Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->slab, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521
522 i915_gem_object_retire(obj);
523 }
524
525 ret = i915_gem_object_get_pages(obj);
526 if (ret)
527 return ret;
528
529 i915_gem_object_pin_pages(obj);
530
531 return ret;
532 }
533
534 /* Per-page copy function for the shmem pread fastpath.
535 * Flushes invalid cachelines before reading the target if
536 * needs_clflush is set. */
537 static int
538 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539 char __user *user_data,
540 bool page_do_bit17_swizzling, bool needs_clflush)
541 {
542 char *vaddr;
543 int ret;
544
545 if (unlikely(page_do_bit17_swizzling))
546 return -EINVAL;
547
548 vaddr = kmap_atomic(page);
549 if (needs_clflush)
550 drm_clflush_virt_range(vaddr + shmem_page_offset,
551 page_length);
552 ret = __copy_to_user_inatomic(user_data,
553 vaddr + shmem_page_offset,
554 page_length);
555 kunmap_atomic(vaddr);
556
557 return ret ? -EFAULT : 0;
558 }
559
560 static void
561 shmem_clflush_swizzled_range(char *addr, unsigned long length,
562 bool swizzled)
563 {
564 if (unlikely(swizzled)) {
565 unsigned long start = (unsigned long) addr;
566 unsigned long end = (unsigned long) addr + length;
567
568 /* For swizzling simply ensure that we always flush both
569 * channels. Lame, but simple and it works. Swizzled
570 * pwrite/pread is far from a hotpath - current userspace
571 * doesn't use it at all. */
572 start = round_down(start, 128);
573 end = round_up(end, 128);
574
575 drm_clflush_virt_range((void *)start, end - start);
576 } else {
577 drm_clflush_virt_range(addr, length);
578 }
579
580 }
581
582 /* Only difference to the fast-path function is that this can handle bit17
583 * and uses non-atomic copy and kmap functions. */
584 static int
585 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586 char __user *user_data,
587 bool page_do_bit17_swizzling, bool needs_clflush)
588 {
589 char *vaddr;
590 int ret;
591
592 vaddr = kmap(page);
593 if (needs_clflush)
594 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595 page_length,
596 page_do_bit17_swizzling);
597
598 if (page_do_bit17_swizzling)
599 ret = __copy_to_user_swizzled(user_data,
600 vaddr, shmem_page_offset,
601 page_length);
602 else
603 ret = __copy_to_user(user_data,
604 vaddr + shmem_page_offset,
605 page_length);
606 kunmap(page);
607
608 return ret ? - EFAULT : 0;
609 }
610
611 static int
612 i915_gem_shmem_pread(struct drm_device *dev,
613 struct drm_i915_gem_object *obj,
614 struct drm_i915_gem_pread *args,
615 struct drm_file *file)
616 {
617 char __user *user_data;
618 ssize_t remain;
619 loff_t offset;
620 int shmem_page_offset, page_length, ret = 0;
621 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622 int prefaulted = 0;
623 int needs_clflush = 0;
624 struct sg_page_iter sg_iter;
625
626 user_data = to_user_ptr(args->data_ptr);
627 remain = args->size;
628
629 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630
631 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 if (ret)
633 return ret;
634
635 offset = args->offset;
636
637 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638 offset >> PAGE_SHIFT) {
639 struct page *page = sg_page_iter_page(&sg_iter);
640
641 if (remain <= 0)
642 break;
643
644 /* Operation in this page
645 *
646 * shmem_page_offset = offset within page in shmem file
647 * page_length = bytes to copy for this page
648 */
649 shmem_page_offset = offset_in_page(offset);
650 page_length = remain;
651 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652 page_length = PAGE_SIZE - shmem_page_offset;
653
654 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655 (page_to_phys(page) & (1 << 17)) != 0;
656
657 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660 if (ret == 0)
661 goto next_page;
662
663 mutex_unlock(&dev->struct_mutex);
664
665 if (likely(!i915.prefault_disable) && !prefaulted) {
666 ret = fault_in_multipages_writeable(user_data, remain);
667 /* Userspace is tricking us, but we've already clobbered
668 * its pages with the prefault and promised to write the
669 * data up to the first fault. Hence ignore any errors
670 * and just continue. */
671 (void)ret;
672 prefaulted = 1;
673 }
674
675 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676 user_data, page_do_bit17_swizzling,
677 needs_clflush);
678
679 mutex_lock(&dev->struct_mutex);
680
681 if (ret)
682 goto out;
683
684 next_page:
685 remain -= page_length;
686 user_data += page_length;
687 offset += page_length;
688 }
689
690 out:
691 i915_gem_object_unpin_pages(obj);
692
693 return ret;
694 }
695
696 /**
697 * Reads data from the object referenced by handle.
698 *
699 * On error, the contents of *data are undefined.
700 */
701 int
702 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703 struct drm_file *file)
704 {
705 struct drm_i915_gem_pread *args = data;
706 struct drm_i915_gem_object *obj;
707 int ret = 0;
708
709 if (args->size == 0)
710 return 0;
711
712 if (!access_ok(VERIFY_WRITE,
713 to_user_ptr(args->data_ptr),
714 args->size))
715 return -EFAULT;
716
717 ret = i915_mutex_lock_interruptible(dev);
718 if (ret)
719 return ret;
720
721 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722 if (&obj->base == NULL) {
723 ret = -ENOENT;
724 goto unlock;
725 }
726
727 /* Bounds check source. */
728 if (args->offset > obj->base.size ||
729 args->size > obj->base.size - args->offset) {
730 ret = -EINVAL;
731 goto out;
732 }
733
734 /* prime objects have no backing filp to GEM pread/pwrite
735 * pages from.
736 */
737 if (!obj->base.filp) {
738 ret = -EINVAL;
739 goto out;
740 }
741
742 trace_i915_gem_object_pread(obj, args->offset, args->size);
743
744 ret = i915_gem_shmem_pread(dev, obj, args, file);
745
746 out:
747 drm_gem_object_unreference(&obj->base);
748 unlock:
749 mutex_unlock(&dev->struct_mutex);
750 return ret;
751 }
752
753 /* This is the fast write path which cannot handle
754 * page faults in the source data
755 */
756
757 static inline int
758 fast_user_write(struct io_mapping *mapping,
759 loff_t page_base, int page_offset,
760 char __user *user_data,
761 int length)
762 {
763 void __iomem *vaddr_atomic;
764 void *vaddr;
765 unsigned long unwritten;
766
767 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 /* We can use the cpu mem copy function because this is X86. */
769 vaddr = (void __force*)vaddr_atomic + page_offset;
770 unwritten = __copy_from_user_inatomic_nocache(vaddr,
771 user_data, length);
772 io_mapping_unmap_atomic(vaddr_atomic);
773 return unwritten;
774 }
775
776 /**
777 * This is the fast pwrite path, where we copy the data directly from the
778 * user into the GTT, uncached.
779 */
780 static int
781 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782 struct drm_i915_gem_object *obj,
783 struct drm_i915_gem_pwrite *args,
784 struct drm_file *file)
785 {
786 struct drm_i915_private *dev_priv = dev->dev_private;
787 ssize_t remain;
788 loff_t offset, page_base;
789 char __user *user_data;
790 int page_offset, page_length, ret;
791
792 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
793 if (ret)
794 goto out;
795
796 ret = i915_gem_object_set_to_gtt_domain(obj, true);
797 if (ret)
798 goto out_unpin;
799
800 ret = i915_gem_object_put_fence(obj);
801 if (ret)
802 goto out_unpin;
803
804 user_data = to_user_ptr(args->data_ptr);
805 remain = args->size;
806
807 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808
809 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
811 while (remain > 0) {
812 /* Operation in this page
813 *
814 * page_base = page offset within aperture
815 * page_offset = offset within page
816 * page_length = bytes to copy for this page
817 */
818 page_base = offset & PAGE_MASK;
819 page_offset = offset_in_page(offset);
820 page_length = remain;
821 if ((page_offset + remain) > PAGE_SIZE)
822 page_length = PAGE_SIZE - page_offset;
823
824 /* If we get a fault while copying data, then (presumably) our
825 * source page isn't available. Return the error and we'll
826 * retry in the slow path.
827 */
828 if (fast_user_write(dev_priv->gtt.mappable, page_base,
829 page_offset, user_data, page_length)) {
830 ret = -EFAULT;
831 goto out_flush;
832 }
833
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
837 }
838
839 out_flush:
840 intel_fb_obj_flush(obj, false);
841 out_unpin:
842 i915_gem_object_ggtt_unpin(obj);
843 out:
844 return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
857 {
858 char *vaddr;
859 int ret;
860
861 if (unlikely(page_do_bit17_swizzling))
862 return -EINVAL;
863
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
874
875 return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
886 {
887 char *vaddr;
888 int ret;
889
890 vaddr = kmap(page);
891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 user_data,
898 page_length);
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
907 kunmap(page);
908
909 return ret ? -EFAULT : 0;
910 }
911
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
917 {
918 ssize_t remain;
919 loff_t offset;
920 char __user *user_data;
921 int shmem_page_offset, page_length, ret = 0;
922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923 int hit_slowpath = 0;
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
926 struct sg_page_iter sg_iter;
927
928 user_data = to_user_ptr(args->data_ptr);
929 remain = args->size;
930
931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
938 needs_clflush_after = cpu_write_needs_clflush(obj);
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
942
943 i915_gem_object_retire(obj);
944 }
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
950
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
957 i915_gem_object_pin_pages(obj);
958
959 offset = args->offset;
960 obj->dirty = 1;
961
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
964 struct page *page = sg_page_iter_page(&sg_iter);
965 int partial_cacheline_write;
966
967 if (remain <= 0)
968 break;
969
970 /* Operation in this page
971 *
972 * shmem_page_offset = offset within page in shmem file
973 * page_length = bytes to copy for this page
974 */
975 shmem_page_offset = offset_in_page(offset);
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
980
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
997
998 hit_slowpath = 1;
999 mutex_unlock(&dev->struct_mutex);
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
1004
1005 mutex_lock(&dev->struct_mutex);
1006
1007 if (ret)
1008 goto out;
1009
1010 next_page:
1011 remain -= page_length;
1012 user_data += page_length;
1013 offset += page_length;
1014 }
1015
1016 out:
1017 i915_gem_object_unpin_pages(obj);
1018
1019 if (hit_slowpath) {
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
1029 }
1030 }
1031
1032 if (needs_clflush_after)
1033 i915_gem_chipset_flush(dev);
1034
1035 intel_fb_obj_flush(obj, false);
1036 return ret;
1037 }
1038
1039 /**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044 int
1045 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file)
1047 {
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 struct drm_i915_gem_pwrite *args = data;
1050 struct drm_i915_gem_object *obj;
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
1057 to_user_ptr(args->data_ptr),
1058 args->size))
1059 return -EFAULT;
1060
1061 if (likely(!i915.prefault_disable)) {
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
1067
1068 intel_runtime_pm_get(dev_priv);
1069
1070 ret = i915_mutex_lock_interruptible(dev);
1071 if (ret)
1072 goto put_rpm;
1073
1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 if (&obj->base == NULL) {
1076 ret = -ENOENT;
1077 goto unlock;
1078 }
1079
1080 /* Bounds check destination. */
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097 ret = -EFAULT;
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
1111 }
1112
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
1119
1120 out:
1121 drm_gem_object_unreference(&obj->base);
1122 unlock:
1123 mutex_unlock(&dev->struct_mutex);
1124 put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
1127 return ret;
1128 }
1129
1130 int
1131 i915_gem_check_wedge(struct i915_gpu_error *error,
1132 bool interruptible)
1133 {
1134 if (i915_reset_in_progress(error)) {
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
1142 return -EIO;
1143
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
1151 }
1152
1153 return 0;
1154 }
1155
1156 /*
1157 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158 */
1159 int
1160 i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 {
1162 int ret;
1163
1164 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165
1166 ret = 0;
1167 if (req == req->ring->outstanding_lazy_request)
1168 ret = i915_add_request(req->ring);
1169
1170 return ret;
1171 }
1172
1173 static void fake_irq(unsigned long data)
1174 {
1175 wake_up_process((struct task_struct *)data);
1176 }
1177
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179 struct intel_engine_cs *ring)
1180 {
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183
1184 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1185 {
1186 if (file_priv == NULL)
1187 return true;
1188
1189 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1190 }
1191
1192 /**
1193 * __i915_wait_request - wait until execution of request has finished
1194 * @req: duh!
1195 * @reset_counter: reset sequence associated with the given request
1196 * @interruptible: do an interruptible wait (normally yes)
1197 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1198 *
1199 * Note: It is of utmost importance that the passed in seqno and reset_counter
1200 * values have been read by the caller in an smp safe manner. Where read-side
1201 * locks are involved, it is sufficient to read the reset_counter before
1202 * unlocking the lock that protects the seqno. For lockless tricks, the
1203 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1204 * inserted.
1205 *
1206 * Returns 0 if the request was found within the alloted time. Else returns the
1207 * errno with remaining time filled in timeout argument.
1208 */
1209 int __i915_wait_request(struct drm_i915_gem_request *req,
1210 unsigned reset_counter,
1211 bool interruptible,
1212 s64 *timeout,
1213 struct drm_i915_file_private *file_priv)
1214 {
1215 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1216 struct drm_device *dev = ring->dev;
1217 struct drm_i915_private *dev_priv = dev->dev_private;
1218 const bool irq_test_in_progress =
1219 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1220 DEFINE_WAIT(wait);
1221 unsigned long timeout_expire;
1222 s64 before, now;
1223 int ret;
1224
1225 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1226
1227 if (i915_gem_request_completed(req, true))
1228 return 0;
1229
1230 timeout_expire = timeout ?
1231 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1232
1233 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1234 gen6_rps_boost(dev_priv);
1235 if (file_priv)
1236 mod_delayed_work(dev_priv->wq,
1237 &file_priv->mm.idle_work,
1238 msecs_to_jiffies(100));
1239 }
1240
1241 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1242 return -ENODEV;
1243
1244 /* Record current time in case interrupted by signal, or wedged */
1245 trace_i915_gem_request_wait_begin(req);
1246 before = ktime_get_raw_ns();
1247 for (;;) {
1248 struct timer_list timer;
1249
1250 prepare_to_wait(&ring->irq_queue, &wait,
1251 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1252
1253 /* We need to check whether any gpu reset happened in between
1254 * the caller grabbing the seqno and now ... */
1255 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1256 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1257 * is truely gone. */
1258 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259 if (ret == 0)
1260 ret = -EAGAIN;
1261 break;
1262 }
1263
1264 if (i915_gem_request_completed(req, false)) {
1265 ret = 0;
1266 break;
1267 }
1268
1269 if (interruptible && signal_pending(current)) {
1270 ret = -ERESTARTSYS;
1271 break;
1272 }
1273
1274 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1275 ret = -ETIME;
1276 break;
1277 }
1278
1279 timer.function = NULL;
1280 if (timeout || missed_irq(dev_priv, ring)) {
1281 unsigned long expire;
1282
1283 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1284 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1285 mod_timer(&timer, expire);
1286 }
1287
1288 io_schedule();
1289
1290 if (timer.function) {
1291 del_singleshot_timer_sync(&timer);
1292 destroy_timer_on_stack(&timer);
1293 }
1294 }
1295 now = ktime_get_raw_ns();
1296 trace_i915_gem_request_wait_end(req);
1297
1298 if (!irq_test_in_progress)
1299 ring->irq_put(ring);
1300
1301 finish_wait(&ring->irq_queue, &wait);
1302
1303 if (timeout) {
1304 s64 tres = *timeout - (now - before);
1305
1306 *timeout = tres < 0 ? 0 : tres;
1307
1308 /*
1309 * Apparently ktime isn't accurate enough and occasionally has a
1310 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1311 * things up to make the test happy. We allow up to 1 jiffy.
1312 *
1313 * This is a regrssion from the timespec->ktime conversion.
1314 */
1315 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1316 *timeout = 0;
1317 }
1318
1319 return ret;
1320 }
1321
1322 /**
1323 * Waits for a request to be signaled, and cleans up the
1324 * request and object lists appropriately for that event.
1325 */
1326 int
1327 i915_wait_request(struct drm_i915_gem_request *req)
1328 {
1329 struct drm_device *dev;
1330 struct drm_i915_private *dev_priv;
1331 bool interruptible;
1332 unsigned reset_counter;
1333 int ret;
1334
1335 BUG_ON(req == NULL);
1336
1337 dev = req->ring->dev;
1338 dev_priv = dev->dev_private;
1339 interruptible = dev_priv->mm.interruptible;
1340
1341 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1342
1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1344 if (ret)
1345 return ret;
1346
1347 ret = i915_gem_check_olr(req);
1348 if (ret)
1349 return ret;
1350
1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352 i915_gem_request_reference(req);
1353 ret = __i915_wait_request(req, reset_counter,
1354 interruptible, NULL, NULL);
1355 i915_gem_request_unreference(req);
1356 return ret;
1357 }
1358
1359 static int
1360 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1361 {
1362 if (!obj->active)
1363 return 0;
1364
1365 /* Manually manage the write flush as we may have not yet
1366 * retired the buffer.
1367 *
1368 * Note that the last_write_req is always the earlier of
1369 * the two (read/write) requests, so if we haved successfully waited,
1370 * we know we have passed the last write.
1371 */
1372 i915_gem_request_assign(&obj->last_write_req, NULL);
1373
1374 return 0;
1375 }
1376
1377 /**
1378 * Ensures that all rendering to the object has completed and the object is
1379 * safe to unbind from the GTT or access from the CPU.
1380 */
1381 static __must_check int
1382 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1383 bool readonly)
1384 {
1385 struct drm_i915_gem_request *req;
1386 int ret;
1387
1388 req = readonly ? obj->last_write_req : obj->last_read_req;
1389 if (!req)
1390 return 0;
1391
1392 ret = i915_wait_request(req);
1393 if (ret)
1394 return ret;
1395
1396 return i915_gem_object_wait_rendering__tail(obj);
1397 }
1398
1399 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1400 * as the object state may change during this call.
1401 */
1402 static __must_check int
1403 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1404 struct drm_i915_file_private *file_priv,
1405 bool readonly)
1406 {
1407 struct drm_i915_gem_request *req;
1408 struct drm_device *dev = obj->base.dev;
1409 struct drm_i915_private *dev_priv = dev->dev_private;
1410 unsigned reset_counter;
1411 int ret;
1412
1413 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1414 BUG_ON(!dev_priv->mm.interruptible);
1415
1416 req = readonly ? obj->last_write_req : obj->last_read_req;
1417 if (!req)
1418 return 0;
1419
1420 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1421 if (ret)
1422 return ret;
1423
1424 ret = i915_gem_check_olr(req);
1425 if (ret)
1426 return ret;
1427
1428 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1429 i915_gem_request_reference(req);
1430 mutex_unlock(&dev->struct_mutex);
1431 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1432 mutex_lock(&dev->struct_mutex);
1433 i915_gem_request_unreference(req);
1434 if (ret)
1435 return ret;
1436
1437 return i915_gem_object_wait_rendering__tail(obj);
1438 }
1439
1440 /**
1441 * Called when user space prepares to use an object with the CPU, either
1442 * through the mmap ioctl's mapping or a GTT mapping.
1443 */
1444 int
1445 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1446 struct drm_file *file)
1447 {
1448 struct drm_i915_gem_set_domain *args = data;
1449 struct drm_i915_gem_object *obj;
1450 uint32_t read_domains = args->read_domains;
1451 uint32_t write_domain = args->write_domain;
1452 int ret;
1453
1454 /* Only handle setting domains to types used by the CPU. */
1455 if (write_domain & I915_GEM_GPU_DOMAINS)
1456 return -EINVAL;
1457
1458 if (read_domains & I915_GEM_GPU_DOMAINS)
1459 return -EINVAL;
1460
1461 /* Having something in the write domain implies it's in the read
1462 * domain, and only that read domain. Enforce that in the request.
1463 */
1464 if (write_domain != 0 && read_domains != write_domain)
1465 return -EINVAL;
1466
1467 ret = i915_mutex_lock_interruptible(dev);
1468 if (ret)
1469 return ret;
1470
1471 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1472 if (&obj->base == NULL) {
1473 ret = -ENOENT;
1474 goto unlock;
1475 }
1476
1477 /* Try to flush the object off the GPU without holding the lock.
1478 * We will repeat the flush holding the lock in the normal manner
1479 * to catch cases where we are gazumped.
1480 */
1481 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1482 file->driver_priv,
1483 !write_domain);
1484 if (ret)
1485 goto unref;
1486
1487 if (read_domains & I915_GEM_DOMAIN_GTT)
1488 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1489 else
1490 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1491
1492 unref:
1493 drm_gem_object_unreference(&obj->base);
1494 unlock:
1495 mutex_unlock(&dev->struct_mutex);
1496 return ret;
1497 }
1498
1499 /**
1500 * Called when user space has done writes to this buffer
1501 */
1502 int
1503 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1504 struct drm_file *file)
1505 {
1506 struct drm_i915_gem_sw_finish *args = data;
1507 struct drm_i915_gem_object *obj;
1508 int ret = 0;
1509
1510 ret = i915_mutex_lock_interruptible(dev);
1511 if (ret)
1512 return ret;
1513
1514 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1515 if (&obj->base == NULL) {
1516 ret = -ENOENT;
1517 goto unlock;
1518 }
1519
1520 /* Pinned buffers may be scanout, so flush the cache */
1521 if (obj->pin_display)
1522 i915_gem_object_flush_cpu_write_domain(obj);
1523
1524 drm_gem_object_unreference(&obj->base);
1525 unlock:
1526 mutex_unlock(&dev->struct_mutex);
1527 return ret;
1528 }
1529
1530 /**
1531 * Maps the contents of an object, returning the address it is mapped
1532 * into.
1533 *
1534 * While the mapping holds a reference on the contents of the object, it doesn't
1535 * imply a ref on the object itself.
1536 *
1537 * IMPORTANT:
1538 *
1539 * DRM driver writers who look a this function as an example for how to do GEM
1540 * mmap support, please don't implement mmap support like here. The modern way
1541 * to implement DRM mmap support is with an mmap offset ioctl (like
1542 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1543 * That way debug tooling like valgrind will understand what's going on, hiding
1544 * the mmap call in a driver private ioctl will break that. The i915 driver only
1545 * does cpu mmaps this way because we didn't know better.
1546 */
1547 int
1548 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1549 struct drm_file *file)
1550 {
1551 struct drm_i915_gem_mmap *args = data;
1552 struct drm_gem_object *obj;
1553 unsigned long addr;
1554
1555 if (args->flags & ~(I915_MMAP_WC))
1556 return -EINVAL;
1557
1558 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1559 return -ENODEV;
1560
1561 obj = drm_gem_object_lookup(dev, file, args->handle);
1562 if (obj == NULL)
1563 return -ENOENT;
1564
1565 /* prime objects have no backing filp to GEM mmap
1566 * pages from.
1567 */
1568 if (!obj->filp) {
1569 drm_gem_object_unreference_unlocked(obj);
1570 return -EINVAL;
1571 }
1572
1573 addr = vm_mmap(obj->filp, 0, args->size,
1574 PROT_READ | PROT_WRITE, MAP_SHARED,
1575 args->offset);
1576 if (args->flags & I915_MMAP_WC) {
1577 struct mm_struct *mm = current->mm;
1578 struct vm_area_struct *vma;
1579
1580 down_write(&mm->mmap_sem);
1581 vma = find_vma(mm, addr);
1582 if (vma)
1583 vma->vm_page_prot =
1584 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1585 else
1586 addr = -ENOMEM;
1587 up_write(&mm->mmap_sem);
1588 }
1589 drm_gem_object_unreference_unlocked(obj);
1590 if (IS_ERR((void *)addr))
1591 return addr;
1592
1593 args->addr_ptr = (uint64_t) addr;
1594
1595 return 0;
1596 }
1597
1598 /**
1599 * i915_gem_fault - fault a page into the GTT
1600 * vma: VMA in question
1601 * vmf: fault info
1602 *
1603 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1604 * from userspace. The fault handler takes care of binding the object to
1605 * the GTT (if needed), allocating and programming a fence register (again,
1606 * only if needed based on whether the old reg is still valid or the object
1607 * is tiled) and inserting a new PTE into the faulting process.
1608 *
1609 * Note that the faulting process may involve evicting existing objects
1610 * from the GTT and/or fence registers to make room. So performance may
1611 * suffer if the GTT working set is large or there are few fence registers
1612 * left.
1613 */
1614 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1615 {
1616 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1617 struct drm_device *dev = obj->base.dev;
1618 struct drm_i915_private *dev_priv = dev->dev_private;
1619 pgoff_t page_offset;
1620 unsigned long pfn;
1621 int ret = 0;
1622 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1623
1624 intel_runtime_pm_get(dev_priv);
1625
1626 /* We don't use vmf->pgoff since that has the fake offset */
1627 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1628 PAGE_SHIFT;
1629
1630 ret = i915_mutex_lock_interruptible(dev);
1631 if (ret)
1632 goto out;
1633
1634 trace_i915_gem_object_fault(obj, page_offset, true, write);
1635
1636 /* Try to flush the object off the GPU first without holding the lock.
1637 * Upon reacquiring the lock, we will perform our sanity checks and then
1638 * repeat the flush holding the lock in the normal manner to catch cases
1639 * where we are gazumped.
1640 */
1641 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1642 if (ret)
1643 goto unlock;
1644
1645 /* Access to snoopable pages through the GTT is incoherent. */
1646 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1647 ret = -EFAULT;
1648 goto unlock;
1649 }
1650
1651 /* Now bind it into the GTT if needed */
1652 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1653 if (ret)
1654 goto unlock;
1655
1656 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1657 if (ret)
1658 goto unpin;
1659
1660 ret = i915_gem_object_get_fence(obj);
1661 if (ret)
1662 goto unpin;
1663
1664 /* Finally, remap it using the new GTT offset */
1665 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1666 pfn >>= PAGE_SHIFT;
1667
1668 if (!obj->fault_mappable) {
1669 unsigned long size = min_t(unsigned long,
1670 vma->vm_end - vma->vm_start,
1671 obj->base.size);
1672 int i;
1673
1674 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1675 ret = vm_insert_pfn(vma,
1676 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1677 pfn + i);
1678 if (ret)
1679 break;
1680 }
1681
1682 obj->fault_mappable = true;
1683 } else
1684 ret = vm_insert_pfn(vma,
1685 (unsigned long)vmf->virtual_address,
1686 pfn + page_offset);
1687 unpin:
1688 i915_gem_object_ggtt_unpin(obj);
1689 unlock:
1690 mutex_unlock(&dev->struct_mutex);
1691 out:
1692 switch (ret) {
1693 case -EIO:
1694 /*
1695 * We eat errors when the gpu is terminally wedged to avoid
1696 * userspace unduly crashing (gl has no provisions for mmaps to
1697 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1698 * and so needs to be reported.
1699 */
1700 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1701 ret = VM_FAULT_SIGBUS;
1702 break;
1703 }
1704 case -EAGAIN:
1705 /*
1706 * EAGAIN means the gpu is hung and we'll wait for the error
1707 * handler to reset everything when re-faulting in
1708 * i915_mutex_lock_interruptible.
1709 */
1710 case 0:
1711 case -ERESTARTSYS:
1712 case -EINTR:
1713 case -EBUSY:
1714 /*
1715 * EBUSY is ok: this just means that another thread
1716 * already did the job.
1717 */
1718 ret = VM_FAULT_NOPAGE;
1719 break;
1720 case -ENOMEM:
1721 ret = VM_FAULT_OOM;
1722 break;
1723 case -ENOSPC:
1724 case -EFAULT:
1725 ret = VM_FAULT_SIGBUS;
1726 break;
1727 default:
1728 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1729 ret = VM_FAULT_SIGBUS;
1730 break;
1731 }
1732
1733 intel_runtime_pm_put(dev_priv);
1734 return ret;
1735 }
1736
1737 /**
1738 * i915_gem_release_mmap - remove physical page mappings
1739 * @obj: obj in question
1740 *
1741 * Preserve the reservation of the mmapping with the DRM core code, but
1742 * relinquish ownership of the pages back to the system.
1743 *
1744 * It is vital that we remove the page mapping if we have mapped a tiled
1745 * object through the GTT and then lose the fence register due to
1746 * resource pressure. Similarly if the object has been moved out of the
1747 * aperture, than pages mapped into userspace must be revoked. Removing the
1748 * mapping will then trigger a page fault on the next user access, allowing
1749 * fixup by i915_gem_fault().
1750 */
1751 void
1752 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1753 {
1754 if (!obj->fault_mappable)
1755 return;
1756
1757 drm_vma_node_unmap(&obj->base.vma_node,
1758 obj->base.dev->anon_inode->i_mapping);
1759 obj->fault_mappable = false;
1760 }
1761
1762 void
1763 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1764 {
1765 struct drm_i915_gem_object *obj;
1766
1767 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1768 i915_gem_release_mmap(obj);
1769 }
1770
1771 uint32_t
1772 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1773 {
1774 uint32_t gtt_size;
1775
1776 if (INTEL_INFO(dev)->gen >= 4 ||
1777 tiling_mode == I915_TILING_NONE)
1778 return size;
1779
1780 /* Previous chips need a power-of-two fence region when tiling */
1781 if (INTEL_INFO(dev)->gen == 3)
1782 gtt_size = 1024*1024;
1783 else
1784 gtt_size = 512*1024;
1785
1786 while (gtt_size < size)
1787 gtt_size <<= 1;
1788
1789 return gtt_size;
1790 }
1791
1792 /**
1793 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1794 * @obj: object to check
1795 *
1796 * Return the required GTT alignment for an object, taking into account
1797 * potential fence register mapping.
1798 */
1799 uint32_t
1800 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1801 int tiling_mode, bool fenced)
1802 {
1803 /*
1804 * Minimum alignment is 4k (GTT page size), but might be greater
1805 * if a fence register is needed for the object.
1806 */
1807 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1808 tiling_mode == I915_TILING_NONE)
1809 return 4096;
1810
1811 /*
1812 * Previous chips need to be aligned to the size of the smallest
1813 * fence register that can contain the object.
1814 */
1815 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1816 }
1817
1818 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1819 {
1820 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1821 int ret;
1822
1823 if (drm_vma_node_has_offset(&obj->base.vma_node))
1824 return 0;
1825
1826 dev_priv->mm.shrinker_no_lock_stealing = true;
1827
1828 ret = drm_gem_create_mmap_offset(&obj->base);
1829 if (ret != -ENOSPC)
1830 goto out;
1831
1832 /* Badly fragmented mmap space? The only way we can recover
1833 * space is by destroying unwanted objects. We can't randomly release
1834 * mmap_offsets as userspace expects them to be persistent for the
1835 * lifetime of the objects. The closest we can is to release the
1836 * offsets on purgeable objects by truncating it and marking it purged,
1837 * which prevents userspace from ever using that object again.
1838 */
1839 i915_gem_shrink(dev_priv,
1840 obj->base.size >> PAGE_SHIFT,
1841 I915_SHRINK_BOUND |
1842 I915_SHRINK_UNBOUND |
1843 I915_SHRINK_PURGEABLE);
1844 ret = drm_gem_create_mmap_offset(&obj->base);
1845 if (ret != -ENOSPC)
1846 goto out;
1847
1848 i915_gem_shrink_all(dev_priv);
1849 ret = drm_gem_create_mmap_offset(&obj->base);
1850 out:
1851 dev_priv->mm.shrinker_no_lock_stealing = false;
1852
1853 return ret;
1854 }
1855
1856 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1857 {
1858 drm_gem_free_mmap_offset(&obj->base);
1859 }
1860
1861 int
1862 i915_gem_mmap_gtt(struct drm_file *file,
1863 struct drm_device *dev,
1864 uint32_t handle,
1865 uint64_t *offset)
1866 {
1867 struct drm_i915_private *dev_priv = dev->dev_private;
1868 struct drm_i915_gem_object *obj;
1869 int ret;
1870
1871 ret = i915_mutex_lock_interruptible(dev);
1872 if (ret)
1873 return ret;
1874
1875 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1876 if (&obj->base == NULL) {
1877 ret = -ENOENT;
1878 goto unlock;
1879 }
1880
1881 if (obj->base.size > dev_priv->gtt.mappable_end) {
1882 ret = -E2BIG;
1883 goto out;
1884 }
1885
1886 if (obj->madv != I915_MADV_WILLNEED) {
1887 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1888 ret = -EFAULT;
1889 goto out;
1890 }
1891
1892 ret = i915_gem_object_create_mmap_offset(obj);
1893 if (ret)
1894 goto out;
1895
1896 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1897
1898 out:
1899 drm_gem_object_unreference(&obj->base);
1900 unlock:
1901 mutex_unlock(&dev->struct_mutex);
1902 return ret;
1903 }
1904
1905 /**
1906 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1907 * @dev: DRM device
1908 * @data: GTT mapping ioctl data
1909 * @file: GEM object info
1910 *
1911 * Simply returns the fake offset to userspace so it can mmap it.
1912 * The mmap call will end up in drm_gem_mmap(), which will set things
1913 * up so we can get faults in the handler above.
1914 *
1915 * The fault handler will take care of binding the object into the GTT
1916 * (since it may have been evicted to make room for something), allocating
1917 * a fence register, and mapping the appropriate aperture address into
1918 * userspace.
1919 */
1920 int
1921 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1922 struct drm_file *file)
1923 {
1924 struct drm_i915_gem_mmap_gtt *args = data;
1925
1926 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1927 }
1928
1929 /* Immediately discard the backing storage */
1930 static void
1931 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1932 {
1933 i915_gem_object_free_mmap_offset(obj);
1934
1935 if (obj->base.filp == NULL)
1936 return;
1937
1938 /* Our goal here is to return as much of the memory as
1939 * is possible back to the system as we are called from OOM.
1940 * To do this we must instruct the shmfs to drop all of its
1941 * backing pages, *now*.
1942 */
1943 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1944 obj->madv = __I915_MADV_PURGED;
1945 }
1946
1947 /* Try to discard unwanted pages */
1948 static void
1949 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1950 {
1951 struct address_space *mapping;
1952
1953 switch (obj->madv) {
1954 case I915_MADV_DONTNEED:
1955 i915_gem_object_truncate(obj);
1956 case __I915_MADV_PURGED:
1957 return;
1958 }
1959
1960 if (obj->base.filp == NULL)
1961 return;
1962
1963 mapping = file_inode(obj->base.filp)->i_mapping,
1964 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1965 }
1966
1967 static void
1968 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1969 {
1970 struct sg_page_iter sg_iter;
1971 int ret;
1972
1973 BUG_ON(obj->madv == __I915_MADV_PURGED);
1974
1975 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1976 if (ret) {
1977 /* In the event of a disaster, abandon all caches and
1978 * hope for the best.
1979 */
1980 WARN_ON(ret != -EIO);
1981 i915_gem_clflush_object(obj, true);
1982 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1983 }
1984
1985 if (i915_gem_object_needs_bit17_swizzle(obj))
1986 i915_gem_object_save_bit_17_swizzle(obj);
1987
1988 if (obj->madv == I915_MADV_DONTNEED)
1989 obj->dirty = 0;
1990
1991 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1992 struct page *page = sg_page_iter_page(&sg_iter);
1993
1994 if (obj->dirty)
1995 set_page_dirty(page);
1996
1997 if (obj->madv == I915_MADV_WILLNEED)
1998 mark_page_accessed(page);
1999
2000 page_cache_release(page);
2001 }
2002 obj->dirty = 0;
2003
2004 sg_free_table(obj->pages);
2005 kfree(obj->pages);
2006 }
2007
2008 int
2009 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2010 {
2011 const struct drm_i915_gem_object_ops *ops = obj->ops;
2012
2013 if (obj->pages == NULL)
2014 return 0;
2015
2016 if (obj->pages_pin_count)
2017 return -EBUSY;
2018
2019 BUG_ON(i915_gem_obj_bound_any(obj));
2020
2021 /* ->put_pages might need to allocate memory for the bit17 swizzle
2022 * array, hence protect them from being reaped by removing them from gtt
2023 * lists early. */
2024 list_del(&obj->global_list);
2025
2026 ops->put_pages(obj);
2027 obj->pages = NULL;
2028
2029 i915_gem_object_invalidate(obj);
2030
2031 return 0;
2032 }
2033
2034 static int
2035 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2036 {
2037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 int page_count, i;
2039 struct address_space *mapping;
2040 struct sg_table *st;
2041 struct scatterlist *sg;
2042 struct sg_page_iter sg_iter;
2043 struct page *page;
2044 unsigned long last_pfn = 0; /* suppress gcc warning */
2045 gfp_t gfp;
2046
2047 /* Assert that the object is not currently in any GPU domain. As it
2048 * wasn't in the GTT, there shouldn't be any way it could have been in
2049 * a GPU cache
2050 */
2051 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2052 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2053
2054 st = kmalloc(sizeof(*st), GFP_KERNEL);
2055 if (st == NULL)
2056 return -ENOMEM;
2057
2058 page_count = obj->base.size / PAGE_SIZE;
2059 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2060 kfree(st);
2061 return -ENOMEM;
2062 }
2063
2064 /* Get the list of pages out of our struct file. They'll be pinned
2065 * at this point until we release them.
2066 *
2067 * Fail silently without starting the shrinker
2068 */
2069 mapping = file_inode(obj->base.filp)->i_mapping;
2070 gfp = mapping_gfp_mask(mapping);
2071 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2072 gfp &= ~(__GFP_IO | __GFP_WAIT);
2073 sg = st->sgl;
2074 st->nents = 0;
2075 for (i = 0; i < page_count; i++) {
2076 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2077 if (IS_ERR(page)) {
2078 i915_gem_shrink(dev_priv,
2079 page_count,
2080 I915_SHRINK_BOUND |
2081 I915_SHRINK_UNBOUND |
2082 I915_SHRINK_PURGEABLE);
2083 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2084 }
2085 if (IS_ERR(page)) {
2086 /* We've tried hard to allocate the memory by reaping
2087 * our own buffer, now let the real VM do its job and
2088 * go down in flames if truly OOM.
2089 */
2090 i915_gem_shrink_all(dev_priv);
2091 page = shmem_read_mapping_page(mapping, i);
2092 if (IS_ERR(page))
2093 goto err_pages;
2094 }
2095 #ifdef CONFIG_SWIOTLB
2096 if (swiotlb_nr_tbl()) {
2097 st->nents++;
2098 sg_set_page(sg, page, PAGE_SIZE, 0);
2099 sg = sg_next(sg);
2100 continue;
2101 }
2102 #endif
2103 if (!i || page_to_pfn(page) != last_pfn + 1) {
2104 if (i)
2105 sg = sg_next(sg);
2106 st->nents++;
2107 sg_set_page(sg, page, PAGE_SIZE, 0);
2108 } else {
2109 sg->length += PAGE_SIZE;
2110 }
2111 last_pfn = page_to_pfn(page);
2112
2113 /* Check that the i965g/gm workaround works. */
2114 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2115 }
2116 #ifdef CONFIG_SWIOTLB
2117 if (!swiotlb_nr_tbl())
2118 #endif
2119 sg_mark_end(sg);
2120 obj->pages = st;
2121
2122 if (i915_gem_object_needs_bit17_swizzle(obj))
2123 i915_gem_object_do_bit_17_swizzle(obj);
2124
2125 if (obj->tiling_mode != I915_TILING_NONE &&
2126 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2127 i915_gem_object_pin_pages(obj);
2128
2129 return 0;
2130
2131 err_pages:
2132 sg_mark_end(sg);
2133 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2134 page_cache_release(sg_page_iter_page(&sg_iter));
2135 sg_free_table(st);
2136 kfree(st);
2137
2138 /* shmemfs first checks if there is enough memory to allocate the page
2139 * and reports ENOSPC should there be insufficient, along with the usual
2140 * ENOMEM for a genuine allocation failure.
2141 *
2142 * We use ENOSPC in our driver to mean that we have run out of aperture
2143 * space and so want to translate the error from shmemfs back to our
2144 * usual understanding of ENOMEM.
2145 */
2146 if (PTR_ERR(page) == -ENOSPC)
2147 return -ENOMEM;
2148 else
2149 return PTR_ERR(page);
2150 }
2151
2152 /* Ensure that the associated pages are gathered from the backing storage
2153 * and pinned into our object. i915_gem_object_get_pages() may be called
2154 * multiple times before they are released by a single call to
2155 * i915_gem_object_put_pages() - once the pages are no longer referenced
2156 * either as a result of memory pressure (reaping pages under the shrinker)
2157 * or as the object is itself released.
2158 */
2159 int
2160 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2161 {
2162 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2163 const struct drm_i915_gem_object_ops *ops = obj->ops;
2164 int ret;
2165
2166 if (obj->pages)
2167 return 0;
2168
2169 if (obj->madv != I915_MADV_WILLNEED) {
2170 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2171 return -EFAULT;
2172 }
2173
2174 BUG_ON(obj->pages_pin_count);
2175
2176 ret = ops->get_pages(obj);
2177 if (ret)
2178 return ret;
2179
2180 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2181 return 0;
2182 }
2183
2184 static void
2185 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2186 struct intel_engine_cs *ring)
2187 {
2188 struct drm_i915_gem_request *req;
2189 struct intel_engine_cs *old_ring;
2190
2191 BUG_ON(ring == NULL);
2192
2193 req = intel_ring_get_request(ring);
2194 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2195
2196 if (old_ring != ring && obj->last_write_req) {
2197 /* Keep the request relative to the current ring */
2198 i915_gem_request_assign(&obj->last_write_req, req);
2199 }
2200
2201 /* Add a reference if we're newly entering the active list. */
2202 if (!obj->active) {
2203 drm_gem_object_reference(&obj->base);
2204 obj->active = 1;
2205 }
2206
2207 list_move_tail(&obj->ring_list, &ring->active_list);
2208
2209 i915_gem_request_assign(&obj->last_read_req, req);
2210 }
2211
2212 void i915_vma_move_to_active(struct i915_vma *vma,
2213 struct intel_engine_cs *ring)
2214 {
2215 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2216 return i915_gem_object_move_to_active(vma->obj, ring);
2217 }
2218
2219 static void
2220 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2221 {
2222 struct i915_vma *vma;
2223
2224 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2225 BUG_ON(!obj->active);
2226
2227 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2228 if (!list_empty(&vma->mm_list))
2229 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2230 }
2231
2232 intel_fb_obj_flush(obj, true);
2233
2234 list_del_init(&obj->ring_list);
2235
2236 i915_gem_request_assign(&obj->last_read_req, NULL);
2237 i915_gem_request_assign(&obj->last_write_req, NULL);
2238 obj->base.write_domain = 0;
2239
2240 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2241
2242 obj->active = 0;
2243 drm_gem_object_unreference(&obj->base);
2244
2245 WARN_ON(i915_verify_lists(dev));
2246 }
2247
2248 static void
2249 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2250 {
2251 if (obj->last_read_req == NULL)
2252 return;
2253
2254 if (i915_gem_request_completed(obj->last_read_req, true))
2255 i915_gem_object_move_to_inactive(obj);
2256 }
2257
2258 static int
2259 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2260 {
2261 struct drm_i915_private *dev_priv = dev->dev_private;
2262 struct intel_engine_cs *ring;
2263 int ret, i, j;
2264
2265 /* Carefully retire all requests without writing to the rings */
2266 for_each_ring(ring, dev_priv, i) {
2267 ret = intel_ring_idle(ring);
2268 if (ret)
2269 return ret;
2270 }
2271 i915_gem_retire_requests(dev);
2272
2273 /* Finally reset hw state */
2274 for_each_ring(ring, dev_priv, i) {
2275 intel_ring_init_seqno(ring, seqno);
2276
2277 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2278 ring->semaphore.sync_seqno[j] = 0;
2279 }
2280
2281 return 0;
2282 }
2283
2284 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2285 {
2286 struct drm_i915_private *dev_priv = dev->dev_private;
2287 int ret;
2288
2289 if (seqno == 0)
2290 return -EINVAL;
2291
2292 /* HWS page needs to be set less than what we
2293 * will inject to ring
2294 */
2295 ret = i915_gem_init_seqno(dev, seqno - 1);
2296 if (ret)
2297 return ret;
2298
2299 /* Carefully set the last_seqno value so that wrap
2300 * detection still works
2301 */
2302 dev_priv->next_seqno = seqno;
2303 dev_priv->last_seqno = seqno - 1;
2304 if (dev_priv->last_seqno == 0)
2305 dev_priv->last_seqno--;
2306
2307 return 0;
2308 }
2309
2310 int
2311 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2312 {
2313 struct drm_i915_private *dev_priv = dev->dev_private;
2314
2315 /* reserve 0 for non-seqno */
2316 if (dev_priv->next_seqno == 0) {
2317 int ret = i915_gem_init_seqno(dev, 0);
2318 if (ret)
2319 return ret;
2320
2321 dev_priv->next_seqno = 1;
2322 }
2323
2324 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2325 return 0;
2326 }
2327
2328 int __i915_add_request(struct intel_engine_cs *ring,
2329 struct drm_file *file,
2330 struct drm_i915_gem_object *obj)
2331 {
2332 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2333 struct drm_i915_gem_request *request;
2334 struct intel_ringbuffer *ringbuf;
2335 u32 request_start;
2336 int ret;
2337
2338 request = ring->outstanding_lazy_request;
2339 if (WARN_ON(request == NULL))
2340 return -ENOMEM;
2341
2342 if (i915.enable_execlists) {
2343 ringbuf = request->ctx->engine[ring->id].ringbuf;
2344 } else
2345 ringbuf = ring->buffer;
2346
2347 request_start = intel_ring_get_tail(ringbuf);
2348 /*
2349 * Emit any outstanding flushes - execbuf can fail to emit the flush
2350 * after having emitted the batchbuffer command. Hence we need to fix
2351 * things up similar to emitting the lazy request. The difference here
2352 * is that the flush _must_ happen before the next request, no matter
2353 * what.
2354 */
2355 if (i915.enable_execlists) {
2356 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2357 if (ret)
2358 return ret;
2359 } else {
2360 ret = intel_ring_flush_all_caches(ring);
2361 if (ret)
2362 return ret;
2363 }
2364
2365 /* Record the position of the start of the request so that
2366 * should we detect the updated seqno part-way through the
2367 * GPU processing the request, we never over-estimate the
2368 * position of the head.
2369 */
2370 request->postfix = intel_ring_get_tail(ringbuf);
2371
2372 if (i915.enable_execlists) {
2373 ret = ring->emit_request(ringbuf, request);
2374 if (ret)
2375 return ret;
2376 } else {
2377 ret = ring->add_request(ring);
2378 if (ret)
2379 return ret;
2380 }
2381
2382 request->head = request_start;
2383 request->tail = intel_ring_get_tail(ringbuf);
2384
2385 /* Whilst this request exists, batch_obj will be on the
2386 * active_list, and so will hold the active reference. Only when this
2387 * request is retired will the the batch_obj be moved onto the
2388 * inactive_list and lose its active reference. Hence we do not need
2389 * to explicitly hold another reference here.
2390 */
2391 request->batch_obj = obj;
2392
2393 if (!i915.enable_execlists) {
2394 /* Hold a reference to the current context so that we can inspect
2395 * it later in case a hangcheck error event fires.
2396 */
2397 request->ctx = ring->last_context;
2398 if (request->ctx)
2399 i915_gem_context_reference(request->ctx);
2400 }
2401
2402 request->emitted_jiffies = jiffies;
2403 list_add_tail(&request->list, &ring->request_list);
2404 request->file_priv = NULL;
2405
2406 if (file) {
2407 struct drm_i915_file_private *file_priv = file->driver_priv;
2408
2409 spin_lock(&file_priv->mm.lock);
2410 request->file_priv = file_priv;
2411 list_add_tail(&request->client_list,
2412 &file_priv->mm.request_list);
2413 spin_unlock(&file_priv->mm.lock);
2414
2415 request->pid = get_pid(task_pid(current));
2416 }
2417
2418 trace_i915_gem_request_add(request);
2419 ring->outstanding_lazy_request = NULL;
2420
2421 i915_queue_hangcheck(ring->dev);
2422
2423 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2424 queue_delayed_work(dev_priv->wq,
2425 &dev_priv->mm.retire_work,
2426 round_jiffies_up_relative(HZ));
2427 intel_mark_busy(dev_priv->dev);
2428
2429 return 0;
2430 }
2431
2432 static inline void
2433 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2434 {
2435 struct drm_i915_file_private *file_priv = request->file_priv;
2436
2437 if (!file_priv)
2438 return;
2439
2440 spin_lock(&file_priv->mm.lock);
2441 list_del(&request->client_list);
2442 request->file_priv = NULL;
2443 spin_unlock(&file_priv->mm.lock);
2444 }
2445
2446 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2447 const struct intel_context *ctx)
2448 {
2449 unsigned long elapsed;
2450
2451 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2452
2453 if (ctx->hang_stats.banned)
2454 return true;
2455
2456 if (ctx->hang_stats.ban_period_seconds &&
2457 elapsed <= ctx->hang_stats.ban_period_seconds) {
2458 if (!i915_gem_context_is_default(ctx)) {
2459 DRM_DEBUG("context hanging too fast, banning!\n");
2460 return true;
2461 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2462 if (i915_stop_ring_allow_warn(dev_priv))
2463 DRM_ERROR("gpu hanging too fast, banning!\n");
2464 return true;
2465 }
2466 }
2467
2468 return false;
2469 }
2470
2471 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2472 struct intel_context *ctx,
2473 const bool guilty)
2474 {
2475 struct i915_ctx_hang_stats *hs;
2476
2477 if (WARN_ON(!ctx))
2478 return;
2479
2480 hs = &ctx->hang_stats;
2481
2482 if (guilty) {
2483 hs->banned = i915_context_is_banned(dev_priv, ctx);
2484 hs->batch_active++;
2485 hs->guilty_ts = get_seconds();
2486 } else {
2487 hs->batch_pending++;
2488 }
2489 }
2490
2491 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2492 {
2493 list_del(&request->list);
2494 i915_gem_request_remove_from_client(request);
2495
2496 put_pid(request->pid);
2497
2498 i915_gem_request_unreference(request);
2499 }
2500
2501 void i915_gem_request_free(struct kref *req_ref)
2502 {
2503 struct drm_i915_gem_request *req = container_of(req_ref,
2504 typeof(*req), ref);
2505 struct intel_context *ctx = req->ctx;
2506
2507 if (ctx) {
2508 if (i915.enable_execlists) {
2509 struct intel_engine_cs *ring = req->ring;
2510
2511 if (ctx != ring->default_context)
2512 intel_lr_context_unpin(ring, ctx);
2513 }
2514
2515 i915_gem_context_unreference(ctx);
2516 }
2517
2518 kfree(req);
2519 }
2520
2521 struct drm_i915_gem_request *
2522 i915_gem_find_active_request(struct intel_engine_cs *ring)
2523 {
2524 struct drm_i915_gem_request *request;
2525
2526 list_for_each_entry(request, &ring->request_list, list) {
2527 if (i915_gem_request_completed(request, false))
2528 continue;
2529
2530 return request;
2531 }
2532
2533 return NULL;
2534 }
2535
2536 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2537 struct intel_engine_cs *ring)
2538 {
2539 struct drm_i915_gem_request *request;
2540 bool ring_hung;
2541
2542 request = i915_gem_find_active_request(ring);
2543
2544 if (request == NULL)
2545 return;
2546
2547 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2548
2549 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2550
2551 list_for_each_entry_continue(request, &ring->request_list, list)
2552 i915_set_reset_status(dev_priv, request->ctx, false);
2553 }
2554
2555 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2556 struct intel_engine_cs *ring)
2557 {
2558 while (!list_empty(&ring->active_list)) {
2559 struct drm_i915_gem_object *obj;
2560
2561 obj = list_first_entry(&ring->active_list,
2562 struct drm_i915_gem_object,
2563 ring_list);
2564
2565 i915_gem_object_move_to_inactive(obj);
2566 }
2567
2568 /*
2569 * Clear the execlists queue up before freeing the requests, as those
2570 * are the ones that keep the context and ringbuffer backing objects
2571 * pinned in place.
2572 */
2573 while (!list_empty(&ring->execlist_queue)) {
2574 struct drm_i915_gem_request *submit_req;
2575
2576 submit_req = list_first_entry(&ring->execlist_queue,
2577 struct drm_i915_gem_request,
2578 execlist_link);
2579 list_del(&submit_req->execlist_link);
2580 intel_runtime_pm_put(dev_priv);
2581
2582 if (submit_req->ctx != ring->default_context)
2583 intel_lr_context_unpin(ring, submit_req->ctx);
2584
2585 i915_gem_request_unreference(submit_req);
2586 }
2587
2588 /*
2589 * We must free the requests after all the corresponding objects have
2590 * been moved off active lists. Which is the same order as the normal
2591 * retire_requests function does. This is important if object hold
2592 * implicit references on things like e.g. ppgtt address spaces through
2593 * the request.
2594 */
2595 while (!list_empty(&ring->request_list)) {
2596 struct drm_i915_gem_request *request;
2597
2598 request = list_first_entry(&ring->request_list,
2599 struct drm_i915_gem_request,
2600 list);
2601
2602 i915_gem_free_request(request);
2603 }
2604
2605 /* This may not have been flushed before the reset, so clean it now */
2606 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2607 }
2608
2609 void i915_gem_restore_fences(struct drm_device *dev)
2610 {
2611 struct drm_i915_private *dev_priv = dev->dev_private;
2612 int i;
2613
2614 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2615 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2616
2617 /*
2618 * Commit delayed tiling changes if we have an object still
2619 * attached to the fence, otherwise just clear the fence.
2620 */
2621 if (reg->obj) {
2622 i915_gem_object_update_fence(reg->obj, reg,
2623 reg->obj->tiling_mode);
2624 } else {
2625 i915_gem_write_fence(dev, i, NULL);
2626 }
2627 }
2628 }
2629
2630 void i915_gem_reset(struct drm_device *dev)
2631 {
2632 struct drm_i915_private *dev_priv = dev->dev_private;
2633 struct intel_engine_cs *ring;
2634 int i;
2635
2636 /*
2637 * Before we free the objects from the requests, we need to inspect
2638 * them for finding the guilty party. As the requests only borrow
2639 * their reference to the objects, the inspection must be done first.
2640 */
2641 for_each_ring(ring, dev_priv, i)
2642 i915_gem_reset_ring_status(dev_priv, ring);
2643
2644 for_each_ring(ring, dev_priv, i)
2645 i915_gem_reset_ring_cleanup(dev_priv, ring);
2646
2647 i915_gem_context_reset(dev);
2648
2649 i915_gem_restore_fences(dev);
2650 }
2651
2652 /**
2653 * This function clears the request list as sequence numbers are passed.
2654 */
2655 void
2656 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2657 {
2658 if (list_empty(&ring->request_list))
2659 return;
2660
2661 WARN_ON(i915_verify_lists(ring->dev));
2662
2663 /* Retire requests first as we use it above for the early return.
2664 * If we retire requests last, we may use a later seqno and so clear
2665 * the requests lists without clearing the active list, leading to
2666 * confusion.
2667 */
2668 while (!list_empty(&ring->request_list)) {
2669 struct drm_i915_gem_request *request;
2670
2671 request = list_first_entry(&ring->request_list,
2672 struct drm_i915_gem_request,
2673 list);
2674
2675 if (!i915_gem_request_completed(request, true))
2676 break;
2677
2678 trace_i915_gem_request_retire(request);
2679
2680 /* We know the GPU must have read the request to have
2681 * sent us the seqno + interrupt, so use the position
2682 * of tail of the request to update the last known position
2683 * of the GPU head.
2684 */
2685 request->ringbuf->last_retired_head = request->postfix;
2686
2687 i915_gem_free_request(request);
2688 }
2689
2690 /* Move any buffers on the active list that are no longer referenced
2691 * by the ringbuffer to the flushing/inactive lists as appropriate,
2692 * before we free the context associated with the requests.
2693 */
2694 while (!list_empty(&ring->active_list)) {
2695 struct drm_i915_gem_object *obj;
2696
2697 obj = list_first_entry(&ring->active_list,
2698 struct drm_i915_gem_object,
2699 ring_list);
2700
2701 if (!i915_gem_request_completed(obj->last_read_req, true))
2702 break;
2703
2704 i915_gem_object_move_to_inactive(obj);
2705 }
2706
2707 if (unlikely(ring->trace_irq_req &&
2708 i915_gem_request_completed(ring->trace_irq_req, true))) {
2709 ring->irq_put(ring);
2710 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2711 }
2712
2713 WARN_ON(i915_verify_lists(ring->dev));
2714 }
2715
2716 bool
2717 i915_gem_retire_requests(struct drm_device *dev)
2718 {
2719 struct drm_i915_private *dev_priv = dev->dev_private;
2720 struct intel_engine_cs *ring;
2721 bool idle = true;
2722 int i;
2723
2724 for_each_ring(ring, dev_priv, i) {
2725 i915_gem_retire_requests_ring(ring);
2726 idle &= list_empty(&ring->request_list);
2727 if (i915.enable_execlists) {
2728 unsigned long flags;
2729
2730 spin_lock_irqsave(&ring->execlist_lock, flags);
2731 idle &= list_empty(&ring->execlist_queue);
2732 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2733
2734 intel_execlists_retire_requests(ring);
2735 }
2736 }
2737
2738 if (idle)
2739 mod_delayed_work(dev_priv->wq,
2740 &dev_priv->mm.idle_work,
2741 msecs_to_jiffies(100));
2742
2743 return idle;
2744 }
2745
2746 static void
2747 i915_gem_retire_work_handler(struct work_struct *work)
2748 {
2749 struct drm_i915_private *dev_priv =
2750 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2751 struct drm_device *dev = dev_priv->dev;
2752 bool idle;
2753
2754 /* Come back later if the device is busy... */
2755 idle = false;
2756 if (mutex_trylock(&dev->struct_mutex)) {
2757 idle = i915_gem_retire_requests(dev);
2758 mutex_unlock(&dev->struct_mutex);
2759 }
2760 if (!idle)
2761 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2762 round_jiffies_up_relative(HZ));
2763 }
2764
2765 static void
2766 i915_gem_idle_work_handler(struct work_struct *work)
2767 {
2768 struct drm_i915_private *dev_priv =
2769 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2770
2771 intel_mark_idle(dev_priv->dev);
2772 }
2773
2774 /**
2775 * Ensures that an object will eventually get non-busy by flushing any required
2776 * write domains, emitting any outstanding lazy request and retiring and
2777 * completed requests.
2778 */
2779 static int
2780 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2781 {
2782 struct intel_engine_cs *ring;
2783 int ret;
2784
2785 if (obj->active) {
2786 ring = i915_gem_request_get_ring(obj->last_read_req);
2787
2788 ret = i915_gem_check_olr(obj->last_read_req);
2789 if (ret)
2790 return ret;
2791
2792 i915_gem_retire_requests_ring(ring);
2793 }
2794
2795 return 0;
2796 }
2797
2798 /**
2799 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2800 * @DRM_IOCTL_ARGS: standard ioctl arguments
2801 *
2802 * Returns 0 if successful, else an error is returned with the remaining time in
2803 * the timeout parameter.
2804 * -ETIME: object is still busy after timeout
2805 * -ERESTARTSYS: signal interrupted the wait
2806 * -ENONENT: object doesn't exist
2807 * Also possible, but rare:
2808 * -EAGAIN: GPU wedged
2809 * -ENOMEM: damn
2810 * -ENODEV: Internal IRQ fail
2811 * -E?: The add request failed
2812 *
2813 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2814 * non-zero timeout parameter the wait ioctl will wait for the given number of
2815 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2816 * without holding struct_mutex the object may become re-busied before this
2817 * function completes. A similar but shorter * race condition exists in the busy
2818 * ioctl
2819 */
2820 int
2821 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2822 {
2823 struct drm_i915_private *dev_priv = dev->dev_private;
2824 struct drm_i915_gem_wait *args = data;
2825 struct drm_i915_gem_object *obj;
2826 struct drm_i915_gem_request *req;
2827 unsigned reset_counter;
2828 int ret = 0;
2829
2830 if (args->flags != 0)
2831 return -EINVAL;
2832
2833 ret = i915_mutex_lock_interruptible(dev);
2834 if (ret)
2835 return ret;
2836
2837 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2838 if (&obj->base == NULL) {
2839 mutex_unlock(&dev->struct_mutex);
2840 return -ENOENT;
2841 }
2842
2843 /* Need to make sure the object gets inactive eventually. */
2844 ret = i915_gem_object_flush_active(obj);
2845 if (ret)
2846 goto out;
2847
2848 if (!obj->active || !obj->last_read_req)
2849 goto out;
2850
2851 req = obj->last_read_req;
2852
2853 /* Do this after OLR check to make sure we make forward progress polling
2854 * on this IOCTL with a timeout == 0 (like busy ioctl)
2855 */
2856 if (args->timeout_ns == 0) {
2857 ret = -ETIME;
2858 goto out;
2859 }
2860
2861 drm_gem_object_unreference(&obj->base);
2862 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2863 i915_gem_request_reference(req);
2864 mutex_unlock(&dev->struct_mutex);
2865
2866 ret = __i915_wait_request(req, reset_counter, true,
2867 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2868 file->driver_priv);
2869 mutex_lock(&dev->struct_mutex);
2870 i915_gem_request_unreference(req);
2871 mutex_unlock(&dev->struct_mutex);
2872 return ret;
2873
2874 out:
2875 drm_gem_object_unreference(&obj->base);
2876 mutex_unlock(&dev->struct_mutex);
2877 return ret;
2878 }
2879
2880 /**
2881 * i915_gem_object_sync - sync an object to a ring.
2882 *
2883 * @obj: object which may be in use on another ring.
2884 * @to: ring we wish to use the object on. May be NULL.
2885 *
2886 * This code is meant to abstract object synchronization with the GPU.
2887 * Calling with NULL implies synchronizing the object with the CPU
2888 * rather than a particular GPU ring.
2889 *
2890 * Returns 0 if successful, else propagates up the lower layer error.
2891 */
2892 int
2893 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2894 struct intel_engine_cs *to)
2895 {
2896 struct intel_engine_cs *from;
2897 u32 seqno;
2898 int ret, idx;
2899
2900 from = i915_gem_request_get_ring(obj->last_read_req);
2901
2902 if (from == NULL || to == from)
2903 return 0;
2904
2905 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2906 return i915_gem_object_wait_rendering(obj, false);
2907
2908 idx = intel_ring_sync_index(from, to);
2909
2910 seqno = i915_gem_request_get_seqno(obj->last_read_req);
2911 /* Optimization: Avoid semaphore sync when we are sure we already
2912 * waited for an object with higher seqno */
2913 if (seqno <= from->semaphore.sync_seqno[idx])
2914 return 0;
2915
2916 ret = i915_gem_check_olr(obj->last_read_req);
2917 if (ret)
2918 return ret;
2919
2920 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2921 ret = to->semaphore.sync_to(to, from, seqno);
2922 if (!ret)
2923 /* We use last_read_req because sync_to()
2924 * might have just caused seqno wrap under
2925 * the radar.
2926 */
2927 from->semaphore.sync_seqno[idx] =
2928 i915_gem_request_get_seqno(obj->last_read_req);
2929
2930 return ret;
2931 }
2932
2933 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2934 {
2935 u32 old_write_domain, old_read_domains;
2936
2937 /* Force a pagefault for domain tracking on next user access */
2938 i915_gem_release_mmap(obj);
2939
2940 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2941 return;
2942
2943 /* Wait for any direct GTT access to complete */
2944 mb();
2945
2946 old_read_domains = obj->base.read_domains;
2947 old_write_domain = obj->base.write_domain;
2948
2949 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2950 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2951
2952 trace_i915_gem_object_change_domain(obj,
2953 old_read_domains,
2954 old_write_domain);
2955 }
2956
2957 int i915_vma_unbind(struct i915_vma *vma)
2958 {
2959 struct drm_i915_gem_object *obj = vma->obj;
2960 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2961 int ret;
2962
2963 if (list_empty(&vma->vma_link))
2964 return 0;
2965
2966 if (!drm_mm_node_allocated(&vma->node)) {
2967 i915_gem_vma_destroy(vma);
2968 return 0;
2969 }
2970
2971 if (vma->pin_count)
2972 return -EBUSY;
2973
2974 BUG_ON(obj->pages == NULL);
2975
2976 ret = i915_gem_object_finish_gpu(obj);
2977 if (ret)
2978 return ret;
2979 /* Continue on if we fail due to EIO, the GPU is hung so we
2980 * should be safe and we need to cleanup or else we might
2981 * cause memory corruption through use-after-free.
2982 */
2983
2984 if (i915_is_ggtt(vma->vm) &&
2985 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2986 i915_gem_object_finish_gtt(obj);
2987
2988 /* release the fence reg _after_ flushing */
2989 ret = i915_gem_object_put_fence(obj);
2990 if (ret)
2991 return ret;
2992 }
2993
2994 trace_i915_vma_unbind(vma);
2995
2996 vma->unbind_vma(vma);
2997
2998 list_del_init(&vma->mm_list);
2999 if (i915_is_ggtt(vma->vm)) {
3000 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3001 obj->map_and_fenceable = false;
3002 } else if (vma->ggtt_view.pages) {
3003 sg_free_table(vma->ggtt_view.pages);
3004 kfree(vma->ggtt_view.pages);
3005 vma->ggtt_view.pages = NULL;
3006 }
3007 }
3008
3009 drm_mm_remove_node(&vma->node);
3010 i915_gem_vma_destroy(vma);
3011
3012 /* Since the unbound list is global, only move to that list if
3013 * no more VMAs exist. */
3014 if (list_empty(&obj->vma_list)) {
3015 /* Throw away the active reference before
3016 * moving to the unbound list. */
3017 i915_gem_object_retire(obj);
3018
3019 i915_gem_gtt_finish_object(obj);
3020 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3021 }
3022
3023 /* And finally now the object is completely decoupled from this vma,
3024 * we can drop its hold on the backing storage and allow it to be
3025 * reaped by the shrinker.
3026 */
3027 i915_gem_object_unpin_pages(obj);
3028
3029 return 0;
3030 }
3031
3032 int i915_gpu_idle(struct drm_device *dev)
3033 {
3034 struct drm_i915_private *dev_priv = dev->dev_private;
3035 struct intel_engine_cs *ring;
3036 int ret, i;
3037
3038 /* Flush everything onto the inactive list. */
3039 for_each_ring(ring, dev_priv, i) {
3040 if (!i915.enable_execlists) {
3041 ret = i915_switch_context(ring, ring->default_context);
3042 if (ret)
3043 return ret;
3044 }
3045
3046 ret = intel_ring_idle(ring);
3047 if (ret)
3048 return ret;
3049 }
3050
3051 return 0;
3052 }
3053
3054 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3055 struct drm_i915_gem_object *obj)
3056 {
3057 struct drm_i915_private *dev_priv = dev->dev_private;
3058 int fence_reg;
3059 int fence_pitch_shift;
3060
3061 if (INTEL_INFO(dev)->gen >= 6) {
3062 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3063 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3064 } else {
3065 fence_reg = FENCE_REG_965_0;
3066 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3067 }
3068
3069 fence_reg += reg * 8;
3070
3071 /* To w/a incoherency with non-atomic 64-bit register updates,
3072 * we split the 64-bit update into two 32-bit writes. In order
3073 * for a partial fence not to be evaluated between writes, we
3074 * precede the update with write to turn off the fence register,
3075 * and only enable the fence as the last step.
3076 *
3077 * For extra levels of paranoia, we make sure each step lands
3078 * before applying the next step.
3079 */
3080 I915_WRITE(fence_reg, 0);
3081 POSTING_READ(fence_reg);
3082
3083 if (obj) {
3084 u32 size = i915_gem_obj_ggtt_size(obj);
3085 uint64_t val;
3086
3087 /* Adjust fence size to match tiled area */
3088 if (obj->tiling_mode != I915_TILING_NONE) {
3089 uint32_t row_size = obj->stride *
3090 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3091 size = (size / row_size) * row_size;
3092 }
3093
3094 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3095 0xfffff000) << 32;
3096 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3097 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3098 if (obj->tiling_mode == I915_TILING_Y)
3099 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3100 val |= I965_FENCE_REG_VALID;
3101
3102 I915_WRITE(fence_reg + 4, val >> 32);
3103 POSTING_READ(fence_reg + 4);
3104
3105 I915_WRITE(fence_reg + 0, val);
3106 POSTING_READ(fence_reg);
3107 } else {
3108 I915_WRITE(fence_reg + 4, 0);
3109 POSTING_READ(fence_reg + 4);
3110 }
3111 }
3112
3113 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3114 struct drm_i915_gem_object *obj)
3115 {
3116 struct drm_i915_private *dev_priv = dev->dev_private;
3117 u32 val;
3118
3119 if (obj) {
3120 u32 size = i915_gem_obj_ggtt_size(obj);
3121 int pitch_val;
3122 int tile_width;
3123
3124 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3125 (size & -size) != size ||
3126 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3127 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3128 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3129
3130 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3131 tile_width = 128;
3132 else
3133 tile_width = 512;
3134
3135 /* Note: pitch better be a power of two tile widths */
3136 pitch_val = obj->stride / tile_width;
3137 pitch_val = ffs(pitch_val) - 1;
3138
3139 val = i915_gem_obj_ggtt_offset(obj);
3140 if (obj->tiling_mode == I915_TILING_Y)
3141 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3142 val |= I915_FENCE_SIZE_BITS(size);
3143 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3144 val |= I830_FENCE_REG_VALID;
3145 } else
3146 val = 0;
3147
3148 if (reg < 8)
3149 reg = FENCE_REG_830_0 + reg * 4;
3150 else
3151 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3152
3153 I915_WRITE(reg, val);
3154 POSTING_READ(reg);
3155 }
3156
3157 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3158 struct drm_i915_gem_object *obj)
3159 {
3160 struct drm_i915_private *dev_priv = dev->dev_private;
3161 uint32_t val;
3162
3163 if (obj) {
3164 u32 size = i915_gem_obj_ggtt_size(obj);
3165 uint32_t pitch_val;
3166
3167 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3168 (size & -size) != size ||
3169 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3170 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3171 i915_gem_obj_ggtt_offset(obj), size);
3172
3173 pitch_val = obj->stride / 128;
3174 pitch_val = ffs(pitch_val) - 1;
3175
3176 val = i915_gem_obj_ggtt_offset(obj);
3177 if (obj->tiling_mode == I915_TILING_Y)
3178 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3179 val |= I830_FENCE_SIZE_BITS(size);
3180 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3181 val |= I830_FENCE_REG_VALID;
3182 } else
3183 val = 0;
3184
3185 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3186 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3187 }
3188
3189 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3190 {
3191 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3192 }
3193
3194 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3195 struct drm_i915_gem_object *obj)
3196 {
3197 struct drm_i915_private *dev_priv = dev->dev_private;
3198
3199 /* Ensure that all CPU reads are completed before installing a fence
3200 * and all writes before removing the fence.
3201 */
3202 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3203 mb();
3204
3205 WARN(obj && (!obj->stride || !obj->tiling_mode),
3206 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3207 obj->stride, obj->tiling_mode);
3208
3209 if (IS_GEN2(dev))
3210 i830_write_fence_reg(dev, reg, obj);
3211 else if (IS_GEN3(dev))
3212 i915_write_fence_reg(dev, reg, obj);
3213 else if (INTEL_INFO(dev)->gen >= 4)
3214 i965_write_fence_reg(dev, reg, obj);
3215
3216 /* And similarly be paranoid that no direct access to this region
3217 * is reordered to before the fence is installed.
3218 */
3219 if (i915_gem_object_needs_mb(obj))
3220 mb();
3221 }
3222
3223 static inline int fence_number(struct drm_i915_private *dev_priv,
3224 struct drm_i915_fence_reg *fence)
3225 {
3226 return fence - dev_priv->fence_regs;
3227 }
3228
3229 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3230 struct drm_i915_fence_reg *fence,
3231 bool enable)
3232 {
3233 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3234 int reg = fence_number(dev_priv, fence);
3235
3236 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3237
3238 if (enable) {
3239 obj->fence_reg = reg;
3240 fence->obj = obj;
3241 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3242 } else {
3243 obj->fence_reg = I915_FENCE_REG_NONE;
3244 fence->obj = NULL;
3245 list_del_init(&fence->lru_list);
3246 }
3247 obj->fence_dirty = false;
3248 }
3249
3250 static int
3251 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3252 {
3253 if (obj->last_fenced_req) {
3254 int ret = i915_wait_request(obj->last_fenced_req);
3255 if (ret)
3256 return ret;
3257
3258 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3259 }
3260
3261 return 0;
3262 }
3263
3264 int
3265 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3266 {
3267 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3268 struct drm_i915_fence_reg *fence;
3269 int ret;
3270
3271 ret = i915_gem_object_wait_fence(obj);
3272 if (ret)
3273 return ret;
3274
3275 if (obj->fence_reg == I915_FENCE_REG_NONE)
3276 return 0;
3277
3278 fence = &dev_priv->fence_regs[obj->fence_reg];
3279
3280 if (WARN_ON(fence->pin_count))
3281 return -EBUSY;
3282
3283 i915_gem_object_fence_lost(obj);
3284 i915_gem_object_update_fence(obj, fence, false);
3285
3286 return 0;
3287 }
3288
3289 static struct drm_i915_fence_reg *
3290 i915_find_fence_reg(struct drm_device *dev)
3291 {
3292 struct drm_i915_private *dev_priv = dev->dev_private;
3293 struct drm_i915_fence_reg *reg, *avail;
3294 int i;
3295
3296 /* First try to find a free reg */
3297 avail = NULL;
3298 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3299 reg = &dev_priv->fence_regs[i];
3300 if (!reg->obj)
3301 return reg;
3302
3303 if (!reg->pin_count)
3304 avail = reg;
3305 }
3306
3307 if (avail == NULL)
3308 goto deadlock;
3309
3310 /* None available, try to steal one or wait for a user to finish */
3311 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3312 if (reg->pin_count)
3313 continue;
3314
3315 return reg;
3316 }
3317
3318 deadlock:
3319 /* Wait for completion of pending flips which consume fences */
3320 if (intel_has_pending_fb_unpin(dev))
3321 return ERR_PTR(-EAGAIN);
3322
3323 return ERR_PTR(-EDEADLK);
3324 }
3325
3326 /**
3327 * i915_gem_object_get_fence - set up fencing for an object
3328 * @obj: object to map through a fence reg
3329 *
3330 * When mapping objects through the GTT, userspace wants to be able to write
3331 * to them without having to worry about swizzling if the object is tiled.
3332 * This function walks the fence regs looking for a free one for @obj,
3333 * stealing one if it can't find any.
3334 *
3335 * It then sets up the reg based on the object's properties: address, pitch
3336 * and tiling format.
3337 *
3338 * For an untiled surface, this removes any existing fence.
3339 */
3340 int
3341 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3342 {
3343 struct drm_device *dev = obj->base.dev;
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 bool enable = obj->tiling_mode != I915_TILING_NONE;
3346 struct drm_i915_fence_reg *reg;
3347 int ret;
3348
3349 /* Have we updated the tiling parameters upon the object and so
3350 * will need to serialise the write to the associated fence register?
3351 */
3352 if (obj->fence_dirty) {
3353 ret = i915_gem_object_wait_fence(obj);
3354 if (ret)
3355 return ret;
3356 }
3357
3358 /* Just update our place in the LRU if our fence is getting reused. */
3359 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3360 reg = &dev_priv->fence_regs[obj->fence_reg];
3361 if (!obj->fence_dirty) {
3362 list_move_tail(&reg->lru_list,
3363 &dev_priv->mm.fence_list);
3364 return 0;
3365 }
3366 } else if (enable) {
3367 if (WARN_ON(!obj->map_and_fenceable))
3368 return -EINVAL;
3369
3370 reg = i915_find_fence_reg(dev);
3371 if (IS_ERR(reg))
3372 return PTR_ERR(reg);
3373
3374 if (reg->obj) {
3375 struct drm_i915_gem_object *old = reg->obj;
3376
3377 ret = i915_gem_object_wait_fence(old);
3378 if (ret)
3379 return ret;
3380
3381 i915_gem_object_fence_lost(old);
3382 }
3383 } else
3384 return 0;
3385
3386 i915_gem_object_update_fence(obj, reg, enable);
3387
3388 return 0;
3389 }
3390
3391 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3392 unsigned long cache_level)
3393 {
3394 struct drm_mm_node *gtt_space = &vma->node;
3395 struct drm_mm_node *other;
3396
3397 /*
3398 * On some machines we have to be careful when putting differing types
3399 * of snoopable memory together to avoid the prefetcher crossing memory
3400 * domains and dying. During vm initialisation, we decide whether or not
3401 * these constraints apply and set the drm_mm.color_adjust
3402 * appropriately.
3403 */
3404 if (vma->vm->mm.color_adjust == NULL)
3405 return true;
3406
3407 if (!drm_mm_node_allocated(gtt_space))
3408 return true;
3409
3410 if (list_empty(&gtt_space->node_list))
3411 return true;
3412
3413 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3414 if (other->allocated && !other->hole_follows && other->color != cache_level)
3415 return false;
3416
3417 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3418 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3419 return false;
3420
3421 return true;
3422 }
3423
3424 /**
3425 * Finds free space in the GTT aperture and binds the object there.
3426 */
3427 static struct i915_vma *
3428 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3429 struct i915_address_space *vm,
3430 const struct i915_ggtt_view *ggtt_view,
3431 unsigned alignment,
3432 uint64_t flags)
3433 {
3434 struct drm_device *dev = obj->base.dev;
3435 struct drm_i915_private *dev_priv = dev->dev_private;
3436 u32 size, fence_size, fence_alignment, unfenced_alignment;
3437 unsigned long start =
3438 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3439 unsigned long end =
3440 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3441 struct i915_vma *vma;
3442 int ret;
3443
3444 if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3445 return ERR_PTR(-EINVAL);
3446
3447 fence_size = i915_gem_get_gtt_size(dev,
3448 obj->base.size,
3449 obj->tiling_mode);
3450 fence_alignment = i915_gem_get_gtt_alignment(dev,
3451 obj->base.size,
3452 obj->tiling_mode, true);
3453 unfenced_alignment =
3454 i915_gem_get_gtt_alignment(dev,
3455 obj->base.size,
3456 obj->tiling_mode, false);
3457
3458 if (alignment == 0)
3459 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3460 unfenced_alignment;
3461 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3462 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3463 return ERR_PTR(-EINVAL);
3464 }
3465
3466 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3467
3468 /* If the object is bigger than the entire aperture, reject it early
3469 * before evicting everything in a vain attempt to find space.
3470 */
3471 if (obj->base.size > end) {
3472 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3473 obj->base.size,
3474 flags & PIN_MAPPABLE ? "mappable" : "total",
3475 end);
3476 return ERR_PTR(-E2BIG);
3477 }
3478
3479 ret = i915_gem_object_get_pages(obj);
3480 if (ret)
3481 return ERR_PTR(ret);
3482
3483 i915_gem_object_pin_pages(obj);
3484
3485 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3486 i915_gem_obj_lookup_or_create_vma(obj, vm);
3487
3488 if (IS_ERR(vma))
3489 goto err_unpin;
3490
3491 search_free:
3492 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3493 size, alignment,
3494 obj->cache_level,
3495 start, end,
3496 DRM_MM_SEARCH_DEFAULT,
3497 DRM_MM_CREATE_DEFAULT);
3498 if (ret) {
3499 ret = i915_gem_evict_something(dev, vm, size, alignment,
3500 obj->cache_level,
3501 start, end,
3502 flags);
3503 if (ret == 0)
3504 goto search_free;
3505
3506 goto err_free_vma;
3507 }
3508 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3509 ret = -EINVAL;
3510 goto err_remove_node;
3511 }
3512
3513 ret = i915_gem_gtt_prepare_object(obj);
3514 if (ret)
3515 goto err_remove_node;
3516
3517 /* allocate before insert / bind */
3518 if (vma->vm->allocate_va_range) {
3519 trace_i915_va_alloc(vma->vm, vma->node.start, vma->node.size,
3520 VM_TO_TRACE_NAME(vma->vm));
3521 ret = vma->vm->allocate_va_range(vma->vm,
3522 vma->node.start,
3523 vma->node.size);
3524 if (ret)
3525 goto err_remove_node;
3526 }
3527
3528 trace_i915_vma_bind(vma, flags);
3529 ret = i915_vma_bind(vma, obj->cache_level,
3530 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3531 if (ret)
3532 goto err_finish_gtt;
3533
3534 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3535 list_add_tail(&vma->mm_list, &vm->inactive_list);
3536
3537 return vma;
3538
3539 err_finish_gtt:
3540 i915_gem_gtt_finish_object(obj);
3541 err_remove_node:
3542 drm_mm_remove_node(&vma->node);
3543 err_free_vma:
3544 i915_gem_vma_destroy(vma);
3545 vma = ERR_PTR(ret);
3546 err_unpin:
3547 i915_gem_object_unpin_pages(obj);
3548 return vma;
3549 }
3550
3551 bool
3552 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3553 bool force)
3554 {
3555 /* If we don't have a page list set up, then we're not pinned
3556 * to GPU, and we can ignore the cache flush because it'll happen
3557 * again at bind time.
3558 */
3559 if (obj->pages == NULL)
3560 return false;
3561
3562 /*
3563 * Stolen memory is always coherent with the GPU as it is explicitly
3564 * marked as wc by the system, or the system is cache-coherent.
3565 */
3566 if (obj->stolen || obj->phys_handle)
3567 return false;
3568
3569 /* If the GPU is snooping the contents of the CPU cache,
3570 * we do not need to manually clear the CPU cache lines. However,
3571 * the caches are only snooped when the render cache is
3572 * flushed/invalidated. As we always have to emit invalidations
3573 * and flushes when moving into and out of the RENDER domain, correct
3574 * snooping behaviour occurs naturally as the result of our domain
3575 * tracking.
3576 */
3577 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3578 obj->cache_dirty = true;
3579 return false;
3580 }
3581
3582 trace_i915_gem_object_clflush(obj);
3583 drm_clflush_sg(obj->pages);
3584 obj->cache_dirty = false;
3585
3586 return true;
3587 }
3588
3589 /** Flushes the GTT write domain for the object if it's dirty. */
3590 static void
3591 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3592 {
3593 uint32_t old_write_domain;
3594
3595 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3596 return;
3597
3598 /* No actual flushing is required for the GTT write domain. Writes
3599 * to it immediately go to main memory as far as we know, so there's
3600 * no chipset flush. It also doesn't land in render cache.
3601 *
3602 * However, we do have to enforce the order so that all writes through
3603 * the GTT land before any writes to the device, such as updates to
3604 * the GATT itself.
3605 */
3606 wmb();
3607
3608 old_write_domain = obj->base.write_domain;
3609 obj->base.write_domain = 0;
3610
3611 intel_fb_obj_flush(obj, false);
3612
3613 trace_i915_gem_object_change_domain(obj,
3614 obj->base.read_domains,
3615 old_write_domain);
3616 }
3617
3618 /** Flushes the CPU write domain for the object if it's dirty. */
3619 static void
3620 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3621 {
3622 uint32_t old_write_domain;
3623
3624 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3625 return;
3626
3627 if (i915_gem_clflush_object(obj, obj->pin_display))
3628 i915_gem_chipset_flush(obj->base.dev);
3629
3630 old_write_domain = obj->base.write_domain;
3631 obj->base.write_domain = 0;
3632
3633 intel_fb_obj_flush(obj, false);
3634
3635 trace_i915_gem_object_change_domain(obj,
3636 obj->base.read_domains,
3637 old_write_domain);
3638 }
3639
3640 /**
3641 * Moves a single object to the GTT read, and possibly write domain.
3642 *
3643 * This function returns when the move is complete, including waiting on
3644 * flushes to occur.
3645 */
3646 int
3647 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3648 {
3649 uint32_t old_write_domain, old_read_domains;
3650 struct i915_vma *vma;
3651 int ret;
3652
3653 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3654 return 0;
3655
3656 ret = i915_gem_object_wait_rendering(obj, !write);
3657 if (ret)
3658 return ret;
3659
3660 i915_gem_object_retire(obj);
3661
3662 /* Flush and acquire obj->pages so that we are coherent through
3663 * direct access in memory with previous cached writes through
3664 * shmemfs and that our cache domain tracking remains valid.
3665 * For example, if the obj->filp was moved to swap without us
3666 * being notified and releasing the pages, we would mistakenly
3667 * continue to assume that the obj remained out of the CPU cached
3668 * domain.
3669 */
3670 ret = i915_gem_object_get_pages(obj);
3671 if (ret)
3672 return ret;
3673
3674 i915_gem_object_flush_cpu_write_domain(obj);
3675
3676 /* Serialise direct access to this object with the barriers for
3677 * coherent writes from the GPU, by effectively invalidating the
3678 * GTT domain upon first access.
3679 */
3680 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3681 mb();
3682
3683 old_write_domain = obj->base.write_domain;
3684 old_read_domains = obj->base.read_domains;
3685
3686 /* It should now be out of any other write domains, and we can update
3687 * the domain values for our changes.
3688 */
3689 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3690 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3691 if (write) {
3692 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3693 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3694 obj->dirty = 1;
3695 }
3696
3697 if (write)
3698 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3699
3700 trace_i915_gem_object_change_domain(obj,
3701 old_read_domains,
3702 old_write_domain);
3703
3704 /* And bump the LRU for this access */
3705 vma = i915_gem_obj_to_ggtt(obj);
3706 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3707 list_move_tail(&vma->mm_list,
3708 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3709
3710 return 0;
3711 }
3712
3713 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3714 enum i915_cache_level cache_level)
3715 {
3716 struct drm_device *dev = obj->base.dev;
3717 struct i915_vma *vma, *next;
3718 int ret;
3719
3720 if (obj->cache_level == cache_level)
3721 return 0;
3722
3723 if (i915_gem_obj_is_pinned(obj)) {
3724 DRM_DEBUG("can not change the cache level of pinned objects\n");
3725 return -EBUSY;
3726 }
3727
3728 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3729 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3730 ret = i915_vma_unbind(vma);
3731 if (ret)
3732 return ret;
3733 }
3734 }
3735
3736 if (i915_gem_obj_bound_any(obj)) {
3737 ret = i915_gem_object_finish_gpu(obj);
3738 if (ret)
3739 return ret;
3740
3741 i915_gem_object_finish_gtt(obj);
3742
3743 /* Before SandyBridge, you could not use tiling or fence
3744 * registers with snooped memory, so relinquish any fences
3745 * currently pointing to our region in the aperture.
3746 */
3747 if (INTEL_INFO(dev)->gen < 6) {
3748 ret = i915_gem_object_put_fence(obj);
3749 if (ret)
3750 return ret;
3751 }
3752
3753 list_for_each_entry(vma, &obj->vma_list, vma_link)
3754 if (drm_mm_node_allocated(&vma->node)) {
3755 ret = i915_vma_bind(vma, cache_level,
3756 vma->bound & GLOBAL_BIND);
3757 if (ret)
3758 return ret;
3759 }
3760 }
3761
3762 list_for_each_entry(vma, &obj->vma_list, vma_link)
3763 vma->node.color = cache_level;
3764 obj->cache_level = cache_level;
3765
3766 if (obj->cache_dirty &&
3767 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3768 cpu_write_needs_clflush(obj)) {
3769 if (i915_gem_clflush_object(obj, true))
3770 i915_gem_chipset_flush(obj->base.dev);
3771 }
3772
3773 return 0;
3774 }
3775
3776 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3777 struct drm_file *file)
3778 {
3779 struct drm_i915_gem_caching *args = data;
3780 struct drm_i915_gem_object *obj;
3781 int ret;
3782
3783 ret = i915_mutex_lock_interruptible(dev);
3784 if (ret)
3785 return ret;
3786
3787 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3788 if (&obj->base == NULL) {
3789 ret = -ENOENT;
3790 goto unlock;
3791 }
3792
3793 switch (obj->cache_level) {
3794 case I915_CACHE_LLC:
3795 case I915_CACHE_L3_LLC:
3796 args->caching = I915_CACHING_CACHED;
3797 break;
3798
3799 case I915_CACHE_WT:
3800 args->caching = I915_CACHING_DISPLAY;
3801 break;
3802
3803 default:
3804 args->caching = I915_CACHING_NONE;
3805 break;
3806 }
3807
3808 drm_gem_object_unreference(&obj->base);
3809 unlock:
3810 mutex_unlock(&dev->struct_mutex);
3811 return ret;
3812 }
3813
3814 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3815 struct drm_file *file)
3816 {
3817 struct drm_i915_gem_caching *args = data;
3818 struct drm_i915_gem_object *obj;
3819 enum i915_cache_level level;
3820 int ret;
3821
3822 switch (args->caching) {
3823 case I915_CACHING_NONE:
3824 level = I915_CACHE_NONE;
3825 break;
3826 case I915_CACHING_CACHED:
3827 level = I915_CACHE_LLC;
3828 break;
3829 case I915_CACHING_DISPLAY:
3830 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3831 break;
3832 default:
3833 return -EINVAL;
3834 }
3835
3836 ret = i915_mutex_lock_interruptible(dev);
3837 if (ret)
3838 return ret;
3839
3840 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3841 if (&obj->base == NULL) {
3842 ret = -ENOENT;
3843 goto unlock;
3844 }
3845
3846 ret = i915_gem_object_set_cache_level(obj, level);
3847
3848 drm_gem_object_unreference(&obj->base);
3849 unlock:
3850 mutex_unlock(&dev->struct_mutex);
3851 return ret;
3852 }
3853
3854 static bool is_pin_display(struct drm_i915_gem_object *obj)
3855 {
3856 struct i915_vma *vma;
3857
3858 vma = i915_gem_obj_to_ggtt(obj);
3859 if (!vma)
3860 return false;
3861
3862 /* There are 2 sources that pin objects:
3863 * 1. The display engine (scanouts, sprites, cursors);
3864 * 2. Reservations for execbuffer;
3865 *
3866 * We can ignore reservations as we hold the struct_mutex and
3867 * are only called outside of the reservation path.
3868 */
3869 return vma->pin_count;
3870 }
3871
3872 /*
3873 * Prepare buffer for display plane (scanout, cursors, etc).
3874 * Can be called from an uninterruptible phase (modesetting) and allows
3875 * any flushes to be pipelined (for pageflips).
3876 */
3877 int
3878 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3879 u32 alignment,
3880 struct intel_engine_cs *pipelined,
3881 const struct i915_ggtt_view *view)
3882 {
3883 u32 old_read_domains, old_write_domain;
3884 bool was_pin_display;
3885 int ret;
3886
3887 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3888 ret = i915_gem_object_sync(obj, pipelined);
3889 if (ret)
3890 return ret;
3891 }
3892
3893 /* Mark the pin_display early so that we account for the
3894 * display coherency whilst setting up the cache domains.
3895 */
3896 was_pin_display = obj->pin_display;
3897 obj->pin_display = true;
3898
3899 /* The display engine is not coherent with the LLC cache on gen6. As
3900 * a result, we make sure that the pinning that is about to occur is
3901 * done with uncached PTEs. This is lowest common denominator for all
3902 * chipsets.
3903 *
3904 * However for gen6+, we could do better by using the GFDT bit instead
3905 * of uncaching, which would allow us to flush all the LLC-cached data
3906 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3907 */
3908 ret = i915_gem_object_set_cache_level(obj,
3909 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3910 if (ret)
3911 goto err_unpin_display;
3912
3913 /* As the user may map the buffer once pinned in the display plane
3914 * (e.g. libkms for the bootup splash), we have to ensure that we
3915 * always use map_and_fenceable for all scanout buffers.
3916 */
3917 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3918 view->type == I915_GGTT_VIEW_NORMAL ?
3919 PIN_MAPPABLE : 0);
3920 if (ret)
3921 goto err_unpin_display;
3922
3923 i915_gem_object_flush_cpu_write_domain(obj);
3924
3925 old_write_domain = obj->base.write_domain;
3926 old_read_domains = obj->base.read_domains;
3927
3928 /* It should now be out of any other write domains, and we can update
3929 * the domain values for our changes.
3930 */
3931 obj->base.write_domain = 0;
3932 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3933
3934 trace_i915_gem_object_change_domain(obj,
3935 old_read_domains,
3936 old_write_domain);
3937
3938 return 0;
3939
3940 err_unpin_display:
3941 WARN_ON(was_pin_display != is_pin_display(obj));
3942 obj->pin_display = was_pin_display;
3943 return ret;
3944 }
3945
3946 void
3947 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3948 const struct i915_ggtt_view *view)
3949 {
3950 i915_gem_object_ggtt_unpin_view(obj, view);
3951
3952 obj->pin_display = is_pin_display(obj);
3953 }
3954
3955 int
3956 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3957 {
3958 int ret;
3959
3960 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3961 return 0;
3962
3963 ret = i915_gem_object_wait_rendering(obj, false);
3964 if (ret)
3965 return ret;
3966
3967 /* Ensure that we invalidate the GPU's caches and TLBs. */
3968 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3969 return 0;
3970 }
3971
3972 /**
3973 * Moves a single object to the CPU read, and possibly write domain.
3974 *
3975 * This function returns when the move is complete, including waiting on
3976 * flushes to occur.
3977 */
3978 int
3979 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3980 {
3981 uint32_t old_write_domain, old_read_domains;
3982 int ret;
3983
3984 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3985 return 0;
3986
3987 ret = i915_gem_object_wait_rendering(obj, !write);
3988 if (ret)
3989 return ret;
3990
3991 i915_gem_object_retire(obj);
3992 i915_gem_object_flush_gtt_write_domain(obj);
3993
3994 old_write_domain = obj->base.write_domain;
3995 old_read_domains = obj->base.read_domains;
3996
3997 /* Flush the CPU cache if it's still invalid. */
3998 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3999 i915_gem_clflush_object(obj, false);
4000
4001 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4002 }
4003
4004 /* It should now be out of any other write domains, and we can update
4005 * the domain values for our changes.
4006 */
4007 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4008
4009 /* If we're writing through the CPU, then the GPU read domains will
4010 * need to be invalidated at next use.
4011 */
4012 if (write) {
4013 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4014 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4015 }
4016
4017 if (write)
4018 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4019
4020 trace_i915_gem_object_change_domain(obj,
4021 old_read_domains,
4022 old_write_domain);
4023
4024 return 0;
4025 }
4026
4027 /* Throttle our rendering by waiting until the ring has completed our requests
4028 * emitted over 20 msec ago.
4029 *
4030 * Note that if we were to use the current jiffies each time around the loop,
4031 * we wouldn't escape the function with any frames outstanding if the time to
4032 * render a frame was over 20ms.
4033 *
4034 * This should get us reasonable parallelism between CPU and GPU but also
4035 * relatively low latency when blocking on a particular request to finish.
4036 */
4037 static int
4038 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4039 {
4040 struct drm_i915_private *dev_priv = dev->dev_private;
4041 struct drm_i915_file_private *file_priv = file->driver_priv;
4042 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4043 struct drm_i915_gem_request *request, *target = NULL;
4044 unsigned reset_counter;
4045 int ret;
4046
4047 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4048 if (ret)
4049 return ret;
4050
4051 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4052 if (ret)
4053 return ret;
4054
4055 spin_lock(&file_priv->mm.lock);
4056 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4057 if (time_after_eq(request->emitted_jiffies, recent_enough))
4058 break;
4059
4060 target = request;
4061 }
4062 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4063 if (target)
4064 i915_gem_request_reference(target);
4065 spin_unlock(&file_priv->mm.lock);
4066
4067 if (target == NULL)
4068 return 0;
4069
4070 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4071 if (ret == 0)
4072 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4073
4074 mutex_lock(&dev->struct_mutex);
4075 i915_gem_request_unreference(target);
4076 mutex_unlock(&dev->struct_mutex);
4077
4078 return ret;
4079 }
4080
4081 static bool
4082 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4083 {
4084 struct drm_i915_gem_object *obj = vma->obj;
4085
4086 if (alignment &&
4087 vma->node.start & (alignment - 1))
4088 return true;
4089
4090 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4091 return true;
4092
4093 if (flags & PIN_OFFSET_BIAS &&
4094 vma->node.start < (flags & PIN_OFFSET_MASK))
4095 return true;
4096
4097 return false;
4098 }
4099
4100 static int
4101 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4102 struct i915_address_space *vm,
4103 const struct i915_ggtt_view *ggtt_view,
4104 uint32_t alignment,
4105 uint64_t flags)
4106 {
4107 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4108 struct i915_vma *vma;
4109 unsigned bound;
4110 int ret;
4111
4112 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4113 return -ENODEV;
4114
4115 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4116 return -EINVAL;
4117
4118 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4119 return -EINVAL;
4120
4121 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4122 return -EINVAL;
4123
4124 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4125 i915_gem_obj_to_vma(obj, vm);
4126
4127 if (IS_ERR(vma))
4128 return PTR_ERR(vma);
4129
4130 if (vma) {
4131 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4132 return -EBUSY;
4133
4134 if (i915_vma_misplaced(vma, alignment, flags)) {
4135 unsigned long offset;
4136 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4137 i915_gem_obj_offset(obj, vm);
4138 WARN(vma->pin_count,
4139 "bo is already pinned in %s with incorrect alignment:"
4140 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4141 " obj->map_and_fenceable=%d\n",
4142 ggtt_view ? "ggtt" : "ppgtt",
4143 offset,
4144 alignment,
4145 !!(flags & PIN_MAPPABLE),
4146 obj->map_and_fenceable);
4147 ret = i915_vma_unbind(vma);
4148 if (ret)
4149 return ret;
4150
4151 vma = NULL;
4152 }
4153 }
4154
4155 bound = vma ? vma->bound : 0;
4156 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4157 /* In true PPGTT, bind has possibly changed PDEs, which
4158 * means we must do a context switch before the GPU can
4159 * accurately read some of the VMAs.
4160 */
4161 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4162 flags);
4163 if (IS_ERR(vma))
4164 return PTR_ERR(vma);
4165 }
4166
4167 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4168 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4169 if (ret)
4170 return ret;
4171 }
4172
4173 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4174 bool mappable, fenceable;
4175 u32 fence_size, fence_alignment;
4176
4177 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4178 obj->base.size,
4179 obj->tiling_mode);
4180 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4181 obj->base.size,
4182 obj->tiling_mode,
4183 true);
4184
4185 fenceable = (vma->node.size == fence_size &&
4186 (vma->node.start & (fence_alignment - 1)) == 0);
4187
4188 mappable = (vma->node.start + fence_size <=
4189 dev_priv->gtt.mappable_end);
4190
4191 obj->map_and_fenceable = mappable && fenceable;
4192 }
4193
4194 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4195
4196 vma->pin_count++;
4197 if (flags & PIN_MAPPABLE)
4198 obj->pin_mappable |= true;
4199
4200 return 0;
4201 }
4202
4203 int
4204 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4205 struct i915_address_space *vm,
4206 uint32_t alignment,
4207 uint64_t flags)
4208 {
4209 return i915_gem_object_do_pin(obj, vm,
4210 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4211 alignment, flags);
4212 }
4213
4214 int
4215 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4216 const struct i915_ggtt_view *view,
4217 uint32_t alignment,
4218 uint64_t flags)
4219 {
4220 if (WARN_ONCE(!view, "no view specified"))
4221 return -EINVAL;
4222
4223 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4224 alignment, flags | PIN_GLOBAL);
4225 }
4226
4227 void
4228 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4229 const struct i915_ggtt_view *view)
4230 {
4231 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4232
4233 BUG_ON(!vma);
4234 WARN_ON(vma->pin_count == 0);
4235 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4236
4237 if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
4238 obj->pin_mappable = false;
4239 }
4240
4241 bool
4242 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4243 {
4244 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4245 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4246 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4247
4248 WARN_ON(!ggtt_vma ||
4249 dev_priv->fence_regs[obj->fence_reg].pin_count >
4250 ggtt_vma->pin_count);
4251 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4252 return true;
4253 } else
4254 return false;
4255 }
4256
4257 void
4258 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4259 {
4260 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4261 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4262 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4263 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4264 }
4265 }
4266
4267 int
4268 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4269 struct drm_file *file)
4270 {
4271 struct drm_i915_gem_busy *args = data;
4272 struct drm_i915_gem_object *obj;
4273 int ret;
4274
4275 ret = i915_mutex_lock_interruptible(dev);
4276 if (ret)
4277 return ret;
4278
4279 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4280 if (&obj->base == NULL) {
4281 ret = -ENOENT;
4282 goto unlock;
4283 }
4284
4285 /* Count all active objects as busy, even if they are currently not used
4286 * by the gpu. Users of this interface expect objects to eventually
4287 * become non-busy without any further actions, therefore emit any
4288 * necessary flushes here.
4289 */
4290 ret = i915_gem_object_flush_active(obj);
4291
4292 args->busy = obj->active;
4293 if (obj->last_read_req) {
4294 struct intel_engine_cs *ring;
4295 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4296 ring = i915_gem_request_get_ring(obj->last_read_req);
4297 args->busy |= intel_ring_flag(ring) << 16;
4298 }
4299
4300 drm_gem_object_unreference(&obj->base);
4301 unlock:
4302 mutex_unlock(&dev->struct_mutex);
4303 return ret;
4304 }
4305
4306 int
4307 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4308 struct drm_file *file_priv)
4309 {
4310 return i915_gem_ring_throttle(dev, file_priv);
4311 }
4312
4313 int
4314 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4315 struct drm_file *file_priv)
4316 {
4317 struct drm_i915_private *dev_priv = dev->dev_private;
4318 struct drm_i915_gem_madvise *args = data;
4319 struct drm_i915_gem_object *obj;
4320 int ret;
4321
4322 switch (args->madv) {
4323 case I915_MADV_DONTNEED:
4324 case I915_MADV_WILLNEED:
4325 break;
4326 default:
4327 return -EINVAL;
4328 }
4329
4330 ret = i915_mutex_lock_interruptible(dev);
4331 if (ret)
4332 return ret;
4333
4334 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4335 if (&obj->base == NULL) {
4336 ret = -ENOENT;
4337 goto unlock;
4338 }
4339
4340 if (i915_gem_obj_is_pinned(obj)) {
4341 ret = -EINVAL;
4342 goto out;
4343 }
4344
4345 if (obj->pages &&
4346 obj->tiling_mode != I915_TILING_NONE &&
4347 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4348 if (obj->madv == I915_MADV_WILLNEED)
4349 i915_gem_object_unpin_pages(obj);
4350 if (args->madv == I915_MADV_WILLNEED)
4351 i915_gem_object_pin_pages(obj);
4352 }
4353
4354 if (obj->madv != __I915_MADV_PURGED)
4355 obj->madv = args->madv;
4356
4357 /* if the object is no longer attached, discard its backing storage */
4358 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4359 i915_gem_object_truncate(obj);
4360
4361 args->retained = obj->madv != __I915_MADV_PURGED;
4362
4363 out:
4364 drm_gem_object_unreference(&obj->base);
4365 unlock:
4366 mutex_unlock(&dev->struct_mutex);
4367 return ret;
4368 }
4369
4370 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4371 const struct drm_i915_gem_object_ops *ops)
4372 {
4373 INIT_LIST_HEAD(&obj->global_list);
4374 INIT_LIST_HEAD(&obj->ring_list);
4375 INIT_LIST_HEAD(&obj->obj_exec_link);
4376 INIT_LIST_HEAD(&obj->vma_list);
4377 INIT_LIST_HEAD(&obj->batch_pool_list);
4378
4379 obj->ops = ops;
4380
4381 obj->fence_reg = I915_FENCE_REG_NONE;
4382 obj->madv = I915_MADV_WILLNEED;
4383
4384 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4385 }
4386
4387 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4388 .get_pages = i915_gem_object_get_pages_gtt,
4389 .put_pages = i915_gem_object_put_pages_gtt,
4390 };
4391
4392 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4393 size_t size)
4394 {
4395 struct drm_i915_gem_object *obj;
4396 struct address_space *mapping;
4397 gfp_t mask;
4398
4399 obj = i915_gem_object_alloc(dev);
4400 if (obj == NULL)
4401 return NULL;
4402
4403 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4404 i915_gem_object_free(obj);
4405 return NULL;
4406 }
4407
4408 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4409 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4410 /* 965gm cannot relocate objects above 4GiB. */
4411 mask &= ~__GFP_HIGHMEM;
4412 mask |= __GFP_DMA32;
4413 }
4414
4415 mapping = file_inode(obj->base.filp)->i_mapping;
4416 mapping_set_gfp_mask(mapping, mask);
4417
4418 i915_gem_object_init(obj, &i915_gem_object_ops);
4419
4420 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4421 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4422
4423 if (HAS_LLC(dev)) {
4424 /* On some devices, we can have the GPU use the LLC (the CPU
4425 * cache) for about a 10% performance improvement
4426 * compared to uncached. Graphics requests other than
4427 * display scanout are coherent with the CPU in
4428 * accessing this cache. This means in this mode we
4429 * don't need to clflush on the CPU side, and on the
4430 * GPU side we only need to flush internal caches to
4431 * get data visible to the CPU.
4432 *
4433 * However, we maintain the display planes as UC, and so
4434 * need to rebind when first used as such.
4435 */
4436 obj->cache_level = I915_CACHE_LLC;
4437 } else
4438 obj->cache_level = I915_CACHE_NONE;
4439
4440 trace_i915_gem_object_create(obj);
4441
4442 return obj;
4443 }
4444
4445 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4446 {
4447 /* If we are the last user of the backing storage (be it shmemfs
4448 * pages or stolen etc), we know that the pages are going to be
4449 * immediately released. In this case, we can then skip copying
4450 * back the contents from the GPU.
4451 */
4452
4453 if (obj->madv != I915_MADV_WILLNEED)
4454 return false;
4455
4456 if (obj->base.filp == NULL)
4457 return true;
4458
4459 /* At first glance, this looks racy, but then again so would be
4460 * userspace racing mmap against close. However, the first external
4461 * reference to the filp can only be obtained through the
4462 * i915_gem_mmap_ioctl() which safeguards us against the user
4463 * acquiring such a reference whilst we are in the middle of
4464 * freeing the object.
4465 */
4466 return atomic_long_read(&obj->base.filp->f_count) == 1;
4467 }
4468
4469 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4470 {
4471 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4472 struct drm_device *dev = obj->base.dev;
4473 struct drm_i915_private *dev_priv = dev->dev_private;
4474 struct i915_vma *vma, *next;
4475
4476 intel_runtime_pm_get(dev_priv);
4477
4478 trace_i915_gem_object_destroy(obj);
4479
4480 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4481 int ret;
4482
4483 vma->pin_count = 0;
4484 ret = i915_vma_unbind(vma);
4485 if (WARN_ON(ret == -ERESTARTSYS)) {
4486 bool was_interruptible;
4487
4488 was_interruptible = dev_priv->mm.interruptible;
4489 dev_priv->mm.interruptible = false;
4490
4491 WARN_ON(i915_vma_unbind(vma));
4492
4493 dev_priv->mm.interruptible = was_interruptible;
4494 }
4495 }
4496
4497 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4498 * before progressing. */
4499 if (obj->stolen)
4500 i915_gem_object_unpin_pages(obj);
4501
4502 WARN_ON(obj->frontbuffer_bits);
4503
4504 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4505 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4506 obj->tiling_mode != I915_TILING_NONE)
4507 i915_gem_object_unpin_pages(obj);
4508
4509 if (WARN_ON(obj->pages_pin_count))
4510 obj->pages_pin_count = 0;
4511 if (discard_backing_storage(obj))
4512 obj->madv = I915_MADV_DONTNEED;
4513 i915_gem_object_put_pages(obj);
4514 i915_gem_object_free_mmap_offset(obj);
4515
4516 BUG_ON(obj->pages);
4517
4518 if (obj->base.import_attach)
4519 drm_prime_gem_destroy(&obj->base, NULL);
4520
4521 if (obj->ops->release)
4522 obj->ops->release(obj);
4523
4524 drm_gem_object_release(&obj->base);
4525 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4526
4527 kfree(obj->bit_17);
4528 i915_gem_object_free(obj);
4529
4530 intel_runtime_pm_put(dev_priv);
4531 }
4532
4533 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4534 struct i915_address_space *vm)
4535 {
4536 struct i915_vma *vma;
4537 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4538 if (i915_is_ggtt(vma->vm) &&
4539 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4540 continue;
4541 if (vma->vm == vm)
4542 return vma;
4543 }
4544 return NULL;
4545 }
4546
4547 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4548 const struct i915_ggtt_view *view)
4549 {
4550 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4551 struct i915_vma *vma;
4552
4553 if (WARN_ONCE(!view, "no view specified"))
4554 return ERR_PTR(-EINVAL);
4555
4556 list_for_each_entry(vma, &obj->vma_list, vma_link)
4557 if (vma->vm == ggtt &&
4558 i915_ggtt_view_equal(&vma->ggtt_view, view))
4559 return vma;
4560 return NULL;
4561 }
4562
4563 void i915_gem_vma_destroy(struct i915_vma *vma)
4564 {
4565 struct i915_address_space *vm = NULL;
4566 WARN_ON(vma->node.allocated);
4567
4568 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4569 if (!list_empty(&vma->exec_list))
4570 return;
4571
4572 vm = vma->vm;
4573
4574 if (!i915_is_ggtt(vm))
4575 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4576
4577 list_del(&vma->vma_link);
4578
4579 kfree(vma);
4580 }
4581
4582 static void
4583 i915_gem_stop_ringbuffers(struct drm_device *dev)
4584 {
4585 struct drm_i915_private *dev_priv = dev->dev_private;
4586 struct intel_engine_cs *ring;
4587 int i;
4588
4589 for_each_ring(ring, dev_priv, i)
4590 dev_priv->gt.stop_ring(ring);
4591 }
4592
4593 int
4594 i915_gem_suspend(struct drm_device *dev)
4595 {
4596 struct drm_i915_private *dev_priv = dev->dev_private;
4597 int ret = 0;
4598
4599 mutex_lock(&dev->struct_mutex);
4600 ret = i915_gpu_idle(dev);
4601 if (ret)
4602 goto err;
4603
4604 i915_gem_retire_requests(dev);
4605
4606 i915_gem_stop_ringbuffers(dev);
4607 mutex_unlock(&dev->struct_mutex);
4608
4609 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4610 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4611 flush_delayed_work(&dev_priv->mm.idle_work);
4612
4613 /* Assert that we sucessfully flushed all the work and
4614 * reset the GPU back to its idle, low power state.
4615 */
4616 WARN_ON(dev_priv->mm.busy);
4617
4618 return 0;
4619
4620 err:
4621 mutex_unlock(&dev->struct_mutex);
4622 return ret;
4623 }
4624
4625 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4626 {
4627 struct drm_device *dev = ring->dev;
4628 struct drm_i915_private *dev_priv = dev->dev_private;
4629 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4630 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4631 int i, ret;
4632
4633 if (!HAS_L3_DPF(dev) || !remap_info)
4634 return 0;
4635
4636 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4637 if (ret)
4638 return ret;
4639
4640 /*
4641 * Note: We do not worry about the concurrent register cacheline hang
4642 * here because no other code should access these registers other than
4643 * at initialization time.
4644 */
4645 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4646 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4647 intel_ring_emit(ring, reg_base + i);
4648 intel_ring_emit(ring, remap_info[i/4]);
4649 }
4650
4651 intel_ring_advance(ring);
4652
4653 return ret;
4654 }
4655
4656 void i915_gem_init_swizzling(struct drm_device *dev)
4657 {
4658 struct drm_i915_private *dev_priv = dev->dev_private;
4659
4660 if (INTEL_INFO(dev)->gen < 5 ||
4661 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4662 return;
4663
4664 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4665 DISP_TILE_SURFACE_SWIZZLING);
4666
4667 if (IS_GEN5(dev))
4668 return;
4669
4670 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4671 if (IS_GEN6(dev))
4672 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4673 else if (IS_GEN7(dev))
4674 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4675 else if (IS_GEN8(dev))
4676 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4677 else
4678 BUG();
4679 }
4680
4681 static bool
4682 intel_enable_blt(struct drm_device *dev)
4683 {
4684 if (!HAS_BLT(dev))
4685 return false;
4686
4687 /* The blitter was dysfunctional on early prototypes */
4688 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4689 DRM_INFO("BLT not supported on this pre-production hardware;"
4690 " graphics performance will be degraded.\n");
4691 return false;
4692 }
4693
4694 return true;
4695 }
4696
4697 static void init_unused_ring(struct drm_device *dev, u32 base)
4698 {
4699 struct drm_i915_private *dev_priv = dev->dev_private;
4700
4701 I915_WRITE(RING_CTL(base), 0);
4702 I915_WRITE(RING_HEAD(base), 0);
4703 I915_WRITE(RING_TAIL(base), 0);
4704 I915_WRITE(RING_START(base), 0);
4705 }
4706
4707 static void init_unused_rings(struct drm_device *dev)
4708 {
4709 if (IS_I830(dev)) {
4710 init_unused_ring(dev, PRB1_BASE);
4711 init_unused_ring(dev, SRB0_BASE);
4712 init_unused_ring(dev, SRB1_BASE);
4713 init_unused_ring(dev, SRB2_BASE);
4714 init_unused_ring(dev, SRB3_BASE);
4715 } else if (IS_GEN2(dev)) {
4716 init_unused_ring(dev, SRB0_BASE);
4717 init_unused_ring(dev, SRB1_BASE);
4718 } else if (IS_GEN3(dev)) {
4719 init_unused_ring(dev, PRB1_BASE);
4720 init_unused_ring(dev, PRB2_BASE);
4721 }
4722 }
4723
4724 int i915_gem_init_rings(struct drm_device *dev)
4725 {
4726 struct drm_i915_private *dev_priv = dev->dev_private;
4727 int ret;
4728
4729 ret = intel_init_render_ring_buffer(dev);
4730 if (ret)
4731 return ret;
4732
4733 if (HAS_BSD(dev)) {
4734 ret = intel_init_bsd_ring_buffer(dev);
4735 if (ret)
4736 goto cleanup_render_ring;
4737 }
4738
4739 if (intel_enable_blt(dev)) {
4740 ret = intel_init_blt_ring_buffer(dev);
4741 if (ret)
4742 goto cleanup_bsd_ring;
4743 }
4744
4745 if (HAS_VEBOX(dev)) {
4746 ret = intel_init_vebox_ring_buffer(dev);
4747 if (ret)
4748 goto cleanup_blt_ring;
4749 }
4750
4751 if (HAS_BSD2(dev)) {
4752 ret = intel_init_bsd2_ring_buffer(dev);
4753 if (ret)
4754 goto cleanup_vebox_ring;
4755 }
4756
4757 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4758 if (ret)
4759 goto cleanup_bsd2_ring;
4760
4761 return 0;
4762
4763 cleanup_bsd2_ring:
4764 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4765 cleanup_vebox_ring:
4766 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4767 cleanup_blt_ring:
4768 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4769 cleanup_bsd_ring:
4770 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4771 cleanup_render_ring:
4772 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4773
4774 return ret;
4775 }
4776
4777 int
4778 i915_gem_init_hw(struct drm_device *dev)
4779 {
4780 struct drm_i915_private *dev_priv = dev->dev_private;
4781 struct intel_engine_cs *ring;
4782 int ret, i;
4783
4784 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4785 return -EIO;
4786
4787 /* Double layer security blanket, see i915_gem_init() */
4788 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4789
4790 if (dev_priv->ellc_size)
4791 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4792
4793 if (IS_HASWELL(dev))
4794 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4795 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4796
4797 if (HAS_PCH_NOP(dev)) {
4798 if (IS_IVYBRIDGE(dev)) {
4799 u32 temp = I915_READ(GEN7_MSG_CTL);
4800 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4801 I915_WRITE(GEN7_MSG_CTL, temp);
4802 } else if (INTEL_INFO(dev)->gen >= 7) {
4803 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4804 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4805 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4806 }
4807 }
4808
4809 i915_gem_init_swizzling(dev);
4810
4811 /*
4812 * At least 830 can leave some of the unused rings
4813 * "active" (ie. head != tail) after resume which
4814 * will prevent c3 entry. Makes sure all unused rings
4815 * are totally idle.
4816 */
4817 init_unused_rings(dev);
4818
4819 for_each_ring(ring, dev_priv, i) {
4820 ret = ring->init_hw(ring);
4821 if (ret)
4822 goto out;
4823 }
4824
4825 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4826 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4827
4828 ret = i915_ppgtt_init_hw(dev);
4829 if (ret && ret != -EIO) {
4830 DRM_ERROR("PPGTT enable failed %d\n", ret);
4831 i915_gem_cleanup_ringbuffer(dev);
4832 }
4833
4834 ret = i915_gem_context_enable(dev_priv);
4835 if (ret && ret != -EIO) {
4836 DRM_ERROR("Context enable failed %d\n", ret);
4837 i915_gem_cleanup_ringbuffer(dev);
4838
4839 goto out;
4840 }
4841
4842 out:
4843 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4844 return ret;
4845 }
4846
4847 int i915_gem_init(struct drm_device *dev)
4848 {
4849 struct drm_i915_private *dev_priv = dev->dev_private;
4850 int ret;
4851
4852 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4853 i915.enable_execlists);
4854
4855 mutex_lock(&dev->struct_mutex);
4856
4857 if (IS_VALLEYVIEW(dev)) {
4858 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4859 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4860 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4861 VLV_GTLC_ALLOWWAKEACK), 10))
4862 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4863 }
4864
4865 if (!i915.enable_execlists) {
4866 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4867 dev_priv->gt.init_rings = i915_gem_init_rings;
4868 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4869 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4870 } else {
4871 dev_priv->gt.do_execbuf = intel_execlists_submission;
4872 dev_priv->gt.init_rings = intel_logical_rings_init;
4873 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4874 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4875 }
4876
4877 /* This is just a security blanket to placate dragons.
4878 * On some systems, we very sporadically observe that the first TLBs
4879 * used by the CS may be stale, despite us poking the TLB reset. If
4880 * we hold the forcewake during initialisation these problems
4881 * just magically go away.
4882 */
4883 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4884
4885 ret = i915_gem_init_userptr(dev);
4886 if (ret)
4887 goto out_unlock;
4888
4889 i915_gem_init_global_gtt(dev);
4890
4891 ret = i915_gem_context_init(dev);
4892 if (ret)
4893 goto out_unlock;
4894
4895 ret = dev_priv->gt.init_rings(dev);
4896 if (ret)
4897 goto out_unlock;
4898
4899 ret = i915_gem_init_hw(dev);
4900 if (ret == -EIO) {
4901 /* Allow ring initialisation to fail by marking the GPU as
4902 * wedged. But we only want to do this where the GPU is angry,
4903 * for all other failure, such as an allocation failure, bail.
4904 */
4905 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4906 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4907 ret = 0;
4908 }
4909
4910 out_unlock:
4911 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4912 mutex_unlock(&dev->struct_mutex);
4913
4914 return ret;
4915 }
4916
4917 void
4918 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4919 {
4920 struct drm_i915_private *dev_priv = dev->dev_private;
4921 struct intel_engine_cs *ring;
4922 int i;
4923
4924 for_each_ring(ring, dev_priv, i)
4925 dev_priv->gt.cleanup_ring(ring);
4926 }
4927
4928 static void
4929 init_ring_lists(struct intel_engine_cs *ring)
4930 {
4931 INIT_LIST_HEAD(&ring->active_list);
4932 INIT_LIST_HEAD(&ring->request_list);
4933 }
4934
4935 void i915_init_vm(struct drm_i915_private *dev_priv,
4936 struct i915_address_space *vm)
4937 {
4938 if (!i915_is_ggtt(vm))
4939 drm_mm_init(&vm->mm, vm->start, vm->total);
4940 vm->dev = dev_priv->dev;
4941 INIT_LIST_HEAD(&vm->active_list);
4942 INIT_LIST_HEAD(&vm->inactive_list);
4943 INIT_LIST_HEAD(&vm->global_link);
4944 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4945 }
4946
4947 void
4948 i915_gem_load(struct drm_device *dev)
4949 {
4950 struct drm_i915_private *dev_priv = dev->dev_private;
4951 int i;
4952
4953 dev_priv->slab =
4954 kmem_cache_create("i915_gem_object",
4955 sizeof(struct drm_i915_gem_object), 0,
4956 SLAB_HWCACHE_ALIGN,
4957 NULL);
4958
4959 INIT_LIST_HEAD(&dev_priv->vm_list);
4960 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4961
4962 INIT_LIST_HEAD(&dev_priv->context_list);
4963 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4964 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4965 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4966 for (i = 0; i < I915_NUM_RINGS; i++)
4967 init_ring_lists(&dev_priv->ring[i]);
4968 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4969 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4970 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4971 i915_gem_retire_work_handler);
4972 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4973 i915_gem_idle_work_handler);
4974 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4975
4976 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4977
4978 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4979 dev_priv->num_fence_regs = 32;
4980 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4981 dev_priv->num_fence_regs = 16;
4982 else
4983 dev_priv->num_fence_regs = 8;
4984
4985 if (intel_vgpu_active(dev))
4986 dev_priv->num_fence_regs =
4987 I915_READ(vgtif_reg(avail_rs.fence_num));
4988
4989 /* Initialize fence registers to zero */
4990 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4991 i915_gem_restore_fences(dev);
4992
4993 i915_gem_detect_bit_6_swizzle(dev);
4994 init_waitqueue_head(&dev_priv->pending_flip_queue);
4995
4996 dev_priv->mm.interruptible = true;
4997
4998 i915_gem_shrinker_init(dev_priv);
4999
5000 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5001
5002 mutex_init(&dev_priv->fb_tracking.lock);
5003 }
5004
5005 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5006 {
5007 struct drm_i915_file_private *file_priv = file->driver_priv;
5008
5009 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5010
5011 /* Clean up our request list when the client is going away, so that
5012 * later retire_requests won't dereference our soon-to-be-gone
5013 * file_priv.
5014 */
5015 spin_lock(&file_priv->mm.lock);
5016 while (!list_empty(&file_priv->mm.request_list)) {
5017 struct drm_i915_gem_request *request;
5018
5019 request = list_first_entry(&file_priv->mm.request_list,
5020 struct drm_i915_gem_request,
5021 client_list);
5022 list_del(&request->client_list);
5023 request->file_priv = NULL;
5024 }
5025 spin_unlock(&file_priv->mm.lock);
5026 }
5027
5028 static void
5029 i915_gem_file_idle_work_handler(struct work_struct *work)
5030 {
5031 struct drm_i915_file_private *file_priv =
5032 container_of(work, typeof(*file_priv), mm.idle_work.work);
5033
5034 atomic_set(&file_priv->rps_wait_boost, false);
5035 }
5036
5037 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5038 {
5039 struct drm_i915_file_private *file_priv;
5040 int ret;
5041
5042 DRM_DEBUG_DRIVER("\n");
5043
5044 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5045 if (!file_priv)
5046 return -ENOMEM;
5047
5048 file->driver_priv = file_priv;
5049 file_priv->dev_priv = dev->dev_private;
5050 file_priv->file = file;
5051
5052 spin_lock_init(&file_priv->mm.lock);
5053 INIT_LIST_HEAD(&file_priv->mm.request_list);
5054 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5055 i915_gem_file_idle_work_handler);
5056
5057 ret = i915_gem_context_open(dev, file);
5058 if (ret)
5059 kfree(file_priv);
5060
5061 return ret;
5062 }
5063
5064 /**
5065 * i915_gem_track_fb - update frontbuffer tracking
5066 * old: current GEM buffer for the frontbuffer slots
5067 * new: new GEM buffer for the frontbuffer slots
5068 * frontbuffer_bits: bitmask of frontbuffer slots
5069 *
5070 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5071 * from @old and setting them in @new. Both @old and @new can be NULL.
5072 */
5073 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5074 struct drm_i915_gem_object *new,
5075 unsigned frontbuffer_bits)
5076 {
5077 if (old) {
5078 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5079 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5080 old->frontbuffer_bits &= ~frontbuffer_bits;
5081 }
5082
5083 if (new) {
5084 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5085 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5086 new->frontbuffer_bits |= frontbuffer_bits;
5087 }
5088 }
5089
5090 /* All the new VM stuff */
5091 unsigned long
5092 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5093 struct i915_address_space *vm)
5094 {
5095 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5096 struct i915_vma *vma;
5097
5098 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5099
5100 list_for_each_entry(vma, &o->vma_list, vma_link) {
5101 if (i915_is_ggtt(vma->vm) &&
5102 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5103 continue;
5104 if (vma->vm == vm)
5105 return vma->node.start;
5106 }
5107
5108 WARN(1, "%s vma for this object not found.\n",
5109 i915_is_ggtt(vm) ? "global" : "ppgtt");
5110 return -1;
5111 }
5112
5113 unsigned long
5114 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5115 const struct i915_ggtt_view *view)
5116 {
5117 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5118 struct i915_vma *vma;
5119
5120 list_for_each_entry(vma, &o->vma_list, vma_link)
5121 if (vma->vm == ggtt &&
5122 i915_ggtt_view_equal(&vma->ggtt_view, view))
5123 return vma->node.start;
5124
5125 WARN(1, "global vma for this object not found.\n");
5126 return -1;
5127 }
5128
5129 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5130 struct i915_address_space *vm)
5131 {
5132 struct i915_vma *vma;
5133
5134 list_for_each_entry(vma, &o->vma_list, vma_link) {
5135 if (i915_is_ggtt(vma->vm) &&
5136 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5137 continue;
5138 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5139 return true;
5140 }
5141
5142 return false;
5143 }
5144
5145 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5146 const struct i915_ggtt_view *view)
5147 {
5148 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5149 struct i915_vma *vma;
5150
5151 list_for_each_entry(vma, &o->vma_list, vma_link)
5152 if (vma->vm == ggtt &&
5153 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5154 drm_mm_node_allocated(&vma->node))
5155 return true;
5156
5157 return false;
5158 }
5159
5160 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5161 {
5162 struct i915_vma *vma;
5163
5164 list_for_each_entry(vma, &o->vma_list, vma_link)
5165 if (drm_mm_node_allocated(&vma->node))
5166 return true;
5167
5168 return false;
5169 }
5170
5171 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5172 struct i915_address_space *vm)
5173 {
5174 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5175 struct i915_vma *vma;
5176
5177 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5178
5179 BUG_ON(list_empty(&o->vma_list));
5180
5181 list_for_each_entry(vma, &o->vma_list, vma_link) {
5182 if (i915_is_ggtt(vma->vm) &&
5183 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5184 continue;
5185 if (vma->vm == vm)
5186 return vma->node.size;
5187 }
5188 return 0;
5189 }
5190
5191 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5192 {
5193 struct i915_vma *vma;
5194 list_for_each_entry(vma, &obj->vma_list, vma_link) {
5195 if (i915_is_ggtt(vma->vm) &&
5196 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5197 continue;
5198 if (vma->pin_count > 0)
5199 return true;
5200 }
5201 return false;
5202 }
5203
This page took 0.129529 seconds and 6 git commands to generate.