Merge tag 'for-3.8' of git://openrisc.net/~jonas/linux
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
110 return ret;
111 }
112
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 int ret;
129
130 ret = i915_gem_wait_for_error(dev);
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
138 WARN_ON(i915_verify_lists(dev));
139 return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file)
151 {
152 struct drm_i915_gem_init *args = data;
153
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
160
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
165 mutex_lock(&dev->struct_mutex);
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
168 mutex_unlock(&dev->struct_mutex);
169
170 return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175 struct drm_file *file)
176 {
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 struct drm_i915_gem_get_aperture *args = data;
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
181
182 pinned = 0;
183 mutex_lock(&dev->struct_mutex);
184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
187 mutex_unlock(&dev->struct_mutex);
188
189 args->aper_size = dev_priv->mm.gtt_total;
190 args->aper_available_size = args->aper_size - pinned;
191
192 return 0;
193 }
194
195 static int
196 i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
200 {
201 struct drm_i915_gem_object *obj;
202 int ret;
203 u32 handle;
204
205 size = roundup(size, PAGE_SIZE);
206 if (size == 0)
207 return -EINVAL;
208
209 /* Allocate the new object */
210 obj = i915_gem_alloc_object(dev, size);
211 if (obj == NULL)
212 return -ENOMEM;
213
214 ret = drm_gem_handle_create(file, &obj->base, &handle);
215 if (ret) {
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218 kfree(obj);
219 return ret;
220 }
221
222 /* drop reference from allocate - handle holds it now */
223 drm_gem_object_unreference(&obj->base);
224 trace_i915_gem_object_create(obj);
225
226 *handle_p = handle;
227 return 0;
228 }
229
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234 {
235 /* have to work out size/pitch and return them */
236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240 }
241
242 int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245 {
246 return drm_gem_handle_delete(file, handle);
247 }
248
249 /**
250 * Creates a new mm object and returns a handle to it.
251 */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255 {
256 struct drm_i915_gem_create *args = data;
257
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260 }
261
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267 obj->tiling_mode != I915_TILING_NONE;
268 }
269
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274 {
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294 }
295
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
299 int length)
300 {
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320 }
321
322 /* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330 char *vaddr;
331 int ret;
332
333 if (unlikely(page_do_bit17_swizzling))
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
345 return ret ? -EFAULT : 0;
346 }
347
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351 {
352 if (unlikely(swizzled)) {
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368 }
369
370 /* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
396 return ret ? - EFAULT : 0;
397 }
398
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
404 {
405 char __user *user_data;
406 ssize_t remain;
407 loff_t offset;
408 int shmem_page_offset, page_length, ret = 0;
409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 int hit_slowpath = 0;
411 int prefaulted = 0;
412 int needs_clflush = 0;
413 struct scatterlist *sg;
414 int i;
415
416 user_data = (char __user *) (uintptr_t) args->data_ptr;
417 remain = args->size;
418
419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
433 }
434
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
441 offset = args->offset;
442
443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444 struct page *page;
445
446 if (i < offset >> PAGE_SHIFT)
447 continue;
448
449 if (remain <= 0)
450 break;
451
452 /* Operation in this page
453 *
454 * shmem_page_offset = offset within page in shmem file
455 * page_length = bytes to copy for this page
456 */
457 shmem_page_offset = offset_in_page(offset);
458 page_length = remain;
459 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 page_length = PAGE_SIZE - shmem_page_offset;
461
462 page = sg_page(sg);
463 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 (page_to_phys(page) & (1 << 17)) != 0;
465
466 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 user_data, page_do_bit17_swizzling,
468 needs_clflush);
469 if (ret == 0)
470 goto next_page;
471
472 hit_slowpath = 1;
473 mutex_unlock(&dev->struct_mutex);
474
475 if (!prefaulted) {
476 ret = fault_in_multipages_writeable(user_data, remain);
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
484
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
488
489 mutex_lock(&dev->struct_mutex);
490
491 next_page:
492 mark_page_accessed(page);
493
494 if (ret)
495 goto out;
496
497 remain -= page_length;
498 user_data += page_length;
499 offset += page_length;
500 }
501
502 out:
503 i915_gem_object_unpin_pages(obj);
504
505 if (hit_slowpath) {
506 /* Fixup: Kill any reinstated backing storage pages */
507 if (obj->madv == __I915_MADV_PURGED)
508 i915_gem_object_truncate(obj);
509 }
510
511 return ret;
512 }
513
514 /**
515 * Reads data from the object referenced by handle.
516 *
517 * On error, the contents of *data are undefined.
518 */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521 struct drm_file *file)
522 {
523 struct drm_i915_gem_pread *args = data;
524 struct drm_i915_gem_object *obj;
525 int ret = 0;
526
527 if (args->size == 0)
528 return 0;
529
530 if (!access_ok(VERIFY_WRITE,
531 (char __user *)(uintptr_t)args->data_ptr,
532 args->size))
533 return -EFAULT;
534
535 ret = i915_mutex_lock_interruptible(dev);
536 if (ret)
537 return ret;
538
539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540 if (&obj->base == NULL) {
541 ret = -ENOENT;
542 goto unlock;
543 }
544
545 /* Bounds check source. */
546 if (args->offset > obj->base.size ||
547 args->size > obj->base.size - args->offset) {
548 ret = -EINVAL;
549 goto out;
550 }
551
552 /* prime objects have no backing filp to GEM pread/pwrite
553 * pages from.
554 */
555 if (!obj->base.filp) {
556 ret = -EINVAL;
557 goto out;
558 }
559
560 trace_i915_gem_object_pread(obj, args->offset, args->size);
561
562 ret = i915_gem_shmem_pread(dev, obj, args, file);
563
564 out:
565 drm_gem_object_unreference(&obj->base);
566 unlock:
567 mutex_unlock(&dev->struct_mutex);
568 return ret;
569 }
570
571 /* This is the fast write path which cannot handle
572 * page faults in the source data
573 */
574
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
580 {
581 void __iomem *vaddr_atomic;
582 void *vaddr;
583 unsigned long unwritten;
584
585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 /* We can use the cpu mem copy function because this is X86. */
587 vaddr = (void __force*)vaddr_atomic + page_offset;
588 unwritten = __copy_from_user_inatomic_nocache(vaddr,
589 user_data, length);
590 io_mapping_unmap_atomic(vaddr_atomic);
591 return unwritten;
592 }
593
594 /**
595 * This is the fast pwrite path, where we copy the data directly from the
596 * user into the GTT, uncached.
597 */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 struct drm_i915_gem_object *obj,
601 struct drm_i915_gem_pwrite *args,
602 struct drm_file *file)
603 {
604 drm_i915_private_t *dev_priv = dev->dev_private;
605 ssize_t remain;
606 loff_t offset, page_base;
607 char __user *user_data;
608 int page_offset, page_length, ret;
609
610 ret = i915_gem_object_pin(obj, 0, true, true);
611 if (ret)
612 goto out;
613
614 ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 if (ret)
616 goto out_unpin;
617
618 ret = i915_gem_object_put_fence(obj);
619 if (ret)
620 goto out_unpin;
621
622 user_data = (char __user *) (uintptr_t) args->data_ptr;
623 remain = args->size;
624
625 offset = obj->gtt_offset + args->offset;
626
627 while (remain > 0) {
628 /* Operation in this page
629 *
630 * page_base = page offset within aperture
631 * page_offset = offset within page
632 * page_length = bytes to copy for this page
633 */
634 page_base = offset & PAGE_MASK;
635 page_offset = offset_in_page(offset);
636 page_length = remain;
637 if ((page_offset + remain) > PAGE_SIZE)
638 page_length = PAGE_SIZE - page_offset;
639
640 /* If we get a fault while copying data, then (presumably) our
641 * source page isn't available. Return the error and we'll
642 * retry in the slow path.
643 */
644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645 page_offset, user_data, page_length)) {
646 ret = -EFAULT;
647 goto out_unpin;
648 }
649
650 remain -= page_length;
651 user_data += page_length;
652 offset += page_length;
653 }
654
655 out_unpin:
656 i915_gem_object_unpin(obj);
657 out:
658 return ret;
659 }
660
661 /* Per-page copy function for the shmem pwrite fastpath.
662 * Flushes invalid cachelines before writing to the target if
663 * needs_clflush_before is set and flushes out any written cachelines after
664 * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 char __user *user_data,
668 bool page_do_bit17_swizzling,
669 bool needs_clflush_before,
670 bool needs_clflush_after)
671 {
672 char *vaddr;
673 int ret;
674
675 if (unlikely(page_do_bit17_swizzling))
676 return -EINVAL;
677
678 vaddr = kmap_atomic(page);
679 if (needs_clflush_before)
680 drm_clflush_virt_range(vaddr + shmem_page_offset,
681 page_length);
682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 user_data,
684 page_length);
685 if (needs_clflush_after)
686 drm_clflush_virt_range(vaddr + shmem_page_offset,
687 page_length);
688 kunmap_atomic(vaddr);
689
690 return ret ? -EFAULT : 0;
691 }
692
693 /* Only difference to the fast-path function is that this can handle bit17
694 * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 char __user *user_data,
698 bool page_do_bit17_swizzling,
699 bool needs_clflush_before,
700 bool needs_clflush_after)
701 {
702 char *vaddr;
703 int ret;
704
705 vaddr = kmap(page);
706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 page_length,
709 page_do_bit17_swizzling);
710 if (page_do_bit17_swizzling)
711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712 user_data,
713 page_length);
714 else
715 ret = __copy_from_user(vaddr + shmem_page_offset,
716 user_data,
717 page_length);
718 if (needs_clflush_after)
719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 page_length,
721 page_do_bit17_swizzling);
722 kunmap(page);
723
724 return ret ? -EFAULT : 0;
725 }
726
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729 struct drm_i915_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file)
732 {
733 ssize_t remain;
734 loff_t offset;
735 char __user *user_data;
736 int shmem_page_offset, page_length, ret = 0;
737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738 int hit_slowpath = 0;
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
741 int i;
742 struct scatterlist *sg;
743
744 user_data = (char __user *) (uintptr_t) args->data_ptr;
745 remain = args->size;
746
747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
754 if (obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_after = 1;
756 if (obj->gtt_space) {
757 ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 if (ret)
759 return ret;
760 }
761 }
762 /* Same trick applies for invalidate partially written cachelines before
763 * writing. */
764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 && obj->cache_level == I915_CACHE_NONE)
766 needs_clflush_before = 1;
767
768 ret = i915_gem_object_get_pages(obj);
769 if (ret)
770 return ret;
771
772 i915_gem_object_pin_pages(obj);
773
774 offset = args->offset;
775 obj->dirty = 1;
776
777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778 struct page *page;
779 int partial_cacheline_write;
780
781 if (i < offset >> PAGE_SHIFT)
782 continue;
783
784 if (remain <= 0)
785 break;
786
787 /* Operation in this page
788 *
789 * shmem_page_offset = offset within page in shmem file
790 * page_length = bytes to copy for this page
791 */
792 shmem_page_offset = offset_in_page(offset);
793
794 page_length = remain;
795 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 page_length = PAGE_SIZE - shmem_page_offset;
797
798 /* If we don't overwrite a cacheline completely we need to be
799 * careful to have up-to-date data by first clflushing. Don't
800 * overcomplicate things and flush the entire patch. */
801 partial_cacheline_write = needs_clflush_before &&
802 ((shmem_page_offset | page_length)
803 & (boot_cpu_data.x86_clflush_size - 1));
804
805 page = sg_page(sg);
806 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 (page_to_phys(page) & (1 << 17)) != 0;
808
809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813 if (ret == 0)
814 goto next_page;
815
816 hit_slowpath = 1;
817 mutex_unlock(&dev->struct_mutex);
818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 user_data, page_do_bit17_swizzling,
820 partial_cacheline_write,
821 needs_clflush_after);
822
823 mutex_lock(&dev->struct_mutex);
824
825 next_page:
826 set_page_dirty(page);
827 mark_page_accessed(page);
828
829 if (ret)
830 goto out;
831
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
835 }
836
837 out:
838 i915_gem_object_unpin_pages(obj);
839
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
848 i915_gem_chipset_flush(dev);
849 }
850 }
851
852 if (needs_clflush_after)
853 i915_gem_chipset_flush(dev);
854
855 return ret;
856 }
857
858 /**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865 struct drm_file *file)
866 {
867 struct drm_i915_gem_pwrite *args = data;
868 struct drm_i915_gem_object *obj;
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
881 if (ret)
882 return -EFAULT;
883
884 ret = i915_mutex_lock_interruptible(dev);
885 if (ret)
886 return ret;
887
888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889 if (&obj->base == NULL) {
890 ret = -ENOENT;
891 goto unlock;
892 }
893
894 /* Bounds check destination. */
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
897 ret = -EINVAL;
898 goto out;
899 }
900
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911 ret = -EFAULT;
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
918 if (obj->phys_obj) {
919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 goto out;
921 }
922
923 if (obj->cache_level == I915_CACHE_NONE &&
924 obj->tiling_mode == I915_TILING_NONE &&
925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927 /* Note that the gtt paths might fail with non-page-backed user
928 * pointers (e.g. gtt mappings when moving data between
929 * textures). Fallback to the shmem path in that case. */
930 }
931
932 if (ret == -EFAULT || ret == -ENOSPC)
933 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934
935 out:
936 drm_gem_object_unreference(&obj->base);
937 unlock:
938 mutex_unlock(&dev->struct_mutex);
939 return ret;
940 }
941
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 bool interruptible)
945 {
946 if (atomic_read(&dev_priv->mm.wedged)) {
947 struct completion *x = &dev_priv->error_completion;
948 bool recovery_complete;
949 unsigned long flags;
950
951 /* Give the error handler a chance to run. */
952 spin_lock_irqsave(&x->wait.lock, flags);
953 recovery_complete = x->done > 0;
954 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956 /* Non-interruptible callers can't handle -EAGAIN, hence return
957 * -EIO unconditionally for these. */
958 if (!interruptible)
959 return -EIO;
960
961 /* Recovery complete, but still wedged means reset failure. */
962 if (recovery_complete)
963 return -EIO;
964
965 return -EAGAIN;
966 }
967
968 return 0;
969 }
970
971 /*
972 * Compare seqno against outstanding lazy request. Emit a request if they are
973 * equal.
974 */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978 int ret;
979
980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982 ret = 0;
983 if (seqno == ring->outstanding_lazy_request)
984 ret = i915_add_request(ring, NULL, NULL);
985
986 return ret;
987 }
988
989 /**
990 * __wait_seqno - wait until execution of seqno has finished
991 * @ring: the ring expected to report seqno
992 * @seqno: duh!
993 * @interruptible: do an interruptible wait (normally yes)
994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995 *
996 * Returns 0 if the seqno was found within the alloted time. Else returns the
997 * errno with remaining time filled in timeout argument.
998 */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 bool interruptible, struct timespec *timeout)
1001 {
1002 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 struct timespec before, now, wait_time={1,0};
1004 unsigned long timeout_jiffies;
1005 long end;
1006 bool wait_forever = true;
1007 int ret;
1008
1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 return 0;
1011
1012 trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014 if (timeout != NULL) {
1015 wait_time = *timeout;
1016 wait_forever = false;
1017 }
1018
1019 timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021 if (WARN_ON(!ring->irq_get(ring)))
1022 return -ENODEV;
1023
1024 /* Record current time in case interrupted by signal, or wedged * */
1025 getrawmonotonic(&before);
1026
1027 #define EXIT_COND \
1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 atomic_read(&dev_priv->mm.wedged))
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
1039 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 if (ret)
1041 end = ret;
1042 } while (end == 0 && wait_forever);
1043
1044 getrawmonotonic(&now);
1045
1046 ring->irq_put(ring);
1047 trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049
1050 if (timeout) {
1051 struct timespec sleep_time = timespec_sub(now, before);
1052 *timeout = timespec_sub(*timeout, sleep_time);
1053 }
1054
1055 switch (end) {
1056 case -EIO:
1057 case -EAGAIN: /* Wedged */
1058 case -ERESTARTSYS: /* Signal */
1059 return (int)end;
1060 case 0: /* Timeout */
1061 if (timeout)
1062 set_normalized_timespec(timeout, 0, 0);
1063 return -ETIME;
1064 default: /* Completed */
1065 WARN_ON(end < 0); /* We're not aware of other errors */
1066 return 0;
1067 }
1068 }
1069
1070 /**
1071 * Waits for a sequence number to be signaled, and cleans up the
1072 * request and object lists appropriately for that event.
1073 */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 bool interruptible = dev_priv->mm.interruptible;
1080 int ret;
1081
1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 BUG_ON(seqno == 0);
1084
1085 ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 if (ret)
1087 return ret;
1088
1089 ret = i915_gem_check_olr(ring, seqno);
1090 if (ret)
1091 return ret;
1092
1093 return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095
1096 /**
1097 * Ensures that all rendering to the object has completed and the object is
1098 * safe to unbind from the GTT or access from the CPU.
1099 */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 bool readonly)
1103 {
1104 struct intel_ring_buffer *ring = obj->ring;
1105 u32 seqno;
1106 int ret;
1107
1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 if (seqno == 0)
1110 return 0;
1111
1112 ret = i915_wait_seqno(ring, seqno);
1113 if (ret)
1114 return ret;
1115
1116 i915_gem_retire_requests_ring(ring);
1117
1118 /* Manually manage the write flush as we may have not yet
1119 * retired the buffer.
1120 */
1121 if (obj->last_write_seqno &&
1122 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 obj->last_write_seqno = 0;
1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 }
1126
1127 return 0;
1128 }
1129
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131 * as the object state may change during this call.
1132 */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 bool readonly)
1136 {
1137 struct drm_device *dev = obj->base.dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 struct intel_ring_buffer *ring = obj->ring;
1140 u32 seqno;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(!dev_priv->mm.interruptible);
1145
1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 if (seqno == 0)
1148 return 0;
1149
1150 ret = i915_gem_check_wedge(dev_priv, true);
1151 if (ret)
1152 return ret;
1153
1154 ret = i915_gem_check_olr(ring, seqno);
1155 if (ret)
1156 return ret;
1157
1158 mutex_unlock(&dev->struct_mutex);
1159 ret = __wait_seqno(ring, seqno, true, NULL);
1160 mutex_lock(&dev->struct_mutex);
1161
1162 i915_gem_retire_requests_ring(ring);
1163
1164 /* Manually manage the write flush as we may have not yet
1165 * retired the buffer.
1166 */
1167 if (obj->last_write_seqno &&
1168 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 obj->last_write_seqno = 0;
1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 }
1172
1173 return ret;
1174 }
1175
1176 /**
1177 * Called when user space prepares to use an object with the CPU, either
1178 * through the mmap ioctl's mapping or a GTT mapping.
1179 */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182 struct drm_file *file)
1183 {
1184 struct drm_i915_gem_set_domain *args = data;
1185 struct drm_i915_gem_object *obj;
1186 uint32_t read_domains = args->read_domains;
1187 uint32_t write_domain = args->write_domain;
1188 int ret;
1189
1190 /* Only handle setting domains to types used by the CPU. */
1191 if (write_domain & I915_GEM_GPU_DOMAINS)
1192 return -EINVAL;
1193
1194 if (read_domains & I915_GEM_GPU_DOMAINS)
1195 return -EINVAL;
1196
1197 /* Having something in the write domain implies it's in the read
1198 * domain, and only that read domain. Enforce that in the request.
1199 */
1200 if (write_domain != 0 && read_domains != write_domain)
1201 return -EINVAL;
1202
1203 ret = i915_mutex_lock_interruptible(dev);
1204 if (ret)
1205 return ret;
1206
1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208 if (&obj->base == NULL) {
1209 ret = -ENOENT;
1210 goto unlock;
1211 }
1212
1213 /* Try to flush the object off the GPU without holding the lock.
1214 * We will repeat the flush holding the lock in the normal manner
1215 * to catch cases where we are gazumped.
1216 */
1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 if (ret)
1219 goto unref;
1220
1221 if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223
1224 /* Silently promote "you're not bound, there was nothing to do"
1225 * to success, since the client was just asking us to
1226 * make sure everything was done.
1227 */
1228 if (ret == -EINVAL)
1229 ret = 0;
1230 } else {
1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232 }
1233
1234 unref:
1235 drm_gem_object_unreference(&obj->base);
1236 unlock:
1237 mutex_unlock(&dev->struct_mutex);
1238 return ret;
1239 }
1240
1241 /**
1242 * Called when user space has done writes to this buffer
1243 */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246 struct drm_file *file)
1247 {
1248 struct drm_i915_gem_sw_finish *args = data;
1249 struct drm_i915_gem_object *obj;
1250 int ret = 0;
1251
1252 ret = i915_mutex_lock_interruptible(dev);
1253 if (ret)
1254 return ret;
1255
1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257 if (&obj->base == NULL) {
1258 ret = -ENOENT;
1259 goto unlock;
1260 }
1261
1262 /* Pinned buffers may be scanout, so flush the cache */
1263 if (obj->pin_count)
1264 i915_gem_object_flush_cpu_write_domain(obj);
1265
1266 drm_gem_object_unreference(&obj->base);
1267 unlock:
1268 mutex_unlock(&dev->struct_mutex);
1269 return ret;
1270 }
1271
1272 /**
1273 * Maps the contents of an object, returning the address it is mapped
1274 * into.
1275 *
1276 * While the mapping holds a reference on the contents of the object, it doesn't
1277 * imply a ref on the object itself.
1278 */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281 struct drm_file *file)
1282 {
1283 struct drm_i915_gem_mmap *args = data;
1284 struct drm_gem_object *obj;
1285 unsigned long addr;
1286
1287 obj = drm_gem_object_lookup(dev, file, args->handle);
1288 if (obj == NULL)
1289 return -ENOENT;
1290
1291 /* prime objects have no backing filp to GEM mmap
1292 * pages from.
1293 */
1294 if (!obj->filp) {
1295 drm_gem_object_unreference_unlocked(obj);
1296 return -EINVAL;
1297 }
1298
1299 addr = vm_mmap(obj->filp, 0, args->size,
1300 PROT_READ | PROT_WRITE, MAP_SHARED,
1301 args->offset);
1302 drm_gem_object_unreference_unlocked(obj);
1303 if (IS_ERR((void *)addr))
1304 return addr;
1305
1306 args->addr_ptr = (uint64_t) addr;
1307
1308 return 0;
1309 }
1310
1311 /**
1312 * i915_gem_fault - fault a page into the GTT
1313 * vma: VMA in question
1314 * vmf: fault info
1315 *
1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317 * from userspace. The fault handler takes care of binding the object to
1318 * the GTT (if needed), allocating and programming a fence register (again,
1319 * only if needed based on whether the old reg is still valid or the object
1320 * is tiled) and inserting a new PTE into the faulting process.
1321 *
1322 * Note that the faulting process may involve evicting existing objects
1323 * from the GTT and/or fence registers to make room. So performance may
1324 * suffer if the GTT working set is large or there are few fence registers
1325 * left.
1326 */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 struct drm_device *dev = obj->base.dev;
1331 drm_i915_private_t *dev_priv = dev->dev_private;
1332 pgoff_t page_offset;
1333 unsigned long pfn;
1334 int ret = 0;
1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336
1337 /* We don't use vmf->pgoff since that has the fake offset */
1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 PAGE_SHIFT;
1340
1341 ret = i915_mutex_lock_interruptible(dev);
1342 if (ret)
1343 goto out;
1344
1345 trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
1347 /* Now bind it into the GTT if needed */
1348 ret = i915_gem_object_pin(obj, 0, true, false);
1349 if (ret)
1350 goto unlock;
1351
1352 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1353 if (ret)
1354 goto unpin;
1355
1356 ret = i915_gem_object_get_fence(obj);
1357 if (ret)
1358 goto unpin;
1359
1360 obj->fault_mappable = true;
1361
1362 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1363 page_offset;
1364
1365 /* Finally, remap it using the new GTT offset */
1366 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1367 unpin:
1368 i915_gem_object_unpin(obj);
1369 unlock:
1370 mutex_unlock(&dev->struct_mutex);
1371 out:
1372 switch (ret) {
1373 case -EIO:
1374 /* If this -EIO is due to a gpu hang, give the reset code a
1375 * chance to clean up the mess. Otherwise return the proper
1376 * SIGBUS. */
1377 if (!atomic_read(&dev_priv->mm.wedged))
1378 return VM_FAULT_SIGBUS;
1379 case -EAGAIN:
1380 /* Give the error handler a chance to run and move the
1381 * objects off the GPU active list. Next time we service the
1382 * fault, we should be able to transition the page into the
1383 * GTT without touching the GPU (and so avoid further
1384 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1385 * with coherency, just lost writes.
1386 */
1387 set_need_resched();
1388 case 0:
1389 case -ERESTARTSYS:
1390 case -EINTR:
1391 case -EBUSY:
1392 /*
1393 * EBUSY is ok: this just means that another thread
1394 * already did the job.
1395 */
1396 return VM_FAULT_NOPAGE;
1397 case -ENOMEM:
1398 return VM_FAULT_OOM;
1399 case -ENOSPC:
1400 return VM_FAULT_SIGBUS;
1401 default:
1402 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1403 return VM_FAULT_SIGBUS;
1404 }
1405 }
1406
1407 /**
1408 * i915_gem_release_mmap - remove physical page mappings
1409 * @obj: obj in question
1410 *
1411 * Preserve the reservation of the mmapping with the DRM core code, but
1412 * relinquish ownership of the pages back to the system.
1413 *
1414 * It is vital that we remove the page mapping if we have mapped a tiled
1415 * object through the GTT and then lose the fence register due to
1416 * resource pressure. Similarly if the object has been moved out of the
1417 * aperture, than pages mapped into userspace must be revoked. Removing the
1418 * mapping will then trigger a page fault on the next user access, allowing
1419 * fixup by i915_gem_fault().
1420 */
1421 void
1422 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1423 {
1424 if (!obj->fault_mappable)
1425 return;
1426
1427 if (obj->base.dev->dev_mapping)
1428 unmap_mapping_range(obj->base.dev->dev_mapping,
1429 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1430 obj->base.size, 1);
1431
1432 obj->fault_mappable = false;
1433 }
1434
1435 static uint32_t
1436 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1437 {
1438 uint32_t gtt_size;
1439
1440 if (INTEL_INFO(dev)->gen >= 4 ||
1441 tiling_mode == I915_TILING_NONE)
1442 return size;
1443
1444 /* Previous chips need a power-of-two fence region when tiling */
1445 if (INTEL_INFO(dev)->gen == 3)
1446 gtt_size = 1024*1024;
1447 else
1448 gtt_size = 512*1024;
1449
1450 while (gtt_size < size)
1451 gtt_size <<= 1;
1452
1453 return gtt_size;
1454 }
1455
1456 /**
1457 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1458 * @obj: object to check
1459 *
1460 * Return the required GTT alignment for an object, taking into account
1461 * potential fence register mapping.
1462 */
1463 static uint32_t
1464 i915_gem_get_gtt_alignment(struct drm_device *dev,
1465 uint32_t size,
1466 int tiling_mode)
1467 {
1468 /*
1469 * Minimum alignment is 4k (GTT page size), but might be greater
1470 * if a fence register is needed for the object.
1471 */
1472 if (INTEL_INFO(dev)->gen >= 4 ||
1473 tiling_mode == I915_TILING_NONE)
1474 return 4096;
1475
1476 /*
1477 * Previous chips need to be aligned to the size of the smallest
1478 * fence register that can contain the object.
1479 */
1480 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1481 }
1482
1483 /**
1484 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1485 * unfenced object
1486 * @dev: the device
1487 * @size: size of the object
1488 * @tiling_mode: tiling mode of the object
1489 *
1490 * Return the required GTT alignment for an object, only taking into account
1491 * unfenced tiled surface requirements.
1492 */
1493 uint32_t
1494 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1495 uint32_t size,
1496 int tiling_mode)
1497 {
1498 /*
1499 * Minimum alignment is 4k (GTT page size) for sane hw.
1500 */
1501 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1502 tiling_mode == I915_TILING_NONE)
1503 return 4096;
1504
1505 /* Previous hardware however needs to be aligned to a power-of-two
1506 * tile height. The simplest method for determining this is to reuse
1507 * the power-of-tile object size.
1508 */
1509 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1510 }
1511
1512 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1513 {
1514 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1515 int ret;
1516
1517 if (obj->base.map_list.map)
1518 return 0;
1519
1520 ret = drm_gem_create_mmap_offset(&obj->base);
1521 if (ret != -ENOSPC)
1522 return ret;
1523
1524 /* Badly fragmented mmap space? The only way we can recover
1525 * space is by destroying unwanted objects. We can't randomly release
1526 * mmap_offsets as userspace expects them to be persistent for the
1527 * lifetime of the objects. The closest we can is to release the
1528 * offsets on purgeable objects by truncating it and marking it purged,
1529 * which prevents userspace from ever using that object again.
1530 */
1531 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1532 ret = drm_gem_create_mmap_offset(&obj->base);
1533 if (ret != -ENOSPC)
1534 return ret;
1535
1536 i915_gem_shrink_all(dev_priv);
1537 return drm_gem_create_mmap_offset(&obj->base);
1538 }
1539
1540 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1541 {
1542 if (!obj->base.map_list.map)
1543 return;
1544
1545 drm_gem_free_mmap_offset(&obj->base);
1546 }
1547
1548 int
1549 i915_gem_mmap_gtt(struct drm_file *file,
1550 struct drm_device *dev,
1551 uint32_t handle,
1552 uint64_t *offset)
1553 {
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct drm_i915_gem_object *obj;
1556 int ret;
1557
1558 ret = i915_mutex_lock_interruptible(dev);
1559 if (ret)
1560 return ret;
1561
1562 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1563 if (&obj->base == NULL) {
1564 ret = -ENOENT;
1565 goto unlock;
1566 }
1567
1568 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1569 ret = -E2BIG;
1570 goto out;
1571 }
1572
1573 if (obj->madv != I915_MADV_WILLNEED) {
1574 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1575 ret = -EINVAL;
1576 goto out;
1577 }
1578
1579 ret = i915_gem_object_create_mmap_offset(obj);
1580 if (ret)
1581 goto out;
1582
1583 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1584
1585 out:
1586 drm_gem_object_unreference(&obj->base);
1587 unlock:
1588 mutex_unlock(&dev->struct_mutex);
1589 return ret;
1590 }
1591
1592 /**
1593 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1594 * @dev: DRM device
1595 * @data: GTT mapping ioctl data
1596 * @file: GEM object info
1597 *
1598 * Simply returns the fake offset to userspace so it can mmap it.
1599 * The mmap call will end up in drm_gem_mmap(), which will set things
1600 * up so we can get faults in the handler above.
1601 *
1602 * The fault handler will take care of binding the object into the GTT
1603 * (since it may have been evicted to make room for something), allocating
1604 * a fence register, and mapping the appropriate aperture address into
1605 * userspace.
1606 */
1607 int
1608 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1609 struct drm_file *file)
1610 {
1611 struct drm_i915_gem_mmap_gtt *args = data;
1612
1613 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1614 }
1615
1616 /* Immediately discard the backing storage */
1617 static void
1618 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1619 {
1620 struct inode *inode;
1621
1622 i915_gem_object_free_mmap_offset(obj);
1623
1624 if (obj->base.filp == NULL)
1625 return;
1626
1627 /* Our goal here is to return as much of the memory as
1628 * is possible back to the system as we are called from OOM.
1629 * To do this we must instruct the shmfs to drop all of its
1630 * backing pages, *now*.
1631 */
1632 inode = obj->base.filp->f_path.dentry->d_inode;
1633 shmem_truncate_range(inode, 0, (loff_t)-1);
1634
1635 obj->madv = __I915_MADV_PURGED;
1636 }
1637
1638 static inline int
1639 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1640 {
1641 return obj->madv == I915_MADV_DONTNEED;
1642 }
1643
1644 static void
1645 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1646 {
1647 int page_count = obj->base.size / PAGE_SIZE;
1648 struct scatterlist *sg;
1649 int ret, i;
1650
1651 BUG_ON(obj->madv == __I915_MADV_PURGED);
1652
1653 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1654 if (ret) {
1655 /* In the event of a disaster, abandon all caches and
1656 * hope for the best.
1657 */
1658 WARN_ON(ret != -EIO);
1659 i915_gem_clflush_object(obj);
1660 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1661 }
1662
1663 if (i915_gem_object_needs_bit17_swizzle(obj))
1664 i915_gem_object_save_bit_17_swizzle(obj);
1665
1666 if (obj->madv == I915_MADV_DONTNEED)
1667 obj->dirty = 0;
1668
1669 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1670 struct page *page = sg_page(sg);
1671
1672 if (obj->dirty)
1673 set_page_dirty(page);
1674
1675 if (obj->madv == I915_MADV_WILLNEED)
1676 mark_page_accessed(page);
1677
1678 page_cache_release(page);
1679 }
1680 obj->dirty = 0;
1681
1682 sg_free_table(obj->pages);
1683 kfree(obj->pages);
1684 }
1685
1686 static int
1687 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1688 {
1689 const struct drm_i915_gem_object_ops *ops = obj->ops;
1690
1691 if (obj->pages == NULL)
1692 return 0;
1693
1694 BUG_ON(obj->gtt_space);
1695
1696 if (obj->pages_pin_count)
1697 return -EBUSY;
1698
1699 /* ->put_pages might need to allocate memory for the bit17 swizzle
1700 * array, hence protect them from being reaped by removing them from gtt
1701 * lists early. */
1702 list_del(&obj->gtt_list);
1703
1704 ops->put_pages(obj);
1705 obj->pages = NULL;
1706
1707 if (i915_gem_object_is_purgeable(obj))
1708 i915_gem_object_truncate(obj);
1709
1710 return 0;
1711 }
1712
1713 static long
1714 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1715 {
1716 struct drm_i915_gem_object *obj, *next;
1717 long count = 0;
1718
1719 list_for_each_entry_safe(obj, next,
1720 &dev_priv->mm.unbound_list,
1721 gtt_list) {
1722 if (i915_gem_object_is_purgeable(obj) &&
1723 i915_gem_object_put_pages(obj) == 0) {
1724 count += obj->base.size >> PAGE_SHIFT;
1725 if (count >= target)
1726 return count;
1727 }
1728 }
1729
1730 list_for_each_entry_safe(obj, next,
1731 &dev_priv->mm.inactive_list,
1732 mm_list) {
1733 if (i915_gem_object_is_purgeable(obj) &&
1734 i915_gem_object_unbind(obj) == 0 &&
1735 i915_gem_object_put_pages(obj) == 0) {
1736 count += obj->base.size >> PAGE_SHIFT;
1737 if (count >= target)
1738 return count;
1739 }
1740 }
1741
1742 return count;
1743 }
1744
1745 static void
1746 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1747 {
1748 struct drm_i915_gem_object *obj, *next;
1749
1750 i915_gem_evict_everything(dev_priv->dev);
1751
1752 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1753 i915_gem_object_put_pages(obj);
1754 }
1755
1756 static int
1757 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1758 {
1759 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1760 int page_count, i;
1761 struct address_space *mapping;
1762 struct sg_table *st;
1763 struct scatterlist *sg;
1764 struct page *page;
1765 gfp_t gfp;
1766
1767 /* Assert that the object is not currently in any GPU domain. As it
1768 * wasn't in the GTT, there shouldn't be any way it could have been in
1769 * a GPU cache
1770 */
1771 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1772 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1773
1774 st = kmalloc(sizeof(*st), GFP_KERNEL);
1775 if (st == NULL)
1776 return -ENOMEM;
1777
1778 page_count = obj->base.size / PAGE_SIZE;
1779 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1780 sg_free_table(st);
1781 kfree(st);
1782 return -ENOMEM;
1783 }
1784
1785 /* Get the list of pages out of our struct file. They'll be pinned
1786 * at this point until we release them.
1787 *
1788 * Fail silently without starting the shrinker
1789 */
1790 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1791 gfp = mapping_gfp_mask(mapping);
1792 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1793 gfp &= ~(__GFP_IO | __GFP_WAIT);
1794 for_each_sg(st->sgl, sg, page_count, i) {
1795 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1796 if (IS_ERR(page)) {
1797 i915_gem_purge(dev_priv, page_count);
1798 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1799 }
1800 if (IS_ERR(page)) {
1801 /* We've tried hard to allocate the memory by reaping
1802 * our own buffer, now let the real VM do its job and
1803 * go down in flames if truly OOM.
1804 */
1805 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1806 gfp |= __GFP_IO | __GFP_WAIT;
1807
1808 i915_gem_shrink_all(dev_priv);
1809 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1810 if (IS_ERR(page))
1811 goto err_pages;
1812
1813 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1814 gfp &= ~(__GFP_IO | __GFP_WAIT);
1815 }
1816
1817 sg_set_page(sg, page, PAGE_SIZE, 0);
1818 }
1819
1820 obj->pages = st;
1821
1822 if (i915_gem_object_needs_bit17_swizzle(obj))
1823 i915_gem_object_do_bit_17_swizzle(obj);
1824
1825 return 0;
1826
1827 err_pages:
1828 for_each_sg(st->sgl, sg, i, page_count)
1829 page_cache_release(sg_page(sg));
1830 sg_free_table(st);
1831 kfree(st);
1832 return PTR_ERR(page);
1833 }
1834
1835 /* Ensure that the associated pages are gathered from the backing storage
1836 * and pinned into our object. i915_gem_object_get_pages() may be called
1837 * multiple times before they are released by a single call to
1838 * i915_gem_object_put_pages() - once the pages are no longer referenced
1839 * either as a result of memory pressure (reaping pages under the shrinker)
1840 * or as the object is itself released.
1841 */
1842 int
1843 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1844 {
1845 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1846 const struct drm_i915_gem_object_ops *ops = obj->ops;
1847 int ret;
1848
1849 if (obj->pages)
1850 return 0;
1851
1852 BUG_ON(obj->pages_pin_count);
1853
1854 ret = ops->get_pages(obj);
1855 if (ret)
1856 return ret;
1857
1858 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1859 return 0;
1860 }
1861
1862 void
1863 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1864 struct intel_ring_buffer *ring)
1865 {
1866 struct drm_device *dev = obj->base.dev;
1867 struct drm_i915_private *dev_priv = dev->dev_private;
1868 u32 seqno = intel_ring_get_seqno(ring);
1869
1870 BUG_ON(ring == NULL);
1871 obj->ring = ring;
1872
1873 /* Add a reference if we're newly entering the active list. */
1874 if (!obj->active) {
1875 drm_gem_object_reference(&obj->base);
1876 obj->active = 1;
1877 }
1878
1879 /* Move from whatever list we were on to the tail of execution. */
1880 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1881 list_move_tail(&obj->ring_list, &ring->active_list);
1882
1883 obj->last_read_seqno = seqno;
1884
1885 if (obj->fenced_gpu_access) {
1886 obj->last_fenced_seqno = seqno;
1887
1888 /* Bump MRU to take account of the delayed flush */
1889 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1890 struct drm_i915_fence_reg *reg;
1891
1892 reg = &dev_priv->fence_regs[obj->fence_reg];
1893 list_move_tail(&reg->lru_list,
1894 &dev_priv->mm.fence_list);
1895 }
1896 }
1897 }
1898
1899 static void
1900 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1901 {
1902 struct drm_device *dev = obj->base.dev;
1903 struct drm_i915_private *dev_priv = dev->dev_private;
1904
1905 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1906 BUG_ON(!obj->active);
1907
1908 if (obj->pin_count) /* are we a framebuffer? */
1909 intel_mark_fb_idle(obj);
1910
1911 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1912
1913 list_del_init(&obj->ring_list);
1914 obj->ring = NULL;
1915
1916 obj->last_read_seqno = 0;
1917 obj->last_write_seqno = 0;
1918 obj->base.write_domain = 0;
1919
1920 obj->last_fenced_seqno = 0;
1921 obj->fenced_gpu_access = false;
1922
1923 obj->active = 0;
1924 drm_gem_object_unreference(&obj->base);
1925
1926 WARN_ON(i915_verify_lists(dev));
1927 }
1928
1929 static int
1930 i915_gem_handle_seqno_wrap(struct drm_device *dev)
1931 {
1932 struct drm_i915_private *dev_priv = dev->dev_private;
1933 struct intel_ring_buffer *ring;
1934 int ret, i, j;
1935
1936 /* The hardware uses various monotonic 32-bit counters, if we
1937 * detect that they will wraparound we need to idle the GPU
1938 * and reset those counters.
1939 */
1940 ret = 0;
1941 for_each_ring(ring, dev_priv, i) {
1942 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1943 ret |= ring->sync_seqno[j] != 0;
1944 }
1945 if (ret == 0)
1946 return ret;
1947
1948 ret = i915_gpu_idle(dev);
1949 if (ret)
1950 return ret;
1951
1952 i915_gem_retire_requests(dev);
1953 for_each_ring(ring, dev_priv, i) {
1954 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1955 ring->sync_seqno[j] = 0;
1956 }
1957
1958 return 0;
1959 }
1960
1961 int
1962 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1963 {
1964 struct drm_i915_private *dev_priv = dev->dev_private;
1965
1966 /* reserve 0 for non-seqno */
1967 if (dev_priv->next_seqno == 0) {
1968 int ret = i915_gem_handle_seqno_wrap(dev);
1969 if (ret)
1970 return ret;
1971
1972 dev_priv->next_seqno = 1;
1973 }
1974
1975 *seqno = dev_priv->next_seqno++;
1976 return 0;
1977 }
1978
1979 int
1980 i915_add_request(struct intel_ring_buffer *ring,
1981 struct drm_file *file,
1982 u32 *out_seqno)
1983 {
1984 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1985 struct drm_i915_gem_request *request;
1986 u32 request_ring_position;
1987 int was_empty;
1988 int ret;
1989
1990 /*
1991 * Emit any outstanding flushes - execbuf can fail to emit the flush
1992 * after having emitted the batchbuffer command. Hence we need to fix
1993 * things up similar to emitting the lazy request. The difference here
1994 * is that the flush _must_ happen before the next request, no matter
1995 * what.
1996 */
1997 ret = intel_ring_flush_all_caches(ring);
1998 if (ret)
1999 return ret;
2000
2001 request = kmalloc(sizeof(*request), GFP_KERNEL);
2002 if (request == NULL)
2003 return -ENOMEM;
2004
2005
2006 /* Record the position of the start of the request so that
2007 * should we detect the updated seqno part-way through the
2008 * GPU processing the request, we never over-estimate the
2009 * position of the head.
2010 */
2011 request_ring_position = intel_ring_get_tail(ring);
2012
2013 ret = ring->add_request(ring);
2014 if (ret) {
2015 kfree(request);
2016 return ret;
2017 }
2018
2019 request->seqno = intel_ring_get_seqno(ring);
2020 request->ring = ring;
2021 request->tail = request_ring_position;
2022 request->emitted_jiffies = jiffies;
2023 was_empty = list_empty(&ring->request_list);
2024 list_add_tail(&request->list, &ring->request_list);
2025 request->file_priv = NULL;
2026
2027 if (file) {
2028 struct drm_i915_file_private *file_priv = file->driver_priv;
2029
2030 spin_lock(&file_priv->mm.lock);
2031 request->file_priv = file_priv;
2032 list_add_tail(&request->client_list,
2033 &file_priv->mm.request_list);
2034 spin_unlock(&file_priv->mm.lock);
2035 }
2036
2037 trace_i915_gem_request_add(ring, request->seqno);
2038 ring->outstanding_lazy_request = 0;
2039
2040 if (!dev_priv->mm.suspended) {
2041 if (i915_enable_hangcheck) {
2042 mod_timer(&dev_priv->hangcheck_timer,
2043 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2044 }
2045 if (was_empty) {
2046 queue_delayed_work(dev_priv->wq,
2047 &dev_priv->mm.retire_work,
2048 round_jiffies_up_relative(HZ));
2049 intel_mark_busy(dev_priv->dev);
2050 }
2051 }
2052
2053 if (out_seqno)
2054 *out_seqno = request->seqno;
2055 return 0;
2056 }
2057
2058 static inline void
2059 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2060 {
2061 struct drm_i915_file_private *file_priv = request->file_priv;
2062
2063 if (!file_priv)
2064 return;
2065
2066 spin_lock(&file_priv->mm.lock);
2067 if (request->file_priv) {
2068 list_del(&request->client_list);
2069 request->file_priv = NULL;
2070 }
2071 spin_unlock(&file_priv->mm.lock);
2072 }
2073
2074 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2075 struct intel_ring_buffer *ring)
2076 {
2077 while (!list_empty(&ring->request_list)) {
2078 struct drm_i915_gem_request *request;
2079
2080 request = list_first_entry(&ring->request_list,
2081 struct drm_i915_gem_request,
2082 list);
2083
2084 list_del(&request->list);
2085 i915_gem_request_remove_from_client(request);
2086 kfree(request);
2087 }
2088
2089 while (!list_empty(&ring->active_list)) {
2090 struct drm_i915_gem_object *obj;
2091
2092 obj = list_first_entry(&ring->active_list,
2093 struct drm_i915_gem_object,
2094 ring_list);
2095
2096 i915_gem_object_move_to_inactive(obj);
2097 }
2098 }
2099
2100 static void i915_gem_reset_fences(struct drm_device *dev)
2101 {
2102 struct drm_i915_private *dev_priv = dev->dev_private;
2103 int i;
2104
2105 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2106 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2107
2108 i915_gem_write_fence(dev, i, NULL);
2109
2110 if (reg->obj)
2111 i915_gem_object_fence_lost(reg->obj);
2112
2113 reg->pin_count = 0;
2114 reg->obj = NULL;
2115 INIT_LIST_HEAD(&reg->lru_list);
2116 }
2117
2118 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2119 }
2120
2121 void i915_gem_reset(struct drm_device *dev)
2122 {
2123 struct drm_i915_private *dev_priv = dev->dev_private;
2124 struct drm_i915_gem_object *obj;
2125 struct intel_ring_buffer *ring;
2126 int i;
2127
2128 for_each_ring(ring, dev_priv, i)
2129 i915_gem_reset_ring_lists(dev_priv, ring);
2130
2131 /* Move everything out of the GPU domains to ensure we do any
2132 * necessary invalidation upon reuse.
2133 */
2134 list_for_each_entry(obj,
2135 &dev_priv->mm.inactive_list,
2136 mm_list)
2137 {
2138 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2139 }
2140
2141 /* The fence registers are invalidated so clear them out */
2142 i915_gem_reset_fences(dev);
2143 }
2144
2145 /**
2146 * This function clears the request list as sequence numbers are passed.
2147 */
2148 void
2149 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2150 {
2151 uint32_t seqno;
2152
2153 if (list_empty(&ring->request_list))
2154 return;
2155
2156 WARN_ON(i915_verify_lists(ring->dev));
2157
2158 seqno = ring->get_seqno(ring, true);
2159
2160 while (!list_empty(&ring->request_list)) {
2161 struct drm_i915_gem_request *request;
2162
2163 request = list_first_entry(&ring->request_list,
2164 struct drm_i915_gem_request,
2165 list);
2166
2167 if (!i915_seqno_passed(seqno, request->seqno))
2168 break;
2169
2170 trace_i915_gem_request_retire(ring, request->seqno);
2171 /* We know the GPU must have read the request to have
2172 * sent us the seqno + interrupt, so use the position
2173 * of tail of the request to update the last known position
2174 * of the GPU head.
2175 */
2176 ring->last_retired_head = request->tail;
2177
2178 list_del(&request->list);
2179 i915_gem_request_remove_from_client(request);
2180 kfree(request);
2181 }
2182
2183 /* Move any buffers on the active list that are no longer referenced
2184 * by the ringbuffer to the flushing/inactive lists as appropriate.
2185 */
2186 while (!list_empty(&ring->active_list)) {
2187 struct drm_i915_gem_object *obj;
2188
2189 obj = list_first_entry(&ring->active_list,
2190 struct drm_i915_gem_object,
2191 ring_list);
2192
2193 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2194 break;
2195
2196 i915_gem_object_move_to_inactive(obj);
2197 }
2198
2199 if (unlikely(ring->trace_irq_seqno &&
2200 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2201 ring->irq_put(ring);
2202 ring->trace_irq_seqno = 0;
2203 }
2204
2205 WARN_ON(i915_verify_lists(ring->dev));
2206 }
2207
2208 void
2209 i915_gem_retire_requests(struct drm_device *dev)
2210 {
2211 drm_i915_private_t *dev_priv = dev->dev_private;
2212 struct intel_ring_buffer *ring;
2213 int i;
2214
2215 for_each_ring(ring, dev_priv, i)
2216 i915_gem_retire_requests_ring(ring);
2217 }
2218
2219 static void
2220 i915_gem_retire_work_handler(struct work_struct *work)
2221 {
2222 drm_i915_private_t *dev_priv;
2223 struct drm_device *dev;
2224 struct intel_ring_buffer *ring;
2225 bool idle;
2226 int i;
2227
2228 dev_priv = container_of(work, drm_i915_private_t,
2229 mm.retire_work.work);
2230 dev = dev_priv->dev;
2231
2232 /* Come back later if the device is busy... */
2233 if (!mutex_trylock(&dev->struct_mutex)) {
2234 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2235 round_jiffies_up_relative(HZ));
2236 return;
2237 }
2238
2239 i915_gem_retire_requests(dev);
2240
2241 /* Send a periodic flush down the ring so we don't hold onto GEM
2242 * objects indefinitely.
2243 */
2244 idle = true;
2245 for_each_ring(ring, dev_priv, i) {
2246 if (ring->gpu_caches_dirty)
2247 i915_add_request(ring, NULL, NULL);
2248
2249 idle &= list_empty(&ring->request_list);
2250 }
2251
2252 if (!dev_priv->mm.suspended && !idle)
2253 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2254 round_jiffies_up_relative(HZ));
2255 if (idle)
2256 intel_mark_idle(dev);
2257
2258 mutex_unlock(&dev->struct_mutex);
2259 }
2260
2261 /**
2262 * Ensures that an object will eventually get non-busy by flushing any required
2263 * write domains, emitting any outstanding lazy request and retiring and
2264 * completed requests.
2265 */
2266 static int
2267 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2268 {
2269 int ret;
2270
2271 if (obj->active) {
2272 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2273 if (ret)
2274 return ret;
2275
2276 i915_gem_retire_requests_ring(obj->ring);
2277 }
2278
2279 return 0;
2280 }
2281
2282 /**
2283 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2284 * @DRM_IOCTL_ARGS: standard ioctl arguments
2285 *
2286 * Returns 0 if successful, else an error is returned with the remaining time in
2287 * the timeout parameter.
2288 * -ETIME: object is still busy after timeout
2289 * -ERESTARTSYS: signal interrupted the wait
2290 * -ENONENT: object doesn't exist
2291 * Also possible, but rare:
2292 * -EAGAIN: GPU wedged
2293 * -ENOMEM: damn
2294 * -ENODEV: Internal IRQ fail
2295 * -E?: The add request failed
2296 *
2297 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2298 * non-zero timeout parameter the wait ioctl will wait for the given number of
2299 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2300 * without holding struct_mutex the object may become re-busied before this
2301 * function completes. A similar but shorter * race condition exists in the busy
2302 * ioctl
2303 */
2304 int
2305 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2306 {
2307 struct drm_i915_gem_wait *args = data;
2308 struct drm_i915_gem_object *obj;
2309 struct intel_ring_buffer *ring = NULL;
2310 struct timespec timeout_stack, *timeout = NULL;
2311 u32 seqno = 0;
2312 int ret = 0;
2313
2314 if (args->timeout_ns >= 0) {
2315 timeout_stack = ns_to_timespec(args->timeout_ns);
2316 timeout = &timeout_stack;
2317 }
2318
2319 ret = i915_mutex_lock_interruptible(dev);
2320 if (ret)
2321 return ret;
2322
2323 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2324 if (&obj->base == NULL) {
2325 mutex_unlock(&dev->struct_mutex);
2326 return -ENOENT;
2327 }
2328
2329 /* Need to make sure the object gets inactive eventually. */
2330 ret = i915_gem_object_flush_active(obj);
2331 if (ret)
2332 goto out;
2333
2334 if (obj->active) {
2335 seqno = obj->last_read_seqno;
2336 ring = obj->ring;
2337 }
2338
2339 if (seqno == 0)
2340 goto out;
2341
2342 /* Do this after OLR check to make sure we make forward progress polling
2343 * on this IOCTL with a 0 timeout (like busy ioctl)
2344 */
2345 if (!args->timeout_ns) {
2346 ret = -ETIME;
2347 goto out;
2348 }
2349
2350 drm_gem_object_unreference(&obj->base);
2351 mutex_unlock(&dev->struct_mutex);
2352
2353 ret = __wait_seqno(ring, seqno, true, timeout);
2354 if (timeout) {
2355 WARN_ON(!timespec_valid(timeout));
2356 args->timeout_ns = timespec_to_ns(timeout);
2357 }
2358 return ret;
2359
2360 out:
2361 drm_gem_object_unreference(&obj->base);
2362 mutex_unlock(&dev->struct_mutex);
2363 return ret;
2364 }
2365
2366 /**
2367 * i915_gem_object_sync - sync an object to a ring.
2368 *
2369 * @obj: object which may be in use on another ring.
2370 * @to: ring we wish to use the object on. May be NULL.
2371 *
2372 * This code is meant to abstract object synchronization with the GPU.
2373 * Calling with NULL implies synchronizing the object with the CPU
2374 * rather than a particular GPU ring.
2375 *
2376 * Returns 0 if successful, else propagates up the lower layer error.
2377 */
2378 int
2379 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2380 struct intel_ring_buffer *to)
2381 {
2382 struct intel_ring_buffer *from = obj->ring;
2383 u32 seqno;
2384 int ret, idx;
2385
2386 if (from == NULL || to == from)
2387 return 0;
2388
2389 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2390 return i915_gem_object_wait_rendering(obj, false);
2391
2392 idx = intel_ring_sync_index(from, to);
2393
2394 seqno = obj->last_read_seqno;
2395 if (seqno <= from->sync_seqno[idx])
2396 return 0;
2397
2398 ret = i915_gem_check_olr(obj->ring, seqno);
2399 if (ret)
2400 return ret;
2401
2402 ret = to->sync_to(to, from, seqno);
2403 if (!ret)
2404 /* We use last_read_seqno because sync_to()
2405 * might have just caused seqno wrap under
2406 * the radar.
2407 */
2408 from->sync_seqno[idx] = obj->last_read_seqno;
2409
2410 return ret;
2411 }
2412
2413 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2414 {
2415 u32 old_write_domain, old_read_domains;
2416
2417 /* Act a barrier for all accesses through the GTT */
2418 mb();
2419
2420 /* Force a pagefault for domain tracking on next user access */
2421 i915_gem_release_mmap(obj);
2422
2423 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2424 return;
2425
2426 old_read_domains = obj->base.read_domains;
2427 old_write_domain = obj->base.write_domain;
2428
2429 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2430 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2431
2432 trace_i915_gem_object_change_domain(obj,
2433 old_read_domains,
2434 old_write_domain);
2435 }
2436
2437 /**
2438 * Unbinds an object from the GTT aperture.
2439 */
2440 int
2441 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2442 {
2443 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2444 int ret = 0;
2445
2446 if (obj->gtt_space == NULL)
2447 return 0;
2448
2449 if (obj->pin_count)
2450 return -EBUSY;
2451
2452 BUG_ON(obj->pages == NULL);
2453
2454 ret = i915_gem_object_finish_gpu(obj);
2455 if (ret)
2456 return ret;
2457 /* Continue on if we fail due to EIO, the GPU is hung so we
2458 * should be safe and we need to cleanup or else we might
2459 * cause memory corruption through use-after-free.
2460 */
2461
2462 i915_gem_object_finish_gtt(obj);
2463
2464 /* release the fence reg _after_ flushing */
2465 ret = i915_gem_object_put_fence(obj);
2466 if (ret)
2467 return ret;
2468
2469 trace_i915_gem_object_unbind(obj);
2470
2471 if (obj->has_global_gtt_mapping)
2472 i915_gem_gtt_unbind_object(obj);
2473 if (obj->has_aliasing_ppgtt_mapping) {
2474 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2475 obj->has_aliasing_ppgtt_mapping = 0;
2476 }
2477 i915_gem_gtt_finish_object(obj);
2478
2479 list_del(&obj->mm_list);
2480 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2481 /* Avoid an unnecessary call to unbind on rebind. */
2482 obj->map_and_fenceable = true;
2483
2484 drm_mm_put_block(obj->gtt_space);
2485 obj->gtt_space = NULL;
2486 obj->gtt_offset = 0;
2487
2488 return 0;
2489 }
2490
2491 int i915_gpu_idle(struct drm_device *dev)
2492 {
2493 drm_i915_private_t *dev_priv = dev->dev_private;
2494 struct intel_ring_buffer *ring;
2495 int ret, i;
2496
2497 /* Flush everything onto the inactive list. */
2498 for_each_ring(ring, dev_priv, i) {
2499 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2500 if (ret)
2501 return ret;
2502
2503 ret = intel_ring_idle(ring);
2504 if (ret)
2505 return ret;
2506 }
2507
2508 return 0;
2509 }
2510
2511 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2512 struct drm_i915_gem_object *obj)
2513 {
2514 drm_i915_private_t *dev_priv = dev->dev_private;
2515 uint64_t val;
2516
2517 if (obj) {
2518 u32 size = obj->gtt_space->size;
2519
2520 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2521 0xfffff000) << 32;
2522 val |= obj->gtt_offset & 0xfffff000;
2523 val |= (uint64_t)((obj->stride / 128) - 1) <<
2524 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2525
2526 if (obj->tiling_mode == I915_TILING_Y)
2527 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2528 val |= I965_FENCE_REG_VALID;
2529 } else
2530 val = 0;
2531
2532 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2533 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2534 }
2535
2536 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2537 struct drm_i915_gem_object *obj)
2538 {
2539 drm_i915_private_t *dev_priv = dev->dev_private;
2540 uint64_t val;
2541
2542 if (obj) {
2543 u32 size = obj->gtt_space->size;
2544
2545 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2546 0xfffff000) << 32;
2547 val |= obj->gtt_offset & 0xfffff000;
2548 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2549 if (obj->tiling_mode == I915_TILING_Y)
2550 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2551 val |= I965_FENCE_REG_VALID;
2552 } else
2553 val = 0;
2554
2555 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2556 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2557 }
2558
2559 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2560 struct drm_i915_gem_object *obj)
2561 {
2562 drm_i915_private_t *dev_priv = dev->dev_private;
2563 u32 val;
2564
2565 if (obj) {
2566 u32 size = obj->gtt_space->size;
2567 int pitch_val;
2568 int tile_width;
2569
2570 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2571 (size & -size) != size ||
2572 (obj->gtt_offset & (size - 1)),
2573 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2574 obj->gtt_offset, obj->map_and_fenceable, size);
2575
2576 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2577 tile_width = 128;
2578 else
2579 tile_width = 512;
2580
2581 /* Note: pitch better be a power of two tile widths */
2582 pitch_val = obj->stride / tile_width;
2583 pitch_val = ffs(pitch_val) - 1;
2584
2585 val = obj->gtt_offset;
2586 if (obj->tiling_mode == I915_TILING_Y)
2587 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2588 val |= I915_FENCE_SIZE_BITS(size);
2589 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2590 val |= I830_FENCE_REG_VALID;
2591 } else
2592 val = 0;
2593
2594 if (reg < 8)
2595 reg = FENCE_REG_830_0 + reg * 4;
2596 else
2597 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2598
2599 I915_WRITE(reg, val);
2600 POSTING_READ(reg);
2601 }
2602
2603 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2604 struct drm_i915_gem_object *obj)
2605 {
2606 drm_i915_private_t *dev_priv = dev->dev_private;
2607 uint32_t val;
2608
2609 if (obj) {
2610 u32 size = obj->gtt_space->size;
2611 uint32_t pitch_val;
2612
2613 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2614 (size & -size) != size ||
2615 (obj->gtt_offset & (size - 1)),
2616 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2617 obj->gtt_offset, size);
2618
2619 pitch_val = obj->stride / 128;
2620 pitch_val = ffs(pitch_val) - 1;
2621
2622 val = obj->gtt_offset;
2623 if (obj->tiling_mode == I915_TILING_Y)
2624 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2625 val |= I830_FENCE_SIZE_BITS(size);
2626 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2627 val |= I830_FENCE_REG_VALID;
2628 } else
2629 val = 0;
2630
2631 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2632 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2633 }
2634
2635 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2636 struct drm_i915_gem_object *obj)
2637 {
2638 switch (INTEL_INFO(dev)->gen) {
2639 case 7:
2640 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2641 case 5:
2642 case 4: i965_write_fence_reg(dev, reg, obj); break;
2643 case 3: i915_write_fence_reg(dev, reg, obj); break;
2644 case 2: i830_write_fence_reg(dev, reg, obj); break;
2645 default: break;
2646 }
2647 }
2648
2649 static inline int fence_number(struct drm_i915_private *dev_priv,
2650 struct drm_i915_fence_reg *fence)
2651 {
2652 return fence - dev_priv->fence_regs;
2653 }
2654
2655 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2656 struct drm_i915_fence_reg *fence,
2657 bool enable)
2658 {
2659 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2660 int reg = fence_number(dev_priv, fence);
2661
2662 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2663
2664 if (enable) {
2665 obj->fence_reg = reg;
2666 fence->obj = obj;
2667 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2668 } else {
2669 obj->fence_reg = I915_FENCE_REG_NONE;
2670 fence->obj = NULL;
2671 list_del_init(&fence->lru_list);
2672 }
2673 }
2674
2675 static int
2676 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2677 {
2678 if (obj->last_fenced_seqno) {
2679 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2680 if (ret)
2681 return ret;
2682
2683 obj->last_fenced_seqno = 0;
2684 }
2685
2686 /* Ensure that all CPU reads are completed before installing a fence
2687 * and all writes before removing the fence.
2688 */
2689 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2690 mb();
2691
2692 obj->fenced_gpu_access = false;
2693 return 0;
2694 }
2695
2696 int
2697 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2698 {
2699 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2700 int ret;
2701
2702 ret = i915_gem_object_flush_fence(obj);
2703 if (ret)
2704 return ret;
2705
2706 if (obj->fence_reg == I915_FENCE_REG_NONE)
2707 return 0;
2708
2709 i915_gem_object_update_fence(obj,
2710 &dev_priv->fence_regs[obj->fence_reg],
2711 false);
2712 i915_gem_object_fence_lost(obj);
2713
2714 return 0;
2715 }
2716
2717 static struct drm_i915_fence_reg *
2718 i915_find_fence_reg(struct drm_device *dev)
2719 {
2720 struct drm_i915_private *dev_priv = dev->dev_private;
2721 struct drm_i915_fence_reg *reg, *avail;
2722 int i;
2723
2724 /* First try to find a free reg */
2725 avail = NULL;
2726 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2727 reg = &dev_priv->fence_regs[i];
2728 if (!reg->obj)
2729 return reg;
2730
2731 if (!reg->pin_count)
2732 avail = reg;
2733 }
2734
2735 if (avail == NULL)
2736 return NULL;
2737
2738 /* None available, try to steal one or wait for a user to finish */
2739 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2740 if (reg->pin_count)
2741 continue;
2742
2743 return reg;
2744 }
2745
2746 return NULL;
2747 }
2748
2749 /**
2750 * i915_gem_object_get_fence - set up fencing for an object
2751 * @obj: object to map through a fence reg
2752 *
2753 * When mapping objects through the GTT, userspace wants to be able to write
2754 * to them without having to worry about swizzling if the object is tiled.
2755 * This function walks the fence regs looking for a free one for @obj,
2756 * stealing one if it can't find any.
2757 *
2758 * It then sets up the reg based on the object's properties: address, pitch
2759 * and tiling format.
2760 *
2761 * For an untiled surface, this removes any existing fence.
2762 */
2763 int
2764 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2765 {
2766 struct drm_device *dev = obj->base.dev;
2767 struct drm_i915_private *dev_priv = dev->dev_private;
2768 bool enable = obj->tiling_mode != I915_TILING_NONE;
2769 struct drm_i915_fence_reg *reg;
2770 int ret;
2771
2772 /* Have we updated the tiling parameters upon the object and so
2773 * will need to serialise the write to the associated fence register?
2774 */
2775 if (obj->fence_dirty) {
2776 ret = i915_gem_object_flush_fence(obj);
2777 if (ret)
2778 return ret;
2779 }
2780
2781 /* Just update our place in the LRU if our fence is getting reused. */
2782 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2783 reg = &dev_priv->fence_regs[obj->fence_reg];
2784 if (!obj->fence_dirty) {
2785 list_move_tail(&reg->lru_list,
2786 &dev_priv->mm.fence_list);
2787 return 0;
2788 }
2789 } else if (enable) {
2790 reg = i915_find_fence_reg(dev);
2791 if (reg == NULL)
2792 return -EDEADLK;
2793
2794 if (reg->obj) {
2795 struct drm_i915_gem_object *old = reg->obj;
2796
2797 ret = i915_gem_object_flush_fence(old);
2798 if (ret)
2799 return ret;
2800
2801 i915_gem_object_fence_lost(old);
2802 }
2803 } else
2804 return 0;
2805
2806 i915_gem_object_update_fence(obj, reg, enable);
2807 obj->fence_dirty = false;
2808
2809 return 0;
2810 }
2811
2812 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2813 struct drm_mm_node *gtt_space,
2814 unsigned long cache_level)
2815 {
2816 struct drm_mm_node *other;
2817
2818 /* On non-LLC machines we have to be careful when putting differing
2819 * types of snoopable memory together to avoid the prefetcher
2820 * crossing memory domains and dieing.
2821 */
2822 if (HAS_LLC(dev))
2823 return true;
2824
2825 if (gtt_space == NULL)
2826 return true;
2827
2828 if (list_empty(&gtt_space->node_list))
2829 return true;
2830
2831 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2832 if (other->allocated && !other->hole_follows && other->color != cache_level)
2833 return false;
2834
2835 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2836 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2837 return false;
2838
2839 return true;
2840 }
2841
2842 static void i915_gem_verify_gtt(struct drm_device *dev)
2843 {
2844 #if WATCH_GTT
2845 struct drm_i915_private *dev_priv = dev->dev_private;
2846 struct drm_i915_gem_object *obj;
2847 int err = 0;
2848
2849 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2850 if (obj->gtt_space == NULL) {
2851 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2852 err++;
2853 continue;
2854 }
2855
2856 if (obj->cache_level != obj->gtt_space->color) {
2857 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2858 obj->gtt_space->start,
2859 obj->gtt_space->start + obj->gtt_space->size,
2860 obj->cache_level,
2861 obj->gtt_space->color);
2862 err++;
2863 continue;
2864 }
2865
2866 if (!i915_gem_valid_gtt_space(dev,
2867 obj->gtt_space,
2868 obj->cache_level)) {
2869 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2870 obj->gtt_space->start,
2871 obj->gtt_space->start + obj->gtt_space->size,
2872 obj->cache_level);
2873 err++;
2874 continue;
2875 }
2876 }
2877
2878 WARN_ON(err);
2879 #endif
2880 }
2881
2882 /**
2883 * Finds free space in the GTT aperture and binds the object there.
2884 */
2885 static int
2886 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2887 unsigned alignment,
2888 bool map_and_fenceable,
2889 bool nonblocking)
2890 {
2891 struct drm_device *dev = obj->base.dev;
2892 drm_i915_private_t *dev_priv = dev->dev_private;
2893 struct drm_mm_node *free_space;
2894 u32 size, fence_size, fence_alignment, unfenced_alignment;
2895 bool mappable, fenceable;
2896 int ret;
2897
2898 if (obj->madv != I915_MADV_WILLNEED) {
2899 DRM_ERROR("Attempting to bind a purgeable object\n");
2900 return -EINVAL;
2901 }
2902
2903 fence_size = i915_gem_get_gtt_size(dev,
2904 obj->base.size,
2905 obj->tiling_mode);
2906 fence_alignment = i915_gem_get_gtt_alignment(dev,
2907 obj->base.size,
2908 obj->tiling_mode);
2909 unfenced_alignment =
2910 i915_gem_get_unfenced_gtt_alignment(dev,
2911 obj->base.size,
2912 obj->tiling_mode);
2913
2914 if (alignment == 0)
2915 alignment = map_and_fenceable ? fence_alignment :
2916 unfenced_alignment;
2917 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2918 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2919 return -EINVAL;
2920 }
2921
2922 size = map_and_fenceable ? fence_size : obj->base.size;
2923
2924 /* If the object is bigger than the entire aperture, reject it early
2925 * before evicting everything in a vain attempt to find space.
2926 */
2927 if (obj->base.size >
2928 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2929 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2930 return -E2BIG;
2931 }
2932
2933 ret = i915_gem_object_get_pages(obj);
2934 if (ret)
2935 return ret;
2936
2937 i915_gem_object_pin_pages(obj);
2938
2939 search_free:
2940 if (map_and_fenceable)
2941 free_space = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2942 size, alignment, obj->cache_level,
2943 0, dev_priv->mm.gtt_mappable_end,
2944 false);
2945 else
2946 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2947 size, alignment, obj->cache_level,
2948 false);
2949
2950 if (free_space != NULL) {
2951 if (map_and_fenceable)
2952 free_space =
2953 drm_mm_get_block_range_generic(free_space,
2954 size, alignment, obj->cache_level,
2955 0, dev_priv->mm.gtt_mappable_end,
2956 false);
2957 else
2958 free_space =
2959 drm_mm_get_block_generic(free_space,
2960 size, alignment, obj->cache_level,
2961 false);
2962 }
2963 if (free_space == NULL) {
2964 ret = i915_gem_evict_something(dev, size, alignment,
2965 obj->cache_level,
2966 map_and_fenceable,
2967 nonblocking);
2968 if (ret) {
2969 i915_gem_object_unpin_pages(obj);
2970 return ret;
2971 }
2972
2973 goto search_free;
2974 }
2975 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2976 free_space,
2977 obj->cache_level))) {
2978 i915_gem_object_unpin_pages(obj);
2979 drm_mm_put_block(free_space);
2980 return -EINVAL;
2981 }
2982
2983 ret = i915_gem_gtt_prepare_object(obj);
2984 if (ret) {
2985 i915_gem_object_unpin_pages(obj);
2986 drm_mm_put_block(free_space);
2987 return ret;
2988 }
2989
2990 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2991 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2992
2993 obj->gtt_space = free_space;
2994 obj->gtt_offset = free_space->start;
2995
2996 fenceable =
2997 free_space->size == fence_size &&
2998 (free_space->start & (fence_alignment - 1)) == 0;
2999
3000 mappable =
3001 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3002
3003 obj->map_and_fenceable = mappable && fenceable;
3004
3005 i915_gem_object_unpin_pages(obj);
3006 trace_i915_gem_object_bind(obj, map_and_fenceable);
3007 i915_gem_verify_gtt(dev);
3008 return 0;
3009 }
3010
3011 void
3012 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3013 {
3014 /* If we don't have a page list set up, then we're not pinned
3015 * to GPU, and we can ignore the cache flush because it'll happen
3016 * again at bind time.
3017 */
3018 if (obj->pages == NULL)
3019 return;
3020
3021 /* If the GPU is snooping the contents of the CPU cache,
3022 * we do not need to manually clear the CPU cache lines. However,
3023 * the caches are only snooped when the render cache is
3024 * flushed/invalidated. As we always have to emit invalidations
3025 * and flushes when moving into and out of the RENDER domain, correct
3026 * snooping behaviour occurs naturally as the result of our domain
3027 * tracking.
3028 */
3029 if (obj->cache_level != I915_CACHE_NONE)
3030 return;
3031
3032 trace_i915_gem_object_clflush(obj);
3033
3034 drm_clflush_sg(obj->pages);
3035 }
3036
3037 /** Flushes the GTT write domain for the object if it's dirty. */
3038 static void
3039 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3040 {
3041 uint32_t old_write_domain;
3042
3043 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3044 return;
3045
3046 /* No actual flushing is required for the GTT write domain. Writes
3047 * to it immediately go to main memory as far as we know, so there's
3048 * no chipset flush. It also doesn't land in render cache.
3049 *
3050 * However, we do have to enforce the order so that all writes through
3051 * the GTT land before any writes to the device, such as updates to
3052 * the GATT itself.
3053 */
3054 wmb();
3055
3056 old_write_domain = obj->base.write_domain;
3057 obj->base.write_domain = 0;
3058
3059 trace_i915_gem_object_change_domain(obj,
3060 obj->base.read_domains,
3061 old_write_domain);
3062 }
3063
3064 /** Flushes the CPU write domain for the object if it's dirty. */
3065 static void
3066 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3067 {
3068 uint32_t old_write_domain;
3069
3070 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3071 return;
3072
3073 i915_gem_clflush_object(obj);
3074 i915_gem_chipset_flush(obj->base.dev);
3075 old_write_domain = obj->base.write_domain;
3076 obj->base.write_domain = 0;
3077
3078 trace_i915_gem_object_change_domain(obj,
3079 obj->base.read_domains,
3080 old_write_domain);
3081 }
3082
3083 /**
3084 * Moves a single object to the GTT read, and possibly write domain.
3085 *
3086 * This function returns when the move is complete, including waiting on
3087 * flushes to occur.
3088 */
3089 int
3090 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3091 {
3092 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3093 uint32_t old_write_domain, old_read_domains;
3094 int ret;
3095
3096 /* Not valid to be called on unbound objects. */
3097 if (obj->gtt_space == NULL)
3098 return -EINVAL;
3099
3100 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3101 return 0;
3102
3103 ret = i915_gem_object_wait_rendering(obj, !write);
3104 if (ret)
3105 return ret;
3106
3107 i915_gem_object_flush_cpu_write_domain(obj);
3108
3109 old_write_domain = obj->base.write_domain;
3110 old_read_domains = obj->base.read_domains;
3111
3112 /* It should now be out of any other write domains, and we can update
3113 * the domain values for our changes.
3114 */
3115 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3116 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3117 if (write) {
3118 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3119 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3120 obj->dirty = 1;
3121 }
3122
3123 trace_i915_gem_object_change_domain(obj,
3124 old_read_domains,
3125 old_write_domain);
3126
3127 /* And bump the LRU for this access */
3128 if (i915_gem_object_is_inactive(obj))
3129 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3130
3131 return 0;
3132 }
3133
3134 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3135 enum i915_cache_level cache_level)
3136 {
3137 struct drm_device *dev = obj->base.dev;
3138 drm_i915_private_t *dev_priv = dev->dev_private;
3139 int ret;
3140
3141 if (obj->cache_level == cache_level)
3142 return 0;
3143
3144 if (obj->pin_count) {
3145 DRM_DEBUG("can not change the cache level of pinned objects\n");
3146 return -EBUSY;
3147 }
3148
3149 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3150 ret = i915_gem_object_unbind(obj);
3151 if (ret)
3152 return ret;
3153 }
3154
3155 if (obj->gtt_space) {
3156 ret = i915_gem_object_finish_gpu(obj);
3157 if (ret)
3158 return ret;
3159
3160 i915_gem_object_finish_gtt(obj);
3161
3162 /* Before SandyBridge, you could not use tiling or fence
3163 * registers with snooped memory, so relinquish any fences
3164 * currently pointing to our region in the aperture.
3165 */
3166 if (INTEL_INFO(dev)->gen < 6) {
3167 ret = i915_gem_object_put_fence(obj);
3168 if (ret)
3169 return ret;
3170 }
3171
3172 if (obj->has_global_gtt_mapping)
3173 i915_gem_gtt_bind_object(obj, cache_level);
3174 if (obj->has_aliasing_ppgtt_mapping)
3175 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3176 obj, cache_level);
3177
3178 obj->gtt_space->color = cache_level;
3179 }
3180
3181 if (cache_level == I915_CACHE_NONE) {
3182 u32 old_read_domains, old_write_domain;
3183
3184 /* If we're coming from LLC cached, then we haven't
3185 * actually been tracking whether the data is in the
3186 * CPU cache or not, since we only allow one bit set
3187 * in obj->write_domain and have been skipping the clflushes.
3188 * Just set it to the CPU cache for now.
3189 */
3190 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3191 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3192
3193 old_read_domains = obj->base.read_domains;
3194 old_write_domain = obj->base.write_domain;
3195
3196 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3197 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3198
3199 trace_i915_gem_object_change_domain(obj,
3200 old_read_domains,
3201 old_write_domain);
3202 }
3203
3204 obj->cache_level = cache_level;
3205 i915_gem_verify_gtt(dev);
3206 return 0;
3207 }
3208
3209 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3210 struct drm_file *file)
3211 {
3212 struct drm_i915_gem_caching *args = data;
3213 struct drm_i915_gem_object *obj;
3214 int ret;
3215
3216 ret = i915_mutex_lock_interruptible(dev);
3217 if (ret)
3218 return ret;
3219
3220 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3221 if (&obj->base == NULL) {
3222 ret = -ENOENT;
3223 goto unlock;
3224 }
3225
3226 args->caching = obj->cache_level != I915_CACHE_NONE;
3227
3228 drm_gem_object_unreference(&obj->base);
3229 unlock:
3230 mutex_unlock(&dev->struct_mutex);
3231 return ret;
3232 }
3233
3234 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3235 struct drm_file *file)
3236 {
3237 struct drm_i915_gem_caching *args = data;
3238 struct drm_i915_gem_object *obj;
3239 enum i915_cache_level level;
3240 int ret;
3241
3242 switch (args->caching) {
3243 case I915_CACHING_NONE:
3244 level = I915_CACHE_NONE;
3245 break;
3246 case I915_CACHING_CACHED:
3247 level = I915_CACHE_LLC;
3248 break;
3249 default:
3250 return -EINVAL;
3251 }
3252
3253 ret = i915_mutex_lock_interruptible(dev);
3254 if (ret)
3255 return ret;
3256
3257 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3258 if (&obj->base == NULL) {
3259 ret = -ENOENT;
3260 goto unlock;
3261 }
3262
3263 ret = i915_gem_object_set_cache_level(obj, level);
3264
3265 drm_gem_object_unreference(&obj->base);
3266 unlock:
3267 mutex_unlock(&dev->struct_mutex);
3268 return ret;
3269 }
3270
3271 /*
3272 * Prepare buffer for display plane (scanout, cursors, etc).
3273 * Can be called from an uninterruptible phase (modesetting) and allows
3274 * any flushes to be pipelined (for pageflips).
3275 */
3276 int
3277 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3278 u32 alignment,
3279 struct intel_ring_buffer *pipelined)
3280 {
3281 u32 old_read_domains, old_write_domain;
3282 int ret;
3283
3284 if (pipelined != obj->ring) {
3285 ret = i915_gem_object_sync(obj, pipelined);
3286 if (ret)
3287 return ret;
3288 }
3289
3290 /* The display engine is not coherent with the LLC cache on gen6. As
3291 * a result, we make sure that the pinning that is about to occur is
3292 * done with uncached PTEs. This is lowest common denominator for all
3293 * chipsets.
3294 *
3295 * However for gen6+, we could do better by using the GFDT bit instead
3296 * of uncaching, which would allow us to flush all the LLC-cached data
3297 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3298 */
3299 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3300 if (ret)
3301 return ret;
3302
3303 /* As the user may map the buffer once pinned in the display plane
3304 * (e.g. libkms for the bootup splash), we have to ensure that we
3305 * always use map_and_fenceable for all scanout buffers.
3306 */
3307 ret = i915_gem_object_pin(obj, alignment, true, false);
3308 if (ret)
3309 return ret;
3310
3311 i915_gem_object_flush_cpu_write_domain(obj);
3312
3313 old_write_domain = obj->base.write_domain;
3314 old_read_domains = obj->base.read_domains;
3315
3316 /* It should now be out of any other write domains, and we can update
3317 * the domain values for our changes.
3318 */
3319 obj->base.write_domain = 0;
3320 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3321
3322 trace_i915_gem_object_change_domain(obj,
3323 old_read_domains,
3324 old_write_domain);
3325
3326 return 0;
3327 }
3328
3329 int
3330 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3331 {
3332 int ret;
3333
3334 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3335 return 0;
3336
3337 ret = i915_gem_object_wait_rendering(obj, false);
3338 if (ret)
3339 return ret;
3340
3341 /* Ensure that we invalidate the GPU's caches and TLBs. */
3342 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3343 return 0;
3344 }
3345
3346 /**
3347 * Moves a single object to the CPU read, and possibly write domain.
3348 *
3349 * This function returns when the move is complete, including waiting on
3350 * flushes to occur.
3351 */
3352 int
3353 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3354 {
3355 uint32_t old_write_domain, old_read_domains;
3356 int ret;
3357
3358 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3359 return 0;
3360
3361 ret = i915_gem_object_wait_rendering(obj, !write);
3362 if (ret)
3363 return ret;
3364
3365 i915_gem_object_flush_gtt_write_domain(obj);
3366
3367 old_write_domain = obj->base.write_domain;
3368 old_read_domains = obj->base.read_domains;
3369
3370 /* Flush the CPU cache if it's still invalid. */
3371 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3372 i915_gem_clflush_object(obj);
3373
3374 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3375 }
3376
3377 /* It should now be out of any other write domains, and we can update
3378 * the domain values for our changes.
3379 */
3380 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3381
3382 /* If we're writing through the CPU, then the GPU read domains will
3383 * need to be invalidated at next use.
3384 */
3385 if (write) {
3386 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3387 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3388 }
3389
3390 trace_i915_gem_object_change_domain(obj,
3391 old_read_domains,
3392 old_write_domain);
3393
3394 return 0;
3395 }
3396
3397 /* Throttle our rendering by waiting until the ring has completed our requests
3398 * emitted over 20 msec ago.
3399 *
3400 * Note that if we were to use the current jiffies each time around the loop,
3401 * we wouldn't escape the function with any frames outstanding if the time to
3402 * render a frame was over 20ms.
3403 *
3404 * This should get us reasonable parallelism between CPU and GPU but also
3405 * relatively low latency when blocking on a particular request to finish.
3406 */
3407 static int
3408 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3409 {
3410 struct drm_i915_private *dev_priv = dev->dev_private;
3411 struct drm_i915_file_private *file_priv = file->driver_priv;
3412 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3413 struct drm_i915_gem_request *request;
3414 struct intel_ring_buffer *ring = NULL;
3415 u32 seqno = 0;
3416 int ret;
3417
3418 if (atomic_read(&dev_priv->mm.wedged))
3419 return -EIO;
3420
3421 spin_lock(&file_priv->mm.lock);
3422 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3423 if (time_after_eq(request->emitted_jiffies, recent_enough))
3424 break;
3425
3426 ring = request->ring;
3427 seqno = request->seqno;
3428 }
3429 spin_unlock(&file_priv->mm.lock);
3430
3431 if (seqno == 0)
3432 return 0;
3433
3434 ret = __wait_seqno(ring, seqno, true, NULL);
3435 if (ret == 0)
3436 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3437
3438 return ret;
3439 }
3440
3441 int
3442 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3443 uint32_t alignment,
3444 bool map_and_fenceable,
3445 bool nonblocking)
3446 {
3447 int ret;
3448
3449 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3450 return -EBUSY;
3451
3452 if (obj->gtt_space != NULL) {
3453 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3454 (map_and_fenceable && !obj->map_and_fenceable)) {
3455 WARN(obj->pin_count,
3456 "bo is already pinned with incorrect alignment:"
3457 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3458 " obj->map_and_fenceable=%d\n",
3459 obj->gtt_offset, alignment,
3460 map_and_fenceable,
3461 obj->map_and_fenceable);
3462 ret = i915_gem_object_unbind(obj);
3463 if (ret)
3464 return ret;
3465 }
3466 }
3467
3468 if (obj->gtt_space == NULL) {
3469 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3470
3471 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3472 map_and_fenceable,
3473 nonblocking);
3474 if (ret)
3475 return ret;
3476
3477 if (!dev_priv->mm.aliasing_ppgtt)
3478 i915_gem_gtt_bind_object(obj, obj->cache_level);
3479 }
3480
3481 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3482 i915_gem_gtt_bind_object(obj, obj->cache_level);
3483
3484 obj->pin_count++;
3485 obj->pin_mappable |= map_and_fenceable;
3486
3487 return 0;
3488 }
3489
3490 void
3491 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3492 {
3493 BUG_ON(obj->pin_count == 0);
3494 BUG_ON(obj->gtt_space == NULL);
3495
3496 if (--obj->pin_count == 0)
3497 obj->pin_mappable = false;
3498 }
3499
3500 int
3501 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3502 struct drm_file *file)
3503 {
3504 struct drm_i915_gem_pin *args = data;
3505 struct drm_i915_gem_object *obj;
3506 int ret;
3507
3508 ret = i915_mutex_lock_interruptible(dev);
3509 if (ret)
3510 return ret;
3511
3512 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3513 if (&obj->base == NULL) {
3514 ret = -ENOENT;
3515 goto unlock;
3516 }
3517
3518 if (obj->madv != I915_MADV_WILLNEED) {
3519 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3520 ret = -EINVAL;
3521 goto out;
3522 }
3523
3524 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3525 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3526 args->handle);
3527 ret = -EINVAL;
3528 goto out;
3529 }
3530
3531 obj->user_pin_count++;
3532 obj->pin_filp = file;
3533 if (obj->user_pin_count == 1) {
3534 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3535 if (ret)
3536 goto out;
3537 }
3538
3539 /* XXX - flush the CPU caches for pinned objects
3540 * as the X server doesn't manage domains yet
3541 */
3542 i915_gem_object_flush_cpu_write_domain(obj);
3543 args->offset = obj->gtt_offset;
3544 out:
3545 drm_gem_object_unreference(&obj->base);
3546 unlock:
3547 mutex_unlock(&dev->struct_mutex);
3548 return ret;
3549 }
3550
3551 int
3552 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3553 struct drm_file *file)
3554 {
3555 struct drm_i915_gem_pin *args = data;
3556 struct drm_i915_gem_object *obj;
3557 int ret;
3558
3559 ret = i915_mutex_lock_interruptible(dev);
3560 if (ret)
3561 return ret;
3562
3563 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3564 if (&obj->base == NULL) {
3565 ret = -ENOENT;
3566 goto unlock;
3567 }
3568
3569 if (obj->pin_filp != file) {
3570 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3571 args->handle);
3572 ret = -EINVAL;
3573 goto out;
3574 }
3575 obj->user_pin_count--;
3576 if (obj->user_pin_count == 0) {
3577 obj->pin_filp = NULL;
3578 i915_gem_object_unpin(obj);
3579 }
3580
3581 out:
3582 drm_gem_object_unreference(&obj->base);
3583 unlock:
3584 mutex_unlock(&dev->struct_mutex);
3585 return ret;
3586 }
3587
3588 int
3589 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3590 struct drm_file *file)
3591 {
3592 struct drm_i915_gem_busy *args = data;
3593 struct drm_i915_gem_object *obj;
3594 int ret;
3595
3596 ret = i915_mutex_lock_interruptible(dev);
3597 if (ret)
3598 return ret;
3599
3600 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3601 if (&obj->base == NULL) {
3602 ret = -ENOENT;
3603 goto unlock;
3604 }
3605
3606 /* Count all active objects as busy, even if they are currently not used
3607 * by the gpu. Users of this interface expect objects to eventually
3608 * become non-busy without any further actions, therefore emit any
3609 * necessary flushes here.
3610 */
3611 ret = i915_gem_object_flush_active(obj);
3612
3613 args->busy = obj->active;
3614 if (obj->ring) {
3615 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3616 args->busy |= intel_ring_flag(obj->ring) << 16;
3617 }
3618
3619 drm_gem_object_unreference(&obj->base);
3620 unlock:
3621 mutex_unlock(&dev->struct_mutex);
3622 return ret;
3623 }
3624
3625 int
3626 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3627 struct drm_file *file_priv)
3628 {
3629 return i915_gem_ring_throttle(dev, file_priv);
3630 }
3631
3632 int
3633 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3634 struct drm_file *file_priv)
3635 {
3636 struct drm_i915_gem_madvise *args = data;
3637 struct drm_i915_gem_object *obj;
3638 int ret;
3639
3640 switch (args->madv) {
3641 case I915_MADV_DONTNEED:
3642 case I915_MADV_WILLNEED:
3643 break;
3644 default:
3645 return -EINVAL;
3646 }
3647
3648 ret = i915_mutex_lock_interruptible(dev);
3649 if (ret)
3650 return ret;
3651
3652 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3653 if (&obj->base == NULL) {
3654 ret = -ENOENT;
3655 goto unlock;
3656 }
3657
3658 if (obj->pin_count) {
3659 ret = -EINVAL;
3660 goto out;
3661 }
3662
3663 if (obj->madv != __I915_MADV_PURGED)
3664 obj->madv = args->madv;
3665
3666 /* if the object is no longer attached, discard its backing storage */
3667 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3668 i915_gem_object_truncate(obj);
3669
3670 args->retained = obj->madv != __I915_MADV_PURGED;
3671
3672 out:
3673 drm_gem_object_unreference(&obj->base);
3674 unlock:
3675 mutex_unlock(&dev->struct_mutex);
3676 return ret;
3677 }
3678
3679 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3680 const struct drm_i915_gem_object_ops *ops)
3681 {
3682 INIT_LIST_HEAD(&obj->mm_list);
3683 INIT_LIST_HEAD(&obj->gtt_list);
3684 INIT_LIST_HEAD(&obj->ring_list);
3685 INIT_LIST_HEAD(&obj->exec_list);
3686
3687 obj->ops = ops;
3688
3689 obj->fence_reg = I915_FENCE_REG_NONE;
3690 obj->madv = I915_MADV_WILLNEED;
3691 /* Avoid an unnecessary call to unbind on the first bind. */
3692 obj->map_and_fenceable = true;
3693
3694 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3695 }
3696
3697 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3698 .get_pages = i915_gem_object_get_pages_gtt,
3699 .put_pages = i915_gem_object_put_pages_gtt,
3700 };
3701
3702 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3703 size_t size)
3704 {
3705 struct drm_i915_gem_object *obj;
3706 struct address_space *mapping;
3707 u32 mask;
3708
3709 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3710 if (obj == NULL)
3711 return NULL;
3712
3713 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3714 kfree(obj);
3715 return NULL;
3716 }
3717
3718 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3719 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3720 /* 965gm cannot relocate objects above 4GiB. */
3721 mask &= ~__GFP_HIGHMEM;
3722 mask |= __GFP_DMA32;
3723 }
3724
3725 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3726 mapping_set_gfp_mask(mapping, mask);
3727
3728 i915_gem_object_init(obj, &i915_gem_object_ops);
3729
3730 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3731 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3732
3733 if (HAS_LLC(dev)) {
3734 /* On some devices, we can have the GPU use the LLC (the CPU
3735 * cache) for about a 10% performance improvement
3736 * compared to uncached. Graphics requests other than
3737 * display scanout are coherent with the CPU in
3738 * accessing this cache. This means in this mode we
3739 * don't need to clflush on the CPU side, and on the
3740 * GPU side we only need to flush internal caches to
3741 * get data visible to the CPU.
3742 *
3743 * However, we maintain the display planes as UC, and so
3744 * need to rebind when first used as such.
3745 */
3746 obj->cache_level = I915_CACHE_LLC;
3747 } else
3748 obj->cache_level = I915_CACHE_NONE;
3749
3750 return obj;
3751 }
3752
3753 int i915_gem_init_object(struct drm_gem_object *obj)
3754 {
3755 BUG();
3756
3757 return 0;
3758 }
3759
3760 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3761 {
3762 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3763 struct drm_device *dev = obj->base.dev;
3764 drm_i915_private_t *dev_priv = dev->dev_private;
3765
3766 trace_i915_gem_object_destroy(obj);
3767
3768 if (obj->phys_obj)
3769 i915_gem_detach_phys_object(dev, obj);
3770
3771 obj->pin_count = 0;
3772 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3773 bool was_interruptible;
3774
3775 was_interruptible = dev_priv->mm.interruptible;
3776 dev_priv->mm.interruptible = false;
3777
3778 WARN_ON(i915_gem_object_unbind(obj));
3779
3780 dev_priv->mm.interruptible = was_interruptible;
3781 }
3782
3783 obj->pages_pin_count = 0;
3784 i915_gem_object_put_pages(obj);
3785 i915_gem_object_free_mmap_offset(obj);
3786
3787 BUG_ON(obj->pages);
3788
3789 if (obj->base.import_attach)
3790 drm_prime_gem_destroy(&obj->base, NULL);
3791
3792 drm_gem_object_release(&obj->base);
3793 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3794
3795 kfree(obj->bit_17);
3796 kfree(obj);
3797 }
3798
3799 int
3800 i915_gem_idle(struct drm_device *dev)
3801 {
3802 drm_i915_private_t *dev_priv = dev->dev_private;
3803 int ret;
3804
3805 mutex_lock(&dev->struct_mutex);
3806
3807 if (dev_priv->mm.suspended) {
3808 mutex_unlock(&dev->struct_mutex);
3809 return 0;
3810 }
3811
3812 ret = i915_gpu_idle(dev);
3813 if (ret) {
3814 mutex_unlock(&dev->struct_mutex);
3815 return ret;
3816 }
3817 i915_gem_retire_requests(dev);
3818
3819 /* Under UMS, be paranoid and evict. */
3820 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3821 i915_gem_evict_everything(dev);
3822
3823 i915_gem_reset_fences(dev);
3824
3825 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3826 * We need to replace this with a semaphore, or something.
3827 * And not confound mm.suspended!
3828 */
3829 dev_priv->mm.suspended = 1;
3830 del_timer_sync(&dev_priv->hangcheck_timer);
3831
3832 i915_kernel_lost_context(dev);
3833 i915_gem_cleanup_ringbuffer(dev);
3834
3835 mutex_unlock(&dev->struct_mutex);
3836
3837 /* Cancel the retire work handler, which should be idle now. */
3838 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3839
3840 return 0;
3841 }
3842
3843 void i915_gem_l3_remap(struct drm_device *dev)
3844 {
3845 drm_i915_private_t *dev_priv = dev->dev_private;
3846 u32 misccpctl;
3847 int i;
3848
3849 if (!IS_IVYBRIDGE(dev))
3850 return;
3851
3852 if (!dev_priv->l3_parity.remap_info)
3853 return;
3854
3855 misccpctl = I915_READ(GEN7_MISCCPCTL);
3856 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3857 POSTING_READ(GEN7_MISCCPCTL);
3858
3859 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3860 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3861 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3862 DRM_DEBUG("0x%x was already programmed to %x\n",
3863 GEN7_L3LOG_BASE + i, remap);
3864 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3865 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3866 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3867 }
3868
3869 /* Make sure all the writes land before disabling dop clock gating */
3870 POSTING_READ(GEN7_L3LOG_BASE);
3871
3872 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3873 }
3874
3875 void i915_gem_init_swizzling(struct drm_device *dev)
3876 {
3877 drm_i915_private_t *dev_priv = dev->dev_private;
3878
3879 if (INTEL_INFO(dev)->gen < 5 ||
3880 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3881 return;
3882
3883 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3884 DISP_TILE_SURFACE_SWIZZLING);
3885
3886 if (IS_GEN5(dev))
3887 return;
3888
3889 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3890 if (IS_GEN6(dev))
3891 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3892 else
3893 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3894 }
3895
3896 static bool
3897 intel_enable_blt(struct drm_device *dev)
3898 {
3899 if (!HAS_BLT(dev))
3900 return false;
3901
3902 /* The blitter was dysfunctional on early prototypes */
3903 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3904 DRM_INFO("BLT not supported on this pre-production hardware;"
3905 " graphics performance will be degraded.\n");
3906 return false;
3907 }
3908
3909 return true;
3910 }
3911
3912 int
3913 i915_gem_init_hw(struct drm_device *dev)
3914 {
3915 drm_i915_private_t *dev_priv = dev->dev_private;
3916 int ret;
3917
3918 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3919 return -EIO;
3920
3921 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3922 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3923
3924 i915_gem_l3_remap(dev);
3925
3926 i915_gem_init_swizzling(dev);
3927
3928 ret = intel_init_render_ring_buffer(dev);
3929 if (ret)
3930 return ret;
3931
3932 if (HAS_BSD(dev)) {
3933 ret = intel_init_bsd_ring_buffer(dev);
3934 if (ret)
3935 goto cleanup_render_ring;
3936 }
3937
3938 if (intel_enable_blt(dev)) {
3939 ret = intel_init_blt_ring_buffer(dev);
3940 if (ret)
3941 goto cleanup_bsd_ring;
3942 }
3943
3944 dev_priv->next_seqno = 1;
3945
3946 /*
3947 * XXX: There was some w/a described somewhere suggesting loading
3948 * contexts before PPGTT.
3949 */
3950 i915_gem_context_init(dev);
3951 i915_gem_init_ppgtt(dev);
3952
3953 return 0;
3954
3955 cleanup_bsd_ring:
3956 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3957 cleanup_render_ring:
3958 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3959 return ret;
3960 }
3961
3962 static bool
3963 intel_enable_ppgtt(struct drm_device *dev)
3964 {
3965 if (i915_enable_ppgtt >= 0)
3966 return i915_enable_ppgtt;
3967
3968 #ifdef CONFIG_INTEL_IOMMU
3969 /* Disable ppgtt on SNB if VT-d is on. */
3970 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3971 return false;
3972 #endif
3973
3974 return true;
3975 }
3976
3977 int i915_gem_init(struct drm_device *dev)
3978 {
3979 struct drm_i915_private *dev_priv = dev->dev_private;
3980 unsigned long gtt_size, mappable_size;
3981 int ret;
3982
3983 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3984 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3985
3986 mutex_lock(&dev->struct_mutex);
3987 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3988 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3989 * aperture accordingly when using aliasing ppgtt. */
3990 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3991
3992 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3993
3994 ret = i915_gem_init_aliasing_ppgtt(dev);
3995 if (ret) {
3996 mutex_unlock(&dev->struct_mutex);
3997 return ret;
3998 }
3999 } else {
4000 /* Let GEM Manage all of the aperture.
4001 *
4002 * However, leave one page at the end still bound to the scratch
4003 * page. There are a number of places where the hardware
4004 * apparently prefetches past the end of the object, and we've
4005 * seen multiple hangs with the GPU head pointer stuck in a
4006 * batchbuffer bound at the last page of the aperture. One page
4007 * should be enough to keep any prefetching inside of the
4008 * aperture.
4009 */
4010 i915_gem_init_global_gtt(dev, 0, mappable_size,
4011 gtt_size);
4012 }
4013
4014 ret = i915_gem_init_hw(dev);
4015 mutex_unlock(&dev->struct_mutex);
4016 if (ret) {
4017 i915_gem_cleanup_aliasing_ppgtt(dev);
4018 return ret;
4019 }
4020
4021 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4022 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4023 dev_priv->dri1.allow_batchbuffer = 1;
4024 return 0;
4025 }
4026
4027 void
4028 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4029 {
4030 drm_i915_private_t *dev_priv = dev->dev_private;
4031 struct intel_ring_buffer *ring;
4032 int i;
4033
4034 for_each_ring(ring, dev_priv, i)
4035 intel_cleanup_ring_buffer(ring);
4036 }
4037
4038 int
4039 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4040 struct drm_file *file_priv)
4041 {
4042 drm_i915_private_t *dev_priv = dev->dev_private;
4043 int ret;
4044
4045 if (drm_core_check_feature(dev, DRIVER_MODESET))
4046 return 0;
4047
4048 if (atomic_read(&dev_priv->mm.wedged)) {
4049 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4050 atomic_set(&dev_priv->mm.wedged, 0);
4051 }
4052
4053 mutex_lock(&dev->struct_mutex);
4054 dev_priv->mm.suspended = 0;
4055
4056 ret = i915_gem_init_hw(dev);
4057 if (ret != 0) {
4058 mutex_unlock(&dev->struct_mutex);
4059 return ret;
4060 }
4061
4062 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4063 mutex_unlock(&dev->struct_mutex);
4064
4065 ret = drm_irq_install(dev);
4066 if (ret)
4067 goto cleanup_ringbuffer;
4068
4069 return 0;
4070
4071 cleanup_ringbuffer:
4072 mutex_lock(&dev->struct_mutex);
4073 i915_gem_cleanup_ringbuffer(dev);
4074 dev_priv->mm.suspended = 1;
4075 mutex_unlock(&dev->struct_mutex);
4076
4077 return ret;
4078 }
4079
4080 int
4081 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4082 struct drm_file *file_priv)
4083 {
4084 if (drm_core_check_feature(dev, DRIVER_MODESET))
4085 return 0;
4086
4087 drm_irq_uninstall(dev);
4088 return i915_gem_idle(dev);
4089 }
4090
4091 void
4092 i915_gem_lastclose(struct drm_device *dev)
4093 {
4094 int ret;
4095
4096 if (drm_core_check_feature(dev, DRIVER_MODESET))
4097 return;
4098
4099 ret = i915_gem_idle(dev);
4100 if (ret)
4101 DRM_ERROR("failed to idle hardware: %d\n", ret);
4102 }
4103
4104 static void
4105 init_ring_lists(struct intel_ring_buffer *ring)
4106 {
4107 INIT_LIST_HEAD(&ring->active_list);
4108 INIT_LIST_HEAD(&ring->request_list);
4109 }
4110
4111 void
4112 i915_gem_load(struct drm_device *dev)
4113 {
4114 int i;
4115 drm_i915_private_t *dev_priv = dev->dev_private;
4116
4117 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4118 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4119 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4120 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4121 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4122 for (i = 0; i < I915_NUM_RINGS; i++)
4123 init_ring_lists(&dev_priv->ring[i]);
4124 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4125 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4126 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4127 i915_gem_retire_work_handler);
4128 init_completion(&dev_priv->error_completion);
4129
4130 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4131 if (IS_GEN3(dev)) {
4132 I915_WRITE(MI_ARB_STATE,
4133 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4134 }
4135
4136 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4137
4138 /* Old X drivers will take 0-2 for front, back, depth buffers */
4139 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4140 dev_priv->fence_reg_start = 3;
4141
4142 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4143 dev_priv->num_fence_regs = 16;
4144 else
4145 dev_priv->num_fence_regs = 8;
4146
4147 /* Initialize fence registers to zero */
4148 i915_gem_reset_fences(dev);
4149
4150 i915_gem_detect_bit_6_swizzle(dev);
4151 init_waitqueue_head(&dev_priv->pending_flip_queue);
4152
4153 dev_priv->mm.interruptible = true;
4154
4155 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4156 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4157 register_shrinker(&dev_priv->mm.inactive_shrinker);
4158 }
4159
4160 /*
4161 * Create a physically contiguous memory object for this object
4162 * e.g. for cursor + overlay regs
4163 */
4164 static int i915_gem_init_phys_object(struct drm_device *dev,
4165 int id, int size, int align)
4166 {
4167 drm_i915_private_t *dev_priv = dev->dev_private;
4168 struct drm_i915_gem_phys_object *phys_obj;
4169 int ret;
4170
4171 if (dev_priv->mm.phys_objs[id - 1] || !size)
4172 return 0;
4173
4174 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4175 if (!phys_obj)
4176 return -ENOMEM;
4177
4178 phys_obj->id = id;
4179
4180 phys_obj->handle = drm_pci_alloc(dev, size, align);
4181 if (!phys_obj->handle) {
4182 ret = -ENOMEM;
4183 goto kfree_obj;
4184 }
4185 #ifdef CONFIG_X86
4186 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4187 #endif
4188
4189 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4190
4191 return 0;
4192 kfree_obj:
4193 kfree(phys_obj);
4194 return ret;
4195 }
4196
4197 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4198 {
4199 drm_i915_private_t *dev_priv = dev->dev_private;
4200 struct drm_i915_gem_phys_object *phys_obj;
4201
4202 if (!dev_priv->mm.phys_objs[id - 1])
4203 return;
4204
4205 phys_obj = dev_priv->mm.phys_objs[id - 1];
4206 if (phys_obj->cur_obj) {
4207 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4208 }
4209
4210 #ifdef CONFIG_X86
4211 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4212 #endif
4213 drm_pci_free(dev, phys_obj->handle);
4214 kfree(phys_obj);
4215 dev_priv->mm.phys_objs[id - 1] = NULL;
4216 }
4217
4218 void i915_gem_free_all_phys_object(struct drm_device *dev)
4219 {
4220 int i;
4221
4222 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4223 i915_gem_free_phys_object(dev, i);
4224 }
4225
4226 void i915_gem_detach_phys_object(struct drm_device *dev,
4227 struct drm_i915_gem_object *obj)
4228 {
4229 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4230 char *vaddr;
4231 int i;
4232 int page_count;
4233
4234 if (!obj->phys_obj)
4235 return;
4236 vaddr = obj->phys_obj->handle->vaddr;
4237
4238 page_count = obj->base.size / PAGE_SIZE;
4239 for (i = 0; i < page_count; i++) {
4240 struct page *page = shmem_read_mapping_page(mapping, i);
4241 if (!IS_ERR(page)) {
4242 char *dst = kmap_atomic(page);
4243 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4244 kunmap_atomic(dst);
4245
4246 drm_clflush_pages(&page, 1);
4247
4248 set_page_dirty(page);
4249 mark_page_accessed(page);
4250 page_cache_release(page);
4251 }
4252 }
4253 i915_gem_chipset_flush(dev);
4254
4255 obj->phys_obj->cur_obj = NULL;
4256 obj->phys_obj = NULL;
4257 }
4258
4259 int
4260 i915_gem_attach_phys_object(struct drm_device *dev,
4261 struct drm_i915_gem_object *obj,
4262 int id,
4263 int align)
4264 {
4265 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4266 drm_i915_private_t *dev_priv = dev->dev_private;
4267 int ret = 0;
4268 int page_count;
4269 int i;
4270
4271 if (id > I915_MAX_PHYS_OBJECT)
4272 return -EINVAL;
4273
4274 if (obj->phys_obj) {
4275 if (obj->phys_obj->id == id)
4276 return 0;
4277 i915_gem_detach_phys_object(dev, obj);
4278 }
4279
4280 /* create a new object */
4281 if (!dev_priv->mm.phys_objs[id - 1]) {
4282 ret = i915_gem_init_phys_object(dev, id,
4283 obj->base.size, align);
4284 if (ret) {
4285 DRM_ERROR("failed to init phys object %d size: %zu\n",
4286 id, obj->base.size);
4287 return ret;
4288 }
4289 }
4290
4291 /* bind to the object */
4292 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4293 obj->phys_obj->cur_obj = obj;
4294
4295 page_count = obj->base.size / PAGE_SIZE;
4296
4297 for (i = 0; i < page_count; i++) {
4298 struct page *page;
4299 char *dst, *src;
4300
4301 page = shmem_read_mapping_page(mapping, i);
4302 if (IS_ERR(page))
4303 return PTR_ERR(page);
4304
4305 src = kmap_atomic(page);
4306 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4307 memcpy(dst, src, PAGE_SIZE);
4308 kunmap_atomic(src);
4309
4310 mark_page_accessed(page);
4311 page_cache_release(page);
4312 }
4313
4314 return 0;
4315 }
4316
4317 static int
4318 i915_gem_phys_pwrite(struct drm_device *dev,
4319 struct drm_i915_gem_object *obj,
4320 struct drm_i915_gem_pwrite *args,
4321 struct drm_file *file_priv)
4322 {
4323 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4324 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4325
4326 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4327 unsigned long unwritten;
4328
4329 /* The physical object once assigned is fixed for the lifetime
4330 * of the obj, so we can safely drop the lock and continue
4331 * to access vaddr.
4332 */
4333 mutex_unlock(&dev->struct_mutex);
4334 unwritten = copy_from_user(vaddr, user_data, args->size);
4335 mutex_lock(&dev->struct_mutex);
4336 if (unwritten)
4337 return -EFAULT;
4338 }
4339
4340 i915_gem_chipset_flush(dev);
4341 return 0;
4342 }
4343
4344 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4345 {
4346 struct drm_i915_file_private *file_priv = file->driver_priv;
4347
4348 /* Clean up our request list when the client is going away, so that
4349 * later retire_requests won't dereference our soon-to-be-gone
4350 * file_priv.
4351 */
4352 spin_lock(&file_priv->mm.lock);
4353 while (!list_empty(&file_priv->mm.request_list)) {
4354 struct drm_i915_gem_request *request;
4355
4356 request = list_first_entry(&file_priv->mm.request_list,
4357 struct drm_i915_gem_request,
4358 client_list);
4359 list_del(&request->client_list);
4360 request->file_priv = NULL;
4361 }
4362 spin_unlock(&file_priv->mm.lock);
4363 }
4364
4365 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4366 {
4367 if (!mutex_is_locked(mutex))
4368 return false;
4369
4370 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4371 return mutex->owner == task;
4372 #else
4373 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4374 return false;
4375 #endif
4376 }
4377
4378 static int
4379 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4380 {
4381 struct drm_i915_private *dev_priv =
4382 container_of(shrinker,
4383 struct drm_i915_private,
4384 mm.inactive_shrinker);
4385 struct drm_device *dev = dev_priv->dev;
4386 struct drm_i915_gem_object *obj;
4387 int nr_to_scan = sc->nr_to_scan;
4388 bool unlock = true;
4389 int cnt;
4390
4391 if (!mutex_trylock(&dev->struct_mutex)) {
4392 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4393 return 0;
4394
4395 unlock = false;
4396 }
4397
4398 if (nr_to_scan) {
4399 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4400 if (nr_to_scan > 0)
4401 i915_gem_shrink_all(dev_priv);
4402 }
4403
4404 cnt = 0;
4405 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4406 if (obj->pages_pin_count == 0)
4407 cnt += obj->base.size >> PAGE_SHIFT;
4408 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4409 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4410 cnt += obj->base.size >> PAGE_SHIFT;
4411
4412 if (unlock)
4413 mutex_unlock(&dev->struct_mutex);
4414 return cnt;
4415 }
This page took 0.171419 seconds and 6 git commands to generate.