Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 page_cache_release(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825 out:
826 return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839 {
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868 {
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899 {
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990 next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996 out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 needs_clflush_after = true;
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014 else
1015 obj->cache_dirty = true;
1016
1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 return ret;
1019 }
1020
1021 /**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 struct drm_file *file)
1029 {
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_pwrite *args = data;
1032 struct drm_i915_gem_object *obj;
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
1039 to_user_ptr(args->data_ptr),
1040 args->size))
1041 return -EFAULT;
1042
1043 if (likely(!i915.prefault_disable)) {
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
1049
1050 intel_runtime_pm_get(dev_priv);
1051
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto put_rpm;
1055
1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 if (&obj->base == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1060 }
1061
1062 /* Bounds check destination. */
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
1065 ret = -EINVAL;
1066 goto out;
1067 }
1068
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079 ret = -EFAULT;
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
1093 }
1094
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
1101
1102 out:
1103 drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
1109 return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 bool interruptible)
1115 {
1116 if (i915_reset_in_progress(error)) {
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
1124 return -EIO;
1125
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
1133 }
1134
1135 return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140 wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 struct intel_engine_cs *ring)
1145 {
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static int __i915_spin_request(struct drm_i915_gem_request *req)
1150 {
1151 unsigned long timeout;
1152
1153 if (i915_gem_request_get_ring(req)->irq_refcount)
1154 return -EBUSY;
1155
1156 timeout = jiffies + 1;
1157 while (!need_resched()) {
1158 if (i915_gem_request_completed(req, true))
1159 return 0;
1160
1161 if (time_after_eq(jiffies, timeout))
1162 break;
1163
1164 cpu_relax_lowlatency();
1165 }
1166 if (i915_gem_request_completed(req, false))
1167 return 0;
1168
1169 return -EAGAIN;
1170 }
1171
1172 /**
1173 * __i915_wait_request - wait until execution of request has finished
1174 * @req: duh!
1175 * @reset_counter: reset sequence associated with the given request
1176 * @interruptible: do an interruptible wait (normally yes)
1177 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178 *
1179 * Note: It is of utmost importance that the passed in seqno and reset_counter
1180 * values have been read by the caller in an smp safe manner. Where read-side
1181 * locks are involved, it is sufficient to read the reset_counter before
1182 * unlocking the lock that protects the seqno. For lockless tricks, the
1183 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184 * inserted.
1185 *
1186 * Returns 0 if the request was found within the alloted time. Else returns the
1187 * errno with remaining time filled in timeout argument.
1188 */
1189 int __i915_wait_request(struct drm_i915_gem_request *req,
1190 unsigned reset_counter,
1191 bool interruptible,
1192 s64 *timeout,
1193 struct intel_rps_client *rps)
1194 {
1195 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1196 struct drm_device *dev = ring->dev;
1197 struct drm_i915_private *dev_priv = dev->dev_private;
1198 const bool irq_test_in_progress =
1199 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1200 DEFINE_WAIT(wait);
1201 unsigned long timeout_expire;
1202 s64 before, now;
1203 int ret;
1204
1205 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1206
1207 if (list_empty(&req->list))
1208 return 0;
1209
1210 if (i915_gem_request_completed(req, true))
1211 return 0;
1212
1213 timeout_expire = 0;
1214 if (timeout) {
1215 if (WARN_ON(*timeout < 0))
1216 return -EINVAL;
1217
1218 if (*timeout == 0)
1219 return -ETIME;
1220
1221 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1222 }
1223
1224 if (INTEL_INFO(dev_priv)->gen >= 6)
1225 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1226
1227 /* Record current time in case interrupted by signal, or wedged */
1228 trace_i915_gem_request_wait_begin(req);
1229 before = ktime_get_raw_ns();
1230
1231 /* Optimistic spin for the next jiffie before touching IRQs */
1232 ret = __i915_spin_request(req);
1233 if (ret == 0)
1234 goto out;
1235
1236 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1237 ret = -ENODEV;
1238 goto out;
1239 }
1240
1241 for (;;) {
1242 struct timer_list timer;
1243
1244 prepare_to_wait(&ring->irq_queue, &wait,
1245 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1246
1247 /* We need to check whether any gpu reset happened in between
1248 * the caller grabbing the seqno and now ... */
1249 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1250 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1251 * is truely gone. */
1252 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1253 if (ret == 0)
1254 ret = -EAGAIN;
1255 break;
1256 }
1257
1258 if (i915_gem_request_completed(req, false)) {
1259 ret = 0;
1260 break;
1261 }
1262
1263 if (interruptible && signal_pending(current)) {
1264 ret = -ERESTARTSYS;
1265 break;
1266 }
1267
1268 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1269 ret = -ETIME;
1270 break;
1271 }
1272
1273 timer.function = NULL;
1274 if (timeout || missed_irq(dev_priv, ring)) {
1275 unsigned long expire;
1276
1277 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1278 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1279 mod_timer(&timer, expire);
1280 }
1281
1282 io_schedule();
1283
1284 if (timer.function) {
1285 del_singleshot_timer_sync(&timer);
1286 destroy_timer_on_stack(&timer);
1287 }
1288 }
1289 if (!irq_test_in_progress)
1290 ring->irq_put(ring);
1291
1292 finish_wait(&ring->irq_queue, &wait);
1293
1294 out:
1295 now = ktime_get_raw_ns();
1296 trace_i915_gem_request_wait_end(req);
1297
1298 if (timeout) {
1299 s64 tres = *timeout - (now - before);
1300
1301 *timeout = tres < 0 ? 0 : tres;
1302
1303 /*
1304 * Apparently ktime isn't accurate enough and occasionally has a
1305 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1306 * things up to make the test happy. We allow up to 1 jiffy.
1307 *
1308 * This is a regrssion from the timespec->ktime conversion.
1309 */
1310 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1311 *timeout = 0;
1312 }
1313
1314 return ret;
1315 }
1316
1317 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1318 struct drm_file *file)
1319 {
1320 struct drm_i915_private *dev_private;
1321 struct drm_i915_file_private *file_priv;
1322
1323 WARN_ON(!req || !file || req->file_priv);
1324
1325 if (!req || !file)
1326 return -EINVAL;
1327
1328 if (req->file_priv)
1329 return -EINVAL;
1330
1331 dev_private = req->ring->dev->dev_private;
1332 file_priv = file->driver_priv;
1333
1334 spin_lock(&file_priv->mm.lock);
1335 req->file_priv = file_priv;
1336 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1337 spin_unlock(&file_priv->mm.lock);
1338
1339 req->pid = get_pid(task_pid(current));
1340
1341 return 0;
1342 }
1343
1344 static inline void
1345 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1346 {
1347 struct drm_i915_file_private *file_priv = request->file_priv;
1348
1349 if (!file_priv)
1350 return;
1351
1352 spin_lock(&file_priv->mm.lock);
1353 list_del(&request->client_list);
1354 request->file_priv = NULL;
1355 spin_unlock(&file_priv->mm.lock);
1356
1357 put_pid(request->pid);
1358 request->pid = NULL;
1359 }
1360
1361 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1362 {
1363 trace_i915_gem_request_retire(request);
1364
1365 /* We know the GPU must have read the request to have
1366 * sent us the seqno + interrupt, so use the position
1367 * of tail of the request to update the last known position
1368 * of the GPU head.
1369 *
1370 * Note this requires that we are always called in request
1371 * completion order.
1372 */
1373 request->ringbuf->last_retired_head = request->postfix;
1374
1375 list_del_init(&request->list);
1376 i915_gem_request_remove_from_client(request);
1377
1378 i915_gem_request_unreference(request);
1379 }
1380
1381 static void
1382 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1383 {
1384 struct intel_engine_cs *engine = req->ring;
1385 struct drm_i915_gem_request *tmp;
1386
1387 lockdep_assert_held(&engine->dev->struct_mutex);
1388
1389 if (list_empty(&req->list))
1390 return;
1391
1392 do {
1393 tmp = list_first_entry(&engine->request_list,
1394 typeof(*tmp), list);
1395
1396 i915_gem_request_retire(tmp);
1397 } while (tmp != req);
1398
1399 WARN_ON(i915_verify_lists(engine->dev));
1400 }
1401
1402 /**
1403 * Waits for a request to be signaled, and cleans up the
1404 * request and object lists appropriately for that event.
1405 */
1406 int
1407 i915_wait_request(struct drm_i915_gem_request *req)
1408 {
1409 struct drm_device *dev;
1410 struct drm_i915_private *dev_priv;
1411 bool interruptible;
1412 int ret;
1413
1414 BUG_ON(req == NULL);
1415
1416 dev = req->ring->dev;
1417 dev_priv = dev->dev_private;
1418 interruptible = dev_priv->mm.interruptible;
1419
1420 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1421
1422 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1423 if (ret)
1424 return ret;
1425
1426 ret = __i915_wait_request(req,
1427 atomic_read(&dev_priv->gpu_error.reset_counter),
1428 interruptible, NULL, NULL);
1429 if (ret)
1430 return ret;
1431
1432 __i915_gem_request_retire__upto(req);
1433 return 0;
1434 }
1435
1436 /**
1437 * Ensures that all rendering to the object has completed and the object is
1438 * safe to unbind from the GTT or access from the CPU.
1439 */
1440 int
1441 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1442 bool readonly)
1443 {
1444 int ret, i;
1445
1446 if (!obj->active)
1447 return 0;
1448
1449 if (readonly) {
1450 if (obj->last_write_req != NULL) {
1451 ret = i915_wait_request(obj->last_write_req);
1452 if (ret)
1453 return ret;
1454
1455 i = obj->last_write_req->ring->id;
1456 if (obj->last_read_req[i] == obj->last_write_req)
1457 i915_gem_object_retire__read(obj, i);
1458 else
1459 i915_gem_object_retire__write(obj);
1460 }
1461 } else {
1462 for (i = 0; i < I915_NUM_RINGS; i++) {
1463 if (obj->last_read_req[i] == NULL)
1464 continue;
1465
1466 ret = i915_wait_request(obj->last_read_req[i]);
1467 if (ret)
1468 return ret;
1469
1470 i915_gem_object_retire__read(obj, i);
1471 }
1472 RQ_BUG_ON(obj->active);
1473 }
1474
1475 return 0;
1476 }
1477
1478 static void
1479 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1480 struct drm_i915_gem_request *req)
1481 {
1482 int ring = req->ring->id;
1483
1484 if (obj->last_read_req[ring] == req)
1485 i915_gem_object_retire__read(obj, ring);
1486 else if (obj->last_write_req == req)
1487 i915_gem_object_retire__write(obj);
1488
1489 __i915_gem_request_retire__upto(req);
1490 }
1491
1492 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1493 * as the object state may change during this call.
1494 */
1495 static __must_check int
1496 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1497 struct intel_rps_client *rps,
1498 bool readonly)
1499 {
1500 struct drm_device *dev = obj->base.dev;
1501 struct drm_i915_private *dev_priv = dev->dev_private;
1502 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1503 unsigned reset_counter;
1504 int ret, i, n = 0;
1505
1506 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1507 BUG_ON(!dev_priv->mm.interruptible);
1508
1509 if (!obj->active)
1510 return 0;
1511
1512 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1513 if (ret)
1514 return ret;
1515
1516 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1517
1518 if (readonly) {
1519 struct drm_i915_gem_request *req;
1520
1521 req = obj->last_write_req;
1522 if (req == NULL)
1523 return 0;
1524
1525 requests[n++] = i915_gem_request_reference(req);
1526 } else {
1527 for (i = 0; i < I915_NUM_RINGS; i++) {
1528 struct drm_i915_gem_request *req;
1529
1530 req = obj->last_read_req[i];
1531 if (req == NULL)
1532 continue;
1533
1534 requests[n++] = i915_gem_request_reference(req);
1535 }
1536 }
1537
1538 mutex_unlock(&dev->struct_mutex);
1539 for (i = 0; ret == 0 && i < n; i++)
1540 ret = __i915_wait_request(requests[i], reset_counter, true,
1541 NULL, rps);
1542 mutex_lock(&dev->struct_mutex);
1543
1544 for (i = 0; i < n; i++) {
1545 if (ret == 0)
1546 i915_gem_object_retire_request(obj, requests[i]);
1547 i915_gem_request_unreference(requests[i]);
1548 }
1549
1550 return ret;
1551 }
1552
1553 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1554 {
1555 struct drm_i915_file_private *fpriv = file->driver_priv;
1556 return &fpriv->rps;
1557 }
1558
1559 /**
1560 * Called when user space prepares to use an object with the CPU, either
1561 * through the mmap ioctl's mapping or a GTT mapping.
1562 */
1563 int
1564 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1565 struct drm_file *file)
1566 {
1567 struct drm_i915_gem_set_domain *args = data;
1568 struct drm_i915_gem_object *obj;
1569 uint32_t read_domains = args->read_domains;
1570 uint32_t write_domain = args->write_domain;
1571 int ret;
1572
1573 /* Only handle setting domains to types used by the CPU. */
1574 if (write_domain & I915_GEM_GPU_DOMAINS)
1575 return -EINVAL;
1576
1577 if (read_domains & I915_GEM_GPU_DOMAINS)
1578 return -EINVAL;
1579
1580 /* Having something in the write domain implies it's in the read
1581 * domain, and only that read domain. Enforce that in the request.
1582 */
1583 if (write_domain != 0 && read_domains != write_domain)
1584 return -EINVAL;
1585
1586 ret = i915_mutex_lock_interruptible(dev);
1587 if (ret)
1588 return ret;
1589
1590 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1591 if (&obj->base == NULL) {
1592 ret = -ENOENT;
1593 goto unlock;
1594 }
1595
1596 /* Try to flush the object off the GPU without holding the lock.
1597 * We will repeat the flush holding the lock in the normal manner
1598 * to catch cases where we are gazumped.
1599 */
1600 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1601 to_rps_client(file),
1602 !write_domain);
1603 if (ret)
1604 goto unref;
1605
1606 if (read_domains & I915_GEM_DOMAIN_GTT)
1607 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1608 else
1609 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1610
1611 if (write_domain != 0)
1612 intel_fb_obj_invalidate(obj,
1613 write_domain == I915_GEM_DOMAIN_GTT ?
1614 ORIGIN_GTT : ORIGIN_CPU);
1615
1616 unref:
1617 drm_gem_object_unreference(&obj->base);
1618 unlock:
1619 mutex_unlock(&dev->struct_mutex);
1620 return ret;
1621 }
1622
1623 /**
1624 * Called when user space has done writes to this buffer
1625 */
1626 int
1627 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1628 struct drm_file *file)
1629 {
1630 struct drm_i915_gem_sw_finish *args = data;
1631 struct drm_i915_gem_object *obj;
1632 int ret = 0;
1633
1634 ret = i915_mutex_lock_interruptible(dev);
1635 if (ret)
1636 return ret;
1637
1638 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1639 if (&obj->base == NULL) {
1640 ret = -ENOENT;
1641 goto unlock;
1642 }
1643
1644 /* Pinned buffers may be scanout, so flush the cache */
1645 if (obj->pin_display)
1646 i915_gem_object_flush_cpu_write_domain(obj);
1647
1648 drm_gem_object_unreference(&obj->base);
1649 unlock:
1650 mutex_unlock(&dev->struct_mutex);
1651 return ret;
1652 }
1653
1654 /**
1655 * Maps the contents of an object, returning the address it is mapped
1656 * into.
1657 *
1658 * While the mapping holds a reference on the contents of the object, it doesn't
1659 * imply a ref on the object itself.
1660 *
1661 * IMPORTANT:
1662 *
1663 * DRM driver writers who look a this function as an example for how to do GEM
1664 * mmap support, please don't implement mmap support like here. The modern way
1665 * to implement DRM mmap support is with an mmap offset ioctl (like
1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667 * That way debug tooling like valgrind will understand what's going on, hiding
1668 * the mmap call in a driver private ioctl will break that. The i915 driver only
1669 * does cpu mmaps this way because we didn't know better.
1670 */
1671 int
1672 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673 struct drm_file *file)
1674 {
1675 struct drm_i915_gem_mmap *args = data;
1676 struct drm_gem_object *obj;
1677 unsigned long addr;
1678
1679 if (args->flags & ~(I915_MMAP_WC))
1680 return -EINVAL;
1681
1682 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1683 return -ENODEV;
1684
1685 obj = drm_gem_object_lookup(dev, file, args->handle);
1686 if (obj == NULL)
1687 return -ENOENT;
1688
1689 /* prime objects have no backing filp to GEM mmap
1690 * pages from.
1691 */
1692 if (!obj->filp) {
1693 drm_gem_object_unreference_unlocked(obj);
1694 return -EINVAL;
1695 }
1696
1697 addr = vm_mmap(obj->filp, 0, args->size,
1698 PROT_READ | PROT_WRITE, MAP_SHARED,
1699 args->offset);
1700 if (args->flags & I915_MMAP_WC) {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma;
1703
1704 down_write(&mm->mmap_sem);
1705 vma = find_vma(mm, addr);
1706 if (vma)
1707 vma->vm_page_prot =
1708 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1709 else
1710 addr = -ENOMEM;
1711 up_write(&mm->mmap_sem);
1712 }
1713 drm_gem_object_unreference_unlocked(obj);
1714 if (IS_ERR((void *)addr))
1715 return addr;
1716
1717 args->addr_ptr = (uint64_t) addr;
1718
1719 return 0;
1720 }
1721
1722 /**
1723 * i915_gem_fault - fault a page into the GTT
1724 * @vma: VMA in question
1725 * @vmf: fault info
1726 *
1727 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1728 * from userspace. The fault handler takes care of binding the object to
1729 * the GTT (if needed), allocating and programming a fence register (again,
1730 * only if needed based on whether the old reg is still valid or the object
1731 * is tiled) and inserting a new PTE into the faulting process.
1732 *
1733 * Note that the faulting process may involve evicting existing objects
1734 * from the GTT and/or fence registers to make room. So performance may
1735 * suffer if the GTT working set is large or there are few fence registers
1736 * left.
1737 */
1738 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739 {
1740 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1741 struct drm_device *dev = obj->base.dev;
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 struct i915_ggtt_view view = i915_ggtt_view_normal;
1744 pgoff_t page_offset;
1745 unsigned long pfn;
1746 int ret = 0;
1747 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1748
1749 intel_runtime_pm_get(dev_priv);
1750
1751 /* We don't use vmf->pgoff since that has the fake offset */
1752 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1753 PAGE_SHIFT;
1754
1755 ret = i915_mutex_lock_interruptible(dev);
1756 if (ret)
1757 goto out;
1758
1759 trace_i915_gem_object_fault(obj, page_offset, true, write);
1760
1761 /* Try to flush the object off the GPU first without holding the lock.
1762 * Upon reacquiring the lock, we will perform our sanity checks and then
1763 * repeat the flush holding the lock in the normal manner to catch cases
1764 * where we are gazumped.
1765 */
1766 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1767 if (ret)
1768 goto unlock;
1769
1770 /* Access to snoopable pages through the GTT is incoherent. */
1771 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1772 ret = -EFAULT;
1773 goto unlock;
1774 }
1775
1776 /* Use a partial view if the object is bigger than the aperture. */
1777 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1778 obj->tiling_mode == I915_TILING_NONE) {
1779 static const unsigned int chunk_size = 256; // 1 MiB
1780
1781 memset(&view, 0, sizeof(view));
1782 view.type = I915_GGTT_VIEW_PARTIAL;
1783 view.params.partial.offset = rounddown(page_offset, chunk_size);
1784 view.params.partial.size =
1785 min_t(unsigned int,
1786 chunk_size,
1787 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1788 view.params.partial.offset);
1789 }
1790
1791 /* Now pin it into the GTT if needed */
1792 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1793 if (ret)
1794 goto unlock;
1795
1796 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1797 if (ret)
1798 goto unpin;
1799
1800 ret = i915_gem_object_get_fence(obj);
1801 if (ret)
1802 goto unpin;
1803
1804 /* Finally, remap it using the new GTT offset */
1805 pfn = dev_priv->gtt.mappable_base +
1806 i915_gem_obj_ggtt_offset_view(obj, &view);
1807 pfn >>= PAGE_SHIFT;
1808
1809 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1810 /* Overriding existing pages in partial view does not cause
1811 * us any trouble as TLBs are still valid because the fault
1812 * is due to userspace losing part of the mapping or never
1813 * having accessed it before (at this partials' range).
1814 */
1815 unsigned long base = vma->vm_start +
1816 (view.params.partial.offset << PAGE_SHIFT);
1817 unsigned int i;
1818
1819 for (i = 0; i < view.params.partial.size; i++) {
1820 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1821 if (ret)
1822 break;
1823 }
1824
1825 obj->fault_mappable = true;
1826 } else {
1827 if (!obj->fault_mappable) {
1828 unsigned long size = min_t(unsigned long,
1829 vma->vm_end - vma->vm_start,
1830 obj->base.size);
1831 int i;
1832
1833 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1834 ret = vm_insert_pfn(vma,
1835 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1836 pfn + i);
1837 if (ret)
1838 break;
1839 }
1840
1841 obj->fault_mappable = true;
1842 } else
1843 ret = vm_insert_pfn(vma,
1844 (unsigned long)vmf->virtual_address,
1845 pfn + page_offset);
1846 }
1847 unpin:
1848 i915_gem_object_ggtt_unpin_view(obj, &view);
1849 unlock:
1850 mutex_unlock(&dev->struct_mutex);
1851 out:
1852 switch (ret) {
1853 case -EIO:
1854 /*
1855 * We eat errors when the gpu is terminally wedged to avoid
1856 * userspace unduly crashing (gl has no provisions for mmaps to
1857 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1858 * and so needs to be reported.
1859 */
1860 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1861 ret = VM_FAULT_SIGBUS;
1862 break;
1863 }
1864 case -EAGAIN:
1865 /*
1866 * EAGAIN means the gpu is hung and we'll wait for the error
1867 * handler to reset everything when re-faulting in
1868 * i915_mutex_lock_interruptible.
1869 */
1870 case 0:
1871 case -ERESTARTSYS:
1872 case -EINTR:
1873 case -EBUSY:
1874 /*
1875 * EBUSY is ok: this just means that another thread
1876 * already did the job.
1877 */
1878 ret = VM_FAULT_NOPAGE;
1879 break;
1880 case -ENOMEM:
1881 ret = VM_FAULT_OOM;
1882 break;
1883 case -ENOSPC:
1884 case -EFAULT:
1885 ret = VM_FAULT_SIGBUS;
1886 break;
1887 default:
1888 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1889 ret = VM_FAULT_SIGBUS;
1890 break;
1891 }
1892
1893 intel_runtime_pm_put(dev_priv);
1894 return ret;
1895 }
1896
1897 /**
1898 * i915_gem_release_mmap - remove physical page mappings
1899 * @obj: obj in question
1900 *
1901 * Preserve the reservation of the mmapping with the DRM core code, but
1902 * relinquish ownership of the pages back to the system.
1903 *
1904 * It is vital that we remove the page mapping if we have mapped a tiled
1905 * object through the GTT and then lose the fence register due to
1906 * resource pressure. Similarly if the object has been moved out of the
1907 * aperture, than pages mapped into userspace must be revoked. Removing the
1908 * mapping will then trigger a page fault on the next user access, allowing
1909 * fixup by i915_gem_fault().
1910 */
1911 void
1912 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1913 {
1914 if (!obj->fault_mappable)
1915 return;
1916
1917 drm_vma_node_unmap(&obj->base.vma_node,
1918 obj->base.dev->anon_inode->i_mapping);
1919 obj->fault_mappable = false;
1920 }
1921
1922 void
1923 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1924 {
1925 struct drm_i915_gem_object *obj;
1926
1927 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1928 i915_gem_release_mmap(obj);
1929 }
1930
1931 uint32_t
1932 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1933 {
1934 uint32_t gtt_size;
1935
1936 if (INTEL_INFO(dev)->gen >= 4 ||
1937 tiling_mode == I915_TILING_NONE)
1938 return size;
1939
1940 /* Previous chips need a power-of-two fence region when tiling */
1941 if (INTEL_INFO(dev)->gen == 3)
1942 gtt_size = 1024*1024;
1943 else
1944 gtt_size = 512*1024;
1945
1946 while (gtt_size < size)
1947 gtt_size <<= 1;
1948
1949 return gtt_size;
1950 }
1951
1952 /**
1953 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1954 * @obj: object to check
1955 *
1956 * Return the required GTT alignment for an object, taking into account
1957 * potential fence register mapping.
1958 */
1959 uint32_t
1960 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1961 int tiling_mode, bool fenced)
1962 {
1963 /*
1964 * Minimum alignment is 4k (GTT page size), but might be greater
1965 * if a fence register is needed for the object.
1966 */
1967 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1968 tiling_mode == I915_TILING_NONE)
1969 return 4096;
1970
1971 /*
1972 * Previous chips need to be aligned to the size of the smallest
1973 * fence register that can contain the object.
1974 */
1975 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1976 }
1977
1978 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1979 {
1980 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1981 int ret;
1982
1983 if (drm_vma_node_has_offset(&obj->base.vma_node))
1984 return 0;
1985
1986 dev_priv->mm.shrinker_no_lock_stealing = true;
1987
1988 ret = drm_gem_create_mmap_offset(&obj->base);
1989 if (ret != -ENOSPC)
1990 goto out;
1991
1992 /* Badly fragmented mmap space? The only way we can recover
1993 * space is by destroying unwanted objects. We can't randomly release
1994 * mmap_offsets as userspace expects them to be persistent for the
1995 * lifetime of the objects. The closest we can is to release the
1996 * offsets on purgeable objects by truncating it and marking it purged,
1997 * which prevents userspace from ever using that object again.
1998 */
1999 i915_gem_shrink(dev_priv,
2000 obj->base.size >> PAGE_SHIFT,
2001 I915_SHRINK_BOUND |
2002 I915_SHRINK_UNBOUND |
2003 I915_SHRINK_PURGEABLE);
2004 ret = drm_gem_create_mmap_offset(&obj->base);
2005 if (ret != -ENOSPC)
2006 goto out;
2007
2008 i915_gem_shrink_all(dev_priv);
2009 ret = drm_gem_create_mmap_offset(&obj->base);
2010 out:
2011 dev_priv->mm.shrinker_no_lock_stealing = false;
2012
2013 return ret;
2014 }
2015
2016 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2017 {
2018 drm_gem_free_mmap_offset(&obj->base);
2019 }
2020
2021 int
2022 i915_gem_mmap_gtt(struct drm_file *file,
2023 struct drm_device *dev,
2024 uint32_t handle,
2025 uint64_t *offset)
2026 {
2027 struct drm_i915_gem_object *obj;
2028 int ret;
2029
2030 ret = i915_mutex_lock_interruptible(dev);
2031 if (ret)
2032 return ret;
2033
2034 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2035 if (&obj->base == NULL) {
2036 ret = -ENOENT;
2037 goto unlock;
2038 }
2039
2040 if (obj->madv != I915_MADV_WILLNEED) {
2041 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2042 ret = -EFAULT;
2043 goto out;
2044 }
2045
2046 ret = i915_gem_object_create_mmap_offset(obj);
2047 if (ret)
2048 goto out;
2049
2050 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2051
2052 out:
2053 drm_gem_object_unreference(&obj->base);
2054 unlock:
2055 mutex_unlock(&dev->struct_mutex);
2056 return ret;
2057 }
2058
2059 /**
2060 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2061 * @dev: DRM device
2062 * @data: GTT mapping ioctl data
2063 * @file: GEM object info
2064 *
2065 * Simply returns the fake offset to userspace so it can mmap it.
2066 * The mmap call will end up in drm_gem_mmap(), which will set things
2067 * up so we can get faults in the handler above.
2068 *
2069 * The fault handler will take care of binding the object into the GTT
2070 * (since it may have been evicted to make room for something), allocating
2071 * a fence register, and mapping the appropriate aperture address into
2072 * userspace.
2073 */
2074 int
2075 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2076 struct drm_file *file)
2077 {
2078 struct drm_i915_gem_mmap_gtt *args = data;
2079
2080 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2081 }
2082
2083 /* Immediately discard the backing storage */
2084 static void
2085 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2086 {
2087 i915_gem_object_free_mmap_offset(obj);
2088
2089 if (obj->base.filp == NULL)
2090 return;
2091
2092 /* Our goal here is to return as much of the memory as
2093 * is possible back to the system as we are called from OOM.
2094 * To do this we must instruct the shmfs to drop all of its
2095 * backing pages, *now*.
2096 */
2097 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2098 obj->madv = __I915_MADV_PURGED;
2099 }
2100
2101 /* Try to discard unwanted pages */
2102 static void
2103 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2104 {
2105 struct address_space *mapping;
2106
2107 switch (obj->madv) {
2108 case I915_MADV_DONTNEED:
2109 i915_gem_object_truncate(obj);
2110 case __I915_MADV_PURGED:
2111 return;
2112 }
2113
2114 if (obj->base.filp == NULL)
2115 return;
2116
2117 mapping = file_inode(obj->base.filp)->i_mapping,
2118 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2119 }
2120
2121 static void
2122 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2123 {
2124 struct sg_page_iter sg_iter;
2125 int ret;
2126
2127 BUG_ON(obj->madv == __I915_MADV_PURGED);
2128
2129 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2130 if (ret) {
2131 /* In the event of a disaster, abandon all caches and
2132 * hope for the best.
2133 */
2134 WARN_ON(ret != -EIO);
2135 i915_gem_clflush_object(obj, true);
2136 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2137 }
2138
2139 i915_gem_gtt_finish_object(obj);
2140
2141 if (i915_gem_object_needs_bit17_swizzle(obj))
2142 i915_gem_object_save_bit_17_swizzle(obj);
2143
2144 if (obj->madv == I915_MADV_DONTNEED)
2145 obj->dirty = 0;
2146
2147 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2148 struct page *page = sg_page_iter_page(&sg_iter);
2149
2150 if (obj->dirty)
2151 set_page_dirty(page);
2152
2153 if (obj->madv == I915_MADV_WILLNEED)
2154 mark_page_accessed(page);
2155
2156 page_cache_release(page);
2157 }
2158 obj->dirty = 0;
2159
2160 sg_free_table(obj->pages);
2161 kfree(obj->pages);
2162 }
2163
2164 int
2165 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2166 {
2167 const struct drm_i915_gem_object_ops *ops = obj->ops;
2168
2169 if (obj->pages == NULL)
2170 return 0;
2171
2172 if (obj->pages_pin_count)
2173 return -EBUSY;
2174
2175 BUG_ON(i915_gem_obj_bound_any(obj));
2176
2177 /* ->put_pages might need to allocate memory for the bit17 swizzle
2178 * array, hence protect them from being reaped by removing them from gtt
2179 * lists early. */
2180 list_del(&obj->global_list);
2181
2182 ops->put_pages(obj);
2183 obj->pages = NULL;
2184
2185 i915_gem_object_invalidate(obj);
2186
2187 return 0;
2188 }
2189
2190 static int
2191 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2192 {
2193 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2194 int page_count, i;
2195 struct address_space *mapping;
2196 struct sg_table *st;
2197 struct scatterlist *sg;
2198 struct sg_page_iter sg_iter;
2199 struct page *page;
2200 unsigned long last_pfn = 0; /* suppress gcc warning */
2201 int ret;
2202 gfp_t gfp;
2203
2204 /* Assert that the object is not currently in any GPU domain. As it
2205 * wasn't in the GTT, there shouldn't be any way it could have been in
2206 * a GPU cache
2207 */
2208 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2209 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2210
2211 st = kmalloc(sizeof(*st), GFP_KERNEL);
2212 if (st == NULL)
2213 return -ENOMEM;
2214
2215 page_count = obj->base.size / PAGE_SIZE;
2216 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2217 kfree(st);
2218 return -ENOMEM;
2219 }
2220
2221 /* Get the list of pages out of our struct file. They'll be pinned
2222 * at this point until we release them.
2223 *
2224 * Fail silently without starting the shrinker
2225 */
2226 mapping = file_inode(obj->base.filp)->i_mapping;
2227 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2228 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2229 sg = st->sgl;
2230 st->nents = 0;
2231 for (i = 0; i < page_count; i++) {
2232 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2233 if (IS_ERR(page)) {
2234 i915_gem_shrink(dev_priv,
2235 page_count,
2236 I915_SHRINK_BOUND |
2237 I915_SHRINK_UNBOUND |
2238 I915_SHRINK_PURGEABLE);
2239 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2240 }
2241 if (IS_ERR(page)) {
2242 /* We've tried hard to allocate the memory by reaping
2243 * our own buffer, now let the real VM do its job and
2244 * go down in flames if truly OOM.
2245 */
2246 i915_gem_shrink_all(dev_priv);
2247 page = shmem_read_mapping_page(mapping, i);
2248 if (IS_ERR(page)) {
2249 ret = PTR_ERR(page);
2250 goto err_pages;
2251 }
2252 }
2253 #ifdef CONFIG_SWIOTLB
2254 if (swiotlb_nr_tbl()) {
2255 st->nents++;
2256 sg_set_page(sg, page, PAGE_SIZE, 0);
2257 sg = sg_next(sg);
2258 continue;
2259 }
2260 #endif
2261 if (!i || page_to_pfn(page) != last_pfn + 1) {
2262 if (i)
2263 sg = sg_next(sg);
2264 st->nents++;
2265 sg_set_page(sg, page, PAGE_SIZE, 0);
2266 } else {
2267 sg->length += PAGE_SIZE;
2268 }
2269 last_pfn = page_to_pfn(page);
2270
2271 /* Check that the i965g/gm workaround works. */
2272 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2273 }
2274 #ifdef CONFIG_SWIOTLB
2275 if (!swiotlb_nr_tbl())
2276 #endif
2277 sg_mark_end(sg);
2278 obj->pages = st;
2279
2280 ret = i915_gem_gtt_prepare_object(obj);
2281 if (ret)
2282 goto err_pages;
2283
2284 if (i915_gem_object_needs_bit17_swizzle(obj))
2285 i915_gem_object_do_bit_17_swizzle(obj);
2286
2287 if (obj->tiling_mode != I915_TILING_NONE &&
2288 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2289 i915_gem_object_pin_pages(obj);
2290
2291 return 0;
2292
2293 err_pages:
2294 sg_mark_end(sg);
2295 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2296 page_cache_release(sg_page_iter_page(&sg_iter));
2297 sg_free_table(st);
2298 kfree(st);
2299
2300 /* shmemfs first checks if there is enough memory to allocate the page
2301 * and reports ENOSPC should there be insufficient, along with the usual
2302 * ENOMEM for a genuine allocation failure.
2303 *
2304 * We use ENOSPC in our driver to mean that we have run out of aperture
2305 * space and so want to translate the error from shmemfs back to our
2306 * usual understanding of ENOMEM.
2307 */
2308 if (ret == -ENOSPC)
2309 ret = -ENOMEM;
2310
2311 return ret;
2312 }
2313
2314 /* Ensure that the associated pages are gathered from the backing storage
2315 * and pinned into our object. i915_gem_object_get_pages() may be called
2316 * multiple times before they are released by a single call to
2317 * i915_gem_object_put_pages() - once the pages are no longer referenced
2318 * either as a result of memory pressure (reaping pages under the shrinker)
2319 * or as the object is itself released.
2320 */
2321 int
2322 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2323 {
2324 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2325 const struct drm_i915_gem_object_ops *ops = obj->ops;
2326 int ret;
2327
2328 if (obj->pages)
2329 return 0;
2330
2331 if (obj->madv != I915_MADV_WILLNEED) {
2332 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2333 return -EFAULT;
2334 }
2335
2336 BUG_ON(obj->pages_pin_count);
2337
2338 ret = ops->get_pages(obj);
2339 if (ret)
2340 return ret;
2341
2342 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2343
2344 obj->get_page.sg = obj->pages->sgl;
2345 obj->get_page.last = 0;
2346
2347 return 0;
2348 }
2349
2350 void i915_vma_move_to_active(struct i915_vma *vma,
2351 struct drm_i915_gem_request *req)
2352 {
2353 struct drm_i915_gem_object *obj = vma->obj;
2354 struct intel_engine_cs *ring;
2355
2356 ring = i915_gem_request_get_ring(req);
2357
2358 /* Add a reference if we're newly entering the active list. */
2359 if (obj->active == 0)
2360 drm_gem_object_reference(&obj->base);
2361 obj->active |= intel_ring_flag(ring);
2362
2363 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2364 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2365
2366 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2367 }
2368
2369 static void
2370 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2371 {
2372 RQ_BUG_ON(obj->last_write_req == NULL);
2373 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2374
2375 i915_gem_request_assign(&obj->last_write_req, NULL);
2376 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2377 }
2378
2379 static void
2380 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2381 {
2382 struct i915_vma *vma;
2383
2384 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2385 RQ_BUG_ON(!(obj->active & (1 << ring)));
2386
2387 list_del_init(&obj->ring_list[ring]);
2388 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2389
2390 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2391 i915_gem_object_retire__write(obj);
2392
2393 obj->active &= ~(1 << ring);
2394 if (obj->active)
2395 return;
2396
2397 /* Bump our place on the bound list to keep it roughly in LRU order
2398 * so that we don't steal from recently used but inactive objects
2399 * (unless we are forced to ofc!)
2400 */
2401 list_move_tail(&obj->global_list,
2402 &to_i915(obj->base.dev)->mm.bound_list);
2403
2404 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2405 if (!list_empty(&vma->mm_list))
2406 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2407 }
2408
2409 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2410 drm_gem_object_unreference(&obj->base);
2411 }
2412
2413 static int
2414 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2415 {
2416 struct drm_i915_private *dev_priv = dev->dev_private;
2417 struct intel_engine_cs *ring;
2418 int ret, i, j;
2419
2420 /* Carefully retire all requests without writing to the rings */
2421 for_each_ring(ring, dev_priv, i) {
2422 ret = intel_ring_idle(ring);
2423 if (ret)
2424 return ret;
2425 }
2426 i915_gem_retire_requests(dev);
2427
2428 /* Finally reset hw state */
2429 for_each_ring(ring, dev_priv, i) {
2430 intel_ring_init_seqno(ring, seqno);
2431
2432 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2433 ring->semaphore.sync_seqno[j] = 0;
2434 }
2435
2436 return 0;
2437 }
2438
2439 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2440 {
2441 struct drm_i915_private *dev_priv = dev->dev_private;
2442 int ret;
2443
2444 if (seqno == 0)
2445 return -EINVAL;
2446
2447 /* HWS page needs to be set less than what we
2448 * will inject to ring
2449 */
2450 ret = i915_gem_init_seqno(dev, seqno - 1);
2451 if (ret)
2452 return ret;
2453
2454 /* Carefully set the last_seqno value so that wrap
2455 * detection still works
2456 */
2457 dev_priv->next_seqno = seqno;
2458 dev_priv->last_seqno = seqno - 1;
2459 if (dev_priv->last_seqno == 0)
2460 dev_priv->last_seqno--;
2461
2462 return 0;
2463 }
2464
2465 int
2466 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2467 {
2468 struct drm_i915_private *dev_priv = dev->dev_private;
2469
2470 /* reserve 0 for non-seqno */
2471 if (dev_priv->next_seqno == 0) {
2472 int ret = i915_gem_init_seqno(dev, 0);
2473 if (ret)
2474 return ret;
2475
2476 dev_priv->next_seqno = 1;
2477 }
2478
2479 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2480 return 0;
2481 }
2482
2483 /*
2484 * NB: This function is not allowed to fail. Doing so would mean the the
2485 * request is not being tracked for completion but the work itself is
2486 * going to happen on the hardware. This would be a Bad Thing(tm).
2487 */
2488 void __i915_add_request(struct drm_i915_gem_request *request,
2489 struct drm_i915_gem_object *obj,
2490 bool flush_caches)
2491 {
2492 struct intel_engine_cs *ring;
2493 struct drm_i915_private *dev_priv;
2494 struct intel_ringbuffer *ringbuf;
2495 u32 request_start;
2496 int ret;
2497
2498 if (WARN_ON(request == NULL))
2499 return;
2500
2501 ring = request->ring;
2502 dev_priv = ring->dev->dev_private;
2503 ringbuf = request->ringbuf;
2504
2505 /*
2506 * To ensure that this call will not fail, space for its emissions
2507 * should already have been reserved in the ring buffer. Let the ring
2508 * know that it is time to use that space up.
2509 */
2510 intel_ring_reserved_space_use(ringbuf);
2511
2512 request_start = intel_ring_get_tail(ringbuf);
2513 /*
2514 * Emit any outstanding flushes - execbuf can fail to emit the flush
2515 * after having emitted the batchbuffer command. Hence we need to fix
2516 * things up similar to emitting the lazy request. The difference here
2517 * is that the flush _must_ happen before the next request, no matter
2518 * what.
2519 */
2520 if (flush_caches) {
2521 if (i915.enable_execlists)
2522 ret = logical_ring_flush_all_caches(request);
2523 else
2524 ret = intel_ring_flush_all_caches(request);
2525 /* Not allowed to fail! */
2526 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2527 }
2528
2529 /* Record the position of the start of the request so that
2530 * should we detect the updated seqno part-way through the
2531 * GPU processing the request, we never over-estimate the
2532 * position of the head.
2533 */
2534 request->postfix = intel_ring_get_tail(ringbuf);
2535
2536 if (i915.enable_execlists)
2537 ret = ring->emit_request(request);
2538 else {
2539 ret = ring->add_request(request);
2540
2541 request->tail = intel_ring_get_tail(ringbuf);
2542 }
2543 /* Not allowed to fail! */
2544 WARN(ret, "emit|add_request failed: %d!\n", ret);
2545
2546 request->head = request_start;
2547
2548 /* Whilst this request exists, batch_obj will be on the
2549 * active_list, and so will hold the active reference. Only when this
2550 * request is retired will the the batch_obj be moved onto the
2551 * inactive_list and lose its active reference. Hence we do not need
2552 * to explicitly hold another reference here.
2553 */
2554 request->batch_obj = obj;
2555
2556 request->emitted_jiffies = jiffies;
2557 ring->last_submitted_seqno = request->seqno;
2558 list_add_tail(&request->list, &ring->request_list);
2559
2560 trace_i915_gem_request_add(request);
2561
2562 i915_queue_hangcheck(ring->dev);
2563
2564 queue_delayed_work(dev_priv->wq,
2565 &dev_priv->mm.retire_work,
2566 round_jiffies_up_relative(HZ));
2567 intel_mark_busy(dev_priv->dev);
2568
2569 /* Sanity check that the reserved size was large enough. */
2570 intel_ring_reserved_space_end(ringbuf);
2571 }
2572
2573 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2574 const struct intel_context *ctx)
2575 {
2576 unsigned long elapsed;
2577
2578 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2579
2580 if (ctx->hang_stats.banned)
2581 return true;
2582
2583 if (ctx->hang_stats.ban_period_seconds &&
2584 elapsed <= ctx->hang_stats.ban_period_seconds) {
2585 if (!i915_gem_context_is_default(ctx)) {
2586 DRM_DEBUG("context hanging too fast, banning!\n");
2587 return true;
2588 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2589 if (i915_stop_ring_allow_warn(dev_priv))
2590 DRM_ERROR("gpu hanging too fast, banning!\n");
2591 return true;
2592 }
2593 }
2594
2595 return false;
2596 }
2597
2598 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2599 struct intel_context *ctx,
2600 const bool guilty)
2601 {
2602 struct i915_ctx_hang_stats *hs;
2603
2604 if (WARN_ON(!ctx))
2605 return;
2606
2607 hs = &ctx->hang_stats;
2608
2609 if (guilty) {
2610 hs->banned = i915_context_is_banned(dev_priv, ctx);
2611 hs->batch_active++;
2612 hs->guilty_ts = get_seconds();
2613 } else {
2614 hs->batch_pending++;
2615 }
2616 }
2617
2618 void i915_gem_request_free(struct kref *req_ref)
2619 {
2620 struct drm_i915_gem_request *req = container_of(req_ref,
2621 typeof(*req), ref);
2622 struct intel_context *ctx = req->ctx;
2623
2624 if (req->file_priv)
2625 i915_gem_request_remove_from_client(req);
2626
2627 if (ctx) {
2628 if (i915.enable_execlists) {
2629 if (ctx != req->ring->default_context)
2630 intel_lr_context_unpin(req);
2631 }
2632
2633 i915_gem_context_unreference(ctx);
2634 }
2635
2636 kmem_cache_free(req->i915->requests, req);
2637 }
2638
2639 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2640 struct intel_context *ctx,
2641 struct drm_i915_gem_request **req_out)
2642 {
2643 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2644 struct drm_i915_gem_request *req;
2645 int ret;
2646
2647 if (!req_out)
2648 return -EINVAL;
2649
2650 *req_out = NULL;
2651
2652 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2653 if (req == NULL)
2654 return -ENOMEM;
2655
2656 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2657 if (ret)
2658 goto err;
2659
2660 kref_init(&req->ref);
2661 req->i915 = dev_priv;
2662 req->ring = ring;
2663 req->ctx = ctx;
2664 i915_gem_context_reference(req->ctx);
2665
2666 if (i915.enable_execlists)
2667 ret = intel_logical_ring_alloc_request_extras(req);
2668 else
2669 ret = intel_ring_alloc_request_extras(req);
2670 if (ret) {
2671 i915_gem_context_unreference(req->ctx);
2672 goto err;
2673 }
2674
2675 /*
2676 * Reserve space in the ring buffer for all the commands required to
2677 * eventually emit this request. This is to guarantee that the
2678 * i915_add_request() call can't fail. Note that the reserve may need
2679 * to be redone if the request is not actually submitted straight
2680 * away, e.g. because a GPU scheduler has deferred it.
2681 */
2682 if (i915.enable_execlists)
2683 ret = intel_logical_ring_reserve_space(req);
2684 else
2685 ret = intel_ring_reserve_space(req);
2686 if (ret) {
2687 /*
2688 * At this point, the request is fully allocated even if not
2689 * fully prepared. Thus it can be cleaned up using the proper
2690 * free code.
2691 */
2692 i915_gem_request_cancel(req);
2693 return ret;
2694 }
2695
2696 *req_out = req;
2697 return 0;
2698
2699 err:
2700 kmem_cache_free(dev_priv->requests, req);
2701 return ret;
2702 }
2703
2704 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2705 {
2706 intel_ring_reserved_space_cancel(req->ringbuf);
2707
2708 i915_gem_request_unreference(req);
2709 }
2710
2711 struct drm_i915_gem_request *
2712 i915_gem_find_active_request(struct intel_engine_cs *ring)
2713 {
2714 struct drm_i915_gem_request *request;
2715
2716 list_for_each_entry(request, &ring->request_list, list) {
2717 if (i915_gem_request_completed(request, false))
2718 continue;
2719
2720 return request;
2721 }
2722
2723 return NULL;
2724 }
2725
2726 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2727 struct intel_engine_cs *ring)
2728 {
2729 struct drm_i915_gem_request *request;
2730 bool ring_hung;
2731
2732 request = i915_gem_find_active_request(ring);
2733
2734 if (request == NULL)
2735 return;
2736
2737 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2738
2739 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2740
2741 list_for_each_entry_continue(request, &ring->request_list, list)
2742 i915_set_reset_status(dev_priv, request->ctx, false);
2743 }
2744
2745 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2746 struct intel_engine_cs *ring)
2747 {
2748 while (!list_empty(&ring->active_list)) {
2749 struct drm_i915_gem_object *obj;
2750
2751 obj = list_first_entry(&ring->active_list,
2752 struct drm_i915_gem_object,
2753 ring_list[ring->id]);
2754
2755 i915_gem_object_retire__read(obj, ring->id);
2756 }
2757
2758 /*
2759 * Clear the execlists queue up before freeing the requests, as those
2760 * are the ones that keep the context and ringbuffer backing objects
2761 * pinned in place.
2762 */
2763 while (!list_empty(&ring->execlist_queue)) {
2764 struct drm_i915_gem_request *submit_req;
2765
2766 submit_req = list_first_entry(&ring->execlist_queue,
2767 struct drm_i915_gem_request,
2768 execlist_link);
2769 list_del(&submit_req->execlist_link);
2770
2771 if (submit_req->ctx != ring->default_context)
2772 intel_lr_context_unpin(submit_req);
2773
2774 i915_gem_request_unreference(submit_req);
2775 }
2776
2777 /*
2778 * We must free the requests after all the corresponding objects have
2779 * been moved off active lists. Which is the same order as the normal
2780 * retire_requests function does. This is important if object hold
2781 * implicit references on things like e.g. ppgtt address spaces through
2782 * the request.
2783 */
2784 while (!list_empty(&ring->request_list)) {
2785 struct drm_i915_gem_request *request;
2786
2787 request = list_first_entry(&ring->request_list,
2788 struct drm_i915_gem_request,
2789 list);
2790
2791 i915_gem_request_retire(request);
2792 }
2793 }
2794
2795 void i915_gem_reset(struct drm_device *dev)
2796 {
2797 struct drm_i915_private *dev_priv = dev->dev_private;
2798 struct intel_engine_cs *ring;
2799 int i;
2800
2801 /*
2802 * Before we free the objects from the requests, we need to inspect
2803 * them for finding the guilty party. As the requests only borrow
2804 * their reference to the objects, the inspection must be done first.
2805 */
2806 for_each_ring(ring, dev_priv, i)
2807 i915_gem_reset_ring_status(dev_priv, ring);
2808
2809 for_each_ring(ring, dev_priv, i)
2810 i915_gem_reset_ring_cleanup(dev_priv, ring);
2811
2812 i915_gem_context_reset(dev);
2813
2814 i915_gem_restore_fences(dev);
2815
2816 WARN_ON(i915_verify_lists(dev));
2817 }
2818
2819 /**
2820 * This function clears the request list as sequence numbers are passed.
2821 */
2822 void
2823 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2824 {
2825 WARN_ON(i915_verify_lists(ring->dev));
2826
2827 /* Retire requests first as we use it above for the early return.
2828 * If we retire requests last, we may use a later seqno and so clear
2829 * the requests lists without clearing the active list, leading to
2830 * confusion.
2831 */
2832 while (!list_empty(&ring->request_list)) {
2833 struct drm_i915_gem_request *request;
2834
2835 request = list_first_entry(&ring->request_list,
2836 struct drm_i915_gem_request,
2837 list);
2838
2839 if (!i915_gem_request_completed(request, true))
2840 break;
2841
2842 i915_gem_request_retire(request);
2843 }
2844
2845 /* Move any buffers on the active list that are no longer referenced
2846 * by the ringbuffer to the flushing/inactive lists as appropriate,
2847 * before we free the context associated with the requests.
2848 */
2849 while (!list_empty(&ring->active_list)) {
2850 struct drm_i915_gem_object *obj;
2851
2852 obj = list_first_entry(&ring->active_list,
2853 struct drm_i915_gem_object,
2854 ring_list[ring->id]);
2855
2856 if (!list_empty(&obj->last_read_req[ring->id]->list))
2857 break;
2858
2859 i915_gem_object_retire__read(obj, ring->id);
2860 }
2861
2862 if (unlikely(ring->trace_irq_req &&
2863 i915_gem_request_completed(ring->trace_irq_req, true))) {
2864 ring->irq_put(ring);
2865 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2866 }
2867
2868 WARN_ON(i915_verify_lists(ring->dev));
2869 }
2870
2871 bool
2872 i915_gem_retire_requests(struct drm_device *dev)
2873 {
2874 struct drm_i915_private *dev_priv = dev->dev_private;
2875 struct intel_engine_cs *ring;
2876 bool idle = true;
2877 int i;
2878
2879 for_each_ring(ring, dev_priv, i) {
2880 i915_gem_retire_requests_ring(ring);
2881 idle &= list_empty(&ring->request_list);
2882 if (i915.enable_execlists) {
2883 unsigned long flags;
2884
2885 spin_lock_irqsave(&ring->execlist_lock, flags);
2886 idle &= list_empty(&ring->execlist_queue);
2887 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2888
2889 intel_execlists_retire_requests(ring);
2890 }
2891 }
2892
2893 if (idle)
2894 mod_delayed_work(dev_priv->wq,
2895 &dev_priv->mm.idle_work,
2896 msecs_to_jiffies(100));
2897
2898 return idle;
2899 }
2900
2901 static void
2902 i915_gem_retire_work_handler(struct work_struct *work)
2903 {
2904 struct drm_i915_private *dev_priv =
2905 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2906 struct drm_device *dev = dev_priv->dev;
2907 bool idle;
2908
2909 /* Come back later if the device is busy... */
2910 idle = false;
2911 if (mutex_trylock(&dev->struct_mutex)) {
2912 idle = i915_gem_retire_requests(dev);
2913 mutex_unlock(&dev->struct_mutex);
2914 }
2915 if (!idle)
2916 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2917 round_jiffies_up_relative(HZ));
2918 }
2919
2920 static void
2921 i915_gem_idle_work_handler(struct work_struct *work)
2922 {
2923 struct drm_i915_private *dev_priv =
2924 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2925 struct drm_device *dev = dev_priv->dev;
2926 struct intel_engine_cs *ring;
2927 int i;
2928
2929 for_each_ring(ring, dev_priv, i)
2930 if (!list_empty(&ring->request_list))
2931 return;
2932
2933 intel_mark_idle(dev);
2934
2935 if (mutex_trylock(&dev->struct_mutex)) {
2936 struct intel_engine_cs *ring;
2937 int i;
2938
2939 for_each_ring(ring, dev_priv, i)
2940 i915_gem_batch_pool_fini(&ring->batch_pool);
2941
2942 mutex_unlock(&dev->struct_mutex);
2943 }
2944 }
2945
2946 /**
2947 * Ensures that an object will eventually get non-busy by flushing any required
2948 * write domains, emitting any outstanding lazy request and retiring and
2949 * completed requests.
2950 */
2951 static int
2952 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2953 {
2954 int i;
2955
2956 if (!obj->active)
2957 return 0;
2958
2959 for (i = 0; i < I915_NUM_RINGS; i++) {
2960 struct drm_i915_gem_request *req;
2961
2962 req = obj->last_read_req[i];
2963 if (req == NULL)
2964 continue;
2965
2966 if (list_empty(&req->list))
2967 goto retire;
2968
2969 if (i915_gem_request_completed(req, true)) {
2970 __i915_gem_request_retire__upto(req);
2971 retire:
2972 i915_gem_object_retire__read(obj, i);
2973 }
2974 }
2975
2976 return 0;
2977 }
2978
2979 /**
2980 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2981 * @DRM_IOCTL_ARGS: standard ioctl arguments
2982 *
2983 * Returns 0 if successful, else an error is returned with the remaining time in
2984 * the timeout parameter.
2985 * -ETIME: object is still busy after timeout
2986 * -ERESTARTSYS: signal interrupted the wait
2987 * -ENONENT: object doesn't exist
2988 * Also possible, but rare:
2989 * -EAGAIN: GPU wedged
2990 * -ENOMEM: damn
2991 * -ENODEV: Internal IRQ fail
2992 * -E?: The add request failed
2993 *
2994 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2995 * non-zero timeout parameter the wait ioctl will wait for the given number of
2996 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2997 * without holding struct_mutex the object may become re-busied before this
2998 * function completes. A similar but shorter * race condition exists in the busy
2999 * ioctl
3000 */
3001 int
3002 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3003 {
3004 struct drm_i915_private *dev_priv = dev->dev_private;
3005 struct drm_i915_gem_wait *args = data;
3006 struct drm_i915_gem_object *obj;
3007 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3008 unsigned reset_counter;
3009 int i, n = 0;
3010 int ret;
3011
3012 if (args->flags != 0)
3013 return -EINVAL;
3014
3015 ret = i915_mutex_lock_interruptible(dev);
3016 if (ret)
3017 return ret;
3018
3019 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3020 if (&obj->base == NULL) {
3021 mutex_unlock(&dev->struct_mutex);
3022 return -ENOENT;
3023 }
3024
3025 /* Need to make sure the object gets inactive eventually. */
3026 ret = i915_gem_object_flush_active(obj);
3027 if (ret)
3028 goto out;
3029
3030 if (!obj->active)
3031 goto out;
3032
3033 /* Do this after OLR check to make sure we make forward progress polling
3034 * on this IOCTL with a timeout == 0 (like busy ioctl)
3035 */
3036 if (args->timeout_ns == 0) {
3037 ret = -ETIME;
3038 goto out;
3039 }
3040
3041 drm_gem_object_unreference(&obj->base);
3042 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3043
3044 for (i = 0; i < I915_NUM_RINGS; i++) {
3045 if (obj->last_read_req[i] == NULL)
3046 continue;
3047
3048 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3049 }
3050
3051 mutex_unlock(&dev->struct_mutex);
3052
3053 for (i = 0; i < n; i++) {
3054 if (ret == 0)
3055 ret = __i915_wait_request(req[i], reset_counter, true,
3056 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3057 file->driver_priv);
3058 i915_gem_request_unreference__unlocked(req[i]);
3059 }
3060 return ret;
3061
3062 out:
3063 drm_gem_object_unreference(&obj->base);
3064 mutex_unlock(&dev->struct_mutex);
3065 return ret;
3066 }
3067
3068 static int
3069 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3070 struct intel_engine_cs *to,
3071 struct drm_i915_gem_request *from_req,
3072 struct drm_i915_gem_request **to_req)
3073 {
3074 struct intel_engine_cs *from;
3075 int ret;
3076
3077 from = i915_gem_request_get_ring(from_req);
3078 if (to == from)
3079 return 0;
3080
3081 if (i915_gem_request_completed(from_req, true))
3082 return 0;
3083
3084 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3085 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3086 ret = __i915_wait_request(from_req,
3087 atomic_read(&i915->gpu_error.reset_counter),
3088 i915->mm.interruptible,
3089 NULL,
3090 &i915->rps.semaphores);
3091 if (ret)
3092 return ret;
3093
3094 i915_gem_object_retire_request(obj, from_req);
3095 } else {
3096 int idx = intel_ring_sync_index(from, to);
3097 u32 seqno = i915_gem_request_get_seqno(from_req);
3098
3099 WARN_ON(!to_req);
3100
3101 if (seqno <= from->semaphore.sync_seqno[idx])
3102 return 0;
3103
3104 if (*to_req == NULL) {
3105 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3106 if (ret)
3107 return ret;
3108 }
3109
3110 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3111 ret = to->semaphore.sync_to(*to_req, from, seqno);
3112 if (ret)
3113 return ret;
3114
3115 /* We use last_read_req because sync_to()
3116 * might have just caused seqno wrap under
3117 * the radar.
3118 */
3119 from->semaphore.sync_seqno[idx] =
3120 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3121 }
3122
3123 return 0;
3124 }
3125
3126 /**
3127 * i915_gem_object_sync - sync an object to a ring.
3128 *
3129 * @obj: object which may be in use on another ring.
3130 * @to: ring we wish to use the object on. May be NULL.
3131 * @to_req: request we wish to use the object for. See below.
3132 * This will be allocated and returned if a request is
3133 * required but not passed in.
3134 *
3135 * This code is meant to abstract object synchronization with the GPU.
3136 * Calling with NULL implies synchronizing the object with the CPU
3137 * rather than a particular GPU ring. Conceptually we serialise writes
3138 * between engines inside the GPU. We only allow one engine to write
3139 * into a buffer at any time, but multiple readers. To ensure each has
3140 * a coherent view of memory, we must:
3141 *
3142 * - If there is an outstanding write request to the object, the new
3143 * request must wait for it to complete (either CPU or in hw, requests
3144 * on the same ring will be naturally ordered).
3145 *
3146 * - If we are a write request (pending_write_domain is set), the new
3147 * request must wait for outstanding read requests to complete.
3148 *
3149 * For CPU synchronisation (NULL to) no request is required. For syncing with
3150 * rings to_req must be non-NULL. However, a request does not have to be
3151 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3152 * request will be allocated automatically and returned through *to_req. Note
3153 * that it is not guaranteed that commands will be emitted (because the system
3154 * might already be idle). Hence there is no need to create a request that
3155 * might never have any work submitted. Note further that if a request is
3156 * returned in *to_req, it is the responsibility of the caller to submit
3157 * that request (after potentially adding more work to it).
3158 *
3159 * Returns 0 if successful, else propagates up the lower layer error.
3160 */
3161 int
3162 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3163 struct intel_engine_cs *to,
3164 struct drm_i915_gem_request **to_req)
3165 {
3166 const bool readonly = obj->base.pending_write_domain == 0;
3167 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3168 int ret, i, n;
3169
3170 if (!obj->active)
3171 return 0;
3172
3173 if (to == NULL)
3174 return i915_gem_object_wait_rendering(obj, readonly);
3175
3176 n = 0;
3177 if (readonly) {
3178 if (obj->last_write_req)
3179 req[n++] = obj->last_write_req;
3180 } else {
3181 for (i = 0; i < I915_NUM_RINGS; i++)
3182 if (obj->last_read_req[i])
3183 req[n++] = obj->last_read_req[i];
3184 }
3185 for (i = 0; i < n; i++) {
3186 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3187 if (ret)
3188 return ret;
3189 }
3190
3191 return 0;
3192 }
3193
3194 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3195 {
3196 u32 old_write_domain, old_read_domains;
3197
3198 /* Force a pagefault for domain tracking on next user access */
3199 i915_gem_release_mmap(obj);
3200
3201 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3202 return;
3203
3204 /* Wait for any direct GTT access to complete */
3205 mb();
3206
3207 old_read_domains = obj->base.read_domains;
3208 old_write_domain = obj->base.write_domain;
3209
3210 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3211 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3212
3213 trace_i915_gem_object_change_domain(obj,
3214 old_read_domains,
3215 old_write_domain);
3216 }
3217
3218 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3219 {
3220 struct drm_i915_gem_object *obj = vma->obj;
3221 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3222 int ret;
3223
3224 if (list_empty(&vma->vma_link))
3225 return 0;
3226
3227 if (!drm_mm_node_allocated(&vma->node)) {
3228 i915_gem_vma_destroy(vma);
3229 return 0;
3230 }
3231
3232 if (vma->pin_count)
3233 return -EBUSY;
3234
3235 BUG_ON(obj->pages == NULL);
3236
3237 if (wait) {
3238 ret = i915_gem_object_wait_rendering(obj, false);
3239 if (ret)
3240 return ret;
3241 }
3242
3243 if (i915_is_ggtt(vma->vm) &&
3244 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3245 i915_gem_object_finish_gtt(obj);
3246
3247 /* release the fence reg _after_ flushing */
3248 ret = i915_gem_object_put_fence(obj);
3249 if (ret)
3250 return ret;
3251 }
3252
3253 trace_i915_vma_unbind(vma);
3254
3255 vma->vm->unbind_vma(vma);
3256 vma->bound = 0;
3257
3258 list_del_init(&vma->mm_list);
3259 if (i915_is_ggtt(vma->vm)) {
3260 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3261 obj->map_and_fenceable = false;
3262 } else if (vma->ggtt_view.pages) {
3263 sg_free_table(vma->ggtt_view.pages);
3264 kfree(vma->ggtt_view.pages);
3265 }
3266 vma->ggtt_view.pages = NULL;
3267 }
3268
3269 drm_mm_remove_node(&vma->node);
3270 i915_gem_vma_destroy(vma);
3271
3272 /* Since the unbound list is global, only move to that list if
3273 * no more VMAs exist. */
3274 if (list_empty(&obj->vma_list))
3275 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3276
3277 /* And finally now the object is completely decoupled from this vma,
3278 * we can drop its hold on the backing storage and allow it to be
3279 * reaped by the shrinker.
3280 */
3281 i915_gem_object_unpin_pages(obj);
3282
3283 return 0;
3284 }
3285
3286 int i915_vma_unbind(struct i915_vma *vma)
3287 {
3288 return __i915_vma_unbind(vma, true);
3289 }
3290
3291 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3292 {
3293 return __i915_vma_unbind(vma, false);
3294 }
3295
3296 int i915_gpu_idle(struct drm_device *dev)
3297 {
3298 struct drm_i915_private *dev_priv = dev->dev_private;
3299 struct intel_engine_cs *ring;
3300 int ret, i;
3301
3302 /* Flush everything onto the inactive list. */
3303 for_each_ring(ring, dev_priv, i) {
3304 if (!i915.enable_execlists) {
3305 struct drm_i915_gem_request *req;
3306
3307 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3308 if (ret)
3309 return ret;
3310
3311 ret = i915_switch_context(req);
3312 if (ret) {
3313 i915_gem_request_cancel(req);
3314 return ret;
3315 }
3316
3317 i915_add_request_no_flush(req);
3318 }
3319
3320 ret = intel_ring_idle(ring);
3321 if (ret)
3322 return ret;
3323 }
3324
3325 WARN_ON(i915_verify_lists(dev));
3326 return 0;
3327 }
3328
3329 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3330 unsigned long cache_level)
3331 {
3332 struct drm_mm_node *gtt_space = &vma->node;
3333 struct drm_mm_node *other;
3334
3335 /*
3336 * On some machines we have to be careful when putting differing types
3337 * of snoopable memory together to avoid the prefetcher crossing memory
3338 * domains and dying. During vm initialisation, we decide whether or not
3339 * these constraints apply and set the drm_mm.color_adjust
3340 * appropriately.
3341 */
3342 if (vma->vm->mm.color_adjust == NULL)
3343 return true;
3344
3345 if (!drm_mm_node_allocated(gtt_space))
3346 return true;
3347
3348 if (list_empty(&gtt_space->node_list))
3349 return true;
3350
3351 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3352 if (other->allocated && !other->hole_follows && other->color != cache_level)
3353 return false;
3354
3355 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3356 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3357 return false;
3358
3359 return true;
3360 }
3361
3362 /**
3363 * Finds free space in the GTT aperture and binds the object or a view of it
3364 * there.
3365 */
3366 static struct i915_vma *
3367 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3368 struct i915_address_space *vm,
3369 const struct i915_ggtt_view *ggtt_view,
3370 unsigned alignment,
3371 uint64_t flags)
3372 {
3373 struct drm_device *dev = obj->base.dev;
3374 struct drm_i915_private *dev_priv = dev->dev_private;
3375 u32 fence_alignment, unfenced_alignment;
3376 u32 search_flag, alloc_flag;
3377 u64 start, end;
3378 u64 size, fence_size;
3379 struct i915_vma *vma;
3380 int ret;
3381
3382 if (i915_is_ggtt(vm)) {
3383 u32 view_size;
3384
3385 if (WARN_ON(!ggtt_view))
3386 return ERR_PTR(-EINVAL);
3387
3388 view_size = i915_ggtt_view_size(obj, ggtt_view);
3389
3390 fence_size = i915_gem_get_gtt_size(dev,
3391 view_size,
3392 obj->tiling_mode);
3393 fence_alignment = i915_gem_get_gtt_alignment(dev,
3394 view_size,
3395 obj->tiling_mode,
3396 true);
3397 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3398 view_size,
3399 obj->tiling_mode,
3400 false);
3401 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3402 } else {
3403 fence_size = i915_gem_get_gtt_size(dev,
3404 obj->base.size,
3405 obj->tiling_mode);
3406 fence_alignment = i915_gem_get_gtt_alignment(dev,
3407 obj->base.size,
3408 obj->tiling_mode,
3409 true);
3410 unfenced_alignment =
3411 i915_gem_get_gtt_alignment(dev,
3412 obj->base.size,
3413 obj->tiling_mode,
3414 false);
3415 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3416 }
3417
3418 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3419 end = vm->total;
3420 if (flags & PIN_MAPPABLE)
3421 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3422 if (flags & PIN_ZONE_4G)
3423 end = min_t(u64, end, (1ULL << 32));
3424
3425 if (alignment == 0)
3426 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3427 unfenced_alignment;
3428 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3429 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3430 ggtt_view ? ggtt_view->type : 0,
3431 alignment);
3432 return ERR_PTR(-EINVAL);
3433 }
3434
3435 /* If binding the object/GGTT view requires more space than the entire
3436 * aperture has, reject it early before evicting everything in a vain
3437 * attempt to find space.
3438 */
3439 if (size > end) {
3440 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3441 ggtt_view ? ggtt_view->type : 0,
3442 size,
3443 flags & PIN_MAPPABLE ? "mappable" : "total",
3444 end);
3445 return ERR_PTR(-E2BIG);
3446 }
3447
3448 ret = i915_gem_object_get_pages(obj);
3449 if (ret)
3450 return ERR_PTR(ret);
3451
3452 i915_gem_object_pin_pages(obj);
3453
3454 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3455 i915_gem_obj_lookup_or_create_vma(obj, vm);
3456
3457 if (IS_ERR(vma))
3458 goto err_unpin;
3459
3460 if (flags & PIN_HIGH) {
3461 search_flag = DRM_MM_SEARCH_BELOW;
3462 alloc_flag = DRM_MM_CREATE_TOP;
3463 } else {
3464 search_flag = DRM_MM_SEARCH_DEFAULT;
3465 alloc_flag = DRM_MM_CREATE_DEFAULT;
3466 }
3467
3468 search_free:
3469 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3470 size, alignment,
3471 obj->cache_level,
3472 start, end,
3473 search_flag,
3474 alloc_flag);
3475 if (ret) {
3476 ret = i915_gem_evict_something(dev, vm, size, alignment,
3477 obj->cache_level,
3478 start, end,
3479 flags);
3480 if (ret == 0)
3481 goto search_free;
3482
3483 goto err_free_vma;
3484 }
3485 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3486 ret = -EINVAL;
3487 goto err_remove_node;
3488 }
3489
3490 trace_i915_vma_bind(vma, flags);
3491 ret = i915_vma_bind(vma, obj->cache_level, flags);
3492 if (ret)
3493 goto err_remove_node;
3494
3495 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3496 list_add_tail(&vma->mm_list, &vm->inactive_list);
3497
3498 return vma;
3499
3500 err_remove_node:
3501 drm_mm_remove_node(&vma->node);
3502 err_free_vma:
3503 i915_gem_vma_destroy(vma);
3504 vma = ERR_PTR(ret);
3505 err_unpin:
3506 i915_gem_object_unpin_pages(obj);
3507 return vma;
3508 }
3509
3510 bool
3511 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3512 bool force)
3513 {
3514 /* If we don't have a page list set up, then we're not pinned
3515 * to GPU, and we can ignore the cache flush because it'll happen
3516 * again at bind time.
3517 */
3518 if (obj->pages == NULL)
3519 return false;
3520
3521 /*
3522 * Stolen memory is always coherent with the GPU as it is explicitly
3523 * marked as wc by the system, or the system is cache-coherent.
3524 */
3525 if (obj->stolen || obj->phys_handle)
3526 return false;
3527
3528 /* If the GPU is snooping the contents of the CPU cache,
3529 * we do not need to manually clear the CPU cache lines. However,
3530 * the caches are only snooped when the render cache is
3531 * flushed/invalidated. As we always have to emit invalidations
3532 * and flushes when moving into and out of the RENDER domain, correct
3533 * snooping behaviour occurs naturally as the result of our domain
3534 * tracking.
3535 */
3536 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3537 obj->cache_dirty = true;
3538 return false;
3539 }
3540
3541 trace_i915_gem_object_clflush(obj);
3542 drm_clflush_sg(obj->pages);
3543 obj->cache_dirty = false;
3544
3545 return true;
3546 }
3547
3548 /** Flushes the GTT write domain for the object if it's dirty. */
3549 static void
3550 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3551 {
3552 uint32_t old_write_domain;
3553
3554 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3555 return;
3556
3557 /* No actual flushing is required for the GTT write domain. Writes
3558 * to it immediately go to main memory as far as we know, so there's
3559 * no chipset flush. It also doesn't land in render cache.
3560 *
3561 * However, we do have to enforce the order so that all writes through
3562 * the GTT land before any writes to the device, such as updates to
3563 * the GATT itself.
3564 */
3565 wmb();
3566
3567 old_write_domain = obj->base.write_domain;
3568 obj->base.write_domain = 0;
3569
3570 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3571
3572 trace_i915_gem_object_change_domain(obj,
3573 obj->base.read_domains,
3574 old_write_domain);
3575 }
3576
3577 /** Flushes the CPU write domain for the object if it's dirty. */
3578 static void
3579 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3580 {
3581 uint32_t old_write_domain;
3582
3583 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3584 return;
3585
3586 if (i915_gem_clflush_object(obj, obj->pin_display))
3587 i915_gem_chipset_flush(obj->base.dev);
3588
3589 old_write_domain = obj->base.write_domain;
3590 obj->base.write_domain = 0;
3591
3592 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3593
3594 trace_i915_gem_object_change_domain(obj,
3595 obj->base.read_domains,
3596 old_write_domain);
3597 }
3598
3599 /**
3600 * Moves a single object to the GTT read, and possibly write domain.
3601 *
3602 * This function returns when the move is complete, including waiting on
3603 * flushes to occur.
3604 */
3605 int
3606 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3607 {
3608 uint32_t old_write_domain, old_read_domains;
3609 struct i915_vma *vma;
3610 int ret;
3611
3612 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3613 return 0;
3614
3615 ret = i915_gem_object_wait_rendering(obj, !write);
3616 if (ret)
3617 return ret;
3618
3619 /* Flush and acquire obj->pages so that we are coherent through
3620 * direct access in memory with previous cached writes through
3621 * shmemfs and that our cache domain tracking remains valid.
3622 * For example, if the obj->filp was moved to swap without us
3623 * being notified and releasing the pages, we would mistakenly
3624 * continue to assume that the obj remained out of the CPU cached
3625 * domain.
3626 */
3627 ret = i915_gem_object_get_pages(obj);
3628 if (ret)
3629 return ret;
3630
3631 i915_gem_object_flush_cpu_write_domain(obj);
3632
3633 /* Serialise direct access to this object with the barriers for
3634 * coherent writes from the GPU, by effectively invalidating the
3635 * GTT domain upon first access.
3636 */
3637 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3638 mb();
3639
3640 old_write_domain = obj->base.write_domain;
3641 old_read_domains = obj->base.read_domains;
3642
3643 /* It should now be out of any other write domains, and we can update
3644 * the domain values for our changes.
3645 */
3646 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3647 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3648 if (write) {
3649 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3650 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3651 obj->dirty = 1;
3652 }
3653
3654 trace_i915_gem_object_change_domain(obj,
3655 old_read_domains,
3656 old_write_domain);
3657
3658 /* And bump the LRU for this access */
3659 vma = i915_gem_obj_to_ggtt(obj);
3660 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3661 list_move_tail(&vma->mm_list,
3662 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3663
3664 return 0;
3665 }
3666
3667 /**
3668 * Changes the cache-level of an object across all VMA.
3669 *
3670 * After this function returns, the object will be in the new cache-level
3671 * across all GTT and the contents of the backing storage will be coherent,
3672 * with respect to the new cache-level. In order to keep the backing storage
3673 * coherent for all users, we only allow a single cache level to be set
3674 * globally on the object and prevent it from being changed whilst the
3675 * hardware is reading from the object. That is if the object is currently
3676 * on the scanout it will be set to uncached (or equivalent display
3677 * cache coherency) and all non-MOCS GPU access will also be uncached so
3678 * that all direct access to the scanout remains coherent.
3679 */
3680 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3681 enum i915_cache_level cache_level)
3682 {
3683 struct drm_device *dev = obj->base.dev;
3684 struct i915_vma *vma, *next;
3685 bool bound = false;
3686 int ret = 0;
3687
3688 if (obj->cache_level == cache_level)
3689 goto out;
3690
3691 /* Inspect the list of currently bound VMA and unbind any that would
3692 * be invalid given the new cache-level. This is principally to
3693 * catch the issue of the CS prefetch crossing page boundaries and
3694 * reading an invalid PTE on older architectures.
3695 */
3696 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3697 if (!drm_mm_node_allocated(&vma->node))
3698 continue;
3699
3700 if (vma->pin_count) {
3701 DRM_DEBUG("can not change the cache level of pinned objects\n");
3702 return -EBUSY;
3703 }
3704
3705 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3706 ret = i915_vma_unbind(vma);
3707 if (ret)
3708 return ret;
3709 } else
3710 bound = true;
3711 }
3712
3713 /* We can reuse the existing drm_mm nodes but need to change the
3714 * cache-level on the PTE. We could simply unbind them all and
3715 * rebind with the correct cache-level on next use. However since
3716 * we already have a valid slot, dma mapping, pages etc, we may as
3717 * rewrite the PTE in the belief that doing so tramples upon less
3718 * state and so involves less work.
3719 */
3720 if (bound) {
3721 /* Before we change the PTE, the GPU must not be accessing it.
3722 * If we wait upon the object, we know that all the bound
3723 * VMA are no longer active.
3724 */
3725 ret = i915_gem_object_wait_rendering(obj, false);
3726 if (ret)
3727 return ret;
3728
3729 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3730 /* Access to snoopable pages through the GTT is
3731 * incoherent and on some machines causes a hard
3732 * lockup. Relinquish the CPU mmaping to force
3733 * userspace to refault in the pages and we can
3734 * then double check if the GTT mapping is still
3735 * valid for that pointer access.
3736 */
3737 i915_gem_release_mmap(obj);
3738
3739 /* As we no longer need a fence for GTT access,
3740 * we can relinquish it now (and so prevent having
3741 * to steal a fence from someone else on the next
3742 * fence request). Note GPU activity would have
3743 * dropped the fence as all snoopable access is
3744 * supposed to be linear.
3745 */
3746 ret = i915_gem_object_put_fence(obj);
3747 if (ret)
3748 return ret;
3749 } else {
3750 /* We either have incoherent backing store and
3751 * so no GTT access or the architecture is fully
3752 * coherent. In such cases, existing GTT mmaps
3753 * ignore the cache bit in the PTE and we can
3754 * rewrite it without confusing the GPU or having
3755 * to force userspace to fault back in its mmaps.
3756 */
3757 }
3758
3759 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3760 if (!drm_mm_node_allocated(&vma->node))
3761 continue;
3762
3763 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3764 if (ret)
3765 return ret;
3766 }
3767 }
3768
3769 list_for_each_entry(vma, &obj->vma_list, vma_link)
3770 vma->node.color = cache_level;
3771 obj->cache_level = cache_level;
3772
3773 out:
3774 /* Flush the dirty CPU caches to the backing storage so that the
3775 * object is now coherent at its new cache level (with respect
3776 * to the access domain).
3777 */
3778 if (obj->cache_dirty &&
3779 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3780 cpu_write_needs_clflush(obj)) {
3781 if (i915_gem_clflush_object(obj, true))
3782 i915_gem_chipset_flush(obj->base.dev);
3783 }
3784
3785 return 0;
3786 }
3787
3788 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3789 struct drm_file *file)
3790 {
3791 struct drm_i915_gem_caching *args = data;
3792 struct drm_i915_gem_object *obj;
3793
3794 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3795 if (&obj->base == NULL)
3796 return -ENOENT;
3797
3798 switch (obj->cache_level) {
3799 case I915_CACHE_LLC:
3800 case I915_CACHE_L3_LLC:
3801 args->caching = I915_CACHING_CACHED;
3802 break;
3803
3804 case I915_CACHE_WT:
3805 args->caching = I915_CACHING_DISPLAY;
3806 break;
3807
3808 default:
3809 args->caching = I915_CACHING_NONE;
3810 break;
3811 }
3812
3813 drm_gem_object_unreference_unlocked(&obj->base);
3814 return 0;
3815 }
3816
3817 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3818 struct drm_file *file)
3819 {
3820 struct drm_i915_private *dev_priv = dev->dev_private;
3821 struct drm_i915_gem_caching *args = data;
3822 struct drm_i915_gem_object *obj;
3823 enum i915_cache_level level;
3824 int ret;
3825
3826 switch (args->caching) {
3827 case I915_CACHING_NONE:
3828 level = I915_CACHE_NONE;
3829 break;
3830 case I915_CACHING_CACHED:
3831 /*
3832 * Due to a HW issue on BXT A stepping, GPU stores via a
3833 * snooped mapping may leave stale data in a corresponding CPU
3834 * cacheline, whereas normally such cachelines would get
3835 * invalidated.
3836 */
3837 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3838 return -ENODEV;
3839
3840 level = I915_CACHE_LLC;
3841 break;
3842 case I915_CACHING_DISPLAY:
3843 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3844 break;
3845 default:
3846 return -EINVAL;
3847 }
3848
3849 intel_runtime_pm_get(dev_priv);
3850
3851 ret = i915_mutex_lock_interruptible(dev);
3852 if (ret)
3853 goto rpm_put;
3854
3855 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3856 if (&obj->base == NULL) {
3857 ret = -ENOENT;
3858 goto unlock;
3859 }
3860
3861 ret = i915_gem_object_set_cache_level(obj, level);
3862
3863 drm_gem_object_unreference(&obj->base);
3864 unlock:
3865 mutex_unlock(&dev->struct_mutex);
3866 rpm_put:
3867 intel_runtime_pm_put(dev_priv);
3868
3869 return ret;
3870 }
3871
3872 /*
3873 * Prepare buffer for display plane (scanout, cursors, etc).
3874 * Can be called from an uninterruptible phase (modesetting) and allows
3875 * any flushes to be pipelined (for pageflips).
3876 */
3877 int
3878 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3879 u32 alignment,
3880 struct intel_engine_cs *pipelined,
3881 struct drm_i915_gem_request **pipelined_request,
3882 const struct i915_ggtt_view *view)
3883 {
3884 u32 old_read_domains, old_write_domain;
3885 int ret;
3886
3887 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3888 if (ret)
3889 return ret;
3890
3891 /* Mark the pin_display early so that we account for the
3892 * display coherency whilst setting up the cache domains.
3893 */
3894 obj->pin_display++;
3895
3896 /* The display engine is not coherent with the LLC cache on gen6. As
3897 * a result, we make sure that the pinning that is about to occur is
3898 * done with uncached PTEs. This is lowest common denominator for all
3899 * chipsets.
3900 *
3901 * However for gen6+, we could do better by using the GFDT bit instead
3902 * of uncaching, which would allow us to flush all the LLC-cached data
3903 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3904 */
3905 ret = i915_gem_object_set_cache_level(obj,
3906 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3907 if (ret)
3908 goto err_unpin_display;
3909
3910 /* As the user may map the buffer once pinned in the display plane
3911 * (e.g. libkms for the bootup splash), we have to ensure that we
3912 * always use map_and_fenceable for all scanout buffers.
3913 */
3914 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3915 view->type == I915_GGTT_VIEW_NORMAL ?
3916 PIN_MAPPABLE : 0);
3917 if (ret)
3918 goto err_unpin_display;
3919
3920 i915_gem_object_flush_cpu_write_domain(obj);
3921
3922 old_write_domain = obj->base.write_domain;
3923 old_read_domains = obj->base.read_domains;
3924
3925 /* It should now be out of any other write domains, and we can update
3926 * the domain values for our changes.
3927 */
3928 obj->base.write_domain = 0;
3929 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3930
3931 trace_i915_gem_object_change_domain(obj,
3932 old_read_domains,
3933 old_write_domain);
3934
3935 return 0;
3936
3937 err_unpin_display:
3938 obj->pin_display--;
3939 return ret;
3940 }
3941
3942 void
3943 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3944 const struct i915_ggtt_view *view)
3945 {
3946 if (WARN_ON(obj->pin_display == 0))
3947 return;
3948
3949 i915_gem_object_ggtt_unpin_view(obj, view);
3950
3951 obj->pin_display--;
3952 }
3953
3954 /**
3955 * Moves a single object to the CPU read, and possibly write domain.
3956 *
3957 * This function returns when the move is complete, including waiting on
3958 * flushes to occur.
3959 */
3960 int
3961 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3962 {
3963 uint32_t old_write_domain, old_read_domains;
3964 int ret;
3965
3966 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3967 return 0;
3968
3969 ret = i915_gem_object_wait_rendering(obj, !write);
3970 if (ret)
3971 return ret;
3972
3973 i915_gem_object_flush_gtt_write_domain(obj);
3974
3975 old_write_domain = obj->base.write_domain;
3976 old_read_domains = obj->base.read_domains;
3977
3978 /* Flush the CPU cache if it's still invalid. */
3979 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3980 i915_gem_clflush_object(obj, false);
3981
3982 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3983 }
3984
3985 /* It should now be out of any other write domains, and we can update
3986 * the domain values for our changes.
3987 */
3988 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3989
3990 /* If we're writing through the CPU, then the GPU read domains will
3991 * need to be invalidated at next use.
3992 */
3993 if (write) {
3994 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3995 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3996 }
3997
3998 trace_i915_gem_object_change_domain(obj,
3999 old_read_domains,
4000 old_write_domain);
4001
4002 return 0;
4003 }
4004
4005 /* Throttle our rendering by waiting until the ring has completed our requests
4006 * emitted over 20 msec ago.
4007 *
4008 * Note that if we were to use the current jiffies each time around the loop,
4009 * we wouldn't escape the function with any frames outstanding if the time to
4010 * render a frame was over 20ms.
4011 *
4012 * This should get us reasonable parallelism between CPU and GPU but also
4013 * relatively low latency when blocking on a particular request to finish.
4014 */
4015 static int
4016 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4017 {
4018 struct drm_i915_private *dev_priv = dev->dev_private;
4019 struct drm_i915_file_private *file_priv = file->driver_priv;
4020 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4021 struct drm_i915_gem_request *request, *target = NULL;
4022 unsigned reset_counter;
4023 int ret;
4024
4025 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4026 if (ret)
4027 return ret;
4028
4029 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4030 if (ret)
4031 return ret;
4032
4033 spin_lock(&file_priv->mm.lock);
4034 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4035 if (time_after_eq(request->emitted_jiffies, recent_enough))
4036 break;
4037
4038 /*
4039 * Note that the request might not have been submitted yet.
4040 * In which case emitted_jiffies will be zero.
4041 */
4042 if (!request->emitted_jiffies)
4043 continue;
4044
4045 target = request;
4046 }
4047 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4048 if (target)
4049 i915_gem_request_reference(target);
4050 spin_unlock(&file_priv->mm.lock);
4051
4052 if (target == NULL)
4053 return 0;
4054
4055 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4056 if (ret == 0)
4057 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4058
4059 i915_gem_request_unreference__unlocked(target);
4060
4061 return ret;
4062 }
4063
4064 static bool
4065 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4066 {
4067 struct drm_i915_gem_object *obj = vma->obj;
4068
4069 if (alignment &&
4070 vma->node.start & (alignment - 1))
4071 return true;
4072
4073 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4074 return true;
4075
4076 if (flags & PIN_OFFSET_BIAS &&
4077 vma->node.start < (flags & PIN_OFFSET_MASK))
4078 return true;
4079
4080 return false;
4081 }
4082
4083 static int
4084 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4085 struct i915_address_space *vm,
4086 const struct i915_ggtt_view *ggtt_view,
4087 uint32_t alignment,
4088 uint64_t flags)
4089 {
4090 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4091 struct i915_vma *vma;
4092 unsigned bound;
4093 int ret;
4094
4095 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4096 return -ENODEV;
4097
4098 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4099 return -EINVAL;
4100
4101 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4102 return -EINVAL;
4103
4104 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4105 return -EINVAL;
4106
4107 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4108 i915_gem_obj_to_vma(obj, vm);
4109
4110 if (IS_ERR(vma))
4111 return PTR_ERR(vma);
4112
4113 if (vma) {
4114 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4115 return -EBUSY;
4116
4117 if (i915_vma_misplaced(vma, alignment, flags)) {
4118 WARN(vma->pin_count,
4119 "bo is already pinned in %s with incorrect alignment:"
4120 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4121 " obj->map_and_fenceable=%d\n",
4122 ggtt_view ? "ggtt" : "ppgtt",
4123 upper_32_bits(vma->node.start),
4124 lower_32_bits(vma->node.start),
4125 alignment,
4126 !!(flags & PIN_MAPPABLE),
4127 obj->map_and_fenceable);
4128 ret = i915_vma_unbind(vma);
4129 if (ret)
4130 return ret;
4131
4132 vma = NULL;
4133 }
4134 }
4135
4136 bound = vma ? vma->bound : 0;
4137 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4138 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4139 flags);
4140 if (IS_ERR(vma))
4141 return PTR_ERR(vma);
4142 } else {
4143 ret = i915_vma_bind(vma, obj->cache_level, flags);
4144 if (ret)
4145 return ret;
4146 }
4147
4148 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4149 (bound ^ vma->bound) & GLOBAL_BIND) {
4150 bool mappable, fenceable;
4151 u32 fence_size, fence_alignment;
4152
4153 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4154 obj->base.size,
4155 obj->tiling_mode);
4156 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4157 obj->base.size,
4158 obj->tiling_mode,
4159 true);
4160
4161 fenceable = (vma->node.size == fence_size &&
4162 (vma->node.start & (fence_alignment - 1)) == 0);
4163
4164 mappable = (vma->node.start + fence_size <=
4165 dev_priv->gtt.mappable_end);
4166
4167 obj->map_and_fenceable = mappable && fenceable;
4168
4169 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4170 }
4171
4172 vma->pin_count++;
4173 return 0;
4174 }
4175
4176 int
4177 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4178 struct i915_address_space *vm,
4179 uint32_t alignment,
4180 uint64_t flags)
4181 {
4182 return i915_gem_object_do_pin(obj, vm,
4183 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4184 alignment, flags);
4185 }
4186
4187 int
4188 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4189 const struct i915_ggtt_view *view,
4190 uint32_t alignment,
4191 uint64_t flags)
4192 {
4193 if (WARN_ONCE(!view, "no view specified"))
4194 return -EINVAL;
4195
4196 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4197 alignment, flags | PIN_GLOBAL);
4198 }
4199
4200 void
4201 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4202 const struct i915_ggtt_view *view)
4203 {
4204 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4205
4206 BUG_ON(!vma);
4207 WARN_ON(vma->pin_count == 0);
4208 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4209
4210 --vma->pin_count;
4211 }
4212
4213 int
4214 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4215 struct drm_file *file)
4216 {
4217 struct drm_i915_gem_busy *args = data;
4218 struct drm_i915_gem_object *obj;
4219 int ret;
4220
4221 ret = i915_mutex_lock_interruptible(dev);
4222 if (ret)
4223 return ret;
4224
4225 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4226 if (&obj->base == NULL) {
4227 ret = -ENOENT;
4228 goto unlock;
4229 }
4230
4231 /* Count all active objects as busy, even if they are currently not used
4232 * by the gpu. Users of this interface expect objects to eventually
4233 * become non-busy without any further actions, therefore emit any
4234 * necessary flushes here.
4235 */
4236 ret = i915_gem_object_flush_active(obj);
4237 if (ret)
4238 goto unref;
4239
4240 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4241 args->busy = obj->active << 16;
4242 if (obj->last_write_req)
4243 args->busy |= obj->last_write_req->ring->id;
4244
4245 unref:
4246 drm_gem_object_unreference(&obj->base);
4247 unlock:
4248 mutex_unlock(&dev->struct_mutex);
4249 return ret;
4250 }
4251
4252 int
4253 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4254 struct drm_file *file_priv)
4255 {
4256 return i915_gem_ring_throttle(dev, file_priv);
4257 }
4258
4259 int
4260 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4261 struct drm_file *file_priv)
4262 {
4263 struct drm_i915_private *dev_priv = dev->dev_private;
4264 struct drm_i915_gem_madvise *args = data;
4265 struct drm_i915_gem_object *obj;
4266 int ret;
4267
4268 switch (args->madv) {
4269 case I915_MADV_DONTNEED:
4270 case I915_MADV_WILLNEED:
4271 break;
4272 default:
4273 return -EINVAL;
4274 }
4275
4276 ret = i915_mutex_lock_interruptible(dev);
4277 if (ret)
4278 return ret;
4279
4280 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4281 if (&obj->base == NULL) {
4282 ret = -ENOENT;
4283 goto unlock;
4284 }
4285
4286 if (i915_gem_obj_is_pinned(obj)) {
4287 ret = -EINVAL;
4288 goto out;
4289 }
4290
4291 if (obj->pages &&
4292 obj->tiling_mode != I915_TILING_NONE &&
4293 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4294 if (obj->madv == I915_MADV_WILLNEED)
4295 i915_gem_object_unpin_pages(obj);
4296 if (args->madv == I915_MADV_WILLNEED)
4297 i915_gem_object_pin_pages(obj);
4298 }
4299
4300 if (obj->madv != __I915_MADV_PURGED)
4301 obj->madv = args->madv;
4302
4303 /* if the object is no longer attached, discard its backing storage */
4304 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4305 i915_gem_object_truncate(obj);
4306
4307 args->retained = obj->madv != __I915_MADV_PURGED;
4308
4309 out:
4310 drm_gem_object_unreference(&obj->base);
4311 unlock:
4312 mutex_unlock(&dev->struct_mutex);
4313 return ret;
4314 }
4315
4316 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4317 const struct drm_i915_gem_object_ops *ops)
4318 {
4319 int i;
4320
4321 INIT_LIST_HEAD(&obj->global_list);
4322 for (i = 0; i < I915_NUM_RINGS; i++)
4323 INIT_LIST_HEAD(&obj->ring_list[i]);
4324 INIT_LIST_HEAD(&obj->obj_exec_link);
4325 INIT_LIST_HEAD(&obj->vma_list);
4326 INIT_LIST_HEAD(&obj->batch_pool_link);
4327
4328 obj->ops = ops;
4329
4330 obj->fence_reg = I915_FENCE_REG_NONE;
4331 obj->madv = I915_MADV_WILLNEED;
4332
4333 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4334 }
4335
4336 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4337 .get_pages = i915_gem_object_get_pages_gtt,
4338 .put_pages = i915_gem_object_put_pages_gtt,
4339 };
4340
4341 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4342 size_t size)
4343 {
4344 struct drm_i915_gem_object *obj;
4345 struct address_space *mapping;
4346 gfp_t mask;
4347
4348 obj = i915_gem_object_alloc(dev);
4349 if (obj == NULL)
4350 return NULL;
4351
4352 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4353 i915_gem_object_free(obj);
4354 return NULL;
4355 }
4356
4357 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4358 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4359 /* 965gm cannot relocate objects above 4GiB. */
4360 mask &= ~__GFP_HIGHMEM;
4361 mask |= __GFP_DMA32;
4362 }
4363
4364 mapping = file_inode(obj->base.filp)->i_mapping;
4365 mapping_set_gfp_mask(mapping, mask);
4366
4367 i915_gem_object_init(obj, &i915_gem_object_ops);
4368
4369 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4370 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4371
4372 if (HAS_LLC(dev)) {
4373 /* On some devices, we can have the GPU use the LLC (the CPU
4374 * cache) for about a 10% performance improvement
4375 * compared to uncached. Graphics requests other than
4376 * display scanout are coherent with the CPU in
4377 * accessing this cache. This means in this mode we
4378 * don't need to clflush on the CPU side, and on the
4379 * GPU side we only need to flush internal caches to
4380 * get data visible to the CPU.
4381 *
4382 * However, we maintain the display planes as UC, and so
4383 * need to rebind when first used as such.
4384 */
4385 obj->cache_level = I915_CACHE_LLC;
4386 } else
4387 obj->cache_level = I915_CACHE_NONE;
4388
4389 trace_i915_gem_object_create(obj);
4390
4391 return obj;
4392 }
4393
4394 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4395 {
4396 /* If we are the last user of the backing storage (be it shmemfs
4397 * pages or stolen etc), we know that the pages are going to be
4398 * immediately released. In this case, we can then skip copying
4399 * back the contents from the GPU.
4400 */
4401
4402 if (obj->madv != I915_MADV_WILLNEED)
4403 return false;
4404
4405 if (obj->base.filp == NULL)
4406 return true;
4407
4408 /* At first glance, this looks racy, but then again so would be
4409 * userspace racing mmap against close. However, the first external
4410 * reference to the filp can only be obtained through the
4411 * i915_gem_mmap_ioctl() which safeguards us against the user
4412 * acquiring such a reference whilst we are in the middle of
4413 * freeing the object.
4414 */
4415 return atomic_long_read(&obj->base.filp->f_count) == 1;
4416 }
4417
4418 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4419 {
4420 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4421 struct drm_device *dev = obj->base.dev;
4422 struct drm_i915_private *dev_priv = dev->dev_private;
4423 struct i915_vma *vma, *next;
4424
4425 intel_runtime_pm_get(dev_priv);
4426
4427 trace_i915_gem_object_destroy(obj);
4428
4429 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4430 int ret;
4431
4432 vma->pin_count = 0;
4433 ret = i915_vma_unbind(vma);
4434 if (WARN_ON(ret == -ERESTARTSYS)) {
4435 bool was_interruptible;
4436
4437 was_interruptible = dev_priv->mm.interruptible;
4438 dev_priv->mm.interruptible = false;
4439
4440 WARN_ON(i915_vma_unbind(vma));
4441
4442 dev_priv->mm.interruptible = was_interruptible;
4443 }
4444 }
4445
4446 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4447 * before progressing. */
4448 if (obj->stolen)
4449 i915_gem_object_unpin_pages(obj);
4450
4451 WARN_ON(obj->frontbuffer_bits);
4452
4453 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4454 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4455 obj->tiling_mode != I915_TILING_NONE)
4456 i915_gem_object_unpin_pages(obj);
4457
4458 if (WARN_ON(obj->pages_pin_count))
4459 obj->pages_pin_count = 0;
4460 if (discard_backing_storage(obj))
4461 obj->madv = I915_MADV_DONTNEED;
4462 i915_gem_object_put_pages(obj);
4463 i915_gem_object_free_mmap_offset(obj);
4464
4465 BUG_ON(obj->pages);
4466
4467 if (obj->base.import_attach)
4468 drm_prime_gem_destroy(&obj->base, NULL);
4469
4470 if (obj->ops->release)
4471 obj->ops->release(obj);
4472
4473 drm_gem_object_release(&obj->base);
4474 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4475
4476 kfree(obj->bit_17);
4477 i915_gem_object_free(obj);
4478
4479 intel_runtime_pm_put(dev_priv);
4480 }
4481
4482 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4483 struct i915_address_space *vm)
4484 {
4485 struct i915_vma *vma;
4486 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4487 if (i915_is_ggtt(vma->vm) &&
4488 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4489 continue;
4490 if (vma->vm == vm)
4491 return vma;
4492 }
4493 return NULL;
4494 }
4495
4496 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4497 const struct i915_ggtt_view *view)
4498 {
4499 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4500 struct i915_vma *vma;
4501
4502 if (WARN_ONCE(!view, "no view specified"))
4503 return ERR_PTR(-EINVAL);
4504
4505 list_for_each_entry(vma, &obj->vma_list, vma_link)
4506 if (vma->vm == ggtt &&
4507 i915_ggtt_view_equal(&vma->ggtt_view, view))
4508 return vma;
4509 return NULL;
4510 }
4511
4512 void i915_gem_vma_destroy(struct i915_vma *vma)
4513 {
4514 struct i915_address_space *vm = NULL;
4515 WARN_ON(vma->node.allocated);
4516
4517 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4518 if (!list_empty(&vma->exec_list))
4519 return;
4520
4521 vm = vma->vm;
4522
4523 if (!i915_is_ggtt(vm))
4524 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4525
4526 list_del(&vma->vma_link);
4527
4528 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4529 }
4530
4531 static void
4532 i915_gem_stop_ringbuffers(struct drm_device *dev)
4533 {
4534 struct drm_i915_private *dev_priv = dev->dev_private;
4535 struct intel_engine_cs *ring;
4536 int i;
4537
4538 for_each_ring(ring, dev_priv, i)
4539 dev_priv->gt.stop_ring(ring);
4540 }
4541
4542 int
4543 i915_gem_suspend(struct drm_device *dev)
4544 {
4545 struct drm_i915_private *dev_priv = dev->dev_private;
4546 int ret = 0;
4547
4548 mutex_lock(&dev->struct_mutex);
4549 ret = i915_gpu_idle(dev);
4550 if (ret)
4551 goto err;
4552
4553 i915_gem_retire_requests(dev);
4554
4555 i915_gem_stop_ringbuffers(dev);
4556 mutex_unlock(&dev->struct_mutex);
4557
4558 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4559 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4560 flush_delayed_work(&dev_priv->mm.idle_work);
4561
4562 /* Assert that we sucessfully flushed all the work and
4563 * reset the GPU back to its idle, low power state.
4564 */
4565 WARN_ON(dev_priv->mm.busy);
4566
4567 return 0;
4568
4569 err:
4570 mutex_unlock(&dev->struct_mutex);
4571 return ret;
4572 }
4573
4574 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4575 {
4576 struct intel_engine_cs *ring = req->ring;
4577 struct drm_device *dev = ring->dev;
4578 struct drm_i915_private *dev_priv = dev->dev_private;
4579 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4580 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4581 int i, ret;
4582
4583 if (!HAS_L3_DPF(dev) || !remap_info)
4584 return 0;
4585
4586 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4587 if (ret)
4588 return ret;
4589
4590 /*
4591 * Note: We do not worry about the concurrent register cacheline hang
4592 * here because no other code should access these registers other than
4593 * at initialization time.
4594 */
4595 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4596 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4597 intel_ring_emit(ring, reg_base + i);
4598 intel_ring_emit(ring, remap_info[i/4]);
4599 }
4600
4601 intel_ring_advance(ring);
4602
4603 return ret;
4604 }
4605
4606 void i915_gem_init_swizzling(struct drm_device *dev)
4607 {
4608 struct drm_i915_private *dev_priv = dev->dev_private;
4609
4610 if (INTEL_INFO(dev)->gen < 5 ||
4611 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4612 return;
4613
4614 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4615 DISP_TILE_SURFACE_SWIZZLING);
4616
4617 if (IS_GEN5(dev))
4618 return;
4619
4620 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4621 if (IS_GEN6(dev))
4622 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4623 else if (IS_GEN7(dev))
4624 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4625 else if (IS_GEN8(dev))
4626 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4627 else
4628 BUG();
4629 }
4630
4631 static void init_unused_ring(struct drm_device *dev, u32 base)
4632 {
4633 struct drm_i915_private *dev_priv = dev->dev_private;
4634
4635 I915_WRITE(RING_CTL(base), 0);
4636 I915_WRITE(RING_HEAD(base), 0);
4637 I915_WRITE(RING_TAIL(base), 0);
4638 I915_WRITE(RING_START(base), 0);
4639 }
4640
4641 static void init_unused_rings(struct drm_device *dev)
4642 {
4643 if (IS_I830(dev)) {
4644 init_unused_ring(dev, PRB1_BASE);
4645 init_unused_ring(dev, SRB0_BASE);
4646 init_unused_ring(dev, SRB1_BASE);
4647 init_unused_ring(dev, SRB2_BASE);
4648 init_unused_ring(dev, SRB3_BASE);
4649 } else if (IS_GEN2(dev)) {
4650 init_unused_ring(dev, SRB0_BASE);
4651 init_unused_ring(dev, SRB1_BASE);
4652 } else if (IS_GEN3(dev)) {
4653 init_unused_ring(dev, PRB1_BASE);
4654 init_unused_ring(dev, PRB2_BASE);
4655 }
4656 }
4657
4658 int i915_gem_init_rings(struct drm_device *dev)
4659 {
4660 struct drm_i915_private *dev_priv = dev->dev_private;
4661 int ret;
4662
4663 ret = intel_init_render_ring_buffer(dev);
4664 if (ret)
4665 return ret;
4666
4667 if (HAS_BSD(dev)) {
4668 ret = intel_init_bsd_ring_buffer(dev);
4669 if (ret)
4670 goto cleanup_render_ring;
4671 }
4672
4673 if (HAS_BLT(dev)) {
4674 ret = intel_init_blt_ring_buffer(dev);
4675 if (ret)
4676 goto cleanup_bsd_ring;
4677 }
4678
4679 if (HAS_VEBOX(dev)) {
4680 ret = intel_init_vebox_ring_buffer(dev);
4681 if (ret)
4682 goto cleanup_blt_ring;
4683 }
4684
4685 if (HAS_BSD2(dev)) {
4686 ret = intel_init_bsd2_ring_buffer(dev);
4687 if (ret)
4688 goto cleanup_vebox_ring;
4689 }
4690
4691 return 0;
4692
4693 cleanup_vebox_ring:
4694 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4695 cleanup_blt_ring:
4696 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4697 cleanup_bsd_ring:
4698 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4699 cleanup_render_ring:
4700 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4701
4702 return ret;
4703 }
4704
4705 int
4706 i915_gem_init_hw(struct drm_device *dev)
4707 {
4708 struct drm_i915_private *dev_priv = dev->dev_private;
4709 struct intel_engine_cs *ring;
4710 int ret, i, j;
4711
4712 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4713 return -EIO;
4714
4715 /* Double layer security blanket, see i915_gem_init() */
4716 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4717
4718 if (dev_priv->ellc_size)
4719 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4720
4721 if (IS_HASWELL(dev))
4722 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4723 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4724
4725 if (HAS_PCH_NOP(dev)) {
4726 if (IS_IVYBRIDGE(dev)) {
4727 u32 temp = I915_READ(GEN7_MSG_CTL);
4728 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4729 I915_WRITE(GEN7_MSG_CTL, temp);
4730 } else if (INTEL_INFO(dev)->gen >= 7) {
4731 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4732 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4733 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4734 }
4735 }
4736
4737 i915_gem_init_swizzling(dev);
4738
4739 /*
4740 * At least 830 can leave some of the unused rings
4741 * "active" (ie. head != tail) after resume which
4742 * will prevent c3 entry. Makes sure all unused rings
4743 * are totally idle.
4744 */
4745 init_unused_rings(dev);
4746
4747 BUG_ON(!dev_priv->ring[RCS].default_context);
4748
4749 ret = i915_ppgtt_init_hw(dev);
4750 if (ret) {
4751 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4752 goto out;
4753 }
4754
4755 /* Need to do basic initialisation of all rings first: */
4756 for_each_ring(ring, dev_priv, i) {
4757 ret = ring->init_hw(ring);
4758 if (ret)
4759 goto out;
4760 }
4761
4762 /* We can't enable contexts until all firmware is loaded */
4763 if (HAS_GUC_UCODE(dev)) {
4764 ret = intel_guc_ucode_load(dev);
4765 if (ret) {
4766 /*
4767 * If we got an error and GuC submission is enabled, map
4768 * the error to -EIO so the GPU will be declared wedged.
4769 * OTOH, if we didn't intend to use the GuC anyway, just
4770 * discard the error and carry on.
4771 */
4772 DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4773 i915.enable_guc_submission ? "" :
4774 " (ignored)");
4775 ret = i915.enable_guc_submission ? -EIO : 0;
4776 if (ret)
4777 goto out;
4778 }
4779 }
4780
4781 /*
4782 * Increment the next seqno by 0x100 so we have a visible break
4783 * on re-initialisation
4784 */
4785 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4786 if (ret)
4787 goto out;
4788
4789 /* Now it is safe to go back round and do everything else: */
4790 for_each_ring(ring, dev_priv, i) {
4791 struct drm_i915_gem_request *req;
4792
4793 WARN_ON(!ring->default_context);
4794
4795 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4796 if (ret) {
4797 i915_gem_cleanup_ringbuffer(dev);
4798 goto out;
4799 }
4800
4801 if (ring->id == RCS) {
4802 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4803 i915_gem_l3_remap(req, j);
4804 }
4805
4806 ret = i915_ppgtt_init_ring(req);
4807 if (ret && ret != -EIO) {
4808 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4809 i915_gem_request_cancel(req);
4810 i915_gem_cleanup_ringbuffer(dev);
4811 goto out;
4812 }
4813
4814 ret = i915_gem_context_enable(req);
4815 if (ret && ret != -EIO) {
4816 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4817 i915_gem_request_cancel(req);
4818 i915_gem_cleanup_ringbuffer(dev);
4819 goto out;
4820 }
4821
4822 i915_add_request_no_flush(req);
4823 }
4824
4825 out:
4826 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4827 return ret;
4828 }
4829
4830 int i915_gem_init(struct drm_device *dev)
4831 {
4832 struct drm_i915_private *dev_priv = dev->dev_private;
4833 int ret;
4834
4835 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4836 i915.enable_execlists);
4837
4838 mutex_lock(&dev->struct_mutex);
4839
4840 if (IS_VALLEYVIEW(dev)) {
4841 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4842 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4843 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4844 VLV_GTLC_ALLOWWAKEACK), 10))
4845 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4846 }
4847
4848 if (!i915.enable_execlists) {
4849 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4850 dev_priv->gt.init_rings = i915_gem_init_rings;
4851 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4852 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4853 } else {
4854 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4855 dev_priv->gt.init_rings = intel_logical_rings_init;
4856 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4857 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4858 }
4859
4860 /* This is just a security blanket to placate dragons.
4861 * On some systems, we very sporadically observe that the first TLBs
4862 * used by the CS may be stale, despite us poking the TLB reset. If
4863 * we hold the forcewake during initialisation these problems
4864 * just magically go away.
4865 */
4866 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4867
4868 ret = i915_gem_init_userptr(dev);
4869 if (ret)
4870 goto out_unlock;
4871
4872 i915_gem_init_global_gtt(dev);
4873
4874 ret = i915_gem_context_init(dev);
4875 if (ret)
4876 goto out_unlock;
4877
4878 ret = dev_priv->gt.init_rings(dev);
4879 if (ret)
4880 goto out_unlock;
4881
4882 ret = i915_gem_init_hw(dev);
4883 if (ret == -EIO) {
4884 /* Allow ring initialisation to fail by marking the GPU as
4885 * wedged. But we only want to do this where the GPU is angry,
4886 * for all other failure, such as an allocation failure, bail.
4887 */
4888 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4889 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4890 ret = 0;
4891 }
4892
4893 out_unlock:
4894 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4895 mutex_unlock(&dev->struct_mutex);
4896
4897 return ret;
4898 }
4899
4900 void
4901 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4902 {
4903 struct drm_i915_private *dev_priv = dev->dev_private;
4904 struct intel_engine_cs *ring;
4905 int i;
4906
4907 for_each_ring(ring, dev_priv, i)
4908 dev_priv->gt.cleanup_ring(ring);
4909
4910 if (i915.enable_execlists)
4911 /*
4912 * Neither the BIOS, ourselves or any other kernel
4913 * expects the system to be in execlists mode on startup,
4914 * so we need to reset the GPU back to legacy mode.
4915 */
4916 intel_gpu_reset(dev);
4917 }
4918
4919 static void
4920 init_ring_lists(struct intel_engine_cs *ring)
4921 {
4922 INIT_LIST_HEAD(&ring->active_list);
4923 INIT_LIST_HEAD(&ring->request_list);
4924 }
4925
4926 void
4927 i915_gem_load(struct drm_device *dev)
4928 {
4929 struct drm_i915_private *dev_priv = dev->dev_private;
4930 int i;
4931
4932 dev_priv->objects =
4933 kmem_cache_create("i915_gem_object",
4934 sizeof(struct drm_i915_gem_object), 0,
4935 SLAB_HWCACHE_ALIGN,
4936 NULL);
4937 dev_priv->vmas =
4938 kmem_cache_create("i915_gem_vma",
4939 sizeof(struct i915_vma), 0,
4940 SLAB_HWCACHE_ALIGN,
4941 NULL);
4942 dev_priv->requests =
4943 kmem_cache_create("i915_gem_request",
4944 sizeof(struct drm_i915_gem_request), 0,
4945 SLAB_HWCACHE_ALIGN,
4946 NULL);
4947
4948 INIT_LIST_HEAD(&dev_priv->vm_list);
4949 INIT_LIST_HEAD(&dev_priv->context_list);
4950 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4951 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4952 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4953 for (i = 0; i < I915_NUM_RINGS; i++)
4954 init_ring_lists(&dev_priv->ring[i]);
4955 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4956 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4957 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4958 i915_gem_retire_work_handler);
4959 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4960 i915_gem_idle_work_handler);
4961 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4962
4963 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4964
4965 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4966 dev_priv->num_fence_regs = 32;
4967 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4968 dev_priv->num_fence_regs = 16;
4969 else
4970 dev_priv->num_fence_regs = 8;
4971
4972 if (intel_vgpu_active(dev))
4973 dev_priv->num_fence_regs =
4974 I915_READ(vgtif_reg(avail_rs.fence_num));
4975
4976 /*
4977 * Set initial sequence number for requests.
4978 * Using this number allows the wraparound to happen early,
4979 * catching any obvious problems.
4980 */
4981 dev_priv->next_seqno = ((u32)~0 - 0x1100);
4982 dev_priv->last_seqno = ((u32)~0 - 0x1101);
4983
4984 /* Initialize fence registers to zero */
4985 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4986 i915_gem_restore_fences(dev);
4987
4988 i915_gem_detect_bit_6_swizzle(dev);
4989 init_waitqueue_head(&dev_priv->pending_flip_queue);
4990
4991 dev_priv->mm.interruptible = true;
4992
4993 i915_gem_shrinker_init(dev_priv);
4994
4995 mutex_init(&dev_priv->fb_tracking.lock);
4996 }
4997
4998 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4999 {
5000 struct drm_i915_file_private *file_priv = file->driver_priv;
5001
5002 /* Clean up our request list when the client is going away, so that
5003 * later retire_requests won't dereference our soon-to-be-gone
5004 * file_priv.
5005 */
5006 spin_lock(&file_priv->mm.lock);
5007 while (!list_empty(&file_priv->mm.request_list)) {
5008 struct drm_i915_gem_request *request;
5009
5010 request = list_first_entry(&file_priv->mm.request_list,
5011 struct drm_i915_gem_request,
5012 client_list);
5013 list_del(&request->client_list);
5014 request->file_priv = NULL;
5015 }
5016 spin_unlock(&file_priv->mm.lock);
5017
5018 if (!list_empty(&file_priv->rps.link)) {
5019 spin_lock(&to_i915(dev)->rps.client_lock);
5020 list_del(&file_priv->rps.link);
5021 spin_unlock(&to_i915(dev)->rps.client_lock);
5022 }
5023 }
5024
5025 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5026 {
5027 struct drm_i915_file_private *file_priv;
5028 int ret;
5029
5030 DRM_DEBUG_DRIVER("\n");
5031
5032 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5033 if (!file_priv)
5034 return -ENOMEM;
5035
5036 file->driver_priv = file_priv;
5037 file_priv->dev_priv = dev->dev_private;
5038 file_priv->file = file;
5039 INIT_LIST_HEAD(&file_priv->rps.link);
5040
5041 spin_lock_init(&file_priv->mm.lock);
5042 INIT_LIST_HEAD(&file_priv->mm.request_list);
5043
5044 ret = i915_gem_context_open(dev, file);
5045 if (ret)
5046 kfree(file_priv);
5047
5048 return ret;
5049 }
5050
5051 /**
5052 * i915_gem_track_fb - update frontbuffer tracking
5053 * @old: current GEM buffer for the frontbuffer slots
5054 * @new: new GEM buffer for the frontbuffer slots
5055 * @frontbuffer_bits: bitmask of frontbuffer slots
5056 *
5057 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5058 * from @old and setting them in @new. Both @old and @new can be NULL.
5059 */
5060 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5061 struct drm_i915_gem_object *new,
5062 unsigned frontbuffer_bits)
5063 {
5064 if (old) {
5065 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5066 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5067 old->frontbuffer_bits &= ~frontbuffer_bits;
5068 }
5069
5070 if (new) {
5071 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5072 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5073 new->frontbuffer_bits |= frontbuffer_bits;
5074 }
5075 }
5076
5077 /* All the new VM stuff */
5078 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5079 struct i915_address_space *vm)
5080 {
5081 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5082 struct i915_vma *vma;
5083
5084 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5085
5086 list_for_each_entry(vma, &o->vma_list, vma_link) {
5087 if (i915_is_ggtt(vma->vm) &&
5088 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5089 continue;
5090 if (vma->vm == vm)
5091 return vma->node.start;
5092 }
5093
5094 WARN(1, "%s vma for this object not found.\n",
5095 i915_is_ggtt(vm) ? "global" : "ppgtt");
5096 return -1;
5097 }
5098
5099 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5100 const struct i915_ggtt_view *view)
5101 {
5102 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5103 struct i915_vma *vma;
5104
5105 list_for_each_entry(vma, &o->vma_list, vma_link)
5106 if (vma->vm == ggtt &&
5107 i915_ggtt_view_equal(&vma->ggtt_view, view))
5108 return vma->node.start;
5109
5110 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5111 return -1;
5112 }
5113
5114 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5115 struct i915_address_space *vm)
5116 {
5117 struct i915_vma *vma;
5118
5119 list_for_each_entry(vma, &o->vma_list, vma_link) {
5120 if (i915_is_ggtt(vma->vm) &&
5121 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5122 continue;
5123 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5124 return true;
5125 }
5126
5127 return false;
5128 }
5129
5130 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5131 const struct i915_ggtt_view *view)
5132 {
5133 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5134 struct i915_vma *vma;
5135
5136 list_for_each_entry(vma, &o->vma_list, vma_link)
5137 if (vma->vm == ggtt &&
5138 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5139 drm_mm_node_allocated(&vma->node))
5140 return true;
5141
5142 return false;
5143 }
5144
5145 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5146 {
5147 struct i915_vma *vma;
5148
5149 list_for_each_entry(vma, &o->vma_list, vma_link)
5150 if (drm_mm_node_allocated(&vma->node))
5151 return true;
5152
5153 return false;
5154 }
5155
5156 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5157 struct i915_address_space *vm)
5158 {
5159 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5160 struct i915_vma *vma;
5161
5162 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5163
5164 BUG_ON(list_empty(&o->vma_list));
5165
5166 list_for_each_entry(vma, &o->vma_list, vma_link) {
5167 if (i915_is_ggtt(vma->vm) &&
5168 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5169 continue;
5170 if (vma->vm == vm)
5171 return vma->node.size;
5172 }
5173 return 0;
5174 }
5175
5176 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5177 {
5178 struct i915_vma *vma;
5179 list_for_each_entry(vma, &obj->vma_list, vma_link)
5180 if (vma->pin_count > 0)
5181 return true;
5182
5183 return false;
5184 }
5185
5186 /* Allocate a new GEM object and fill it with the supplied data */
5187 struct drm_i915_gem_object *
5188 i915_gem_object_create_from_data(struct drm_device *dev,
5189 const void *data, size_t size)
5190 {
5191 struct drm_i915_gem_object *obj;
5192 struct sg_table *sg;
5193 size_t bytes;
5194 int ret;
5195
5196 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5197 if (IS_ERR_OR_NULL(obj))
5198 return obj;
5199
5200 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5201 if (ret)
5202 goto fail;
5203
5204 ret = i915_gem_object_get_pages(obj);
5205 if (ret)
5206 goto fail;
5207
5208 i915_gem_object_pin_pages(obj);
5209 sg = obj->pages;
5210 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5211 i915_gem_object_unpin_pages(obj);
5212
5213 if (WARN_ON(bytes != size)) {
5214 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5215 ret = -EFAULT;
5216 goto fail;
5217 }
5218
5219 return obj;
5220
5221 fail:
5222 drm_gem_object_unreference(&obj->base);
5223 return ERR_PTR(ret);
5224 }
This page took 0.203426 seconds and 6 git commands to generate.