drm/i915: Move flags describing VMA mappings into the VMA
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67 {
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
87 obj->fence_dirty = false;
88 obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103 {
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134 #undef EXIT_COND
135
136 return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 int ret;
143
144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
152 WARN_ON(i915_verify_lists(dev));
153 return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159 return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_init *args = data;
168
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
175
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
180 mutex_lock(&dev->struct_mutex);
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
183 dev_priv->gtt.mappable_end = args->gtt_end;
184 mutex_unlock(&dev->struct_mutex);
185
186 return 0;
187 }
188
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191 struct drm_file *file)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 struct drm_i915_gem_get_aperture *args = data;
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
197
198 pinned = 0;
199 mutex_lock(&dev->struct_mutex);
200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201 if (i915_gem_obj_is_pinned(obj))
202 pinned += i915_gem_obj_ggtt_size(obj);
203 mutex_unlock(&dev->struct_mutex);
204
205 args->aper_size = dev_priv->gtt.base.total;
206 args->aper_available_size = args->aper_size - pinned;
207
208 return 0;
209 }
210
211 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
212 {
213 drm_dma_handle_t *phys = obj->phys_handle;
214
215 if (!phys)
216 return;
217
218 if (obj->madv == I915_MADV_WILLNEED) {
219 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
220 char *vaddr = phys->vaddr;
221 int i;
222
223 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224 struct page *page = shmem_read_mapping_page(mapping, i);
225 if (!IS_ERR(page)) {
226 char *dst = kmap_atomic(page);
227 memcpy(dst, vaddr, PAGE_SIZE);
228 drm_clflush_virt_range(dst, PAGE_SIZE);
229 kunmap_atomic(dst);
230
231 set_page_dirty(page);
232 mark_page_accessed(page);
233 page_cache_release(page);
234 }
235 vaddr += PAGE_SIZE;
236 }
237 i915_gem_chipset_flush(obj->base.dev);
238 }
239
240 #ifdef CONFIG_X86
241 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
242 #endif
243 drm_pci_free(obj->base.dev, phys);
244 obj->phys_handle = NULL;
245 }
246
247 int
248 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
249 int align)
250 {
251 drm_dma_handle_t *phys;
252 struct address_space *mapping;
253 char *vaddr;
254 int i;
255
256 if (obj->phys_handle) {
257 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
258 return -EBUSY;
259
260 return 0;
261 }
262
263 if (obj->madv != I915_MADV_WILLNEED)
264 return -EFAULT;
265
266 if (obj->base.filp == NULL)
267 return -EINVAL;
268
269 /* create a new object */
270 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
271 if (!phys)
272 return -ENOMEM;
273
274 vaddr = phys->vaddr;
275 #ifdef CONFIG_X86
276 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
277 #endif
278 mapping = file_inode(obj->base.filp)->i_mapping;
279 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280 struct page *page;
281 char *src;
282
283 page = shmem_read_mapping_page(mapping, i);
284 if (IS_ERR(page)) {
285 #ifdef CONFIG_X86
286 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
287 #endif
288 drm_pci_free(obj->base.dev, phys);
289 return PTR_ERR(page);
290 }
291
292 src = kmap_atomic(page);
293 memcpy(vaddr, src, PAGE_SIZE);
294 kunmap_atomic(src);
295
296 mark_page_accessed(page);
297 page_cache_release(page);
298
299 vaddr += PAGE_SIZE;
300 }
301
302 obj->phys_handle = phys;
303 return 0;
304 }
305
306 static int
307 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
308 struct drm_i915_gem_pwrite *args,
309 struct drm_file *file_priv)
310 {
311 struct drm_device *dev = obj->base.dev;
312 void *vaddr = obj->phys_handle->vaddr + args->offset;
313 char __user *user_data = to_user_ptr(args->data_ptr);
314
315 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
316 unsigned long unwritten;
317
318 /* The physical object once assigned is fixed for the lifetime
319 * of the obj, so we can safely drop the lock and continue
320 * to access vaddr.
321 */
322 mutex_unlock(&dev->struct_mutex);
323 unwritten = copy_from_user(vaddr, user_data, args->size);
324 mutex_lock(&dev->struct_mutex);
325 if (unwritten)
326 return -EFAULT;
327 }
328
329 i915_gem_chipset_flush(dev);
330 return 0;
331 }
332
333 void *i915_gem_object_alloc(struct drm_device *dev)
334 {
335 struct drm_i915_private *dev_priv = dev->dev_private;
336 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
337 }
338
339 void i915_gem_object_free(struct drm_i915_gem_object *obj)
340 {
341 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
342 kmem_cache_free(dev_priv->slab, obj);
343 }
344
345 static int
346 i915_gem_create(struct drm_file *file,
347 struct drm_device *dev,
348 uint64_t size,
349 uint32_t *handle_p)
350 {
351 struct drm_i915_gem_object *obj;
352 int ret;
353 u32 handle;
354
355 size = roundup(size, PAGE_SIZE);
356 if (size == 0)
357 return -EINVAL;
358
359 /* Allocate the new object */
360 obj = i915_gem_alloc_object(dev, size);
361 if (obj == NULL)
362 return -ENOMEM;
363
364 ret = drm_gem_handle_create(file, &obj->base, &handle);
365 /* drop reference from allocate - handle holds it now */
366 drm_gem_object_unreference_unlocked(&obj->base);
367 if (ret)
368 return ret;
369
370 *handle_p = handle;
371 return 0;
372 }
373
374 int
375 i915_gem_dumb_create(struct drm_file *file,
376 struct drm_device *dev,
377 struct drm_mode_create_dumb *args)
378 {
379 /* have to work out size/pitch and return them */
380 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
381 args->size = args->pitch * args->height;
382 return i915_gem_create(file, dev,
383 args->size, &args->handle);
384 }
385
386 /**
387 * Creates a new mm object and returns a handle to it.
388 */
389 int
390 i915_gem_create_ioctl(struct drm_device *dev, void *data,
391 struct drm_file *file)
392 {
393 struct drm_i915_gem_create *args = data;
394
395 return i915_gem_create(file, dev,
396 args->size, &args->handle);
397 }
398
399 static inline int
400 __copy_to_user_swizzled(char __user *cpu_vaddr,
401 const char *gpu_vaddr, int gpu_offset,
402 int length)
403 {
404 int ret, cpu_offset = 0;
405
406 while (length > 0) {
407 int cacheline_end = ALIGN(gpu_offset + 1, 64);
408 int this_length = min(cacheline_end - gpu_offset, length);
409 int swizzled_gpu_offset = gpu_offset ^ 64;
410
411 ret = __copy_to_user(cpu_vaddr + cpu_offset,
412 gpu_vaddr + swizzled_gpu_offset,
413 this_length);
414 if (ret)
415 return ret + length;
416
417 cpu_offset += this_length;
418 gpu_offset += this_length;
419 length -= this_length;
420 }
421
422 return 0;
423 }
424
425 static inline int
426 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
427 const char __user *cpu_vaddr,
428 int length)
429 {
430 int ret, cpu_offset = 0;
431
432 while (length > 0) {
433 int cacheline_end = ALIGN(gpu_offset + 1, 64);
434 int this_length = min(cacheline_end - gpu_offset, length);
435 int swizzled_gpu_offset = gpu_offset ^ 64;
436
437 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
438 cpu_vaddr + cpu_offset,
439 this_length);
440 if (ret)
441 return ret + length;
442
443 cpu_offset += this_length;
444 gpu_offset += this_length;
445 length -= this_length;
446 }
447
448 return 0;
449 }
450
451 /*
452 * Pins the specified object's pages and synchronizes the object with
453 * GPU accesses. Sets needs_clflush to non-zero if the caller should
454 * flush the object from the CPU cache.
455 */
456 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
457 int *needs_clflush)
458 {
459 int ret;
460
461 *needs_clflush = 0;
462
463 if (!obj->base.filp)
464 return -EINVAL;
465
466 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
467 /* If we're not in the cpu read domain, set ourself into the gtt
468 * read domain and manually flush cachelines (if required). This
469 * optimizes for the case when the gpu will dirty the data
470 * anyway again before the next pread happens. */
471 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
472 obj->cache_level);
473 ret = i915_gem_object_wait_rendering(obj, true);
474 if (ret)
475 return ret;
476
477 i915_gem_object_retire(obj);
478 }
479
480 ret = i915_gem_object_get_pages(obj);
481 if (ret)
482 return ret;
483
484 i915_gem_object_pin_pages(obj);
485
486 return ret;
487 }
488
489 /* Per-page copy function for the shmem pread fastpath.
490 * Flushes invalid cachelines before reading the target if
491 * needs_clflush is set. */
492 static int
493 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
494 char __user *user_data,
495 bool page_do_bit17_swizzling, bool needs_clflush)
496 {
497 char *vaddr;
498 int ret;
499
500 if (unlikely(page_do_bit17_swizzling))
501 return -EINVAL;
502
503 vaddr = kmap_atomic(page);
504 if (needs_clflush)
505 drm_clflush_virt_range(vaddr + shmem_page_offset,
506 page_length);
507 ret = __copy_to_user_inatomic(user_data,
508 vaddr + shmem_page_offset,
509 page_length);
510 kunmap_atomic(vaddr);
511
512 return ret ? -EFAULT : 0;
513 }
514
515 static void
516 shmem_clflush_swizzled_range(char *addr, unsigned long length,
517 bool swizzled)
518 {
519 if (unlikely(swizzled)) {
520 unsigned long start = (unsigned long) addr;
521 unsigned long end = (unsigned long) addr + length;
522
523 /* For swizzling simply ensure that we always flush both
524 * channels. Lame, but simple and it works. Swizzled
525 * pwrite/pread is far from a hotpath - current userspace
526 * doesn't use it at all. */
527 start = round_down(start, 128);
528 end = round_up(end, 128);
529
530 drm_clflush_virt_range((void *)start, end - start);
531 } else {
532 drm_clflush_virt_range(addr, length);
533 }
534
535 }
536
537 /* Only difference to the fast-path function is that this can handle bit17
538 * and uses non-atomic copy and kmap functions. */
539 static int
540 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
541 char __user *user_data,
542 bool page_do_bit17_swizzling, bool needs_clflush)
543 {
544 char *vaddr;
545 int ret;
546
547 vaddr = kmap(page);
548 if (needs_clflush)
549 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
550 page_length,
551 page_do_bit17_swizzling);
552
553 if (page_do_bit17_swizzling)
554 ret = __copy_to_user_swizzled(user_data,
555 vaddr, shmem_page_offset,
556 page_length);
557 else
558 ret = __copy_to_user(user_data,
559 vaddr + shmem_page_offset,
560 page_length);
561 kunmap(page);
562
563 return ret ? - EFAULT : 0;
564 }
565
566 static int
567 i915_gem_shmem_pread(struct drm_device *dev,
568 struct drm_i915_gem_object *obj,
569 struct drm_i915_gem_pread *args,
570 struct drm_file *file)
571 {
572 char __user *user_data;
573 ssize_t remain;
574 loff_t offset;
575 int shmem_page_offset, page_length, ret = 0;
576 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
577 int prefaulted = 0;
578 int needs_clflush = 0;
579 struct sg_page_iter sg_iter;
580
581 user_data = to_user_ptr(args->data_ptr);
582 remain = args->size;
583
584 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
585
586 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
587 if (ret)
588 return ret;
589
590 offset = args->offset;
591
592 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
593 offset >> PAGE_SHIFT) {
594 struct page *page = sg_page_iter_page(&sg_iter);
595
596 if (remain <= 0)
597 break;
598
599 /* Operation in this page
600 *
601 * shmem_page_offset = offset within page in shmem file
602 * page_length = bytes to copy for this page
603 */
604 shmem_page_offset = offset_in_page(offset);
605 page_length = remain;
606 if ((shmem_page_offset + page_length) > PAGE_SIZE)
607 page_length = PAGE_SIZE - shmem_page_offset;
608
609 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
610 (page_to_phys(page) & (1 << 17)) != 0;
611
612 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
613 user_data, page_do_bit17_swizzling,
614 needs_clflush);
615 if (ret == 0)
616 goto next_page;
617
618 mutex_unlock(&dev->struct_mutex);
619
620 if (likely(!i915.prefault_disable) && !prefaulted) {
621 ret = fault_in_multipages_writeable(user_data, remain);
622 /* Userspace is tricking us, but we've already clobbered
623 * its pages with the prefault and promised to write the
624 * data up to the first fault. Hence ignore any errors
625 * and just continue. */
626 (void)ret;
627 prefaulted = 1;
628 }
629
630 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
631 user_data, page_do_bit17_swizzling,
632 needs_clflush);
633
634 mutex_lock(&dev->struct_mutex);
635
636 if (ret)
637 goto out;
638
639 next_page:
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
643 }
644
645 out:
646 i915_gem_object_unpin_pages(obj);
647
648 return ret;
649 }
650
651 /**
652 * Reads data from the object referenced by handle.
653 *
654 * On error, the contents of *data are undefined.
655 */
656 int
657 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
658 struct drm_file *file)
659 {
660 struct drm_i915_gem_pread *args = data;
661 struct drm_i915_gem_object *obj;
662 int ret = 0;
663
664 if (args->size == 0)
665 return 0;
666
667 if (!access_ok(VERIFY_WRITE,
668 to_user_ptr(args->data_ptr),
669 args->size))
670 return -EFAULT;
671
672 ret = i915_mutex_lock_interruptible(dev);
673 if (ret)
674 return ret;
675
676 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
677 if (&obj->base == NULL) {
678 ret = -ENOENT;
679 goto unlock;
680 }
681
682 /* Bounds check source. */
683 if (args->offset > obj->base.size ||
684 args->size > obj->base.size - args->offset) {
685 ret = -EINVAL;
686 goto out;
687 }
688
689 /* prime objects have no backing filp to GEM pread/pwrite
690 * pages from.
691 */
692 if (!obj->base.filp) {
693 ret = -EINVAL;
694 goto out;
695 }
696
697 trace_i915_gem_object_pread(obj, args->offset, args->size);
698
699 ret = i915_gem_shmem_pread(dev, obj, args, file);
700
701 out:
702 drm_gem_object_unreference(&obj->base);
703 unlock:
704 mutex_unlock(&dev->struct_mutex);
705 return ret;
706 }
707
708 /* This is the fast write path which cannot handle
709 * page faults in the source data
710 */
711
712 static inline int
713 fast_user_write(struct io_mapping *mapping,
714 loff_t page_base, int page_offset,
715 char __user *user_data,
716 int length)
717 {
718 void __iomem *vaddr_atomic;
719 void *vaddr;
720 unsigned long unwritten;
721
722 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
723 /* We can use the cpu mem copy function because this is X86. */
724 vaddr = (void __force*)vaddr_atomic + page_offset;
725 unwritten = __copy_from_user_inatomic_nocache(vaddr,
726 user_data, length);
727 io_mapping_unmap_atomic(vaddr_atomic);
728 return unwritten;
729 }
730
731 /**
732 * This is the fast pwrite path, where we copy the data directly from the
733 * user into the GTT, uncached.
734 */
735 static int
736 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
737 struct drm_i915_gem_object *obj,
738 struct drm_i915_gem_pwrite *args,
739 struct drm_file *file)
740 {
741 struct drm_i915_private *dev_priv = dev->dev_private;
742 ssize_t remain;
743 loff_t offset, page_base;
744 char __user *user_data;
745 int page_offset, page_length, ret;
746
747 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
748 if (ret)
749 goto out;
750
751 ret = i915_gem_object_set_to_gtt_domain(obj, true);
752 if (ret)
753 goto out_unpin;
754
755 ret = i915_gem_object_put_fence(obj);
756 if (ret)
757 goto out_unpin;
758
759 user_data = to_user_ptr(args->data_ptr);
760 remain = args->size;
761
762 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
763
764 while (remain > 0) {
765 /* Operation in this page
766 *
767 * page_base = page offset within aperture
768 * page_offset = offset within page
769 * page_length = bytes to copy for this page
770 */
771 page_base = offset & PAGE_MASK;
772 page_offset = offset_in_page(offset);
773 page_length = remain;
774 if ((page_offset + remain) > PAGE_SIZE)
775 page_length = PAGE_SIZE - page_offset;
776
777 /* If we get a fault while copying data, then (presumably) our
778 * source page isn't available. Return the error and we'll
779 * retry in the slow path.
780 */
781 if (fast_user_write(dev_priv->gtt.mappable, page_base,
782 page_offset, user_data, page_length)) {
783 ret = -EFAULT;
784 goto out_unpin;
785 }
786
787 remain -= page_length;
788 user_data += page_length;
789 offset += page_length;
790 }
791
792 out_unpin:
793 i915_gem_object_ggtt_unpin(obj);
794 out:
795 return ret;
796 }
797
798 /* Per-page copy function for the shmem pwrite fastpath.
799 * Flushes invalid cachelines before writing to the target if
800 * needs_clflush_before is set and flushes out any written cachelines after
801 * writing if needs_clflush is set. */
802 static int
803 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
804 char __user *user_data,
805 bool page_do_bit17_swizzling,
806 bool needs_clflush_before,
807 bool needs_clflush_after)
808 {
809 char *vaddr;
810 int ret;
811
812 if (unlikely(page_do_bit17_swizzling))
813 return -EINVAL;
814
815 vaddr = kmap_atomic(page);
816 if (needs_clflush_before)
817 drm_clflush_virt_range(vaddr + shmem_page_offset,
818 page_length);
819 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
820 user_data, page_length);
821 if (needs_clflush_after)
822 drm_clflush_virt_range(vaddr + shmem_page_offset,
823 page_length);
824 kunmap_atomic(vaddr);
825
826 return ret ? -EFAULT : 0;
827 }
828
829 /* Only difference to the fast-path function is that this can handle bit17
830 * and uses non-atomic copy and kmap functions. */
831 static int
832 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
833 char __user *user_data,
834 bool page_do_bit17_swizzling,
835 bool needs_clflush_before,
836 bool needs_clflush_after)
837 {
838 char *vaddr;
839 int ret;
840
841 vaddr = kmap(page);
842 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
843 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
844 page_length,
845 page_do_bit17_swizzling);
846 if (page_do_bit17_swizzling)
847 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
848 user_data,
849 page_length);
850 else
851 ret = __copy_from_user(vaddr + shmem_page_offset,
852 user_data,
853 page_length);
854 if (needs_clflush_after)
855 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
856 page_length,
857 page_do_bit17_swizzling);
858 kunmap(page);
859
860 return ret ? -EFAULT : 0;
861 }
862
863 static int
864 i915_gem_shmem_pwrite(struct drm_device *dev,
865 struct drm_i915_gem_object *obj,
866 struct drm_i915_gem_pwrite *args,
867 struct drm_file *file)
868 {
869 ssize_t remain;
870 loff_t offset;
871 char __user *user_data;
872 int shmem_page_offset, page_length, ret = 0;
873 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
874 int hit_slowpath = 0;
875 int needs_clflush_after = 0;
876 int needs_clflush_before = 0;
877 struct sg_page_iter sg_iter;
878
879 user_data = to_user_ptr(args->data_ptr);
880 remain = args->size;
881
882 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
883
884 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
885 /* If we're not in the cpu write domain, set ourself into the gtt
886 * write domain and manually flush cachelines (if required). This
887 * optimizes for the case when the gpu will use the data
888 * right away and we therefore have to clflush anyway. */
889 needs_clflush_after = cpu_write_needs_clflush(obj);
890 ret = i915_gem_object_wait_rendering(obj, false);
891 if (ret)
892 return ret;
893
894 i915_gem_object_retire(obj);
895 }
896 /* Same trick applies to invalidate partially written cachelines read
897 * before writing. */
898 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
899 needs_clflush_before =
900 !cpu_cache_is_coherent(dev, obj->cache_level);
901
902 ret = i915_gem_object_get_pages(obj);
903 if (ret)
904 return ret;
905
906 i915_gem_object_pin_pages(obj);
907
908 offset = args->offset;
909 obj->dirty = 1;
910
911 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
912 offset >> PAGE_SHIFT) {
913 struct page *page = sg_page_iter_page(&sg_iter);
914 int partial_cacheline_write;
915
916 if (remain <= 0)
917 break;
918
919 /* Operation in this page
920 *
921 * shmem_page_offset = offset within page in shmem file
922 * page_length = bytes to copy for this page
923 */
924 shmem_page_offset = offset_in_page(offset);
925
926 page_length = remain;
927 if ((shmem_page_offset + page_length) > PAGE_SIZE)
928 page_length = PAGE_SIZE - shmem_page_offset;
929
930 /* If we don't overwrite a cacheline completely we need to be
931 * careful to have up-to-date data by first clflushing. Don't
932 * overcomplicate things and flush the entire patch. */
933 partial_cacheline_write = needs_clflush_before &&
934 ((shmem_page_offset | page_length)
935 & (boot_cpu_data.x86_clflush_size - 1));
936
937 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
938 (page_to_phys(page) & (1 << 17)) != 0;
939
940 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
941 user_data, page_do_bit17_swizzling,
942 partial_cacheline_write,
943 needs_clflush_after);
944 if (ret == 0)
945 goto next_page;
946
947 hit_slowpath = 1;
948 mutex_unlock(&dev->struct_mutex);
949 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
950 user_data, page_do_bit17_swizzling,
951 partial_cacheline_write,
952 needs_clflush_after);
953
954 mutex_lock(&dev->struct_mutex);
955
956 if (ret)
957 goto out;
958
959 next_page:
960 remain -= page_length;
961 user_data += page_length;
962 offset += page_length;
963 }
964
965 out:
966 i915_gem_object_unpin_pages(obj);
967
968 if (hit_slowpath) {
969 /*
970 * Fixup: Flush cpu caches in case we didn't flush the dirty
971 * cachelines in-line while writing and the object moved
972 * out of the cpu write domain while we've dropped the lock.
973 */
974 if (!needs_clflush_after &&
975 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
976 if (i915_gem_clflush_object(obj, obj->pin_display))
977 i915_gem_chipset_flush(dev);
978 }
979 }
980
981 if (needs_clflush_after)
982 i915_gem_chipset_flush(dev);
983
984 return ret;
985 }
986
987 /**
988 * Writes data to the object referenced by handle.
989 *
990 * On error, the contents of the buffer that were to be modified are undefined.
991 */
992 int
993 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
994 struct drm_file *file)
995 {
996 struct drm_i915_gem_pwrite *args = data;
997 struct drm_i915_gem_object *obj;
998 int ret;
999
1000 if (args->size == 0)
1001 return 0;
1002
1003 if (!access_ok(VERIFY_READ,
1004 to_user_ptr(args->data_ptr),
1005 args->size))
1006 return -EFAULT;
1007
1008 if (likely(!i915.prefault_disable)) {
1009 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1010 args->size);
1011 if (ret)
1012 return -EFAULT;
1013 }
1014
1015 ret = i915_mutex_lock_interruptible(dev);
1016 if (ret)
1017 return ret;
1018
1019 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1020 if (&obj->base == NULL) {
1021 ret = -ENOENT;
1022 goto unlock;
1023 }
1024
1025 /* Bounds check destination. */
1026 if (args->offset > obj->base.size ||
1027 args->size > obj->base.size - args->offset) {
1028 ret = -EINVAL;
1029 goto out;
1030 }
1031
1032 /* prime objects have no backing filp to GEM pread/pwrite
1033 * pages from.
1034 */
1035 if (!obj->base.filp) {
1036 ret = -EINVAL;
1037 goto out;
1038 }
1039
1040 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1041
1042 ret = -EFAULT;
1043 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1044 * it would end up going through the fenced access, and we'll get
1045 * different detiling behavior between reading and writing.
1046 * pread/pwrite currently are reading and writing from the CPU
1047 * perspective, requiring manual detiling by the client.
1048 */
1049 if (obj->phys_handle) {
1050 ret = i915_gem_phys_pwrite(obj, args, file);
1051 goto out;
1052 }
1053
1054 if (obj->tiling_mode == I915_TILING_NONE &&
1055 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1056 cpu_write_needs_clflush(obj)) {
1057 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1058 /* Note that the gtt paths might fail with non-page-backed user
1059 * pointers (e.g. gtt mappings when moving data between
1060 * textures). Fallback to the shmem path in that case. */
1061 }
1062
1063 if (ret == -EFAULT || ret == -ENOSPC)
1064 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1065
1066 out:
1067 drm_gem_object_unreference(&obj->base);
1068 unlock:
1069 mutex_unlock(&dev->struct_mutex);
1070 return ret;
1071 }
1072
1073 int
1074 i915_gem_check_wedge(struct i915_gpu_error *error,
1075 bool interruptible)
1076 {
1077 if (i915_reset_in_progress(error)) {
1078 /* Non-interruptible callers can't handle -EAGAIN, hence return
1079 * -EIO unconditionally for these. */
1080 if (!interruptible)
1081 return -EIO;
1082
1083 /* Recovery complete, but the reset failed ... */
1084 if (i915_terminally_wedged(error))
1085 return -EIO;
1086
1087 /*
1088 * Check if GPU Reset is in progress - we need intel_ring_begin
1089 * to work properly to reinit the hw state while the gpu is
1090 * still marked as reset-in-progress. Handle this with a flag.
1091 */
1092 if (!error->reload_in_reset)
1093 return -EAGAIN;
1094 }
1095
1096 return 0;
1097 }
1098
1099 /*
1100 * Compare seqno against outstanding lazy request. Emit a request if they are
1101 * equal.
1102 */
1103 int
1104 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1105 {
1106 int ret;
1107
1108 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1109
1110 ret = 0;
1111 if (seqno == ring->outstanding_lazy_seqno)
1112 ret = i915_add_request(ring, NULL);
1113
1114 return ret;
1115 }
1116
1117 static void fake_irq(unsigned long data)
1118 {
1119 wake_up_process((struct task_struct *)data);
1120 }
1121
1122 static bool missed_irq(struct drm_i915_private *dev_priv,
1123 struct intel_engine_cs *ring)
1124 {
1125 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1126 }
1127
1128 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1129 {
1130 if (file_priv == NULL)
1131 return true;
1132
1133 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1134 }
1135
1136 /**
1137 * __wait_seqno - wait until execution of seqno has finished
1138 * @ring: the ring expected to report seqno
1139 * @seqno: duh!
1140 * @reset_counter: reset sequence associated with the given seqno
1141 * @interruptible: do an interruptible wait (normally yes)
1142 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1143 *
1144 * Note: It is of utmost importance that the passed in seqno and reset_counter
1145 * values have been read by the caller in an smp safe manner. Where read-side
1146 * locks are involved, it is sufficient to read the reset_counter before
1147 * unlocking the lock that protects the seqno. For lockless tricks, the
1148 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1149 * inserted.
1150 *
1151 * Returns 0 if the seqno was found within the alloted time. Else returns the
1152 * errno with remaining time filled in timeout argument.
1153 */
1154 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1155 unsigned reset_counter,
1156 bool interruptible,
1157 s64 *timeout,
1158 struct drm_i915_file_private *file_priv)
1159 {
1160 struct drm_device *dev = ring->dev;
1161 struct drm_i915_private *dev_priv = dev->dev_private;
1162 const bool irq_test_in_progress =
1163 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1164 DEFINE_WAIT(wait);
1165 unsigned long timeout_expire;
1166 s64 before, now;
1167 int ret;
1168
1169 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1170
1171 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1172 return 0;
1173
1174 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1175
1176 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1177 gen6_rps_boost(dev_priv);
1178 if (file_priv)
1179 mod_delayed_work(dev_priv->wq,
1180 &file_priv->mm.idle_work,
1181 msecs_to_jiffies(100));
1182 }
1183
1184 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1185 return -ENODEV;
1186
1187 /* Record current time in case interrupted by signal, or wedged */
1188 trace_i915_gem_request_wait_begin(ring, seqno);
1189 before = ktime_get_raw_ns();
1190 for (;;) {
1191 struct timer_list timer;
1192
1193 prepare_to_wait(&ring->irq_queue, &wait,
1194 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1195
1196 /* We need to check whether any gpu reset happened in between
1197 * the caller grabbing the seqno and now ... */
1198 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1199 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1200 * is truely gone. */
1201 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1202 if (ret == 0)
1203 ret = -EAGAIN;
1204 break;
1205 }
1206
1207 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1208 ret = 0;
1209 break;
1210 }
1211
1212 if (interruptible && signal_pending(current)) {
1213 ret = -ERESTARTSYS;
1214 break;
1215 }
1216
1217 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1218 ret = -ETIME;
1219 break;
1220 }
1221
1222 timer.function = NULL;
1223 if (timeout || missed_irq(dev_priv, ring)) {
1224 unsigned long expire;
1225
1226 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1227 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1228 mod_timer(&timer, expire);
1229 }
1230
1231 io_schedule();
1232
1233 if (timer.function) {
1234 del_singleshot_timer_sync(&timer);
1235 destroy_timer_on_stack(&timer);
1236 }
1237 }
1238 now = ktime_get_raw_ns();
1239 trace_i915_gem_request_wait_end(ring, seqno);
1240
1241 if (!irq_test_in_progress)
1242 ring->irq_put(ring);
1243
1244 finish_wait(&ring->irq_queue, &wait);
1245
1246 if (timeout) {
1247 s64 tres = *timeout - (now - before);
1248
1249 *timeout = tres < 0 ? 0 : tres;
1250 }
1251
1252 return ret;
1253 }
1254
1255 /**
1256 * Waits for a sequence number to be signaled, and cleans up the
1257 * request and object lists appropriately for that event.
1258 */
1259 int
1260 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1261 {
1262 struct drm_device *dev = ring->dev;
1263 struct drm_i915_private *dev_priv = dev->dev_private;
1264 bool interruptible = dev_priv->mm.interruptible;
1265 int ret;
1266
1267 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1268 BUG_ON(seqno == 0);
1269
1270 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1271 if (ret)
1272 return ret;
1273
1274 ret = i915_gem_check_olr(ring, seqno);
1275 if (ret)
1276 return ret;
1277
1278 return __wait_seqno(ring, seqno,
1279 atomic_read(&dev_priv->gpu_error.reset_counter),
1280 interruptible, NULL, NULL);
1281 }
1282
1283 static int
1284 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1285 struct intel_engine_cs *ring)
1286 {
1287 if (!obj->active)
1288 return 0;
1289
1290 /* Manually manage the write flush as we may have not yet
1291 * retired the buffer.
1292 *
1293 * Note that the last_write_seqno is always the earlier of
1294 * the two (read/write) seqno, so if we haved successfully waited,
1295 * we know we have passed the last write.
1296 */
1297 obj->last_write_seqno = 0;
1298
1299 return 0;
1300 }
1301
1302 /**
1303 * Ensures that all rendering to the object has completed and the object is
1304 * safe to unbind from the GTT or access from the CPU.
1305 */
1306 static __must_check int
1307 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1308 bool readonly)
1309 {
1310 struct intel_engine_cs *ring = obj->ring;
1311 u32 seqno;
1312 int ret;
1313
1314 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1315 if (seqno == 0)
1316 return 0;
1317
1318 ret = i915_wait_seqno(ring, seqno);
1319 if (ret)
1320 return ret;
1321
1322 return i915_gem_object_wait_rendering__tail(obj, ring);
1323 }
1324
1325 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1326 * as the object state may change during this call.
1327 */
1328 static __must_check int
1329 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1330 struct drm_i915_file_private *file_priv,
1331 bool readonly)
1332 {
1333 struct drm_device *dev = obj->base.dev;
1334 struct drm_i915_private *dev_priv = dev->dev_private;
1335 struct intel_engine_cs *ring = obj->ring;
1336 unsigned reset_counter;
1337 u32 seqno;
1338 int ret;
1339
1340 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1341 BUG_ON(!dev_priv->mm.interruptible);
1342
1343 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1344 if (seqno == 0)
1345 return 0;
1346
1347 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1348 if (ret)
1349 return ret;
1350
1351 ret = i915_gem_check_olr(ring, seqno);
1352 if (ret)
1353 return ret;
1354
1355 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1356 mutex_unlock(&dev->struct_mutex);
1357 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1358 mutex_lock(&dev->struct_mutex);
1359 if (ret)
1360 return ret;
1361
1362 return i915_gem_object_wait_rendering__tail(obj, ring);
1363 }
1364
1365 /**
1366 * Called when user space prepares to use an object with the CPU, either
1367 * through the mmap ioctl's mapping or a GTT mapping.
1368 */
1369 int
1370 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1371 struct drm_file *file)
1372 {
1373 struct drm_i915_gem_set_domain *args = data;
1374 struct drm_i915_gem_object *obj;
1375 uint32_t read_domains = args->read_domains;
1376 uint32_t write_domain = args->write_domain;
1377 int ret;
1378
1379 /* Only handle setting domains to types used by the CPU. */
1380 if (write_domain & I915_GEM_GPU_DOMAINS)
1381 return -EINVAL;
1382
1383 if (read_domains & I915_GEM_GPU_DOMAINS)
1384 return -EINVAL;
1385
1386 /* Having something in the write domain implies it's in the read
1387 * domain, and only that read domain. Enforce that in the request.
1388 */
1389 if (write_domain != 0 && read_domains != write_domain)
1390 return -EINVAL;
1391
1392 ret = i915_mutex_lock_interruptible(dev);
1393 if (ret)
1394 return ret;
1395
1396 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1397 if (&obj->base == NULL) {
1398 ret = -ENOENT;
1399 goto unlock;
1400 }
1401
1402 /* Try to flush the object off the GPU without holding the lock.
1403 * We will repeat the flush holding the lock in the normal manner
1404 * to catch cases where we are gazumped.
1405 */
1406 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1407 file->driver_priv,
1408 !write_domain);
1409 if (ret)
1410 goto unref;
1411
1412 if (read_domains & I915_GEM_DOMAIN_GTT) {
1413 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1414
1415 /* Silently promote "you're not bound, there was nothing to do"
1416 * to success, since the client was just asking us to
1417 * make sure everything was done.
1418 */
1419 if (ret == -EINVAL)
1420 ret = 0;
1421 } else {
1422 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1423 }
1424
1425 unref:
1426 drm_gem_object_unreference(&obj->base);
1427 unlock:
1428 mutex_unlock(&dev->struct_mutex);
1429 return ret;
1430 }
1431
1432 /**
1433 * Called when user space has done writes to this buffer
1434 */
1435 int
1436 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1437 struct drm_file *file)
1438 {
1439 struct drm_i915_gem_sw_finish *args = data;
1440 struct drm_i915_gem_object *obj;
1441 int ret = 0;
1442
1443 ret = i915_mutex_lock_interruptible(dev);
1444 if (ret)
1445 return ret;
1446
1447 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1448 if (&obj->base == NULL) {
1449 ret = -ENOENT;
1450 goto unlock;
1451 }
1452
1453 /* Pinned buffers may be scanout, so flush the cache */
1454 if (obj->pin_display)
1455 i915_gem_object_flush_cpu_write_domain(obj, true);
1456
1457 drm_gem_object_unreference(&obj->base);
1458 unlock:
1459 mutex_unlock(&dev->struct_mutex);
1460 return ret;
1461 }
1462
1463 /**
1464 * Maps the contents of an object, returning the address it is mapped
1465 * into.
1466 *
1467 * While the mapping holds a reference on the contents of the object, it doesn't
1468 * imply a ref on the object itself.
1469 *
1470 * IMPORTANT:
1471 *
1472 * DRM driver writers who look a this function as an example for how to do GEM
1473 * mmap support, please don't implement mmap support like here. The modern way
1474 * to implement DRM mmap support is with an mmap offset ioctl (like
1475 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1476 * That way debug tooling like valgrind will understand what's going on, hiding
1477 * the mmap call in a driver private ioctl will break that. The i915 driver only
1478 * does cpu mmaps this way because we didn't know better.
1479 */
1480 int
1481 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1482 struct drm_file *file)
1483 {
1484 struct drm_i915_gem_mmap *args = data;
1485 struct drm_gem_object *obj;
1486 unsigned long addr;
1487
1488 obj = drm_gem_object_lookup(dev, file, args->handle);
1489 if (obj == NULL)
1490 return -ENOENT;
1491
1492 /* prime objects have no backing filp to GEM mmap
1493 * pages from.
1494 */
1495 if (!obj->filp) {
1496 drm_gem_object_unreference_unlocked(obj);
1497 return -EINVAL;
1498 }
1499
1500 addr = vm_mmap(obj->filp, 0, args->size,
1501 PROT_READ | PROT_WRITE, MAP_SHARED,
1502 args->offset);
1503 drm_gem_object_unreference_unlocked(obj);
1504 if (IS_ERR((void *)addr))
1505 return addr;
1506
1507 args->addr_ptr = (uint64_t) addr;
1508
1509 return 0;
1510 }
1511
1512 /**
1513 * i915_gem_fault - fault a page into the GTT
1514 * vma: VMA in question
1515 * vmf: fault info
1516 *
1517 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1518 * from userspace. The fault handler takes care of binding the object to
1519 * the GTT (if needed), allocating and programming a fence register (again,
1520 * only if needed based on whether the old reg is still valid or the object
1521 * is tiled) and inserting a new PTE into the faulting process.
1522 *
1523 * Note that the faulting process may involve evicting existing objects
1524 * from the GTT and/or fence registers to make room. So performance may
1525 * suffer if the GTT working set is large or there are few fence registers
1526 * left.
1527 */
1528 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1529 {
1530 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1531 struct drm_device *dev = obj->base.dev;
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 pgoff_t page_offset;
1534 unsigned long pfn;
1535 int ret = 0;
1536 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1537
1538 intel_runtime_pm_get(dev_priv);
1539
1540 /* We don't use vmf->pgoff since that has the fake offset */
1541 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1542 PAGE_SHIFT;
1543
1544 ret = i915_mutex_lock_interruptible(dev);
1545 if (ret)
1546 goto out;
1547
1548 trace_i915_gem_object_fault(obj, page_offset, true, write);
1549
1550 /* Try to flush the object off the GPU first without holding the lock.
1551 * Upon reacquiring the lock, we will perform our sanity checks and then
1552 * repeat the flush holding the lock in the normal manner to catch cases
1553 * where we are gazumped.
1554 */
1555 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1556 if (ret)
1557 goto unlock;
1558
1559 /* Access to snoopable pages through the GTT is incoherent. */
1560 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1561 ret = -EFAULT;
1562 goto unlock;
1563 }
1564
1565 /* Now bind it into the GTT if needed */
1566 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1567 if (ret)
1568 goto unlock;
1569
1570 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1571 if (ret)
1572 goto unpin;
1573
1574 ret = i915_gem_object_get_fence(obj);
1575 if (ret)
1576 goto unpin;
1577
1578 /* Finally, remap it using the new GTT offset */
1579 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1580 pfn >>= PAGE_SHIFT;
1581
1582 if (!obj->fault_mappable) {
1583 unsigned long size = min_t(unsigned long,
1584 vma->vm_end - vma->vm_start,
1585 obj->base.size);
1586 int i;
1587
1588 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1589 ret = vm_insert_pfn(vma,
1590 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1591 pfn + i);
1592 if (ret)
1593 break;
1594 }
1595
1596 obj->fault_mappable = true;
1597 } else
1598 ret = vm_insert_pfn(vma,
1599 (unsigned long)vmf->virtual_address,
1600 pfn + page_offset);
1601 unpin:
1602 i915_gem_object_ggtt_unpin(obj);
1603 unlock:
1604 mutex_unlock(&dev->struct_mutex);
1605 out:
1606 switch (ret) {
1607 case -EIO:
1608 /*
1609 * We eat errors when the gpu is terminally wedged to avoid
1610 * userspace unduly crashing (gl has no provisions for mmaps to
1611 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1612 * and so needs to be reported.
1613 */
1614 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1615 ret = VM_FAULT_SIGBUS;
1616 break;
1617 }
1618 case -EAGAIN:
1619 /*
1620 * EAGAIN means the gpu is hung and we'll wait for the error
1621 * handler to reset everything when re-faulting in
1622 * i915_mutex_lock_interruptible.
1623 */
1624 case 0:
1625 case -ERESTARTSYS:
1626 case -EINTR:
1627 case -EBUSY:
1628 /*
1629 * EBUSY is ok: this just means that another thread
1630 * already did the job.
1631 */
1632 ret = VM_FAULT_NOPAGE;
1633 break;
1634 case -ENOMEM:
1635 ret = VM_FAULT_OOM;
1636 break;
1637 case -ENOSPC:
1638 case -EFAULT:
1639 ret = VM_FAULT_SIGBUS;
1640 break;
1641 default:
1642 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1643 ret = VM_FAULT_SIGBUS;
1644 break;
1645 }
1646
1647 intel_runtime_pm_put(dev_priv);
1648 return ret;
1649 }
1650
1651 /**
1652 * i915_gem_release_mmap - remove physical page mappings
1653 * @obj: obj in question
1654 *
1655 * Preserve the reservation of the mmapping with the DRM core code, but
1656 * relinquish ownership of the pages back to the system.
1657 *
1658 * It is vital that we remove the page mapping if we have mapped a tiled
1659 * object through the GTT and then lose the fence register due to
1660 * resource pressure. Similarly if the object has been moved out of the
1661 * aperture, than pages mapped into userspace must be revoked. Removing the
1662 * mapping will then trigger a page fault on the next user access, allowing
1663 * fixup by i915_gem_fault().
1664 */
1665 void
1666 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1667 {
1668 if (!obj->fault_mappable)
1669 return;
1670
1671 drm_vma_node_unmap(&obj->base.vma_node,
1672 obj->base.dev->anon_inode->i_mapping);
1673 obj->fault_mappable = false;
1674 }
1675
1676 void
1677 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1678 {
1679 struct drm_i915_gem_object *obj;
1680
1681 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1682 i915_gem_release_mmap(obj);
1683 }
1684
1685 uint32_t
1686 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1687 {
1688 uint32_t gtt_size;
1689
1690 if (INTEL_INFO(dev)->gen >= 4 ||
1691 tiling_mode == I915_TILING_NONE)
1692 return size;
1693
1694 /* Previous chips need a power-of-two fence region when tiling */
1695 if (INTEL_INFO(dev)->gen == 3)
1696 gtt_size = 1024*1024;
1697 else
1698 gtt_size = 512*1024;
1699
1700 while (gtt_size < size)
1701 gtt_size <<= 1;
1702
1703 return gtt_size;
1704 }
1705
1706 /**
1707 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1708 * @obj: object to check
1709 *
1710 * Return the required GTT alignment for an object, taking into account
1711 * potential fence register mapping.
1712 */
1713 uint32_t
1714 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1715 int tiling_mode, bool fenced)
1716 {
1717 /*
1718 * Minimum alignment is 4k (GTT page size), but might be greater
1719 * if a fence register is needed for the object.
1720 */
1721 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1722 tiling_mode == I915_TILING_NONE)
1723 return 4096;
1724
1725 /*
1726 * Previous chips need to be aligned to the size of the smallest
1727 * fence register that can contain the object.
1728 */
1729 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1730 }
1731
1732 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1733 {
1734 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1735 int ret;
1736
1737 if (drm_vma_node_has_offset(&obj->base.vma_node))
1738 return 0;
1739
1740 dev_priv->mm.shrinker_no_lock_stealing = true;
1741
1742 ret = drm_gem_create_mmap_offset(&obj->base);
1743 if (ret != -ENOSPC)
1744 goto out;
1745
1746 /* Badly fragmented mmap space? The only way we can recover
1747 * space is by destroying unwanted objects. We can't randomly release
1748 * mmap_offsets as userspace expects them to be persistent for the
1749 * lifetime of the objects. The closest we can is to release the
1750 * offsets on purgeable objects by truncating it and marking it purged,
1751 * which prevents userspace from ever using that object again.
1752 */
1753 i915_gem_shrink(dev_priv,
1754 obj->base.size >> PAGE_SHIFT,
1755 I915_SHRINK_BOUND |
1756 I915_SHRINK_UNBOUND |
1757 I915_SHRINK_PURGEABLE);
1758 ret = drm_gem_create_mmap_offset(&obj->base);
1759 if (ret != -ENOSPC)
1760 goto out;
1761
1762 i915_gem_shrink_all(dev_priv);
1763 ret = drm_gem_create_mmap_offset(&obj->base);
1764 out:
1765 dev_priv->mm.shrinker_no_lock_stealing = false;
1766
1767 return ret;
1768 }
1769
1770 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1771 {
1772 drm_gem_free_mmap_offset(&obj->base);
1773 }
1774
1775 int
1776 i915_gem_mmap_gtt(struct drm_file *file,
1777 struct drm_device *dev,
1778 uint32_t handle,
1779 uint64_t *offset)
1780 {
1781 struct drm_i915_private *dev_priv = dev->dev_private;
1782 struct drm_i915_gem_object *obj;
1783 int ret;
1784
1785 ret = i915_mutex_lock_interruptible(dev);
1786 if (ret)
1787 return ret;
1788
1789 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1790 if (&obj->base == NULL) {
1791 ret = -ENOENT;
1792 goto unlock;
1793 }
1794
1795 if (obj->base.size > dev_priv->gtt.mappable_end) {
1796 ret = -E2BIG;
1797 goto out;
1798 }
1799
1800 if (obj->madv != I915_MADV_WILLNEED) {
1801 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1802 ret = -EFAULT;
1803 goto out;
1804 }
1805
1806 ret = i915_gem_object_create_mmap_offset(obj);
1807 if (ret)
1808 goto out;
1809
1810 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1811
1812 out:
1813 drm_gem_object_unreference(&obj->base);
1814 unlock:
1815 mutex_unlock(&dev->struct_mutex);
1816 return ret;
1817 }
1818
1819 /**
1820 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1821 * @dev: DRM device
1822 * @data: GTT mapping ioctl data
1823 * @file: GEM object info
1824 *
1825 * Simply returns the fake offset to userspace so it can mmap it.
1826 * The mmap call will end up in drm_gem_mmap(), which will set things
1827 * up so we can get faults in the handler above.
1828 *
1829 * The fault handler will take care of binding the object into the GTT
1830 * (since it may have been evicted to make room for something), allocating
1831 * a fence register, and mapping the appropriate aperture address into
1832 * userspace.
1833 */
1834 int
1835 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1836 struct drm_file *file)
1837 {
1838 struct drm_i915_gem_mmap_gtt *args = data;
1839
1840 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1841 }
1842
1843 static inline int
1844 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1845 {
1846 return obj->madv == I915_MADV_DONTNEED;
1847 }
1848
1849 /* Immediately discard the backing storage */
1850 static void
1851 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1852 {
1853 i915_gem_object_free_mmap_offset(obj);
1854
1855 if (obj->base.filp == NULL)
1856 return;
1857
1858 /* Our goal here is to return as much of the memory as
1859 * is possible back to the system as we are called from OOM.
1860 * To do this we must instruct the shmfs to drop all of its
1861 * backing pages, *now*.
1862 */
1863 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1864 obj->madv = __I915_MADV_PURGED;
1865 }
1866
1867 /* Try to discard unwanted pages */
1868 static void
1869 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1870 {
1871 struct address_space *mapping;
1872
1873 switch (obj->madv) {
1874 case I915_MADV_DONTNEED:
1875 i915_gem_object_truncate(obj);
1876 case __I915_MADV_PURGED:
1877 return;
1878 }
1879
1880 if (obj->base.filp == NULL)
1881 return;
1882
1883 mapping = file_inode(obj->base.filp)->i_mapping,
1884 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1885 }
1886
1887 static void
1888 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1889 {
1890 struct sg_page_iter sg_iter;
1891 int ret;
1892
1893 BUG_ON(obj->madv == __I915_MADV_PURGED);
1894
1895 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1896 if (ret) {
1897 /* In the event of a disaster, abandon all caches and
1898 * hope for the best.
1899 */
1900 WARN_ON(ret != -EIO);
1901 i915_gem_clflush_object(obj, true);
1902 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1903 }
1904
1905 if (i915_gem_object_needs_bit17_swizzle(obj))
1906 i915_gem_object_save_bit_17_swizzle(obj);
1907
1908 if (obj->madv == I915_MADV_DONTNEED)
1909 obj->dirty = 0;
1910
1911 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1912 struct page *page = sg_page_iter_page(&sg_iter);
1913
1914 if (obj->dirty)
1915 set_page_dirty(page);
1916
1917 if (obj->madv == I915_MADV_WILLNEED)
1918 mark_page_accessed(page);
1919
1920 page_cache_release(page);
1921 }
1922 obj->dirty = 0;
1923
1924 sg_free_table(obj->pages);
1925 kfree(obj->pages);
1926 }
1927
1928 int
1929 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1930 {
1931 const struct drm_i915_gem_object_ops *ops = obj->ops;
1932
1933 if (obj->pages == NULL)
1934 return 0;
1935
1936 if (obj->pages_pin_count)
1937 return -EBUSY;
1938
1939 BUG_ON(i915_gem_obj_bound_any(obj));
1940
1941 /* ->put_pages might need to allocate memory for the bit17 swizzle
1942 * array, hence protect them from being reaped by removing them from gtt
1943 * lists early. */
1944 list_del(&obj->global_list);
1945
1946 ops->put_pages(obj);
1947 obj->pages = NULL;
1948
1949 i915_gem_object_invalidate(obj);
1950
1951 return 0;
1952 }
1953
1954 unsigned long
1955 i915_gem_shrink(struct drm_i915_private *dev_priv,
1956 long target, unsigned flags)
1957 {
1958 const struct {
1959 struct list_head *list;
1960 unsigned int bit;
1961 } phases[] = {
1962 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
1963 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
1964 { NULL, 0 },
1965 }, *phase;
1966 unsigned long count = 0;
1967
1968 /*
1969 * As we may completely rewrite the (un)bound list whilst unbinding
1970 * (due to retiring requests) we have to strictly process only
1971 * one element of the list at the time, and recheck the list
1972 * on every iteration.
1973 *
1974 * In particular, we must hold a reference whilst removing the
1975 * object as we may end up waiting for and/or retiring the objects.
1976 * This might release the final reference (held by the active list)
1977 * and result in the object being freed from under us. This is
1978 * similar to the precautions the eviction code must take whilst
1979 * removing objects.
1980 *
1981 * Also note that although these lists do not hold a reference to
1982 * the object we can safely grab one here: The final object
1983 * unreferencing and the bound_list are both protected by the
1984 * dev->struct_mutex and so we won't ever be able to observe an
1985 * object on the bound_list with a reference count equals 0.
1986 */
1987 for (phase = phases; phase->list; phase++) {
1988 struct list_head still_in_list;
1989
1990 if ((flags & phase->bit) == 0)
1991 continue;
1992
1993 INIT_LIST_HEAD(&still_in_list);
1994 while (count < target && !list_empty(phase->list)) {
1995 struct drm_i915_gem_object *obj;
1996 struct i915_vma *vma, *v;
1997
1998 obj = list_first_entry(phase->list,
1999 typeof(*obj), global_list);
2000 list_move_tail(&obj->global_list, &still_in_list);
2001
2002 if (flags & I915_SHRINK_PURGEABLE &&
2003 !i915_gem_object_is_purgeable(obj))
2004 continue;
2005
2006 drm_gem_object_reference(&obj->base);
2007
2008 /* For the unbound phase, this should be a no-op! */
2009 list_for_each_entry_safe(vma, v,
2010 &obj->vma_list, vma_link)
2011 if (i915_vma_unbind(vma))
2012 break;
2013
2014 if (i915_gem_object_put_pages(obj) == 0)
2015 count += obj->base.size >> PAGE_SHIFT;
2016
2017 drm_gem_object_unreference(&obj->base);
2018 }
2019 list_splice(&still_in_list, phase->list);
2020 }
2021
2022 return count;
2023 }
2024
2025 static unsigned long
2026 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2027 {
2028 i915_gem_evict_everything(dev_priv->dev);
2029 return i915_gem_shrink(dev_priv, LONG_MAX,
2030 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2031 }
2032
2033 static int
2034 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2035 {
2036 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2037 int page_count, i;
2038 struct address_space *mapping;
2039 struct sg_table *st;
2040 struct scatterlist *sg;
2041 struct sg_page_iter sg_iter;
2042 struct page *page;
2043 unsigned long last_pfn = 0; /* suppress gcc warning */
2044 gfp_t gfp;
2045
2046 /* Assert that the object is not currently in any GPU domain. As it
2047 * wasn't in the GTT, there shouldn't be any way it could have been in
2048 * a GPU cache
2049 */
2050 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2051 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2052
2053 st = kmalloc(sizeof(*st), GFP_KERNEL);
2054 if (st == NULL)
2055 return -ENOMEM;
2056
2057 page_count = obj->base.size / PAGE_SIZE;
2058 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2059 kfree(st);
2060 return -ENOMEM;
2061 }
2062
2063 /* Get the list of pages out of our struct file. They'll be pinned
2064 * at this point until we release them.
2065 *
2066 * Fail silently without starting the shrinker
2067 */
2068 mapping = file_inode(obj->base.filp)->i_mapping;
2069 gfp = mapping_gfp_mask(mapping);
2070 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2071 gfp &= ~(__GFP_IO | __GFP_WAIT);
2072 sg = st->sgl;
2073 st->nents = 0;
2074 for (i = 0; i < page_count; i++) {
2075 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2076 if (IS_ERR(page)) {
2077 i915_gem_shrink(dev_priv,
2078 page_count,
2079 I915_SHRINK_BOUND |
2080 I915_SHRINK_UNBOUND |
2081 I915_SHRINK_PURGEABLE);
2082 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2083 }
2084 if (IS_ERR(page)) {
2085 /* We've tried hard to allocate the memory by reaping
2086 * our own buffer, now let the real VM do its job and
2087 * go down in flames if truly OOM.
2088 */
2089 i915_gem_shrink_all(dev_priv);
2090 page = shmem_read_mapping_page(mapping, i);
2091 if (IS_ERR(page))
2092 goto err_pages;
2093 }
2094 #ifdef CONFIG_SWIOTLB
2095 if (swiotlb_nr_tbl()) {
2096 st->nents++;
2097 sg_set_page(sg, page, PAGE_SIZE, 0);
2098 sg = sg_next(sg);
2099 continue;
2100 }
2101 #endif
2102 if (!i || page_to_pfn(page) != last_pfn + 1) {
2103 if (i)
2104 sg = sg_next(sg);
2105 st->nents++;
2106 sg_set_page(sg, page, PAGE_SIZE, 0);
2107 } else {
2108 sg->length += PAGE_SIZE;
2109 }
2110 last_pfn = page_to_pfn(page);
2111
2112 /* Check that the i965g/gm workaround works. */
2113 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2114 }
2115 #ifdef CONFIG_SWIOTLB
2116 if (!swiotlb_nr_tbl())
2117 #endif
2118 sg_mark_end(sg);
2119 obj->pages = st;
2120
2121 if (i915_gem_object_needs_bit17_swizzle(obj))
2122 i915_gem_object_do_bit_17_swizzle(obj);
2123
2124 return 0;
2125
2126 err_pages:
2127 sg_mark_end(sg);
2128 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2129 page_cache_release(sg_page_iter_page(&sg_iter));
2130 sg_free_table(st);
2131 kfree(st);
2132
2133 /* shmemfs first checks if there is enough memory to allocate the page
2134 * and reports ENOSPC should there be insufficient, along with the usual
2135 * ENOMEM for a genuine allocation failure.
2136 *
2137 * We use ENOSPC in our driver to mean that we have run out of aperture
2138 * space and so want to translate the error from shmemfs back to our
2139 * usual understanding of ENOMEM.
2140 */
2141 if (PTR_ERR(page) == -ENOSPC)
2142 return -ENOMEM;
2143 else
2144 return PTR_ERR(page);
2145 }
2146
2147 /* Ensure that the associated pages are gathered from the backing storage
2148 * and pinned into our object. i915_gem_object_get_pages() may be called
2149 * multiple times before they are released by a single call to
2150 * i915_gem_object_put_pages() - once the pages are no longer referenced
2151 * either as a result of memory pressure (reaping pages under the shrinker)
2152 * or as the object is itself released.
2153 */
2154 int
2155 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2156 {
2157 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2158 const struct drm_i915_gem_object_ops *ops = obj->ops;
2159 int ret;
2160
2161 if (obj->pages)
2162 return 0;
2163
2164 if (obj->madv != I915_MADV_WILLNEED) {
2165 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2166 return -EFAULT;
2167 }
2168
2169 BUG_ON(obj->pages_pin_count);
2170
2171 ret = ops->get_pages(obj);
2172 if (ret)
2173 return ret;
2174
2175 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2176 return 0;
2177 }
2178
2179 static void
2180 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2181 struct intel_engine_cs *ring)
2182 {
2183 u32 seqno = intel_ring_get_seqno(ring);
2184
2185 BUG_ON(ring == NULL);
2186 if (obj->ring != ring && obj->last_write_seqno) {
2187 /* Keep the seqno relative to the current ring */
2188 obj->last_write_seqno = seqno;
2189 }
2190 obj->ring = ring;
2191
2192 /* Add a reference if we're newly entering the active list. */
2193 if (!obj->active) {
2194 drm_gem_object_reference(&obj->base);
2195 obj->active = 1;
2196 }
2197
2198 list_move_tail(&obj->ring_list, &ring->active_list);
2199
2200 obj->last_read_seqno = seqno;
2201 }
2202
2203 void i915_vma_move_to_active(struct i915_vma *vma,
2204 struct intel_engine_cs *ring)
2205 {
2206 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2207 return i915_gem_object_move_to_active(vma->obj, ring);
2208 }
2209
2210 static void
2211 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2212 {
2213 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2214 struct i915_address_space *vm;
2215 struct i915_vma *vma;
2216
2217 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2218 BUG_ON(!obj->active);
2219
2220 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2221 vma = i915_gem_obj_to_vma(obj, vm);
2222 if (vma && !list_empty(&vma->mm_list))
2223 list_move_tail(&vma->mm_list, &vm->inactive_list);
2224 }
2225
2226 intel_fb_obj_flush(obj, true);
2227
2228 list_del_init(&obj->ring_list);
2229 obj->ring = NULL;
2230
2231 obj->last_read_seqno = 0;
2232 obj->last_write_seqno = 0;
2233 obj->base.write_domain = 0;
2234
2235 obj->last_fenced_seqno = 0;
2236
2237 obj->active = 0;
2238 drm_gem_object_unreference(&obj->base);
2239
2240 WARN_ON(i915_verify_lists(dev));
2241 }
2242
2243 static void
2244 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2245 {
2246 struct intel_engine_cs *ring = obj->ring;
2247
2248 if (ring == NULL)
2249 return;
2250
2251 if (i915_seqno_passed(ring->get_seqno(ring, true),
2252 obj->last_read_seqno))
2253 i915_gem_object_move_to_inactive(obj);
2254 }
2255
2256 static int
2257 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2258 {
2259 struct drm_i915_private *dev_priv = dev->dev_private;
2260 struct intel_engine_cs *ring;
2261 int ret, i, j;
2262
2263 /* Carefully retire all requests without writing to the rings */
2264 for_each_ring(ring, dev_priv, i) {
2265 ret = intel_ring_idle(ring);
2266 if (ret)
2267 return ret;
2268 }
2269 i915_gem_retire_requests(dev);
2270
2271 /* Finally reset hw state */
2272 for_each_ring(ring, dev_priv, i) {
2273 intel_ring_init_seqno(ring, seqno);
2274
2275 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2276 ring->semaphore.sync_seqno[j] = 0;
2277 }
2278
2279 return 0;
2280 }
2281
2282 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2283 {
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285 int ret;
2286
2287 if (seqno == 0)
2288 return -EINVAL;
2289
2290 /* HWS page needs to be set less than what we
2291 * will inject to ring
2292 */
2293 ret = i915_gem_init_seqno(dev, seqno - 1);
2294 if (ret)
2295 return ret;
2296
2297 /* Carefully set the last_seqno value so that wrap
2298 * detection still works
2299 */
2300 dev_priv->next_seqno = seqno;
2301 dev_priv->last_seqno = seqno - 1;
2302 if (dev_priv->last_seqno == 0)
2303 dev_priv->last_seqno--;
2304
2305 return 0;
2306 }
2307
2308 int
2309 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2310 {
2311 struct drm_i915_private *dev_priv = dev->dev_private;
2312
2313 /* reserve 0 for non-seqno */
2314 if (dev_priv->next_seqno == 0) {
2315 int ret = i915_gem_init_seqno(dev, 0);
2316 if (ret)
2317 return ret;
2318
2319 dev_priv->next_seqno = 1;
2320 }
2321
2322 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2323 return 0;
2324 }
2325
2326 int __i915_add_request(struct intel_engine_cs *ring,
2327 struct drm_file *file,
2328 struct drm_i915_gem_object *obj,
2329 u32 *out_seqno)
2330 {
2331 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332 struct drm_i915_gem_request *request;
2333 struct intel_ringbuffer *ringbuf;
2334 u32 request_ring_position, request_start;
2335 int ret;
2336
2337 request = ring->preallocated_lazy_request;
2338 if (WARN_ON(request == NULL))
2339 return -ENOMEM;
2340
2341 if (i915.enable_execlists) {
2342 struct intel_context *ctx = request->ctx;
2343 ringbuf = ctx->engine[ring->id].ringbuf;
2344 } else
2345 ringbuf = ring->buffer;
2346
2347 request_start = intel_ring_get_tail(ringbuf);
2348 /*
2349 * Emit any outstanding flushes - execbuf can fail to emit the flush
2350 * after having emitted the batchbuffer command. Hence we need to fix
2351 * things up similar to emitting the lazy request. The difference here
2352 * is that the flush _must_ happen before the next request, no matter
2353 * what.
2354 */
2355 if (i915.enable_execlists) {
2356 ret = logical_ring_flush_all_caches(ringbuf);
2357 if (ret)
2358 return ret;
2359 } else {
2360 ret = intel_ring_flush_all_caches(ring);
2361 if (ret)
2362 return ret;
2363 }
2364
2365 /* Record the position of the start of the request so that
2366 * should we detect the updated seqno part-way through the
2367 * GPU processing the request, we never over-estimate the
2368 * position of the head.
2369 */
2370 request_ring_position = intel_ring_get_tail(ringbuf);
2371
2372 if (i915.enable_execlists) {
2373 ret = ring->emit_request(ringbuf);
2374 if (ret)
2375 return ret;
2376 } else {
2377 ret = ring->add_request(ring);
2378 if (ret)
2379 return ret;
2380 }
2381
2382 request->seqno = intel_ring_get_seqno(ring);
2383 request->ring = ring;
2384 request->head = request_start;
2385 request->tail = request_ring_position;
2386
2387 /* Whilst this request exists, batch_obj will be on the
2388 * active_list, and so will hold the active reference. Only when this
2389 * request is retired will the the batch_obj be moved onto the
2390 * inactive_list and lose its active reference. Hence we do not need
2391 * to explicitly hold another reference here.
2392 */
2393 request->batch_obj = obj;
2394
2395 if (!i915.enable_execlists) {
2396 /* Hold a reference to the current context so that we can inspect
2397 * it later in case a hangcheck error event fires.
2398 */
2399 request->ctx = ring->last_context;
2400 if (request->ctx)
2401 i915_gem_context_reference(request->ctx);
2402 }
2403
2404 request->emitted_jiffies = jiffies;
2405 list_add_tail(&request->list, &ring->request_list);
2406 request->file_priv = NULL;
2407
2408 if (file) {
2409 struct drm_i915_file_private *file_priv = file->driver_priv;
2410
2411 spin_lock(&file_priv->mm.lock);
2412 request->file_priv = file_priv;
2413 list_add_tail(&request->client_list,
2414 &file_priv->mm.request_list);
2415 spin_unlock(&file_priv->mm.lock);
2416 }
2417
2418 trace_i915_gem_request_add(ring, request->seqno);
2419 ring->outstanding_lazy_seqno = 0;
2420 ring->preallocated_lazy_request = NULL;
2421
2422 if (!dev_priv->ums.mm_suspended) {
2423 i915_queue_hangcheck(ring->dev);
2424
2425 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2426 queue_delayed_work(dev_priv->wq,
2427 &dev_priv->mm.retire_work,
2428 round_jiffies_up_relative(HZ));
2429 intel_mark_busy(dev_priv->dev);
2430 }
2431
2432 if (out_seqno)
2433 *out_seqno = request->seqno;
2434 return 0;
2435 }
2436
2437 static inline void
2438 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2439 {
2440 struct drm_i915_file_private *file_priv = request->file_priv;
2441
2442 if (!file_priv)
2443 return;
2444
2445 spin_lock(&file_priv->mm.lock);
2446 list_del(&request->client_list);
2447 request->file_priv = NULL;
2448 spin_unlock(&file_priv->mm.lock);
2449 }
2450
2451 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2452 const struct intel_context *ctx)
2453 {
2454 unsigned long elapsed;
2455
2456 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2457
2458 if (ctx->hang_stats.banned)
2459 return true;
2460
2461 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2462 if (!i915_gem_context_is_default(ctx)) {
2463 DRM_DEBUG("context hanging too fast, banning!\n");
2464 return true;
2465 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2466 if (i915_stop_ring_allow_warn(dev_priv))
2467 DRM_ERROR("gpu hanging too fast, banning!\n");
2468 return true;
2469 }
2470 }
2471
2472 return false;
2473 }
2474
2475 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2476 struct intel_context *ctx,
2477 const bool guilty)
2478 {
2479 struct i915_ctx_hang_stats *hs;
2480
2481 if (WARN_ON(!ctx))
2482 return;
2483
2484 hs = &ctx->hang_stats;
2485
2486 if (guilty) {
2487 hs->banned = i915_context_is_banned(dev_priv, ctx);
2488 hs->batch_active++;
2489 hs->guilty_ts = get_seconds();
2490 } else {
2491 hs->batch_pending++;
2492 }
2493 }
2494
2495 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2496 {
2497 list_del(&request->list);
2498 i915_gem_request_remove_from_client(request);
2499
2500 if (request->ctx)
2501 i915_gem_context_unreference(request->ctx);
2502
2503 kfree(request);
2504 }
2505
2506 struct drm_i915_gem_request *
2507 i915_gem_find_active_request(struct intel_engine_cs *ring)
2508 {
2509 struct drm_i915_gem_request *request;
2510 u32 completed_seqno;
2511
2512 completed_seqno = ring->get_seqno(ring, false);
2513
2514 list_for_each_entry(request, &ring->request_list, list) {
2515 if (i915_seqno_passed(completed_seqno, request->seqno))
2516 continue;
2517
2518 return request;
2519 }
2520
2521 return NULL;
2522 }
2523
2524 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2525 struct intel_engine_cs *ring)
2526 {
2527 struct drm_i915_gem_request *request;
2528 bool ring_hung;
2529
2530 request = i915_gem_find_active_request(ring);
2531
2532 if (request == NULL)
2533 return;
2534
2535 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2536
2537 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2538
2539 list_for_each_entry_continue(request, &ring->request_list, list)
2540 i915_set_reset_status(dev_priv, request->ctx, false);
2541 }
2542
2543 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2544 struct intel_engine_cs *ring)
2545 {
2546 while (!list_empty(&ring->active_list)) {
2547 struct drm_i915_gem_object *obj;
2548
2549 obj = list_first_entry(&ring->active_list,
2550 struct drm_i915_gem_object,
2551 ring_list);
2552
2553 i915_gem_object_move_to_inactive(obj);
2554 }
2555
2556 /*
2557 * We must free the requests after all the corresponding objects have
2558 * been moved off active lists. Which is the same order as the normal
2559 * retire_requests function does. This is important if object hold
2560 * implicit references on things like e.g. ppgtt address spaces through
2561 * the request.
2562 */
2563 while (!list_empty(&ring->request_list)) {
2564 struct drm_i915_gem_request *request;
2565
2566 request = list_first_entry(&ring->request_list,
2567 struct drm_i915_gem_request,
2568 list);
2569
2570 i915_gem_free_request(request);
2571 }
2572
2573 while (!list_empty(&ring->execlist_queue)) {
2574 struct intel_ctx_submit_request *submit_req;
2575
2576 submit_req = list_first_entry(&ring->execlist_queue,
2577 struct intel_ctx_submit_request,
2578 execlist_link);
2579 list_del(&submit_req->execlist_link);
2580 intel_runtime_pm_put(dev_priv);
2581 i915_gem_context_unreference(submit_req->ctx);
2582 kfree(submit_req);
2583 }
2584
2585 /* These may not have been flush before the reset, do so now */
2586 kfree(ring->preallocated_lazy_request);
2587 ring->preallocated_lazy_request = NULL;
2588 ring->outstanding_lazy_seqno = 0;
2589 }
2590
2591 void i915_gem_restore_fences(struct drm_device *dev)
2592 {
2593 struct drm_i915_private *dev_priv = dev->dev_private;
2594 int i;
2595
2596 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2597 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2598
2599 /*
2600 * Commit delayed tiling changes if we have an object still
2601 * attached to the fence, otherwise just clear the fence.
2602 */
2603 if (reg->obj) {
2604 i915_gem_object_update_fence(reg->obj, reg,
2605 reg->obj->tiling_mode);
2606 } else {
2607 i915_gem_write_fence(dev, i, NULL);
2608 }
2609 }
2610 }
2611
2612 void i915_gem_reset(struct drm_device *dev)
2613 {
2614 struct drm_i915_private *dev_priv = dev->dev_private;
2615 struct intel_engine_cs *ring;
2616 int i;
2617
2618 /*
2619 * Before we free the objects from the requests, we need to inspect
2620 * them for finding the guilty party. As the requests only borrow
2621 * their reference to the objects, the inspection must be done first.
2622 */
2623 for_each_ring(ring, dev_priv, i)
2624 i915_gem_reset_ring_status(dev_priv, ring);
2625
2626 for_each_ring(ring, dev_priv, i)
2627 i915_gem_reset_ring_cleanup(dev_priv, ring);
2628
2629 i915_gem_context_reset(dev);
2630
2631 i915_gem_restore_fences(dev);
2632 }
2633
2634 /**
2635 * This function clears the request list as sequence numbers are passed.
2636 */
2637 void
2638 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2639 {
2640 uint32_t seqno;
2641
2642 if (list_empty(&ring->request_list))
2643 return;
2644
2645 WARN_ON(i915_verify_lists(ring->dev));
2646
2647 seqno = ring->get_seqno(ring, true);
2648
2649 /* Move any buffers on the active list that are no longer referenced
2650 * by the ringbuffer to the flushing/inactive lists as appropriate,
2651 * before we free the context associated with the requests.
2652 */
2653 while (!list_empty(&ring->active_list)) {
2654 struct drm_i915_gem_object *obj;
2655
2656 obj = list_first_entry(&ring->active_list,
2657 struct drm_i915_gem_object,
2658 ring_list);
2659
2660 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2661 break;
2662
2663 i915_gem_object_move_to_inactive(obj);
2664 }
2665
2666
2667 while (!list_empty(&ring->request_list)) {
2668 struct drm_i915_gem_request *request;
2669 struct intel_ringbuffer *ringbuf;
2670
2671 request = list_first_entry(&ring->request_list,
2672 struct drm_i915_gem_request,
2673 list);
2674
2675 if (!i915_seqno_passed(seqno, request->seqno))
2676 break;
2677
2678 trace_i915_gem_request_retire(ring, request->seqno);
2679
2680 /* This is one of the few common intersection points
2681 * between legacy ringbuffer submission and execlists:
2682 * we need to tell them apart in order to find the correct
2683 * ringbuffer to which the request belongs to.
2684 */
2685 if (i915.enable_execlists) {
2686 struct intel_context *ctx = request->ctx;
2687 ringbuf = ctx->engine[ring->id].ringbuf;
2688 } else
2689 ringbuf = ring->buffer;
2690
2691 /* We know the GPU must have read the request to have
2692 * sent us the seqno + interrupt, so use the position
2693 * of tail of the request to update the last known position
2694 * of the GPU head.
2695 */
2696 ringbuf->last_retired_head = request->tail;
2697
2698 i915_gem_free_request(request);
2699 }
2700
2701 if (unlikely(ring->trace_irq_seqno &&
2702 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2703 ring->irq_put(ring);
2704 ring->trace_irq_seqno = 0;
2705 }
2706
2707 WARN_ON(i915_verify_lists(ring->dev));
2708 }
2709
2710 bool
2711 i915_gem_retire_requests(struct drm_device *dev)
2712 {
2713 struct drm_i915_private *dev_priv = dev->dev_private;
2714 struct intel_engine_cs *ring;
2715 bool idle = true;
2716 int i;
2717
2718 for_each_ring(ring, dev_priv, i) {
2719 i915_gem_retire_requests_ring(ring);
2720 idle &= list_empty(&ring->request_list);
2721 }
2722
2723 if (idle)
2724 mod_delayed_work(dev_priv->wq,
2725 &dev_priv->mm.idle_work,
2726 msecs_to_jiffies(100));
2727
2728 return idle;
2729 }
2730
2731 static void
2732 i915_gem_retire_work_handler(struct work_struct *work)
2733 {
2734 struct drm_i915_private *dev_priv =
2735 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2736 struct drm_device *dev = dev_priv->dev;
2737 bool idle;
2738
2739 /* Come back later if the device is busy... */
2740 idle = false;
2741 if (mutex_trylock(&dev->struct_mutex)) {
2742 idle = i915_gem_retire_requests(dev);
2743 mutex_unlock(&dev->struct_mutex);
2744 }
2745 if (!idle)
2746 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2747 round_jiffies_up_relative(HZ));
2748 }
2749
2750 static void
2751 i915_gem_idle_work_handler(struct work_struct *work)
2752 {
2753 struct drm_i915_private *dev_priv =
2754 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2755
2756 intel_mark_idle(dev_priv->dev);
2757 }
2758
2759 /**
2760 * Ensures that an object will eventually get non-busy by flushing any required
2761 * write domains, emitting any outstanding lazy request and retiring and
2762 * completed requests.
2763 */
2764 static int
2765 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2766 {
2767 int ret;
2768
2769 if (obj->active) {
2770 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2771 if (ret)
2772 return ret;
2773
2774 i915_gem_retire_requests_ring(obj->ring);
2775 }
2776
2777 return 0;
2778 }
2779
2780 /**
2781 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2782 * @DRM_IOCTL_ARGS: standard ioctl arguments
2783 *
2784 * Returns 0 if successful, else an error is returned with the remaining time in
2785 * the timeout parameter.
2786 * -ETIME: object is still busy after timeout
2787 * -ERESTARTSYS: signal interrupted the wait
2788 * -ENONENT: object doesn't exist
2789 * Also possible, but rare:
2790 * -EAGAIN: GPU wedged
2791 * -ENOMEM: damn
2792 * -ENODEV: Internal IRQ fail
2793 * -E?: The add request failed
2794 *
2795 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2796 * non-zero timeout parameter the wait ioctl will wait for the given number of
2797 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2798 * without holding struct_mutex the object may become re-busied before this
2799 * function completes. A similar but shorter * race condition exists in the busy
2800 * ioctl
2801 */
2802 int
2803 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2804 {
2805 struct drm_i915_private *dev_priv = dev->dev_private;
2806 struct drm_i915_gem_wait *args = data;
2807 struct drm_i915_gem_object *obj;
2808 struct intel_engine_cs *ring = NULL;
2809 unsigned reset_counter;
2810 u32 seqno = 0;
2811 int ret = 0;
2812
2813 if (args->flags != 0)
2814 return -EINVAL;
2815
2816 ret = i915_mutex_lock_interruptible(dev);
2817 if (ret)
2818 return ret;
2819
2820 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2821 if (&obj->base == NULL) {
2822 mutex_unlock(&dev->struct_mutex);
2823 return -ENOENT;
2824 }
2825
2826 /* Need to make sure the object gets inactive eventually. */
2827 ret = i915_gem_object_flush_active(obj);
2828 if (ret)
2829 goto out;
2830
2831 if (obj->active) {
2832 seqno = obj->last_read_seqno;
2833 ring = obj->ring;
2834 }
2835
2836 if (seqno == 0)
2837 goto out;
2838
2839 /* Do this after OLR check to make sure we make forward progress polling
2840 * on this IOCTL with a timeout <=0 (like busy ioctl)
2841 */
2842 if (args->timeout_ns <= 0) {
2843 ret = -ETIME;
2844 goto out;
2845 }
2846
2847 drm_gem_object_unreference(&obj->base);
2848 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2849 mutex_unlock(&dev->struct_mutex);
2850
2851 return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2852 file->driver_priv);
2853
2854 out:
2855 drm_gem_object_unreference(&obj->base);
2856 mutex_unlock(&dev->struct_mutex);
2857 return ret;
2858 }
2859
2860 /**
2861 * i915_gem_object_sync - sync an object to a ring.
2862 *
2863 * @obj: object which may be in use on another ring.
2864 * @to: ring we wish to use the object on. May be NULL.
2865 *
2866 * This code is meant to abstract object synchronization with the GPU.
2867 * Calling with NULL implies synchronizing the object with the CPU
2868 * rather than a particular GPU ring.
2869 *
2870 * Returns 0 if successful, else propagates up the lower layer error.
2871 */
2872 int
2873 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2874 struct intel_engine_cs *to)
2875 {
2876 struct intel_engine_cs *from = obj->ring;
2877 u32 seqno;
2878 int ret, idx;
2879
2880 if (from == NULL || to == from)
2881 return 0;
2882
2883 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2884 return i915_gem_object_wait_rendering(obj, false);
2885
2886 idx = intel_ring_sync_index(from, to);
2887
2888 seqno = obj->last_read_seqno;
2889 /* Optimization: Avoid semaphore sync when we are sure we already
2890 * waited for an object with higher seqno */
2891 if (seqno <= from->semaphore.sync_seqno[idx])
2892 return 0;
2893
2894 ret = i915_gem_check_olr(obj->ring, seqno);
2895 if (ret)
2896 return ret;
2897
2898 trace_i915_gem_ring_sync_to(from, to, seqno);
2899 ret = to->semaphore.sync_to(to, from, seqno);
2900 if (!ret)
2901 /* We use last_read_seqno because sync_to()
2902 * might have just caused seqno wrap under
2903 * the radar.
2904 */
2905 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2906
2907 return ret;
2908 }
2909
2910 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2911 {
2912 u32 old_write_domain, old_read_domains;
2913
2914 /* Force a pagefault for domain tracking on next user access */
2915 i915_gem_release_mmap(obj);
2916
2917 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2918 return;
2919
2920 /* Wait for any direct GTT access to complete */
2921 mb();
2922
2923 old_read_domains = obj->base.read_domains;
2924 old_write_domain = obj->base.write_domain;
2925
2926 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2927 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2928
2929 trace_i915_gem_object_change_domain(obj,
2930 old_read_domains,
2931 old_write_domain);
2932 }
2933
2934 int i915_vma_unbind(struct i915_vma *vma)
2935 {
2936 struct drm_i915_gem_object *obj = vma->obj;
2937 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2938 int ret;
2939
2940 if (list_empty(&vma->vma_link))
2941 return 0;
2942
2943 if (!drm_mm_node_allocated(&vma->node)) {
2944 i915_gem_vma_destroy(vma);
2945 return 0;
2946 }
2947
2948 if (vma->pin_count)
2949 return -EBUSY;
2950
2951 BUG_ON(obj->pages == NULL);
2952
2953 ret = i915_gem_object_finish_gpu(obj);
2954 if (ret)
2955 return ret;
2956 /* Continue on if we fail due to EIO, the GPU is hung so we
2957 * should be safe and we need to cleanup or else we might
2958 * cause memory corruption through use-after-free.
2959 */
2960
2961 /* Throw away the active reference before moving to the unbound list */
2962 i915_gem_object_retire(obj);
2963
2964 if (i915_is_ggtt(vma->vm)) {
2965 i915_gem_object_finish_gtt(obj);
2966
2967 /* release the fence reg _after_ flushing */
2968 ret = i915_gem_object_put_fence(obj);
2969 if (ret)
2970 return ret;
2971 }
2972
2973 trace_i915_vma_unbind(vma);
2974
2975 vma->unbind_vma(vma);
2976
2977 list_del_init(&vma->mm_list);
2978 if (i915_is_ggtt(vma->vm))
2979 obj->map_and_fenceable = false;
2980
2981 drm_mm_remove_node(&vma->node);
2982 i915_gem_vma_destroy(vma);
2983
2984 /* Since the unbound list is global, only move to that list if
2985 * no more VMAs exist. */
2986 if (list_empty(&obj->vma_list)) {
2987 i915_gem_gtt_finish_object(obj);
2988 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2989 }
2990
2991 /* And finally now the object is completely decoupled from this vma,
2992 * we can drop its hold on the backing storage and allow it to be
2993 * reaped by the shrinker.
2994 */
2995 i915_gem_object_unpin_pages(obj);
2996
2997 return 0;
2998 }
2999
3000 int i915_gpu_idle(struct drm_device *dev)
3001 {
3002 struct drm_i915_private *dev_priv = dev->dev_private;
3003 struct intel_engine_cs *ring;
3004 int ret, i;
3005
3006 /* Flush everything onto the inactive list. */
3007 for_each_ring(ring, dev_priv, i) {
3008 if (!i915.enable_execlists) {
3009 ret = i915_switch_context(ring, ring->default_context);
3010 if (ret)
3011 return ret;
3012 }
3013
3014 ret = intel_ring_idle(ring);
3015 if (ret)
3016 return ret;
3017 }
3018
3019 return 0;
3020 }
3021
3022 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3023 struct drm_i915_gem_object *obj)
3024 {
3025 struct drm_i915_private *dev_priv = dev->dev_private;
3026 int fence_reg;
3027 int fence_pitch_shift;
3028
3029 if (INTEL_INFO(dev)->gen >= 6) {
3030 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3031 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3032 } else {
3033 fence_reg = FENCE_REG_965_0;
3034 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3035 }
3036
3037 fence_reg += reg * 8;
3038
3039 /* To w/a incoherency with non-atomic 64-bit register updates,
3040 * we split the 64-bit update into two 32-bit writes. In order
3041 * for a partial fence not to be evaluated between writes, we
3042 * precede the update with write to turn off the fence register,
3043 * and only enable the fence as the last step.
3044 *
3045 * For extra levels of paranoia, we make sure each step lands
3046 * before applying the next step.
3047 */
3048 I915_WRITE(fence_reg, 0);
3049 POSTING_READ(fence_reg);
3050
3051 if (obj) {
3052 u32 size = i915_gem_obj_ggtt_size(obj);
3053 uint64_t val;
3054
3055 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3056 0xfffff000) << 32;
3057 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3058 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3059 if (obj->tiling_mode == I915_TILING_Y)
3060 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3061 val |= I965_FENCE_REG_VALID;
3062
3063 I915_WRITE(fence_reg + 4, val >> 32);
3064 POSTING_READ(fence_reg + 4);
3065
3066 I915_WRITE(fence_reg + 0, val);
3067 POSTING_READ(fence_reg);
3068 } else {
3069 I915_WRITE(fence_reg + 4, 0);
3070 POSTING_READ(fence_reg + 4);
3071 }
3072 }
3073
3074 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3075 struct drm_i915_gem_object *obj)
3076 {
3077 struct drm_i915_private *dev_priv = dev->dev_private;
3078 u32 val;
3079
3080 if (obj) {
3081 u32 size = i915_gem_obj_ggtt_size(obj);
3082 int pitch_val;
3083 int tile_width;
3084
3085 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3086 (size & -size) != size ||
3087 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3088 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3089 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3090
3091 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3092 tile_width = 128;
3093 else
3094 tile_width = 512;
3095
3096 /* Note: pitch better be a power of two tile widths */
3097 pitch_val = obj->stride / tile_width;
3098 pitch_val = ffs(pitch_val) - 1;
3099
3100 val = i915_gem_obj_ggtt_offset(obj);
3101 if (obj->tiling_mode == I915_TILING_Y)
3102 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3103 val |= I915_FENCE_SIZE_BITS(size);
3104 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3105 val |= I830_FENCE_REG_VALID;
3106 } else
3107 val = 0;
3108
3109 if (reg < 8)
3110 reg = FENCE_REG_830_0 + reg * 4;
3111 else
3112 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3113
3114 I915_WRITE(reg, val);
3115 POSTING_READ(reg);
3116 }
3117
3118 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3119 struct drm_i915_gem_object *obj)
3120 {
3121 struct drm_i915_private *dev_priv = dev->dev_private;
3122 uint32_t val;
3123
3124 if (obj) {
3125 u32 size = i915_gem_obj_ggtt_size(obj);
3126 uint32_t pitch_val;
3127
3128 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3129 (size & -size) != size ||
3130 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3131 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3132 i915_gem_obj_ggtt_offset(obj), size);
3133
3134 pitch_val = obj->stride / 128;
3135 pitch_val = ffs(pitch_val) - 1;
3136
3137 val = i915_gem_obj_ggtt_offset(obj);
3138 if (obj->tiling_mode == I915_TILING_Y)
3139 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3140 val |= I830_FENCE_SIZE_BITS(size);
3141 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3142 val |= I830_FENCE_REG_VALID;
3143 } else
3144 val = 0;
3145
3146 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3147 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3148 }
3149
3150 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3151 {
3152 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3153 }
3154
3155 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3156 struct drm_i915_gem_object *obj)
3157 {
3158 struct drm_i915_private *dev_priv = dev->dev_private;
3159
3160 /* Ensure that all CPU reads are completed before installing a fence
3161 * and all writes before removing the fence.
3162 */
3163 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3164 mb();
3165
3166 WARN(obj && (!obj->stride || !obj->tiling_mode),
3167 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3168 obj->stride, obj->tiling_mode);
3169
3170 switch (INTEL_INFO(dev)->gen) {
3171 case 9:
3172 case 8:
3173 case 7:
3174 case 6:
3175 case 5:
3176 case 4: i965_write_fence_reg(dev, reg, obj); break;
3177 case 3: i915_write_fence_reg(dev, reg, obj); break;
3178 case 2: i830_write_fence_reg(dev, reg, obj); break;
3179 default: BUG();
3180 }
3181
3182 /* And similarly be paranoid that no direct access to this region
3183 * is reordered to before the fence is installed.
3184 */
3185 if (i915_gem_object_needs_mb(obj))
3186 mb();
3187 }
3188
3189 static inline int fence_number(struct drm_i915_private *dev_priv,
3190 struct drm_i915_fence_reg *fence)
3191 {
3192 return fence - dev_priv->fence_regs;
3193 }
3194
3195 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3196 struct drm_i915_fence_reg *fence,
3197 bool enable)
3198 {
3199 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3200 int reg = fence_number(dev_priv, fence);
3201
3202 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3203
3204 if (enable) {
3205 obj->fence_reg = reg;
3206 fence->obj = obj;
3207 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3208 } else {
3209 obj->fence_reg = I915_FENCE_REG_NONE;
3210 fence->obj = NULL;
3211 list_del_init(&fence->lru_list);
3212 }
3213 obj->fence_dirty = false;
3214 }
3215
3216 static int
3217 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3218 {
3219 if (obj->last_fenced_seqno) {
3220 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3221 if (ret)
3222 return ret;
3223
3224 obj->last_fenced_seqno = 0;
3225 }
3226
3227 return 0;
3228 }
3229
3230 int
3231 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3232 {
3233 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3234 struct drm_i915_fence_reg *fence;
3235 int ret;
3236
3237 ret = i915_gem_object_wait_fence(obj);
3238 if (ret)
3239 return ret;
3240
3241 if (obj->fence_reg == I915_FENCE_REG_NONE)
3242 return 0;
3243
3244 fence = &dev_priv->fence_regs[obj->fence_reg];
3245
3246 if (WARN_ON(fence->pin_count))
3247 return -EBUSY;
3248
3249 i915_gem_object_fence_lost(obj);
3250 i915_gem_object_update_fence(obj, fence, false);
3251
3252 return 0;
3253 }
3254
3255 static struct drm_i915_fence_reg *
3256 i915_find_fence_reg(struct drm_device *dev)
3257 {
3258 struct drm_i915_private *dev_priv = dev->dev_private;
3259 struct drm_i915_fence_reg *reg, *avail;
3260 int i;
3261
3262 /* First try to find a free reg */
3263 avail = NULL;
3264 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3265 reg = &dev_priv->fence_regs[i];
3266 if (!reg->obj)
3267 return reg;
3268
3269 if (!reg->pin_count)
3270 avail = reg;
3271 }
3272
3273 if (avail == NULL)
3274 goto deadlock;
3275
3276 /* None available, try to steal one or wait for a user to finish */
3277 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3278 if (reg->pin_count)
3279 continue;
3280
3281 return reg;
3282 }
3283
3284 deadlock:
3285 /* Wait for completion of pending flips which consume fences */
3286 if (intel_has_pending_fb_unpin(dev))
3287 return ERR_PTR(-EAGAIN);
3288
3289 return ERR_PTR(-EDEADLK);
3290 }
3291
3292 /**
3293 * i915_gem_object_get_fence - set up fencing for an object
3294 * @obj: object to map through a fence reg
3295 *
3296 * When mapping objects through the GTT, userspace wants to be able to write
3297 * to them without having to worry about swizzling if the object is tiled.
3298 * This function walks the fence regs looking for a free one for @obj,
3299 * stealing one if it can't find any.
3300 *
3301 * It then sets up the reg based on the object's properties: address, pitch
3302 * and tiling format.
3303 *
3304 * For an untiled surface, this removes any existing fence.
3305 */
3306 int
3307 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3308 {
3309 struct drm_device *dev = obj->base.dev;
3310 struct drm_i915_private *dev_priv = dev->dev_private;
3311 bool enable = obj->tiling_mode != I915_TILING_NONE;
3312 struct drm_i915_fence_reg *reg;
3313 int ret;
3314
3315 /* Have we updated the tiling parameters upon the object and so
3316 * will need to serialise the write to the associated fence register?
3317 */
3318 if (obj->fence_dirty) {
3319 ret = i915_gem_object_wait_fence(obj);
3320 if (ret)
3321 return ret;
3322 }
3323
3324 /* Just update our place in the LRU if our fence is getting reused. */
3325 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3326 reg = &dev_priv->fence_regs[obj->fence_reg];
3327 if (!obj->fence_dirty) {
3328 list_move_tail(&reg->lru_list,
3329 &dev_priv->mm.fence_list);
3330 return 0;
3331 }
3332 } else if (enable) {
3333 if (WARN_ON(!obj->map_and_fenceable))
3334 return -EINVAL;
3335
3336 reg = i915_find_fence_reg(dev);
3337 if (IS_ERR(reg))
3338 return PTR_ERR(reg);
3339
3340 if (reg->obj) {
3341 struct drm_i915_gem_object *old = reg->obj;
3342
3343 ret = i915_gem_object_wait_fence(old);
3344 if (ret)
3345 return ret;
3346
3347 i915_gem_object_fence_lost(old);
3348 }
3349 } else
3350 return 0;
3351
3352 i915_gem_object_update_fence(obj, reg, enable);
3353
3354 return 0;
3355 }
3356
3357 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3358 unsigned long cache_level)
3359 {
3360 struct drm_mm_node *gtt_space = &vma->node;
3361 struct drm_mm_node *other;
3362
3363 /*
3364 * On some machines we have to be careful when putting differing types
3365 * of snoopable memory together to avoid the prefetcher crossing memory
3366 * domains and dying. During vm initialisation, we decide whether or not
3367 * these constraints apply and set the drm_mm.color_adjust
3368 * appropriately.
3369 */
3370 if (vma->vm->mm.color_adjust == NULL)
3371 return true;
3372
3373 if (!drm_mm_node_allocated(gtt_space))
3374 return true;
3375
3376 if (list_empty(&gtt_space->node_list))
3377 return true;
3378
3379 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3380 if (other->allocated && !other->hole_follows && other->color != cache_level)
3381 return false;
3382
3383 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3384 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3385 return false;
3386
3387 return true;
3388 }
3389
3390 /**
3391 * Finds free space in the GTT aperture and binds the object there.
3392 */
3393 static struct i915_vma *
3394 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3395 struct i915_address_space *vm,
3396 unsigned alignment,
3397 uint64_t flags)
3398 {
3399 struct drm_device *dev = obj->base.dev;
3400 struct drm_i915_private *dev_priv = dev->dev_private;
3401 u32 size, fence_size, fence_alignment, unfenced_alignment;
3402 unsigned long start =
3403 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3404 unsigned long end =
3405 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3406 struct i915_vma *vma;
3407 int ret;
3408
3409 fence_size = i915_gem_get_gtt_size(dev,
3410 obj->base.size,
3411 obj->tiling_mode);
3412 fence_alignment = i915_gem_get_gtt_alignment(dev,
3413 obj->base.size,
3414 obj->tiling_mode, true);
3415 unfenced_alignment =
3416 i915_gem_get_gtt_alignment(dev,
3417 obj->base.size,
3418 obj->tiling_mode, false);
3419
3420 if (alignment == 0)
3421 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3422 unfenced_alignment;
3423 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3424 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3425 return ERR_PTR(-EINVAL);
3426 }
3427
3428 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3429
3430 /* If the object is bigger than the entire aperture, reject it early
3431 * before evicting everything in a vain attempt to find space.
3432 */
3433 if (obj->base.size > end) {
3434 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3435 obj->base.size,
3436 flags & PIN_MAPPABLE ? "mappable" : "total",
3437 end);
3438 return ERR_PTR(-E2BIG);
3439 }
3440
3441 ret = i915_gem_object_get_pages(obj);
3442 if (ret)
3443 return ERR_PTR(ret);
3444
3445 i915_gem_object_pin_pages(obj);
3446
3447 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3448 if (IS_ERR(vma))
3449 goto err_unpin;
3450
3451 search_free:
3452 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3453 size, alignment,
3454 obj->cache_level,
3455 start, end,
3456 DRM_MM_SEARCH_DEFAULT,
3457 DRM_MM_CREATE_DEFAULT);
3458 if (ret) {
3459 ret = i915_gem_evict_something(dev, vm, size, alignment,
3460 obj->cache_level,
3461 start, end,
3462 flags);
3463 if (ret == 0)
3464 goto search_free;
3465
3466 goto err_free_vma;
3467 }
3468 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3469 ret = -EINVAL;
3470 goto err_remove_node;
3471 }
3472
3473 ret = i915_gem_gtt_prepare_object(obj);
3474 if (ret)
3475 goto err_remove_node;
3476
3477 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3478 list_add_tail(&vma->mm_list, &vm->inactive_list);
3479
3480 if (i915_is_ggtt(vm)) {
3481 bool mappable, fenceable;
3482
3483 fenceable = (vma->node.size == fence_size &&
3484 (vma->node.start & (fence_alignment - 1)) == 0);
3485
3486 mappable = (vma->node.start + obj->base.size <=
3487 dev_priv->gtt.mappable_end);
3488
3489 obj->map_and_fenceable = mappable && fenceable;
3490 }
3491
3492 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3493
3494 trace_i915_vma_bind(vma, flags);
3495 vma->bind_vma(vma, obj->cache_level,
3496 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3497
3498 return vma;
3499
3500 err_remove_node:
3501 drm_mm_remove_node(&vma->node);
3502 err_free_vma:
3503 i915_gem_vma_destroy(vma);
3504 vma = ERR_PTR(ret);
3505 err_unpin:
3506 i915_gem_object_unpin_pages(obj);
3507 return vma;
3508 }
3509
3510 bool
3511 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3512 bool force)
3513 {
3514 /* If we don't have a page list set up, then we're not pinned
3515 * to GPU, and we can ignore the cache flush because it'll happen
3516 * again at bind time.
3517 */
3518 if (obj->pages == NULL)
3519 return false;
3520
3521 /*
3522 * Stolen memory is always coherent with the GPU as it is explicitly
3523 * marked as wc by the system, or the system is cache-coherent.
3524 */
3525 if (obj->stolen)
3526 return false;
3527
3528 /* If the GPU is snooping the contents of the CPU cache,
3529 * we do not need to manually clear the CPU cache lines. However,
3530 * the caches are only snooped when the render cache is
3531 * flushed/invalidated. As we always have to emit invalidations
3532 * and flushes when moving into and out of the RENDER domain, correct
3533 * snooping behaviour occurs naturally as the result of our domain
3534 * tracking.
3535 */
3536 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3537 return false;
3538
3539 trace_i915_gem_object_clflush(obj);
3540 drm_clflush_sg(obj->pages);
3541
3542 return true;
3543 }
3544
3545 /** Flushes the GTT write domain for the object if it's dirty. */
3546 static void
3547 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3548 {
3549 uint32_t old_write_domain;
3550
3551 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3552 return;
3553
3554 /* No actual flushing is required for the GTT write domain. Writes
3555 * to it immediately go to main memory as far as we know, so there's
3556 * no chipset flush. It also doesn't land in render cache.
3557 *
3558 * However, we do have to enforce the order so that all writes through
3559 * the GTT land before any writes to the device, such as updates to
3560 * the GATT itself.
3561 */
3562 wmb();
3563
3564 old_write_domain = obj->base.write_domain;
3565 obj->base.write_domain = 0;
3566
3567 intel_fb_obj_flush(obj, false);
3568
3569 trace_i915_gem_object_change_domain(obj,
3570 obj->base.read_domains,
3571 old_write_domain);
3572 }
3573
3574 /** Flushes the CPU write domain for the object if it's dirty. */
3575 static void
3576 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3577 bool force)
3578 {
3579 uint32_t old_write_domain;
3580
3581 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3582 return;
3583
3584 if (i915_gem_clflush_object(obj, force))
3585 i915_gem_chipset_flush(obj->base.dev);
3586
3587 old_write_domain = obj->base.write_domain;
3588 obj->base.write_domain = 0;
3589
3590 intel_fb_obj_flush(obj, false);
3591
3592 trace_i915_gem_object_change_domain(obj,
3593 obj->base.read_domains,
3594 old_write_domain);
3595 }
3596
3597 /**
3598 * Moves a single object to the GTT read, and possibly write domain.
3599 *
3600 * This function returns when the move is complete, including waiting on
3601 * flushes to occur.
3602 */
3603 int
3604 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3605 {
3606 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3607 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3608 uint32_t old_write_domain, old_read_domains;
3609 int ret;
3610
3611 /* Not valid to be called on unbound objects. */
3612 if (vma == NULL)
3613 return -EINVAL;
3614
3615 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3616 return 0;
3617
3618 ret = i915_gem_object_wait_rendering(obj, !write);
3619 if (ret)
3620 return ret;
3621
3622 i915_gem_object_retire(obj);
3623 i915_gem_object_flush_cpu_write_domain(obj, false);
3624
3625 /* Serialise direct access to this object with the barriers for
3626 * coherent writes from the GPU, by effectively invalidating the
3627 * GTT domain upon first access.
3628 */
3629 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3630 mb();
3631
3632 old_write_domain = obj->base.write_domain;
3633 old_read_domains = obj->base.read_domains;
3634
3635 /* It should now be out of any other write domains, and we can update
3636 * the domain values for our changes.
3637 */
3638 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3639 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3640 if (write) {
3641 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3642 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3643 obj->dirty = 1;
3644 }
3645
3646 if (write)
3647 intel_fb_obj_invalidate(obj, NULL);
3648
3649 trace_i915_gem_object_change_domain(obj,
3650 old_read_domains,
3651 old_write_domain);
3652
3653 /* And bump the LRU for this access */
3654 if (i915_gem_object_is_inactive(obj))
3655 list_move_tail(&vma->mm_list,
3656 &dev_priv->gtt.base.inactive_list);
3657
3658 return 0;
3659 }
3660
3661 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3662 enum i915_cache_level cache_level)
3663 {
3664 struct drm_device *dev = obj->base.dev;
3665 struct i915_vma *vma, *next;
3666 int ret;
3667
3668 if (obj->cache_level == cache_level)
3669 return 0;
3670
3671 if (i915_gem_obj_is_pinned(obj)) {
3672 DRM_DEBUG("can not change the cache level of pinned objects\n");
3673 return -EBUSY;
3674 }
3675
3676 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3677 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3678 ret = i915_vma_unbind(vma);
3679 if (ret)
3680 return ret;
3681 }
3682 }
3683
3684 if (i915_gem_obj_bound_any(obj)) {
3685 ret = i915_gem_object_finish_gpu(obj);
3686 if (ret)
3687 return ret;
3688
3689 i915_gem_object_finish_gtt(obj);
3690
3691 /* Before SandyBridge, you could not use tiling or fence
3692 * registers with snooped memory, so relinquish any fences
3693 * currently pointing to our region in the aperture.
3694 */
3695 if (INTEL_INFO(dev)->gen < 6) {
3696 ret = i915_gem_object_put_fence(obj);
3697 if (ret)
3698 return ret;
3699 }
3700
3701 list_for_each_entry(vma, &obj->vma_list, vma_link)
3702 if (drm_mm_node_allocated(&vma->node))
3703 vma->bind_vma(vma, cache_level,
3704 vma->bound & GLOBAL_BIND);
3705 }
3706
3707 list_for_each_entry(vma, &obj->vma_list, vma_link)
3708 vma->node.color = cache_level;
3709 obj->cache_level = cache_level;
3710
3711 if (cpu_write_needs_clflush(obj)) {
3712 u32 old_read_domains, old_write_domain;
3713
3714 /* If we're coming from LLC cached, then we haven't
3715 * actually been tracking whether the data is in the
3716 * CPU cache or not, since we only allow one bit set
3717 * in obj->write_domain and have been skipping the clflushes.
3718 * Just set it to the CPU cache for now.
3719 */
3720 i915_gem_object_retire(obj);
3721 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3722
3723 old_read_domains = obj->base.read_domains;
3724 old_write_domain = obj->base.write_domain;
3725
3726 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3727 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3728
3729 trace_i915_gem_object_change_domain(obj,
3730 old_read_domains,
3731 old_write_domain);
3732 }
3733
3734 return 0;
3735 }
3736
3737 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3738 struct drm_file *file)
3739 {
3740 struct drm_i915_gem_caching *args = data;
3741 struct drm_i915_gem_object *obj;
3742 int ret;
3743
3744 ret = i915_mutex_lock_interruptible(dev);
3745 if (ret)
3746 return ret;
3747
3748 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3749 if (&obj->base == NULL) {
3750 ret = -ENOENT;
3751 goto unlock;
3752 }
3753
3754 switch (obj->cache_level) {
3755 case I915_CACHE_LLC:
3756 case I915_CACHE_L3_LLC:
3757 args->caching = I915_CACHING_CACHED;
3758 break;
3759
3760 case I915_CACHE_WT:
3761 args->caching = I915_CACHING_DISPLAY;
3762 break;
3763
3764 default:
3765 args->caching = I915_CACHING_NONE;
3766 break;
3767 }
3768
3769 drm_gem_object_unreference(&obj->base);
3770 unlock:
3771 mutex_unlock(&dev->struct_mutex);
3772 return ret;
3773 }
3774
3775 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3776 struct drm_file *file)
3777 {
3778 struct drm_i915_gem_caching *args = data;
3779 struct drm_i915_gem_object *obj;
3780 enum i915_cache_level level;
3781 int ret;
3782
3783 switch (args->caching) {
3784 case I915_CACHING_NONE:
3785 level = I915_CACHE_NONE;
3786 break;
3787 case I915_CACHING_CACHED:
3788 level = I915_CACHE_LLC;
3789 break;
3790 case I915_CACHING_DISPLAY:
3791 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3792 break;
3793 default:
3794 return -EINVAL;
3795 }
3796
3797 ret = i915_mutex_lock_interruptible(dev);
3798 if (ret)
3799 return ret;
3800
3801 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3802 if (&obj->base == NULL) {
3803 ret = -ENOENT;
3804 goto unlock;
3805 }
3806
3807 ret = i915_gem_object_set_cache_level(obj, level);
3808
3809 drm_gem_object_unreference(&obj->base);
3810 unlock:
3811 mutex_unlock(&dev->struct_mutex);
3812 return ret;
3813 }
3814
3815 static bool is_pin_display(struct drm_i915_gem_object *obj)
3816 {
3817 struct i915_vma *vma;
3818
3819 vma = i915_gem_obj_to_ggtt(obj);
3820 if (!vma)
3821 return false;
3822
3823 /* There are 3 sources that pin objects:
3824 * 1. The display engine (scanouts, sprites, cursors);
3825 * 2. Reservations for execbuffer;
3826 * 3. The user.
3827 *
3828 * We can ignore reservations as we hold the struct_mutex and
3829 * are only called outside of the reservation path. The user
3830 * can only increment pin_count once, and so if after
3831 * subtracting the potential reference by the user, any pin_count
3832 * remains, it must be due to another use by the display engine.
3833 */
3834 return vma->pin_count - !!obj->user_pin_count;
3835 }
3836
3837 /*
3838 * Prepare buffer for display plane (scanout, cursors, etc).
3839 * Can be called from an uninterruptible phase (modesetting) and allows
3840 * any flushes to be pipelined (for pageflips).
3841 */
3842 int
3843 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3844 u32 alignment,
3845 struct intel_engine_cs *pipelined)
3846 {
3847 u32 old_read_domains, old_write_domain;
3848 bool was_pin_display;
3849 int ret;
3850
3851 if (pipelined != obj->ring) {
3852 ret = i915_gem_object_sync(obj, pipelined);
3853 if (ret)
3854 return ret;
3855 }
3856
3857 /* Mark the pin_display early so that we account for the
3858 * display coherency whilst setting up the cache domains.
3859 */
3860 was_pin_display = obj->pin_display;
3861 obj->pin_display = true;
3862
3863 /* The display engine is not coherent with the LLC cache on gen6. As
3864 * a result, we make sure that the pinning that is about to occur is
3865 * done with uncached PTEs. This is lowest common denominator for all
3866 * chipsets.
3867 *
3868 * However for gen6+, we could do better by using the GFDT bit instead
3869 * of uncaching, which would allow us to flush all the LLC-cached data
3870 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3871 */
3872 ret = i915_gem_object_set_cache_level(obj,
3873 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3874 if (ret)
3875 goto err_unpin_display;
3876
3877 /* As the user may map the buffer once pinned in the display plane
3878 * (e.g. libkms for the bootup splash), we have to ensure that we
3879 * always use map_and_fenceable for all scanout buffers.
3880 */
3881 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3882 if (ret)
3883 goto err_unpin_display;
3884
3885 i915_gem_object_flush_cpu_write_domain(obj, true);
3886
3887 old_write_domain = obj->base.write_domain;
3888 old_read_domains = obj->base.read_domains;
3889
3890 /* It should now be out of any other write domains, and we can update
3891 * the domain values for our changes.
3892 */
3893 obj->base.write_domain = 0;
3894 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3895
3896 trace_i915_gem_object_change_domain(obj,
3897 old_read_domains,
3898 old_write_domain);
3899
3900 return 0;
3901
3902 err_unpin_display:
3903 WARN_ON(was_pin_display != is_pin_display(obj));
3904 obj->pin_display = was_pin_display;
3905 return ret;
3906 }
3907
3908 void
3909 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3910 {
3911 i915_gem_object_ggtt_unpin(obj);
3912 obj->pin_display = is_pin_display(obj);
3913 }
3914
3915 int
3916 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3917 {
3918 int ret;
3919
3920 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3921 return 0;
3922
3923 ret = i915_gem_object_wait_rendering(obj, false);
3924 if (ret)
3925 return ret;
3926
3927 /* Ensure that we invalidate the GPU's caches and TLBs. */
3928 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3929 return 0;
3930 }
3931
3932 /**
3933 * Moves a single object to the CPU read, and possibly write domain.
3934 *
3935 * This function returns when the move is complete, including waiting on
3936 * flushes to occur.
3937 */
3938 int
3939 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3940 {
3941 uint32_t old_write_domain, old_read_domains;
3942 int ret;
3943
3944 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3945 return 0;
3946
3947 ret = i915_gem_object_wait_rendering(obj, !write);
3948 if (ret)
3949 return ret;
3950
3951 i915_gem_object_retire(obj);
3952 i915_gem_object_flush_gtt_write_domain(obj);
3953
3954 old_write_domain = obj->base.write_domain;
3955 old_read_domains = obj->base.read_domains;
3956
3957 /* Flush the CPU cache if it's still invalid. */
3958 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3959 i915_gem_clflush_object(obj, false);
3960
3961 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3962 }
3963
3964 /* It should now be out of any other write domains, and we can update
3965 * the domain values for our changes.
3966 */
3967 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3968
3969 /* If we're writing through the CPU, then the GPU read domains will
3970 * need to be invalidated at next use.
3971 */
3972 if (write) {
3973 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3974 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3975 }
3976
3977 if (write)
3978 intel_fb_obj_invalidate(obj, NULL);
3979
3980 trace_i915_gem_object_change_domain(obj,
3981 old_read_domains,
3982 old_write_domain);
3983
3984 return 0;
3985 }
3986
3987 /* Throttle our rendering by waiting until the ring has completed our requests
3988 * emitted over 20 msec ago.
3989 *
3990 * Note that if we were to use the current jiffies each time around the loop,
3991 * we wouldn't escape the function with any frames outstanding if the time to
3992 * render a frame was over 20ms.
3993 *
3994 * This should get us reasonable parallelism between CPU and GPU but also
3995 * relatively low latency when blocking on a particular request to finish.
3996 */
3997 static int
3998 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3999 {
4000 struct drm_i915_private *dev_priv = dev->dev_private;
4001 struct drm_i915_file_private *file_priv = file->driver_priv;
4002 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4003 struct drm_i915_gem_request *request;
4004 struct intel_engine_cs *ring = NULL;
4005 unsigned reset_counter;
4006 u32 seqno = 0;
4007 int ret;
4008
4009 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4010 if (ret)
4011 return ret;
4012
4013 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4014 if (ret)
4015 return ret;
4016
4017 spin_lock(&file_priv->mm.lock);
4018 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4019 if (time_after_eq(request->emitted_jiffies, recent_enough))
4020 break;
4021
4022 ring = request->ring;
4023 seqno = request->seqno;
4024 }
4025 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4026 spin_unlock(&file_priv->mm.lock);
4027
4028 if (seqno == 0)
4029 return 0;
4030
4031 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4032 if (ret == 0)
4033 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4034
4035 return ret;
4036 }
4037
4038 static bool
4039 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4040 {
4041 struct drm_i915_gem_object *obj = vma->obj;
4042
4043 if (alignment &&
4044 vma->node.start & (alignment - 1))
4045 return true;
4046
4047 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4048 return true;
4049
4050 if (flags & PIN_OFFSET_BIAS &&
4051 vma->node.start < (flags & PIN_OFFSET_MASK))
4052 return true;
4053
4054 return false;
4055 }
4056
4057 int
4058 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4059 struct i915_address_space *vm,
4060 uint32_t alignment,
4061 uint64_t flags)
4062 {
4063 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4064 struct i915_vma *vma;
4065 int ret;
4066
4067 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4068 return -ENODEV;
4069
4070 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4071 return -EINVAL;
4072
4073 vma = i915_gem_obj_to_vma(obj, vm);
4074 if (vma) {
4075 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4076 return -EBUSY;
4077
4078 if (i915_vma_misplaced(vma, alignment, flags)) {
4079 WARN(vma->pin_count,
4080 "bo is already pinned with incorrect alignment:"
4081 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4082 " obj->map_and_fenceable=%d\n",
4083 i915_gem_obj_offset(obj, vm), alignment,
4084 !!(flags & PIN_MAPPABLE),
4085 obj->map_and_fenceable);
4086 ret = i915_vma_unbind(vma);
4087 if (ret)
4088 return ret;
4089
4090 vma = NULL;
4091 }
4092 }
4093
4094 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4095 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4096 if (IS_ERR(vma))
4097 return PTR_ERR(vma);
4098 }
4099
4100 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4101 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4102
4103 vma->pin_count++;
4104 if (flags & PIN_MAPPABLE)
4105 obj->pin_mappable |= true;
4106
4107 return 0;
4108 }
4109
4110 void
4111 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4112 {
4113 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4114
4115 BUG_ON(!vma);
4116 BUG_ON(vma->pin_count == 0);
4117 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4118
4119 if (--vma->pin_count == 0)
4120 obj->pin_mappable = false;
4121 }
4122
4123 bool
4124 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4125 {
4126 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4127 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4128 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4129
4130 WARN_ON(!ggtt_vma ||
4131 dev_priv->fence_regs[obj->fence_reg].pin_count >
4132 ggtt_vma->pin_count);
4133 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4134 return true;
4135 } else
4136 return false;
4137 }
4138
4139 void
4140 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4141 {
4142 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4143 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4144 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4145 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4146 }
4147 }
4148
4149 int
4150 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4151 struct drm_file *file)
4152 {
4153 struct drm_i915_gem_pin *args = data;
4154 struct drm_i915_gem_object *obj;
4155 int ret;
4156
4157 if (INTEL_INFO(dev)->gen >= 6)
4158 return -ENODEV;
4159
4160 ret = i915_mutex_lock_interruptible(dev);
4161 if (ret)
4162 return ret;
4163
4164 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4165 if (&obj->base == NULL) {
4166 ret = -ENOENT;
4167 goto unlock;
4168 }
4169
4170 if (obj->madv != I915_MADV_WILLNEED) {
4171 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4172 ret = -EFAULT;
4173 goto out;
4174 }
4175
4176 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4177 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4178 args->handle);
4179 ret = -EINVAL;
4180 goto out;
4181 }
4182
4183 if (obj->user_pin_count == ULONG_MAX) {
4184 ret = -EBUSY;
4185 goto out;
4186 }
4187
4188 if (obj->user_pin_count == 0) {
4189 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4190 if (ret)
4191 goto out;
4192 }
4193
4194 obj->user_pin_count++;
4195 obj->pin_filp = file;
4196
4197 args->offset = i915_gem_obj_ggtt_offset(obj);
4198 out:
4199 drm_gem_object_unreference(&obj->base);
4200 unlock:
4201 mutex_unlock(&dev->struct_mutex);
4202 return ret;
4203 }
4204
4205 int
4206 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4207 struct drm_file *file)
4208 {
4209 struct drm_i915_gem_pin *args = data;
4210 struct drm_i915_gem_object *obj;
4211 int ret;
4212
4213 ret = i915_mutex_lock_interruptible(dev);
4214 if (ret)
4215 return ret;
4216
4217 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4218 if (&obj->base == NULL) {
4219 ret = -ENOENT;
4220 goto unlock;
4221 }
4222
4223 if (obj->pin_filp != file) {
4224 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4225 args->handle);
4226 ret = -EINVAL;
4227 goto out;
4228 }
4229 obj->user_pin_count--;
4230 if (obj->user_pin_count == 0) {
4231 obj->pin_filp = NULL;
4232 i915_gem_object_ggtt_unpin(obj);
4233 }
4234
4235 out:
4236 drm_gem_object_unreference(&obj->base);
4237 unlock:
4238 mutex_unlock(&dev->struct_mutex);
4239 return ret;
4240 }
4241
4242 int
4243 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4244 struct drm_file *file)
4245 {
4246 struct drm_i915_gem_busy *args = data;
4247 struct drm_i915_gem_object *obj;
4248 int ret;
4249
4250 ret = i915_mutex_lock_interruptible(dev);
4251 if (ret)
4252 return ret;
4253
4254 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4255 if (&obj->base == NULL) {
4256 ret = -ENOENT;
4257 goto unlock;
4258 }
4259
4260 /* Count all active objects as busy, even if they are currently not used
4261 * by the gpu. Users of this interface expect objects to eventually
4262 * become non-busy without any further actions, therefore emit any
4263 * necessary flushes here.
4264 */
4265 ret = i915_gem_object_flush_active(obj);
4266
4267 args->busy = obj->active;
4268 if (obj->ring) {
4269 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4270 args->busy |= intel_ring_flag(obj->ring) << 16;
4271 }
4272
4273 drm_gem_object_unreference(&obj->base);
4274 unlock:
4275 mutex_unlock(&dev->struct_mutex);
4276 return ret;
4277 }
4278
4279 int
4280 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4281 struct drm_file *file_priv)
4282 {
4283 return i915_gem_ring_throttle(dev, file_priv);
4284 }
4285
4286 int
4287 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4288 struct drm_file *file_priv)
4289 {
4290 struct drm_i915_gem_madvise *args = data;
4291 struct drm_i915_gem_object *obj;
4292 int ret;
4293
4294 switch (args->madv) {
4295 case I915_MADV_DONTNEED:
4296 case I915_MADV_WILLNEED:
4297 break;
4298 default:
4299 return -EINVAL;
4300 }
4301
4302 ret = i915_mutex_lock_interruptible(dev);
4303 if (ret)
4304 return ret;
4305
4306 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4307 if (&obj->base == NULL) {
4308 ret = -ENOENT;
4309 goto unlock;
4310 }
4311
4312 if (i915_gem_obj_is_pinned(obj)) {
4313 ret = -EINVAL;
4314 goto out;
4315 }
4316
4317 if (obj->madv != __I915_MADV_PURGED)
4318 obj->madv = args->madv;
4319
4320 /* if the object is no longer attached, discard its backing storage */
4321 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4322 i915_gem_object_truncate(obj);
4323
4324 args->retained = obj->madv != __I915_MADV_PURGED;
4325
4326 out:
4327 drm_gem_object_unreference(&obj->base);
4328 unlock:
4329 mutex_unlock(&dev->struct_mutex);
4330 return ret;
4331 }
4332
4333 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4334 const struct drm_i915_gem_object_ops *ops)
4335 {
4336 INIT_LIST_HEAD(&obj->global_list);
4337 INIT_LIST_HEAD(&obj->ring_list);
4338 INIT_LIST_HEAD(&obj->obj_exec_link);
4339 INIT_LIST_HEAD(&obj->vma_list);
4340
4341 obj->ops = ops;
4342
4343 obj->fence_reg = I915_FENCE_REG_NONE;
4344 obj->madv = I915_MADV_WILLNEED;
4345
4346 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4347 }
4348
4349 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4350 .get_pages = i915_gem_object_get_pages_gtt,
4351 .put_pages = i915_gem_object_put_pages_gtt,
4352 };
4353
4354 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4355 size_t size)
4356 {
4357 struct drm_i915_gem_object *obj;
4358 struct address_space *mapping;
4359 gfp_t mask;
4360
4361 obj = i915_gem_object_alloc(dev);
4362 if (obj == NULL)
4363 return NULL;
4364
4365 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4366 i915_gem_object_free(obj);
4367 return NULL;
4368 }
4369
4370 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4371 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4372 /* 965gm cannot relocate objects above 4GiB. */
4373 mask &= ~__GFP_HIGHMEM;
4374 mask |= __GFP_DMA32;
4375 }
4376
4377 mapping = file_inode(obj->base.filp)->i_mapping;
4378 mapping_set_gfp_mask(mapping, mask);
4379
4380 i915_gem_object_init(obj, &i915_gem_object_ops);
4381
4382 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4383 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4384
4385 if (HAS_LLC(dev)) {
4386 /* On some devices, we can have the GPU use the LLC (the CPU
4387 * cache) for about a 10% performance improvement
4388 * compared to uncached. Graphics requests other than
4389 * display scanout are coherent with the CPU in
4390 * accessing this cache. This means in this mode we
4391 * don't need to clflush on the CPU side, and on the
4392 * GPU side we only need to flush internal caches to
4393 * get data visible to the CPU.
4394 *
4395 * However, we maintain the display planes as UC, and so
4396 * need to rebind when first used as such.
4397 */
4398 obj->cache_level = I915_CACHE_LLC;
4399 } else
4400 obj->cache_level = I915_CACHE_NONE;
4401
4402 trace_i915_gem_object_create(obj);
4403
4404 return obj;
4405 }
4406
4407 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4408 {
4409 /* If we are the last user of the backing storage (be it shmemfs
4410 * pages or stolen etc), we know that the pages are going to be
4411 * immediately released. In this case, we can then skip copying
4412 * back the contents from the GPU.
4413 */
4414
4415 if (obj->madv != I915_MADV_WILLNEED)
4416 return false;
4417
4418 if (obj->base.filp == NULL)
4419 return true;
4420
4421 /* At first glance, this looks racy, but then again so would be
4422 * userspace racing mmap against close. However, the first external
4423 * reference to the filp can only be obtained through the
4424 * i915_gem_mmap_ioctl() which safeguards us against the user
4425 * acquiring such a reference whilst we are in the middle of
4426 * freeing the object.
4427 */
4428 return atomic_long_read(&obj->base.filp->f_count) == 1;
4429 }
4430
4431 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4432 {
4433 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4434 struct drm_device *dev = obj->base.dev;
4435 struct drm_i915_private *dev_priv = dev->dev_private;
4436 struct i915_vma *vma, *next;
4437
4438 intel_runtime_pm_get(dev_priv);
4439
4440 trace_i915_gem_object_destroy(obj);
4441
4442 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4443 int ret;
4444
4445 vma->pin_count = 0;
4446 ret = i915_vma_unbind(vma);
4447 if (WARN_ON(ret == -ERESTARTSYS)) {
4448 bool was_interruptible;
4449
4450 was_interruptible = dev_priv->mm.interruptible;
4451 dev_priv->mm.interruptible = false;
4452
4453 WARN_ON(i915_vma_unbind(vma));
4454
4455 dev_priv->mm.interruptible = was_interruptible;
4456 }
4457 }
4458
4459 i915_gem_object_detach_phys(obj);
4460
4461 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4462 * before progressing. */
4463 if (obj->stolen)
4464 i915_gem_object_unpin_pages(obj);
4465
4466 WARN_ON(obj->frontbuffer_bits);
4467
4468 if (WARN_ON(obj->pages_pin_count))
4469 obj->pages_pin_count = 0;
4470 if (discard_backing_storage(obj))
4471 obj->madv = I915_MADV_DONTNEED;
4472 i915_gem_object_put_pages(obj);
4473 i915_gem_object_free_mmap_offset(obj);
4474
4475 BUG_ON(obj->pages);
4476
4477 if (obj->base.import_attach)
4478 drm_prime_gem_destroy(&obj->base, NULL);
4479
4480 if (obj->ops->release)
4481 obj->ops->release(obj);
4482
4483 drm_gem_object_release(&obj->base);
4484 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4485
4486 kfree(obj->bit_17);
4487 i915_gem_object_free(obj);
4488
4489 intel_runtime_pm_put(dev_priv);
4490 }
4491
4492 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4493 struct i915_address_space *vm)
4494 {
4495 struct i915_vma *vma;
4496 list_for_each_entry(vma, &obj->vma_list, vma_link)
4497 if (vma->vm == vm)
4498 return vma;
4499
4500 return NULL;
4501 }
4502
4503 void i915_gem_vma_destroy(struct i915_vma *vma)
4504 {
4505 struct i915_address_space *vm = NULL;
4506 WARN_ON(vma->node.allocated);
4507
4508 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4509 if (!list_empty(&vma->exec_list))
4510 return;
4511
4512 vm = vma->vm;
4513
4514 if (!i915_is_ggtt(vm))
4515 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4516
4517 list_del(&vma->vma_link);
4518
4519 kfree(vma);
4520 }
4521
4522 static void
4523 i915_gem_stop_ringbuffers(struct drm_device *dev)
4524 {
4525 struct drm_i915_private *dev_priv = dev->dev_private;
4526 struct intel_engine_cs *ring;
4527 int i;
4528
4529 for_each_ring(ring, dev_priv, i)
4530 dev_priv->gt.stop_ring(ring);
4531 }
4532
4533 int
4534 i915_gem_suspend(struct drm_device *dev)
4535 {
4536 struct drm_i915_private *dev_priv = dev->dev_private;
4537 int ret = 0;
4538
4539 mutex_lock(&dev->struct_mutex);
4540 if (dev_priv->ums.mm_suspended)
4541 goto err;
4542
4543 ret = i915_gpu_idle(dev);
4544 if (ret)
4545 goto err;
4546
4547 i915_gem_retire_requests(dev);
4548
4549 /* Under UMS, be paranoid and evict. */
4550 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4551 i915_gem_evict_everything(dev);
4552
4553 i915_kernel_lost_context(dev);
4554 i915_gem_stop_ringbuffers(dev);
4555
4556 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4557 * We need to replace this with a semaphore, or something.
4558 * And not confound ums.mm_suspended!
4559 */
4560 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4561 DRIVER_MODESET);
4562 mutex_unlock(&dev->struct_mutex);
4563
4564 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4565 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4566 flush_delayed_work(&dev_priv->mm.idle_work);
4567
4568 return 0;
4569
4570 err:
4571 mutex_unlock(&dev->struct_mutex);
4572 return ret;
4573 }
4574
4575 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4576 {
4577 struct drm_device *dev = ring->dev;
4578 struct drm_i915_private *dev_priv = dev->dev_private;
4579 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4580 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4581 int i, ret;
4582
4583 if (!HAS_L3_DPF(dev) || !remap_info)
4584 return 0;
4585
4586 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4587 if (ret)
4588 return ret;
4589
4590 /*
4591 * Note: We do not worry about the concurrent register cacheline hang
4592 * here because no other code should access these registers other than
4593 * at initialization time.
4594 */
4595 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4596 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4597 intel_ring_emit(ring, reg_base + i);
4598 intel_ring_emit(ring, remap_info[i/4]);
4599 }
4600
4601 intel_ring_advance(ring);
4602
4603 return ret;
4604 }
4605
4606 void i915_gem_init_swizzling(struct drm_device *dev)
4607 {
4608 struct drm_i915_private *dev_priv = dev->dev_private;
4609
4610 if (INTEL_INFO(dev)->gen < 5 ||
4611 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4612 return;
4613
4614 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4615 DISP_TILE_SURFACE_SWIZZLING);
4616
4617 if (IS_GEN5(dev))
4618 return;
4619
4620 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4621 if (IS_GEN6(dev))
4622 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4623 else if (IS_GEN7(dev))
4624 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4625 else if (IS_GEN8(dev))
4626 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4627 else
4628 BUG();
4629 }
4630
4631 static bool
4632 intel_enable_blt(struct drm_device *dev)
4633 {
4634 if (!HAS_BLT(dev))
4635 return false;
4636
4637 /* The blitter was dysfunctional on early prototypes */
4638 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4639 DRM_INFO("BLT not supported on this pre-production hardware;"
4640 " graphics performance will be degraded.\n");
4641 return false;
4642 }
4643
4644 return true;
4645 }
4646
4647 static void init_unused_ring(struct drm_device *dev, u32 base)
4648 {
4649 struct drm_i915_private *dev_priv = dev->dev_private;
4650
4651 I915_WRITE(RING_CTL(base), 0);
4652 I915_WRITE(RING_HEAD(base), 0);
4653 I915_WRITE(RING_TAIL(base), 0);
4654 I915_WRITE(RING_START(base), 0);
4655 }
4656
4657 static void init_unused_rings(struct drm_device *dev)
4658 {
4659 if (IS_I830(dev)) {
4660 init_unused_ring(dev, PRB1_BASE);
4661 init_unused_ring(dev, SRB0_BASE);
4662 init_unused_ring(dev, SRB1_BASE);
4663 init_unused_ring(dev, SRB2_BASE);
4664 init_unused_ring(dev, SRB3_BASE);
4665 } else if (IS_GEN2(dev)) {
4666 init_unused_ring(dev, SRB0_BASE);
4667 init_unused_ring(dev, SRB1_BASE);
4668 } else if (IS_GEN3(dev)) {
4669 init_unused_ring(dev, PRB1_BASE);
4670 init_unused_ring(dev, PRB2_BASE);
4671 }
4672 }
4673
4674 int i915_gem_init_rings(struct drm_device *dev)
4675 {
4676 struct drm_i915_private *dev_priv = dev->dev_private;
4677 int ret;
4678
4679 /*
4680 * At least 830 can leave some of the unused rings
4681 * "active" (ie. head != tail) after resume which
4682 * will prevent c3 entry. Makes sure all unused rings
4683 * are totally idle.
4684 */
4685 init_unused_rings(dev);
4686
4687 ret = intel_init_render_ring_buffer(dev);
4688 if (ret)
4689 return ret;
4690
4691 if (HAS_BSD(dev)) {
4692 ret = intel_init_bsd_ring_buffer(dev);
4693 if (ret)
4694 goto cleanup_render_ring;
4695 }
4696
4697 if (intel_enable_blt(dev)) {
4698 ret = intel_init_blt_ring_buffer(dev);
4699 if (ret)
4700 goto cleanup_bsd_ring;
4701 }
4702
4703 if (HAS_VEBOX(dev)) {
4704 ret = intel_init_vebox_ring_buffer(dev);
4705 if (ret)
4706 goto cleanup_blt_ring;
4707 }
4708
4709 if (HAS_BSD2(dev)) {
4710 ret = intel_init_bsd2_ring_buffer(dev);
4711 if (ret)
4712 goto cleanup_vebox_ring;
4713 }
4714
4715 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4716 if (ret)
4717 goto cleanup_bsd2_ring;
4718
4719 return 0;
4720
4721 cleanup_bsd2_ring:
4722 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4723 cleanup_vebox_ring:
4724 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4725 cleanup_blt_ring:
4726 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4727 cleanup_bsd_ring:
4728 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4729 cleanup_render_ring:
4730 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4731
4732 return ret;
4733 }
4734
4735 int
4736 i915_gem_init_hw(struct drm_device *dev)
4737 {
4738 struct drm_i915_private *dev_priv = dev->dev_private;
4739 int ret, i;
4740
4741 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4742 return -EIO;
4743
4744 if (dev_priv->ellc_size)
4745 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4746
4747 if (IS_HASWELL(dev))
4748 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4749 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4750
4751 if (HAS_PCH_NOP(dev)) {
4752 if (IS_IVYBRIDGE(dev)) {
4753 u32 temp = I915_READ(GEN7_MSG_CTL);
4754 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4755 I915_WRITE(GEN7_MSG_CTL, temp);
4756 } else if (INTEL_INFO(dev)->gen >= 7) {
4757 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4758 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4759 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4760 }
4761 }
4762
4763 i915_gem_init_swizzling(dev);
4764
4765 ret = dev_priv->gt.init_rings(dev);
4766 if (ret)
4767 return ret;
4768
4769 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4770 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4771
4772 /*
4773 * XXX: Contexts should only be initialized once. Doing a switch to the
4774 * default context switch however is something we'd like to do after
4775 * reset or thaw (the latter may not actually be necessary for HW, but
4776 * goes with our code better). Context switching requires rings (for
4777 * the do_switch), but before enabling PPGTT. So don't move this.
4778 */
4779 ret = i915_gem_context_enable(dev_priv);
4780 if (ret && ret != -EIO) {
4781 DRM_ERROR("Context enable failed %d\n", ret);
4782 i915_gem_cleanup_ringbuffer(dev);
4783
4784 return ret;
4785 }
4786
4787 ret = i915_ppgtt_init_hw(dev);
4788 if (ret && ret != -EIO) {
4789 DRM_ERROR("PPGTT enable failed %d\n", ret);
4790 i915_gem_cleanup_ringbuffer(dev);
4791 }
4792
4793 return ret;
4794 }
4795
4796 int i915_gem_init(struct drm_device *dev)
4797 {
4798 struct drm_i915_private *dev_priv = dev->dev_private;
4799 int ret;
4800
4801 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4802 i915.enable_execlists);
4803
4804 mutex_lock(&dev->struct_mutex);
4805
4806 if (IS_VALLEYVIEW(dev)) {
4807 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4808 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4809 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4810 VLV_GTLC_ALLOWWAKEACK), 10))
4811 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4812 }
4813
4814 if (!i915.enable_execlists) {
4815 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4816 dev_priv->gt.init_rings = i915_gem_init_rings;
4817 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4818 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4819 } else {
4820 dev_priv->gt.do_execbuf = intel_execlists_submission;
4821 dev_priv->gt.init_rings = intel_logical_rings_init;
4822 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4823 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4824 }
4825
4826 ret = i915_gem_init_userptr(dev);
4827 if (ret) {
4828 mutex_unlock(&dev->struct_mutex);
4829 return ret;
4830 }
4831
4832 i915_gem_init_global_gtt(dev);
4833
4834 ret = i915_gem_context_init(dev);
4835 if (ret) {
4836 mutex_unlock(&dev->struct_mutex);
4837 return ret;
4838 }
4839
4840 ret = i915_gem_init_hw(dev);
4841 if (ret == -EIO) {
4842 /* Allow ring initialisation to fail by marking the GPU as
4843 * wedged. But we only want to do this where the GPU is angry,
4844 * for all other failure, such as an allocation failure, bail.
4845 */
4846 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4847 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4848 ret = 0;
4849 }
4850 mutex_unlock(&dev->struct_mutex);
4851
4852 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4853 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4854 dev_priv->dri1.allow_batchbuffer = 1;
4855 return ret;
4856 }
4857
4858 void
4859 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4860 {
4861 struct drm_i915_private *dev_priv = dev->dev_private;
4862 struct intel_engine_cs *ring;
4863 int i;
4864
4865 for_each_ring(ring, dev_priv, i)
4866 dev_priv->gt.cleanup_ring(ring);
4867 }
4868
4869 int
4870 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4871 struct drm_file *file_priv)
4872 {
4873 struct drm_i915_private *dev_priv = dev->dev_private;
4874 int ret;
4875
4876 if (drm_core_check_feature(dev, DRIVER_MODESET))
4877 return 0;
4878
4879 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4880 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4881 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4882 }
4883
4884 mutex_lock(&dev->struct_mutex);
4885 dev_priv->ums.mm_suspended = 0;
4886
4887 ret = i915_gem_init_hw(dev);
4888 if (ret != 0) {
4889 mutex_unlock(&dev->struct_mutex);
4890 return ret;
4891 }
4892
4893 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4894
4895 ret = drm_irq_install(dev, dev->pdev->irq);
4896 if (ret)
4897 goto cleanup_ringbuffer;
4898 mutex_unlock(&dev->struct_mutex);
4899
4900 return 0;
4901
4902 cleanup_ringbuffer:
4903 i915_gem_cleanup_ringbuffer(dev);
4904 dev_priv->ums.mm_suspended = 1;
4905 mutex_unlock(&dev->struct_mutex);
4906
4907 return ret;
4908 }
4909
4910 int
4911 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4912 struct drm_file *file_priv)
4913 {
4914 if (drm_core_check_feature(dev, DRIVER_MODESET))
4915 return 0;
4916
4917 mutex_lock(&dev->struct_mutex);
4918 drm_irq_uninstall(dev);
4919 mutex_unlock(&dev->struct_mutex);
4920
4921 return i915_gem_suspend(dev);
4922 }
4923
4924 void
4925 i915_gem_lastclose(struct drm_device *dev)
4926 {
4927 int ret;
4928
4929 if (drm_core_check_feature(dev, DRIVER_MODESET))
4930 return;
4931
4932 ret = i915_gem_suspend(dev);
4933 if (ret)
4934 DRM_ERROR("failed to idle hardware: %d\n", ret);
4935 }
4936
4937 static void
4938 init_ring_lists(struct intel_engine_cs *ring)
4939 {
4940 INIT_LIST_HEAD(&ring->active_list);
4941 INIT_LIST_HEAD(&ring->request_list);
4942 }
4943
4944 void i915_init_vm(struct drm_i915_private *dev_priv,
4945 struct i915_address_space *vm)
4946 {
4947 if (!i915_is_ggtt(vm))
4948 drm_mm_init(&vm->mm, vm->start, vm->total);
4949 vm->dev = dev_priv->dev;
4950 INIT_LIST_HEAD(&vm->active_list);
4951 INIT_LIST_HEAD(&vm->inactive_list);
4952 INIT_LIST_HEAD(&vm->global_link);
4953 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4954 }
4955
4956 void
4957 i915_gem_load(struct drm_device *dev)
4958 {
4959 struct drm_i915_private *dev_priv = dev->dev_private;
4960 int i;
4961
4962 dev_priv->slab =
4963 kmem_cache_create("i915_gem_object",
4964 sizeof(struct drm_i915_gem_object), 0,
4965 SLAB_HWCACHE_ALIGN,
4966 NULL);
4967
4968 INIT_LIST_HEAD(&dev_priv->vm_list);
4969 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4970
4971 INIT_LIST_HEAD(&dev_priv->context_list);
4972 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4973 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4974 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4975 for (i = 0; i < I915_NUM_RINGS; i++)
4976 init_ring_lists(&dev_priv->ring[i]);
4977 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4978 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4979 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4980 i915_gem_retire_work_handler);
4981 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4982 i915_gem_idle_work_handler);
4983 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4984
4985 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4986 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4987 I915_WRITE(MI_ARB_STATE,
4988 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4989 }
4990
4991 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4992
4993 /* Old X drivers will take 0-2 for front, back, depth buffers */
4994 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4995 dev_priv->fence_reg_start = 3;
4996
4997 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4998 dev_priv->num_fence_regs = 32;
4999 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5000 dev_priv->num_fence_regs = 16;
5001 else
5002 dev_priv->num_fence_regs = 8;
5003
5004 /* Initialize fence registers to zero */
5005 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5006 i915_gem_restore_fences(dev);
5007
5008 i915_gem_detect_bit_6_swizzle(dev);
5009 init_waitqueue_head(&dev_priv->pending_flip_queue);
5010
5011 dev_priv->mm.interruptible = true;
5012
5013 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5014 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5015 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5016 register_shrinker(&dev_priv->mm.shrinker);
5017
5018 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5019 register_oom_notifier(&dev_priv->mm.oom_notifier);
5020
5021 mutex_init(&dev_priv->fb_tracking.lock);
5022 }
5023
5024 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5025 {
5026 struct drm_i915_file_private *file_priv = file->driver_priv;
5027
5028 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5029
5030 /* Clean up our request list when the client is going away, so that
5031 * later retire_requests won't dereference our soon-to-be-gone
5032 * file_priv.
5033 */
5034 spin_lock(&file_priv->mm.lock);
5035 while (!list_empty(&file_priv->mm.request_list)) {
5036 struct drm_i915_gem_request *request;
5037
5038 request = list_first_entry(&file_priv->mm.request_list,
5039 struct drm_i915_gem_request,
5040 client_list);
5041 list_del(&request->client_list);
5042 request->file_priv = NULL;
5043 }
5044 spin_unlock(&file_priv->mm.lock);
5045 }
5046
5047 static void
5048 i915_gem_file_idle_work_handler(struct work_struct *work)
5049 {
5050 struct drm_i915_file_private *file_priv =
5051 container_of(work, typeof(*file_priv), mm.idle_work.work);
5052
5053 atomic_set(&file_priv->rps_wait_boost, false);
5054 }
5055
5056 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5057 {
5058 struct drm_i915_file_private *file_priv;
5059 int ret;
5060
5061 DRM_DEBUG_DRIVER("\n");
5062
5063 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5064 if (!file_priv)
5065 return -ENOMEM;
5066
5067 file->driver_priv = file_priv;
5068 file_priv->dev_priv = dev->dev_private;
5069 file_priv->file = file;
5070
5071 spin_lock_init(&file_priv->mm.lock);
5072 INIT_LIST_HEAD(&file_priv->mm.request_list);
5073 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5074 i915_gem_file_idle_work_handler);
5075
5076 ret = i915_gem_context_open(dev, file);
5077 if (ret)
5078 kfree(file_priv);
5079
5080 return ret;
5081 }
5082
5083 /**
5084 * i915_gem_track_fb - update frontbuffer tracking
5085 * old: current GEM buffer for the frontbuffer slots
5086 * new: new GEM buffer for the frontbuffer slots
5087 * frontbuffer_bits: bitmask of frontbuffer slots
5088 *
5089 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5090 * from @old and setting them in @new. Both @old and @new can be NULL.
5091 */
5092 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5093 struct drm_i915_gem_object *new,
5094 unsigned frontbuffer_bits)
5095 {
5096 if (old) {
5097 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5098 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5099 old->frontbuffer_bits &= ~frontbuffer_bits;
5100 }
5101
5102 if (new) {
5103 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5104 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5105 new->frontbuffer_bits |= frontbuffer_bits;
5106 }
5107 }
5108
5109 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5110 {
5111 if (!mutex_is_locked(mutex))
5112 return false;
5113
5114 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5115 return mutex->owner == task;
5116 #else
5117 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5118 return false;
5119 #endif
5120 }
5121
5122 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5123 {
5124 if (!mutex_trylock(&dev->struct_mutex)) {
5125 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5126 return false;
5127
5128 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5129 return false;
5130
5131 *unlock = false;
5132 } else
5133 *unlock = true;
5134
5135 return true;
5136 }
5137
5138 static int num_vma_bound(struct drm_i915_gem_object *obj)
5139 {
5140 struct i915_vma *vma;
5141 int count = 0;
5142
5143 list_for_each_entry(vma, &obj->vma_list, vma_link)
5144 if (drm_mm_node_allocated(&vma->node))
5145 count++;
5146
5147 return count;
5148 }
5149
5150 static unsigned long
5151 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5152 {
5153 struct drm_i915_private *dev_priv =
5154 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5155 struct drm_device *dev = dev_priv->dev;
5156 struct drm_i915_gem_object *obj;
5157 unsigned long count;
5158 bool unlock;
5159
5160 if (!i915_gem_shrinker_lock(dev, &unlock))
5161 return 0;
5162
5163 count = 0;
5164 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5165 if (obj->pages_pin_count == 0)
5166 count += obj->base.size >> PAGE_SHIFT;
5167
5168 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5169 if (!i915_gem_obj_is_pinned(obj) &&
5170 obj->pages_pin_count == num_vma_bound(obj))
5171 count += obj->base.size >> PAGE_SHIFT;
5172 }
5173
5174 if (unlock)
5175 mutex_unlock(&dev->struct_mutex);
5176
5177 return count;
5178 }
5179
5180 /* All the new VM stuff */
5181 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5182 struct i915_address_space *vm)
5183 {
5184 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5185 struct i915_vma *vma;
5186
5187 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5188
5189 list_for_each_entry(vma, &o->vma_list, vma_link) {
5190 if (vma->vm == vm)
5191 return vma->node.start;
5192
5193 }
5194 WARN(1, "%s vma for this object not found.\n",
5195 i915_is_ggtt(vm) ? "global" : "ppgtt");
5196 return -1;
5197 }
5198
5199 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5200 struct i915_address_space *vm)
5201 {
5202 struct i915_vma *vma;
5203
5204 list_for_each_entry(vma, &o->vma_list, vma_link)
5205 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5206 return true;
5207
5208 return false;
5209 }
5210
5211 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5212 {
5213 struct i915_vma *vma;
5214
5215 list_for_each_entry(vma, &o->vma_list, vma_link)
5216 if (drm_mm_node_allocated(&vma->node))
5217 return true;
5218
5219 return false;
5220 }
5221
5222 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5223 struct i915_address_space *vm)
5224 {
5225 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5226 struct i915_vma *vma;
5227
5228 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5229
5230 BUG_ON(list_empty(&o->vma_list));
5231
5232 list_for_each_entry(vma, &o->vma_list, vma_link)
5233 if (vma->vm == vm)
5234 return vma->node.size;
5235
5236 return 0;
5237 }
5238
5239 static unsigned long
5240 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5241 {
5242 struct drm_i915_private *dev_priv =
5243 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5244 struct drm_device *dev = dev_priv->dev;
5245 unsigned long freed;
5246 bool unlock;
5247
5248 if (!i915_gem_shrinker_lock(dev, &unlock))
5249 return SHRINK_STOP;
5250
5251 freed = i915_gem_shrink(dev_priv,
5252 sc->nr_to_scan,
5253 I915_SHRINK_BOUND |
5254 I915_SHRINK_UNBOUND |
5255 I915_SHRINK_PURGEABLE);
5256 if (freed < sc->nr_to_scan)
5257 freed += i915_gem_shrink(dev_priv,
5258 sc->nr_to_scan - freed,
5259 I915_SHRINK_BOUND |
5260 I915_SHRINK_UNBOUND);
5261 if (unlock)
5262 mutex_unlock(&dev->struct_mutex);
5263
5264 return freed;
5265 }
5266
5267 static int
5268 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5269 {
5270 struct drm_i915_private *dev_priv =
5271 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5272 struct drm_device *dev = dev_priv->dev;
5273 struct drm_i915_gem_object *obj;
5274 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5275 unsigned long pinned, bound, unbound, freed_pages;
5276 bool was_interruptible;
5277 bool unlock;
5278
5279 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5280 schedule_timeout_killable(1);
5281 if (fatal_signal_pending(current))
5282 return NOTIFY_DONE;
5283 }
5284 if (timeout == 0) {
5285 pr_err("Unable to purge GPU memory due lock contention.\n");
5286 return NOTIFY_DONE;
5287 }
5288
5289 was_interruptible = dev_priv->mm.interruptible;
5290 dev_priv->mm.interruptible = false;
5291
5292 freed_pages = i915_gem_shrink_all(dev_priv);
5293
5294 dev_priv->mm.interruptible = was_interruptible;
5295
5296 /* Because we may be allocating inside our own driver, we cannot
5297 * assert that there are no objects with pinned pages that are not
5298 * being pointed to by hardware.
5299 */
5300 unbound = bound = pinned = 0;
5301 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5302 if (!obj->base.filp) /* not backed by a freeable object */
5303 continue;
5304
5305 if (obj->pages_pin_count)
5306 pinned += obj->base.size;
5307 else
5308 unbound += obj->base.size;
5309 }
5310 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5311 if (!obj->base.filp)
5312 continue;
5313
5314 if (obj->pages_pin_count)
5315 pinned += obj->base.size;
5316 else
5317 bound += obj->base.size;
5318 }
5319
5320 if (unlock)
5321 mutex_unlock(&dev->struct_mutex);
5322
5323 if (freed_pages || unbound || bound)
5324 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5325 freed_pages << PAGE_SHIFT, pinned);
5326 if (unbound || bound)
5327 pr_err("%lu and %lu bytes still available in the "
5328 "bound and unbound GPU page lists.\n",
5329 bound, unbound);
5330
5331 *(unsigned long *)ptr += freed_pages;
5332 return NOTIFY_DONE;
5333 }
5334
5335 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5336 {
5337 struct i915_vma *vma;
5338
5339 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5340 if (vma->vm != i915_obj_to_ggtt(obj))
5341 return NULL;
5342
5343 return vma;
5344 }
This page took 0.161214 seconds and 6 git commands to generate.