Merge branch 'stable/xen-pcifront-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
67
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
70
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74 {
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77 }
78
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81 {
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84 }
85
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
88 {
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
91 }
92
93 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
95 {
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
98 }
99
100 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
102 {
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
105 }
106
107 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
109 {
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
112 }
113
114 int
115 i915_gem_check_is_wedged(struct drm_device *dev)
116 {
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
121
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
124
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
128
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
132
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
137 */
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
142 }
143
144 static int i915_mutex_lock_interruptible(struct drm_device *dev)
145 {
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
148
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
152
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
156
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
160 }
161
162 WARN_ON(i915_verify_lists(dev));
163 return 0;
164 }
165
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
168 {
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
172 }
173
174 int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
176 unsigned long end)
177 {
178 drm_i915_private_t *dev_priv = dev->dev_private;
179
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
183 return -EINVAL;
184 }
185
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
188
189 dev_priv->mm.gtt_total = end - start;
190
191 return 0;
192 }
193
194 int
195 i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
197 {
198 struct drm_i915_gem_init *args = data;
199 int ret;
200
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 mutex_unlock(&dev->struct_mutex);
204
205 return ret;
206 }
207
208 int
209 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
211 {
212 struct drm_i915_private *dev_priv = dev->dev_private;
213 struct drm_i915_gem_get_aperture *args = data;
214
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
217
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
222
223 return 0;
224 }
225
226
227 /**
228 * Creates a new mm object and returns a handle to it.
229 */
230 int
231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
233 {
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 args->size = roundup(args->size, PAGE_SIZE);
240
241 /* Allocate the new object */
242 obj = i915_gem_alloc_object(dev, args->size);
243 if (obj == NULL)
244 return -ENOMEM;
245
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
247 if (ret) {
248 drm_gem_object_release(obj);
249 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250 kfree(obj);
251 return ret;
252 }
253
254 /* drop reference from allocate - handle holds it now */
255 drm_gem_object_unreference(obj);
256 trace_i915_gem_object_create(obj);
257
258 args->handle = handle;
259 return 0;
260 }
261
262 static inline int
263 fast_shmem_read(struct page **pages,
264 loff_t page_base, int page_offset,
265 char __user *data,
266 int length)
267 {
268 char *vaddr;
269 int ret;
270
271 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
272 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
273 kunmap_atomic(vaddr);
274
275 return ret;
276 }
277
278 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
279 {
280 drm_i915_private_t *dev_priv = obj->dev->dev_private;
281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
282
283 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284 obj_priv->tiling_mode != I915_TILING_NONE;
285 }
286
287 static inline void
288 slow_shmem_copy(struct page *dst_page,
289 int dst_offset,
290 struct page *src_page,
291 int src_offset,
292 int length)
293 {
294 char *dst_vaddr, *src_vaddr;
295
296 dst_vaddr = kmap(dst_page);
297 src_vaddr = kmap(src_page);
298
299 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
300
301 kunmap(src_page);
302 kunmap(dst_page);
303 }
304
305 static inline void
306 slow_shmem_bit17_copy(struct page *gpu_page,
307 int gpu_offset,
308 struct page *cpu_page,
309 int cpu_offset,
310 int length,
311 int is_read)
312 {
313 char *gpu_vaddr, *cpu_vaddr;
314
315 /* Use the unswizzled path if this page isn't affected. */
316 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317 if (is_read)
318 return slow_shmem_copy(cpu_page, cpu_offset,
319 gpu_page, gpu_offset, length);
320 else
321 return slow_shmem_copy(gpu_page, gpu_offset,
322 cpu_page, cpu_offset, length);
323 }
324
325 gpu_vaddr = kmap(gpu_page);
326 cpu_vaddr = kmap(cpu_page);
327
328 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329 * XORing with the other bits (A9 for Y, A9 and A10 for X)
330 */
331 while (length > 0) {
332 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333 int this_length = min(cacheline_end - gpu_offset, length);
334 int swizzled_gpu_offset = gpu_offset ^ 64;
335
336 if (is_read) {
337 memcpy(cpu_vaddr + cpu_offset,
338 gpu_vaddr + swizzled_gpu_offset,
339 this_length);
340 } else {
341 memcpy(gpu_vaddr + swizzled_gpu_offset,
342 cpu_vaddr + cpu_offset,
343 this_length);
344 }
345 cpu_offset += this_length;
346 gpu_offset += this_length;
347 length -= this_length;
348 }
349
350 kunmap(cpu_page);
351 kunmap(gpu_page);
352 }
353
354 /**
355 * This is the fast shmem pread path, which attempts to copy_from_user directly
356 * from the backing pages of the object to the user's address space. On a
357 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
358 */
359 static int
360 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361 struct drm_i915_gem_pread *args,
362 struct drm_file *file_priv)
363 {
364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 ssize_t remain;
366 loff_t offset, page_base;
367 char __user *user_data;
368 int page_offset, page_length;
369
370 user_data = (char __user *) (uintptr_t) args->data_ptr;
371 remain = args->size;
372
373 obj_priv = to_intel_bo(obj);
374 offset = args->offset;
375
376 while (remain > 0) {
377 /* Operation in this page
378 *
379 * page_base = page offset within aperture
380 * page_offset = offset within page
381 * page_length = bytes to copy for this page
382 */
383 page_base = (offset & ~(PAGE_SIZE-1));
384 page_offset = offset & (PAGE_SIZE-1);
385 page_length = remain;
386 if ((page_offset + remain) > PAGE_SIZE)
387 page_length = PAGE_SIZE - page_offset;
388
389 if (fast_shmem_read(obj_priv->pages,
390 page_base, page_offset,
391 user_data, page_length))
392 return -EFAULT;
393
394 remain -= page_length;
395 user_data += page_length;
396 offset += page_length;
397 }
398
399 return 0;
400 }
401
402 static int
403 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
404 {
405 int ret;
406
407 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
408
409 /* If we've insufficient memory to map in the pages, attempt
410 * to make some space by throwing out some old buffers.
411 */
412 if (ret == -ENOMEM) {
413 struct drm_device *dev = obj->dev;
414
415 ret = i915_gem_evict_something(dev, obj->size,
416 i915_gem_get_gtt_alignment(obj));
417 if (ret)
418 return ret;
419
420 ret = i915_gem_object_get_pages(obj, 0);
421 }
422
423 return ret;
424 }
425
426 /**
427 * This is the fallback shmem pread path, which allocates temporary storage
428 * in kernel space to copy_to_user into outside of the struct_mutex, so we
429 * can copy out of the object's backing pages while holding the struct mutex
430 * and not take page faults.
431 */
432 static int
433 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
434 struct drm_i915_gem_pread *args,
435 struct drm_file *file_priv)
436 {
437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
438 struct mm_struct *mm = current->mm;
439 struct page **user_pages;
440 ssize_t remain;
441 loff_t offset, pinned_pages, i;
442 loff_t first_data_page, last_data_page, num_pages;
443 int shmem_page_index, shmem_page_offset;
444 int data_page_index, data_page_offset;
445 int page_length;
446 int ret;
447 uint64_t data_ptr = args->data_ptr;
448 int do_bit17_swizzling;
449
450 remain = args->size;
451
452 /* Pin the user pages containing the data. We can't fault while
453 * holding the struct mutex, yet we want to hold it while
454 * dereferencing the user data.
455 */
456 first_data_page = data_ptr / PAGE_SIZE;
457 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
458 num_pages = last_data_page - first_data_page + 1;
459
460 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
461 if (user_pages == NULL)
462 return -ENOMEM;
463
464 mutex_unlock(&dev->struct_mutex);
465 down_read(&mm->mmap_sem);
466 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
467 num_pages, 1, 0, user_pages, NULL);
468 up_read(&mm->mmap_sem);
469 mutex_lock(&dev->struct_mutex);
470 if (pinned_pages < num_pages) {
471 ret = -EFAULT;
472 goto out;
473 }
474
475 ret = i915_gem_object_set_cpu_read_domain_range(obj,
476 args->offset,
477 args->size);
478 if (ret)
479 goto out;
480
481 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
482
483 obj_priv = to_intel_bo(obj);
484 offset = args->offset;
485
486 while (remain > 0) {
487 /* Operation in this page
488 *
489 * shmem_page_index = page number within shmem file
490 * shmem_page_offset = offset within page in shmem file
491 * data_page_index = page number in get_user_pages return
492 * data_page_offset = offset with data_page_index page.
493 * page_length = bytes to copy for this page
494 */
495 shmem_page_index = offset / PAGE_SIZE;
496 shmem_page_offset = offset & ~PAGE_MASK;
497 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
498 data_page_offset = data_ptr & ~PAGE_MASK;
499
500 page_length = remain;
501 if ((shmem_page_offset + page_length) > PAGE_SIZE)
502 page_length = PAGE_SIZE - shmem_page_offset;
503 if ((data_page_offset + page_length) > PAGE_SIZE)
504 page_length = PAGE_SIZE - data_page_offset;
505
506 if (do_bit17_swizzling) {
507 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
508 shmem_page_offset,
509 user_pages[data_page_index],
510 data_page_offset,
511 page_length,
512 1);
513 } else {
514 slow_shmem_copy(user_pages[data_page_index],
515 data_page_offset,
516 obj_priv->pages[shmem_page_index],
517 shmem_page_offset,
518 page_length);
519 }
520
521 remain -= page_length;
522 data_ptr += page_length;
523 offset += page_length;
524 }
525
526 out:
527 for (i = 0; i < pinned_pages; i++) {
528 SetPageDirty(user_pages[i]);
529 page_cache_release(user_pages[i]);
530 }
531 drm_free_large(user_pages);
532
533 return ret;
534 }
535
536 /**
537 * Reads data from the object referenced by handle.
538 *
539 * On error, the contents of *data are undefined.
540 */
541 int
542 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
543 struct drm_file *file_priv)
544 {
545 struct drm_i915_gem_pread *args = data;
546 struct drm_gem_object *obj;
547 struct drm_i915_gem_object *obj_priv;
548 int ret = 0;
549
550 ret = i915_mutex_lock_interruptible(dev);
551 if (ret)
552 return ret;
553
554 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
555 if (obj == NULL) {
556 ret = -ENOENT;
557 goto unlock;
558 }
559 obj_priv = to_intel_bo(obj);
560
561 /* Bounds check source. */
562 if (args->offset > obj->size || args->size > obj->size - args->offset) {
563 ret = -EINVAL;
564 goto out;
565 }
566
567 if (args->size == 0)
568 goto out;
569
570 if (!access_ok(VERIFY_WRITE,
571 (char __user *)(uintptr_t)args->data_ptr,
572 args->size)) {
573 ret = -EFAULT;
574 goto out;
575 }
576
577 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
578 args->size);
579 if (ret) {
580 ret = -EFAULT;
581 goto out;
582 }
583
584 ret = i915_gem_object_get_pages_or_evict(obj);
585 if (ret)
586 goto out;
587
588 ret = i915_gem_object_set_cpu_read_domain_range(obj,
589 args->offset,
590 args->size);
591 if (ret)
592 goto out_put;
593
594 ret = -EFAULT;
595 if (!i915_gem_object_needs_bit17_swizzle(obj))
596 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
597 if (ret == -EFAULT)
598 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
599
600 out_put:
601 i915_gem_object_put_pages(obj);
602 out:
603 drm_gem_object_unreference(obj);
604 unlock:
605 mutex_unlock(&dev->struct_mutex);
606 return ret;
607 }
608
609 /* This is the fast write path which cannot handle
610 * page faults in the source data
611 */
612
613 static inline int
614 fast_user_write(struct io_mapping *mapping,
615 loff_t page_base, int page_offset,
616 char __user *user_data,
617 int length)
618 {
619 char *vaddr_atomic;
620 unsigned long unwritten;
621
622 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
623 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
624 user_data, length);
625 io_mapping_unmap_atomic(vaddr_atomic);
626 return unwritten;
627 }
628
629 /* Here's the write path which can sleep for
630 * page faults
631 */
632
633 static inline void
634 slow_kernel_write(struct io_mapping *mapping,
635 loff_t gtt_base, int gtt_offset,
636 struct page *user_page, int user_offset,
637 int length)
638 {
639 char __iomem *dst_vaddr;
640 char *src_vaddr;
641
642 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
643 src_vaddr = kmap(user_page);
644
645 memcpy_toio(dst_vaddr + gtt_offset,
646 src_vaddr + user_offset,
647 length);
648
649 kunmap(user_page);
650 io_mapping_unmap(dst_vaddr);
651 }
652
653 static inline int
654 fast_shmem_write(struct page **pages,
655 loff_t page_base, int page_offset,
656 char __user *data,
657 int length)
658 {
659 char *vaddr;
660 int ret;
661
662 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
663 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
664 kunmap_atomic(vaddr);
665
666 return ret;
667 }
668
669 /**
670 * This is the fast pwrite path, where we copy the data directly from the
671 * user into the GTT, uncached.
672 */
673 static int
674 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
675 struct drm_i915_gem_pwrite *args,
676 struct drm_file *file_priv)
677 {
678 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t offset, page_base;
682 char __user *user_data;
683 int page_offset, page_length;
684
685 user_data = (char __user *) (uintptr_t) args->data_ptr;
686 remain = args->size;
687
688 obj_priv = to_intel_bo(obj);
689 offset = obj_priv->gtt_offset + args->offset;
690
691 while (remain > 0) {
692 /* Operation in this page
693 *
694 * page_base = page offset within aperture
695 * page_offset = offset within page
696 * page_length = bytes to copy for this page
697 */
698 page_base = (offset & ~(PAGE_SIZE-1));
699 page_offset = offset & (PAGE_SIZE-1);
700 page_length = remain;
701 if ((page_offset + remain) > PAGE_SIZE)
702 page_length = PAGE_SIZE - page_offset;
703
704 /* If we get a fault while copying data, then (presumably) our
705 * source page isn't available. Return the error and we'll
706 * retry in the slow path.
707 */
708 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
709 page_offset, user_data, page_length))
710
711 return -EFAULT;
712
713 remain -= page_length;
714 user_data += page_length;
715 offset += page_length;
716 }
717
718 return 0;
719 }
720
721 /**
722 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
723 * the memory and maps it using kmap_atomic for copying.
724 *
725 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
726 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
727 */
728 static int
729 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file_priv)
732 {
733 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
734 drm_i915_private_t *dev_priv = dev->dev_private;
735 ssize_t remain;
736 loff_t gtt_page_base, offset;
737 loff_t first_data_page, last_data_page, num_pages;
738 loff_t pinned_pages, i;
739 struct page **user_pages;
740 struct mm_struct *mm = current->mm;
741 int gtt_page_offset, data_page_offset, data_page_index, page_length;
742 int ret;
743 uint64_t data_ptr = args->data_ptr;
744
745 remain = args->size;
746
747 /* Pin the user pages containing the data. We can't fault while
748 * holding the struct mutex, and all of the pwrite implementations
749 * want to hold it while dereferencing the user data.
750 */
751 first_data_page = data_ptr / PAGE_SIZE;
752 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
753 num_pages = last_data_page - first_data_page + 1;
754
755 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
756 if (user_pages == NULL)
757 return -ENOMEM;
758
759 mutex_unlock(&dev->struct_mutex);
760 down_read(&mm->mmap_sem);
761 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
762 num_pages, 0, 0, user_pages, NULL);
763 up_read(&mm->mmap_sem);
764 mutex_lock(&dev->struct_mutex);
765 if (pinned_pages < num_pages) {
766 ret = -EFAULT;
767 goto out_unpin_pages;
768 }
769
770 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
771 if (ret)
772 goto out_unpin_pages;
773
774 obj_priv = to_intel_bo(obj);
775 offset = obj_priv->gtt_offset + args->offset;
776
777 while (remain > 0) {
778 /* Operation in this page
779 *
780 * gtt_page_base = page offset within aperture
781 * gtt_page_offset = offset within page in aperture
782 * data_page_index = page number in get_user_pages return
783 * data_page_offset = offset with data_page_index page.
784 * page_length = bytes to copy for this page
785 */
786 gtt_page_base = offset & PAGE_MASK;
787 gtt_page_offset = offset & ~PAGE_MASK;
788 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
789 data_page_offset = data_ptr & ~PAGE_MASK;
790
791 page_length = remain;
792 if ((gtt_page_offset + page_length) > PAGE_SIZE)
793 page_length = PAGE_SIZE - gtt_page_offset;
794 if ((data_page_offset + page_length) > PAGE_SIZE)
795 page_length = PAGE_SIZE - data_page_offset;
796
797 slow_kernel_write(dev_priv->mm.gtt_mapping,
798 gtt_page_base, gtt_page_offset,
799 user_pages[data_page_index],
800 data_page_offset,
801 page_length);
802
803 remain -= page_length;
804 offset += page_length;
805 data_ptr += page_length;
806 }
807
808 out_unpin_pages:
809 for (i = 0; i < pinned_pages; i++)
810 page_cache_release(user_pages[i]);
811 drm_free_large(user_pages);
812
813 return ret;
814 }
815
816 /**
817 * This is the fast shmem pwrite path, which attempts to directly
818 * copy_from_user into the kmapped pages backing the object.
819 */
820 static int
821 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
822 struct drm_i915_gem_pwrite *args,
823 struct drm_file *file_priv)
824 {
825 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
826 ssize_t remain;
827 loff_t offset, page_base;
828 char __user *user_data;
829 int page_offset, page_length;
830
831 user_data = (char __user *) (uintptr_t) args->data_ptr;
832 remain = args->size;
833
834 obj_priv = to_intel_bo(obj);
835 offset = args->offset;
836 obj_priv->dirty = 1;
837
838 while (remain > 0) {
839 /* Operation in this page
840 *
841 * page_base = page offset within aperture
842 * page_offset = offset within page
843 * page_length = bytes to copy for this page
844 */
845 page_base = (offset & ~(PAGE_SIZE-1));
846 page_offset = offset & (PAGE_SIZE-1);
847 page_length = remain;
848 if ((page_offset + remain) > PAGE_SIZE)
849 page_length = PAGE_SIZE - page_offset;
850
851 if (fast_shmem_write(obj_priv->pages,
852 page_base, page_offset,
853 user_data, page_length))
854 return -EFAULT;
855
856 remain -= page_length;
857 user_data += page_length;
858 offset += page_length;
859 }
860
861 return 0;
862 }
863
864 /**
865 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
866 * the memory and maps it using kmap_atomic for copying.
867 *
868 * This avoids taking mmap_sem for faulting on the user's address while the
869 * struct_mutex is held.
870 */
871 static int
872 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
873 struct drm_i915_gem_pwrite *args,
874 struct drm_file *file_priv)
875 {
876 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
877 struct mm_struct *mm = current->mm;
878 struct page **user_pages;
879 ssize_t remain;
880 loff_t offset, pinned_pages, i;
881 loff_t first_data_page, last_data_page, num_pages;
882 int shmem_page_index, shmem_page_offset;
883 int data_page_index, data_page_offset;
884 int page_length;
885 int ret;
886 uint64_t data_ptr = args->data_ptr;
887 int do_bit17_swizzling;
888
889 remain = args->size;
890
891 /* Pin the user pages containing the data. We can't fault while
892 * holding the struct mutex, and all of the pwrite implementations
893 * want to hold it while dereferencing the user data.
894 */
895 first_data_page = data_ptr / PAGE_SIZE;
896 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
897 num_pages = last_data_page - first_data_page + 1;
898
899 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
900 if (user_pages == NULL)
901 return -ENOMEM;
902
903 mutex_unlock(&dev->struct_mutex);
904 down_read(&mm->mmap_sem);
905 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
906 num_pages, 0, 0, user_pages, NULL);
907 up_read(&mm->mmap_sem);
908 mutex_lock(&dev->struct_mutex);
909 if (pinned_pages < num_pages) {
910 ret = -EFAULT;
911 goto out;
912 }
913
914 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
915 if (ret)
916 goto out;
917
918 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
919
920 obj_priv = to_intel_bo(obj);
921 offset = args->offset;
922 obj_priv->dirty = 1;
923
924 while (remain > 0) {
925 /* Operation in this page
926 *
927 * shmem_page_index = page number within shmem file
928 * shmem_page_offset = offset within page in shmem file
929 * data_page_index = page number in get_user_pages return
930 * data_page_offset = offset with data_page_index page.
931 * page_length = bytes to copy for this page
932 */
933 shmem_page_index = offset / PAGE_SIZE;
934 shmem_page_offset = offset & ~PAGE_MASK;
935 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
936 data_page_offset = data_ptr & ~PAGE_MASK;
937
938 page_length = remain;
939 if ((shmem_page_offset + page_length) > PAGE_SIZE)
940 page_length = PAGE_SIZE - shmem_page_offset;
941 if ((data_page_offset + page_length) > PAGE_SIZE)
942 page_length = PAGE_SIZE - data_page_offset;
943
944 if (do_bit17_swizzling) {
945 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
946 shmem_page_offset,
947 user_pages[data_page_index],
948 data_page_offset,
949 page_length,
950 0);
951 } else {
952 slow_shmem_copy(obj_priv->pages[shmem_page_index],
953 shmem_page_offset,
954 user_pages[data_page_index],
955 data_page_offset,
956 page_length);
957 }
958
959 remain -= page_length;
960 data_ptr += page_length;
961 offset += page_length;
962 }
963
964 out:
965 for (i = 0; i < pinned_pages; i++)
966 page_cache_release(user_pages[i]);
967 drm_free_large(user_pages);
968
969 return ret;
970 }
971
972 /**
973 * Writes data to the object referenced by handle.
974 *
975 * On error, the contents of the buffer that were to be modified are undefined.
976 */
977 int
978 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
979 struct drm_file *file)
980 {
981 struct drm_i915_gem_pwrite *args = data;
982 struct drm_gem_object *obj;
983 struct drm_i915_gem_object *obj_priv;
984 int ret = 0;
985
986 ret = i915_mutex_lock_interruptible(dev);
987 if (ret)
988 return ret;
989
990 obj = drm_gem_object_lookup(dev, file, args->handle);
991 if (obj == NULL) {
992 ret = -ENOENT;
993 goto unlock;
994 }
995 obj_priv = to_intel_bo(obj);
996
997
998 /* Bounds check destination. */
999 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1000 ret = -EINVAL;
1001 goto out;
1002 }
1003
1004 if (args->size == 0)
1005 goto out;
1006
1007 if (!access_ok(VERIFY_READ,
1008 (char __user *)(uintptr_t)args->data_ptr,
1009 args->size)) {
1010 ret = -EFAULT;
1011 goto out;
1012 }
1013
1014 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1015 args->size);
1016 if (ret) {
1017 ret = -EFAULT;
1018 goto out;
1019 }
1020
1021 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1022 * it would end up going through the fenced access, and we'll get
1023 * different detiling behavior between reading and writing.
1024 * pread/pwrite currently are reading and writing from the CPU
1025 * perspective, requiring manual detiling by the client.
1026 */
1027 if (obj_priv->phys_obj)
1028 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1029 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1030 obj_priv->gtt_space &&
1031 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1032 ret = i915_gem_object_pin(obj, 0);
1033 if (ret)
1034 goto out;
1035
1036 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1037 if (ret)
1038 goto out_unpin;
1039
1040 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1041 if (ret == -EFAULT)
1042 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1043
1044 out_unpin:
1045 i915_gem_object_unpin(obj);
1046 } else {
1047 ret = i915_gem_object_get_pages_or_evict(obj);
1048 if (ret)
1049 goto out;
1050
1051 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1052 if (ret)
1053 goto out_put;
1054
1055 ret = -EFAULT;
1056 if (!i915_gem_object_needs_bit17_swizzle(obj))
1057 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1058 if (ret == -EFAULT)
1059 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1060
1061 out_put:
1062 i915_gem_object_put_pages(obj);
1063 }
1064
1065 out:
1066 drm_gem_object_unreference(obj);
1067 unlock:
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070 }
1071
1072 /**
1073 * Called when user space prepares to use an object with the CPU, either
1074 * through the mmap ioctl's mapping or a GTT mapping.
1075 */
1076 int
1077 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1078 struct drm_file *file_priv)
1079 {
1080 struct drm_i915_private *dev_priv = dev->dev_private;
1081 struct drm_i915_gem_set_domain *args = data;
1082 struct drm_gem_object *obj;
1083 struct drm_i915_gem_object *obj_priv;
1084 uint32_t read_domains = args->read_domains;
1085 uint32_t write_domain = args->write_domain;
1086 int ret;
1087
1088 if (!(dev->driver->driver_features & DRIVER_GEM))
1089 return -ENODEV;
1090
1091 /* Only handle setting domains to types used by the CPU. */
1092 if (write_domain & I915_GEM_GPU_DOMAINS)
1093 return -EINVAL;
1094
1095 if (read_domains & I915_GEM_GPU_DOMAINS)
1096 return -EINVAL;
1097
1098 /* Having something in the write domain implies it's in the read
1099 * domain, and only that read domain. Enforce that in the request.
1100 */
1101 if (write_domain != 0 && read_domains != write_domain)
1102 return -EINVAL;
1103
1104 ret = i915_mutex_lock_interruptible(dev);
1105 if (ret)
1106 return ret;
1107
1108 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1109 if (obj == NULL) {
1110 ret = -ENOENT;
1111 goto unlock;
1112 }
1113 obj_priv = to_intel_bo(obj);
1114
1115 intel_mark_busy(dev, obj);
1116
1117 if (read_domains & I915_GEM_DOMAIN_GTT) {
1118 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1119
1120 /* Update the LRU on the fence for the CPU access that's
1121 * about to occur.
1122 */
1123 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1124 struct drm_i915_fence_reg *reg =
1125 &dev_priv->fence_regs[obj_priv->fence_reg];
1126 list_move_tail(&reg->lru_list,
1127 &dev_priv->mm.fence_list);
1128 }
1129
1130 /* Silently promote "you're not bound, there was nothing to do"
1131 * to success, since the client was just asking us to
1132 * make sure everything was done.
1133 */
1134 if (ret == -EINVAL)
1135 ret = 0;
1136 } else {
1137 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1138 }
1139
1140 /* Maintain LRU order of "inactive" objects */
1141 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1142 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1143
1144 drm_gem_object_unreference(obj);
1145 unlock:
1146 mutex_unlock(&dev->struct_mutex);
1147 return ret;
1148 }
1149
1150 /**
1151 * Called when user space has done writes to this buffer
1152 */
1153 int
1154 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1155 struct drm_file *file_priv)
1156 {
1157 struct drm_i915_gem_sw_finish *args = data;
1158 struct drm_gem_object *obj;
1159 int ret = 0;
1160
1161 if (!(dev->driver->driver_features & DRIVER_GEM))
1162 return -ENODEV;
1163
1164 ret = i915_mutex_lock_interruptible(dev);
1165 if (ret)
1166 return ret;
1167
1168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1169 if (obj == NULL) {
1170 ret = -ENOENT;
1171 goto unlock;
1172 }
1173
1174 /* Pinned buffers may be scanout, so flush the cache */
1175 if (to_intel_bo(obj)->pin_count)
1176 i915_gem_object_flush_cpu_write_domain(obj);
1177
1178 drm_gem_object_unreference(obj);
1179 unlock:
1180 mutex_unlock(&dev->struct_mutex);
1181 return ret;
1182 }
1183
1184 /**
1185 * Maps the contents of an object, returning the address it is mapped
1186 * into.
1187 *
1188 * While the mapping holds a reference on the contents of the object, it doesn't
1189 * imply a ref on the object itself.
1190 */
1191 int
1192 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1193 struct drm_file *file_priv)
1194 {
1195 struct drm_i915_gem_mmap *args = data;
1196 struct drm_gem_object *obj;
1197 loff_t offset;
1198 unsigned long addr;
1199
1200 if (!(dev->driver->driver_features & DRIVER_GEM))
1201 return -ENODEV;
1202
1203 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1204 if (obj == NULL)
1205 return -ENOENT;
1206
1207 offset = args->offset;
1208
1209 down_write(&current->mm->mmap_sem);
1210 addr = do_mmap(obj->filp, 0, args->size,
1211 PROT_READ | PROT_WRITE, MAP_SHARED,
1212 args->offset);
1213 up_write(&current->mm->mmap_sem);
1214 drm_gem_object_unreference_unlocked(obj);
1215 if (IS_ERR((void *)addr))
1216 return addr;
1217
1218 args->addr_ptr = (uint64_t) addr;
1219
1220 return 0;
1221 }
1222
1223 /**
1224 * i915_gem_fault - fault a page into the GTT
1225 * vma: VMA in question
1226 * vmf: fault info
1227 *
1228 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1229 * from userspace. The fault handler takes care of binding the object to
1230 * the GTT (if needed), allocating and programming a fence register (again,
1231 * only if needed based on whether the old reg is still valid or the object
1232 * is tiled) and inserting a new PTE into the faulting process.
1233 *
1234 * Note that the faulting process may involve evicting existing objects
1235 * from the GTT and/or fence registers to make room. So performance may
1236 * suffer if the GTT working set is large or there are few fence registers
1237 * left.
1238 */
1239 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1240 {
1241 struct drm_gem_object *obj = vma->vm_private_data;
1242 struct drm_device *dev = obj->dev;
1243 drm_i915_private_t *dev_priv = dev->dev_private;
1244 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1245 pgoff_t page_offset;
1246 unsigned long pfn;
1247 int ret = 0;
1248 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1249
1250 /* We don't use vmf->pgoff since that has the fake offset */
1251 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1252 PAGE_SHIFT;
1253
1254 /* Now bind it into the GTT if needed */
1255 mutex_lock(&dev->struct_mutex);
1256 if (!obj_priv->gtt_space) {
1257 ret = i915_gem_object_bind_to_gtt(obj, 0);
1258 if (ret)
1259 goto unlock;
1260
1261 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1262 if (ret)
1263 goto unlock;
1264 }
1265
1266 /* Need a new fence register? */
1267 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1268 ret = i915_gem_object_get_fence_reg(obj, true);
1269 if (ret)
1270 goto unlock;
1271 }
1272
1273 if (i915_gem_object_is_inactive(obj_priv))
1274 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1275
1276 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1277 page_offset;
1278
1279 /* Finally, remap it using the new GTT offset */
1280 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1281 unlock:
1282 mutex_unlock(&dev->struct_mutex);
1283
1284 switch (ret) {
1285 case 0:
1286 case -ERESTARTSYS:
1287 return VM_FAULT_NOPAGE;
1288 case -ENOMEM:
1289 case -EAGAIN:
1290 return VM_FAULT_OOM;
1291 default:
1292 return VM_FAULT_SIGBUS;
1293 }
1294 }
1295
1296 /**
1297 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1298 * @obj: obj in question
1299 *
1300 * GEM memory mapping works by handing back to userspace a fake mmap offset
1301 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1302 * up the object based on the offset and sets up the various memory mapping
1303 * structures.
1304 *
1305 * This routine allocates and attaches a fake offset for @obj.
1306 */
1307 static int
1308 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1309 {
1310 struct drm_device *dev = obj->dev;
1311 struct drm_gem_mm *mm = dev->mm_private;
1312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1313 struct drm_map_list *list;
1314 struct drm_local_map *map;
1315 int ret = 0;
1316
1317 /* Set the object up for mmap'ing */
1318 list = &obj->map_list;
1319 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1320 if (!list->map)
1321 return -ENOMEM;
1322
1323 map = list->map;
1324 map->type = _DRM_GEM;
1325 map->size = obj->size;
1326 map->handle = obj;
1327
1328 /* Get a DRM GEM mmap offset allocated... */
1329 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1330 obj->size / PAGE_SIZE, 0, 0);
1331 if (!list->file_offset_node) {
1332 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1333 ret = -ENOSPC;
1334 goto out_free_list;
1335 }
1336
1337 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1338 obj->size / PAGE_SIZE, 0);
1339 if (!list->file_offset_node) {
1340 ret = -ENOMEM;
1341 goto out_free_list;
1342 }
1343
1344 list->hash.key = list->file_offset_node->start;
1345 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1346 if (ret) {
1347 DRM_ERROR("failed to add to map hash\n");
1348 goto out_free_mm;
1349 }
1350
1351 /* By now we should be all set, any drm_mmap request on the offset
1352 * below will get to our mmap & fault handler */
1353 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1354
1355 return 0;
1356
1357 out_free_mm:
1358 drm_mm_put_block(list->file_offset_node);
1359 out_free_list:
1360 kfree(list->map);
1361
1362 return ret;
1363 }
1364
1365 /**
1366 * i915_gem_release_mmap - remove physical page mappings
1367 * @obj: obj in question
1368 *
1369 * Preserve the reservation of the mmapping with the DRM core code, but
1370 * relinquish ownership of the pages back to the system.
1371 *
1372 * It is vital that we remove the page mapping if we have mapped a tiled
1373 * object through the GTT and then lose the fence register due to
1374 * resource pressure. Similarly if the object has been moved out of the
1375 * aperture, than pages mapped into userspace must be revoked. Removing the
1376 * mapping will then trigger a page fault on the next user access, allowing
1377 * fixup by i915_gem_fault().
1378 */
1379 void
1380 i915_gem_release_mmap(struct drm_gem_object *obj)
1381 {
1382 struct drm_device *dev = obj->dev;
1383 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1384
1385 if (dev->dev_mapping)
1386 unmap_mapping_range(dev->dev_mapping,
1387 obj_priv->mmap_offset, obj->size, 1);
1388 }
1389
1390 static void
1391 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1392 {
1393 struct drm_device *dev = obj->dev;
1394 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1395 struct drm_gem_mm *mm = dev->mm_private;
1396 struct drm_map_list *list;
1397
1398 list = &obj->map_list;
1399 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1400
1401 if (list->file_offset_node) {
1402 drm_mm_put_block(list->file_offset_node);
1403 list->file_offset_node = NULL;
1404 }
1405
1406 if (list->map) {
1407 kfree(list->map);
1408 list->map = NULL;
1409 }
1410
1411 obj_priv->mmap_offset = 0;
1412 }
1413
1414 /**
1415 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1416 * @obj: object to check
1417 *
1418 * Return the required GTT alignment for an object, taking into account
1419 * potential fence register mapping if needed.
1420 */
1421 static uint32_t
1422 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1423 {
1424 struct drm_device *dev = obj->dev;
1425 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1426 int start, i;
1427
1428 /*
1429 * Minimum alignment is 4k (GTT page size), but might be greater
1430 * if a fence register is needed for the object.
1431 */
1432 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1433 return 4096;
1434
1435 /*
1436 * Previous chips need to be aligned to the size of the smallest
1437 * fence register that can contain the object.
1438 */
1439 if (INTEL_INFO(dev)->gen == 3)
1440 start = 1024*1024;
1441 else
1442 start = 512*1024;
1443
1444 for (i = start; i < obj->size; i <<= 1)
1445 ;
1446
1447 return i;
1448 }
1449
1450 /**
1451 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1452 * @dev: DRM device
1453 * @data: GTT mapping ioctl data
1454 * @file_priv: GEM object info
1455 *
1456 * Simply returns the fake offset to userspace so it can mmap it.
1457 * The mmap call will end up in drm_gem_mmap(), which will set things
1458 * up so we can get faults in the handler above.
1459 *
1460 * The fault handler will take care of binding the object into the GTT
1461 * (since it may have been evicted to make room for something), allocating
1462 * a fence register, and mapping the appropriate aperture address into
1463 * userspace.
1464 */
1465 int
1466 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1467 struct drm_file *file_priv)
1468 {
1469 struct drm_i915_gem_mmap_gtt *args = data;
1470 struct drm_gem_object *obj;
1471 struct drm_i915_gem_object *obj_priv;
1472 int ret;
1473
1474 if (!(dev->driver->driver_features & DRIVER_GEM))
1475 return -ENODEV;
1476
1477 ret = i915_mutex_lock_interruptible(dev);
1478 if (ret)
1479 return ret;
1480
1481 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1482 if (obj == NULL) {
1483 ret = -ENOENT;
1484 goto unlock;
1485 }
1486 obj_priv = to_intel_bo(obj);
1487
1488 if (obj_priv->madv != I915_MADV_WILLNEED) {
1489 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1490 ret = -EINVAL;
1491 goto out;
1492 }
1493
1494 if (!obj_priv->mmap_offset) {
1495 ret = i915_gem_create_mmap_offset(obj);
1496 if (ret)
1497 goto out;
1498 }
1499
1500 args->offset = obj_priv->mmap_offset;
1501
1502 /*
1503 * Pull it into the GTT so that we have a page list (makes the
1504 * initial fault faster and any subsequent flushing possible).
1505 */
1506 if (!obj_priv->agp_mem) {
1507 ret = i915_gem_object_bind_to_gtt(obj, 0);
1508 if (ret)
1509 goto out;
1510 }
1511
1512 out:
1513 drm_gem_object_unreference(obj);
1514 unlock:
1515 mutex_unlock(&dev->struct_mutex);
1516 return ret;
1517 }
1518
1519 static void
1520 i915_gem_object_put_pages(struct drm_gem_object *obj)
1521 {
1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1523 int page_count = obj->size / PAGE_SIZE;
1524 int i;
1525
1526 BUG_ON(obj_priv->pages_refcount == 0);
1527 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1528
1529 if (--obj_priv->pages_refcount != 0)
1530 return;
1531
1532 if (obj_priv->tiling_mode != I915_TILING_NONE)
1533 i915_gem_object_save_bit_17_swizzle(obj);
1534
1535 if (obj_priv->madv == I915_MADV_DONTNEED)
1536 obj_priv->dirty = 0;
1537
1538 for (i = 0; i < page_count; i++) {
1539 if (obj_priv->dirty)
1540 set_page_dirty(obj_priv->pages[i]);
1541
1542 if (obj_priv->madv == I915_MADV_WILLNEED)
1543 mark_page_accessed(obj_priv->pages[i]);
1544
1545 page_cache_release(obj_priv->pages[i]);
1546 }
1547 obj_priv->dirty = 0;
1548
1549 drm_free_large(obj_priv->pages);
1550 obj_priv->pages = NULL;
1551 }
1552
1553 static uint32_t
1554 i915_gem_next_request_seqno(struct drm_device *dev,
1555 struct intel_ring_buffer *ring)
1556 {
1557 drm_i915_private_t *dev_priv = dev->dev_private;
1558
1559 ring->outstanding_lazy_request = true;
1560 return dev_priv->next_seqno;
1561 }
1562
1563 static void
1564 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1565 struct intel_ring_buffer *ring)
1566 {
1567 struct drm_device *dev = obj->dev;
1568 struct drm_i915_private *dev_priv = dev->dev_private;
1569 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1570 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1571
1572 BUG_ON(ring == NULL);
1573 obj_priv->ring = ring;
1574
1575 /* Add a reference if we're newly entering the active list. */
1576 if (!obj_priv->active) {
1577 drm_gem_object_reference(obj);
1578 obj_priv->active = 1;
1579 }
1580
1581 /* Move from whatever list we were on to the tail of execution. */
1582 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1583 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1584 obj_priv->last_rendering_seqno = seqno;
1585 }
1586
1587 static void
1588 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1589 {
1590 struct drm_device *dev = obj->dev;
1591 drm_i915_private_t *dev_priv = dev->dev_private;
1592 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1593
1594 BUG_ON(!obj_priv->active);
1595 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1596 list_del_init(&obj_priv->ring_list);
1597 obj_priv->last_rendering_seqno = 0;
1598 }
1599
1600 /* Immediately discard the backing storage */
1601 static void
1602 i915_gem_object_truncate(struct drm_gem_object *obj)
1603 {
1604 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1605 struct inode *inode;
1606
1607 /* Our goal here is to return as much of the memory as
1608 * is possible back to the system as we are called from OOM.
1609 * To do this we must instruct the shmfs to drop all of its
1610 * backing pages, *now*. Here we mirror the actions taken
1611 * when by shmem_delete_inode() to release the backing store.
1612 */
1613 inode = obj->filp->f_path.dentry->d_inode;
1614 truncate_inode_pages(inode->i_mapping, 0);
1615 if (inode->i_op->truncate_range)
1616 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1617
1618 obj_priv->madv = __I915_MADV_PURGED;
1619 }
1620
1621 static inline int
1622 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1623 {
1624 return obj_priv->madv == I915_MADV_DONTNEED;
1625 }
1626
1627 static void
1628 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1629 {
1630 struct drm_device *dev = obj->dev;
1631 drm_i915_private_t *dev_priv = dev->dev_private;
1632 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1633
1634 if (obj_priv->pin_count != 0)
1635 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1636 else
1637 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1638 list_del_init(&obj_priv->ring_list);
1639
1640 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1641
1642 obj_priv->last_rendering_seqno = 0;
1643 obj_priv->ring = NULL;
1644 if (obj_priv->active) {
1645 obj_priv->active = 0;
1646 drm_gem_object_unreference(obj);
1647 }
1648 WARN_ON(i915_verify_lists(dev));
1649 }
1650
1651 static void
1652 i915_gem_process_flushing_list(struct drm_device *dev,
1653 uint32_t flush_domains,
1654 struct intel_ring_buffer *ring)
1655 {
1656 drm_i915_private_t *dev_priv = dev->dev_private;
1657 struct drm_i915_gem_object *obj_priv, *next;
1658
1659 list_for_each_entry_safe(obj_priv, next,
1660 &ring->gpu_write_list,
1661 gpu_write_list) {
1662 struct drm_gem_object *obj = &obj_priv->base;
1663
1664 if (obj->write_domain & flush_domains) {
1665 uint32_t old_write_domain = obj->write_domain;
1666
1667 obj->write_domain = 0;
1668 list_del_init(&obj_priv->gpu_write_list);
1669 i915_gem_object_move_to_active(obj, ring);
1670
1671 /* update the fence lru list */
1672 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1673 struct drm_i915_fence_reg *reg =
1674 &dev_priv->fence_regs[obj_priv->fence_reg];
1675 list_move_tail(&reg->lru_list,
1676 &dev_priv->mm.fence_list);
1677 }
1678
1679 trace_i915_gem_object_change_domain(obj,
1680 obj->read_domains,
1681 old_write_domain);
1682 }
1683 }
1684 }
1685
1686 uint32_t
1687 i915_add_request(struct drm_device *dev,
1688 struct drm_file *file,
1689 struct drm_i915_gem_request *request,
1690 struct intel_ring_buffer *ring)
1691 {
1692 drm_i915_private_t *dev_priv = dev->dev_private;
1693 struct drm_i915_file_private *file_priv = NULL;
1694 uint32_t seqno;
1695 int was_empty;
1696
1697 if (file != NULL)
1698 file_priv = file->driver_priv;
1699
1700 if (request == NULL) {
1701 request = kzalloc(sizeof(*request), GFP_KERNEL);
1702 if (request == NULL)
1703 return 0;
1704 }
1705
1706 seqno = ring->add_request(dev, ring, 0);
1707 ring->outstanding_lazy_request = false;
1708
1709 request->seqno = seqno;
1710 request->ring = ring;
1711 request->emitted_jiffies = jiffies;
1712 was_empty = list_empty(&ring->request_list);
1713 list_add_tail(&request->list, &ring->request_list);
1714
1715 if (file_priv) {
1716 spin_lock(&file_priv->mm.lock);
1717 request->file_priv = file_priv;
1718 list_add_tail(&request->client_list,
1719 &file_priv->mm.request_list);
1720 spin_unlock(&file_priv->mm.lock);
1721 }
1722
1723 if (!dev_priv->mm.suspended) {
1724 mod_timer(&dev_priv->hangcheck_timer,
1725 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1726 if (was_empty)
1727 queue_delayed_work(dev_priv->wq,
1728 &dev_priv->mm.retire_work, HZ);
1729 }
1730 return seqno;
1731 }
1732
1733 /**
1734 * Command execution barrier
1735 *
1736 * Ensures that all commands in the ring are finished
1737 * before signalling the CPU
1738 */
1739 static void
1740 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1741 {
1742 uint32_t flush_domains = 0;
1743
1744 /* The sampler always gets flushed on i965 (sigh) */
1745 if (INTEL_INFO(dev)->gen >= 4)
1746 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1747
1748 ring->flush(dev, ring,
1749 I915_GEM_DOMAIN_COMMAND, flush_domains);
1750 }
1751
1752 static inline void
1753 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1754 {
1755 struct drm_i915_file_private *file_priv = request->file_priv;
1756
1757 if (!file_priv)
1758 return;
1759
1760 spin_lock(&file_priv->mm.lock);
1761 list_del(&request->client_list);
1762 request->file_priv = NULL;
1763 spin_unlock(&file_priv->mm.lock);
1764 }
1765
1766 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1767 struct intel_ring_buffer *ring)
1768 {
1769 while (!list_empty(&ring->request_list)) {
1770 struct drm_i915_gem_request *request;
1771
1772 request = list_first_entry(&ring->request_list,
1773 struct drm_i915_gem_request,
1774 list);
1775
1776 list_del(&request->list);
1777 i915_gem_request_remove_from_client(request);
1778 kfree(request);
1779 }
1780
1781 while (!list_empty(&ring->active_list)) {
1782 struct drm_i915_gem_object *obj_priv;
1783
1784 obj_priv = list_first_entry(&ring->active_list,
1785 struct drm_i915_gem_object,
1786 ring_list);
1787
1788 obj_priv->base.write_domain = 0;
1789 list_del_init(&obj_priv->gpu_write_list);
1790 i915_gem_object_move_to_inactive(&obj_priv->base);
1791 }
1792 }
1793
1794 void i915_gem_reset(struct drm_device *dev)
1795 {
1796 struct drm_i915_private *dev_priv = dev->dev_private;
1797 struct drm_i915_gem_object *obj_priv;
1798 int i;
1799
1800 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1801 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1802 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1803
1804 /* Remove anything from the flushing lists. The GPU cache is likely
1805 * to be lost on reset along with the data, so simply move the
1806 * lost bo to the inactive list.
1807 */
1808 while (!list_empty(&dev_priv->mm.flushing_list)) {
1809 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1810 struct drm_i915_gem_object,
1811 mm_list);
1812
1813 obj_priv->base.write_domain = 0;
1814 list_del_init(&obj_priv->gpu_write_list);
1815 i915_gem_object_move_to_inactive(&obj_priv->base);
1816 }
1817
1818 /* Move everything out of the GPU domains to ensure we do any
1819 * necessary invalidation upon reuse.
1820 */
1821 list_for_each_entry(obj_priv,
1822 &dev_priv->mm.inactive_list,
1823 mm_list)
1824 {
1825 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1826 }
1827
1828 /* The fence registers are invalidated so clear them out */
1829 for (i = 0; i < 16; i++) {
1830 struct drm_i915_fence_reg *reg;
1831
1832 reg = &dev_priv->fence_regs[i];
1833 if (!reg->obj)
1834 continue;
1835
1836 i915_gem_clear_fence_reg(reg->obj);
1837 }
1838 }
1839
1840 /**
1841 * This function clears the request list as sequence numbers are passed.
1842 */
1843 static void
1844 i915_gem_retire_requests_ring(struct drm_device *dev,
1845 struct intel_ring_buffer *ring)
1846 {
1847 drm_i915_private_t *dev_priv = dev->dev_private;
1848 uint32_t seqno;
1849
1850 if (!ring->status_page.page_addr ||
1851 list_empty(&ring->request_list))
1852 return;
1853
1854 WARN_ON(i915_verify_lists(dev));
1855
1856 seqno = ring->get_seqno(dev, ring);
1857 while (!list_empty(&ring->request_list)) {
1858 struct drm_i915_gem_request *request;
1859
1860 request = list_first_entry(&ring->request_list,
1861 struct drm_i915_gem_request,
1862 list);
1863
1864 if (!i915_seqno_passed(seqno, request->seqno))
1865 break;
1866
1867 trace_i915_gem_request_retire(dev, request->seqno);
1868
1869 list_del(&request->list);
1870 i915_gem_request_remove_from_client(request);
1871 kfree(request);
1872 }
1873
1874 /* Move any buffers on the active list that are no longer referenced
1875 * by the ringbuffer to the flushing/inactive lists as appropriate.
1876 */
1877 while (!list_empty(&ring->active_list)) {
1878 struct drm_gem_object *obj;
1879 struct drm_i915_gem_object *obj_priv;
1880
1881 obj_priv = list_first_entry(&ring->active_list,
1882 struct drm_i915_gem_object,
1883 ring_list);
1884
1885 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1886 break;
1887
1888 obj = &obj_priv->base;
1889 if (obj->write_domain != 0)
1890 i915_gem_object_move_to_flushing(obj);
1891 else
1892 i915_gem_object_move_to_inactive(obj);
1893 }
1894
1895 if (unlikely (dev_priv->trace_irq_seqno &&
1896 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1897 ring->user_irq_put(dev, ring);
1898 dev_priv->trace_irq_seqno = 0;
1899 }
1900
1901 WARN_ON(i915_verify_lists(dev));
1902 }
1903
1904 void
1905 i915_gem_retire_requests(struct drm_device *dev)
1906 {
1907 drm_i915_private_t *dev_priv = dev->dev_private;
1908
1909 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1910 struct drm_i915_gem_object *obj_priv, *tmp;
1911
1912 /* We must be careful that during unbind() we do not
1913 * accidentally infinitely recurse into retire requests.
1914 * Currently:
1915 * retire -> free -> unbind -> wait -> retire_ring
1916 */
1917 list_for_each_entry_safe(obj_priv, tmp,
1918 &dev_priv->mm.deferred_free_list,
1919 mm_list)
1920 i915_gem_free_object_tail(&obj_priv->base);
1921 }
1922
1923 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1924 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1925 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
1926 }
1927
1928 static void
1929 i915_gem_retire_work_handler(struct work_struct *work)
1930 {
1931 drm_i915_private_t *dev_priv;
1932 struct drm_device *dev;
1933
1934 dev_priv = container_of(work, drm_i915_private_t,
1935 mm.retire_work.work);
1936 dev = dev_priv->dev;
1937
1938 /* Come back later if the device is busy... */
1939 if (!mutex_trylock(&dev->struct_mutex)) {
1940 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1941 return;
1942 }
1943
1944 i915_gem_retire_requests(dev);
1945
1946 if (!dev_priv->mm.suspended &&
1947 (!list_empty(&dev_priv->render_ring.request_list) ||
1948 !list_empty(&dev_priv->bsd_ring.request_list) ||
1949 !list_empty(&dev_priv->blt_ring.request_list)))
1950 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1951 mutex_unlock(&dev->struct_mutex);
1952 }
1953
1954 int
1955 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1956 bool interruptible, struct intel_ring_buffer *ring)
1957 {
1958 drm_i915_private_t *dev_priv = dev->dev_private;
1959 u32 ier;
1960 int ret = 0;
1961
1962 BUG_ON(seqno == 0);
1963
1964 if (atomic_read(&dev_priv->mm.wedged))
1965 return -EAGAIN;
1966
1967 if (ring->outstanding_lazy_request) {
1968 seqno = i915_add_request(dev, NULL, NULL, ring);
1969 if (seqno == 0)
1970 return -ENOMEM;
1971 }
1972 BUG_ON(seqno == dev_priv->next_seqno);
1973
1974 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1975 if (HAS_PCH_SPLIT(dev))
1976 ier = I915_READ(DEIER) | I915_READ(GTIER);
1977 else
1978 ier = I915_READ(IER);
1979 if (!ier) {
1980 DRM_ERROR("something (likely vbetool) disabled "
1981 "interrupts, re-enabling\n");
1982 i915_driver_irq_preinstall(dev);
1983 i915_driver_irq_postinstall(dev);
1984 }
1985
1986 trace_i915_gem_request_wait_begin(dev, seqno);
1987
1988 ring->waiting_gem_seqno = seqno;
1989 ring->user_irq_get(dev, ring);
1990 if (interruptible)
1991 ret = wait_event_interruptible(ring->irq_queue,
1992 i915_seqno_passed(
1993 ring->get_seqno(dev, ring), seqno)
1994 || atomic_read(&dev_priv->mm.wedged));
1995 else
1996 wait_event(ring->irq_queue,
1997 i915_seqno_passed(
1998 ring->get_seqno(dev, ring), seqno)
1999 || atomic_read(&dev_priv->mm.wedged));
2000
2001 ring->user_irq_put(dev, ring);
2002 ring->waiting_gem_seqno = 0;
2003
2004 trace_i915_gem_request_wait_end(dev, seqno);
2005 }
2006 if (atomic_read(&dev_priv->mm.wedged))
2007 ret = -EAGAIN;
2008
2009 if (ret && ret != -ERESTARTSYS)
2010 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2011 __func__, ret, seqno, ring->get_seqno(dev, ring),
2012 dev_priv->next_seqno);
2013
2014 /* Directly dispatch request retiring. While we have the work queue
2015 * to handle this, the waiter on a request often wants an associated
2016 * buffer to have made it to the inactive list, and we would need
2017 * a separate wait queue to handle that.
2018 */
2019 if (ret == 0)
2020 i915_gem_retire_requests_ring(dev, ring);
2021
2022 return ret;
2023 }
2024
2025 /**
2026 * Waits for a sequence number to be signaled, and cleans up the
2027 * request and object lists appropriately for that event.
2028 */
2029 static int
2030 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2031 struct intel_ring_buffer *ring)
2032 {
2033 return i915_do_wait_request(dev, seqno, 1, ring);
2034 }
2035
2036 static void
2037 i915_gem_flush_ring(struct drm_device *dev,
2038 struct drm_file *file_priv,
2039 struct intel_ring_buffer *ring,
2040 uint32_t invalidate_domains,
2041 uint32_t flush_domains)
2042 {
2043 ring->flush(dev, ring, invalidate_domains, flush_domains);
2044 i915_gem_process_flushing_list(dev, flush_domains, ring);
2045 }
2046
2047 static void
2048 i915_gem_flush(struct drm_device *dev,
2049 struct drm_file *file_priv,
2050 uint32_t invalidate_domains,
2051 uint32_t flush_domains,
2052 uint32_t flush_rings)
2053 {
2054 drm_i915_private_t *dev_priv = dev->dev_private;
2055
2056 if (flush_domains & I915_GEM_DOMAIN_CPU)
2057 drm_agp_chipset_flush(dev);
2058
2059 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2060 if (flush_rings & RING_RENDER)
2061 i915_gem_flush_ring(dev, file_priv,
2062 &dev_priv->render_ring,
2063 invalidate_domains, flush_domains);
2064 if (flush_rings & RING_BSD)
2065 i915_gem_flush_ring(dev, file_priv,
2066 &dev_priv->bsd_ring,
2067 invalidate_domains, flush_domains);
2068 if (flush_rings & RING_BLT)
2069 i915_gem_flush_ring(dev, file_priv,
2070 &dev_priv->blt_ring,
2071 invalidate_domains, flush_domains);
2072 }
2073 }
2074
2075 /**
2076 * Ensures that all rendering to the object has completed and the object is
2077 * safe to unbind from the GTT or access from the CPU.
2078 */
2079 static int
2080 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2081 bool interruptible)
2082 {
2083 struct drm_device *dev = obj->dev;
2084 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2085 int ret;
2086
2087 /* This function only exists to support waiting for existing rendering,
2088 * not for emitting required flushes.
2089 */
2090 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2091
2092 /* If there is rendering queued on the buffer being evicted, wait for
2093 * it.
2094 */
2095 if (obj_priv->active) {
2096 ret = i915_do_wait_request(dev,
2097 obj_priv->last_rendering_seqno,
2098 interruptible,
2099 obj_priv->ring);
2100 if (ret)
2101 return ret;
2102 }
2103
2104 return 0;
2105 }
2106
2107 /**
2108 * Unbinds an object from the GTT aperture.
2109 */
2110 int
2111 i915_gem_object_unbind(struct drm_gem_object *obj)
2112 {
2113 struct drm_device *dev = obj->dev;
2114 struct drm_i915_private *dev_priv = dev->dev_private;
2115 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2116 int ret = 0;
2117
2118 if (obj_priv->gtt_space == NULL)
2119 return 0;
2120
2121 if (obj_priv->pin_count != 0) {
2122 DRM_ERROR("Attempting to unbind pinned buffer\n");
2123 return -EINVAL;
2124 }
2125
2126 /* blow away mappings if mapped through GTT */
2127 i915_gem_release_mmap(obj);
2128
2129 /* Move the object to the CPU domain to ensure that
2130 * any possible CPU writes while it's not in the GTT
2131 * are flushed when we go to remap it. This will
2132 * also ensure that all pending GPU writes are finished
2133 * before we unbind.
2134 */
2135 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2136 if (ret == -ERESTARTSYS)
2137 return ret;
2138 /* Continue on if we fail due to EIO, the GPU is hung so we
2139 * should be safe and we need to cleanup or else we might
2140 * cause memory corruption through use-after-free.
2141 */
2142 if (ret) {
2143 i915_gem_clflush_object(obj);
2144 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2145 }
2146
2147 /* release the fence reg _after_ flushing */
2148 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2149 i915_gem_clear_fence_reg(obj);
2150
2151 drm_unbind_agp(obj_priv->agp_mem);
2152 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2153
2154 i915_gem_object_put_pages(obj);
2155 BUG_ON(obj_priv->pages_refcount);
2156
2157 i915_gem_info_remove_gtt(dev_priv, obj->size);
2158 list_del_init(&obj_priv->mm_list);
2159
2160 drm_mm_put_block(obj_priv->gtt_space);
2161 obj_priv->gtt_space = NULL;
2162 obj_priv->gtt_offset = 0;
2163
2164 if (i915_gem_object_is_purgeable(obj_priv))
2165 i915_gem_object_truncate(obj);
2166
2167 trace_i915_gem_object_unbind(obj);
2168
2169 return ret;
2170 }
2171
2172 static int i915_ring_idle(struct drm_device *dev,
2173 struct intel_ring_buffer *ring)
2174 {
2175 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2176 return 0;
2177
2178 i915_gem_flush_ring(dev, NULL, ring,
2179 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2180 return i915_wait_request(dev,
2181 i915_gem_next_request_seqno(dev, ring),
2182 ring);
2183 }
2184
2185 int
2186 i915_gpu_idle(struct drm_device *dev)
2187 {
2188 drm_i915_private_t *dev_priv = dev->dev_private;
2189 bool lists_empty;
2190 int ret;
2191
2192 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2193 list_empty(&dev_priv->mm.active_list));
2194 if (lists_empty)
2195 return 0;
2196
2197 /* Flush everything onto the inactive list. */
2198 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2199 if (ret)
2200 return ret;
2201
2202 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2203 if (ret)
2204 return ret;
2205
2206 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2207 if (ret)
2208 return ret;
2209
2210 return 0;
2211 }
2212
2213 static int
2214 i915_gem_object_get_pages(struct drm_gem_object *obj,
2215 gfp_t gfpmask)
2216 {
2217 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2218 int page_count, i;
2219 struct address_space *mapping;
2220 struct inode *inode;
2221 struct page *page;
2222
2223 BUG_ON(obj_priv->pages_refcount
2224 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2225
2226 if (obj_priv->pages_refcount++ != 0)
2227 return 0;
2228
2229 /* Get the list of pages out of our struct file. They'll be pinned
2230 * at this point until we release them.
2231 */
2232 page_count = obj->size / PAGE_SIZE;
2233 BUG_ON(obj_priv->pages != NULL);
2234 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2235 if (obj_priv->pages == NULL) {
2236 obj_priv->pages_refcount--;
2237 return -ENOMEM;
2238 }
2239
2240 inode = obj->filp->f_path.dentry->d_inode;
2241 mapping = inode->i_mapping;
2242 for (i = 0; i < page_count; i++) {
2243 page = read_cache_page_gfp(mapping, i,
2244 GFP_HIGHUSER |
2245 __GFP_COLD |
2246 __GFP_RECLAIMABLE |
2247 gfpmask);
2248 if (IS_ERR(page))
2249 goto err_pages;
2250
2251 obj_priv->pages[i] = page;
2252 }
2253
2254 if (obj_priv->tiling_mode != I915_TILING_NONE)
2255 i915_gem_object_do_bit_17_swizzle(obj);
2256
2257 return 0;
2258
2259 err_pages:
2260 while (i--)
2261 page_cache_release(obj_priv->pages[i]);
2262
2263 drm_free_large(obj_priv->pages);
2264 obj_priv->pages = NULL;
2265 obj_priv->pages_refcount--;
2266 return PTR_ERR(page);
2267 }
2268
2269 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2270 {
2271 struct drm_gem_object *obj = reg->obj;
2272 struct drm_device *dev = obj->dev;
2273 drm_i915_private_t *dev_priv = dev->dev_private;
2274 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2275 int regnum = obj_priv->fence_reg;
2276 uint64_t val;
2277
2278 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2279 0xfffff000) << 32;
2280 val |= obj_priv->gtt_offset & 0xfffff000;
2281 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2282 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2283
2284 if (obj_priv->tiling_mode == I915_TILING_Y)
2285 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2286 val |= I965_FENCE_REG_VALID;
2287
2288 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2289 }
2290
2291 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2292 {
2293 struct drm_gem_object *obj = reg->obj;
2294 struct drm_device *dev = obj->dev;
2295 drm_i915_private_t *dev_priv = dev->dev_private;
2296 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2297 int regnum = obj_priv->fence_reg;
2298 uint64_t val;
2299
2300 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2301 0xfffff000) << 32;
2302 val |= obj_priv->gtt_offset & 0xfffff000;
2303 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2304 if (obj_priv->tiling_mode == I915_TILING_Y)
2305 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2306 val |= I965_FENCE_REG_VALID;
2307
2308 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2309 }
2310
2311 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2312 {
2313 struct drm_gem_object *obj = reg->obj;
2314 struct drm_device *dev = obj->dev;
2315 drm_i915_private_t *dev_priv = dev->dev_private;
2316 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2317 int regnum = obj_priv->fence_reg;
2318 int tile_width;
2319 uint32_t fence_reg, val;
2320 uint32_t pitch_val;
2321
2322 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2323 (obj_priv->gtt_offset & (obj->size - 1))) {
2324 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2325 __func__, obj_priv->gtt_offset, obj->size);
2326 return;
2327 }
2328
2329 if (obj_priv->tiling_mode == I915_TILING_Y &&
2330 HAS_128_BYTE_Y_TILING(dev))
2331 tile_width = 128;
2332 else
2333 tile_width = 512;
2334
2335 /* Note: pitch better be a power of two tile widths */
2336 pitch_val = obj_priv->stride / tile_width;
2337 pitch_val = ffs(pitch_val) - 1;
2338
2339 if (obj_priv->tiling_mode == I915_TILING_Y &&
2340 HAS_128_BYTE_Y_TILING(dev))
2341 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2342 else
2343 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2344
2345 val = obj_priv->gtt_offset;
2346 if (obj_priv->tiling_mode == I915_TILING_Y)
2347 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2348 val |= I915_FENCE_SIZE_BITS(obj->size);
2349 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2350 val |= I830_FENCE_REG_VALID;
2351
2352 if (regnum < 8)
2353 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2354 else
2355 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2356 I915_WRITE(fence_reg, val);
2357 }
2358
2359 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2360 {
2361 struct drm_gem_object *obj = reg->obj;
2362 struct drm_device *dev = obj->dev;
2363 drm_i915_private_t *dev_priv = dev->dev_private;
2364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2365 int regnum = obj_priv->fence_reg;
2366 uint32_t val;
2367 uint32_t pitch_val;
2368 uint32_t fence_size_bits;
2369
2370 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2371 (obj_priv->gtt_offset & (obj->size - 1))) {
2372 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2373 __func__, obj_priv->gtt_offset);
2374 return;
2375 }
2376
2377 pitch_val = obj_priv->stride / 128;
2378 pitch_val = ffs(pitch_val) - 1;
2379 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2380
2381 val = obj_priv->gtt_offset;
2382 if (obj_priv->tiling_mode == I915_TILING_Y)
2383 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2384 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2385 WARN_ON(fence_size_bits & ~0x00000f00);
2386 val |= fence_size_bits;
2387 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2388 val |= I830_FENCE_REG_VALID;
2389
2390 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2391 }
2392
2393 static int i915_find_fence_reg(struct drm_device *dev,
2394 bool interruptible)
2395 {
2396 struct drm_i915_fence_reg *reg = NULL;
2397 struct drm_i915_gem_object *obj_priv = NULL;
2398 struct drm_i915_private *dev_priv = dev->dev_private;
2399 struct drm_gem_object *obj = NULL;
2400 int i, avail, ret;
2401
2402 /* First try to find a free reg */
2403 avail = 0;
2404 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2405 reg = &dev_priv->fence_regs[i];
2406 if (!reg->obj)
2407 return i;
2408
2409 obj_priv = to_intel_bo(reg->obj);
2410 if (!obj_priv->pin_count)
2411 avail++;
2412 }
2413
2414 if (avail == 0)
2415 return -ENOSPC;
2416
2417 /* None available, try to steal one or wait for a user to finish */
2418 i = I915_FENCE_REG_NONE;
2419 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2420 lru_list) {
2421 obj = reg->obj;
2422 obj_priv = to_intel_bo(obj);
2423
2424 if (obj_priv->pin_count)
2425 continue;
2426
2427 /* found one! */
2428 i = obj_priv->fence_reg;
2429 break;
2430 }
2431
2432 BUG_ON(i == I915_FENCE_REG_NONE);
2433
2434 /* We only have a reference on obj from the active list. put_fence_reg
2435 * might drop that one, causing a use-after-free in it. So hold a
2436 * private reference to obj like the other callers of put_fence_reg
2437 * (set_tiling ioctl) do. */
2438 drm_gem_object_reference(obj);
2439 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2440 drm_gem_object_unreference(obj);
2441 if (ret != 0)
2442 return ret;
2443
2444 return i;
2445 }
2446
2447 /**
2448 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2449 * @obj: object to map through a fence reg
2450 *
2451 * When mapping objects through the GTT, userspace wants to be able to write
2452 * to them without having to worry about swizzling if the object is tiled.
2453 *
2454 * This function walks the fence regs looking for a free one for @obj,
2455 * stealing one if it can't find any.
2456 *
2457 * It then sets up the reg based on the object's properties: address, pitch
2458 * and tiling format.
2459 */
2460 int
2461 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2462 bool interruptible)
2463 {
2464 struct drm_device *dev = obj->dev;
2465 struct drm_i915_private *dev_priv = dev->dev_private;
2466 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2467 struct drm_i915_fence_reg *reg = NULL;
2468 int ret;
2469
2470 /* Just update our place in the LRU if our fence is getting used. */
2471 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2472 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2473 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2474 return 0;
2475 }
2476
2477 switch (obj_priv->tiling_mode) {
2478 case I915_TILING_NONE:
2479 WARN(1, "allocating a fence for non-tiled object?\n");
2480 break;
2481 case I915_TILING_X:
2482 if (!obj_priv->stride)
2483 return -EINVAL;
2484 WARN((obj_priv->stride & (512 - 1)),
2485 "object 0x%08x is X tiled but has non-512B pitch\n",
2486 obj_priv->gtt_offset);
2487 break;
2488 case I915_TILING_Y:
2489 if (!obj_priv->stride)
2490 return -EINVAL;
2491 WARN((obj_priv->stride & (128 - 1)),
2492 "object 0x%08x is Y tiled but has non-128B pitch\n",
2493 obj_priv->gtt_offset);
2494 break;
2495 }
2496
2497 ret = i915_find_fence_reg(dev, interruptible);
2498 if (ret < 0)
2499 return ret;
2500
2501 obj_priv->fence_reg = ret;
2502 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2503 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2504
2505 reg->obj = obj;
2506
2507 switch (INTEL_INFO(dev)->gen) {
2508 case 6:
2509 sandybridge_write_fence_reg(reg);
2510 break;
2511 case 5:
2512 case 4:
2513 i965_write_fence_reg(reg);
2514 break;
2515 case 3:
2516 i915_write_fence_reg(reg);
2517 break;
2518 case 2:
2519 i830_write_fence_reg(reg);
2520 break;
2521 }
2522
2523 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2524 obj_priv->tiling_mode);
2525
2526 return 0;
2527 }
2528
2529 /**
2530 * i915_gem_clear_fence_reg - clear out fence register info
2531 * @obj: object to clear
2532 *
2533 * Zeroes out the fence register itself and clears out the associated
2534 * data structures in dev_priv and obj_priv.
2535 */
2536 static void
2537 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2538 {
2539 struct drm_device *dev = obj->dev;
2540 drm_i915_private_t *dev_priv = dev->dev_private;
2541 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2542 struct drm_i915_fence_reg *reg =
2543 &dev_priv->fence_regs[obj_priv->fence_reg];
2544 uint32_t fence_reg;
2545
2546 switch (INTEL_INFO(dev)->gen) {
2547 case 6:
2548 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2549 (obj_priv->fence_reg * 8), 0);
2550 break;
2551 case 5:
2552 case 4:
2553 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2554 break;
2555 case 3:
2556 if (obj_priv->fence_reg >= 8)
2557 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2558 else
2559 case 2:
2560 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2561
2562 I915_WRITE(fence_reg, 0);
2563 break;
2564 }
2565
2566 reg->obj = NULL;
2567 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2568 list_del_init(&reg->lru_list);
2569 }
2570
2571 /**
2572 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2573 * to the buffer to finish, and then resets the fence register.
2574 * @obj: tiled object holding a fence register.
2575 * @bool: whether the wait upon the fence is interruptible
2576 *
2577 * Zeroes out the fence register itself and clears out the associated
2578 * data structures in dev_priv and obj_priv.
2579 */
2580 int
2581 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2582 bool interruptible)
2583 {
2584 struct drm_device *dev = obj->dev;
2585 struct drm_i915_private *dev_priv = dev->dev_private;
2586 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2587 struct drm_i915_fence_reg *reg;
2588
2589 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2590 return 0;
2591
2592 /* If we've changed tiling, GTT-mappings of the object
2593 * need to re-fault to ensure that the correct fence register
2594 * setup is in place.
2595 */
2596 i915_gem_release_mmap(obj);
2597
2598 /* On the i915, GPU access to tiled buffers is via a fence,
2599 * therefore we must wait for any outstanding access to complete
2600 * before clearing the fence.
2601 */
2602 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2603 if (reg->gpu) {
2604 int ret;
2605
2606 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2607 if (ret)
2608 return ret;
2609
2610 ret = i915_gem_object_wait_rendering(obj, interruptible);
2611 if (ret)
2612 return ret;
2613
2614 reg->gpu = false;
2615 }
2616
2617 i915_gem_object_flush_gtt_write_domain(obj);
2618 i915_gem_clear_fence_reg(obj);
2619
2620 return 0;
2621 }
2622
2623 /**
2624 * Finds free space in the GTT aperture and binds the object there.
2625 */
2626 static int
2627 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2628 {
2629 struct drm_device *dev = obj->dev;
2630 drm_i915_private_t *dev_priv = dev->dev_private;
2631 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2632 struct drm_mm_node *free_space;
2633 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2634 int ret;
2635
2636 if (obj_priv->madv != I915_MADV_WILLNEED) {
2637 DRM_ERROR("Attempting to bind a purgeable object\n");
2638 return -EINVAL;
2639 }
2640
2641 if (alignment == 0)
2642 alignment = i915_gem_get_gtt_alignment(obj);
2643 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2644 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2645 return -EINVAL;
2646 }
2647
2648 /* If the object is bigger than the entire aperture, reject it early
2649 * before evicting everything in a vain attempt to find space.
2650 */
2651 if (obj->size > dev_priv->mm.gtt_total) {
2652 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2653 return -E2BIG;
2654 }
2655
2656 search_free:
2657 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2658 obj->size, alignment, 0);
2659 if (free_space != NULL)
2660 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2661 alignment);
2662 if (obj_priv->gtt_space == NULL) {
2663 /* If the gtt is empty and we're still having trouble
2664 * fitting our object in, we're out of memory.
2665 */
2666 ret = i915_gem_evict_something(dev, obj->size, alignment);
2667 if (ret)
2668 return ret;
2669
2670 goto search_free;
2671 }
2672
2673 ret = i915_gem_object_get_pages(obj, gfpmask);
2674 if (ret) {
2675 drm_mm_put_block(obj_priv->gtt_space);
2676 obj_priv->gtt_space = NULL;
2677
2678 if (ret == -ENOMEM) {
2679 /* first try to clear up some space from the GTT */
2680 ret = i915_gem_evict_something(dev, obj->size,
2681 alignment);
2682 if (ret) {
2683 /* now try to shrink everyone else */
2684 if (gfpmask) {
2685 gfpmask = 0;
2686 goto search_free;
2687 }
2688
2689 return ret;
2690 }
2691
2692 goto search_free;
2693 }
2694
2695 return ret;
2696 }
2697
2698 /* Create an AGP memory structure pointing at our pages, and bind it
2699 * into the GTT.
2700 */
2701 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2702 obj_priv->pages,
2703 obj->size >> PAGE_SHIFT,
2704 obj_priv->gtt_space->start,
2705 obj_priv->agp_type);
2706 if (obj_priv->agp_mem == NULL) {
2707 i915_gem_object_put_pages(obj);
2708 drm_mm_put_block(obj_priv->gtt_space);
2709 obj_priv->gtt_space = NULL;
2710
2711 ret = i915_gem_evict_something(dev, obj->size, alignment);
2712 if (ret)
2713 return ret;
2714
2715 goto search_free;
2716 }
2717
2718 /* keep track of bounds object by adding it to the inactive list */
2719 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2720 i915_gem_info_add_gtt(dev_priv, obj->size);
2721
2722 /* Assert that the object is not currently in any GPU domain. As it
2723 * wasn't in the GTT, there shouldn't be any way it could have been in
2724 * a GPU cache
2725 */
2726 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2727 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2728
2729 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2730 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2731
2732 return 0;
2733 }
2734
2735 void
2736 i915_gem_clflush_object(struct drm_gem_object *obj)
2737 {
2738 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2739
2740 /* If we don't have a page list set up, then we're not pinned
2741 * to GPU, and we can ignore the cache flush because it'll happen
2742 * again at bind time.
2743 */
2744 if (obj_priv->pages == NULL)
2745 return;
2746
2747 trace_i915_gem_object_clflush(obj);
2748
2749 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2750 }
2751
2752 /** Flushes any GPU write domain for the object if it's dirty. */
2753 static int
2754 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2755 bool pipelined)
2756 {
2757 struct drm_device *dev = obj->dev;
2758 uint32_t old_write_domain;
2759
2760 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2761 return 0;
2762
2763 /* Queue the GPU write cache flushing we need. */
2764 old_write_domain = obj->write_domain;
2765 i915_gem_flush_ring(dev, NULL,
2766 to_intel_bo(obj)->ring,
2767 0, obj->write_domain);
2768 BUG_ON(obj->write_domain);
2769
2770 trace_i915_gem_object_change_domain(obj,
2771 obj->read_domains,
2772 old_write_domain);
2773
2774 if (pipelined)
2775 return 0;
2776
2777 return i915_gem_object_wait_rendering(obj, true);
2778 }
2779
2780 /** Flushes the GTT write domain for the object if it's dirty. */
2781 static void
2782 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2783 {
2784 uint32_t old_write_domain;
2785
2786 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2787 return;
2788
2789 /* No actual flushing is required for the GTT write domain. Writes
2790 * to it immediately go to main memory as far as we know, so there's
2791 * no chipset flush. It also doesn't land in render cache.
2792 */
2793 old_write_domain = obj->write_domain;
2794 obj->write_domain = 0;
2795
2796 trace_i915_gem_object_change_domain(obj,
2797 obj->read_domains,
2798 old_write_domain);
2799 }
2800
2801 /** Flushes the CPU write domain for the object if it's dirty. */
2802 static void
2803 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2804 {
2805 struct drm_device *dev = obj->dev;
2806 uint32_t old_write_domain;
2807
2808 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2809 return;
2810
2811 i915_gem_clflush_object(obj);
2812 drm_agp_chipset_flush(dev);
2813 old_write_domain = obj->write_domain;
2814 obj->write_domain = 0;
2815
2816 trace_i915_gem_object_change_domain(obj,
2817 obj->read_domains,
2818 old_write_domain);
2819 }
2820
2821 /**
2822 * Moves a single object to the GTT read, and possibly write domain.
2823 *
2824 * This function returns when the move is complete, including waiting on
2825 * flushes to occur.
2826 */
2827 int
2828 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2829 {
2830 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2831 uint32_t old_write_domain, old_read_domains;
2832 int ret;
2833
2834 /* Not valid to be called on unbound objects. */
2835 if (obj_priv->gtt_space == NULL)
2836 return -EINVAL;
2837
2838 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2839 if (ret != 0)
2840 return ret;
2841
2842 i915_gem_object_flush_cpu_write_domain(obj);
2843
2844 if (write) {
2845 ret = i915_gem_object_wait_rendering(obj, true);
2846 if (ret)
2847 return ret;
2848 }
2849
2850 old_write_domain = obj->write_domain;
2851 old_read_domains = obj->read_domains;
2852
2853 /* It should now be out of any other write domains, and we can update
2854 * the domain values for our changes.
2855 */
2856 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2857 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2858 if (write) {
2859 obj->read_domains = I915_GEM_DOMAIN_GTT;
2860 obj->write_domain = I915_GEM_DOMAIN_GTT;
2861 obj_priv->dirty = 1;
2862 }
2863
2864 trace_i915_gem_object_change_domain(obj,
2865 old_read_domains,
2866 old_write_domain);
2867
2868 return 0;
2869 }
2870
2871 /*
2872 * Prepare buffer for display plane. Use uninterruptible for possible flush
2873 * wait, as in modesetting process we're not supposed to be interrupted.
2874 */
2875 int
2876 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2877 bool pipelined)
2878 {
2879 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2880 uint32_t old_read_domains;
2881 int ret;
2882
2883 /* Not valid to be called on unbound objects. */
2884 if (obj_priv->gtt_space == NULL)
2885 return -EINVAL;
2886
2887 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2888 if (ret)
2889 return ret;
2890
2891 /* Currently, we are always called from an non-interruptible context. */
2892 if (!pipelined) {
2893 ret = i915_gem_object_wait_rendering(obj, false);
2894 if (ret)
2895 return ret;
2896 }
2897
2898 i915_gem_object_flush_cpu_write_domain(obj);
2899
2900 old_read_domains = obj->read_domains;
2901 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2902
2903 trace_i915_gem_object_change_domain(obj,
2904 old_read_domains,
2905 obj->write_domain);
2906
2907 return 0;
2908 }
2909
2910 /**
2911 * Moves a single object to the CPU read, and possibly write domain.
2912 *
2913 * This function returns when the move is complete, including waiting on
2914 * flushes to occur.
2915 */
2916 static int
2917 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2918 {
2919 uint32_t old_write_domain, old_read_domains;
2920 int ret;
2921
2922 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2923 if (ret != 0)
2924 return ret;
2925
2926 i915_gem_object_flush_gtt_write_domain(obj);
2927
2928 /* If we have a partially-valid cache of the object in the CPU,
2929 * finish invalidating it and free the per-page flags.
2930 */
2931 i915_gem_object_set_to_full_cpu_read_domain(obj);
2932
2933 if (write) {
2934 ret = i915_gem_object_wait_rendering(obj, true);
2935 if (ret)
2936 return ret;
2937 }
2938
2939 old_write_domain = obj->write_domain;
2940 old_read_domains = obj->read_domains;
2941
2942 /* Flush the CPU cache if it's still invalid. */
2943 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2944 i915_gem_clflush_object(obj);
2945
2946 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2947 }
2948
2949 /* It should now be out of any other write domains, and we can update
2950 * the domain values for our changes.
2951 */
2952 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2953
2954 /* If we're writing through the CPU, then the GPU read domains will
2955 * need to be invalidated at next use.
2956 */
2957 if (write) {
2958 obj->read_domains = I915_GEM_DOMAIN_CPU;
2959 obj->write_domain = I915_GEM_DOMAIN_CPU;
2960 }
2961
2962 trace_i915_gem_object_change_domain(obj,
2963 old_read_domains,
2964 old_write_domain);
2965
2966 return 0;
2967 }
2968
2969 /*
2970 * Set the next domain for the specified object. This
2971 * may not actually perform the necessary flushing/invaliding though,
2972 * as that may want to be batched with other set_domain operations
2973 *
2974 * This is (we hope) the only really tricky part of gem. The goal
2975 * is fairly simple -- track which caches hold bits of the object
2976 * and make sure they remain coherent. A few concrete examples may
2977 * help to explain how it works. For shorthand, we use the notation
2978 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2979 * a pair of read and write domain masks.
2980 *
2981 * Case 1: the batch buffer
2982 *
2983 * 1. Allocated
2984 * 2. Written by CPU
2985 * 3. Mapped to GTT
2986 * 4. Read by GPU
2987 * 5. Unmapped from GTT
2988 * 6. Freed
2989 *
2990 * Let's take these a step at a time
2991 *
2992 * 1. Allocated
2993 * Pages allocated from the kernel may still have
2994 * cache contents, so we set them to (CPU, CPU) always.
2995 * 2. Written by CPU (using pwrite)
2996 * The pwrite function calls set_domain (CPU, CPU) and
2997 * this function does nothing (as nothing changes)
2998 * 3. Mapped by GTT
2999 * This function asserts that the object is not
3000 * currently in any GPU-based read or write domains
3001 * 4. Read by GPU
3002 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3003 * As write_domain is zero, this function adds in the
3004 * current read domains (CPU+COMMAND, 0).
3005 * flush_domains is set to CPU.
3006 * invalidate_domains is set to COMMAND
3007 * clflush is run to get data out of the CPU caches
3008 * then i915_dev_set_domain calls i915_gem_flush to
3009 * emit an MI_FLUSH and drm_agp_chipset_flush
3010 * 5. Unmapped from GTT
3011 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3012 * flush_domains and invalidate_domains end up both zero
3013 * so no flushing/invalidating happens
3014 * 6. Freed
3015 * yay, done
3016 *
3017 * Case 2: The shared render buffer
3018 *
3019 * 1. Allocated
3020 * 2. Mapped to GTT
3021 * 3. Read/written by GPU
3022 * 4. set_domain to (CPU,CPU)
3023 * 5. Read/written by CPU
3024 * 6. Read/written by GPU
3025 *
3026 * 1. Allocated
3027 * Same as last example, (CPU, CPU)
3028 * 2. Mapped to GTT
3029 * Nothing changes (assertions find that it is not in the GPU)
3030 * 3. Read/written by GPU
3031 * execbuffer calls set_domain (RENDER, RENDER)
3032 * flush_domains gets CPU
3033 * invalidate_domains gets GPU
3034 * clflush (obj)
3035 * MI_FLUSH and drm_agp_chipset_flush
3036 * 4. set_domain (CPU, CPU)
3037 * flush_domains gets GPU
3038 * invalidate_domains gets CPU
3039 * wait_rendering (obj) to make sure all drawing is complete.
3040 * This will include an MI_FLUSH to get the data from GPU
3041 * to memory
3042 * clflush (obj) to invalidate the CPU cache
3043 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3044 * 5. Read/written by CPU
3045 * cache lines are loaded and dirtied
3046 * 6. Read written by GPU
3047 * Same as last GPU access
3048 *
3049 * Case 3: The constant buffer
3050 *
3051 * 1. Allocated
3052 * 2. Written by CPU
3053 * 3. Read by GPU
3054 * 4. Updated (written) by CPU again
3055 * 5. Read by GPU
3056 *
3057 * 1. Allocated
3058 * (CPU, CPU)
3059 * 2. Written by CPU
3060 * (CPU, CPU)
3061 * 3. Read by GPU
3062 * (CPU+RENDER, 0)
3063 * flush_domains = CPU
3064 * invalidate_domains = RENDER
3065 * clflush (obj)
3066 * MI_FLUSH
3067 * drm_agp_chipset_flush
3068 * 4. Updated (written) by CPU again
3069 * (CPU, CPU)
3070 * flush_domains = 0 (no previous write domain)
3071 * invalidate_domains = 0 (no new read domains)
3072 * 5. Read by GPU
3073 * (CPU+RENDER, 0)
3074 * flush_domains = CPU
3075 * invalidate_domains = RENDER
3076 * clflush (obj)
3077 * MI_FLUSH
3078 * drm_agp_chipset_flush
3079 */
3080 static void
3081 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3082 struct intel_ring_buffer *ring)
3083 {
3084 struct drm_device *dev = obj->dev;
3085 struct drm_i915_private *dev_priv = dev->dev_private;
3086 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3087 uint32_t invalidate_domains = 0;
3088 uint32_t flush_domains = 0;
3089 uint32_t old_read_domains;
3090
3091 intel_mark_busy(dev, obj);
3092
3093 /*
3094 * If the object isn't moving to a new write domain,
3095 * let the object stay in multiple read domains
3096 */
3097 if (obj->pending_write_domain == 0)
3098 obj->pending_read_domains |= obj->read_domains;
3099 else
3100 obj_priv->dirty = 1;
3101
3102 /*
3103 * Flush the current write domain if
3104 * the new read domains don't match. Invalidate
3105 * any read domains which differ from the old
3106 * write domain
3107 */
3108 if (obj->write_domain &&
3109 (obj->write_domain != obj->pending_read_domains ||
3110 obj_priv->ring != ring)) {
3111 flush_domains |= obj->write_domain;
3112 invalidate_domains |=
3113 obj->pending_read_domains & ~obj->write_domain;
3114 }
3115 /*
3116 * Invalidate any read caches which may have
3117 * stale data. That is, any new read domains.
3118 */
3119 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3120 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3121 i915_gem_clflush_object(obj);
3122
3123 old_read_domains = obj->read_domains;
3124
3125 /* The actual obj->write_domain will be updated with
3126 * pending_write_domain after we emit the accumulated flush for all
3127 * of our domain changes in execbuffers (which clears objects'
3128 * write_domains). So if we have a current write domain that we
3129 * aren't changing, set pending_write_domain to that.
3130 */
3131 if (flush_domains == 0 && obj->pending_write_domain == 0)
3132 obj->pending_write_domain = obj->write_domain;
3133 obj->read_domains = obj->pending_read_domains;
3134
3135 dev->invalidate_domains |= invalidate_domains;
3136 dev->flush_domains |= flush_domains;
3137 if (flush_domains & I915_GEM_GPU_DOMAINS)
3138 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3139 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3140 dev_priv->mm.flush_rings |= ring->id;
3141
3142 trace_i915_gem_object_change_domain(obj,
3143 old_read_domains,
3144 obj->write_domain);
3145 }
3146
3147 /**
3148 * Moves the object from a partially CPU read to a full one.
3149 *
3150 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3151 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3152 */
3153 static void
3154 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3155 {
3156 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3157
3158 if (!obj_priv->page_cpu_valid)
3159 return;
3160
3161 /* If we're partially in the CPU read domain, finish moving it in.
3162 */
3163 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3164 int i;
3165
3166 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3167 if (obj_priv->page_cpu_valid[i])
3168 continue;
3169 drm_clflush_pages(obj_priv->pages + i, 1);
3170 }
3171 }
3172
3173 /* Free the page_cpu_valid mappings which are now stale, whether
3174 * or not we've got I915_GEM_DOMAIN_CPU.
3175 */
3176 kfree(obj_priv->page_cpu_valid);
3177 obj_priv->page_cpu_valid = NULL;
3178 }
3179
3180 /**
3181 * Set the CPU read domain on a range of the object.
3182 *
3183 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3184 * not entirely valid. The page_cpu_valid member of the object flags which
3185 * pages have been flushed, and will be respected by
3186 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3187 * of the whole object.
3188 *
3189 * This function returns when the move is complete, including waiting on
3190 * flushes to occur.
3191 */
3192 static int
3193 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3194 uint64_t offset, uint64_t size)
3195 {
3196 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3197 uint32_t old_read_domains;
3198 int i, ret;
3199
3200 if (offset == 0 && size == obj->size)
3201 return i915_gem_object_set_to_cpu_domain(obj, 0);
3202
3203 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3204 if (ret != 0)
3205 return ret;
3206 i915_gem_object_flush_gtt_write_domain(obj);
3207
3208 /* If we're already fully in the CPU read domain, we're done. */
3209 if (obj_priv->page_cpu_valid == NULL &&
3210 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3211 return 0;
3212
3213 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3214 * newly adding I915_GEM_DOMAIN_CPU
3215 */
3216 if (obj_priv->page_cpu_valid == NULL) {
3217 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3218 GFP_KERNEL);
3219 if (obj_priv->page_cpu_valid == NULL)
3220 return -ENOMEM;
3221 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3222 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3223
3224 /* Flush the cache on any pages that are still invalid from the CPU's
3225 * perspective.
3226 */
3227 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3228 i++) {
3229 if (obj_priv->page_cpu_valid[i])
3230 continue;
3231
3232 drm_clflush_pages(obj_priv->pages + i, 1);
3233
3234 obj_priv->page_cpu_valid[i] = 1;
3235 }
3236
3237 /* It should now be out of any other write domains, and we can update
3238 * the domain values for our changes.
3239 */
3240 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3241
3242 old_read_domains = obj->read_domains;
3243 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3244
3245 trace_i915_gem_object_change_domain(obj,
3246 old_read_domains,
3247 obj->write_domain);
3248
3249 return 0;
3250 }
3251
3252 /**
3253 * Pin an object to the GTT and evaluate the relocations landing in it.
3254 */
3255 static int
3256 i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3257 struct drm_file *file_priv,
3258 struct drm_i915_gem_exec_object2 *entry)
3259 {
3260 struct drm_device *dev = obj->base.dev;
3261 drm_i915_private_t *dev_priv = dev->dev_private;
3262 struct drm_i915_gem_relocation_entry __user *user_relocs;
3263 struct drm_gem_object *target_obj = NULL;
3264 uint32_t target_handle = 0;
3265 int i, ret = 0;
3266
3267 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3268 for (i = 0; i < entry->relocation_count; i++) {
3269 struct drm_i915_gem_relocation_entry reloc;
3270 uint32_t target_offset;
3271
3272 if (__copy_from_user_inatomic(&reloc,
3273 user_relocs+i,
3274 sizeof(reloc))) {
3275 ret = -EFAULT;
3276 break;
3277 }
3278
3279 if (reloc.target_handle != target_handle) {
3280 drm_gem_object_unreference(target_obj);
3281
3282 target_obj = drm_gem_object_lookup(dev, file_priv,
3283 reloc.target_handle);
3284 if (target_obj == NULL) {
3285 ret = -ENOENT;
3286 break;
3287 }
3288
3289 target_handle = reloc.target_handle;
3290 }
3291 target_offset = to_intel_bo(target_obj)->gtt_offset;
3292
3293 #if WATCH_RELOC
3294 DRM_INFO("%s: obj %p offset %08x target %d "
3295 "read %08x write %08x gtt %08x "
3296 "presumed %08x delta %08x\n",
3297 __func__,
3298 obj,
3299 (int) reloc.offset,
3300 (int) reloc.target_handle,
3301 (int) reloc.read_domains,
3302 (int) reloc.write_domain,
3303 (int) target_offset,
3304 (int) reloc.presumed_offset,
3305 reloc.delta);
3306 #endif
3307
3308 /* The target buffer should have appeared before us in the
3309 * exec_object list, so it should have a GTT space bound by now.
3310 */
3311 if (target_offset == 0) {
3312 DRM_ERROR("No GTT space found for object %d\n",
3313 reloc.target_handle);
3314 ret = -EINVAL;
3315 break;
3316 }
3317
3318 /* Validate that the target is in a valid r/w GPU domain */
3319 if (reloc.write_domain & (reloc.write_domain - 1)) {
3320 DRM_ERROR("reloc with multiple write domains: "
3321 "obj %p target %d offset %d "
3322 "read %08x write %08x",
3323 obj, reloc.target_handle,
3324 (int) reloc.offset,
3325 reloc.read_domains,
3326 reloc.write_domain);
3327 ret = -EINVAL;
3328 break;
3329 }
3330 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3331 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3332 DRM_ERROR("reloc with read/write CPU domains: "
3333 "obj %p target %d offset %d "
3334 "read %08x write %08x",
3335 obj, reloc.target_handle,
3336 (int) reloc.offset,
3337 reloc.read_domains,
3338 reloc.write_domain);
3339 ret = -EINVAL;
3340 break;
3341 }
3342 if (reloc.write_domain && target_obj->pending_write_domain &&
3343 reloc.write_domain != target_obj->pending_write_domain) {
3344 DRM_ERROR("Write domain conflict: "
3345 "obj %p target %d offset %d "
3346 "new %08x old %08x\n",
3347 obj, reloc.target_handle,
3348 (int) reloc.offset,
3349 reloc.write_domain,
3350 target_obj->pending_write_domain);
3351 ret = -EINVAL;
3352 break;
3353 }
3354
3355 target_obj->pending_read_domains |= reloc.read_domains;
3356 target_obj->pending_write_domain |= reloc.write_domain;
3357
3358 /* If the relocation already has the right value in it, no
3359 * more work needs to be done.
3360 */
3361 if (target_offset == reloc.presumed_offset)
3362 continue;
3363
3364 /* Check that the relocation address is valid... */
3365 if (reloc.offset > obj->base.size - 4) {
3366 DRM_ERROR("Relocation beyond object bounds: "
3367 "obj %p target %d offset %d size %d.\n",
3368 obj, reloc.target_handle,
3369 (int) reloc.offset, (int) obj->base.size);
3370 ret = -EINVAL;
3371 break;
3372 }
3373 if (reloc.offset & 3) {
3374 DRM_ERROR("Relocation not 4-byte aligned: "
3375 "obj %p target %d offset %d.\n",
3376 obj, reloc.target_handle,
3377 (int) reloc.offset);
3378 ret = -EINVAL;
3379 break;
3380 }
3381
3382 /* and points to somewhere within the target object. */
3383 if (reloc.delta >= target_obj->size) {
3384 DRM_ERROR("Relocation beyond target object bounds: "
3385 "obj %p target %d delta %d size %d.\n",
3386 obj, reloc.target_handle,
3387 (int) reloc.delta, (int) target_obj->size);
3388 ret = -EINVAL;
3389 break;
3390 }
3391
3392 reloc.delta += target_offset;
3393 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3394 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3395 char *vaddr;
3396
3397 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3398 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3399 kunmap_atomic(vaddr);
3400 } else {
3401 uint32_t __iomem *reloc_entry;
3402 void __iomem *reloc_page;
3403
3404 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3405 if (ret)
3406 break;
3407
3408 /* Map the page containing the relocation we're going to perform. */
3409 reloc.offset += obj->gtt_offset;
3410 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3411 reloc.offset & PAGE_MASK);
3412 reloc_entry = (uint32_t __iomem *)
3413 (reloc_page + (reloc.offset & ~PAGE_MASK));
3414 iowrite32(reloc.delta, reloc_entry);
3415 io_mapping_unmap_atomic(reloc_page);
3416 }
3417
3418 /* and update the user's relocation entry */
3419 reloc.presumed_offset = target_offset;
3420 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3421 &reloc.presumed_offset,
3422 sizeof(reloc.presumed_offset))) {
3423 ret = -EFAULT;
3424 break;
3425 }
3426 }
3427
3428 drm_gem_object_unreference(target_obj);
3429 return ret;
3430 }
3431
3432 static int
3433 i915_gem_execbuffer_pin(struct drm_device *dev,
3434 struct drm_file *file,
3435 struct drm_gem_object **object_list,
3436 struct drm_i915_gem_exec_object2 *exec_list,
3437 int count)
3438 {
3439 struct drm_i915_private *dev_priv = dev->dev_private;
3440 int ret, i, retry;
3441
3442 /* attempt to pin all of the buffers into the GTT */
3443 for (retry = 0; retry < 2; retry++) {
3444 ret = 0;
3445 for (i = 0; i < count; i++) {
3446 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3447 struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
3448 bool need_fence =
3449 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3450 obj->tiling_mode != I915_TILING_NONE;
3451
3452 /* Check fence reg constraints and rebind if necessary */
3453 if (need_fence &&
3454 !i915_gem_object_fence_offset_ok(&obj->base,
3455 obj->tiling_mode)) {
3456 ret = i915_gem_object_unbind(&obj->base);
3457 if (ret)
3458 break;
3459 }
3460
3461 ret = i915_gem_object_pin(&obj->base, entry->alignment);
3462 if (ret)
3463 break;
3464
3465 /*
3466 * Pre-965 chips need a fence register set up in order
3467 * to properly handle blits to/from tiled surfaces.
3468 */
3469 if (need_fence) {
3470 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3471 if (ret) {
3472 i915_gem_object_unpin(&obj->base);
3473 break;
3474 }
3475
3476 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3477 }
3478
3479 entry->offset = obj->gtt_offset;
3480 }
3481
3482 while (i--)
3483 i915_gem_object_unpin(object_list[i]);
3484
3485 if (ret == 0)
3486 break;
3487
3488 if (ret != -ENOSPC || retry)
3489 return ret;
3490
3491 ret = i915_gem_evict_everything(dev);
3492 if (ret)
3493 return ret;
3494 }
3495
3496 return 0;
3497 }
3498
3499 static int
3500 i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3501 struct drm_file *file,
3502 struct intel_ring_buffer *ring,
3503 struct drm_gem_object **objects,
3504 int count)
3505 {
3506 struct drm_i915_private *dev_priv = dev->dev_private;
3507 int ret, i;
3508
3509 /* Zero the global flush/invalidate flags. These
3510 * will be modified as new domains are computed
3511 * for each object
3512 */
3513 dev->invalidate_domains = 0;
3514 dev->flush_domains = 0;
3515 dev_priv->mm.flush_rings = 0;
3516 for (i = 0; i < count; i++)
3517 i915_gem_object_set_to_gpu_domain(objects[i], ring);
3518
3519 if (dev->invalidate_domains | dev->flush_domains) {
3520 #if WATCH_EXEC
3521 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3522 __func__,
3523 dev->invalidate_domains,
3524 dev->flush_domains);
3525 #endif
3526 i915_gem_flush(dev, file,
3527 dev->invalidate_domains,
3528 dev->flush_domains,
3529 dev_priv->mm.flush_rings);
3530 }
3531
3532 for (i = 0; i < count; i++) {
3533 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3534 /* XXX replace with semaphores */
3535 if (obj->ring && ring != obj->ring) {
3536 ret = i915_gem_object_wait_rendering(&obj->base, true);
3537 if (ret)
3538 return ret;
3539 }
3540 }
3541
3542 return 0;
3543 }
3544
3545 /* Throttle our rendering by waiting until the ring has completed our requests
3546 * emitted over 20 msec ago.
3547 *
3548 * Note that if we were to use the current jiffies each time around the loop,
3549 * we wouldn't escape the function with any frames outstanding if the time to
3550 * render a frame was over 20ms.
3551 *
3552 * This should get us reasonable parallelism between CPU and GPU but also
3553 * relatively low latency when blocking on a particular request to finish.
3554 */
3555 static int
3556 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3557 {
3558 struct drm_i915_private *dev_priv = dev->dev_private;
3559 struct drm_i915_file_private *file_priv = file->driver_priv;
3560 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3561 struct drm_i915_gem_request *request;
3562 struct intel_ring_buffer *ring = NULL;
3563 u32 seqno = 0;
3564 int ret;
3565
3566 spin_lock(&file_priv->mm.lock);
3567 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3568 if (time_after_eq(request->emitted_jiffies, recent_enough))
3569 break;
3570
3571 ring = request->ring;
3572 seqno = request->seqno;
3573 }
3574 spin_unlock(&file_priv->mm.lock);
3575
3576 if (seqno == 0)
3577 return 0;
3578
3579 ret = 0;
3580 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3581 /* And wait for the seqno passing without holding any locks and
3582 * causing extra latency for others. This is safe as the irq
3583 * generation is designed to be run atomically and so is
3584 * lockless.
3585 */
3586 ring->user_irq_get(dev, ring);
3587 ret = wait_event_interruptible(ring->irq_queue,
3588 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3589 || atomic_read(&dev_priv->mm.wedged));
3590 ring->user_irq_put(dev, ring);
3591
3592 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3593 ret = -EIO;
3594 }
3595
3596 if (ret == 0)
3597 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3598
3599 return ret;
3600 }
3601
3602 static int
3603 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3604 uint64_t exec_offset)
3605 {
3606 uint32_t exec_start, exec_len;
3607
3608 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3609 exec_len = (uint32_t) exec->batch_len;
3610
3611 if ((exec_start | exec_len) & 0x7)
3612 return -EINVAL;
3613
3614 if (!exec_start)
3615 return -EINVAL;
3616
3617 return 0;
3618 }
3619
3620 static int
3621 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3622 int count)
3623 {
3624 int i;
3625
3626 for (i = 0; i < count; i++) {
3627 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3628 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3629
3630 if (!access_ok(VERIFY_READ, ptr, length))
3631 return -EFAULT;
3632
3633 /* we may also need to update the presumed offsets */
3634 if (!access_ok(VERIFY_WRITE, ptr, length))
3635 return -EFAULT;
3636
3637 if (fault_in_pages_readable(ptr, length))
3638 return -EFAULT;
3639 }
3640
3641 return 0;
3642 }
3643
3644 static int
3645 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3646 struct drm_file *file,
3647 struct drm_i915_gem_execbuffer2 *args,
3648 struct drm_i915_gem_exec_object2 *exec_list)
3649 {
3650 drm_i915_private_t *dev_priv = dev->dev_private;
3651 struct drm_gem_object **object_list = NULL;
3652 struct drm_gem_object *batch_obj;
3653 struct drm_i915_gem_object *obj_priv;
3654 struct drm_clip_rect *cliprects = NULL;
3655 struct drm_i915_gem_request *request = NULL;
3656 int ret, i, flips;
3657 uint64_t exec_offset;
3658
3659 struct intel_ring_buffer *ring = NULL;
3660
3661 ret = i915_gem_check_is_wedged(dev);
3662 if (ret)
3663 return ret;
3664
3665 ret = validate_exec_list(exec_list, args->buffer_count);
3666 if (ret)
3667 return ret;
3668
3669 #if WATCH_EXEC
3670 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3671 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3672 #endif
3673 switch (args->flags & I915_EXEC_RING_MASK) {
3674 case I915_EXEC_DEFAULT:
3675 case I915_EXEC_RENDER:
3676 ring = &dev_priv->render_ring;
3677 break;
3678 case I915_EXEC_BSD:
3679 if (!HAS_BSD(dev)) {
3680 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3681 return -EINVAL;
3682 }
3683 ring = &dev_priv->bsd_ring;
3684 break;
3685 case I915_EXEC_BLT:
3686 if (!HAS_BLT(dev)) {
3687 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3688 return -EINVAL;
3689 }
3690 ring = &dev_priv->blt_ring;
3691 break;
3692 default:
3693 DRM_ERROR("execbuf with unknown ring: %d\n",
3694 (int)(args->flags & I915_EXEC_RING_MASK));
3695 return -EINVAL;
3696 }
3697
3698 if (args->buffer_count < 1) {
3699 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3700 return -EINVAL;
3701 }
3702 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3703 if (object_list == NULL) {
3704 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3705 args->buffer_count);
3706 ret = -ENOMEM;
3707 goto pre_mutex_err;
3708 }
3709
3710 if (args->num_cliprects != 0) {
3711 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3712 GFP_KERNEL);
3713 if (cliprects == NULL) {
3714 ret = -ENOMEM;
3715 goto pre_mutex_err;
3716 }
3717
3718 ret = copy_from_user(cliprects,
3719 (struct drm_clip_rect __user *)
3720 (uintptr_t) args->cliprects_ptr,
3721 sizeof(*cliprects) * args->num_cliprects);
3722 if (ret != 0) {
3723 DRM_ERROR("copy %d cliprects failed: %d\n",
3724 args->num_cliprects, ret);
3725 ret = -EFAULT;
3726 goto pre_mutex_err;
3727 }
3728 }
3729
3730 request = kzalloc(sizeof(*request), GFP_KERNEL);
3731 if (request == NULL) {
3732 ret = -ENOMEM;
3733 goto pre_mutex_err;
3734 }
3735
3736 ret = i915_mutex_lock_interruptible(dev);
3737 if (ret)
3738 goto pre_mutex_err;
3739
3740 if (dev_priv->mm.suspended) {
3741 mutex_unlock(&dev->struct_mutex);
3742 ret = -EBUSY;
3743 goto pre_mutex_err;
3744 }
3745
3746 /* Look up object handles */
3747 for (i = 0; i < args->buffer_count; i++) {
3748 object_list[i] = drm_gem_object_lookup(dev, file,
3749 exec_list[i].handle);
3750 if (object_list[i] == NULL) {
3751 DRM_ERROR("Invalid object handle %d at index %d\n",
3752 exec_list[i].handle, i);
3753 /* prevent error path from reading uninitialized data */
3754 args->buffer_count = i + 1;
3755 ret = -ENOENT;
3756 goto err;
3757 }
3758
3759 obj_priv = to_intel_bo(object_list[i]);
3760 if (obj_priv->in_execbuffer) {
3761 DRM_ERROR("Object %p appears more than once in object list\n",
3762 object_list[i]);
3763 /* prevent error path from reading uninitialized data */
3764 args->buffer_count = i + 1;
3765 ret = -EINVAL;
3766 goto err;
3767 }
3768 obj_priv->in_execbuffer = true;
3769 }
3770
3771 /* Move the objects en-masse into the GTT, evicting if necessary. */
3772 ret = i915_gem_execbuffer_pin(dev, file,
3773 object_list, exec_list,
3774 args->buffer_count);
3775 if (ret)
3776 goto err;
3777
3778 /* The objects are in their final locations, apply the relocations. */
3779 for (i = 0; i < args->buffer_count; i++) {
3780 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3781 obj->base.pending_read_domains = 0;
3782 obj->base.pending_write_domain = 0;
3783 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3784 if (ret)
3785 goto err;
3786 }
3787
3788 /* Set the pending read domains for the batch buffer to COMMAND */
3789 batch_obj = object_list[args->buffer_count-1];
3790 if (batch_obj->pending_write_domain) {
3791 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3792 ret = -EINVAL;
3793 goto err;
3794 }
3795 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3796
3797 /* Sanity check the batch buffer */
3798 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3799 ret = i915_gem_check_execbuffer(args, exec_offset);
3800 if (ret != 0) {
3801 DRM_ERROR("execbuf with invalid offset/length\n");
3802 goto err;
3803 }
3804
3805 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
3806 object_list, args->buffer_count);
3807 if (ret)
3808 goto err;
3809
3810 for (i = 0; i < args->buffer_count; i++) {
3811 struct drm_gem_object *obj = object_list[i];
3812 uint32_t old_write_domain = obj->write_domain;
3813 obj->write_domain = obj->pending_write_domain;
3814 trace_i915_gem_object_change_domain(obj,
3815 obj->read_domains,
3816 old_write_domain);
3817 }
3818
3819 #if WATCH_COHERENCY
3820 for (i = 0; i < args->buffer_count; i++) {
3821 i915_gem_object_check_coherency(object_list[i],
3822 exec_list[i].handle);
3823 }
3824 #endif
3825
3826 #if WATCH_EXEC
3827 i915_gem_dump_object(batch_obj,
3828 args->batch_len,
3829 __func__,
3830 ~0);
3831 #endif
3832
3833 /* Check for any pending flips. As we only maintain a flip queue depth
3834 * of 1, we can simply insert a WAIT for the next display flip prior
3835 * to executing the batch and avoid stalling the CPU.
3836 */
3837 flips = 0;
3838 for (i = 0; i < args->buffer_count; i++) {
3839 if (object_list[i]->write_domain)
3840 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3841 }
3842 if (flips) {
3843 int plane, flip_mask;
3844
3845 for (plane = 0; flips >> plane; plane++) {
3846 if (((flips >> plane) & 1) == 0)
3847 continue;
3848
3849 if (plane)
3850 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3851 else
3852 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3853
3854 intel_ring_begin(dev, ring, 2);
3855 intel_ring_emit(dev, ring,
3856 MI_WAIT_FOR_EVENT | flip_mask);
3857 intel_ring_emit(dev, ring, MI_NOOP);
3858 intel_ring_advance(dev, ring);
3859 }
3860 }
3861
3862 /* Exec the batchbuffer */
3863 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3864 cliprects, exec_offset);
3865 if (ret) {
3866 DRM_ERROR("dispatch failed %d\n", ret);
3867 goto err;
3868 }
3869
3870 /*
3871 * Ensure that the commands in the batch buffer are
3872 * finished before the interrupt fires
3873 */
3874 i915_retire_commands(dev, ring);
3875
3876 for (i = 0; i < args->buffer_count; i++) {
3877 struct drm_gem_object *obj = object_list[i];
3878
3879 i915_gem_object_move_to_active(obj, ring);
3880 if (obj->write_domain)
3881 list_move_tail(&to_intel_bo(obj)->gpu_write_list,
3882 &ring->gpu_write_list);
3883 }
3884
3885 i915_add_request(dev, file, request, ring);
3886 request = NULL;
3887
3888 err:
3889 for (i = 0; i < args->buffer_count; i++) {
3890 if (object_list[i]) {
3891 obj_priv = to_intel_bo(object_list[i]);
3892 obj_priv->in_execbuffer = false;
3893 }
3894 drm_gem_object_unreference(object_list[i]);
3895 }
3896
3897 mutex_unlock(&dev->struct_mutex);
3898
3899 pre_mutex_err:
3900 drm_free_large(object_list);
3901 kfree(cliprects);
3902 kfree(request);
3903
3904 return ret;
3905 }
3906
3907 /*
3908 * Legacy execbuffer just creates an exec2 list from the original exec object
3909 * list array and passes it to the real function.
3910 */
3911 int
3912 i915_gem_execbuffer(struct drm_device *dev, void *data,
3913 struct drm_file *file_priv)
3914 {
3915 struct drm_i915_gem_execbuffer *args = data;
3916 struct drm_i915_gem_execbuffer2 exec2;
3917 struct drm_i915_gem_exec_object *exec_list = NULL;
3918 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3919 int ret, i;
3920
3921 #if WATCH_EXEC
3922 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3923 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3924 #endif
3925
3926 if (args->buffer_count < 1) {
3927 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3928 return -EINVAL;
3929 }
3930
3931 /* Copy in the exec list from userland */
3932 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3933 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3934 if (exec_list == NULL || exec2_list == NULL) {
3935 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3936 args->buffer_count);
3937 drm_free_large(exec_list);
3938 drm_free_large(exec2_list);
3939 return -ENOMEM;
3940 }
3941 ret = copy_from_user(exec_list,
3942 (struct drm_i915_relocation_entry __user *)
3943 (uintptr_t) args->buffers_ptr,
3944 sizeof(*exec_list) * args->buffer_count);
3945 if (ret != 0) {
3946 DRM_ERROR("copy %d exec entries failed %d\n",
3947 args->buffer_count, ret);
3948 drm_free_large(exec_list);
3949 drm_free_large(exec2_list);
3950 return -EFAULT;
3951 }
3952
3953 for (i = 0; i < args->buffer_count; i++) {
3954 exec2_list[i].handle = exec_list[i].handle;
3955 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3956 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3957 exec2_list[i].alignment = exec_list[i].alignment;
3958 exec2_list[i].offset = exec_list[i].offset;
3959 if (INTEL_INFO(dev)->gen < 4)
3960 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3961 else
3962 exec2_list[i].flags = 0;
3963 }
3964
3965 exec2.buffers_ptr = args->buffers_ptr;
3966 exec2.buffer_count = args->buffer_count;
3967 exec2.batch_start_offset = args->batch_start_offset;
3968 exec2.batch_len = args->batch_len;
3969 exec2.DR1 = args->DR1;
3970 exec2.DR4 = args->DR4;
3971 exec2.num_cliprects = args->num_cliprects;
3972 exec2.cliprects_ptr = args->cliprects_ptr;
3973 exec2.flags = I915_EXEC_RENDER;
3974
3975 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3976 if (!ret) {
3977 /* Copy the new buffer offsets back to the user's exec list. */
3978 for (i = 0; i < args->buffer_count; i++)
3979 exec_list[i].offset = exec2_list[i].offset;
3980 /* ... and back out to userspace */
3981 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3982 (uintptr_t) args->buffers_ptr,
3983 exec_list,
3984 sizeof(*exec_list) * args->buffer_count);
3985 if (ret) {
3986 ret = -EFAULT;
3987 DRM_ERROR("failed to copy %d exec entries "
3988 "back to user (%d)\n",
3989 args->buffer_count, ret);
3990 }
3991 }
3992
3993 drm_free_large(exec_list);
3994 drm_free_large(exec2_list);
3995 return ret;
3996 }
3997
3998 int
3999 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4000 struct drm_file *file_priv)
4001 {
4002 struct drm_i915_gem_execbuffer2 *args = data;
4003 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4004 int ret;
4005
4006 #if WATCH_EXEC
4007 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4008 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4009 #endif
4010
4011 if (args->buffer_count < 1) {
4012 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4013 return -EINVAL;
4014 }
4015
4016 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4017 if (exec2_list == NULL) {
4018 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4019 args->buffer_count);
4020 return -ENOMEM;
4021 }
4022 ret = copy_from_user(exec2_list,
4023 (struct drm_i915_relocation_entry __user *)
4024 (uintptr_t) args->buffers_ptr,
4025 sizeof(*exec2_list) * args->buffer_count);
4026 if (ret != 0) {
4027 DRM_ERROR("copy %d exec entries failed %d\n",
4028 args->buffer_count, ret);
4029 drm_free_large(exec2_list);
4030 return -EFAULT;
4031 }
4032
4033 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4034 if (!ret) {
4035 /* Copy the new buffer offsets back to the user's exec list. */
4036 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4037 (uintptr_t) args->buffers_ptr,
4038 exec2_list,
4039 sizeof(*exec2_list) * args->buffer_count);
4040 if (ret) {
4041 ret = -EFAULT;
4042 DRM_ERROR("failed to copy %d exec entries "
4043 "back to user (%d)\n",
4044 args->buffer_count, ret);
4045 }
4046 }
4047
4048 drm_free_large(exec2_list);
4049 return ret;
4050 }
4051
4052 int
4053 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4054 {
4055 struct drm_device *dev = obj->dev;
4056 struct drm_i915_private *dev_priv = dev->dev_private;
4057 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4058 int ret;
4059
4060 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4061 WARN_ON(i915_verify_lists(dev));
4062
4063 if (obj_priv->gtt_space != NULL) {
4064 if (alignment == 0)
4065 alignment = i915_gem_get_gtt_alignment(obj);
4066 if (obj_priv->gtt_offset & (alignment - 1)) {
4067 WARN(obj_priv->pin_count,
4068 "bo is already pinned with incorrect alignment: offset=%x, req.alignment=%x\n",
4069 obj_priv->gtt_offset, alignment);
4070 ret = i915_gem_object_unbind(obj);
4071 if (ret)
4072 return ret;
4073 }
4074 }
4075
4076 if (obj_priv->gtt_space == NULL) {
4077 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4078 if (ret)
4079 return ret;
4080 }
4081
4082 obj_priv->pin_count++;
4083
4084 /* If the object is not active and not pending a flush,
4085 * remove it from the inactive list
4086 */
4087 if (obj_priv->pin_count == 1) {
4088 i915_gem_info_add_pin(dev_priv, obj->size);
4089 if (!obj_priv->active)
4090 list_move_tail(&obj_priv->mm_list,
4091 &dev_priv->mm.pinned_list);
4092 }
4093
4094 WARN_ON(i915_verify_lists(dev));
4095 return 0;
4096 }
4097
4098 void
4099 i915_gem_object_unpin(struct drm_gem_object *obj)
4100 {
4101 struct drm_device *dev = obj->dev;
4102 drm_i915_private_t *dev_priv = dev->dev_private;
4103 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4104
4105 WARN_ON(i915_verify_lists(dev));
4106 obj_priv->pin_count--;
4107 BUG_ON(obj_priv->pin_count < 0);
4108 BUG_ON(obj_priv->gtt_space == NULL);
4109
4110 /* If the object is no longer pinned, and is
4111 * neither active nor being flushed, then stick it on
4112 * the inactive list
4113 */
4114 if (obj_priv->pin_count == 0) {
4115 if (!obj_priv->active)
4116 list_move_tail(&obj_priv->mm_list,
4117 &dev_priv->mm.inactive_list);
4118 i915_gem_info_remove_pin(dev_priv, obj->size);
4119 }
4120 WARN_ON(i915_verify_lists(dev));
4121 }
4122
4123 int
4124 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4125 struct drm_file *file_priv)
4126 {
4127 struct drm_i915_gem_pin *args = data;
4128 struct drm_gem_object *obj;
4129 struct drm_i915_gem_object *obj_priv;
4130 int ret;
4131
4132 ret = i915_mutex_lock_interruptible(dev);
4133 if (ret)
4134 return ret;
4135
4136 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4137 if (obj == NULL) {
4138 ret = -ENOENT;
4139 goto unlock;
4140 }
4141 obj_priv = to_intel_bo(obj);
4142
4143 if (obj_priv->madv != I915_MADV_WILLNEED) {
4144 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4145 ret = -EINVAL;
4146 goto out;
4147 }
4148
4149 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4150 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4151 args->handle);
4152 ret = -EINVAL;
4153 goto out;
4154 }
4155
4156 obj_priv->user_pin_count++;
4157 obj_priv->pin_filp = file_priv;
4158 if (obj_priv->user_pin_count == 1) {
4159 ret = i915_gem_object_pin(obj, args->alignment);
4160 if (ret)
4161 goto out;
4162 }
4163
4164 /* XXX - flush the CPU caches for pinned objects
4165 * as the X server doesn't manage domains yet
4166 */
4167 i915_gem_object_flush_cpu_write_domain(obj);
4168 args->offset = obj_priv->gtt_offset;
4169 out:
4170 drm_gem_object_unreference(obj);
4171 unlock:
4172 mutex_unlock(&dev->struct_mutex);
4173 return ret;
4174 }
4175
4176 int
4177 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4178 struct drm_file *file_priv)
4179 {
4180 struct drm_i915_gem_pin *args = data;
4181 struct drm_gem_object *obj;
4182 struct drm_i915_gem_object *obj_priv;
4183 int ret;
4184
4185 ret = i915_mutex_lock_interruptible(dev);
4186 if (ret)
4187 return ret;
4188
4189 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4190 if (obj == NULL) {
4191 ret = -ENOENT;
4192 goto unlock;
4193 }
4194 obj_priv = to_intel_bo(obj);
4195
4196 if (obj_priv->pin_filp != file_priv) {
4197 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4198 args->handle);
4199 ret = -EINVAL;
4200 goto out;
4201 }
4202 obj_priv->user_pin_count--;
4203 if (obj_priv->user_pin_count == 0) {
4204 obj_priv->pin_filp = NULL;
4205 i915_gem_object_unpin(obj);
4206 }
4207
4208 out:
4209 drm_gem_object_unreference(obj);
4210 unlock:
4211 mutex_unlock(&dev->struct_mutex);
4212 return ret;
4213 }
4214
4215 int
4216 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4217 struct drm_file *file_priv)
4218 {
4219 struct drm_i915_gem_busy *args = data;
4220 struct drm_gem_object *obj;
4221 struct drm_i915_gem_object *obj_priv;
4222 int ret;
4223
4224 ret = i915_mutex_lock_interruptible(dev);
4225 if (ret)
4226 return ret;
4227
4228 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4229 if (obj == NULL) {
4230 ret = -ENOENT;
4231 goto unlock;
4232 }
4233 obj_priv = to_intel_bo(obj);
4234
4235 /* Count all active objects as busy, even if they are currently not used
4236 * by the gpu. Users of this interface expect objects to eventually
4237 * become non-busy without any further actions, therefore emit any
4238 * necessary flushes here.
4239 */
4240 args->busy = obj_priv->active;
4241 if (args->busy) {
4242 /* Unconditionally flush objects, even when the gpu still uses this
4243 * object. Userspace calling this function indicates that it wants to
4244 * use this buffer rather sooner than later, so issuing the required
4245 * flush earlier is beneficial.
4246 */
4247 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4248 i915_gem_flush_ring(dev, file_priv,
4249 obj_priv->ring,
4250 0, obj->write_domain);
4251
4252 /* Update the active list for the hardware's current position.
4253 * Otherwise this only updates on a delayed timer or when irqs
4254 * are actually unmasked, and our working set ends up being
4255 * larger than required.
4256 */
4257 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4258
4259 args->busy = obj_priv->active;
4260 }
4261
4262 drm_gem_object_unreference(obj);
4263 unlock:
4264 mutex_unlock(&dev->struct_mutex);
4265 return ret;
4266 }
4267
4268 int
4269 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4270 struct drm_file *file_priv)
4271 {
4272 return i915_gem_ring_throttle(dev, file_priv);
4273 }
4274
4275 int
4276 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4277 struct drm_file *file_priv)
4278 {
4279 struct drm_i915_gem_madvise *args = data;
4280 struct drm_gem_object *obj;
4281 struct drm_i915_gem_object *obj_priv;
4282 int ret;
4283
4284 switch (args->madv) {
4285 case I915_MADV_DONTNEED:
4286 case I915_MADV_WILLNEED:
4287 break;
4288 default:
4289 return -EINVAL;
4290 }
4291
4292 ret = i915_mutex_lock_interruptible(dev);
4293 if (ret)
4294 return ret;
4295
4296 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4297 if (obj == NULL) {
4298 ret = -ENOENT;
4299 goto unlock;
4300 }
4301 obj_priv = to_intel_bo(obj);
4302
4303 if (obj_priv->pin_count) {
4304 ret = -EINVAL;
4305 goto out;
4306 }
4307
4308 if (obj_priv->madv != __I915_MADV_PURGED)
4309 obj_priv->madv = args->madv;
4310
4311 /* if the object is no longer bound, discard its backing storage */
4312 if (i915_gem_object_is_purgeable(obj_priv) &&
4313 obj_priv->gtt_space == NULL)
4314 i915_gem_object_truncate(obj);
4315
4316 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4317
4318 out:
4319 drm_gem_object_unreference(obj);
4320 unlock:
4321 mutex_unlock(&dev->struct_mutex);
4322 return ret;
4323 }
4324
4325 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4326 size_t size)
4327 {
4328 struct drm_i915_private *dev_priv = dev->dev_private;
4329 struct drm_i915_gem_object *obj;
4330
4331 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4332 if (obj == NULL)
4333 return NULL;
4334
4335 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4336 kfree(obj);
4337 return NULL;
4338 }
4339
4340 i915_gem_info_add_obj(dev_priv, size);
4341
4342 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4343 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4344
4345 obj->agp_type = AGP_USER_MEMORY;
4346 obj->base.driver_private = NULL;
4347 obj->fence_reg = I915_FENCE_REG_NONE;
4348 INIT_LIST_HEAD(&obj->mm_list);
4349 INIT_LIST_HEAD(&obj->ring_list);
4350 INIT_LIST_HEAD(&obj->gpu_write_list);
4351 obj->madv = I915_MADV_WILLNEED;
4352
4353 return &obj->base;
4354 }
4355
4356 int i915_gem_init_object(struct drm_gem_object *obj)
4357 {
4358 BUG();
4359
4360 return 0;
4361 }
4362
4363 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4364 {
4365 struct drm_device *dev = obj->dev;
4366 drm_i915_private_t *dev_priv = dev->dev_private;
4367 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4368 int ret;
4369
4370 ret = i915_gem_object_unbind(obj);
4371 if (ret == -ERESTARTSYS) {
4372 list_move(&obj_priv->mm_list,
4373 &dev_priv->mm.deferred_free_list);
4374 return;
4375 }
4376
4377 if (obj_priv->mmap_offset)
4378 i915_gem_free_mmap_offset(obj);
4379
4380 drm_gem_object_release(obj);
4381 i915_gem_info_remove_obj(dev_priv, obj->size);
4382
4383 kfree(obj_priv->page_cpu_valid);
4384 kfree(obj_priv->bit_17);
4385 kfree(obj_priv);
4386 }
4387
4388 void i915_gem_free_object(struct drm_gem_object *obj)
4389 {
4390 struct drm_device *dev = obj->dev;
4391 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4392
4393 trace_i915_gem_object_destroy(obj);
4394
4395 while (obj_priv->pin_count > 0)
4396 i915_gem_object_unpin(obj);
4397
4398 if (obj_priv->phys_obj)
4399 i915_gem_detach_phys_object(dev, obj);
4400
4401 i915_gem_free_object_tail(obj);
4402 }
4403
4404 int
4405 i915_gem_idle(struct drm_device *dev)
4406 {
4407 drm_i915_private_t *dev_priv = dev->dev_private;
4408 int ret;
4409
4410 mutex_lock(&dev->struct_mutex);
4411
4412 if (dev_priv->mm.suspended) {
4413 mutex_unlock(&dev->struct_mutex);
4414 return 0;
4415 }
4416
4417 ret = i915_gpu_idle(dev);
4418 if (ret) {
4419 mutex_unlock(&dev->struct_mutex);
4420 return ret;
4421 }
4422
4423 /* Under UMS, be paranoid and evict. */
4424 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4425 ret = i915_gem_evict_inactive(dev);
4426 if (ret) {
4427 mutex_unlock(&dev->struct_mutex);
4428 return ret;
4429 }
4430 }
4431
4432 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4433 * We need to replace this with a semaphore, or something.
4434 * And not confound mm.suspended!
4435 */
4436 dev_priv->mm.suspended = 1;
4437 del_timer_sync(&dev_priv->hangcheck_timer);
4438
4439 i915_kernel_lost_context(dev);
4440 i915_gem_cleanup_ringbuffer(dev);
4441
4442 mutex_unlock(&dev->struct_mutex);
4443
4444 /* Cancel the retire work handler, which should be idle now. */
4445 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4446
4447 return 0;
4448 }
4449
4450 /*
4451 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4452 * over cache flushing.
4453 */
4454 static int
4455 i915_gem_init_pipe_control(struct drm_device *dev)
4456 {
4457 drm_i915_private_t *dev_priv = dev->dev_private;
4458 struct drm_gem_object *obj;
4459 struct drm_i915_gem_object *obj_priv;
4460 int ret;
4461
4462 obj = i915_gem_alloc_object(dev, 4096);
4463 if (obj == NULL) {
4464 DRM_ERROR("Failed to allocate seqno page\n");
4465 ret = -ENOMEM;
4466 goto err;
4467 }
4468 obj_priv = to_intel_bo(obj);
4469 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4470
4471 ret = i915_gem_object_pin(obj, 4096);
4472 if (ret)
4473 goto err_unref;
4474
4475 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4476 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4477 if (dev_priv->seqno_page == NULL)
4478 goto err_unpin;
4479
4480 dev_priv->seqno_obj = obj;
4481 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4482
4483 return 0;
4484
4485 err_unpin:
4486 i915_gem_object_unpin(obj);
4487 err_unref:
4488 drm_gem_object_unreference(obj);
4489 err:
4490 return ret;
4491 }
4492
4493
4494 static void
4495 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4496 {
4497 drm_i915_private_t *dev_priv = dev->dev_private;
4498 struct drm_gem_object *obj;
4499 struct drm_i915_gem_object *obj_priv;
4500
4501 obj = dev_priv->seqno_obj;
4502 obj_priv = to_intel_bo(obj);
4503 kunmap(obj_priv->pages[0]);
4504 i915_gem_object_unpin(obj);
4505 drm_gem_object_unreference(obj);
4506 dev_priv->seqno_obj = NULL;
4507
4508 dev_priv->seqno_page = NULL;
4509 }
4510
4511 int
4512 i915_gem_init_ringbuffer(struct drm_device *dev)
4513 {
4514 drm_i915_private_t *dev_priv = dev->dev_private;
4515 int ret;
4516
4517 if (HAS_PIPE_CONTROL(dev)) {
4518 ret = i915_gem_init_pipe_control(dev);
4519 if (ret)
4520 return ret;
4521 }
4522
4523 ret = intel_init_render_ring_buffer(dev);
4524 if (ret)
4525 goto cleanup_pipe_control;
4526
4527 if (HAS_BSD(dev)) {
4528 ret = intel_init_bsd_ring_buffer(dev);
4529 if (ret)
4530 goto cleanup_render_ring;
4531 }
4532
4533 if (HAS_BLT(dev)) {
4534 ret = intel_init_blt_ring_buffer(dev);
4535 if (ret)
4536 goto cleanup_bsd_ring;
4537 }
4538
4539 dev_priv->next_seqno = 1;
4540
4541 return 0;
4542
4543 cleanup_bsd_ring:
4544 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4545 cleanup_render_ring:
4546 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4547 cleanup_pipe_control:
4548 if (HAS_PIPE_CONTROL(dev))
4549 i915_gem_cleanup_pipe_control(dev);
4550 return ret;
4551 }
4552
4553 void
4554 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4555 {
4556 drm_i915_private_t *dev_priv = dev->dev_private;
4557
4558 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4559 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4560 intel_cleanup_ring_buffer(dev, &dev_priv->blt_ring);
4561 if (HAS_PIPE_CONTROL(dev))
4562 i915_gem_cleanup_pipe_control(dev);
4563 }
4564
4565 int
4566 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4567 struct drm_file *file_priv)
4568 {
4569 drm_i915_private_t *dev_priv = dev->dev_private;
4570 int ret;
4571
4572 if (drm_core_check_feature(dev, DRIVER_MODESET))
4573 return 0;
4574
4575 if (atomic_read(&dev_priv->mm.wedged)) {
4576 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4577 atomic_set(&dev_priv->mm.wedged, 0);
4578 }
4579
4580 mutex_lock(&dev->struct_mutex);
4581 dev_priv->mm.suspended = 0;
4582
4583 ret = i915_gem_init_ringbuffer(dev);
4584 if (ret != 0) {
4585 mutex_unlock(&dev->struct_mutex);
4586 return ret;
4587 }
4588
4589 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4590 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4591 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4592 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4593 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4594 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4595 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4596 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4597 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4598 mutex_unlock(&dev->struct_mutex);
4599
4600 ret = drm_irq_install(dev);
4601 if (ret)
4602 goto cleanup_ringbuffer;
4603
4604 return 0;
4605
4606 cleanup_ringbuffer:
4607 mutex_lock(&dev->struct_mutex);
4608 i915_gem_cleanup_ringbuffer(dev);
4609 dev_priv->mm.suspended = 1;
4610 mutex_unlock(&dev->struct_mutex);
4611
4612 return ret;
4613 }
4614
4615 int
4616 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4617 struct drm_file *file_priv)
4618 {
4619 if (drm_core_check_feature(dev, DRIVER_MODESET))
4620 return 0;
4621
4622 drm_irq_uninstall(dev);
4623 return i915_gem_idle(dev);
4624 }
4625
4626 void
4627 i915_gem_lastclose(struct drm_device *dev)
4628 {
4629 int ret;
4630
4631 if (drm_core_check_feature(dev, DRIVER_MODESET))
4632 return;
4633
4634 ret = i915_gem_idle(dev);
4635 if (ret)
4636 DRM_ERROR("failed to idle hardware: %d\n", ret);
4637 }
4638
4639 static void
4640 init_ring_lists(struct intel_ring_buffer *ring)
4641 {
4642 INIT_LIST_HEAD(&ring->active_list);
4643 INIT_LIST_HEAD(&ring->request_list);
4644 INIT_LIST_HEAD(&ring->gpu_write_list);
4645 }
4646
4647 void
4648 i915_gem_load(struct drm_device *dev)
4649 {
4650 int i;
4651 drm_i915_private_t *dev_priv = dev->dev_private;
4652
4653 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4654 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4655 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4656 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4657 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4658 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4659 init_ring_lists(&dev_priv->render_ring);
4660 init_ring_lists(&dev_priv->bsd_ring);
4661 init_ring_lists(&dev_priv->blt_ring);
4662 for (i = 0; i < 16; i++)
4663 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4664 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4665 i915_gem_retire_work_handler);
4666 init_completion(&dev_priv->error_completion);
4667 spin_lock(&shrink_list_lock);
4668 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4669 spin_unlock(&shrink_list_lock);
4670
4671 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4672 if (IS_GEN3(dev)) {
4673 u32 tmp = I915_READ(MI_ARB_STATE);
4674 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4675 /* arb state is a masked write, so set bit + bit in mask */
4676 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4677 I915_WRITE(MI_ARB_STATE, tmp);
4678 }
4679 }
4680
4681 /* Old X drivers will take 0-2 for front, back, depth buffers */
4682 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4683 dev_priv->fence_reg_start = 3;
4684
4685 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4686 dev_priv->num_fence_regs = 16;
4687 else
4688 dev_priv->num_fence_regs = 8;
4689
4690 /* Initialize fence registers to zero */
4691 switch (INTEL_INFO(dev)->gen) {
4692 case 6:
4693 for (i = 0; i < 16; i++)
4694 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4695 break;
4696 case 5:
4697 case 4:
4698 for (i = 0; i < 16; i++)
4699 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4700 break;
4701 case 3:
4702 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4703 for (i = 0; i < 8; i++)
4704 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4705 case 2:
4706 for (i = 0; i < 8; i++)
4707 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4708 break;
4709 }
4710 i915_gem_detect_bit_6_swizzle(dev);
4711 init_waitqueue_head(&dev_priv->pending_flip_queue);
4712 }
4713
4714 /*
4715 * Create a physically contiguous memory object for this object
4716 * e.g. for cursor + overlay regs
4717 */
4718 static int i915_gem_init_phys_object(struct drm_device *dev,
4719 int id, int size, int align)
4720 {
4721 drm_i915_private_t *dev_priv = dev->dev_private;
4722 struct drm_i915_gem_phys_object *phys_obj;
4723 int ret;
4724
4725 if (dev_priv->mm.phys_objs[id - 1] || !size)
4726 return 0;
4727
4728 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4729 if (!phys_obj)
4730 return -ENOMEM;
4731
4732 phys_obj->id = id;
4733
4734 phys_obj->handle = drm_pci_alloc(dev, size, align);
4735 if (!phys_obj->handle) {
4736 ret = -ENOMEM;
4737 goto kfree_obj;
4738 }
4739 #ifdef CONFIG_X86
4740 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4741 #endif
4742
4743 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4744
4745 return 0;
4746 kfree_obj:
4747 kfree(phys_obj);
4748 return ret;
4749 }
4750
4751 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4752 {
4753 drm_i915_private_t *dev_priv = dev->dev_private;
4754 struct drm_i915_gem_phys_object *phys_obj;
4755
4756 if (!dev_priv->mm.phys_objs[id - 1])
4757 return;
4758
4759 phys_obj = dev_priv->mm.phys_objs[id - 1];
4760 if (phys_obj->cur_obj) {
4761 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4762 }
4763
4764 #ifdef CONFIG_X86
4765 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4766 #endif
4767 drm_pci_free(dev, phys_obj->handle);
4768 kfree(phys_obj);
4769 dev_priv->mm.phys_objs[id - 1] = NULL;
4770 }
4771
4772 void i915_gem_free_all_phys_object(struct drm_device *dev)
4773 {
4774 int i;
4775
4776 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4777 i915_gem_free_phys_object(dev, i);
4778 }
4779
4780 void i915_gem_detach_phys_object(struct drm_device *dev,
4781 struct drm_gem_object *obj)
4782 {
4783 struct drm_i915_gem_object *obj_priv;
4784 int i;
4785 int ret;
4786 int page_count;
4787
4788 obj_priv = to_intel_bo(obj);
4789 if (!obj_priv->phys_obj)
4790 return;
4791
4792 ret = i915_gem_object_get_pages(obj, 0);
4793 if (ret)
4794 goto out;
4795
4796 page_count = obj->size / PAGE_SIZE;
4797
4798 for (i = 0; i < page_count; i++) {
4799 char *dst = kmap_atomic(obj_priv->pages[i]);
4800 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4801
4802 memcpy(dst, src, PAGE_SIZE);
4803 kunmap_atomic(dst);
4804 }
4805 drm_clflush_pages(obj_priv->pages, page_count);
4806 drm_agp_chipset_flush(dev);
4807
4808 i915_gem_object_put_pages(obj);
4809 out:
4810 obj_priv->phys_obj->cur_obj = NULL;
4811 obj_priv->phys_obj = NULL;
4812 }
4813
4814 int
4815 i915_gem_attach_phys_object(struct drm_device *dev,
4816 struct drm_gem_object *obj,
4817 int id,
4818 int align)
4819 {
4820 drm_i915_private_t *dev_priv = dev->dev_private;
4821 struct drm_i915_gem_object *obj_priv;
4822 int ret = 0;
4823 int page_count;
4824 int i;
4825
4826 if (id > I915_MAX_PHYS_OBJECT)
4827 return -EINVAL;
4828
4829 obj_priv = to_intel_bo(obj);
4830
4831 if (obj_priv->phys_obj) {
4832 if (obj_priv->phys_obj->id == id)
4833 return 0;
4834 i915_gem_detach_phys_object(dev, obj);
4835 }
4836
4837 /* create a new object */
4838 if (!dev_priv->mm.phys_objs[id - 1]) {
4839 ret = i915_gem_init_phys_object(dev, id,
4840 obj->size, align);
4841 if (ret) {
4842 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4843 goto out;
4844 }
4845 }
4846
4847 /* bind to the object */
4848 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4849 obj_priv->phys_obj->cur_obj = obj;
4850
4851 ret = i915_gem_object_get_pages(obj, 0);
4852 if (ret) {
4853 DRM_ERROR("failed to get page list\n");
4854 goto out;
4855 }
4856
4857 page_count = obj->size / PAGE_SIZE;
4858
4859 for (i = 0; i < page_count; i++) {
4860 char *src = kmap_atomic(obj_priv->pages[i]);
4861 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4862
4863 memcpy(dst, src, PAGE_SIZE);
4864 kunmap_atomic(src);
4865 }
4866
4867 i915_gem_object_put_pages(obj);
4868
4869 return 0;
4870 out:
4871 return ret;
4872 }
4873
4874 static int
4875 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4876 struct drm_i915_gem_pwrite *args,
4877 struct drm_file *file_priv)
4878 {
4879 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4880 void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
4881 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4882
4883 DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
4884
4885 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4886 unsigned long unwritten;
4887
4888 /* The physical object once assigned is fixed for the lifetime
4889 * of the obj, so we can safely drop the lock and continue
4890 * to access vaddr.
4891 */
4892 mutex_unlock(&dev->struct_mutex);
4893 unwritten = copy_from_user(vaddr, user_data, args->size);
4894 mutex_lock(&dev->struct_mutex);
4895 if (unwritten)
4896 return -EFAULT;
4897 }
4898
4899 drm_agp_chipset_flush(dev);
4900 return 0;
4901 }
4902
4903 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4904 {
4905 struct drm_i915_file_private *file_priv = file->driver_priv;
4906
4907 /* Clean up our request list when the client is going away, so that
4908 * later retire_requests won't dereference our soon-to-be-gone
4909 * file_priv.
4910 */
4911 spin_lock(&file_priv->mm.lock);
4912 while (!list_empty(&file_priv->mm.request_list)) {
4913 struct drm_i915_gem_request *request;
4914
4915 request = list_first_entry(&file_priv->mm.request_list,
4916 struct drm_i915_gem_request,
4917 client_list);
4918 list_del(&request->client_list);
4919 request->file_priv = NULL;
4920 }
4921 spin_unlock(&file_priv->mm.lock);
4922 }
4923
4924 static int
4925 i915_gpu_is_active(struct drm_device *dev)
4926 {
4927 drm_i915_private_t *dev_priv = dev->dev_private;
4928 int lists_empty;
4929
4930 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4931 list_empty(&dev_priv->mm.active_list);
4932
4933 return !lists_empty;
4934 }
4935
4936 static int
4937 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4938 {
4939 drm_i915_private_t *dev_priv, *next_dev;
4940 struct drm_i915_gem_object *obj_priv, *next_obj;
4941 int cnt = 0;
4942 int would_deadlock = 1;
4943
4944 /* "fast-path" to count number of available objects */
4945 if (nr_to_scan == 0) {
4946 spin_lock(&shrink_list_lock);
4947 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4948 struct drm_device *dev = dev_priv->dev;
4949
4950 if (mutex_trylock(&dev->struct_mutex)) {
4951 list_for_each_entry(obj_priv,
4952 &dev_priv->mm.inactive_list,
4953 mm_list)
4954 cnt++;
4955 mutex_unlock(&dev->struct_mutex);
4956 }
4957 }
4958 spin_unlock(&shrink_list_lock);
4959
4960 return (cnt / 100) * sysctl_vfs_cache_pressure;
4961 }
4962
4963 spin_lock(&shrink_list_lock);
4964
4965 rescan:
4966 /* first scan for clean buffers */
4967 list_for_each_entry_safe(dev_priv, next_dev,
4968 &shrink_list, mm.shrink_list) {
4969 struct drm_device *dev = dev_priv->dev;
4970
4971 if (! mutex_trylock(&dev->struct_mutex))
4972 continue;
4973
4974 spin_unlock(&shrink_list_lock);
4975 i915_gem_retire_requests(dev);
4976
4977 list_for_each_entry_safe(obj_priv, next_obj,
4978 &dev_priv->mm.inactive_list,
4979 mm_list) {
4980 if (i915_gem_object_is_purgeable(obj_priv)) {
4981 i915_gem_object_unbind(&obj_priv->base);
4982 if (--nr_to_scan <= 0)
4983 break;
4984 }
4985 }
4986
4987 spin_lock(&shrink_list_lock);
4988 mutex_unlock(&dev->struct_mutex);
4989
4990 would_deadlock = 0;
4991
4992 if (nr_to_scan <= 0)
4993 break;
4994 }
4995
4996 /* second pass, evict/count anything still on the inactive list */
4997 list_for_each_entry_safe(dev_priv, next_dev,
4998 &shrink_list, mm.shrink_list) {
4999 struct drm_device *dev = dev_priv->dev;
5000
5001 if (! mutex_trylock(&dev->struct_mutex))
5002 continue;
5003
5004 spin_unlock(&shrink_list_lock);
5005
5006 list_for_each_entry_safe(obj_priv, next_obj,
5007 &dev_priv->mm.inactive_list,
5008 mm_list) {
5009 if (nr_to_scan > 0) {
5010 i915_gem_object_unbind(&obj_priv->base);
5011 nr_to_scan--;
5012 } else
5013 cnt++;
5014 }
5015
5016 spin_lock(&shrink_list_lock);
5017 mutex_unlock(&dev->struct_mutex);
5018
5019 would_deadlock = 0;
5020 }
5021
5022 if (nr_to_scan) {
5023 int active = 0;
5024
5025 /*
5026 * We are desperate for pages, so as a last resort, wait
5027 * for the GPU to finish and discard whatever we can.
5028 * This has a dramatic impact to reduce the number of
5029 * OOM-killer events whilst running the GPU aggressively.
5030 */
5031 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5032 struct drm_device *dev = dev_priv->dev;
5033
5034 if (!mutex_trylock(&dev->struct_mutex))
5035 continue;
5036
5037 spin_unlock(&shrink_list_lock);
5038
5039 if (i915_gpu_is_active(dev)) {
5040 i915_gpu_idle(dev);
5041 active++;
5042 }
5043
5044 spin_lock(&shrink_list_lock);
5045 mutex_unlock(&dev->struct_mutex);
5046 }
5047
5048 if (active)
5049 goto rescan;
5050 }
5051
5052 spin_unlock(&shrink_list_lock);
5053
5054 if (would_deadlock)
5055 return -1;
5056 else if (cnt > 0)
5057 return (cnt / 100) * sysctl_vfs_cache_pressure;
5058 else
5059 return 0;
5060 }
5061
5062 static struct shrinker shrinker = {
5063 .shrink = i915_gem_shrink,
5064 .seeks = DEFAULT_SEEKS,
5065 };
5066
5067 __init void
5068 i915_gem_shrinker_init(void)
5069 {
5070 register_shrinker(&shrinker);
5071 }
5072
5073 __exit void
5074 i915_gem_shrinker_exit(void)
5075 {
5076 unregister_shrinker(&shrinker);
5077 }
This page took 0.130646 seconds and 6 git commands to generate.