Merge branch 'upstream/core' into upstream/xen
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42 int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49 unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
52 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
53 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file_priv);
56
57 static LIST_HEAD(shrink_list);
58 static DEFINE_SPINLOCK(shrink_list_lock);
59
60 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
61 unsigned long end)
62 {
63 drm_i915_private_t *dev_priv = dev->dev_private;
64
65 if (start >= end ||
66 (start & (PAGE_SIZE - 1)) != 0 ||
67 (end & (PAGE_SIZE - 1)) != 0) {
68 return -EINVAL;
69 }
70
71 drm_mm_init(&dev_priv->mm.gtt_space, start,
72 end - start);
73
74 dev->gtt_total = (uint32_t) (end - start);
75
76 return 0;
77 }
78
79 int
80 i915_gem_init_ioctl(struct drm_device *dev, void *data,
81 struct drm_file *file_priv)
82 {
83 struct drm_i915_gem_init *args = data;
84 int ret;
85
86 mutex_lock(&dev->struct_mutex);
87 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
88 mutex_unlock(&dev->struct_mutex);
89
90 return ret;
91 }
92
93 int
94 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
95 struct drm_file *file_priv)
96 {
97 struct drm_i915_gem_get_aperture *args = data;
98
99 if (!(dev->driver->driver_features & DRIVER_GEM))
100 return -ENODEV;
101
102 args->aper_size = dev->gtt_total;
103 args->aper_available_size = (args->aper_size -
104 atomic_read(&dev->pin_memory));
105
106 return 0;
107 }
108
109
110 /**
111 * Creates a new mm object and returns a handle to it.
112 */
113 int
114 i915_gem_create_ioctl(struct drm_device *dev, void *data,
115 struct drm_file *file_priv)
116 {
117 struct drm_i915_gem_create *args = data;
118 struct drm_gem_object *obj;
119 int ret;
120 u32 handle;
121
122 args->size = roundup(args->size, PAGE_SIZE);
123
124 /* Allocate the new object */
125 obj = i915_gem_alloc_object(dev, args->size);
126 if (obj == NULL)
127 return -ENOMEM;
128
129 ret = drm_gem_handle_create(file_priv, obj, &handle);
130 drm_gem_object_handle_unreference_unlocked(obj);
131
132 if (ret)
133 return ret;
134
135 args->handle = handle;
136
137 return 0;
138 }
139
140 static inline int
141 fast_shmem_read(struct page **pages,
142 loff_t page_base, int page_offset,
143 char __user *data,
144 int length)
145 {
146 char __iomem *vaddr;
147 int unwritten;
148
149 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
150 if (vaddr == NULL)
151 return -ENOMEM;
152 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
153 kunmap_atomic(vaddr, KM_USER0);
154
155 if (unwritten)
156 return -EFAULT;
157
158 return 0;
159 }
160
161 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
162 {
163 drm_i915_private_t *dev_priv = obj->dev->dev_private;
164 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
165
166 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
167 obj_priv->tiling_mode != I915_TILING_NONE;
168 }
169
170 static inline void
171 slow_shmem_copy(struct page *dst_page,
172 int dst_offset,
173 struct page *src_page,
174 int src_offset,
175 int length)
176 {
177 char *dst_vaddr, *src_vaddr;
178
179 dst_vaddr = kmap(dst_page);
180 src_vaddr = kmap(src_page);
181
182 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
183
184 kunmap(src_page);
185 kunmap(dst_page);
186 }
187
188 static inline void
189 slow_shmem_bit17_copy(struct page *gpu_page,
190 int gpu_offset,
191 struct page *cpu_page,
192 int cpu_offset,
193 int length,
194 int is_read)
195 {
196 char *gpu_vaddr, *cpu_vaddr;
197
198 /* Use the unswizzled path if this page isn't affected. */
199 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
200 if (is_read)
201 return slow_shmem_copy(cpu_page, cpu_offset,
202 gpu_page, gpu_offset, length);
203 else
204 return slow_shmem_copy(gpu_page, gpu_offset,
205 cpu_page, cpu_offset, length);
206 }
207
208 gpu_vaddr = kmap(gpu_page);
209 cpu_vaddr = kmap(cpu_page);
210
211 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
212 * XORing with the other bits (A9 for Y, A9 and A10 for X)
213 */
214 while (length > 0) {
215 int cacheline_end = ALIGN(gpu_offset + 1, 64);
216 int this_length = min(cacheline_end - gpu_offset, length);
217 int swizzled_gpu_offset = gpu_offset ^ 64;
218
219 if (is_read) {
220 memcpy(cpu_vaddr + cpu_offset,
221 gpu_vaddr + swizzled_gpu_offset,
222 this_length);
223 } else {
224 memcpy(gpu_vaddr + swizzled_gpu_offset,
225 cpu_vaddr + cpu_offset,
226 this_length);
227 }
228 cpu_offset += this_length;
229 gpu_offset += this_length;
230 length -= this_length;
231 }
232
233 kunmap(cpu_page);
234 kunmap(gpu_page);
235 }
236
237 /**
238 * This is the fast shmem pread path, which attempts to copy_from_user directly
239 * from the backing pages of the object to the user's address space. On a
240 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
241 */
242 static int
243 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
244 struct drm_i915_gem_pread *args,
245 struct drm_file *file_priv)
246 {
247 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
248 ssize_t remain;
249 loff_t offset, page_base;
250 char __user *user_data;
251 int page_offset, page_length;
252 int ret;
253
254 user_data = (char __user *) (uintptr_t) args->data_ptr;
255 remain = args->size;
256
257 mutex_lock(&dev->struct_mutex);
258
259 ret = i915_gem_object_get_pages(obj, 0);
260 if (ret != 0)
261 goto fail_unlock;
262
263 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
264 args->size);
265 if (ret != 0)
266 goto fail_put_pages;
267
268 obj_priv = to_intel_bo(obj);
269 offset = args->offset;
270
271 while (remain > 0) {
272 /* Operation in this page
273 *
274 * page_base = page offset within aperture
275 * page_offset = offset within page
276 * page_length = bytes to copy for this page
277 */
278 page_base = (offset & ~(PAGE_SIZE-1));
279 page_offset = offset & (PAGE_SIZE-1);
280 page_length = remain;
281 if ((page_offset + remain) > PAGE_SIZE)
282 page_length = PAGE_SIZE - page_offset;
283
284 ret = fast_shmem_read(obj_priv->pages,
285 page_base, page_offset,
286 user_data, page_length);
287 if (ret)
288 goto fail_put_pages;
289
290 remain -= page_length;
291 user_data += page_length;
292 offset += page_length;
293 }
294
295 fail_put_pages:
296 i915_gem_object_put_pages(obj);
297 fail_unlock:
298 mutex_unlock(&dev->struct_mutex);
299
300 return ret;
301 }
302
303 static int
304 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
305 {
306 int ret;
307
308 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
309
310 /* If we've insufficient memory to map in the pages, attempt
311 * to make some space by throwing out some old buffers.
312 */
313 if (ret == -ENOMEM) {
314 struct drm_device *dev = obj->dev;
315
316 ret = i915_gem_evict_something(dev, obj->size);
317 if (ret)
318 return ret;
319
320 ret = i915_gem_object_get_pages(obj, 0);
321 }
322
323 return ret;
324 }
325
326 /**
327 * This is the fallback shmem pread path, which allocates temporary storage
328 * in kernel space to copy_to_user into outside of the struct_mutex, so we
329 * can copy out of the object's backing pages while holding the struct mutex
330 * and not take page faults.
331 */
332 static int
333 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
334 struct drm_i915_gem_pread *args,
335 struct drm_file *file_priv)
336 {
337 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
338 struct mm_struct *mm = current->mm;
339 struct page **user_pages;
340 ssize_t remain;
341 loff_t offset, pinned_pages, i;
342 loff_t first_data_page, last_data_page, num_pages;
343 int shmem_page_index, shmem_page_offset;
344 int data_page_index, data_page_offset;
345 int page_length;
346 int ret;
347 uint64_t data_ptr = args->data_ptr;
348 int do_bit17_swizzling;
349
350 remain = args->size;
351
352 /* Pin the user pages containing the data. We can't fault while
353 * holding the struct mutex, yet we want to hold it while
354 * dereferencing the user data.
355 */
356 first_data_page = data_ptr / PAGE_SIZE;
357 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
358 num_pages = last_data_page - first_data_page + 1;
359
360 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
361 if (user_pages == NULL)
362 return -ENOMEM;
363
364 down_read(&mm->mmap_sem);
365 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
366 num_pages, 1, 0, user_pages, NULL);
367 up_read(&mm->mmap_sem);
368 if (pinned_pages < num_pages) {
369 ret = -EFAULT;
370 goto fail_put_user_pages;
371 }
372
373 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
374
375 mutex_lock(&dev->struct_mutex);
376
377 ret = i915_gem_object_get_pages_or_evict(obj);
378 if (ret)
379 goto fail_unlock;
380
381 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
382 args->size);
383 if (ret != 0)
384 goto fail_put_pages;
385
386 obj_priv = to_intel_bo(obj);
387 offset = args->offset;
388
389 while (remain > 0) {
390 /* Operation in this page
391 *
392 * shmem_page_index = page number within shmem file
393 * shmem_page_offset = offset within page in shmem file
394 * data_page_index = page number in get_user_pages return
395 * data_page_offset = offset with data_page_index page.
396 * page_length = bytes to copy for this page
397 */
398 shmem_page_index = offset / PAGE_SIZE;
399 shmem_page_offset = offset & ~PAGE_MASK;
400 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
401 data_page_offset = data_ptr & ~PAGE_MASK;
402
403 page_length = remain;
404 if ((shmem_page_offset + page_length) > PAGE_SIZE)
405 page_length = PAGE_SIZE - shmem_page_offset;
406 if ((data_page_offset + page_length) > PAGE_SIZE)
407 page_length = PAGE_SIZE - data_page_offset;
408
409 if (do_bit17_swizzling) {
410 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
411 shmem_page_offset,
412 user_pages[data_page_index],
413 data_page_offset,
414 page_length,
415 1);
416 } else {
417 slow_shmem_copy(user_pages[data_page_index],
418 data_page_offset,
419 obj_priv->pages[shmem_page_index],
420 shmem_page_offset,
421 page_length);
422 }
423
424 remain -= page_length;
425 data_ptr += page_length;
426 offset += page_length;
427 }
428
429 fail_put_pages:
430 i915_gem_object_put_pages(obj);
431 fail_unlock:
432 mutex_unlock(&dev->struct_mutex);
433 fail_put_user_pages:
434 for (i = 0; i < pinned_pages; i++) {
435 SetPageDirty(user_pages[i]);
436 page_cache_release(user_pages[i]);
437 }
438 drm_free_large(user_pages);
439
440 return ret;
441 }
442
443 /**
444 * Reads data from the object referenced by handle.
445 *
446 * On error, the contents of *data are undefined.
447 */
448 int
449 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
450 struct drm_file *file_priv)
451 {
452 struct drm_i915_gem_pread *args = data;
453 struct drm_gem_object *obj;
454 struct drm_i915_gem_object *obj_priv;
455 int ret;
456
457 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
458 if (obj == NULL)
459 return -EBADF;
460 obj_priv = to_intel_bo(obj);
461
462 /* Bounds check source.
463 *
464 * XXX: This could use review for overflow issues...
465 */
466 if (args->offset > obj->size || args->size > obj->size ||
467 args->offset + args->size > obj->size) {
468 drm_gem_object_unreference_unlocked(obj);
469 return -EINVAL;
470 }
471
472 if (i915_gem_object_needs_bit17_swizzle(obj)) {
473 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
474 } else {
475 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
476 if (ret != 0)
477 ret = i915_gem_shmem_pread_slow(dev, obj, args,
478 file_priv);
479 }
480
481 drm_gem_object_unreference_unlocked(obj);
482
483 return ret;
484 }
485
486 /* This is the fast write path which cannot handle
487 * page faults in the source data
488 */
489
490 static inline int
491 fast_user_write(struct io_mapping *mapping,
492 loff_t page_base, int page_offset,
493 char __user *user_data,
494 int length)
495 {
496 char *vaddr_atomic;
497 unsigned long unwritten;
498
499 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
500 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
501 user_data, length);
502 io_mapping_unmap_atomic(vaddr_atomic);
503 if (unwritten)
504 return -EFAULT;
505 return 0;
506 }
507
508 /* Here's the write path which can sleep for
509 * page faults
510 */
511
512 static inline void
513 slow_kernel_write(struct io_mapping *mapping,
514 loff_t gtt_base, int gtt_offset,
515 struct page *user_page, int user_offset,
516 int length)
517 {
518 char __iomem *dst_vaddr;
519 char *src_vaddr;
520
521 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
522 src_vaddr = kmap(user_page);
523
524 memcpy_toio(dst_vaddr + gtt_offset,
525 src_vaddr + user_offset,
526 length);
527
528 kunmap(user_page);
529 io_mapping_unmap(dst_vaddr);
530 }
531
532 static inline int
533 fast_shmem_write(struct page **pages,
534 loff_t page_base, int page_offset,
535 char __user *data,
536 int length)
537 {
538 char __iomem *vaddr;
539 unsigned long unwritten;
540
541 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
542 if (vaddr == NULL)
543 return -ENOMEM;
544 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
545 kunmap_atomic(vaddr, KM_USER0);
546
547 if (unwritten)
548 return -EFAULT;
549 return 0;
550 }
551
552 /**
553 * This is the fast pwrite path, where we copy the data directly from the
554 * user into the GTT, uncached.
555 */
556 static int
557 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
558 struct drm_i915_gem_pwrite *args,
559 struct drm_file *file_priv)
560 {
561 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
562 drm_i915_private_t *dev_priv = dev->dev_private;
563 ssize_t remain;
564 loff_t offset, page_base;
565 char __user *user_data;
566 int page_offset, page_length;
567 int ret;
568
569 user_data = (char __user *) (uintptr_t) args->data_ptr;
570 remain = args->size;
571 if (!access_ok(VERIFY_READ, user_data, remain))
572 return -EFAULT;
573
574
575 mutex_lock(&dev->struct_mutex);
576 ret = i915_gem_object_pin(obj, 0);
577 if (ret) {
578 mutex_unlock(&dev->struct_mutex);
579 return ret;
580 }
581 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
582 if (ret)
583 goto fail;
584
585 obj_priv = to_intel_bo(obj);
586 offset = obj_priv->gtt_offset + args->offset;
587
588 while (remain > 0) {
589 /* Operation in this page
590 *
591 * page_base = page offset within aperture
592 * page_offset = offset within page
593 * page_length = bytes to copy for this page
594 */
595 page_base = (offset & ~(PAGE_SIZE-1));
596 page_offset = offset & (PAGE_SIZE-1);
597 page_length = remain;
598 if ((page_offset + remain) > PAGE_SIZE)
599 page_length = PAGE_SIZE - page_offset;
600
601 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
602 page_offset, user_data, page_length);
603
604 /* If we get a fault while copying data, then (presumably) our
605 * source page isn't available. Return the error and we'll
606 * retry in the slow path.
607 */
608 if (ret)
609 goto fail;
610
611 remain -= page_length;
612 user_data += page_length;
613 offset += page_length;
614 }
615
616 fail:
617 i915_gem_object_unpin(obj);
618 mutex_unlock(&dev->struct_mutex);
619
620 return ret;
621 }
622
623 /**
624 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
625 * the memory and maps it using kmap_atomic for copying.
626 *
627 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
628 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
629 */
630 static int
631 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
632 struct drm_i915_gem_pwrite *args,
633 struct drm_file *file_priv)
634 {
635 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
636 drm_i915_private_t *dev_priv = dev->dev_private;
637 ssize_t remain;
638 loff_t gtt_page_base, offset;
639 loff_t first_data_page, last_data_page, num_pages;
640 loff_t pinned_pages, i;
641 struct page **user_pages;
642 struct mm_struct *mm = current->mm;
643 int gtt_page_offset, data_page_offset, data_page_index, page_length;
644 int ret;
645 uint64_t data_ptr = args->data_ptr;
646
647 remain = args->size;
648
649 /* Pin the user pages containing the data. We can't fault while
650 * holding the struct mutex, and all of the pwrite implementations
651 * want to hold it while dereferencing the user data.
652 */
653 first_data_page = data_ptr / PAGE_SIZE;
654 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
655 num_pages = last_data_page - first_data_page + 1;
656
657 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
658 if (user_pages == NULL)
659 return -ENOMEM;
660
661 down_read(&mm->mmap_sem);
662 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
663 num_pages, 0, 0, user_pages, NULL);
664 up_read(&mm->mmap_sem);
665 if (pinned_pages < num_pages) {
666 ret = -EFAULT;
667 goto out_unpin_pages;
668 }
669
670 mutex_lock(&dev->struct_mutex);
671 ret = i915_gem_object_pin(obj, 0);
672 if (ret)
673 goto out_unlock;
674
675 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
676 if (ret)
677 goto out_unpin_object;
678
679 obj_priv = to_intel_bo(obj);
680 offset = obj_priv->gtt_offset + args->offset;
681
682 while (remain > 0) {
683 /* Operation in this page
684 *
685 * gtt_page_base = page offset within aperture
686 * gtt_page_offset = offset within page in aperture
687 * data_page_index = page number in get_user_pages return
688 * data_page_offset = offset with data_page_index page.
689 * page_length = bytes to copy for this page
690 */
691 gtt_page_base = offset & PAGE_MASK;
692 gtt_page_offset = offset & ~PAGE_MASK;
693 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
694 data_page_offset = data_ptr & ~PAGE_MASK;
695
696 page_length = remain;
697 if ((gtt_page_offset + page_length) > PAGE_SIZE)
698 page_length = PAGE_SIZE - gtt_page_offset;
699 if ((data_page_offset + page_length) > PAGE_SIZE)
700 page_length = PAGE_SIZE - data_page_offset;
701
702 slow_kernel_write(dev_priv->mm.gtt_mapping,
703 gtt_page_base, gtt_page_offset,
704 user_pages[data_page_index],
705 data_page_offset,
706 page_length);
707
708 remain -= page_length;
709 offset += page_length;
710 data_ptr += page_length;
711 }
712
713 out_unpin_object:
714 i915_gem_object_unpin(obj);
715 out_unlock:
716 mutex_unlock(&dev->struct_mutex);
717 out_unpin_pages:
718 for (i = 0; i < pinned_pages; i++)
719 page_cache_release(user_pages[i]);
720 drm_free_large(user_pages);
721
722 return ret;
723 }
724
725 /**
726 * This is the fast shmem pwrite path, which attempts to directly
727 * copy_from_user into the kmapped pages backing the object.
728 */
729 static int
730 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
731 struct drm_i915_gem_pwrite *args,
732 struct drm_file *file_priv)
733 {
734 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
735 ssize_t remain;
736 loff_t offset, page_base;
737 char __user *user_data;
738 int page_offset, page_length;
739 int ret;
740
741 user_data = (char __user *) (uintptr_t) args->data_ptr;
742 remain = args->size;
743
744 mutex_lock(&dev->struct_mutex);
745
746 ret = i915_gem_object_get_pages(obj, 0);
747 if (ret != 0)
748 goto fail_unlock;
749
750 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
751 if (ret != 0)
752 goto fail_put_pages;
753
754 obj_priv = to_intel_bo(obj);
755 offset = args->offset;
756 obj_priv->dirty = 1;
757
758 while (remain > 0) {
759 /* Operation in this page
760 *
761 * page_base = page offset within aperture
762 * page_offset = offset within page
763 * page_length = bytes to copy for this page
764 */
765 page_base = (offset & ~(PAGE_SIZE-1));
766 page_offset = offset & (PAGE_SIZE-1);
767 page_length = remain;
768 if ((page_offset + remain) > PAGE_SIZE)
769 page_length = PAGE_SIZE - page_offset;
770
771 ret = fast_shmem_write(obj_priv->pages,
772 page_base, page_offset,
773 user_data, page_length);
774 if (ret)
775 goto fail_put_pages;
776
777 remain -= page_length;
778 user_data += page_length;
779 offset += page_length;
780 }
781
782 fail_put_pages:
783 i915_gem_object_put_pages(obj);
784 fail_unlock:
785 mutex_unlock(&dev->struct_mutex);
786
787 return ret;
788 }
789
790 /**
791 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
792 * the memory and maps it using kmap_atomic for copying.
793 *
794 * This avoids taking mmap_sem for faulting on the user's address while the
795 * struct_mutex is held.
796 */
797 static int
798 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
799 struct drm_i915_gem_pwrite *args,
800 struct drm_file *file_priv)
801 {
802 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
803 struct mm_struct *mm = current->mm;
804 struct page **user_pages;
805 ssize_t remain;
806 loff_t offset, pinned_pages, i;
807 loff_t first_data_page, last_data_page, num_pages;
808 int shmem_page_index, shmem_page_offset;
809 int data_page_index, data_page_offset;
810 int page_length;
811 int ret;
812 uint64_t data_ptr = args->data_ptr;
813 int do_bit17_swizzling;
814
815 remain = args->size;
816
817 /* Pin the user pages containing the data. We can't fault while
818 * holding the struct mutex, and all of the pwrite implementations
819 * want to hold it while dereferencing the user data.
820 */
821 first_data_page = data_ptr / PAGE_SIZE;
822 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
823 num_pages = last_data_page - first_data_page + 1;
824
825 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
826 if (user_pages == NULL)
827 return -ENOMEM;
828
829 down_read(&mm->mmap_sem);
830 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
831 num_pages, 0, 0, user_pages, NULL);
832 up_read(&mm->mmap_sem);
833 if (pinned_pages < num_pages) {
834 ret = -EFAULT;
835 goto fail_put_user_pages;
836 }
837
838 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
839
840 mutex_lock(&dev->struct_mutex);
841
842 ret = i915_gem_object_get_pages_or_evict(obj);
843 if (ret)
844 goto fail_unlock;
845
846 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
847 if (ret != 0)
848 goto fail_put_pages;
849
850 obj_priv = to_intel_bo(obj);
851 offset = args->offset;
852 obj_priv->dirty = 1;
853
854 while (remain > 0) {
855 /* Operation in this page
856 *
857 * shmem_page_index = page number within shmem file
858 * shmem_page_offset = offset within page in shmem file
859 * data_page_index = page number in get_user_pages return
860 * data_page_offset = offset with data_page_index page.
861 * page_length = bytes to copy for this page
862 */
863 shmem_page_index = offset / PAGE_SIZE;
864 shmem_page_offset = offset & ~PAGE_MASK;
865 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
866 data_page_offset = data_ptr & ~PAGE_MASK;
867
868 page_length = remain;
869 if ((shmem_page_offset + page_length) > PAGE_SIZE)
870 page_length = PAGE_SIZE - shmem_page_offset;
871 if ((data_page_offset + page_length) > PAGE_SIZE)
872 page_length = PAGE_SIZE - data_page_offset;
873
874 if (do_bit17_swizzling) {
875 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
876 shmem_page_offset,
877 user_pages[data_page_index],
878 data_page_offset,
879 page_length,
880 0);
881 } else {
882 slow_shmem_copy(obj_priv->pages[shmem_page_index],
883 shmem_page_offset,
884 user_pages[data_page_index],
885 data_page_offset,
886 page_length);
887 }
888
889 remain -= page_length;
890 data_ptr += page_length;
891 offset += page_length;
892 }
893
894 fail_put_pages:
895 i915_gem_object_put_pages(obj);
896 fail_unlock:
897 mutex_unlock(&dev->struct_mutex);
898 fail_put_user_pages:
899 for (i = 0; i < pinned_pages; i++)
900 page_cache_release(user_pages[i]);
901 drm_free_large(user_pages);
902
903 return ret;
904 }
905
906 /**
907 * Writes data to the object referenced by handle.
908 *
909 * On error, the contents of the buffer that were to be modified are undefined.
910 */
911 int
912 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
913 struct drm_file *file_priv)
914 {
915 struct drm_i915_gem_pwrite *args = data;
916 struct drm_gem_object *obj;
917 struct drm_i915_gem_object *obj_priv;
918 int ret = 0;
919
920 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
921 if (obj == NULL)
922 return -EBADF;
923 obj_priv = to_intel_bo(obj);
924
925 /* Bounds check destination.
926 *
927 * XXX: This could use review for overflow issues...
928 */
929 if (args->offset > obj->size || args->size > obj->size ||
930 args->offset + args->size > obj->size) {
931 drm_gem_object_unreference_unlocked(obj);
932 return -EINVAL;
933 }
934
935 /* We can only do the GTT pwrite on untiled buffers, as otherwise
936 * it would end up going through the fenced access, and we'll get
937 * different detiling behavior between reading and writing.
938 * pread/pwrite currently are reading and writing from the CPU
939 * perspective, requiring manual detiling by the client.
940 */
941 if (obj_priv->phys_obj)
942 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
943 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
944 dev->gtt_total != 0 &&
945 obj->write_domain != I915_GEM_DOMAIN_CPU) {
946 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
947 if (ret == -EFAULT) {
948 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
949 file_priv);
950 }
951 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
952 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
953 } else {
954 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
955 if (ret == -EFAULT) {
956 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
957 file_priv);
958 }
959 }
960
961 #if WATCH_PWRITE
962 if (ret)
963 DRM_INFO("pwrite failed %d\n", ret);
964 #endif
965
966 drm_gem_object_unreference_unlocked(obj);
967
968 return ret;
969 }
970
971 /**
972 * Called when user space prepares to use an object with the CPU, either
973 * through the mmap ioctl's mapping or a GTT mapping.
974 */
975 int
976 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
977 struct drm_file *file_priv)
978 {
979 struct drm_i915_private *dev_priv = dev->dev_private;
980 struct drm_i915_gem_set_domain *args = data;
981 struct drm_gem_object *obj;
982 struct drm_i915_gem_object *obj_priv;
983 uint32_t read_domains = args->read_domains;
984 uint32_t write_domain = args->write_domain;
985 int ret;
986
987 if (!(dev->driver->driver_features & DRIVER_GEM))
988 return -ENODEV;
989
990 /* Only handle setting domains to types used by the CPU. */
991 if (write_domain & I915_GEM_GPU_DOMAINS)
992 return -EINVAL;
993
994 if (read_domains & I915_GEM_GPU_DOMAINS)
995 return -EINVAL;
996
997 /* Having something in the write domain implies it's in the read
998 * domain, and only that read domain. Enforce that in the request.
999 */
1000 if (write_domain != 0 && read_domains != write_domain)
1001 return -EINVAL;
1002
1003 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1004 if (obj == NULL)
1005 return -EBADF;
1006 obj_priv = to_intel_bo(obj);
1007
1008 mutex_lock(&dev->struct_mutex);
1009
1010 intel_mark_busy(dev, obj);
1011
1012 #if WATCH_BUF
1013 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1014 obj, obj->size, read_domains, write_domain);
1015 #endif
1016 if (read_domains & I915_GEM_DOMAIN_GTT) {
1017 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1018
1019 /* Update the LRU on the fence for the CPU access that's
1020 * about to occur.
1021 */
1022 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1023 struct drm_i915_fence_reg *reg =
1024 &dev_priv->fence_regs[obj_priv->fence_reg];
1025 list_move_tail(&reg->lru_list,
1026 &dev_priv->mm.fence_list);
1027 }
1028
1029 /* Silently promote "you're not bound, there was nothing to do"
1030 * to success, since the client was just asking us to
1031 * make sure everything was done.
1032 */
1033 if (ret == -EINVAL)
1034 ret = 0;
1035 } else {
1036 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1037 }
1038
1039 drm_gem_object_unreference(obj);
1040 mutex_unlock(&dev->struct_mutex);
1041 return ret;
1042 }
1043
1044 /**
1045 * Called when user space has done writes to this buffer
1046 */
1047 int
1048 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1049 struct drm_file *file_priv)
1050 {
1051 struct drm_i915_gem_sw_finish *args = data;
1052 struct drm_gem_object *obj;
1053 struct drm_i915_gem_object *obj_priv;
1054 int ret = 0;
1055
1056 if (!(dev->driver->driver_features & DRIVER_GEM))
1057 return -ENODEV;
1058
1059 mutex_lock(&dev->struct_mutex);
1060 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1061 if (obj == NULL) {
1062 mutex_unlock(&dev->struct_mutex);
1063 return -EBADF;
1064 }
1065
1066 #if WATCH_BUF
1067 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1068 __func__, args->handle, obj, obj->size);
1069 #endif
1070 obj_priv = to_intel_bo(obj);
1071
1072 /* Pinned buffers may be scanout, so flush the cache */
1073 if (obj_priv->pin_count)
1074 i915_gem_object_flush_cpu_write_domain(obj);
1075
1076 drm_gem_object_unreference(obj);
1077 mutex_unlock(&dev->struct_mutex);
1078 return ret;
1079 }
1080
1081 /**
1082 * Maps the contents of an object, returning the address it is mapped
1083 * into.
1084 *
1085 * While the mapping holds a reference on the contents of the object, it doesn't
1086 * imply a ref on the object itself.
1087 */
1088 int
1089 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1090 struct drm_file *file_priv)
1091 {
1092 struct drm_i915_gem_mmap *args = data;
1093 struct drm_gem_object *obj;
1094 loff_t offset;
1095 unsigned long addr;
1096
1097 if (!(dev->driver->driver_features & DRIVER_GEM))
1098 return -ENODEV;
1099
1100 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1101 if (obj == NULL)
1102 return -EBADF;
1103
1104 offset = args->offset;
1105
1106 down_write(&current->mm->mmap_sem);
1107 addr = do_mmap(obj->filp, 0, args->size,
1108 PROT_READ | PROT_WRITE, MAP_SHARED,
1109 args->offset);
1110 up_write(&current->mm->mmap_sem);
1111 drm_gem_object_unreference_unlocked(obj);
1112 if (IS_ERR((void *)addr))
1113 return addr;
1114
1115 args->addr_ptr = (uint64_t) addr;
1116
1117 return 0;
1118 }
1119
1120 /**
1121 * i915_gem_fault - fault a page into the GTT
1122 * vma: VMA in question
1123 * vmf: fault info
1124 *
1125 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1126 * from userspace. The fault handler takes care of binding the object to
1127 * the GTT (if needed), allocating and programming a fence register (again,
1128 * only if needed based on whether the old reg is still valid or the object
1129 * is tiled) and inserting a new PTE into the faulting process.
1130 *
1131 * Note that the faulting process may involve evicting existing objects
1132 * from the GTT and/or fence registers to make room. So performance may
1133 * suffer if the GTT working set is large or there are few fence registers
1134 * left.
1135 */
1136 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1137 {
1138 struct drm_gem_object *obj = vma->vm_private_data;
1139 struct drm_device *dev = obj->dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1142 pgoff_t page_offset;
1143 unsigned long pfn;
1144 int ret = 0;
1145 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1146
1147 /* We don't use vmf->pgoff since that has the fake offset */
1148 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1149 PAGE_SHIFT;
1150
1151 /* Now bind it into the GTT if needed */
1152 mutex_lock(&dev->struct_mutex);
1153 if (!obj_priv->gtt_space) {
1154 ret = i915_gem_object_bind_to_gtt(obj, 0);
1155 if (ret)
1156 goto unlock;
1157
1158 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1159
1160 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1161 if (ret)
1162 goto unlock;
1163 }
1164
1165 /* Need a new fence register? */
1166 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1167 ret = i915_gem_object_get_fence_reg(obj);
1168 if (ret)
1169 goto unlock;
1170 }
1171
1172 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1173 page_offset;
1174
1175 /* Finally, remap it using the new GTT offset */
1176 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1177 unlock:
1178 mutex_unlock(&dev->struct_mutex);
1179
1180 switch (ret) {
1181 case 0:
1182 case -ERESTARTSYS:
1183 return VM_FAULT_NOPAGE;
1184 case -ENOMEM:
1185 case -EAGAIN:
1186 return VM_FAULT_OOM;
1187 default:
1188 return VM_FAULT_SIGBUS;
1189 }
1190 }
1191
1192 /**
1193 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1194 * @obj: obj in question
1195 *
1196 * GEM memory mapping works by handing back to userspace a fake mmap offset
1197 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1198 * up the object based on the offset and sets up the various memory mapping
1199 * structures.
1200 *
1201 * This routine allocates and attaches a fake offset for @obj.
1202 */
1203 static int
1204 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1205 {
1206 struct drm_device *dev = obj->dev;
1207 struct drm_gem_mm *mm = dev->mm_private;
1208 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1209 struct drm_map_list *list;
1210 struct drm_local_map *map;
1211 int ret = 0;
1212
1213 /* Set the object up for mmap'ing */
1214 list = &obj->map_list;
1215 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1216 if (!list->map)
1217 return -ENOMEM;
1218
1219 map = list->map;
1220 map->type = _DRM_GEM;
1221 map->size = obj->size;
1222 map->handle = obj;
1223
1224 /* Get a DRM GEM mmap offset allocated... */
1225 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1226 obj->size / PAGE_SIZE, 0, 0);
1227 if (!list->file_offset_node) {
1228 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1229 ret = -ENOMEM;
1230 goto out_free_list;
1231 }
1232
1233 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1234 obj->size / PAGE_SIZE, 0);
1235 if (!list->file_offset_node) {
1236 ret = -ENOMEM;
1237 goto out_free_list;
1238 }
1239
1240 list->hash.key = list->file_offset_node->start;
1241 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1242 DRM_ERROR("failed to add to map hash\n");
1243 ret = -ENOMEM;
1244 goto out_free_mm;
1245 }
1246
1247 /* By now we should be all set, any drm_mmap request on the offset
1248 * below will get to our mmap & fault handler */
1249 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1250
1251 return 0;
1252
1253 out_free_mm:
1254 drm_mm_put_block(list->file_offset_node);
1255 out_free_list:
1256 kfree(list->map);
1257
1258 return ret;
1259 }
1260
1261 /**
1262 * i915_gem_release_mmap - remove physical page mappings
1263 * @obj: obj in question
1264 *
1265 * Preserve the reservation of the mmapping with the DRM core code, but
1266 * relinquish ownership of the pages back to the system.
1267 *
1268 * It is vital that we remove the page mapping if we have mapped a tiled
1269 * object through the GTT and then lose the fence register due to
1270 * resource pressure. Similarly if the object has been moved out of the
1271 * aperture, than pages mapped into userspace must be revoked. Removing the
1272 * mapping will then trigger a page fault on the next user access, allowing
1273 * fixup by i915_gem_fault().
1274 */
1275 void
1276 i915_gem_release_mmap(struct drm_gem_object *obj)
1277 {
1278 struct drm_device *dev = obj->dev;
1279 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1280
1281 if (dev->dev_mapping)
1282 unmap_mapping_range(dev->dev_mapping,
1283 obj_priv->mmap_offset, obj->size, 1);
1284 }
1285
1286 static void
1287 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1288 {
1289 struct drm_device *dev = obj->dev;
1290 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1291 struct drm_gem_mm *mm = dev->mm_private;
1292 struct drm_map_list *list;
1293
1294 list = &obj->map_list;
1295 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1296
1297 if (list->file_offset_node) {
1298 drm_mm_put_block(list->file_offset_node);
1299 list->file_offset_node = NULL;
1300 }
1301
1302 if (list->map) {
1303 kfree(list->map);
1304 list->map = NULL;
1305 }
1306
1307 obj_priv->mmap_offset = 0;
1308 }
1309
1310 /**
1311 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1312 * @obj: object to check
1313 *
1314 * Return the required GTT alignment for an object, taking into account
1315 * potential fence register mapping if needed.
1316 */
1317 static uint32_t
1318 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1319 {
1320 struct drm_device *dev = obj->dev;
1321 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1322 int start, i;
1323
1324 /*
1325 * Minimum alignment is 4k (GTT page size), but might be greater
1326 * if a fence register is needed for the object.
1327 */
1328 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1329 return 4096;
1330
1331 /*
1332 * Previous chips need to be aligned to the size of the smallest
1333 * fence register that can contain the object.
1334 */
1335 if (IS_I9XX(dev))
1336 start = 1024*1024;
1337 else
1338 start = 512*1024;
1339
1340 for (i = start; i < obj->size; i <<= 1)
1341 ;
1342
1343 return i;
1344 }
1345
1346 /**
1347 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1348 * @dev: DRM device
1349 * @data: GTT mapping ioctl data
1350 * @file_priv: GEM object info
1351 *
1352 * Simply returns the fake offset to userspace so it can mmap it.
1353 * The mmap call will end up in drm_gem_mmap(), which will set things
1354 * up so we can get faults in the handler above.
1355 *
1356 * The fault handler will take care of binding the object into the GTT
1357 * (since it may have been evicted to make room for something), allocating
1358 * a fence register, and mapping the appropriate aperture address into
1359 * userspace.
1360 */
1361 int
1362 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1363 struct drm_file *file_priv)
1364 {
1365 struct drm_i915_gem_mmap_gtt *args = data;
1366 struct drm_i915_private *dev_priv = dev->dev_private;
1367 struct drm_gem_object *obj;
1368 struct drm_i915_gem_object *obj_priv;
1369 int ret;
1370
1371 if (!(dev->driver->driver_features & DRIVER_GEM))
1372 return -ENODEV;
1373
1374 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1375 if (obj == NULL)
1376 return -EBADF;
1377
1378 mutex_lock(&dev->struct_mutex);
1379
1380 obj_priv = to_intel_bo(obj);
1381
1382 if (obj_priv->madv != I915_MADV_WILLNEED) {
1383 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1384 drm_gem_object_unreference(obj);
1385 mutex_unlock(&dev->struct_mutex);
1386 return -EINVAL;
1387 }
1388
1389
1390 if (!obj_priv->mmap_offset) {
1391 ret = i915_gem_create_mmap_offset(obj);
1392 if (ret) {
1393 drm_gem_object_unreference(obj);
1394 mutex_unlock(&dev->struct_mutex);
1395 return ret;
1396 }
1397 }
1398
1399 args->offset = obj_priv->mmap_offset;
1400
1401 /*
1402 * Pull it into the GTT so that we have a page list (makes the
1403 * initial fault faster and any subsequent flushing possible).
1404 */
1405 if (!obj_priv->agp_mem) {
1406 ret = i915_gem_object_bind_to_gtt(obj, 0);
1407 if (ret) {
1408 drm_gem_object_unreference(obj);
1409 mutex_unlock(&dev->struct_mutex);
1410 return ret;
1411 }
1412 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1413 }
1414
1415 drm_gem_object_unreference(obj);
1416 mutex_unlock(&dev->struct_mutex);
1417
1418 return 0;
1419 }
1420
1421 void
1422 i915_gem_object_put_pages(struct drm_gem_object *obj)
1423 {
1424 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1425 int page_count = obj->size / PAGE_SIZE;
1426 int i;
1427
1428 BUG_ON(obj_priv->pages_refcount == 0);
1429 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1430
1431 if (--obj_priv->pages_refcount != 0)
1432 return;
1433
1434 if (obj_priv->tiling_mode != I915_TILING_NONE)
1435 i915_gem_object_save_bit_17_swizzle(obj);
1436
1437 if (obj_priv->madv == I915_MADV_DONTNEED)
1438 obj_priv->dirty = 0;
1439
1440 for (i = 0; i < page_count; i++) {
1441 if (obj_priv->dirty)
1442 set_page_dirty(obj_priv->pages[i]);
1443
1444 if (obj_priv->madv == I915_MADV_WILLNEED)
1445 mark_page_accessed(obj_priv->pages[i]);
1446
1447 page_cache_release(obj_priv->pages[i]);
1448 }
1449 obj_priv->dirty = 0;
1450
1451 drm_free_large(obj_priv->pages);
1452 obj_priv->pages = NULL;
1453 }
1454
1455 static void
1456 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1457 struct intel_ring_buffer *ring)
1458 {
1459 struct drm_device *dev = obj->dev;
1460 drm_i915_private_t *dev_priv = dev->dev_private;
1461 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1462 BUG_ON(ring == NULL);
1463 obj_priv->ring = ring;
1464
1465 /* Add a reference if we're newly entering the active list. */
1466 if (!obj_priv->active) {
1467 drm_gem_object_reference(obj);
1468 obj_priv->active = 1;
1469 }
1470 /* Move from whatever list we were on to the tail of execution. */
1471 spin_lock(&dev_priv->mm.active_list_lock);
1472 list_move_tail(&obj_priv->list, &ring->active_list);
1473 spin_unlock(&dev_priv->mm.active_list_lock);
1474 obj_priv->last_rendering_seqno = seqno;
1475 }
1476
1477 static void
1478 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1479 {
1480 struct drm_device *dev = obj->dev;
1481 drm_i915_private_t *dev_priv = dev->dev_private;
1482 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1483
1484 BUG_ON(!obj_priv->active);
1485 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1486 obj_priv->last_rendering_seqno = 0;
1487 }
1488
1489 /* Immediately discard the backing storage */
1490 static void
1491 i915_gem_object_truncate(struct drm_gem_object *obj)
1492 {
1493 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1494 struct inode *inode;
1495
1496 inode = obj->filp->f_path.dentry->d_inode;
1497 if (inode->i_op->truncate)
1498 inode->i_op->truncate (inode);
1499
1500 obj_priv->madv = __I915_MADV_PURGED;
1501 }
1502
1503 static inline int
1504 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1505 {
1506 return obj_priv->madv == I915_MADV_DONTNEED;
1507 }
1508
1509 static void
1510 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1511 {
1512 struct drm_device *dev = obj->dev;
1513 drm_i915_private_t *dev_priv = dev->dev_private;
1514 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1515
1516 i915_verify_inactive(dev, __FILE__, __LINE__);
1517 if (obj_priv->pin_count != 0)
1518 list_del_init(&obj_priv->list);
1519 else
1520 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1521
1522 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1523
1524 obj_priv->last_rendering_seqno = 0;
1525 obj_priv->ring = NULL;
1526 if (obj_priv->active) {
1527 obj_priv->active = 0;
1528 drm_gem_object_unreference(obj);
1529 }
1530 i915_verify_inactive(dev, __FILE__, __LINE__);
1531 }
1532
1533 static void
1534 i915_gem_process_flushing_list(struct drm_device *dev,
1535 uint32_t flush_domains, uint32_t seqno,
1536 struct intel_ring_buffer *ring)
1537 {
1538 drm_i915_private_t *dev_priv = dev->dev_private;
1539 struct drm_i915_gem_object *obj_priv, *next;
1540
1541 list_for_each_entry_safe(obj_priv, next,
1542 &dev_priv->mm.gpu_write_list,
1543 gpu_write_list) {
1544 struct drm_gem_object *obj = &obj_priv->base;
1545
1546 if ((obj->write_domain & flush_domains) ==
1547 obj->write_domain &&
1548 obj_priv->ring->ring_flag == ring->ring_flag) {
1549 uint32_t old_write_domain = obj->write_domain;
1550
1551 obj->write_domain = 0;
1552 list_del_init(&obj_priv->gpu_write_list);
1553 i915_gem_object_move_to_active(obj, seqno, ring);
1554
1555 /* update the fence lru list */
1556 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1557 struct drm_i915_fence_reg *reg =
1558 &dev_priv->fence_regs[obj_priv->fence_reg];
1559 list_move_tail(&reg->lru_list,
1560 &dev_priv->mm.fence_list);
1561 }
1562
1563 trace_i915_gem_object_change_domain(obj,
1564 obj->read_domains,
1565 old_write_domain);
1566 }
1567 }
1568 }
1569
1570 uint32_t
1571 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1572 uint32_t flush_domains, struct intel_ring_buffer *ring)
1573 {
1574 drm_i915_private_t *dev_priv = dev->dev_private;
1575 struct drm_i915_file_private *i915_file_priv = NULL;
1576 struct drm_i915_gem_request *request;
1577 uint32_t seqno;
1578 int was_empty;
1579
1580 if (file_priv != NULL)
1581 i915_file_priv = file_priv->driver_priv;
1582
1583 request = kzalloc(sizeof(*request), GFP_KERNEL);
1584 if (request == NULL)
1585 return 0;
1586
1587 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1588
1589 request->seqno = seqno;
1590 request->ring = ring;
1591 request->emitted_jiffies = jiffies;
1592 was_empty = list_empty(&ring->request_list);
1593 list_add_tail(&request->list, &ring->request_list);
1594
1595 if (i915_file_priv) {
1596 list_add_tail(&request->client_list,
1597 &i915_file_priv->mm.request_list);
1598 } else {
1599 INIT_LIST_HEAD(&request->client_list);
1600 }
1601
1602 /* Associate any objects on the flushing list matching the write
1603 * domain we're flushing with our flush.
1604 */
1605 if (flush_domains != 0)
1606 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1607
1608 if (!dev_priv->mm.suspended) {
1609 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1610 if (was_empty)
1611 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1612 }
1613 return seqno;
1614 }
1615
1616 /**
1617 * Command execution barrier
1618 *
1619 * Ensures that all commands in the ring are finished
1620 * before signalling the CPU
1621 */
1622 static uint32_t
1623 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1624 {
1625 uint32_t flush_domains = 0;
1626
1627 /* The sampler always gets flushed on i965 (sigh) */
1628 if (IS_I965G(dev))
1629 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1630
1631 ring->flush(dev, ring,
1632 I915_GEM_DOMAIN_COMMAND, flush_domains);
1633 return flush_domains;
1634 }
1635
1636 /**
1637 * Moves buffers associated only with the given active seqno from the active
1638 * to inactive list, potentially freeing them.
1639 */
1640 static void
1641 i915_gem_retire_request(struct drm_device *dev,
1642 struct drm_i915_gem_request *request)
1643 {
1644 drm_i915_private_t *dev_priv = dev->dev_private;
1645
1646 trace_i915_gem_request_retire(dev, request->seqno);
1647
1648 /* Move any buffers on the active list that are no longer referenced
1649 * by the ringbuffer to the flushing/inactive lists as appropriate.
1650 */
1651 spin_lock(&dev_priv->mm.active_list_lock);
1652 while (!list_empty(&request->ring->active_list)) {
1653 struct drm_gem_object *obj;
1654 struct drm_i915_gem_object *obj_priv;
1655
1656 obj_priv = list_first_entry(&request->ring->active_list,
1657 struct drm_i915_gem_object,
1658 list);
1659 obj = &obj_priv->base;
1660
1661 /* If the seqno being retired doesn't match the oldest in the
1662 * list, then the oldest in the list must still be newer than
1663 * this seqno.
1664 */
1665 if (obj_priv->last_rendering_seqno != request->seqno)
1666 goto out;
1667
1668 #if WATCH_LRU
1669 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1670 __func__, request->seqno, obj);
1671 #endif
1672
1673 if (obj->write_domain != 0)
1674 i915_gem_object_move_to_flushing(obj);
1675 else {
1676 /* Take a reference on the object so it won't be
1677 * freed while the spinlock is held. The list
1678 * protection for this spinlock is safe when breaking
1679 * the lock like this since the next thing we do
1680 * is just get the head of the list again.
1681 */
1682 drm_gem_object_reference(obj);
1683 i915_gem_object_move_to_inactive(obj);
1684 spin_unlock(&dev_priv->mm.active_list_lock);
1685 drm_gem_object_unreference(obj);
1686 spin_lock(&dev_priv->mm.active_list_lock);
1687 }
1688 }
1689 out:
1690 spin_unlock(&dev_priv->mm.active_list_lock);
1691 }
1692
1693 /**
1694 * Returns true if seq1 is later than seq2.
1695 */
1696 bool
1697 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1698 {
1699 return (int32_t)(seq1 - seq2) >= 0;
1700 }
1701
1702 uint32_t
1703 i915_get_gem_seqno(struct drm_device *dev,
1704 struct intel_ring_buffer *ring)
1705 {
1706 return ring->get_gem_seqno(dev, ring);
1707 }
1708
1709 /**
1710 * This function clears the request list as sequence numbers are passed.
1711 */
1712 void
1713 i915_gem_retire_requests(struct drm_device *dev,
1714 struct intel_ring_buffer *ring)
1715 {
1716 drm_i915_private_t *dev_priv = dev->dev_private;
1717 uint32_t seqno;
1718
1719 if (!ring->status_page.page_addr
1720 || list_empty(&ring->request_list))
1721 return;
1722
1723 seqno = i915_get_gem_seqno(dev, ring);
1724
1725 while (!list_empty(&ring->request_list)) {
1726 struct drm_i915_gem_request *request;
1727 uint32_t retiring_seqno;
1728
1729 request = list_first_entry(&ring->request_list,
1730 struct drm_i915_gem_request,
1731 list);
1732 retiring_seqno = request->seqno;
1733
1734 if (i915_seqno_passed(seqno, retiring_seqno) ||
1735 atomic_read(&dev_priv->mm.wedged)) {
1736 i915_gem_retire_request(dev, request);
1737
1738 list_del(&request->list);
1739 list_del(&request->client_list);
1740 kfree(request);
1741 } else
1742 break;
1743 }
1744
1745 if (unlikely (dev_priv->trace_irq_seqno &&
1746 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1747
1748 ring->user_irq_put(dev, ring);
1749 dev_priv->trace_irq_seqno = 0;
1750 }
1751 }
1752
1753 void
1754 i915_gem_retire_work_handler(struct work_struct *work)
1755 {
1756 drm_i915_private_t *dev_priv;
1757 struct drm_device *dev;
1758
1759 dev_priv = container_of(work, drm_i915_private_t,
1760 mm.retire_work.work);
1761 dev = dev_priv->dev;
1762
1763 mutex_lock(&dev->struct_mutex);
1764 i915_gem_retire_requests(dev, &dev_priv->render_ring);
1765
1766 if (HAS_BSD(dev))
1767 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
1768
1769 if (!dev_priv->mm.suspended &&
1770 (!list_empty(&dev_priv->render_ring.request_list) ||
1771 (HAS_BSD(dev) &&
1772 !list_empty(&dev_priv->bsd_ring.request_list))))
1773 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1774 mutex_unlock(&dev->struct_mutex);
1775 }
1776
1777 int
1778 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1779 int interruptible, struct intel_ring_buffer *ring)
1780 {
1781 drm_i915_private_t *dev_priv = dev->dev_private;
1782 u32 ier;
1783 int ret = 0;
1784
1785 BUG_ON(seqno == 0);
1786
1787 if (atomic_read(&dev_priv->mm.wedged))
1788 return -EIO;
1789
1790 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1791 if (HAS_PCH_SPLIT(dev))
1792 ier = I915_READ(DEIER) | I915_READ(GTIER);
1793 else
1794 ier = I915_READ(IER);
1795 if (!ier) {
1796 DRM_ERROR("something (likely vbetool) disabled "
1797 "interrupts, re-enabling\n");
1798 i915_driver_irq_preinstall(dev);
1799 i915_driver_irq_postinstall(dev);
1800 }
1801
1802 trace_i915_gem_request_wait_begin(dev, seqno);
1803
1804 ring->waiting_gem_seqno = seqno;
1805 ring->user_irq_get(dev, ring);
1806 if (interruptible)
1807 ret = wait_event_interruptible(ring->irq_queue,
1808 i915_seqno_passed(
1809 ring->get_gem_seqno(dev, ring), seqno)
1810 || atomic_read(&dev_priv->mm.wedged));
1811 else
1812 wait_event(ring->irq_queue,
1813 i915_seqno_passed(
1814 ring->get_gem_seqno(dev, ring), seqno)
1815 || atomic_read(&dev_priv->mm.wedged));
1816
1817 ring->user_irq_put(dev, ring);
1818 ring->waiting_gem_seqno = 0;
1819
1820 trace_i915_gem_request_wait_end(dev, seqno);
1821 }
1822 if (atomic_read(&dev_priv->mm.wedged))
1823 ret = -EIO;
1824
1825 if (ret && ret != -ERESTARTSYS)
1826 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1827 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1828
1829 /* Directly dispatch request retiring. While we have the work queue
1830 * to handle this, the waiter on a request often wants an associated
1831 * buffer to have made it to the inactive list, and we would need
1832 * a separate wait queue to handle that.
1833 */
1834 if (ret == 0)
1835 i915_gem_retire_requests(dev, ring);
1836
1837 return ret;
1838 }
1839
1840 /**
1841 * Waits for a sequence number to be signaled, and cleans up the
1842 * request and object lists appropriately for that event.
1843 */
1844 static int
1845 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1846 struct intel_ring_buffer *ring)
1847 {
1848 return i915_do_wait_request(dev, seqno, 1, ring);
1849 }
1850
1851 static void
1852 i915_gem_flush(struct drm_device *dev,
1853 uint32_t invalidate_domains,
1854 uint32_t flush_domains)
1855 {
1856 drm_i915_private_t *dev_priv = dev->dev_private;
1857 if (flush_domains & I915_GEM_DOMAIN_CPU)
1858 drm_agp_chipset_flush(dev);
1859 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1860 invalidate_domains,
1861 flush_domains);
1862
1863 if (HAS_BSD(dev))
1864 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1865 invalidate_domains,
1866 flush_domains);
1867 }
1868
1869 static void
1870 i915_gem_flush_ring(struct drm_device *dev,
1871 uint32_t invalidate_domains,
1872 uint32_t flush_domains,
1873 struct intel_ring_buffer *ring)
1874 {
1875 if (flush_domains & I915_GEM_DOMAIN_CPU)
1876 drm_agp_chipset_flush(dev);
1877 ring->flush(dev, ring,
1878 invalidate_domains,
1879 flush_domains);
1880 }
1881
1882 /**
1883 * Ensures that all rendering to the object has completed and the object is
1884 * safe to unbind from the GTT or access from the CPU.
1885 */
1886 static int
1887 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1888 {
1889 struct drm_device *dev = obj->dev;
1890 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1891 int ret;
1892
1893 /* This function only exists to support waiting for existing rendering,
1894 * not for emitting required flushes.
1895 */
1896 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1897
1898 /* If there is rendering queued on the buffer being evicted, wait for
1899 * it.
1900 */
1901 if (obj_priv->active) {
1902 #if WATCH_BUF
1903 DRM_INFO("%s: object %p wait for seqno %08x\n",
1904 __func__, obj, obj_priv->last_rendering_seqno);
1905 #endif
1906 ret = i915_wait_request(dev,
1907 obj_priv->last_rendering_seqno, obj_priv->ring);
1908 if (ret != 0)
1909 return ret;
1910 }
1911
1912 return 0;
1913 }
1914
1915 /**
1916 * Unbinds an object from the GTT aperture.
1917 */
1918 int
1919 i915_gem_object_unbind(struct drm_gem_object *obj)
1920 {
1921 struct drm_device *dev = obj->dev;
1922 drm_i915_private_t *dev_priv = dev->dev_private;
1923 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1924 int ret = 0;
1925
1926 #if WATCH_BUF
1927 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1928 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1929 #endif
1930 if (obj_priv->gtt_space == NULL)
1931 return 0;
1932
1933 if (obj_priv->pin_count != 0) {
1934 DRM_ERROR("Attempting to unbind pinned buffer\n");
1935 return -EINVAL;
1936 }
1937
1938 /* blow away mappings if mapped through GTT */
1939 i915_gem_release_mmap(obj);
1940
1941 /* Move the object to the CPU domain to ensure that
1942 * any possible CPU writes while it's not in the GTT
1943 * are flushed when we go to remap it. This will
1944 * also ensure that all pending GPU writes are finished
1945 * before we unbind.
1946 */
1947 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1948 if (ret) {
1949 if (ret != -ERESTARTSYS)
1950 DRM_ERROR("set_domain failed: %d\n", ret);
1951 return ret;
1952 }
1953
1954 BUG_ON(obj_priv->active);
1955
1956 /* release the fence reg _after_ flushing */
1957 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1958 i915_gem_clear_fence_reg(obj);
1959
1960 if (obj_priv->agp_mem != NULL) {
1961 drm_unbind_agp(obj_priv->agp_mem);
1962 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1963 obj_priv->agp_mem = NULL;
1964 }
1965
1966 i915_gem_object_put_pages(obj);
1967 BUG_ON(obj_priv->pages_refcount);
1968
1969 if (obj_priv->gtt_space) {
1970 atomic_dec(&dev->gtt_count);
1971 atomic_sub(obj->size, &dev->gtt_memory);
1972
1973 drm_mm_put_block(obj_priv->gtt_space);
1974 obj_priv->gtt_space = NULL;
1975 }
1976
1977 /* Remove ourselves from the LRU list if present. */
1978 spin_lock(&dev_priv->mm.active_list_lock);
1979 if (!list_empty(&obj_priv->list))
1980 list_del_init(&obj_priv->list);
1981 spin_unlock(&dev_priv->mm.active_list_lock);
1982
1983 if (i915_gem_object_is_purgeable(obj_priv))
1984 i915_gem_object_truncate(obj);
1985
1986 trace_i915_gem_object_unbind(obj);
1987
1988 return 0;
1989 }
1990
1991 static struct drm_gem_object *
1992 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
1993 {
1994 drm_i915_private_t *dev_priv = dev->dev_private;
1995 struct drm_i915_gem_object *obj_priv;
1996 struct drm_gem_object *best = NULL;
1997 struct drm_gem_object *first = NULL;
1998
1999 /* Try to find the smallest clean object */
2000 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2001 struct drm_gem_object *obj = &obj_priv->base;
2002 if (obj->size >= min_size) {
2003 if ((!obj_priv->dirty ||
2004 i915_gem_object_is_purgeable(obj_priv)) &&
2005 (!best || obj->size < best->size)) {
2006 best = obj;
2007 if (best->size == min_size)
2008 return best;
2009 }
2010 if (!first)
2011 first = obj;
2012 }
2013 }
2014
2015 return best ? best : first;
2016 }
2017
2018 static int
2019 i915_gpu_idle(struct drm_device *dev)
2020 {
2021 drm_i915_private_t *dev_priv = dev->dev_private;
2022 bool lists_empty;
2023 uint32_t seqno1, seqno2;
2024 int ret;
2025
2026 spin_lock(&dev_priv->mm.active_list_lock);
2027 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2028 list_empty(&dev_priv->render_ring.active_list) &&
2029 (!HAS_BSD(dev) ||
2030 list_empty(&dev_priv->bsd_ring.active_list)));
2031 spin_unlock(&dev_priv->mm.active_list_lock);
2032
2033 if (lists_empty)
2034 return 0;
2035
2036 /* Flush everything onto the inactive list. */
2037 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2038 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2039 &dev_priv->render_ring);
2040 if (seqno1 == 0)
2041 return -ENOMEM;
2042 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2043
2044 if (HAS_BSD(dev)) {
2045 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2046 &dev_priv->bsd_ring);
2047 if (seqno2 == 0)
2048 return -ENOMEM;
2049
2050 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2051 if (ret)
2052 return ret;
2053 }
2054
2055
2056 return ret;
2057 }
2058
2059 static int
2060 i915_gem_evict_everything(struct drm_device *dev)
2061 {
2062 drm_i915_private_t *dev_priv = dev->dev_private;
2063 int ret;
2064 bool lists_empty;
2065
2066 spin_lock(&dev_priv->mm.active_list_lock);
2067 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2068 list_empty(&dev_priv->mm.flushing_list) &&
2069 list_empty(&dev_priv->render_ring.active_list) &&
2070 (!HAS_BSD(dev)
2071 || list_empty(&dev_priv->bsd_ring.active_list)));
2072 spin_unlock(&dev_priv->mm.active_list_lock);
2073
2074 if (lists_empty)
2075 return -ENOSPC;
2076
2077 /* Flush everything (on to the inactive lists) and evict */
2078 ret = i915_gpu_idle(dev);
2079 if (ret)
2080 return ret;
2081
2082 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2083
2084 ret = i915_gem_evict_from_inactive_list(dev);
2085 if (ret)
2086 return ret;
2087
2088 spin_lock(&dev_priv->mm.active_list_lock);
2089 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2090 list_empty(&dev_priv->mm.flushing_list) &&
2091 list_empty(&dev_priv->render_ring.active_list) &&
2092 (!HAS_BSD(dev)
2093 || list_empty(&dev_priv->bsd_ring.active_list)));
2094 spin_unlock(&dev_priv->mm.active_list_lock);
2095 BUG_ON(!lists_empty);
2096
2097 return 0;
2098 }
2099
2100 static int
2101 i915_gem_evict_something(struct drm_device *dev, int min_size)
2102 {
2103 drm_i915_private_t *dev_priv = dev->dev_private;
2104 struct drm_gem_object *obj;
2105 int ret;
2106
2107 struct intel_ring_buffer *render_ring = &dev_priv->render_ring;
2108 struct intel_ring_buffer *bsd_ring = &dev_priv->bsd_ring;
2109 for (;;) {
2110 i915_gem_retire_requests(dev, render_ring);
2111
2112 if (HAS_BSD(dev))
2113 i915_gem_retire_requests(dev, bsd_ring);
2114
2115 /* If there's an inactive buffer available now, grab it
2116 * and be done.
2117 */
2118 obj = i915_gem_find_inactive_object(dev, min_size);
2119 if (obj) {
2120 struct drm_i915_gem_object *obj_priv;
2121
2122 #if WATCH_LRU
2123 DRM_INFO("%s: evicting %p\n", __func__, obj);
2124 #endif
2125 obj_priv = to_intel_bo(obj);
2126 BUG_ON(obj_priv->pin_count != 0);
2127 BUG_ON(obj_priv->active);
2128
2129 /* Wait on the rendering and unbind the buffer. */
2130 return i915_gem_object_unbind(obj);
2131 }
2132
2133 /* If we didn't get anything, but the ring is still processing
2134 * things, wait for the next to finish and hopefully leave us
2135 * a buffer to evict.
2136 */
2137 if (!list_empty(&render_ring->request_list)) {
2138 struct drm_i915_gem_request *request;
2139
2140 request = list_first_entry(&render_ring->request_list,
2141 struct drm_i915_gem_request,
2142 list);
2143
2144 ret = i915_wait_request(dev,
2145 request->seqno, request->ring);
2146 if (ret)
2147 return ret;
2148
2149 continue;
2150 }
2151
2152 if (HAS_BSD(dev) && !list_empty(&bsd_ring->request_list)) {
2153 struct drm_i915_gem_request *request;
2154
2155 request = list_first_entry(&bsd_ring->request_list,
2156 struct drm_i915_gem_request,
2157 list);
2158
2159 ret = i915_wait_request(dev,
2160 request->seqno, request->ring);
2161 if (ret)
2162 return ret;
2163
2164 continue;
2165 }
2166
2167 /* If we didn't have anything on the request list but there
2168 * are buffers awaiting a flush, emit one and try again.
2169 * When we wait on it, those buffers waiting for that flush
2170 * will get moved to inactive.
2171 */
2172 if (!list_empty(&dev_priv->mm.flushing_list)) {
2173 struct drm_i915_gem_object *obj_priv;
2174
2175 /* Find an object that we can immediately reuse */
2176 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2177 obj = &obj_priv->base;
2178 if (obj->size >= min_size)
2179 break;
2180
2181 obj = NULL;
2182 }
2183
2184 if (obj != NULL) {
2185 uint32_t seqno;
2186
2187 i915_gem_flush_ring(dev,
2188 obj->write_domain,
2189 obj->write_domain,
2190 obj_priv->ring);
2191 seqno = i915_add_request(dev, NULL,
2192 obj->write_domain,
2193 obj_priv->ring);
2194 if (seqno == 0)
2195 return -ENOMEM;
2196 continue;
2197 }
2198 }
2199
2200 /* If we didn't do any of the above, there's no single buffer
2201 * large enough to swap out for the new one, so just evict
2202 * everything and start again. (This should be rare.)
2203 */
2204 if (!list_empty (&dev_priv->mm.inactive_list))
2205 return i915_gem_evict_from_inactive_list(dev);
2206 else
2207 return i915_gem_evict_everything(dev);
2208 }
2209 }
2210
2211 int
2212 i915_gem_object_get_pages(struct drm_gem_object *obj,
2213 gfp_t gfpmask)
2214 {
2215 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2216 int page_count, i;
2217 struct address_space *mapping;
2218 struct inode *inode;
2219 struct page *page;
2220
2221 BUG_ON(obj_priv->pages_refcount
2222 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2223
2224 if (obj_priv->pages_refcount++ != 0)
2225 return 0;
2226
2227 /* Get the list of pages out of our struct file. They'll be pinned
2228 * at this point until we release them.
2229 */
2230 page_count = obj->size / PAGE_SIZE;
2231 BUG_ON(obj_priv->pages != NULL);
2232 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2233 if (obj_priv->pages == NULL) {
2234 obj_priv->pages_refcount--;
2235 return -ENOMEM;
2236 }
2237
2238 inode = obj->filp->f_path.dentry->d_inode;
2239 mapping = inode->i_mapping;
2240 for (i = 0; i < page_count; i++) {
2241 page = read_cache_page_gfp(mapping, i,
2242 GFP_HIGHUSER |
2243 __GFP_COLD |
2244 __GFP_RECLAIMABLE |
2245 gfpmask);
2246 if (IS_ERR(page))
2247 goto err_pages;
2248
2249 obj_priv->pages[i] = page;
2250 }
2251
2252 if (obj_priv->tiling_mode != I915_TILING_NONE)
2253 i915_gem_object_do_bit_17_swizzle(obj);
2254
2255 return 0;
2256
2257 err_pages:
2258 while (i--)
2259 page_cache_release(obj_priv->pages[i]);
2260
2261 drm_free_large(obj_priv->pages);
2262 obj_priv->pages = NULL;
2263 obj_priv->pages_refcount--;
2264 return PTR_ERR(page);
2265 }
2266
2267 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2268 {
2269 struct drm_gem_object *obj = reg->obj;
2270 struct drm_device *dev = obj->dev;
2271 drm_i915_private_t *dev_priv = dev->dev_private;
2272 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2273 int regnum = obj_priv->fence_reg;
2274 uint64_t val;
2275
2276 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2277 0xfffff000) << 32;
2278 val |= obj_priv->gtt_offset & 0xfffff000;
2279 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2280 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2281
2282 if (obj_priv->tiling_mode == I915_TILING_Y)
2283 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2284 val |= I965_FENCE_REG_VALID;
2285
2286 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2287 }
2288
2289 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2290 {
2291 struct drm_gem_object *obj = reg->obj;
2292 struct drm_device *dev = obj->dev;
2293 drm_i915_private_t *dev_priv = dev->dev_private;
2294 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2295 int regnum = obj_priv->fence_reg;
2296 uint64_t val;
2297
2298 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2299 0xfffff000) << 32;
2300 val |= obj_priv->gtt_offset & 0xfffff000;
2301 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2302 if (obj_priv->tiling_mode == I915_TILING_Y)
2303 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2304 val |= I965_FENCE_REG_VALID;
2305
2306 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2307 }
2308
2309 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2310 {
2311 struct drm_gem_object *obj = reg->obj;
2312 struct drm_device *dev = obj->dev;
2313 drm_i915_private_t *dev_priv = dev->dev_private;
2314 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2315 int regnum = obj_priv->fence_reg;
2316 int tile_width;
2317 uint32_t fence_reg, val;
2318 uint32_t pitch_val;
2319
2320 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2321 (obj_priv->gtt_offset & (obj->size - 1))) {
2322 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2323 __func__, obj_priv->gtt_offset, obj->size);
2324 return;
2325 }
2326
2327 if (obj_priv->tiling_mode == I915_TILING_Y &&
2328 HAS_128_BYTE_Y_TILING(dev))
2329 tile_width = 128;
2330 else
2331 tile_width = 512;
2332
2333 /* Note: pitch better be a power of two tile widths */
2334 pitch_val = obj_priv->stride / tile_width;
2335 pitch_val = ffs(pitch_val) - 1;
2336
2337 if (obj_priv->tiling_mode == I915_TILING_Y &&
2338 HAS_128_BYTE_Y_TILING(dev))
2339 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2340 else
2341 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2342
2343 val = obj_priv->gtt_offset;
2344 if (obj_priv->tiling_mode == I915_TILING_Y)
2345 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2346 val |= I915_FENCE_SIZE_BITS(obj->size);
2347 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2348 val |= I830_FENCE_REG_VALID;
2349
2350 if (regnum < 8)
2351 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2352 else
2353 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2354 I915_WRITE(fence_reg, val);
2355 }
2356
2357 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2358 {
2359 struct drm_gem_object *obj = reg->obj;
2360 struct drm_device *dev = obj->dev;
2361 drm_i915_private_t *dev_priv = dev->dev_private;
2362 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2363 int regnum = obj_priv->fence_reg;
2364 uint32_t val;
2365 uint32_t pitch_val;
2366 uint32_t fence_size_bits;
2367
2368 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2369 (obj_priv->gtt_offset & (obj->size - 1))) {
2370 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2371 __func__, obj_priv->gtt_offset);
2372 return;
2373 }
2374
2375 pitch_val = obj_priv->stride / 128;
2376 pitch_val = ffs(pitch_val) - 1;
2377 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2378
2379 val = obj_priv->gtt_offset;
2380 if (obj_priv->tiling_mode == I915_TILING_Y)
2381 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2382 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2383 WARN_ON(fence_size_bits & ~0x00000f00);
2384 val |= fence_size_bits;
2385 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2386 val |= I830_FENCE_REG_VALID;
2387
2388 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2389 }
2390
2391 static int i915_find_fence_reg(struct drm_device *dev)
2392 {
2393 struct drm_i915_fence_reg *reg = NULL;
2394 struct drm_i915_gem_object *obj_priv = NULL;
2395 struct drm_i915_private *dev_priv = dev->dev_private;
2396 struct drm_gem_object *obj = NULL;
2397 int i, avail, ret;
2398
2399 /* First try to find a free reg */
2400 avail = 0;
2401 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2402 reg = &dev_priv->fence_regs[i];
2403 if (!reg->obj)
2404 return i;
2405
2406 obj_priv = to_intel_bo(reg->obj);
2407 if (!obj_priv->pin_count)
2408 avail++;
2409 }
2410
2411 if (avail == 0)
2412 return -ENOSPC;
2413
2414 /* None available, try to steal one or wait for a user to finish */
2415 i = I915_FENCE_REG_NONE;
2416 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2417 lru_list) {
2418 obj = reg->obj;
2419 obj_priv = to_intel_bo(obj);
2420
2421 if (obj_priv->pin_count)
2422 continue;
2423
2424 /* found one! */
2425 i = obj_priv->fence_reg;
2426 break;
2427 }
2428
2429 BUG_ON(i == I915_FENCE_REG_NONE);
2430
2431 /* We only have a reference on obj from the active list. put_fence_reg
2432 * might drop that one, causing a use-after-free in it. So hold a
2433 * private reference to obj like the other callers of put_fence_reg
2434 * (set_tiling ioctl) do. */
2435 drm_gem_object_reference(obj);
2436 ret = i915_gem_object_put_fence_reg(obj);
2437 drm_gem_object_unreference(obj);
2438 if (ret != 0)
2439 return ret;
2440
2441 return i;
2442 }
2443
2444 /**
2445 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2446 * @obj: object to map through a fence reg
2447 *
2448 * When mapping objects through the GTT, userspace wants to be able to write
2449 * to them without having to worry about swizzling if the object is tiled.
2450 *
2451 * This function walks the fence regs looking for a free one for @obj,
2452 * stealing one if it can't find any.
2453 *
2454 * It then sets up the reg based on the object's properties: address, pitch
2455 * and tiling format.
2456 */
2457 int
2458 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2459 {
2460 struct drm_device *dev = obj->dev;
2461 struct drm_i915_private *dev_priv = dev->dev_private;
2462 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2463 struct drm_i915_fence_reg *reg = NULL;
2464 int ret;
2465
2466 /* Just update our place in the LRU if our fence is getting used. */
2467 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2468 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2469 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2470 return 0;
2471 }
2472
2473 switch (obj_priv->tiling_mode) {
2474 case I915_TILING_NONE:
2475 WARN(1, "allocating a fence for non-tiled object?\n");
2476 break;
2477 case I915_TILING_X:
2478 if (!obj_priv->stride)
2479 return -EINVAL;
2480 WARN((obj_priv->stride & (512 - 1)),
2481 "object 0x%08x is X tiled but has non-512B pitch\n",
2482 obj_priv->gtt_offset);
2483 break;
2484 case I915_TILING_Y:
2485 if (!obj_priv->stride)
2486 return -EINVAL;
2487 WARN((obj_priv->stride & (128 - 1)),
2488 "object 0x%08x is Y tiled but has non-128B pitch\n",
2489 obj_priv->gtt_offset);
2490 break;
2491 }
2492
2493 ret = i915_find_fence_reg(dev);
2494 if (ret < 0)
2495 return ret;
2496
2497 obj_priv->fence_reg = ret;
2498 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2499 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2500
2501 reg->obj = obj;
2502
2503 if (IS_GEN6(dev))
2504 sandybridge_write_fence_reg(reg);
2505 else if (IS_I965G(dev))
2506 i965_write_fence_reg(reg);
2507 else if (IS_I9XX(dev))
2508 i915_write_fence_reg(reg);
2509 else
2510 i830_write_fence_reg(reg);
2511
2512 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2513 obj_priv->tiling_mode);
2514
2515 return 0;
2516 }
2517
2518 /**
2519 * i915_gem_clear_fence_reg - clear out fence register info
2520 * @obj: object to clear
2521 *
2522 * Zeroes out the fence register itself and clears out the associated
2523 * data structures in dev_priv and obj_priv.
2524 */
2525 static void
2526 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2527 {
2528 struct drm_device *dev = obj->dev;
2529 drm_i915_private_t *dev_priv = dev->dev_private;
2530 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2531 struct drm_i915_fence_reg *reg =
2532 &dev_priv->fence_regs[obj_priv->fence_reg];
2533
2534 if (IS_GEN6(dev)) {
2535 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2536 (obj_priv->fence_reg * 8), 0);
2537 } else if (IS_I965G(dev)) {
2538 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2539 } else {
2540 uint32_t fence_reg;
2541
2542 if (obj_priv->fence_reg < 8)
2543 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2544 else
2545 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2546 8) * 4;
2547
2548 I915_WRITE(fence_reg, 0);
2549 }
2550
2551 reg->obj = NULL;
2552 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2553 list_del_init(&reg->lru_list);
2554 }
2555
2556 /**
2557 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2558 * to the buffer to finish, and then resets the fence register.
2559 * @obj: tiled object holding a fence register.
2560 *
2561 * Zeroes out the fence register itself and clears out the associated
2562 * data structures in dev_priv and obj_priv.
2563 */
2564 int
2565 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2566 {
2567 struct drm_device *dev = obj->dev;
2568 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2569
2570 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2571 return 0;
2572
2573 /* If we've changed tiling, GTT-mappings of the object
2574 * need to re-fault to ensure that the correct fence register
2575 * setup is in place.
2576 */
2577 i915_gem_release_mmap(obj);
2578
2579 /* On the i915, GPU access to tiled buffers is via a fence,
2580 * therefore we must wait for any outstanding access to complete
2581 * before clearing the fence.
2582 */
2583 if (!IS_I965G(dev)) {
2584 int ret;
2585
2586 i915_gem_object_flush_gpu_write_domain(obj);
2587 ret = i915_gem_object_wait_rendering(obj);
2588 if (ret != 0)
2589 return ret;
2590 }
2591
2592 i915_gem_object_flush_gtt_write_domain(obj);
2593 i915_gem_clear_fence_reg (obj);
2594
2595 return 0;
2596 }
2597
2598 /**
2599 * Finds free space in the GTT aperture and binds the object there.
2600 */
2601 static int
2602 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2603 {
2604 struct drm_device *dev = obj->dev;
2605 drm_i915_private_t *dev_priv = dev->dev_private;
2606 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2607 struct drm_mm_node *free_space;
2608 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2609 int ret;
2610
2611 if (obj_priv->madv != I915_MADV_WILLNEED) {
2612 DRM_ERROR("Attempting to bind a purgeable object\n");
2613 return -EINVAL;
2614 }
2615
2616 if (alignment == 0)
2617 alignment = i915_gem_get_gtt_alignment(obj);
2618 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2619 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2620 return -EINVAL;
2621 }
2622
2623 /* If the object is bigger than the entire aperture, reject it early
2624 * before evicting everything in a vain attempt to find space.
2625 */
2626 if (obj->size > dev->gtt_total) {
2627 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2628 return -E2BIG;
2629 }
2630
2631 search_free:
2632 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2633 obj->size, alignment, 0);
2634 if (free_space != NULL) {
2635 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2636 alignment);
2637 if (obj_priv->gtt_space != NULL) {
2638 obj_priv->gtt_space->private = obj;
2639 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2640 }
2641 }
2642 if (obj_priv->gtt_space == NULL) {
2643 /* If the gtt is empty and we're still having trouble
2644 * fitting our object in, we're out of memory.
2645 */
2646 #if WATCH_LRU
2647 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2648 #endif
2649 ret = i915_gem_evict_something(dev, obj->size);
2650 if (ret)
2651 return ret;
2652
2653 goto search_free;
2654 }
2655
2656 #if WATCH_BUF
2657 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2658 obj->size, obj_priv->gtt_offset);
2659 #endif
2660 ret = i915_gem_object_get_pages(obj, gfpmask);
2661 if (ret) {
2662 drm_mm_put_block(obj_priv->gtt_space);
2663 obj_priv->gtt_space = NULL;
2664
2665 if (ret == -ENOMEM) {
2666 /* first try to clear up some space from the GTT */
2667 ret = i915_gem_evict_something(dev, obj->size);
2668 if (ret) {
2669 /* now try to shrink everyone else */
2670 if (gfpmask) {
2671 gfpmask = 0;
2672 goto search_free;
2673 }
2674
2675 return ret;
2676 }
2677
2678 goto search_free;
2679 }
2680
2681 return ret;
2682 }
2683
2684 /* Create an AGP memory structure pointing at our pages, and bind it
2685 * into the GTT.
2686 */
2687 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2688 obj_priv->pages,
2689 obj->size >> PAGE_SHIFT,
2690 obj_priv->gtt_offset,
2691 obj_priv->agp_type);
2692 if (obj_priv->agp_mem == NULL) {
2693 i915_gem_object_put_pages(obj);
2694 drm_mm_put_block(obj_priv->gtt_space);
2695 obj_priv->gtt_space = NULL;
2696
2697 ret = i915_gem_evict_something(dev, obj->size);
2698 if (ret)
2699 return ret;
2700
2701 goto search_free;
2702 }
2703 atomic_inc(&dev->gtt_count);
2704 atomic_add(obj->size, &dev->gtt_memory);
2705
2706 /* Assert that the object is not currently in any GPU domain. As it
2707 * wasn't in the GTT, there shouldn't be any way it could have been in
2708 * a GPU cache
2709 */
2710 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2711 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2712
2713 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2714
2715 return 0;
2716 }
2717
2718 void
2719 i915_gem_clflush_object(struct drm_gem_object *obj)
2720 {
2721 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2722
2723 /* If we don't have a page list set up, then we're not pinned
2724 * to GPU, and we can ignore the cache flush because it'll happen
2725 * again at bind time.
2726 */
2727 if (obj_priv->pages == NULL)
2728 return;
2729
2730 trace_i915_gem_object_clflush(obj);
2731
2732 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2733 }
2734
2735 /** Flushes any GPU write domain for the object if it's dirty. */
2736 static void
2737 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2738 {
2739 struct drm_device *dev = obj->dev;
2740 uint32_t old_write_domain;
2741 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2742
2743 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2744 return;
2745
2746 /* Queue the GPU write cache flushing we need. */
2747 old_write_domain = obj->write_domain;
2748 i915_gem_flush(dev, 0, obj->write_domain);
2749 (void) i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring);
2750 BUG_ON(obj->write_domain);
2751
2752 trace_i915_gem_object_change_domain(obj,
2753 obj->read_domains,
2754 old_write_domain);
2755 }
2756
2757 /** Flushes the GTT write domain for the object if it's dirty. */
2758 static void
2759 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2760 {
2761 uint32_t old_write_domain;
2762
2763 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2764 return;
2765
2766 /* No actual flushing is required for the GTT write domain. Writes
2767 * to it immediately go to main memory as far as we know, so there's
2768 * no chipset flush. It also doesn't land in render cache.
2769 */
2770 old_write_domain = obj->write_domain;
2771 obj->write_domain = 0;
2772
2773 trace_i915_gem_object_change_domain(obj,
2774 obj->read_domains,
2775 old_write_domain);
2776 }
2777
2778 /** Flushes the CPU write domain for the object if it's dirty. */
2779 static void
2780 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2781 {
2782 struct drm_device *dev = obj->dev;
2783 uint32_t old_write_domain;
2784
2785 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2786 return;
2787
2788 i915_gem_clflush_object(obj);
2789 drm_agp_chipset_flush(dev);
2790 old_write_domain = obj->write_domain;
2791 obj->write_domain = 0;
2792
2793 trace_i915_gem_object_change_domain(obj,
2794 obj->read_domains,
2795 old_write_domain);
2796 }
2797
2798 void
2799 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2800 {
2801 switch (obj->write_domain) {
2802 case I915_GEM_DOMAIN_GTT:
2803 i915_gem_object_flush_gtt_write_domain(obj);
2804 break;
2805 case I915_GEM_DOMAIN_CPU:
2806 i915_gem_object_flush_cpu_write_domain(obj);
2807 break;
2808 default:
2809 i915_gem_object_flush_gpu_write_domain(obj);
2810 break;
2811 }
2812 }
2813
2814 /**
2815 * Moves a single object to the GTT read, and possibly write domain.
2816 *
2817 * This function returns when the move is complete, including waiting on
2818 * flushes to occur.
2819 */
2820 int
2821 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2822 {
2823 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2824 uint32_t old_write_domain, old_read_domains;
2825 int ret;
2826
2827 /* Not valid to be called on unbound objects. */
2828 if (obj_priv->gtt_space == NULL)
2829 return -EINVAL;
2830
2831 i915_gem_object_flush_gpu_write_domain(obj);
2832 /* Wait on any GPU rendering and flushing to occur. */
2833 ret = i915_gem_object_wait_rendering(obj);
2834 if (ret != 0)
2835 return ret;
2836
2837 old_write_domain = obj->write_domain;
2838 old_read_domains = obj->read_domains;
2839
2840 /* If we're writing through the GTT domain, then CPU and GPU caches
2841 * will need to be invalidated at next use.
2842 */
2843 if (write)
2844 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2845
2846 i915_gem_object_flush_cpu_write_domain(obj);
2847
2848 /* It should now be out of any other write domains, and we can update
2849 * the domain values for our changes.
2850 */
2851 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2852 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2853 if (write) {
2854 obj->write_domain = I915_GEM_DOMAIN_GTT;
2855 obj_priv->dirty = 1;
2856 }
2857
2858 trace_i915_gem_object_change_domain(obj,
2859 old_read_domains,
2860 old_write_domain);
2861
2862 return 0;
2863 }
2864
2865 /*
2866 * Prepare buffer for display plane. Use uninterruptible for possible flush
2867 * wait, as in modesetting process we're not supposed to be interrupted.
2868 */
2869 int
2870 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2871 {
2872 struct drm_device *dev = obj->dev;
2873 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2874 uint32_t old_write_domain, old_read_domains;
2875 int ret;
2876
2877 /* Not valid to be called on unbound objects. */
2878 if (obj_priv->gtt_space == NULL)
2879 return -EINVAL;
2880
2881 i915_gem_object_flush_gpu_write_domain(obj);
2882
2883 /* Wait on any GPU rendering and flushing to occur. */
2884 if (obj_priv->active) {
2885 #if WATCH_BUF
2886 DRM_INFO("%s: object %p wait for seqno %08x\n",
2887 __func__, obj, obj_priv->last_rendering_seqno);
2888 #endif
2889 ret = i915_do_wait_request(dev,
2890 obj_priv->last_rendering_seqno,
2891 0,
2892 obj_priv->ring);
2893 if (ret != 0)
2894 return ret;
2895 }
2896
2897 i915_gem_object_flush_cpu_write_domain(obj);
2898
2899 old_write_domain = obj->write_domain;
2900 old_read_domains = obj->read_domains;
2901
2902 /* It should now be out of any other write domains, and we can update
2903 * the domain values for our changes.
2904 */
2905 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2906 obj->read_domains = I915_GEM_DOMAIN_GTT;
2907 obj->write_domain = I915_GEM_DOMAIN_GTT;
2908 obj_priv->dirty = 1;
2909
2910 trace_i915_gem_object_change_domain(obj,
2911 old_read_domains,
2912 old_write_domain);
2913
2914 return 0;
2915 }
2916
2917 /**
2918 * Moves a single object to the CPU read, and possibly write domain.
2919 *
2920 * This function returns when the move is complete, including waiting on
2921 * flushes to occur.
2922 */
2923 static int
2924 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2925 {
2926 uint32_t old_write_domain, old_read_domains;
2927 int ret;
2928
2929 i915_gem_object_flush_gpu_write_domain(obj);
2930 /* Wait on any GPU rendering and flushing to occur. */
2931 ret = i915_gem_object_wait_rendering(obj);
2932 if (ret != 0)
2933 return ret;
2934
2935 i915_gem_object_flush_gtt_write_domain(obj);
2936
2937 /* If we have a partially-valid cache of the object in the CPU,
2938 * finish invalidating it and free the per-page flags.
2939 */
2940 i915_gem_object_set_to_full_cpu_read_domain(obj);
2941
2942 old_write_domain = obj->write_domain;
2943 old_read_domains = obj->read_domains;
2944
2945 /* Flush the CPU cache if it's still invalid. */
2946 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2947 i915_gem_clflush_object(obj);
2948
2949 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2950 }
2951
2952 /* It should now be out of any other write domains, and we can update
2953 * the domain values for our changes.
2954 */
2955 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2956
2957 /* If we're writing through the CPU, then the GPU read domains will
2958 * need to be invalidated at next use.
2959 */
2960 if (write) {
2961 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2962 obj->write_domain = I915_GEM_DOMAIN_CPU;
2963 }
2964
2965 trace_i915_gem_object_change_domain(obj,
2966 old_read_domains,
2967 old_write_domain);
2968
2969 return 0;
2970 }
2971
2972 /*
2973 * Set the next domain for the specified object. This
2974 * may not actually perform the necessary flushing/invaliding though,
2975 * as that may want to be batched with other set_domain operations
2976 *
2977 * This is (we hope) the only really tricky part of gem. The goal
2978 * is fairly simple -- track which caches hold bits of the object
2979 * and make sure they remain coherent. A few concrete examples may
2980 * help to explain how it works. For shorthand, we use the notation
2981 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2982 * a pair of read and write domain masks.
2983 *
2984 * Case 1: the batch buffer
2985 *
2986 * 1. Allocated
2987 * 2. Written by CPU
2988 * 3. Mapped to GTT
2989 * 4. Read by GPU
2990 * 5. Unmapped from GTT
2991 * 6. Freed
2992 *
2993 * Let's take these a step at a time
2994 *
2995 * 1. Allocated
2996 * Pages allocated from the kernel may still have
2997 * cache contents, so we set them to (CPU, CPU) always.
2998 * 2. Written by CPU (using pwrite)
2999 * The pwrite function calls set_domain (CPU, CPU) and
3000 * this function does nothing (as nothing changes)
3001 * 3. Mapped by GTT
3002 * This function asserts that the object is not
3003 * currently in any GPU-based read or write domains
3004 * 4. Read by GPU
3005 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3006 * As write_domain is zero, this function adds in the
3007 * current read domains (CPU+COMMAND, 0).
3008 * flush_domains is set to CPU.
3009 * invalidate_domains is set to COMMAND
3010 * clflush is run to get data out of the CPU caches
3011 * then i915_dev_set_domain calls i915_gem_flush to
3012 * emit an MI_FLUSH and drm_agp_chipset_flush
3013 * 5. Unmapped from GTT
3014 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3015 * flush_domains and invalidate_domains end up both zero
3016 * so no flushing/invalidating happens
3017 * 6. Freed
3018 * yay, done
3019 *
3020 * Case 2: The shared render buffer
3021 *
3022 * 1. Allocated
3023 * 2. Mapped to GTT
3024 * 3. Read/written by GPU
3025 * 4. set_domain to (CPU,CPU)
3026 * 5. Read/written by CPU
3027 * 6. Read/written by GPU
3028 *
3029 * 1. Allocated
3030 * Same as last example, (CPU, CPU)
3031 * 2. Mapped to GTT
3032 * Nothing changes (assertions find that it is not in the GPU)
3033 * 3. Read/written by GPU
3034 * execbuffer calls set_domain (RENDER, RENDER)
3035 * flush_domains gets CPU
3036 * invalidate_domains gets GPU
3037 * clflush (obj)
3038 * MI_FLUSH and drm_agp_chipset_flush
3039 * 4. set_domain (CPU, CPU)
3040 * flush_domains gets GPU
3041 * invalidate_domains gets CPU
3042 * wait_rendering (obj) to make sure all drawing is complete.
3043 * This will include an MI_FLUSH to get the data from GPU
3044 * to memory
3045 * clflush (obj) to invalidate the CPU cache
3046 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3047 * 5. Read/written by CPU
3048 * cache lines are loaded and dirtied
3049 * 6. Read written by GPU
3050 * Same as last GPU access
3051 *
3052 * Case 3: The constant buffer
3053 *
3054 * 1. Allocated
3055 * 2. Written by CPU
3056 * 3. Read by GPU
3057 * 4. Updated (written) by CPU again
3058 * 5. Read by GPU
3059 *
3060 * 1. Allocated
3061 * (CPU, CPU)
3062 * 2. Written by CPU
3063 * (CPU, CPU)
3064 * 3. Read by GPU
3065 * (CPU+RENDER, 0)
3066 * flush_domains = CPU
3067 * invalidate_domains = RENDER
3068 * clflush (obj)
3069 * MI_FLUSH
3070 * drm_agp_chipset_flush
3071 * 4. Updated (written) by CPU again
3072 * (CPU, CPU)
3073 * flush_domains = 0 (no previous write domain)
3074 * invalidate_domains = 0 (no new read domains)
3075 * 5. Read by GPU
3076 * (CPU+RENDER, 0)
3077 * flush_domains = CPU
3078 * invalidate_domains = RENDER
3079 * clflush (obj)
3080 * MI_FLUSH
3081 * drm_agp_chipset_flush
3082 */
3083 static void
3084 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3085 {
3086 struct drm_device *dev = obj->dev;
3087 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3088 uint32_t invalidate_domains = 0;
3089 uint32_t flush_domains = 0;
3090 uint32_t old_read_domains;
3091
3092 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3093 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3094
3095 intel_mark_busy(dev, obj);
3096
3097 #if WATCH_BUF
3098 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3099 __func__, obj,
3100 obj->read_domains, obj->pending_read_domains,
3101 obj->write_domain, obj->pending_write_domain);
3102 #endif
3103 /*
3104 * If the object isn't moving to a new write domain,
3105 * let the object stay in multiple read domains
3106 */
3107 if (obj->pending_write_domain == 0)
3108 obj->pending_read_domains |= obj->read_domains;
3109 else
3110 obj_priv->dirty = 1;
3111
3112 /*
3113 * Flush the current write domain if
3114 * the new read domains don't match. Invalidate
3115 * any read domains which differ from the old
3116 * write domain
3117 */
3118 if (obj->write_domain &&
3119 obj->write_domain != obj->pending_read_domains) {
3120 flush_domains |= obj->write_domain;
3121 invalidate_domains |=
3122 obj->pending_read_domains & ~obj->write_domain;
3123 }
3124 /*
3125 * Invalidate any read caches which may have
3126 * stale data. That is, any new read domains.
3127 */
3128 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3129 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3130 #if WATCH_BUF
3131 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3132 __func__, flush_domains, invalidate_domains);
3133 #endif
3134 i915_gem_clflush_object(obj);
3135 }
3136
3137 old_read_domains = obj->read_domains;
3138
3139 /* The actual obj->write_domain will be updated with
3140 * pending_write_domain after we emit the accumulated flush for all
3141 * of our domain changes in execbuffers (which clears objects'
3142 * write_domains). So if we have a current write domain that we
3143 * aren't changing, set pending_write_domain to that.
3144 */
3145 if (flush_domains == 0 && obj->pending_write_domain == 0)
3146 obj->pending_write_domain = obj->write_domain;
3147 obj->read_domains = obj->pending_read_domains;
3148
3149 dev->invalidate_domains |= invalidate_domains;
3150 dev->flush_domains |= flush_domains;
3151 #if WATCH_BUF
3152 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3153 __func__,
3154 obj->read_domains, obj->write_domain,
3155 dev->invalidate_domains, dev->flush_domains);
3156 #endif
3157
3158 trace_i915_gem_object_change_domain(obj,
3159 old_read_domains,
3160 obj->write_domain);
3161 }
3162
3163 /**
3164 * Moves the object from a partially CPU read to a full one.
3165 *
3166 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3167 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3168 */
3169 static void
3170 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3171 {
3172 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3173
3174 if (!obj_priv->page_cpu_valid)
3175 return;
3176
3177 /* If we're partially in the CPU read domain, finish moving it in.
3178 */
3179 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3180 int i;
3181
3182 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3183 if (obj_priv->page_cpu_valid[i])
3184 continue;
3185 drm_clflush_pages(obj_priv->pages + i, 1);
3186 }
3187 }
3188
3189 /* Free the page_cpu_valid mappings which are now stale, whether
3190 * or not we've got I915_GEM_DOMAIN_CPU.
3191 */
3192 kfree(obj_priv->page_cpu_valid);
3193 obj_priv->page_cpu_valid = NULL;
3194 }
3195
3196 /**
3197 * Set the CPU read domain on a range of the object.
3198 *
3199 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3200 * not entirely valid. The page_cpu_valid member of the object flags which
3201 * pages have been flushed, and will be respected by
3202 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3203 * of the whole object.
3204 *
3205 * This function returns when the move is complete, including waiting on
3206 * flushes to occur.
3207 */
3208 static int
3209 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3210 uint64_t offset, uint64_t size)
3211 {
3212 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3213 uint32_t old_read_domains;
3214 int i, ret;
3215
3216 if (offset == 0 && size == obj->size)
3217 return i915_gem_object_set_to_cpu_domain(obj, 0);
3218
3219 i915_gem_object_flush_gpu_write_domain(obj);
3220 /* Wait on any GPU rendering and flushing to occur. */
3221 ret = i915_gem_object_wait_rendering(obj);
3222 if (ret != 0)
3223 return ret;
3224 i915_gem_object_flush_gtt_write_domain(obj);
3225
3226 /* If we're already fully in the CPU read domain, we're done. */
3227 if (obj_priv->page_cpu_valid == NULL &&
3228 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3229 return 0;
3230
3231 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3232 * newly adding I915_GEM_DOMAIN_CPU
3233 */
3234 if (obj_priv->page_cpu_valid == NULL) {
3235 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3236 GFP_KERNEL);
3237 if (obj_priv->page_cpu_valid == NULL)
3238 return -ENOMEM;
3239 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3240 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3241
3242 /* Flush the cache on any pages that are still invalid from the CPU's
3243 * perspective.
3244 */
3245 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3246 i++) {
3247 if (obj_priv->page_cpu_valid[i])
3248 continue;
3249
3250 drm_clflush_pages(obj_priv->pages + i, 1);
3251
3252 obj_priv->page_cpu_valid[i] = 1;
3253 }
3254
3255 /* It should now be out of any other write domains, and we can update
3256 * the domain values for our changes.
3257 */
3258 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3259
3260 old_read_domains = obj->read_domains;
3261 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3262
3263 trace_i915_gem_object_change_domain(obj,
3264 old_read_domains,
3265 obj->write_domain);
3266
3267 return 0;
3268 }
3269
3270 /**
3271 * Pin an object to the GTT and evaluate the relocations landing in it.
3272 */
3273 static int
3274 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3275 struct drm_file *file_priv,
3276 struct drm_i915_gem_exec_object2 *entry,
3277 struct drm_i915_gem_relocation_entry *relocs)
3278 {
3279 struct drm_device *dev = obj->dev;
3280 drm_i915_private_t *dev_priv = dev->dev_private;
3281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3282 int i, ret;
3283 void __iomem *reloc_page;
3284 bool need_fence;
3285
3286 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3287 obj_priv->tiling_mode != I915_TILING_NONE;
3288
3289 /* Check fence reg constraints and rebind if necessary */
3290 if (need_fence &&
3291 !i915_gem_object_fence_offset_ok(obj,
3292 obj_priv->tiling_mode)) {
3293 ret = i915_gem_object_unbind(obj);
3294 if (ret)
3295 return ret;
3296 }
3297
3298 /* Choose the GTT offset for our buffer and put it there. */
3299 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3300 if (ret)
3301 return ret;
3302
3303 /*
3304 * Pre-965 chips need a fence register set up in order to
3305 * properly handle blits to/from tiled surfaces.
3306 */
3307 if (need_fence) {
3308 ret = i915_gem_object_get_fence_reg(obj);
3309 if (ret != 0) {
3310 i915_gem_object_unpin(obj);
3311 return ret;
3312 }
3313 }
3314
3315 entry->offset = obj_priv->gtt_offset;
3316
3317 /* Apply the relocations, using the GTT aperture to avoid cache
3318 * flushing requirements.
3319 */
3320 for (i = 0; i < entry->relocation_count; i++) {
3321 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3322 struct drm_gem_object *target_obj;
3323 struct drm_i915_gem_object *target_obj_priv;
3324 uint32_t reloc_val, reloc_offset;
3325 uint32_t __iomem *reloc_entry;
3326
3327 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3328 reloc->target_handle);
3329 if (target_obj == NULL) {
3330 i915_gem_object_unpin(obj);
3331 return -EBADF;
3332 }
3333 target_obj_priv = to_intel_bo(target_obj);
3334
3335 #if WATCH_RELOC
3336 DRM_INFO("%s: obj %p offset %08x target %d "
3337 "read %08x write %08x gtt %08x "
3338 "presumed %08x delta %08x\n",
3339 __func__,
3340 obj,
3341 (int) reloc->offset,
3342 (int) reloc->target_handle,
3343 (int) reloc->read_domains,
3344 (int) reloc->write_domain,
3345 (int) target_obj_priv->gtt_offset,
3346 (int) reloc->presumed_offset,
3347 reloc->delta);
3348 #endif
3349
3350 /* The target buffer should have appeared before us in the
3351 * exec_object list, so it should have a GTT space bound by now.
3352 */
3353 if (target_obj_priv->gtt_space == NULL) {
3354 DRM_ERROR("No GTT space found for object %d\n",
3355 reloc->target_handle);
3356 drm_gem_object_unreference(target_obj);
3357 i915_gem_object_unpin(obj);
3358 return -EINVAL;
3359 }
3360
3361 /* Validate that the target is in a valid r/w GPU domain */
3362 if (reloc->write_domain & (reloc->write_domain - 1)) {
3363 DRM_ERROR("reloc with multiple write domains: "
3364 "obj %p target %d offset %d "
3365 "read %08x write %08x",
3366 obj, reloc->target_handle,
3367 (int) reloc->offset,
3368 reloc->read_domains,
3369 reloc->write_domain);
3370 return -EINVAL;
3371 }
3372 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3373 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3374 DRM_ERROR("reloc with read/write CPU domains: "
3375 "obj %p target %d offset %d "
3376 "read %08x write %08x",
3377 obj, reloc->target_handle,
3378 (int) reloc->offset,
3379 reloc->read_domains,
3380 reloc->write_domain);
3381 drm_gem_object_unreference(target_obj);
3382 i915_gem_object_unpin(obj);
3383 return -EINVAL;
3384 }
3385 if (reloc->write_domain && target_obj->pending_write_domain &&
3386 reloc->write_domain != target_obj->pending_write_domain) {
3387 DRM_ERROR("Write domain conflict: "
3388 "obj %p target %d offset %d "
3389 "new %08x old %08x\n",
3390 obj, reloc->target_handle,
3391 (int) reloc->offset,
3392 reloc->write_domain,
3393 target_obj->pending_write_domain);
3394 drm_gem_object_unreference(target_obj);
3395 i915_gem_object_unpin(obj);
3396 return -EINVAL;
3397 }
3398
3399 target_obj->pending_read_domains |= reloc->read_domains;
3400 target_obj->pending_write_domain |= reloc->write_domain;
3401
3402 /* If the relocation already has the right value in it, no
3403 * more work needs to be done.
3404 */
3405 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3406 drm_gem_object_unreference(target_obj);
3407 continue;
3408 }
3409
3410 /* Check that the relocation address is valid... */
3411 if (reloc->offset > obj->size - 4) {
3412 DRM_ERROR("Relocation beyond object bounds: "
3413 "obj %p target %d offset %d size %d.\n",
3414 obj, reloc->target_handle,
3415 (int) reloc->offset, (int) obj->size);
3416 drm_gem_object_unreference(target_obj);
3417 i915_gem_object_unpin(obj);
3418 return -EINVAL;
3419 }
3420 if (reloc->offset & 3) {
3421 DRM_ERROR("Relocation not 4-byte aligned: "
3422 "obj %p target %d offset %d.\n",
3423 obj, reloc->target_handle,
3424 (int) reloc->offset);
3425 drm_gem_object_unreference(target_obj);
3426 i915_gem_object_unpin(obj);
3427 return -EINVAL;
3428 }
3429
3430 /* and points to somewhere within the target object. */
3431 if (reloc->delta >= target_obj->size) {
3432 DRM_ERROR("Relocation beyond target object bounds: "
3433 "obj %p target %d delta %d size %d.\n",
3434 obj, reloc->target_handle,
3435 (int) reloc->delta, (int) target_obj->size);
3436 drm_gem_object_unreference(target_obj);
3437 i915_gem_object_unpin(obj);
3438 return -EINVAL;
3439 }
3440
3441 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3442 if (ret != 0) {
3443 drm_gem_object_unreference(target_obj);
3444 i915_gem_object_unpin(obj);
3445 return -EINVAL;
3446 }
3447
3448 /* Map the page containing the relocation we're going to
3449 * perform.
3450 */
3451 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3452 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3453 (reloc_offset &
3454 ~(PAGE_SIZE - 1)));
3455 reloc_entry = (uint32_t __iomem *)(reloc_page +
3456 (reloc_offset & (PAGE_SIZE - 1)));
3457 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3458
3459 #if WATCH_BUF
3460 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3461 obj, (unsigned int) reloc->offset,
3462 readl(reloc_entry), reloc_val);
3463 #endif
3464 writel(reloc_val, reloc_entry);
3465 io_mapping_unmap_atomic(reloc_page);
3466
3467 /* The updated presumed offset for this entry will be
3468 * copied back out to the user.
3469 */
3470 reloc->presumed_offset = target_obj_priv->gtt_offset;
3471
3472 drm_gem_object_unreference(target_obj);
3473 }
3474
3475 #if WATCH_BUF
3476 if (0)
3477 i915_gem_dump_object(obj, 128, __func__, ~0);
3478 #endif
3479 return 0;
3480 }
3481
3482 /* Throttle our rendering by waiting until the ring has completed our requests
3483 * emitted over 20 msec ago.
3484 *
3485 * Note that if we were to use the current jiffies each time around the loop,
3486 * we wouldn't escape the function with any frames outstanding if the time to
3487 * render a frame was over 20ms.
3488 *
3489 * This should get us reasonable parallelism between CPU and GPU but also
3490 * relatively low latency when blocking on a particular request to finish.
3491 */
3492 static int
3493 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3494 {
3495 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3496 int ret = 0;
3497 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3498
3499 mutex_lock(&dev->struct_mutex);
3500 while (!list_empty(&i915_file_priv->mm.request_list)) {
3501 struct drm_i915_gem_request *request;
3502
3503 request = list_first_entry(&i915_file_priv->mm.request_list,
3504 struct drm_i915_gem_request,
3505 client_list);
3506
3507 if (time_after_eq(request->emitted_jiffies, recent_enough))
3508 break;
3509
3510 ret = i915_wait_request(dev, request->seqno, request->ring);
3511 if (ret != 0)
3512 break;
3513 }
3514 mutex_unlock(&dev->struct_mutex);
3515
3516 return ret;
3517 }
3518
3519 static int
3520 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3521 uint32_t buffer_count,
3522 struct drm_i915_gem_relocation_entry **relocs)
3523 {
3524 uint32_t reloc_count = 0, reloc_index = 0, i;
3525 int ret;
3526
3527 *relocs = NULL;
3528 for (i = 0; i < buffer_count; i++) {
3529 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3530 return -EINVAL;
3531 reloc_count += exec_list[i].relocation_count;
3532 }
3533
3534 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3535 if (*relocs == NULL) {
3536 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3537 return -ENOMEM;
3538 }
3539
3540 for (i = 0; i < buffer_count; i++) {
3541 struct drm_i915_gem_relocation_entry __user *user_relocs;
3542
3543 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3544
3545 ret = copy_from_user(&(*relocs)[reloc_index],
3546 user_relocs,
3547 exec_list[i].relocation_count *
3548 sizeof(**relocs));
3549 if (ret != 0) {
3550 drm_free_large(*relocs);
3551 *relocs = NULL;
3552 return -EFAULT;
3553 }
3554
3555 reloc_index += exec_list[i].relocation_count;
3556 }
3557
3558 return 0;
3559 }
3560
3561 static int
3562 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3563 uint32_t buffer_count,
3564 struct drm_i915_gem_relocation_entry *relocs)
3565 {
3566 uint32_t reloc_count = 0, i;
3567 int ret = 0;
3568
3569 if (relocs == NULL)
3570 return 0;
3571
3572 for (i = 0; i < buffer_count; i++) {
3573 struct drm_i915_gem_relocation_entry __user *user_relocs;
3574 int unwritten;
3575
3576 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3577
3578 unwritten = copy_to_user(user_relocs,
3579 &relocs[reloc_count],
3580 exec_list[i].relocation_count *
3581 sizeof(*relocs));
3582
3583 if (unwritten) {
3584 ret = -EFAULT;
3585 goto err;
3586 }
3587
3588 reloc_count += exec_list[i].relocation_count;
3589 }
3590
3591 err:
3592 drm_free_large(relocs);
3593
3594 return ret;
3595 }
3596
3597 static int
3598 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3599 uint64_t exec_offset)
3600 {
3601 uint32_t exec_start, exec_len;
3602
3603 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3604 exec_len = (uint32_t) exec->batch_len;
3605
3606 if ((exec_start | exec_len) & 0x7)
3607 return -EINVAL;
3608
3609 if (!exec_start)
3610 return -EINVAL;
3611
3612 return 0;
3613 }
3614
3615 static int
3616 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3617 struct drm_gem_object **object_list,
3618 int count)
3619 {
3620 drm_i915_private_t *dev_priv = dev->dev_private;
3621 struct drm_i915_gem_object *obj_priv;
3622 DEFINE_WAIT(wait);
3623 int i, ret = 0;
3624
3625 for (;;) {
3626 prepare_to_wait(&dev_priv->pending_flip_queue,
3627 &wait, TASK_INTERRUPTIBLE);
3628 for (i = 0; i < count; i++) {
3629 obj_priv = to_intel_bo(object_list[i]);
3630 if (atomic_read(&obj_priv->pending_flip) > 0)
3631 break;
3632 }
3633 if (i == count)
3634 break;
3635
3636 if (!signal_pending(current)) {
3637 mutex_unlock(&dev->struct_mutex);
3638 schedule();
3639 mutex_lock(&dev->struct_mutex);
3640 continue;
3641 }
3642 ret = -ERESTARTSYS;
3643 break;
3644 }
3645 finish_wait(&dev_priv->pending_flip_queue, &wait);
3646
3647 return ret;
3648 }
3649
3650
3651 int
3652 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3653 struct drm_file *file_priv,
3654 struct drm_i915_gem_execbuffer2 *args,
3655 struct drm_i915_gem_exec_object2 *exec_list)
3656 {
3657 drm_i915_private_t *dev_priv = dev->dev_private;
3658 struct drm_gem_object **object_list = NULL;
3659 struct drm_gem_object *batch_obj;
3660 struct drm_i915_gem_object *obj_priv;
3661 struct drm_clip_rect *cliprects = NULL;
3662 struct drm_i915_gem_relocation_entry *relocs = NULL;
3663 int ret = 0, ret2, i, pinned = 0;
3664 uint64_t exec_offset;
3665 uint32_t seqno, flush_domains, reloc_index;
3666 int pin_tries, flips;
3667
3668 struct intel_ring_buffer *ring = NULL;
3669
3670 #if WATCH_EXEC
3671 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3672 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3673 #endif
3674 if (args->flags & I915_EXEC_BSD) {
3675 if (!HAS_BSD(dev)) {
3676 DRM_ERROR("execbuf with wrong flag\n");
3677 return -EINVAL;
3678 }
3679 ring = &dev_priv->bsd_ring;
3680 } else {
3681 ring = &dev_priv->render_ring;
3682 }
3683
3684
3685 if (args->buffer_count < 1) {
3686 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3687 return -EINVAL;
3688 }
3689 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3690 if (object_list == NULL) {
3691 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3692 args->buffer_count);
3693 ret = -ENOMEM;
3694 goto pre_mutex_err;
3695 }
3696
3697 if (args->num_cliprects != 0) {
3698 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3699 GFP_KERNEL);
3700 if (cliprects == NULL) {
3701 ret = -ENOMEM;
3702 goto pre_mutex_err;
3703 }
3704
3705 ret = copy_from_user(cliprects,
3706 (struct drm_clip_rect __user *)
3707 (uintptr_t) args->cliprects_ptr,
3708 sizeof(*cliprects) * args->num_cliprects);
3709 if (ret != 0) {
3710 DRM_ERROR("copy %d cliprects failed: %d\n",
3711 args->num_cliprects, ret);
3712 goto pre_mutex_err;
3713 }
3714 }
3715
3716 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3717 &relocs);
3718 if (ret != 0)
3719 goto pre_mutex_err;
3720
3721 mutex_lock(&dev->struct_mutex);
3722
3723 i915_verify_inactive(dev, __FILE__, __LINE__);
3724
3725 if (atomic_read(&dev_priv->mm.wedged)) {
3726 mutex_unlock(&dev->struct_mutex);
3727 ret = -EIO;
3728 goto pre_mutex_err;
3729 }
3730
3731 if (dev_priv->mm.suspended) {
3732 mutex_unlock(&dev->struct_mutex);
3733 ret = -EBUSY;
3734 goto pre_mutex_err;
3735 }
3736
3737 /* Look up object handles */
3738 flips = 0;
3739 for (i = 0; i < args->buffer_count; i++) {
3740 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3741 exec_list[i].handle);
3742 if (object_list[i] == NULL) {
3743 DRM_ERROR("Invalid object handle %d at index %d\n",
3744 exec_list[i].handle, i);
3745 /* prevent error path from reading uninitialized data */
3746 args->buffer_count = i + 1;
3747 ret = -EBADF;
3748 goto err;
3749 }
3750
3751 obj_priv = to_intel_bo(object_list[i]);
3752 if (obj_priv->in_execbuffer) {
3753 DRM_ERROR("Object %p appears more than once in object list\n",
3754 object_list[i]);
3755 /* prevent error path from reading uninitialized data */
3756 args->buffer_count = i + 1;
3757 ret = -EBADF;
3758 goto err;
3759 }
3760 obj_priv->in_execbuffer = true;
3761 flips += atomic_read(&obj_priv->pending_flip);
3762 }
3763
3764 if (flips > 0) {
3765 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3766 args->buffer_count);
3767 if (ret)
3768 goto err;
3769 }
3770
3771 /* Pin and relocate */
3772 for (pin_tries = 0; ; pin_tries++) {
3773 ret = 0;
3774 reloc_index = 0;
3775
3776 for (i = 0; i < args->buffer_count; i++) {
3777 object_list[i]->pending_read_domains = 0;
3778 object_list[i]->pending_write_domain = 0;
3779 ret = i915_gem_object_pin_and_relocate(object_list[i],
3780 file_priv,
3781 &exec_list[i],
3782 &relocs[reloc_index]);
3783 if (ret)
3784 break;
3785 pinned = i + 1;
3786 reloc_index += exec_list[i].relocation_count;
3787 }
3788 /* success */
3789 if (ret == 0)
3790 break;
3791
3792 /* error other than GTT full, or we've already tried again */
3793 if (ret != -ENOSPC || pin_tries >= 1) {
3794 if (ret != -ERESTARTSYS) {
3795 unsigned long long total_size = 0;
3796 int num_fences = 0;
3797 for (i = 0; i < args->buffer_count; i++) {
3798 obj_priv = to_intel_bo(object_list[i]);
3799
3800 total_size += object_list[i]->size;
3801 num_fences +=
3802 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3803 obj_priv->tiling_mode != I915_TILING_NONE;
3804 }
3805 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3806 pinned+1, args->buffer_count,
3807 total_size, num_fences,
3808 ret);
3809 DRM_ERROR("%d objects [%d pinned], "
3810 "%d object bytes [%d pinned], "
3811 "%d/%d gtt bytes\n",
3812 atomic_read(&dev->object_count),
3813 atomic_read(&dev->pin_count),
3814 atomic_read(&dev->object_memory),
3815 atomic_read(&dev->pin_memory),
3816 atomic_read(&dev->gtt_memory),
3817 dev->gtt_total);
3818 }
3819 goto err;
3820 }
3821
3822 /* unpin all of our buffers */
3823 for (i = 0; i < pinned; i++)
3824 i915_gem_object_unpin(object_list[i]);
3825 pinned = 0;
3826
3827 /* evict everyone we can from the aperture */
3828 ret = i915_gem_evict_everything(dev);
3829 if (ret && ret != -ENOSPC)
3830 goto err;
3831 }
3832
3833 /* Set the pending read domains for the batch buffer to COMMAND */
3834 batch_obj = object_list[args->buffer_count-1];
3835 if (batch_obj->pending_write_domain) {
3836 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3837 ret = -EINVAL;
3838 goto err;
3839 }
3840 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3841
3842 /* Sanity check the batch buffer, prior to moving objects */
3843 exec_offset = exec_list[args->buffer_count - 1].offset;
3844 ret = i915_gem_check_execbuffer (args, exec_offset);
3845 if (ret != 0) {
3846 DRM_ERROR("execbuf with invalid offset/length\n");
3847 goto err;
3848 }
3849
3850 i915_verify_inactive(dev, __FILE__, __LINE__);
3851
3852 /* Zero the global flush/invalidate flags. These
3853 * will be modified as new domains are computed
3854 * for each object
3855 */
3856 dev->invalidate_domains = 0;
3857 dev->flush_domains = 0;
3858
3859 for (i = 0; i < args->buffer_count; i++) {
3860 struct drm_gem_object *obj = object_list[i];
3861
3862 /* Compute new gpu domains and update invalidate/flush */
3863 i915_gem_object_set_to_gpu_domain(obj);
3864 }
3865
3866 i915_verify_inactive(dev, __FILE__, __LINE__);
3867
3868 if (dev->invalidate_domains | dev->flush_domains) {
3869 #if WATCH_EXEC
3870 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3871 __func__,
3872 dev->invalidate_domains,
3873 dev->flush_domains);
3874 #endif
3875 i915_gem_flush(dev,
3876 dev->invalidate_domains,
3877 dev->flush_domains);
3878 if (dev->flush_domains & I915_GEM_GPU_DOMAINS) {
3879 (void)i915_add_request(dev, file_priv,
3880 dev->flush_domains,
3881 &dev_priv->render_ring);
3882
3883 if (HAS_BSD(dev))
3884 (void)i915_add_request(dev, file_priv,
3885 dev->flush_domains,
3886 &dev_priv->bsd_ring);
3887 }
3888 }
3889
3890 for (i = 0; i < args->buffer_count; i++) {
3891 struct drm_gem_object *obj = object_list[i];
3892 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3893 uint32_t old_write_domain = obj->write_domain;
3894
3895 obj->write_domain = obj->pending_write_domain;
3896 if (obj->write_domain)
3897 list_move_tail(&obj_priv->gpu_write_list,
3898 &dev_priv->mm.gpu_write_list);
3899 else
3900 list_del_init(&obj_priv->gpu_write_list);
3901
3902 trace_i915_gem_object_change_domain(obj,
3903 obj->read_domains,
3904 old_write_domain);
3905 }
3906
3907 i915_verify_inactive(dev, __FILE__, __LINE__);
3908
3909 #if WATCH_COHERENCY
3910 for (i = 0; i < args->buffer_count; i++) {
3911 i915_gem_object_check_coherency(object_list[i],
3912 exec_list[i].handle);
3913 }
3914 #endif
3915
3916 #if WATCH_EXEC
3917 i915_gem_dump_object(batch_obj,
3918 args->batch_len,
3919 __func__,
3920 ~0);
3921 #endif
3922
3923 /* Exec the batchbuffer */
3924 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3925 cliprects, exec_offset);
3926 if (ret) {
3927 DRM_ERROR("dispatch failed %d\n", ret);
3928 goto err;
3929 }
3930
3931 /*
3932 * Ensure that the commands in the batch buffer are
3933 * finished before the interrupt fires
3934 */
3935 flush_domains = i915_retire_commands(dev, ring);
3936
3937 i915_verify_inactive(dev, __FILE__, __LINE__);
3938
3939 /*
3940 * Get a seqno representing the execution of the current buffer,
3941 * which we can wait on. We would like to mitigate these interrupts,
3942 * likely by only creating seqnos occasionally (so that we have
3943 * *some* interrupts representing completion of buffers that we can
3944 * wait on when trying to clear up gtt space).
3945 */
3946 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3947 BUG_ON(seqno == 0);
3948 for (i = 0; i < args->buffer_count; i++) {
3949 struct drm_gem_object *obj = object_list[i];
3950 obj_priv = to_intel_bo(obj);
3951
3952 i915_gem_object_move_to_active(obj, seqno, ring);
3953 #if WATCH_LRU
3954 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3955 #endif
3956 }
3957 #if WATCH_LRU
3958 i915_dump_lru(dev, __func__);
3959 #endif
3960
3961 i915_verify_inactive(dev, __FILE__, __LINE__);
3962
3963 err:
3964 for (i = 0; i < pinned; i++)
3965 i915_gem_object_unpin(object_list[i]);
3966
3967 for (i = 0; i < args->buffer_count; i++) {
3968 if (object_list[i]) {
3969 obj_priv = to_intel_bo(object_list[i]);
3970 obj_priv->in_execbuffer = false;
3971 }
3972 drm_gem_object_unreference(object_list[i]);
3973 }
3974
3975 mutex_unlock(&dev->struct_mutex);
3976
3977 pre_mutex_err:
3978 /* Copy the updated relocations out regardless of current error
3979 * state. Failure to update the relocs would mean that the next
3980 * time userland calls execbuf, it would do so with presumed offset
3981 * state that didn't match the actual object state.
3982 */
3983 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3984 relocs);
3985 if (ret2 != 0) {
3986 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3987
3988 if (ret == 0)
3989 ret = ret2;
3990 }
3991
3992 drm_free_large(object_list);
3993 kfree(cliprects);
3994
3995 return ret;
3996 }
3997
3998 /*
3999 * Legacy execbuffer just creates an exec2 list from the original exec object
4000 * list array and passes it to the real function.
4001 */
4002 int
4003 i915_gem_execbuffer(struct drm_device *dev, void *data,
4004 struct drm_file *file_priv)
4005 {
4006 struct drm_i915_gem_execbuffer *args = data;
4007 struct drm_i915_gem_execbuffer2 exec2;
4008 struct drm_i915_gem_exec_object *exec_list = NULL;
4009 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4010 int ret, i;
4011
4012 #if WATCH_EXEC
4013 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4014 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4015 #endif
4016
4017 if (args->buffer_count < 1) {
4018 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4019 return -EINVAL;
4020 }
4021
4022 /* Copy in the exec list from userland */
4023 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4024 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4025 if (exec_list == NULL || exec2_list == NULL) {
4026 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4027 args->buffer_count);
4028 drm_free_large(exec_list);
4029 drm_free_large(exec2_list);
4030 return -ENOMEM;
4031 }
4032 ret = copy_from_user(exec_list,
4033 (struct drm_i915_relocation_entry __user *)
4034 (uintptr_t) args->buffers_ptr,
4035 sizeof(*exec_list) * args->buffer_count);
4036 if (ret != 0) {
4037 DRM_ERROR("copy %d exec entries failed %d\n",
4038 args->buffer_count, ret);
4039 drm_free_large(exec_list);
4040 drm_free_large(exec2_list);
4041 return -EFAULT;
4042 }
4043
4044 for (i = 0; i < args->buffer_count; i++) {
4045 exec2_list[i].handle = exec_list[i].handle;
4046 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4047 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4048 exec2_list[i].alignment = exec_list[i].alignment;
4049 exec2_list[i].offset = exec_list[i].offset;
4050 if (!IS_I965G(dev))
4051 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4052 else
4053 exec2_list[i].flags = 0;
4054 }
4055
4056 exec2.buffers_ptr = args->buffers_ptr;
4057 exec2.buffer_count = args->buffer_count;
4058 exec2.batch_start_offset = args->batch_start_offset;
4059 exec2.batch_len = args->batch_len;
4060 exec2.DR1 = args->DR1;
4061 exec2.DR4 = args->DR4;
4062 exec2.num_cliprects = args->num_cliprects;
4063 exec2.cliprects_ptr = args->cliprects_ptr;
4064 exec2.flags = I915_EXEC_RENDER;
4065
4066 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4067 if (!ret) {
4068 /* Copy the new buffer offsets back to the user's exec list. */
4069 for (i = 0; i < args->buffer_count; i++)
4070 exec_list[i].offset = exec2_list[i].offset;
4071 /* ... and back out to userspace */
4072 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4073 (uintptr_t) args->buffers_ptr,
4074 exec_list,
4075 sizeof(*exec_list) * args->buffer_count);
4076 if (ret) {
4077 ret = -EFAULT;
4078 DRM_ERROR("failed to copy %d exec entries "
4079 "back to user (%d)\n",
4080 args->buffer_count, ret);
4081 }
4082 }
4083
4084 drm_free_large(exec_list);
4085 drm_free_large(exec2_list);
4086 return ret;
4087 }
4088
4089 int
4090 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4091 struct drm_file *file_priv)
4092 {
4093 struct drm_i915_gem_execbuffer2 *args = data;
4094 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4095 int ret;
4096
4097 #if WATCH_EXEC
4098 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4099 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4100 #endif
4101
4102 if (args->buffer_count < 1) {
4103 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4104 return -EINVAL;
4105 }
4106
4107 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4108 if (exec2_list == NULL) {
4109 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4110 args->buffer_count);
4111 return -ENOMEM;
4112 }
4113 ret = copy_from_user(exec2_list,
4114 (struct drm_i915_relocation_entry __user *)
4115 (uintptr_t) args->buffers_ptr,
4116 sizeof(*exec2_list) * args->buffer_count);
4117 if (ret != 0) {
4118 DRM_ERROR("copy %d exec entries failed %d\n",
4119 args->buffer_count, ret);
4120 drm_free_large(exec2_list);
4121 return -EFAULT;
4122 }
4123
4124 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4125 if (!ret) {
4126 /* Copy the new buffer offsets back to the user's exec list. */
4127 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4128 (uintptr_t) args->buffers_ptr,
4129 exec2_list,
4130 sizeof(*exec2_list) * args->buffer_count);
4131 if (ret) {
4132 ret = -EFAULT;
4133 DRM_ERROR("failed to copy %d exec entries "
4134 "back to user (%d)\n",
4135 args->buffer_count, ret);
4136 }
4137 }
4138
4139 drm_free_large(exec2_list);
4140 return ret;
4141 }
4142
4143 int
4144 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4145 {
4146 struct drm_device *dev = obj->dev;
4147 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4148 int ret;
4149
4150 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4151
4152 i915_verify_inactive(dev, __FILE__, __LINE__);
4153
4154 if (obj_priv->gtt_space != NULL) {
4155 if (alignment == 0)
4156 alignment = i915_gem_get_gtt_alignment(obj);
4157 if (obj_priv->gtt_offset & (alignment - 1)) {
4158 ret = i915_gem_object_unbind(obj);
4159 if (ret)
4160 return ret;
4161 }
4162 }
4163
4164 if (obj_priv->gtt_space == NULL) {
4165 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4166 if (ret)
4167 return ret;
4168 }
4169
4170 obj_priv->pin_count++;
4171
4172 /* If the object is not active and not pending a flush,
4173 * remove it from the inactive list
4174 */
4175 if (obj_priv->pin_count == 1) {
4176 atomic_inc(&dev->pin_count);
4177 atomic_add(obj->size, &dev->pin_memory);
4178 if (!obj_priv->active &&
4179 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4180 !list_empty(&obj_priv->list))
4181 list_del_init(&obj_priv->list);
4182 }
4183 i915_verify_inactive(dev, __FILE__, __LINE__);
4184
4185 return 0;
4186 }
4187
4188 void
4189 i915_gem_object_unpin(struct drm_gem_object *obj)
4190 {
4191 struct drm_device *dev = obj->dev;
4192 drm_i915_private_t *dev_priv = dev->dev_private;
4193 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4194
4195 i915_verify_inactive(dev, __FILE__, __LINE__);
4196 obj_priv->pin_count--;
4197 BUG_ON(obj_priv->pin_count < 0);
4198 BUG_ON(obj_priv->gtt_space == NULL);
4199
4200 /* If the object is no longer pinned, and is
4201 * neither active nor being flushed, then stick it on
4202 * the inactive list
4203 */
4204 if (obj_priv->pin_count == 0) {
4205 if (!obj_priv->active &&
4206 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4207 list_move_tail(&obj_priv->list,
4208 &dev_priv->mm.inactive_list);
4209 atomic_dec(&dev->pin_count);
4210 atomic_sub(obj->size, &dev->pin_memory);
4211 }
4212 i915_verify_inactive(dev, __FILE__, __LINE__);
4213 }
4214
4215 int
4216 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4217 struct drm_file *file_priv)
4218 {
4219 struct drm_i915_gem_pin *args = data;
4220 struct drm_gem_object *obj;
4221 struct drm_i915_gem_object *obj_priv;
4222 int ret;
4223
4224 mutex_lock(&dev->struct_mutex);
4225
4226 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4227 if (obj == NULL) {
4228 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4229 args->handle);
4230 mutex_unlock(&dev->struct_mutex);
4231 return -EBADF;
4232 }
4233 obj_priv = to_intel_bo(obj);
4234
4235 if (obj_priv->madv != I915_MADV_WILLNEED) {
4236 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4237 drm_gem_object_unreference(obj);
4238 mutex_unlock(&dev->struct_mutex);
4239 return -EINVAL;
4240 }
4241
4242 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4243 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4244 args->handle);
4245 drm_gem_object_unreference(obj);
4246 mutex_unlock(&dev->struct_mutex);
4247 return -EINVAL;
4248 }
4249
4250 obj_priv->user_pin_count++;
4251 obj_priv->pin_filp = file_priv;
4252 if (obj_priv->user_pin_count == 1) {
4253 ret = i915_gem_object_pin(obj, args->alignment);
4254 if (ret != 0) {
4255 drm_gem_object_unreference(obj);
4256 mutex_unlock(&dev->struct_mutex);
4257 return ret;
4258 }
4259 }
4260
4261 /* XXX - flush the CPU caches for pinned objects
4262 * as the X server doesn't manage domains yet
4263 */
4264 i915_gem_object_flush_cpu_write_domain(obj);
4265 args->offset = obj_priv->gtt_offset;
4266 drm_gem_object_unreference(obj);
4267 mutex_unlock(&dev->struct_mutex);
4268
4269 return 0;
4270 }
4271
4272 int
4273 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4274 struct drm_file *file_priv)
4275 {
4276 struct drm_i915_gem_pin *args = data;
4277 struct drm_gem_object *obj;
4278 struct drm_i915_gem_object *obj_priv;
4279
4280 mutex_lock(&dev->struct_mutex);
4281
4282 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4283 if (obj == NULL) {
4284 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4285 args->handle);
4286 mutex_unlock(&dev->struct_mutex);
4287 return -EBADF;
4288 }
4289
4290 obj_priv = to_intel_bo(obj);
4291 if (obj_priv->pin_filp != file_priv) {
4292 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4293 args->handle);
4294 drm_gem_object_unreference(obj);
4295 mutex_unlock(&dev->struct_mutex);
4296 return -EINVAL;
4297 }
4298 obj_priv->user_pin_count--;
4299 if (obj_priv->user_pin_count == 0) {
4300 obj_priv->pin_filp = NULL;
4301 i915_gem_object_unpin(obj);
4302 }
4303
4304 drm_gem_object_unreference(obj);
4305 mutex_unlock(&dev->struct_mutex);
4306 return 0;
4307 }
4308
4309 int
4310 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4311 struct drm_file *file_priv)
4312 {
4313 struct drm_i915_gem_busy *args = data;
4314 struct drm_gem_object *obj;
4315 struct drm_i915_gem_object *obj_priv;
4316 drm_i915_private_t *dev_priv = dev->dev_private;
4317
4318 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4319 if (obj == NULL) {
4320 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4321 args->handle);
4322 return -EBADF;
4323 }
4324
4325 mutex_lock(&dev->struct_mutex);
4326 /* Update the active list for the hardware's current position.
4327 * Otherwise this only updates on a delayed timer or when irqs are
4328 * actually unmasked, and our working set ends up being larger than
4329 * required.
4330 */
4331 i915_gem_retire_requests(dev, &dev_priv->render_ring);
4332
4333 if (HAS_BSD(dev))
4334 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
4335
4336 obj_priv = to_intel_bo(obj);
4337 /* Don't count being on the flushing list against the object being
4338 * done. Otherwise, a buffer left on the flushing list but not getting
4339 * flushed (because nobody's flushing that domain) won't ever return
4340 * unbusy and get reused by libdrm's bo cache. The other expected
4341 * consumer of this interface, OpenGL's occlusion queries, also specs
4342 * that the objects get unbusy "eventually" without any interference.
4343 */
4344 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4345
4346 drm_gem_object_unreference(obj);
4347 mutex_unlock(&dev->struct_mutex);
4348 return 0;
4349 }
4350
4351 int
4352 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4353 struct drm_file *file_priv)
4354 {
4355 return i915_gem_ring_throttle(dev, file_priv);
4356 }
4357
4358 int
4359 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4360 struct drm_file *file_priv)
4361 {
4362 struct drm_i915_gem_madvise *args = data;
4363 struct drm_gem_object *obj;
4364 struct drm_i915_gem_object *obj_priv;
4365
4366 switch (args->madv) {
4367 case I915_MADV_DONTNEED:
4368 case I915_MADV_WILLNEED:
4369 break;
4370 default:
4371 return -EINVAL;
4372 }
4373
4374 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4375 if (obj == NULL) {
4376 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4377 args->handle);
4378 return -EBADF;
4379 }
4380
4381 mutex_lock(&dev->struct_mutex);
4382 obj_priv = to_intel_bo(obj);
4383
4384 if (obj_priv->pin_count) {
4385 drm_gem_object_unreference(obj);
4386 mutex_unlock(&dev->struct_mutex);
4387
4388 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4389 return -EINVAL;
4390 }
4391
4392 if (obj_priv->madv != __I915_MADV_PURGED)
4393 obj_priv->madv = args->madv;
4394
4395 /* if the object is no longer bound, discard its backing storage */
4396 if (i915_gem_object_is_purgeable(obj_priv) &&
4397 obj_priv->gtt_space == NULL)
4398 i915_gem_object_truncate(obj);
4399
4400 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4401
4402 drm_gem_object_unreference(obj);
4403 mutex_unlock(&dev->struct_mutex);
4404
4405 return 0;
4406 }
4407
4408 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4409 size_t size)
4410 {
4411 struct drm_i915_gem_object *obj;
4412
4413 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4414 if (obj == NULL)
4415 return NULL;
4416
4417 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4418 kfree(obj);
4419 return NULL;
4420 }
4421
4422 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4423 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4424
4425 obj->agp_type = AGP_USER_MEMORY;
4426 obj->base.driver_private = NULL;
4427 obj->fence_reg = I915_FENCE_REG_NONE;
4428 INIT_LIST_HEAD(&obj->list);
4429 INIT_LIST_HEAD(&obj->gpu_write_list);
4430 obj->madv = I915_MADV_WILLNEED;
4431
4432 trace_i915_gem_object_create(&obj->base);
4433
4434 return &obj->base;
4435 }
4436
4437 int i915_gem_init_object(struct drm_gem_object *obj)
4438 {
4439 BUG();
4440
4441 return 0;
4442 }
4443
4444 void i915_gem_free_object(struct drm_gem_object *obj)
4445 {
4446 struct drm_device *dev = obj->dev;
4447 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4448
4449 trace_i915_gem_object_destroy(obj);
4450
4451 while (obj_priv->pin_count > 0)
4452 i915_gem_object_unpin(obj);
4453
4454 if (obj_priv->phys_obj)
4455 i915_gem_detach_phys_object(dev, obj);
4456
4457 i915_gem_object_unbind(obj);
4458
4459 if (obj_priv->mmap_offset)
4460 i915_gem_free_mmap_offset(obj);
4461
4462 drm_gem_object_release(obj);
4463
4464 kfree(obj_priv->page_cpu_valid);
4465 kfree(obj_priv->bit_17);
4466 kfree(obj_priv);
4467 }
4468
4469 /** Unbinds all inactive objects. */
4470 static int
4471 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4472 {
4473 drm_i915_private_t *dev_priv = dev->dev_private;
4474
4475 while (!list_empty(&dev_priv->mm.inactive_list)) {
4476 struct drm_gem_object *obj;
4477 int ret;
4478
4479 obj = &list_first_entry(&dev_priv->mm.inactive_list,
4480 struct drm_i915_gem_object,
4481 list)->base;
4482
4483 ret = i915_gem_object_unbind(obj);
4484 if (ret != 0) {
4485 DRM_ERROR("Error unbinding object: %d\n", ret);
4486 return ret;
4487 }
4488 }
4489
4490 return 0;
4491 }
4492
4493 int
4494 i915_gem_idle(struct drm_device *dev)
4495 {
4496 drm_i915_private_t *dev_priv = dev->dev_private;
4497 int ret;
4498
4499 mutex_lock(&dev->struct_mutex);
4500
4501 if (dev_priv->mm.suspended ||
4502 (dev_priv->render_ring.gem_object == NULL) ||
4503 (HAS_BSD(dev) &&
4504 dev_priv->bsd_ring.gem_object == NULL)) {
4505 mutex_unlock(&dev->struct_mutex);
4506 return 0;
4507 }
4508
4509 ret = i915_gpu_idle(dev);
4510 if (ret) {
4511 mutex_unlock(&dev->struct_mutex);
4512 return ret;
4513 }
4514
4515 /* Under UMS, be paranoid and evict. */
4516 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4517 ret = i915_gem_evict_from_inactive_list(dev);
4518 if (ret) {
4519 mutex_unlock(&dev->struct_mutex);
4520 return ret;
4521 }
4522 }
4523
4524 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4525 * We need to replace this with a semaphore, or something.
4526 * And not confound mm.suspended!
4527 */
4528 dev_priv->mm.suspended = 1;
4529 del_timer(&dev_priv->hangcheck_timer);
4530
4531 i915_kernel_lost_context(dev);
4532 i915_gem_cleanup_ringbuffer(dev);
4533
4534 mutex_unlock(&dev->struct_mutex);
4535
4536 /* Cancel the retire work handler, which should be idle now. */
4537 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4538
4539 return 0;
4540 }
4541
4542 /*
4543 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4544 * over cache flushing.
4545 */
4546 static int
4547 i915_gem_init_pipe_control(struct drm_device *dev)
4548 {
4549 drm_i915_private_t *dev_priv = dev->dev_private;
4550 struct drm_gem_object *obj;
4551 struct drm_i915_gem_object *obj_priv;
4552 int ret;
4553
4554 obj = i915_gem_alloc_object(dev, 4096);
4555 if (obj == NULL) {
4556 DRM_ERROR("Failed to allocate seqno page\n");
4557 ret = -ENOMEM;
4558 goto err;
4559 }
4560 obj_priv = to_intel_bo(obj);
4561 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4562
4563 ret = i915_gem_object_pin(obj, 4096);
4564 if (ret)
4565 goto err_unref;
4566
4567 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4568 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4569 if (dev_priv->seqno_page == NULL)
4570 goto err_unpin;
4571
4572 dev_priv->seqno_obj = obj;
4573 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4574
4575 return 0;
4576
4577 err_unpin:
4578 i915_gem_object_unpin(obj);
4579 err_unref:
4580 drm_gem_object_unreference(obj);
4581 err:
4582 return ret;
4583 }
4584
4585
4586 static void
4587 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4588 {
4589 drm_i915_private_t *dev_priv = dev->dev_private;
4590 struct drm_gem_object *obj;
4591 struct drm_i915_gem_object *obj_priv;
4592
4593 obj = dev_priv->seqno_obj;
4594 obj_priv = to_intel_bo(obj);
4595 kunmap(obj_priv->pages[0]);
4596 i915_gem_object_unpin(obj);
4597 drm_gem_object_unreference(obj);
4598 dev_priv->seqno_obj = NULL;
4599
4600 dev_priv->seqno_page = NULL;
4601 }
4602
4603 int
4604 i915_gem_init_ringbuffer(struct drm_device *dev)
4605 {
4606 drm_i915_private_t *dev_priv = dev->dev_private;
4607 int ret;
4608
4609 dev_priv->render_ring = render_ring;
4610
4611 if (!I915_NEED_GFX_HWS(dev)) {
4612 dev_priv->render_ring.status_page.page_addr
4613 = dev_priv->status_page_dmah->vaddr;
4614 memset(dev_priv->render_ring.status_page.page_addr,
4615 0, PAGE_SIZE);
4616 }
4617
4618 if (HAS_PIPE_CONTROL(dev)) {
4619 ret = i915_gem_init_pipe_control(dev);
4620 if (ret)
4621 return ret;
4622 }
4623
4624 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4625 if (ret)
4626 goto cleanup_pipe_control;
4627
4628 if (HAS_BSD(dev)) {
4629 dev_priv->bsd_ring = bsd_ring;
4630 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4631 if (ret)
4632 goto cleanup_render_ring;
4633 }
4634
4635 return 0;
4636
4637 cleanup_render_ring:
4638 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4639 cleanup_pipe_control:
4640 if (HAS_PIPE_CONTROL(dev))
4641 i915_gem_cleanup_pipe_control(dev);
4642 return ret;
4643 }
4644
4645 void
4646 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4647 {
4648 drm_i915_private_t *dev_priv = dev->dev_private;
4649
4650 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4651 if (HAS_BSD(dev))
4652 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4653 if (HAS_PIPE_CONTROL(dev))
4654 i915_gem_cleanup_pipe_control(dev);
4655 }
4656
4657 int
4658 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4659 struct drm_file *file_priv)
4660 {
4661 drm_i915_private_t *dev_priv = dev->dev_private;
4662 int ret;
4663
4664 if (drm_core_check_feature(dev, DRIVER_MODESET))
4665 return 0;
4666
4667 if (atomic_read(&dev_priv->mm.wedged)) {
4668 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4669 atomic_set(&dev_priv->mm.wedged, 0);
4670 }
4671
4672 mutex_lock(&dev->struct_mutex);
4673 dev_priv->mm.suspended = 0;
4674
4675 ret = i915_gem_init_ringbuffer(dev);
4676 if (ret != 0) {
4677 mutex_unlock(&dev->struct_mutex);
4678 return ret;
4679 }
4680
4681 spin_lock(&dev_priv->mm.active_list_lock);
4682 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4683 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4684 spin_unlock(&dev_priv->mm.active_list_lock);
4685
4686 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4687 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4688 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4689 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4690 mutex_unlock(&dev->struct_mutex);
4691
4692 drm_irq_install(dev);
4693
4694 return 0;
4695 }
4696
4697 int
4698 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4699 struct drm_file *file_priv)
4700 {
4701 if (drm_core_check_feature(dev, DRIVER_MODESET))
4702 return 0;
4703
4704 drm_irq_uninstall(dev);
4705 return i915_gem_idle(dev);
4706 }
4707
4708 void
4709 i915_gem_lastclose(struct drm_device *dev)
4710 {
4711 int ret;
4712
4713 if (drm_core_check_feature(dev, DRIVER_MODESET))
4714 return;
4715
4716 ret = i915_gem_idle(dev);
4717 if (ret)
4718 DRM_ERROR("failed to idle hardware: %d\n", ret);
4719 }
4720
4721 void
4722 i915_gem_load(struct drm_device *dev)
4723 {
4724 int i;
4725 drm_i915_private_t *dev_priv = dev->dev_private;
4726
4727 spin_lock_init(&dev_priv->mm.active_list_lock);
4728 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4729 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4730 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4731 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4732 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4733 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4734 if (HAS_BSD(dev)) {
4735 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4736 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4737 }
4738 for (i = 0; i < 16; i++)
4739 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4740 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4741 i915_gem_retire_work_handler);
4742 spin_lock(&shrink_list_lock);
4743 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4744 spin_unlock(&shrink_list_lock);
4745
4746 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4747 if (IS_GEN3(dev)) {
4748 u32 tmp = I915_READ(MI_ARB_STATE);
4749 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4750 /* arb state is a masked write, so set bit + bit in mask */
4751 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4752 I915_WRITE(MI_ARB_STATE, tmp);
4753 }
4754 }
4755
4756 /* Old X drivers will take 0-2 for front, back, depth buffers */
4757 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4758 dev_priv->fence_reg_start = 3;
4759
4760 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4761 dev_priv->num_fence_regs = 16;
4762 else
4763 dev_priv->num_fence_regs = 8;
4764
4765 /* Initialize fence registers to zero */
4766 if (IS_I965G(dev)) {
4767 for (i = 0; i < 16; i++)
4768 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4769 } else {
4770 for (i = 0; i < 8; i++)
4771 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4772 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4773 for (i = 0; i < 8; i++)
4774 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4775 }
4776 i915_gem_detect_bit_6_swizzle(dev);
4777 init_waitqueue_head(&dev_priv->pending_flip_queue);
4778 }
4779
4780 /*
4781 * Create a physically contiguous memory object for this object
4782 * e.g. for cursor + overlay regs
4783 */
4784 int i915_gem_init_phys_object(struct drm_device *dev,
4785 int id, int size)
4786 {
4787 drm_i915_private_t *dev_priv = dev->dev_private;
4788 struct drm_i915_gem_phys_object *phys_obj;
4789 int ret;
4790
4791 if (dev_priv->mm.phys_objs[id - 1] || !size)
4792 return 0;
4793
4794 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4795 if (!phys_obj)
4796 return -ENOMEM;
4797
4798 phys_obj->id = id;
4799
4800 phys_obj->handle = drm_pci_alloc(dev, size, 0);
4801 if (!phys_obj->handle) {
4802 ret = -ENOMEM;
4803 goto kfree_obj;
4804 }
4805 #ifdef CONFIG_X86
4806 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4807 #endif
4808
4809 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4810
4811 return 0;
4812 kfree_obj:
4813 kfree(phys_obj);
4814 return ret;
4815 }
4816
4817 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4818 {
4819 drm_i915_private_t *dev_priv = dev->dev_private;
4820 struct drm_i915_gem_phys_object *phys_obj;
4821
4822 if (!dev_priv->mm.phys_objs[id - 1])
4823 return;
4824
4825 phys_obj = dev_priv->mm.phys_objs[id - 1];
4826 if (phys_obj->cur_obj) {
4827 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4828 }
4829
4830 #ifdef CONFIG_X86
4831 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4832 #endif
4833 drm_pci_free(dev, phys_obj->handle);
4834 kfree(phys_obj);
4835 dev_priv->mm.phys_objs[id - 1] = NULL;
4836 }
4837
4838 void i915_gem_free_all_phys_object(struct drm_device *dev)
4839 {
4840 int i;
4841
4842 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4843 i915_gem_free_phys_object(dev, i);
4844 }
4845
4846 void i915_gem_detach_phys_object(struct drm_device *dev,
4847 struct drm_gem_object *obj)
4848 {
4849 struct drm_i915_gem_object *obj_priv;
4850 int i;
4851 int ret;
4852 int page_count;
4853
4854 obj_priv = to_intel_bo(obj);
4855 if (!obj_priv->phys_obj)
4856 return;
4857
4858 ret = i915_gem_object_get_pages(obj, 0);
4859 if (ret)
4860 goto out;
4861
4862 page_count = obj->size / PAGE_SIZE;
4863
4864 for (i = 0; i < page_count; i++) {
4865 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4866 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4867
4868 memcpy(dst, src, PAGE_SIZE);
4869 kunmap_atomic(dst, KM_USER0);
4870 }
4871 drm_clflush_pages(obj_priv->pages, page_count);
4872 drm_agp_chipset_flush(dev);
4873
4874 i915_gem_object_put_pages(obj);
4875 out:
4876 obj_priv->phys_obj->cur_obj = NULL;
4877 obj_priv->phys_obj = NULL;
4878 }
4879
4880 int
4881 i915_gem_attach_phys_object(struct drm_device *dev,
4882 struct drm_gem_object *obj, int id)
4883 {
4884 drm_i915_private_t *dev_priv = dev->dev_private;
4885 struct drm_i915_gem_object *obj_priv;
4886 int ret = 0;
4887 int page_count;
4888 int i;
4889
4890 if (id > I915_MAX_PHYS_OBJECT)
4891 return -EINVAL;
4892
4893 obj_priv = to_intel_bo(obj);
4894
4895 if (obj_priv->phys_obj) {
4896 if (obj_priv->phys_obj->id == id)
4897 return 0;
4898 i915_gem_detach_phys_object(dev, obj);
4899 }
4900
4901
4902 /* create a new object */
4903 if (!dev_priv->mm.phys_objs[id - 1]) {
4904 ret = i915_gem_init_phys_object(dev, id,
4905 obj->size);
4906 if (ret) {
4907 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4908 goto out;
4909 }
4910 }
4911
4912 /* bind to the object */
4913 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4914 obj_priv->phys_obj->cur_obj = obj;
4915
4916 ret = i915_gem_object_get_pages(obj, 0);
4917 if (ret) {
4918 DRM_ERROR("failed to get page list\n");
4919 goto out;
4920 }
4921
4922 page_count = obj->size / PAGE_SIZE;
4923
4924 for (i = 0; i < page_count; i++) {
4925 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4926 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4927
4928 memcpy(dst, src, PAGE_SIZE);
4929 kunmap_atomic(src, KM_USER0);
4930 }
4931
4932 i915_gem_object_put_pages(obj);
4933
4934 return 0;
4935 out:
4936 return ret;
4937 }
4938
4939 static int
4940 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4941 struct drm_i915_gem_pwrite *args,
4942 struct drm_file *file_priv)
4943 {
4944 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4945 void *obj_addr;
4946 int ret;
4947 char __user *user_data;
4948
4949 user_data = (char __user *) (uintptr_t) args->data_ptr;
4950 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4951
4952 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4953 ret = copy_from_user(obj_addr, user_data, args->size);
4954 if (ret)
4955 return -EFAULT;
4956
4957 drm_agp_chipset_flush(dev);
4958 return 0;
4959 }
4960
4961 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4962 {
4963 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4964
4965 /* Clean up our request list when the client is going away, so that
4966 * later retire_requests won't dereference our soon-to-be-gone
4967 * file_priv.
4968 */
4969 mutex_lock(&dev->struct_mutex);
4970 while (!list_empty(&i915_file_priv->mm.request_list))
4971 list_del_init(i915_file_priv->mm.request_list.next);
4972 mutex_unlock(&dev->struct_mutex);
4973 }
4974
4975 static int
4976 i915_gpu_is_active(struct drm_device *dev)
4977 {
4978 drm_i915_private_t *dev_priv = dev->dev_private;
4979 int lists_empty;
4980
4981 spin_lock(&dev_priv->mm.active_list_lock);
4982 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4983 list_empty(&dev_priv->render_ring.active_list);
4984 if (HAS_BSD(dev))
4985 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4986 spin_unlock(&dev_priv->mm.active_list_lock);
4987
4988 return !lists_empty;
4989 }
4990
4991 static int
4992 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4993 {
4994 drm_i915_private_t *dev_priv, *next_dev;
4995 struct drm_i915_gem_object *obj_priv, *next_obj;
4996 int cnt = 0;
4997 int would_deadlock = 1;
4998
4999 /* "fast-path" to count number of available objects */
5000 if (nr_to_scan == 0) {
5001 spin_lock(&shrink_list_lock);
5002 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5003 struct drm_device *dev = dev_priv->dev;
5004
5005 if (mutex_trylock(&dev->struct_mutex)) {
5006 list_for_each_entry(obj_priv,
5007 &dev_priv->mm.inactive_list,
5008 list)
5009 cnt++;
5010 mutex_unlock(&dev->struct_mutex);
5011 }
5012 }
5013 spin_unlock(&shrink_list_lock);
5014
5015 return (cnt / 100) * sysctl_vfs_cache_pressure;
5016 }
5017
5018 spin_lock(&shrink_list_lock);
5019
5020 rescan:
5021 /* first scan for clean buffers */
5022 list_for_each_entry_safe(dev_priv, next_dev,
5023 &shrink_list, mm.shrink_list) {
5024 struct drm_device *dev = dev_priv->dev;
5025
5026 if (! mutex_trylock(&dev->struct_mutex))
5027 continue;
5028
5029 spin_unlock(&shrink_list_lock);
5030 i915_gem_retire_requests(dev, &dev_priv->render_ring);
5031
5032 if (HAS_BSD(dev))
5033 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
5034
5035 list_for_each_entry_safe(obj_priv, next_obj,
5036 &dev_priv->mm.inactive_list,
5037 list) {
5038 if (i915_gem_object_is_purgeable(obj_priv)) {
5039 i915_gem_object_unbind(&obj_priv->base);
5040 if (--nr_to_scan <= 0)
5041 break;
5042 }
5043 }
5044
5045 spin_lock(&shrink_list_lock);
5046 mutex_unlock(&dev->struct_mutex);
5047
5048 would_deadlock = 0;
5049
5050 if (nr_to_scan <= 0)
5051 break;
5052 }
5053
5054 /* second pass, evict/count anything still on the inactive list */
5055 list_for_each_entry_safe(dev_priv, next_dev,
5056 &shrink_list, mm.shrink_list) {
5057 struct drm_device *dev = dev_priv->dev;
5058
5059 if (! mutex_trylock(&dev->struct_mutex))
5060 continue;
5061
5062 spin_unlock(&shrink_list_lock);
5063
5064 list_for_each_entry_safe(obj_priv, next_obj,
5065 &dev_priv->mm.inactive_list,
5066 list) {
5067 if (nr_to_scan > 0) {
5068 i915_gem_object_unbind(&obj_priv->base);
5069 nr_to_scan--;
5070 } else
5071 cnt++;
5072 }
5073
5074 spin_lock(&shrink_list_lock);
5075 mutex_unlock(&dev->struct_mutex);
5076
5077 would_deadlock = 0;
5078 }
5079
5080 if (nr_to_scan) {
5081 int active = 0;
5082
5083 /*
5084 * We are desperate for pages, so as a last resort, wait
5085 * for the GPU to finish and discard whatever we can.
5086 * This has a dramatic impact to reduce the number of
5087 * OOM-killer events whilst running the GPU aggressively.
5088 */
5089 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5090 struct drm_device *dev = dev_priv->dev;
5091
5092 if (!mutex_trylock(&dev->struct_mutex))
5093 continue;
5094
5095 spin_unlock(&shrink_list_lock);
5096
5097 if (i915_gpu_is_active(dev)) {
5098 i915_gpu_idle(dev);
5099 active++;
5100 }
5101
5102 spin_lock(&shrink_list_lock);
5103 mutex_unlock(&dev->struct_mutex);
5104 }
5105
5106 if (active)
5107 goto rescan;
5108 }
5109
5110 spin_unlock(&shrink_list_lock);
5111
5112 if (would_deadlock)
5113 return -1;
5114 else if (cnt > 0)
5115 return (cnt / 100) * sysctl_vfs_cache_pressure;
5116 else
5117 return 0;
5118 }
5119
5120 static struct shrinker shrinker = {
5121 .shrink = i915_gem_shrink,
5122 .seeks = DEFAULT_SEEKS,
5123 };
5124
5125 __init void
5126 i915_gem_shrinker_init(void)
5127 {
5128 register_shrinker(&shrinker);
5129 }
5130
5131 __exit void
5132 i915_gem_shrinker_exit(void)
5133 {
5134 unregister_shrinker(&shrinker);
5135 }
This page took 0.145742 seconds and 6 git commands to generate.