is
3566 * flushed/invalidated. As we always have to emit invalidations
3567 * and flushes when moving into and out of the RENDER domain, correct
3568 * snooping behaviour occurs naturally as the result of our domain
3569 * tracking.
3570 */
3571 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3572 obj->cache_dirty = true;
3573 return false;
3574 }
3575
3576 trace_i915_gem_object_clflush(obj);
3577 drm_clflush_sg(obj->pages);
3578 obj->cache_dirty = false;
3579
3580 return true;
3581 }
3582
3583 /** Flushes the GTT write domain for the object if it's dirty. */
3584 static void
3585 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3586 {
3587 uint32_t old_write_domain;
3588
3589 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3590 return;
3591
3592 /* No actual flushing is required for the GTT write domain. Writes
3593 * to it immediately go to main memory as far as we know, so there's
3594 * no chipset flush. It also doesn't land in render cache.
3595 *
3596 * However, we do have to enforce the order so that all writes through
3597 * the GTT land before any writes to the device, such as updates to
3598 * the GATT itself.
3599 */
3600 wmb();
3601
3602 old_write_domain = obj->base.write_domain;
3603 obj->base.write_domain = 0;
3604
3605 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3606
3607 trace_i915_gem_object_change_domain(obj,
3608 obj->base.read_domains,
3609 old_write_domain);
3610 }
3611
3612 /** Flushes the CPU write domain for the object if it's dirty. */
3613 static void
3614 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3615 {
3616 uint32_t old_write_domain;
3617
3618 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3619 return;
3620
3621 if (i915_gem_clflush_object(obj, obj->pin_display))
3622 i915_gem_chipset_flush(obj->base.dev);
3623
3624 old_write_domain = obj->base.write_domain;
3625 obj->base.write_domain = 0;
3626
3627 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3628
3629 trace_i915_gem_object_change_domain(obj,
3630 obj->base.read_domains,
3631 old_write_domain);
3632 }
3633
3634 /**
3635 * Moves a single object to the GTT read, and possibly write domain.
3636 *
3637 * This function returns when the move is complete, including waiting on
3638 * flushes to occur.
3639 */
3640 int
3641 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3642 {
3643 uint32_t old_write_domain, old_read_domains;
3644 struct i915_vma *vma;
3645 int ret;
3646
3647 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3648 return 0;
3649
3650 ret = i915_gem_object_wait_rendering(obj, !write);
3651 if (ret)
3652 return ret;
3653
3654 /* Flush and acquire obj->pages so that we are coherent through
3655 * direct access in memory with previous cached writes through
3656 * shmemfs and that our cache domain tracking remains valid.
3657 * For example, if the obj->filp was moved to swap without us
3658 * being notified and releasing the pages, we would mistakenly
3659 * continue to assume that the obj remained out of the CPU cached
3660 * domain.
3661 */
3662 ret = i915_gem_object_get_pages(obj);
3663 if (ret)
3664 return ret;
3665
3666 i915_gem_object_flush_cpu_write_domain(obj);
3667
3668 /* Serialise direct access to this object with the barriers for
3669 * coherent writes from the GPU, by effectively invalidating the
3670 * GTT domain upon first access.
3671 */
3672 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3673 mb();
3674
3675 old_write_domain = obj->base.write_domain;
3676 old_read_domains = obj->base.read_domains;
3677
3678 /* It should now be out of any other write domains, and we can update
3679 * the domain values for our changes.
3680 */
3681 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3682 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3683 if (write) {
3684 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3685 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3686 obj->dirty = 1;
3687 }
3688
3689 trace_i915_gem_object_change_domain(obj,
3690 old_read_domains,
3691 old_write_domain);
3692
3693 /* And bump the LRU for this access */
3694 vma = i915_gem_obj_to_ggtt(obj);
3695 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3696 list_move_tail(&vma->mm_list,
3697 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3698
3699 return 0;
3700 }
3701
3702 /**
3703 * Changes the cache-level of an object across all VMA.
3704 *
3705 * After this function returns, the object will be in the new cache-level
3706 * across all GTT and the contents of the backing storage will be coherent,
3707 * with respect to the new cache-level. In order to keep the backing storage
3708 * coherent for all users, we only allow a single cache level to be set
3709 * globally on the object and prevent it from being changed whilst the
3710 * hardware is reading from the object. That is if the object is currently
3711 * on the scanout it will be set to uncached (or equivalent display
3712 * cache coherency) and all non-MOCS GPU access will also be uncached so
3713 * that all direct access to the scanout remains coherent.
3714 */
3715 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3716 enum i915_cache_level cache_level)
3717 {
3718 struct drm_device *dev = obj->base.dev;
3719 struct i915_vma *vma, *next;
3720 bool bound = false;
3721 int ret = 0;
3722
3723 if (obj->cache_level == cache_level)
3724 goto out;
3725
3726 /* Inspect the list of currently bound VMA and unbind any that would
3727 * be invalid given the new cache-level. This is principally to
3728 * catch the issue of the CS prefetch crossing page boundaries and
3729 * reading an invalid PTE on older architectures.
3730 */
3731 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3732 if (!drm_mm_node_allocated(&vma->node))
3733 continue;
3734
3735 if (vma->pin_count) {
3736 DRM_DEBUG("can not change the cache level of pinned objects\n");
3737 return -EBUSY;
3738 }
3739
3740 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3741 ret = i915_vma_unbind(vma);
3742 if (ret)
3743 return ret;
3744 } else
3745 bound = true;
3746 }
3747
3748 /* We can reuse the existing drm_mm nodes but need to change the
3749 * cache-level on the PTE. We could simply unbind them all and
3750 * rebind with the correct cache-level on next use. However since
3751 * we already have a valid slot, dma mapping, pages etc, we may as
3752 * rewrite the PTE in the belief that doing so tramples upon less
3753 * state and so involves less work.
3754 */
3755 if (bound) {
3756 /* Before we change the PTE, the GPU must not be accessing it.
3757 * If we wait upon the object, we know that all the bound
3758 * VMA are no longer active.
3759 */
3760 ret = i915_gem_object_wait_rendering(obj, false);
3761 if (ret)
3762 return ret;
3763
3764 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3765 /* Access to snoopable pages through the GTT is
3766 * incoherent and on some machines causes a hard
3767 * lockup. Relinquish the CPU mmaping to force
3768 * userspace to refault in the pages and we can
3769 * then double check if the GTT mapping is still
3770 * valid for that pointer access.
3771 */
3772 i915_gem_release_mmap(obj);
3773
3774 /* As we no longer need a fence for GTT access,
3775 * we can relinquish it now (and so prevent having
3776 * to steal a fence from someone else on the next
3777 * fence request). Note GPU activity would have
3778 * dropped the fence as all snoopable access is
3779 * supposed to be linear.
3780 */
3781 ret = i915_gem_object_put_fence(obj);
3782 if (ret)
3783 return ret;
3784 } else {
3785 /* We either have incoherent backing store and
3786 * so no GTT access or the architecture is fully
3787 * coherent. In such cases, existing GTT mmaps
3788 * ignore the cache bit in the PTE and we can
3789 * rewrite it without confusing the GPU or having
3790 * to force userspace to fault back in its mmaps.
3791 */
3792 }
3793
3794 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3795 if (!drm_mm_node_allocated(&vma->node))
3796 continue;
3797
3798 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3799 if (ret)
3800 return ret;
3801 }
3802 }
3803
3804 list_for_each_entry(vma, &obj->vma_list, vma_link)
3805 vma->node.color = cache_level;
3806 obj->cache_level = cache_level;
3807
3808 out:
3809 /* Flush the dirty CPU caches to the backing storage so that the
3810 * object is now coherent at its new cache level (with respect
3811 * to the access domain).
3812 */
3813 if (obj->cache_dirty &&
3814 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3815 cpu_write_needs_clflush(obj)) {
3816 if (i915_gem_clflush_object(obj, true))
3817 i915_gem_chipset_flush(obj->base.dev);
3818 }
3819
3820 return 0;
3821 }
3822
3823 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3824 struct drm_file *file)
3825 {
3826 struct drm_i915_gem_caching *args = data;
3827 struct drm_i915_gem_object *obj;
3828
3829 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3830 if (&obj->base == NULL)
3831 return -ENOENT;
3832
3833 switch (obj->cache_level) {
3834 case I915_CACHE_LLC:
3835 case I915_CACHE_L3_LLC:
3836 args->caching = I915_CACHING_CACHED;
3837 break;
3838
3839 case I915_CACHE_WT:
3840 args->caching = I915_CACHING_DISPLAY;
3841 break;
3842
3843 default:
3844 args->caching = I915_CACHING_NONE;
3845 break;
3846 }
3847
3848 drm_gem_object_unreference_unlocked(&obj->base);
3849 return 0;
3850 }
3851
3852 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3853 struct drm_file *file)
3854 {
3855 struct drm_i915_private *dev_priv = dev->dev_private;
3856 struct drm_i915_gem_caching *args = data;
3857 struct drm_i915_gem_object *obj;
3858 enum i915_cache_level level;
3859 int ret;
3860
3861 switch (args->caching) {
3862 case I915_CACHING_NONE:
3863 level = I915_CACHE_NONE;
3864 break;
3865 case I915_CACHING_CACHED:
3866 /*
3867 * Due to a HW issue on BXT A stepping, GPU stores via a
3868 * snooped mapping may leave stale data in a corresponding CPU
3869 * cacheline, whereas normally such cachelines would get
3870 * invalidated.
3871 */
3872 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3873 return -ENODEV;
3874
3875 level = I915_CACHE_LLC;
3876 break;
3877 case I915_CACHING_DISPLAY:
3878 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3879 break;
3880 default:
3881 return -EINVAL;
3882 }
3883
3884 intel_runtime_pm_get(dev_priv);
3885
3886 ret = i915_mutex_lock_interruptible(dev);
3887 if (ret)
3888 goto rpm_put;
3889
3890 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3891 if (&obj->base == NULL) {
3892 ret = -ENOENT;
3893 goto unlock;
3894 }
3895
3896 ret = i915_gem_object_set_cache_level(obj, level);
3897
3898 drm_gem_object_unreference(&obj->base);
3899 unlock:
3900 mutex_unlock(&dev->struct_mutex);
3901 rpm_put:
3902 intel_runtime_pm_put(dev_priv);
3903
3904 return ret;
3905 }
3906
3907 /*
3908 * Prepare buffer for display plane (scanout, cursors, etc).
3909 * Can be called from an uninterruptible phase (modesetting) and allows
3910 * any flushes to be pipelined (for pageflips).
3911 */
3912 int
3913 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3914 u32 alignment,
3915 const struct i915_ggtt_view *view)
3916 {
3917 u32 old_read_domains, old_write_domain;
3918 int ret;
3919
3920 /* Mark the pin_display early so that we account for the
3921 * display coherency whilst setting up the cache domains.
3922 */
3923 obj->pin_display++;
3924
3925 /* The display engine is not coherent with the LLC cache on gen6. As
3926 * a result, we make sure that the pinning that is about to occur is
3927 * done with uncached PTEs. This is lowest common denominator for all
3928 * chipsets.
3929 *
3930 * However for gen6+, we could do better by using the GFDT bit instead
3931 * of uncaching, which would allow us to flush all the LLC-cached data
3932 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3933 */
3934 ret = i915_gem_object_set_cache_level(obj,
3935 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3936 if (ret)
3937 goto err_unpin_display;
3938
3939 /* As the user may map the buffer once pinned in the display plane
3940 * (e.g. libkms for the bootup splash), we have to ensure that we
3941 * always use map_and_fenceable for all scanout buffers.
3942 */
3943 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3944 view->type == I915_GGTT_VIEW_NORMAL ?
3945 PIN_MAPPABLE : 0);
3946 if (ret)
3947 goto err_unpin_display;
3948
3949 i915_gem_object_flush_cpu_write_domain(obj);
3950
3951 old_write_domain = obj->base.write_domain;
3952 old_read_domains = obj->base.read_domains;
3953
3954 /* It should now be out of any other write domains, and we can update
3955 * the domain values for our changes.
3956 */
3957 obj->base.write_domain = 0;
3958 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3959
3960 trace_i915_gem_object_change_domain(obj,
3961 old_read_domains,
3962 old_write_domain);
3963
3964 return 0;
3965
3966 err_unpin_display:
3967 obj->pin_display--;
3968 return ret;
3969 }
3970
3971 void
3972 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3973 const struct i915_ggtt_view *view)
3974 {
3975 if (WARN_ON(obj->pin_display == 0))
3976 return;
3977
3978 i915_gem_object_ggtt_unpin_view(obj, view);
3979
3980 obj->pin_display--;
3981 }
3982
3983 /**
3984 * Moves a single object to the CPU read, and possibly write domain.
3985 *
3986 * This function returns when the move is complete, including waiting on
3987 * flushes to occur.
3988 */
3989 int
3990 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3991 {
3992 uint32_t old_write_domain, old_read_domains;
3993 int ret;
3994
3995 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3996 return 0;
3997
3998 ret = i915_gem_object_wait_rendering(obj, !write);
3999 if (ret)
4000 return ret;
4001
4002 i915_gem_object_flush_gtt_write_domain(obj);
4003
4004 old_write_domain = obj->base.write_domain;
4005 old_read_domains = obj->base.read_domains;
4006
4007 /* Flush the CPU cache if it's still invalid. */
4008 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4009 i915_gem_clflush_object(obj, false);
4010
4011 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4012 }
4013
4014 /* It should now be out of any other write domains, and we can update
4015 * the domain values for our changes.
4016 */
4017 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4018
4019 /* If we're writing through the CPU, then the GPU read domains will
4020 * need to be invalidated at next use.
4021 */
4022 if (write) {
4023 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4024 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4025 }
4026
4027 trace_i915_gem_object_change_domain(obj,
4028 old_read_domains,
4029 old_write_domain);
4030
4031 return 0;
4032 }
4033
4034 /* Throttle our rendering by waiting until the ring has completed our requests
4035 * emitted over 20 msec ago.
4036 *
4037 * Note that if we were to use the current jiffies each time around the loop,
4038 * we wouldn't escape the function with any frames outstanding if the time to
4039 * render a frame was over 20ms.
4040 *
4041 * This should get us reasonable parallelism between CPU and GPU but also
4042 * relatively low latency when blocking on a particular request to finish.
4043 */
4044 static int
4045 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4046 {
4047 struct drm_i915_private *dev_priv = dev->dev_private;
4048 struct drm_i915_file_private *file_priv = file->driver_priv;
4049 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4050 struct drm_i915_gem_request *request, *target = NULL;
4051 unsigned reset_counter;
4052 int ret;
4053
4054 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4055 if (ret)
4056 return ret;
4057
4058 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4059 if (ret)
4060 return ret;
4061
4062 spin_lock(&file_priv->mm.lock);
4063 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4064 if (time_after_eq(request->emitted_jiffies, recent_enough))
4065 break;
4066
4067 /*
4068 * Note that the request might not have been submitted yet.
4069 * In which case emitted_jiffies will be zero.
4070 */
4071 if (!request->emitted_jiffies)
4072 continue;
4073
4074 target = request;
4075 }
4076 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4077 if (target)
4078 i915_gem_request_reference(target);
4079 spin_unlock(&file_priv->mm.lock);
4080
4081 if (target == NULL)
4082 return 0;
4083
4084 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4085 if (ret == 0)
4086 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4087
4088 i915_gem_request_unreference__unlocked(target);
4089
4090 return ret;
4091 }
4092
4093 static bool
4094 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4095 {
4096 struct drm_i915_gem_object *obj = vma->obj;
4097
4098 if (alignment &&
4099 vma->node.start & (alignment - 1))
4100 return true;
4101
4102 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4103 return true;
4104
4105 if (flags & PIN_OFFSET_BIAS &&
4106 vma->node.start < (flags & PIN_OFFSET_MASK))
4107 return true;
4108
4109 if (flags & PIN_OFFSET_FIXED &&
4110 vma->node.start != (flags & PIN_OFFSET_MASK))
4111 return true;
4112
4113 return false;
4114 }
4115
4116 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4117 {
4118 struct drm_i915_gem_object *obj = vma->obj;
4119 bool mappable, fenceable;
4120 u32 fence_size, fence_alignment;
4121
4122 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4123 obj->base.size,
4124 obj->tiling_mode);
4125 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4126 obj->base.size,
4127 obj->tiling_mode,
4128 true);
4129
4130 fenceable = (vma->node.size == fence_size &&
4131 (vma->node.start & (fence_alignment - 1)) == 0);
4132
4133 mappable = (vma->node.start + fence_size <=
4134 to_i915(obj->base.dev)->gtt.mappable_end);
4135
4136 obj->map_and_fenceable = mappable && fenceable;
4137 }
4138
4139 static int
4140 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4141 struct i915_address_space *vm,
4142 const struct i915_ggtt_view *ggtt_view,
4143 uint32_t alignment,
4144 uint64_t flags)
4145 {
4146 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4147 struct i915_vma *vma;
4148 unsigned bound;
4149 int ret;
4150
4151 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4152 return -ENODEV;
4153
4154 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4155 return -EINVAL;
4156
4157 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4158 return -EINVAL;
4159
4160 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4161 return -EINVAL;
4162
4163 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4164 i915_gem_obj_to_vma(obj, vm);
4165
4166 if (IS_ERR(vma))
4167 return PTR_ERR(vma);
4168
4169 if (vma) {
4170 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4171 return -EBUSY;
4172
4173 if (i915_vma_misplaced(vma, alignment, flags)) {
4174 WARN(vma->pin_count,
4175 "bo is already pinned in %s with incorrect alignment:"
4176 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4177 " obj->map_and_fenceable=%d\n",
4178 ggtt_view ? "ggtt" : "ppgtt",
4179 upper_32_bits(vma->node.start),
4180 lower_32_bits(vma->node.start),
4181 alignment,
4182 !!(flags & PIN_MAPPABLE),
4183 obj->map_and_fenceable);
4184 ret = i915_vma_unbind(vma);
4185 if (ret)
4186 return ret;
4187
4188 vma = NULL;
4189 }
4190 }
4191
4192 bound = vma ? vma->bound : 0;
4193 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4194 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4195 flags);
4196 if (IS_ERR(vma))
4197 return PTR_ERR(vma);
4198 } else {
4199 ret = i915_vma_bind(vma, obj->cache_level, flags);
4200 if (ret)
4201 return ret;
4202 }
4203
4204 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4205 (bound ^ vma->bound) & GLOBAL_BIND) {
4206 __i915_vma_set_map_and_fenceable(vma);
4207 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4208 }
4209
4210 vma->pin_count++;
4211 return 0;
4212 }
4213
4214 int
4215 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4216 struct i915_address_space *vm,
4217 uint32_t alignment,
4218 uint64_t flags)
4219 {
4220 return i915_gem_object_do_pin(obj, vm,
4221 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4222 alignment, flags);
4223 }
4224
4225 int
4226 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4227 const struct i915_ggtt_view *view,
4228 uint32_t alignment,
4229 uint64_t flags)
4230 {
4231 if (WARN_ONCE(!view, "no view specified"))
4232 return -EINVAL;
4233
4234 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4235 alignment, flags | PIN_GLOBAL);
4236 }
4237
4238 void
4239 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4240 const struct i915_ggtt_view *view)
4241 {
4242 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4243
4244 BUG_ON(!vma);
4245 WARN_ON(vma->pin_count == 0);
4246 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4247
4248 --vma->pin_count;
4249 }
4250
4251 int
4252 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4253 struct drm_file *file)
4254 {
4255 struct drm_i915_gem_busy *args = data;
4256 struct drm_i915_gem_object *obj;
4257 int ret;
4258
4259 ret = i915_mutex_lock_interruptible(dev);
4260 if (ret)
4261 return ret;
4262
4263 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4264 if (&obj->base == NULL) {
4265 ret = -ENOENT;
4266 goto unlock;
4267 }
4268
4269 /* Count all active objects as busy, even if they are currently not used
4270 * by the gpu. Users of this interface expect objects to eventually
4271 * become non-busy without any further actions, therefore emit any
4272 * necessary flushes here.
4273 */
4274 ret = i915_gem_object_flush_active(obj);
4275 if (ret)
4276 goto unref;
4277
4278 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4279 args->busy = obj->active << 16;
4280 if (obj->last_write_req)
4281 args->busy |= obj->last_write_req->ring->id;
4282
4283 unref:
4284 drm_gem_object_unreference(&obj->base);
4285 unlock:
4286 mutex_unlock(&dev->struct_mutex);
4287 return ret;
4288 }
4289
4290 int
4291 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4292 struct drm_file *file_priv)
4293 {
4294 return i915_gem_ring_throttle(dev, file_priv);
4295 }
4296
4297 int
4298 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4299 struct drm_file *file_priv)
4300 {
4301 struct drm_i915_private *dev_priv = dev->dev_private;
4302 struct drm_i915_gem_madvise *args = data;
4303 struct drm_i915_gem_object *obj;
4304 int ret;
4305
4306 switch (args->madv) {
4307 case I915_MADV_DONTNEED:
4308 case I915_MADV_WILLNEED:
4309 break;
4310 default:
4311 return -EINVAL;
4312 }
4313
4314 ret = i915_mutex_lock_interruptible(dev);
4315 if (ret)
4316 return ret;
4317
4318 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4319 if (&obj->base == NULL) {
4320 ret = -ENOENT;
4321 goto unlock;
4322 }
4323
4324 if (i915_gem_obj_is_pinned(obj)) {
4325 ret = -EINVAL;
4326 goto out;
4327 }
4328
4329 if (obj->pages &&
4330 obj->tiling_mode != I915_TILING_NONE &&
4331 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4332 if (obj->madv == I915_MADV_WILLNEED)
4333 i915_gem_object_unpin_pages(obj);
4334 if (args->madv == I915_MADV_WILLNEED)
4335 i915_gem_object_pin_pages(obj);
4336 }
4337
4338 if (obj->madv != __I915_MADV_PURGED)
4339 obj->madv = args->madv;
4340
4341 /* if the object is no longer attached, discard its backing storage */
4342 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4343 i915_gem_object_truncate(obj);
4344
4345 args->retained = obj->madv != __I915_MADV_PURGED;
4346
4347 out:
4348 drm_gem_object_unreference(&obj->base);
4349 unlock:
4350 mutex_unlock(&dev->struct_mutex);
4351 return ret;
4352 }
4353
4354 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4355 const struct drm_i915_gem_object_ops *ops)
4356 {
4357 int i;
4358
4359 INIT_LIST_HEAD(&obj->global_list);
4360 for (i = 0; i < I915_NUM_RINGS; i++)
4361 INIT_LIST_HEAD(&obj->ring_list[i]);
4362 INIT_LIST_HEAD(&obj->obj_exec_link);
4363 INIT_LIST_HEAD(&obj->vma_list);
4364 INIT_LIST_HEAD(&obj->batch_pool_link);
4365
4366 obj->ops = ops;
4367
4368 obj->fence_reg = I915_FENCE_REG_NONE;
4369 obj->madv = I915_MADV_WILLNEED;
4370
4371 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4372 }
4373
4374 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4375 .get_pages = i915_gem_object_get_pages_gtt,
4376 .put_pages = i915_gem_object_put_pages_gtt,
4377 };
4378
4379 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4380 size_t size)
4381 {
4382 struct drm_i915_gem_object *obj;
4383 struct address_space *mapping;
4384 gfp_t mask;
4385
4386 obj = i915_gem_object_alloc(dev);
4387 if (obj == NULL)
4388 return NULL;
4389
4390 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4391 i915_gem_object_free(obj);
4392 return NULL;
4393 }
4394
4395 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4396 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4397 /* 965gm cannot relocate objects above 4GiB. */
4398 mask &= ~__GFP_HIGHMEM;
4399 mask |= __GFP_DMA32;
4400 }
4401
4402 mapping = file_inode(obj->base.filp)->i_mapping;
4403 mapping_set_gfp_mask(mapping, mask);
4404
4405 i915_gem_object_init(obj, &i915_gem_object_ops);
4406
4407 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4408 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4409
4410 if (HAS_LLC(dev)) {
4411 /* On some devices, we can have the GPU use the LLC (the CPU
4412 * cache) for about a 10% performance improvement
4413 * compared to uncached. Graphics requests other than
4414 * display scanout are coherent with the CPU in
4415 * accessing this cache. This means in this mode we
4416 * don't need to clflush on the CPU side, and on the
4417 * GPU side we only need to flush internal caches to
4418 * get data visible to the CPU.
4419 *
4420 * However, we maintain the display planes as UC, and so
4421 * need to rebind when first used as such.
4422 */
4423 obj->cache_level = I915_CACHE_LLC;
4424 } else
4425 obj->cache_level = I915_CACHE_NONE;
4426
4427 trace_i915_gem_object_create(obj);
4428
4429 return obj;
4430 }
4431
4432 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4433 {
4434 /* If we are the last user of the backing storage (be it shmemfs
4435 * pages or stolen etc), we know that the pages are going to be
4436 * immediately released. In this case, we can then skip copying
4437 * back the contents from the GPU.
4438 */
4439
4440 if (obj->madv != I915_MADV_WILLNEED)
4441 return false;
4442
4443 if (obj->base.filp == NULL)
4444 return true;
4445
4446 /* At first glance, this looks racy, but then again so would be
4447 * userspace racing mmap against close. However, the first external
4448 * reference to the filp can only be obtained through the
4449 * i915_gem_mmap_ioctl() which safeguards us against the user
4450 * acquiring such a reference whilst we are in the middle of
4451 * freeing the object.
4452 */
4453 return atomic_long_read(&obj->base.filp->f_count) == 1;
4454 }
4455
4456 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4457 {
4458 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4459 struct drm_device *dev = obj->base.dev;
4460 struct drm_i915_private *dev_priv = dev->dev_private;
4461 struct i915_vma *vma, *next;
4462
4463 intel_runtime_pm_get(dev_priv);
4464
4465 trace_i915_gem_object_destroy(obj);
4466
4467 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4468 int ret;
4469
4470 vma->pin_count = 0;
4471 ret = i915_vma_unbind(vma);
4472 if (WARN_ON(ret == -ERESTARTSYS)) {
4473 bool was_interruptible;
4474
4475 was_interruptible = dev_priv->mm.interruptible;
4476 dev_priv->mm.interruptible = false;
4477
4478 WARN_ON(i915_vma_unbind(vma));
4479
4480 dev_priv->mm.interruptible = was_interruptible;
4481 }
4482 }
4483
4484 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4485 * before progressing. */
4486 if (obj->stolen)
4487 i915_gem_object_unpin_pages(obj);
4488
4489 WARN_ON(obj->frontbuffer_bits);
4490
4491 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4492 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4493 obj->tiling_mode != I915_TILING_NONE)
4494 i915_gem_object_unpin_pages(obj);
4495
4496 if (WARN_ON(obj->pages_pin_count))
4497 obj->pages_pin_count = 0;
4498 if (discard_backing_storage(obj))
4499 obj->madv = I915_MADV_DONTNEED;
4500 i915_gem_object_put_pages(obj);
4501 i915_gem_object_free_mmap_offset(obj);
4502
4503 BUG_ON(obj->pages);
4504
4505 if (obj->base.import_attach)
4506 drm_prime_gem_destroy(&obj->base, NULL);
4507
4508 if (obj->ops->release)
4509 obj->ops->release(obj);
4510
4511 drm_gem_object_release(&obj->base);
4512 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4513
4514 kfree(obj->bit_17);
4515 i915_gem_object_free(obj);
4516
4517 intel_runtime_pm_put(dev_priv);
4518 }
4519
4520 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4521 struct i915_address_space *vm)
4522 {
4523 struct i915_vma *vma;
4524 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4525 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4526 vma->vm == vm)
4527 return vma;
4528 }
4529 return NULL;
4530 }
4531
4532 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4533 const struct i915_ggtt_view *view)
4534 {
4535 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4536 struct i915_vma *vma;
4537
4538 if (WARN_ONCE(!view, "no view specified"))
4539 return ERR_PTR(-EINVAL);
4540
4541 list_for_each_entry(vma, &obj->vma_list, vma_link)
4542 if (vma->vm == ggtt &&
4543 i915_ggtt_view_equal(&vma->ggtt_view, view))
4544 return vma;
4545 return NULL;
4546 }
4547
4548 void i915_gem_vma_destroy(struct i915_vma *vma)
4549 {
4550 struct i915_address_space *vm = NULL;
4551 WARN_ON(vma->node.allocated);
4552
4553 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4554 if (!list_empty(&vma->exec_list))
4555 return;
4556
4557 vm = vma->vm;
4558
4559 if (!i915_is_ggtt(vm))
4560 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4561
4562 list_del(&vma->vma_link);
4563
4564 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4565 }
4566
4567 static void
4568 i915_gem_stop_ringbuffers(struct drm_device *dev)
4569 {
4570 struct drm_i915_private *dev_priv = dev->dev_private;
4571 struct intel_engine_cs *ring;
4572 int i;
4573
4574 for_each_ring(ring, dev_priv, i)
4575 dev_priv->gt.stop_ring(ring);
4576 }
4577
4578 int
4579 i915_gem_suspend(struct drm_device *dev)
4580 {
4581 struct drm_i915_private *dev_priv = dev->dev_private;
4582 int ret = 0;
4583
4584 mutex_lock(&dev->struct_mutex);
4585 ret = i915_gpu_idle(dev);
4586 if (ret)
4587 goto err;
4588
4589 i915_gem_retire_requests(dev);
4590
4591 i915_gem_stop_ringbuffers(dev);
4592 mutex_unlock(&dev->struct_mutex);
4593
4594 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4595 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4596 flush_delayed_work(&dev_priv->mm.idle_work);
4597
4598 /* Assert that we sucessfully flushed all the work and
4599 * reset the GPU back to its idle, low power state.
4600 */
4601 WARN_ON(dev_priv->mm.busy);
4602
4603 return 0;
4604
4605 err:
4606 mutex_unlock(&dev->struct_mutex);
4607 return ret;
4608 }
4609
4610 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4611 {
4612 struct intel_engine_cs *ring = req->ring;
4613 struct drm_device *dev = ring->dev;
4614 struct drm_i915_private *dev_priv = dev->dev_private;
4615 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4616 int i, ret;
4617
4618 if (!HAS_L3_DPF(dev) || !remap_info)
4619 return 0;
4620
4621 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4622 if (ret)
4623 return ret;
4624
4625 /*
4626 * Note: We do not worry about the concurrent register cacheline hang
4627 * here because no other code should access these registers other than
4628 * at initialization time.
4629 */
4630 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4631 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4632 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4633 intel_ring_emit(ring, remap_info[i]);
4634 }
4635
4636 intel_ring_advance(ring);
4637
4638 return ret;
4639 }
4640
4641 void i915_gem_init_swizzling(struct drm_device *dev)
4642 {
4643 struct drm_i915_private *dev_priv = dev->dev_private;
4644
4645 if (INTEL_INFO(dev)->gen < 5 ||
4646 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4647 return;
4648
4649 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4650 DISP_TILE_SURFACE_SWIZZLING);
4651
4652 if (IS_GEN5(dev))
4653 return;
4654
4655 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4656 if (IS_GEN6(dev))
4657 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4658 else if (IS_GEN7(dev))
4659 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4660 else if (IS_GEN8(dev))
4661 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4662 else
4663 BUG();
4664 }
4665
4666 static void init_unused_ring(struct drm_device *dev, u32 base)
4667 {
4668 struct drm_i915_private *dev_priv = dev->dev_private;
4669
4670 I915_WRITE(RING_CTL(base), 0);
4671 I915_WRITE(RING_HEAD(base), 0);
4672 I915_WRITE(RING_TAIL(base), 0);
4673 I915_WRITE(RING_START(base), 0);
4674 }
4675
4676 static void init_unused_rings(struct drm_device *dev)
4677 {
4678 if (IS_I830(dev)) {
4679 init_unused_ring(dev, PRB1_BASE);
4680 init_unused_ring(dev, SRB0_BASE);
4681 init_unused_ring(dev, SRB1_BASE);
4682 init_unused_ring(dev, SRB2_BASE);
4683 init_unused_ring(dev, SRB3_BASE);
4684 } else if (IS_GEN2(dev)) {
4685 init_unused_ring(dev, SRB0_BASE);
4686 init_unused_ring(dev, SRB1_BASE);
4687 } else if (IS_GEN3(dev)) {
4688 init_unused_ring(dev, PRB1_BASE);
4689 init_unused_ring(dev, PRB2_BASE);
4690 }
4691 }
4692
4693 int i915_gem_init_rings(struct drm_device *dev)
4694 {
4695 struct drm_i915_private *dev_priv = dev->dev_private;
4696 int ret;
4697
4698 ret = intel_init_render_ring_buffer(dev);
4699 if (ret)
4700 return ret;
4701
4702 if (HAS_BSD(dev)) {
4703 ret = intel_init_bsd_ring_buffer(dev);
4704 if (ret)
4705 goto cleanup_render_ring;
4706 }
4707
4708 if (HAS_BLT(dev)) {
4709 ret = intel_init_blt_ring_buffer(dev);
4710 if (ret)
4711 goto cleanup_bsd_ring;
4712 }
4713
4714 if (HAS_VEBOX(dev)) {
4715 ret = intel_init_vebox_ring_buffer(dev);
4716 if (ret)
4717 goto cleanup_blt_ring;
4718 }
4719
4720 if (HAS_BSD2(dev)) {
4721 ret = intel_init_bsd2_ring_buffer(dev);
4722 if (ret)
4723 goto cleanup_vebox_ring;
4724 }
4725
4726 return 0;
4727
4728 cleanup_vebox_ring:
4729 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4730 cleanup_blt_ring:
4731 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4732 cleanup_bsd_ring:
4733 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4734 cleanup_render_ring:
4735 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4736
4737 return ret;
4738 }
4739
4740 int
4741 i915_gem_init_hw(struct drm_device *dev)
4742 {
4743 struct drm_i915_private *dev_priv = dev->dev_private;
4744 struct intel_engine_cs *ring;
4745 int ret, i, j;
4746
4747 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4748 return -EIO;
4749
4750 /* Double layer security blanket, see i915_gem_init() */
4751 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4752
4753 if (dev_priv->ellc_size)
4754 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4755
4756 if (IS_HASWELL(dev))
4757 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4758 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4759
4760 if (HAS_PCH_NOP(dev)) {
4761 if (IS_IVYBRIDGE(dev)) {
4762 u32 temp = I915_READ(GEN7_MSG_CTL);
4763 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4764 I915_WRITE(GEN7_MSG_CTL, temp);
4765 } else if (INTEL_INFO(dev)->gen >= 7) {
4766 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4767 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4768 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4769 }
4770 }
4771
4772 i915_gem_init_swizzling(dev);
4773
4774 /*
4775 * At least 830 can leave some of the unused rings
4776 * "active" (ie. head != tail) after resume which
4777 * will prevent c3 entry. Makes sure all unused rings
4778 * are totally idle.
4779 */
4780 init_unused_rings(dev);
4781
4782 BUG_ON(!dev_priv->ring[RCS].default_context);
4783
4784 ret = i915_ppgtt_init_hw(dev);
4785 if (ret) {
4786 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4787 goto out;
4788 }
4789
4790 /* Need to do basic initialisation of all rings first: */
4791 for_each_ring(ring, dev_priv, i) {
4792 ret = ring->init_hw(ring);
4793 if (ret)
4794 goto out;
4795 }
4796
4797 /* We can't enable contexts until all firmware is loaded */
4798 if (HAS_GUC_UCODE(dev)) {
4799 ret = intel_guc_ucode_load(dev);
4800 if (ret) {
4801 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4802 ret = -EIO;
4803 goto out;
4804 }
4805 }
4806
4807 /*
4808 * Increment the next seqno by 0x100 so we have a visible break
4809 * on re-initialisation
4810 */
4811 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4812 if (ret)
4813 goto out;
4814
4815 /* Now it is safe to go back round and do everything else: */
4816 for_each_ring(ring, dev_priv, i) {
4817 struct drm_i915_gem_request *req;
4818
4819 WARN_ON(!ring->default_context);
4820
4821 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4822 if (ret) {
4823 i915_gem_cleanup_ringbuffer(dev);
4824 goto out;
4825 }
4826
4827 if (ring->id == RCS) {
4828 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4829 i915_gem_l3_remap(req, j);
4830 }
4831
4832 ret = i915_ppgtt_init_ring(req);
4833 if (ret && ret != -EIO) {
4834 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4835 i915_gem_request_cancel(req);
4836 i915_gem_cleanup_ringbuffer(dev);
4837 goto out;
4838 }
4839
4840 ret = i915_gem_context_enable(req);
4841 if (ret && ret != -EIO) {
4842 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4843 i915_gem_request_cancel(req);
4844 i915_gem_cleanup_ringbuffer(dev);
4845 goto out;
4846 }
4847
4848 i915_add_request_no_flush(req);
4849 }
4850
4851 out:
4852 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4853 return ret;
4854 }
4855
4856 int i915_gem_init(struct drm_device *dev)
4857 {
4858 struct drm_i915_private *dev_priv = dev->dev_private;
4859 int ret;
4860
4861 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4862 i915.enable_execlists);
4863
4864 mutex_lock(&dev->struct_mutex);
4865
4866 if (!i915.enable_execlists) {
4867 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4868 dev_priv->gt.init_rings = i915_gem_init_rings;
4869 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4870 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4871 } else {
4872 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4873 dev_priv->gt.init_rings = intel_logical_rings_init;
4874 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4875 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4876 }
4877
4878 /* This is just a security blanket to placate dragons.
4879 * On some systems, we very sporadically observe that the first TLBs
4880 * used by the CS may be stale, despite us poking the TLB reset. If
4881 * we hold the forcewake during initialisation these problems
4882 * just magically go away.
4883 */
4884 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4885
4886 ret = i915_gem_init_userptr(dev);
4887 if (ret)
4888 goto out_unlock;
4889
4890 i915_gem_init_global_gtt(dev);
4891
4892 ret = i915_gem_context_init(dev);
4893 if (ret)
4894 goto out_unlock;
4895
4896 ret = dev_priv->gt.init_rings(dev);
4897 if (ret)
4898 goto out_unlock;
4899
4900 ret = i915_gem_init_hw(dev);
4901 if (ret == -EIO) {
4902 /* Allow ring initialisation to fail by marking the GPU as
4903 * wedged. But we only want to do this where the GPU is angry,
4904 * for all other failure, such as an allocation failure, bail.
4905 */
4906 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4907 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4908 ret = 0;
4909 }
4910
4911 out_unlock:
4912 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4913 mutex_unlock(&dev->struct_mutex);
4914
4915 return ret;
4916 }
4917
4918 void
4919 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4920 {
4921 struct drm_i915_private *dev_priv = dev->dev_private;
4922 struct intel_engine_cs *ring;
4923 int i;
4924
4925 for_each_ring(ring, dev_priv, i)
4926 dev_priv->gt.cleanup_ring(ring);
4927
4928 if (i915.enable_execlists)
4929 /*
4930 * Neither the BIOS, ourselves or any other kernel
4931 * expects the system to be in execlists mode on startup,
4932 * so we need to reset the GPU back to legacy mode.
4933 */
4934 intel_gpu_reset(dev);
4935 }
4936
4937 static void
4938 init_ring_lists(struct intel_engine_cs *ring)
4939 {
4940 INIT_LIST_HEAD(&ring->active_list);
4941 INIT_LIST_HEAD(&ring->request_list);
4942 }
4943
4944 void
4945 i915_gem_load(struct drm_device *dev)
4946 {
4947 struct drm_i915_private *dev_priv = dev->dev_private;
4948 int i;
4949
4950 dev_priv->objects =
4951 kmem_cache_create("i915_gem_object",
4952 sizeof(struct drm_i915_gem_object), 0,
4953 SLAB_HWCACHE_ALIGN,
4954 NULL);
4955 dev_priv->vmas =
4956 kmem_cache_create("i915_gem_vma",
4957 sizeof(struct i915_vma), 0,
4958 SLAB_HWCACHE_ALIGN,
4959 NULL);
4960 dev_priv->requests =
4961 kmem_cache_create("i915_gem_request",
4962 sizeof(struct drm_i915_gem_request), 0,
4963 SLAB_HWCACHE_ALIGN,
4964 NULL);
4965
4966 INIT_LIST_HEAD(&dev_priv->vm_list);
4967 INIT_LIST_HEAD(&dev_priv->context_list);
4968 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4969 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4970 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4971 for (i = 0; i < I915_NUM_RINGS; i++)
4972 init_ring_lists(&dev_priv->ring[i]);
4973 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4974 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4975 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4976 i915_gem_retire_work_handler);
4977 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4978 i915_gem_idle_work_handler);
4979 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4980
4981 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4982
4983 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
4984 dev_priv->num_fence_regs = 32;
4985 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4986 dev_priv->num_fence_regs = 16;
4987 else
4988 dev_priv->num_fence_regs = 8;
4989
4990 if (intel_vgpu_active(dev))
4991 dev_priv->num_fence_regs =
4992 I915_READ(vgtif_reg(avail_rs.fence_num));
4993
4994 /*
4995 * Set initial sequence number for requests.
4996 * Using this number allows the wraparound to happen early,
4997 * catching any obvious problems.
4998 */
4999 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5000 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5001
5002 /* Initialize fence registers to zero */
5003 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5004 i915_gem_restore_fences(dev);
5005
5006 i915_gem_detect_bit_6_swizzle(dev);
5007 init_waitqueue_head(&dev_priv->pending_flip_queue);
5008
5009 dev_priv->mm.interruptible = true;
5010
5011 i915_gem_shrinker_init(dev_priv);
5012
5013 mutex_init(&dev_priv->fb_tracking.lock);
5014 }
5015
5016 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5017 {
5018 struct drm_i915_file_private *file_priv = file->driver_priv;
5019
5020 /* Clean up our request list when the client is going away, so that
5021 * later retire_requests won't dereference our soon-to-be-gone
5022 * file_priv.
5023 */
5024 spin_lock(&file_priv->mm.lock);
5025 while (!list_empty(&file_priv->mm.request_list)) {
5026 struct drm_i915_gem_request *request;
5027
5028 request = list_first_entry(&file_priv->mm.request_list,
5029 struct drm_i915_gem_request,
5030 client_list);
5031 list_del(&request->client_list);
5032 request->file_priv = NULL;
5033 }
5034 spin_unlock(&file_priv->mm.lock);
5035
5036 if (!list_empty(&file_priv->rps.link)) {
5037 spin_lock(&to_i915(dev)->rps.client_lock);
5038 list_del(&file_priv->rps.link);
5039 spin_unlock(&to_i915(dev)->rps.client_lock);
5040 }
5041 }
5042
5043 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5044 {
5045 struct drm_i915_file_private *file_priv;
5046 int ret;
5047
5048 DRM_DEBUG_DRIVER("\n");
5049
5050 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5051 if (!file_priv)
5052 return -ENOMEM;
5053
5054 file->driver_priv = file_priv;
5055 file_priv->dev_priv = dev->dev_private;
5056 file_priv->file = file;
5057 INIT_LIST_HEAD(&file_priv->rps.link);
5058
5059 spin_lock_init(&file_priv->mm.lock);
5060 INIT_LIST_HEAD(&file_priv->mm.request_list);
5061
5062 ret = i915_gem_context_open(dev, file);
5063 if (ret)
5064 kfree(file_priv);
5065
5066 return ret;
5067 }
5068
5069 /**
5070 * i915_gem_track_fb - update frontbuffer tracking
5071 * @old: current GEM buffer for the frontbuffer slots
5072 * @new: new GEM buffer for the frontbuffer slots
5073 * @frontbuffer_bits: bitmask of frontbuffer slots
5074 *
5075 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5076 * from @old and setting them in @new. Both @old and @new can be NULL.
5077 */
5078 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5079 struct drm_i915_gem_object *new,
5080 unsigned frontbuffer_bits)
5081 {
5082 if (old) {
5083 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5084 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5085 old->frontbuffer_bits &= ~frontbuffer_bits;
5086 }
5087
5088 if (new) {
5089 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5090 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5091 new->frontbuffer_bits |= frontbuffer_bits;
5092 }
5093 }
5094
5095 /* All the new VM stuff */
5096 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5097 struct i915_address_space *vm)
5098 {
5099 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5100 struct i915_vma *vma;
5101
5102 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5103
5104 list_for_each_entry(vma, &o->vma_list, vma_link) {
5105 if (i915_is_ggtt(vma->vm) &&
5106 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5107 continue;
5108 if (vma->vm == vm)
5109 return vma->node.start;
5110 }
5111
5112 WARN(1, "%s vma for this object not found.\n",
5113 i915_is_ggtt(vm) ? "global" : "ppgtt");
5114 return -1;
5115 }
5116
5117 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5118 const struct i915_ggtt_view *view)
5119 {
5120 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5121 struct i915_vma *vma;
5122
5123 list_for_each_entry(vma, &o->vma_list, vma_link)
5124 if (vma->vm == ggtt &&
5125 i915_ggtt_view_equal(&vma->ggtt_view, view))
5126 return vma->node.start;
5127
5128 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5129 return -1;
5130 }
5131
5132 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5133 struct i915_address_space *vm)
5134 {
5135 struct i915_vma *vma;
5136
5137 list_for_each_entry(vma, &o->vma_list, vma_link) {
5138 if (i915_is_ggtt(vma->vm) &&
5139 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5140 continue;
5141 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5142 return true;
5143 }
5144
5145 return false;
5146 }
5147
5148 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5149 const struct i915_ggtt_view *view)
5150 {
5151 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5152 struct i915_vma *vma;
5153
5154 list_for_each_entry(vma, &o->vma_list, vma_link)
5155 if (vma->vm == ggtt &&
5156 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5157 drm_mm_node_allocated(&vma->node))
5158 return true;
5159
5160 return false;
5161 }
5162
5163 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5164 {
5165 struct i915_vma *vma;
5166
5167 list_for_each_entry(vma, &o->vma_list, vma_link)
5168 if (drm_mm_node_allocated(&vma->node))
5169 return true;
5170
5171 return false;
5172 }
5173
5174 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5175 struct i915_address_space *vm)
5176 {
5177 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5178 struct i915_vma *vma;
5179
5180 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5181
5182 BUG_ON(list_empty(&o->vma_list));
5183
5184 list_for_each_entry(vma, &o->vma_list, vma_link) {
5185 if (i915_is_ggtt(vma->vm) &&
5186 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5187 continue;
5188 if (vma->vm == vm)
5189 return vma->node.size;
5190 }
5191 return 0;
5192 }
5193
5194 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5195 {
5196 struct i915_vma *vma;
5197 list_for_each_entry(vma, &obj->vma_list, vma_link)
5198 if (vma->pin_count > 0)
5199 return true;
5200
5201 return false;
5202 }
5203
5204 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5205 struct page *
5206 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5207 {
5208 struct page *page;
5209
5210 /* Only default objects have per-page dirty tracking */
5211 if (WARN_ON(obj->ops != &i915_gem_object_ops))
5212 return NULL;
5213
5214 page = i915_gem_object_get_page(obj, n);
5215 set_page_dirty(page);
5216 return page;
5217 }
5218
5219 /* Allocate a new GEM object and fill it with the supplied data */
5220 struct drm_i915_gem_object *
5221 i915_gem_object_create_from_data(struct drm_device *dev,
5222 const void *data, size_t size)
5223 {
5224 struct drm_i915_gem_object *obj;
5225 struct sg_table *sg;
5226 size_t bytes;
5227 int ret;
5228
5229 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5230 if (IS_ERR_OR_NULL(obj))
5231 return obj;
5232
5233 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5234 if (ret)
5235 goto fail;
5236
5237 ret = i915_gem_object_get_pages(obj);
5238 if (ret)
5239 goto fail;
5240
5241 i915_gem_object_pin_pages(obj);
5242 sg = obj->pages;
5243 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5244 obj->dirty = 1; /* Backing store is now out of date */
5245 i915_gem_object_unpin_pages(obj);
5246
5247 if (WARN_ON(bytes != size)) {
5248 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5249 ret = -EFAULT;
5250 goto fail;
5251 }
5252
5253 return obj;
5254
5255 fail:
5256 drm_gem_object_unreference(&obj->base);
5257 return ERR_PTR(ret);
5258 }
This page took 0.132918 seconds and 6 git commands to generate.