drm/i915: Suppress no action noise from oom shrinker
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67 {
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
87 obj->fence_dirty = false;
88 obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103 {
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134 #undef EXIT_COND
135
136 return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 int ret;
143
144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
152 WARN_ON(i915_verify_lists(dev));
153 return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159 return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_init *args = data;
168
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
175
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
180 mutex_lock(&dev->struct_mutex);
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
183 dev_priv->gtt.mappable_end = args->gtt_end;
184 mutex_unlock(&dev->struct_mutex);
185
186 return 0;
187 }
188
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191 struct drm_file *file)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 struct drm_i915_gem_get_aperture *args = data;
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
197
198 pinned = 0;
199 mutex_lock(&dev->struct_mutex);
200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201 if (i915_gem_obj_is_pinned(obj))
202 pinned += i915_gem_obj_ggtt_size(obj);
203 mutex_unlock(&dev->struct_mutex);
204
205 args->aper_size = dev_priv->gtt.base.total;
206 args->aper_available_size = args->aper_size - pinned;
207
208 return 0;
209 }
210
211 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
212 {
213 drm_dma_handle_t *phys = obj->phys_handle;
214
215 if (!phys)
216 return;
217
218 if (obj->madv == I915_MADV_WILLNEED) {
219 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
220 char *vaddr = phys->vaddr;
221 int i;
222
223 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224 struct page *page = shmem_read_mapping_page(mapping, i);
225 if (!IS_ERR(page)) {
226 char *dst = kmap_atomic(page);
227 memcpy(dst, vaddr, PAGE_SIZE);
228 drm_clflush_virt_range(dst, PAGE_SIZE);
229 kunmap_atomic(dst);
230
231 set_page_dirty(page);
232 mark_page_accessed(page);
233 page_cache_release(page);
234 }
235 vaddr += PAGE_SIZE;
236 }
237 i915_gem_chipset_flush(obj->base.dev);
238 }
239
240 #ifdef CONFIG_X86
241 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
242 #endif
243 drm_pci_free(obj->base.dev, phys);
244 obj->phys_handle = NULL;
245 }
246
247 int
248 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
249 int align)
250 {
251 drm_dma_handle_t *phys;
252 struct address_space *mapping;
253 char *vaddr;
254 int i;
255
256 if (obj->phys_handle) {
257 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
258 return -EBUSY;
259
260 return 0;
261 }
262
263 if (obj->madv != I915_MADV_WILLNEED)
264 return -EFAULT;
265
266 if (obj->base.filp == NULL)
267 return -EINVAL;
268
269 /* create a new object */
270 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
271 if (!phys)
272 return -ENOMEM;
273
274 vaddr = phys->vaddr;
275 #ifdef CONFIG_X86
276 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
277 #endif
278 mapping = file_inode(obj->base.filp)->i_mapping;
279 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280 struct page *page;
281 char *src;
282
283 page = shmem_read_mapping_page(mapping, i);
284 if (IS_ERR(page)) {
285 #ifdef CONFIG_X86
286 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
287 #endif
288 drm_pci_free(obj->base.dev, phys);
289 return PTR_ERR(page);
290 }
291
292 src = kmap_atomic(page);
293 memcpy(vaddr, src, PAGE_SIZE);
294 kunmap_atomic(src);
295
296 mark_page_accessed(page);
297 page_cache_release(page);
298
299 vaddr += PAGE_SIZE;
300 }
301
302 obj->phys_handle = phys;
303 return 0;
304 }
305
306 static int
307 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
308 struct drm_i915_gem_pwrite *args,
309 struct drm_file *file_priv)
310 {
311 struct drm_device *dev = obj->base.dev;
312 void *vaddr = obj->phys_handle->vaddr + args->offset;
313 char __user *user_data = to_user_ptr(args->data_ptr);
314
315 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
316 unsigned long unwritten;
317
318 /* The physical object once assigned is fixed for the lifetime
319 * of the obj, so we can safely drop the lock and continue
320 * to access vaddr.
321 */
322 mutex_unlock(&dev->struct_mutex);
323 unwritten = copy_from_user(vaddr, user_data, args->size);
324 mutex_lock(&dev->struct_mutex);
325 if (unwritten)
326 return -EFAULT;
327 }
328
329 i915_gem_chipset_flush(dev);
330 return 0;
331 }
332
333 void *i915_gem_object_alloc(struct drm_device *dev)
334 {
335 struct drm_i915_private *dev_priv = dev->dev_private;
336 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
337 }
338
339 void i915_gem_object_free(struct drm_i915_gem_object *obj)
340 {
341 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
342 kmem_cache_free(dev_priv->slab, obj);
343 }
344
345 static int
346 i915_gem_create(struct drm_file *file,
347 struct drm_device *dev,
348 uint64_t size,
349 uint32_t *handle_p)
350 {
351 struct drm_i915_gem_object *obj;
352 int ret;
353 u32 handle;
354
355 size = roundup(size, PAGE_SIZE);
356 if (size == 0)
357 return -EINVAL;
358
359 /* Allocate the new object */
360 obj = i915_gem_alloc_object(dev, size);
361 if (obj == NULL)
362 return -ENOMEM;
363
364 ret = drm_gem_handle_create(file, &obj->base, &handle);
365 /* drop reference from allocate - handle holds it now */
366 drm_gem_object_unreference_unlocked(&obj->base);
367 if (ret)
368 return ret;
369
370 *handle_p = handle;
371 return 0;
372 }
373
374 int
375 i915_gem_dumb_create(struct drm_file *file,
376 struct drm_device *dev,
377 struct drm_mode_create_dumb *args)
378 {
379 /* have to work out size/pitch and return them */
380 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
381 args->size = args->pitch * args->height;
382 return i915_gem_create(file, dev,
383 args->size, &args->handle);
384 }
385
386 /**
387 * Creates a new mm object and returns a handle to it.
388 */
389 int
390 i915_gem_create_ioctl(struct drm_device *dev, void *data,
391 struct drm_file *file)
392 {
393 struct drm_i915_gem_create *args = data;
394
395 return i915_gem_create(file, dev,
396 args->size, &args->handle);
397 }
398
399 static inline int
400 __copy_to_user_swizzled(char __user *cpu_vaddr,
401 const char *gpu_vaddr, int gpu_offset,
402 int length)
403 {
404 int ret, cpu_offset = 0;
405
406 while (length > 0) {
407 int cacheline_end = ALIGN(gpu_offset + 1, 64);
408 int this_length = min(cacheline_end - gpu_offset, length);
409 int swizzled_gpu_offset = gpu_offset ^ 64;
410
411 ret = __copy_to_user(cpu_vaddr + cpu_offset,
412 gpu_vaddr + swizzled_gpu_offset,
413 this_length);
414 if (ret)
415 return ret + length;
416
417 cpu_offset += this_length;
418 gpu_offset += this_length;
419 length -= this_length;
420 }
421
422 return 0;
423 }
424
425 static inline int
426 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
427 const char __user *cpu_vaddr,
428 int length)
429 {
430 int ret, cpu_offset = 0;
431
432 while (length > 0) {
433 int cacheline_end = ALIGN(gpu_offset + 1, 64);
434 int this_length = min(cacheline_end - gpu_offset, length);
435 int swizzled_gpu_offset = gpu_offset ^ 64;
436
437 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
438 cpu_vaddr + cpu_offset,
439 this_length);
440 if (ret)
441 return ret + length;
442
443 cpu_offset += this_length;
444 gpu_offset += this_length;
445 length -= this_length;
446 }
447
448 return 0;
449 }
450
451 /*
452 * Pins the specified object's pages and synchronizes the object with
453 * GPU accesses. Sets needs_clflush to non-zero if the caller should
454 * flush the object from the CPU cache.
455 */
456 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
457 int *needs_clflush)
458 {
459 int ret;
460
461 *needs_clflush = 0;
462
463 if (!obj->base.filp)
464 return -EINVAL;
465
466 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
467 /* If we're not in the cpu read domain, set ourself into the gtt
468 * read domain and manually flush cachelines (if required). This
469 * optimizes for the case when the gpu will dirty the data
470 * anyway again before the next pread happens. */
471 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
472 obj->cache_level);
473 ret = i915_gem_object_wait_rendering(obj, true);
474 if (ret)
475 return ret;
476
477 i915_gem_object_retire(obj);
478 }
479
480 ret = i915_gem_object_get_pages(obj);
481 if (ret)
482 return ret;
483
484 i915_gem_object_pin_pages(obj);
485
486 return ret;
487 }
488
489 /* Per-page copy function for the shmem pread fastpath.
490 * Flushes invalid cachelines before reading the target if
491 * needs_clflush is set. */
492 static int
493 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
494 char __user *user_data,
495 bool page_do_bit17_swizzling, bool needs_clflush)
496 {
497 char *vaddr;
498 int ret;
499
500 if (unlikely(page_do_bit17_swizzling))
501 return -EINVAL;
502
503 vaddr = kmap_atomic(page);
504 if (needs_clflush)
505 drm_clflush_virt_range(vaddr + shmem_page_offset,
506 page_length);
507 ret = __copy_to_user_inatomic(user_data,
508 vaddr + shmem_page_offset,
509 page_length);
510 kunmap_atomic(vaddr);
511
512 return ret ? -EFAULT : 0;
513 }
514
515 static void
516 shmem_clflush_swizzled_range(char *addr, unsigned long length,
517 bool swizzled)
518 {
519 if (unlikely(swizzled)) {
520 unsigned long start = (unsigned long) addr;
521 unsigned long end = (unsigned long) addr + length;
522
523 /* For swizzling simply ensure that we always flush both
524 * channels. Lame, but simple and it works. Swizzled
525 * pwrite/pread is far from a hotpath - current userspace
526 * doesn't use it at all. */
527 start = round_down(start, 128);
528 end = round_up(end, 128);
529
530 drm_clflush_virt_range((void *)start, end - start);
531 } else {
532 drm_clflush_virt_range(addr, length);
533 }
534
535 }
536
537 /* Only difference to the fast-path function is that this can handle bit17
538 * and uses non-atomic copy and kmap functions. */
539 static int
540 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
541 char __user *user_data,
542 bool page_do_bit17_swizzling, bool needs_clflush)
543 {
544 char *vaddr;
545 int ret;
546
547 vaddr = kmap(page);
548 if (needs_clflush)
549 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
550 page_length,
551 page_do_bit17_swizzling);
552
553 if (page_do_bit17_swizzling)
554 ret = __copy_to_user_swizzled(user_data,
555 vaddr, shmem_page_offset,
556 page_length);
557 else
558 ret = __copy_to_user(user_data,
559 vaddr + shmem_page_offset,
560 page_length);
561 kunmap(page);
562
563 return ret ? - EFAULT : 0;
564 }
565
566 static int
567 i915_gem_shmem_pread(struct drm_device *dev,
568 struct drm_i915_gem_object *obj,
569 struct drm_i915_gem_pread *args,
570 struct drm_file *file)
571 {
572 char __user *user_data;
573 ssize_t remain;
574 loff_t offset;
575 int shmem_page_offset, page_length, ret = 0;
576 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
577 int prefaulted = 0;
578 int needs_clflush = 0;
579 struct sg_page_iter sg_iter;
580
581 user_data = to_user_ptr(args->data_ptr);
582 remain = args->size;
583
584 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
585
586 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
587 if (ret)
588 return ret;
589
590 offset = args->offset;
591
592 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
593 offset >> PAGE_SHIFT) {
594 struct page *page = sg_page_iter_page(&sg_iter);
595
596 if (remain <= 0)
597 break;
598
599 /* Operation in this page
600 *
601 * shmem_page_offset = offset within page in shmem file
602 * page_length = bytes to copy for this page
603 */
604 shmem_page_offset = offset_in_page(offset);
605 page_length = remain;
606 if ((shmem_page_offset + page_length) > PAGE_SIZE)
607 page_length = PAGE_SIZE - shmem_page_offset;
608
609 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
610 (page_to_phys(page) & (1 << 17)) != 0;
611
612 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
613 user_data, page_do_bit17_swizzling,
614 needs_clflush);
615 if (ret == 0)
616 goto next_page;
617
618 mutex_unlock(&dev->struct_mutex);
619
620 if (likely(!i915.prefault_disable) && !prefaulted) {
621 ret = fault_in_multipages_writeable(user_data, remain);
622 /* Userspace is tricking us, but we've already clobbered
623 * its pages with the prefault and promised to write the
624 * data up to the first fault. Hence ignore any errors
625 * and just continue. */
626 (void)ret;
627 prefaulted = 1;
628 }
629
630 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
631 user_data, page_do_bit17_swizzling,
632 needs_clflush);
633
634 mutex_lock(&dev->struct_mutex);
635
636 if (ret)
637 goto out;
638
639 next_page:
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
643 }
644
645 out:
646 i915_gem_object_unpin_pages(obj);
647
648 return ret;
649 }
650
651 /**
652 * Reads data from the object referenced by handle.
653 *
654 * On error, the contents of *data are undefined.
655 */
656 int
657 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
658 struct drm_file *file)
659 {
660 struct drm_i915_gem_pread *args = data;
661 struct drm_i915_gem_object *obj;
662 int ret = 0;
663
664 if (args->size == 0)
665 return 0;
666
667 if (!access_ok(VERIFY_WRITE,
668 to_user_ptr(args->data_ptr),
669 args->size))
670 return -EFAULT;
671
672 ret = i915_mutex_lock_interruptible(dev);
673 if (ret)
674 return ret;
675
676 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
677 if (&obj->base == NULL) {
678 ret = -ENOENT;
679 goto unlock;
680 }
681
682 /* Bounds check source. */
683 if (args->offset > obj->base.size ||
684 args->size > obj->base.size - args->offset) {
685 ret = -EINVAL;
686 goto out;
687 }
688
689 /* prime objects have no backing filp to GEM pread/pwrite
690 * pages from.
691 */
692 if (!obj->base.filp) {
693 ret = -EINVAL;
694 goto out;
695 }
696
697 trace_i915_gem_object_pread(obj, args->offset, args->size);
698
699 ret = i915_gem_shmem_pread(dev, obj, args, file);
700
701 out:
702 drm_gem_object_unreference(&obj->base);
703 unlock:
704 mutex_unlock(&dev->struct_mutex);
705 return ret;
706 }
707
708 /* This is the fast write path which cannot handle
709 * page faults in the source data
710 */
711
712 static inline int
713 fast_user_write(struct io_mapping *mapping,
714 loff_t page_base, int page_offset,
715 char __user *user_data,
716 int length)
717 {
718 void __iomem *vaddr_atomic;
719 void *vaddr;
720 unsigned long unwritten;
721
722 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
723 /* We can use the cpu mem copy function because this is X86. */
724 vaddr = (void __force*)vaddr_atomic + page_offset;
725 unwritten = __copy_from_user_inatomic_nocache(vaddr,
726 user_data, length);
727 io_mapping_unmap_atomic(vaddr_atomic);
728 return unwritten;
729 }
730
731 /**
732 * This is the fast pwrite path, where we copy the data directly from the
733 * user into the GTT, uncached.
734 */
735 static int
736 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
737 struct drm_i915_gem_object *obj,
738 struct drm_i915_gem_pwrite *args,
739 struct drm_file *file)
740 {
741 struct drm_i915_private *dev_priv = dev->dev_private;
742 ssize_t remain;
743 loff_t offset, page_base;
744 char __user *user_data;
745 int page_offset, page_length, ret;
746
747 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
748 if (ret)
749 goto out;
750
751 ret = i915_gem_object_set_to_gtt_domain(obj, true);
752 if (ret)
753 goto out_unpin;
754
755 ret = i915_gem_object_put_fence(obj);
756 if (ret)
757 goto out_unpin;
758
759 user_data = to_user_ptr(args->data_ptr);
760 remain = args->size;
761
762 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
763
764 while (remain > 0) {
765 /* Operation in this page
766 *
767 * page_base = page offset within aperture
768 * page_offset = offset within page
769 * page_length = bytes to copy for this page
770 */
771 page_base = offset & PAGE_MASK;
772 page_offset = offset_in_page(offset);
773 page_length = remain;
774 if ((page_offset + remain) > PAGE_SIZE)
775 page_length = PAGE_SIZE - page_offset;
776
777 /* If we get a fault while copying data, then (presumably) our
778 * source page isn't available. Return the error and we'll
779 * retry in the slow path.
780 */
781 if (fast_user_write(dev_priv->gtt.mappable, page_base,
782 page_offset, user_data, page_length)) {
783 ret = -EFAULT;
784 goto out_unpin;
785 }
786
787 remain -= page_length;
788 user_data += page_length;
789 offset += page_length;
790 }
791
792 out_unpin:
793 i915_gem_object_ggtt_unpin(obj);
794 out:
795 return ret;
796 }
797
798 /* Per-page copy function for the shmem pwrite fastpath.
799 * Flushes invalid cachelines before writing to the target if
800 * needs_clflush_before is set and flushes out any written cachelines after
801 * writing if needs_clflush is set. */
802 static int
803 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
804 char __user *user_data,
805 bool page_do_bit17_swizzling,
806 bool needs_clflush_before,
807 bool needs_clflush_after)
808 {
809 char *vaddr;
810 int ret;
811
812 if (unlikely(page_do_bit17_swizzling))
813 return -EINVAL;
814
815 vaddr = kmap_atomic(page);
816 if (needs_clflush_before)
817 drm_clflush_virt_range(vaddr + shmem_page_offset,
818 page_length);
819 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
820 user_data, page_length);
821 if (needs_clflush_after)
822 drm_clflush_virt_range(vaddr + shmem_page_offset,
823 page_length);
824 kunmap_atomic(vaddr);
825
826 return ret ? -EFAULT : 0;
827 }
828
829 /* Only difference to the fast-path function is that this can handle bit17
830 * and uses non-atomic copy and kmap functions. */
831 static int
832 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
833 char __user *user_data,
834 bool page_do_bit17_swizzling,
835 bool needs_clflush_before,
836 bool needs_clflush_after)
837 {
838 char *vaddr;
839 int ret;
840
841 vaddr = kmap(page);
842 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
843 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
844 page_length,
845 page_do_bit17_swizzling);
846 if (page_do_bit17_swizzling)
847 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
848 user_data,
849 page_length);
850 else
851 ret = __copy_from_user(vaddr + shmem_page_offset,
852 user_data,
853 page_length);
854 if (needs_clflush_after)
855 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
856 page_length,
857 page_do_bit17_swizzling);
858 kunmap(page);
859
860 return ret ? -EFAULT : 0;
861 }
862
863 static int
864 i915_gem_shmem_pwrite(struct drm_device *dev,
865 struct drm_i915_gem_object *obj,
866 struct drm_i915_gem_pwrite *args,
867 struct drm_file *file)
868 {
869 ssize_t remain;
870 loff_t offset;
871 char __user *user_data;
872 int shmem_page_offset, page_length, ret = 0;
873 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
874 int hit_slowpath = 0;
875 int needs_clflush_after = 0;
876 int needs_clflush_before = 0;
877 struct sg_page_iter sg_iter;
878
879 user_data = to_user_ptr(args->data_ptr);
880 remain = args->size;
881
882 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
883
884 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
885 /* If we're not in the cpu write domain, set ourself into the gtt
886 * write domain and manually flush cachelines (if required). This
887 * optimizes for the case when the gpu will use the data
888 * right away and we therefore have to clflush anyway. */
889 needs_clflush_after = cpu_write_needs_clflush(obj);
890 ret = i915_gem_object_wait_rendering(obj, false);
891 if (ret)
892 return ret;
893
894 i915_gem_object_retire(obj);
895 }
896 /* Same trick applies to invalidate partially written cachelines read
897 * before writing. */
898 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
899 needs_clflush_before =
900 !cpu_cache_is_coherent(dev, obj->cache_level);
901
902 ret = i915_gem_object_get_pages(obj);
903 if (ret)
904 return ret;
905
906 i915_gem_object_pin_pages(obj);
907
908 offset = args->offset;
909 obj->dirty = 1;
910
911 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
912 offset >> PAGE_SHIFT) {
913 struct page *page = sg_page_iter_page(&sg_iter);
914 int partial_cacheline_write;
915
916 if (remain <= 0)
917 break;
918
919 /* Operation in this page
920 *
921 * shmem_page_offset = offset within page in shmem file
922 * page_length = bytes to copy for this page
923 */
924 shmem_page_offset = offset_in_page(offset);
925
926 page_length = remain;
927 if ((shmem_page_offset + page_length) > PAGE_SIZE)
928 page_length = PAGE_SIZE - shmem_page_offset;
929
930 /* If we don't overwrite a cacheline completely we need to be
931 * careful to have up-to-date data by first clflushing. Don't
932 * overcomplicate things and flush the entire patch. */
933 partial_cacheline_write = needs_clflush_before &&
934 ((shmem_page_offset | page_length)
935 & (boot_cpu_data.x86_clflush_size - 1));
936
937 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
938 (page_to_phys(page) & (1 << 17)) != 0;
939
940 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
941 user_data, page_do_bit17_swizzling,
942 partial_cacheline_write,
943 needs_clflush_after);
944 if (ret == 0)
945 goto next_page;
946
947 hit_slowpath = 1;
948 mutex_unlock(&dev->struct_mutex);
949 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
950 user_data, page_do_bit17_swizzling,
951 partial_cacheline_write,
952 needs_clflush_after);
953
954 mutex_lock(&dev->struct_mutex);
955
956 if (ret)
957 goto out;
958
959 next_page:
960 remain -= page_length;
961 user_data += page_length;
962 offset += page_length;
963 }
964
965 out:
966 i915_gem_object_unpin_pages(obj);
967
968 if (hit_slowpath) {
969 /*
970 * Fixup: Flush cpu caches in case we didn't flush the dirty
971 * cachelines in-line while writing and the object moved
972 * out of the cpu write domain while we've dropped the lock.
973 */
974 if (!needs_clflush_after &&
975 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
976 if (i915_gem_clflush_object(obj, obj->pin_display))
977 i915_gem_chipset_flush(dev);
978 }
979 }
980
981 if (needs_clflush_after)
982 i915_gem_chipset_flush(dev);
983
984 return ret;
985 }
986
987 /**
988 * Writes data to the object referenced by handle.
989 *
990 * On error, the contents of the buffer that were to be modified are undefined.
991 */
992 int
993 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
994 struct drm_file *file)
995 {
996 struct drm_i915_gem_pwrite *args = data;
997 struct drm_i915_gem_object *obj;
998 int ret;
999
1000 if (args->size == 0)
1001 return 0;
1002
1003 if (!access_ok(VERIFY_READ,
1004 to_user_ptr(args->data_ptr),
1005 args->size))
1006 return -EFAULT;
1007
1008 if (likely(!i915.prefault_disable)) {
1009 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1010 args->size);
1011 if (ret)
1012 return -EFAULT;
1013 }
1014
1015 ret = i915_mutex_lock_interruptible(dev);
1016 if (ret)
1017 return ret;
1018
1019 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1020 if (&obj->base == NULL) {
1021 ret = -ENOENT;
1022 goto unlock;
1023 }
1024
1025 /* Bounds check destination. */
1026 if (args->offset > obj->base.size ||
1027 args->size > obj->base.size - args->offset) {
1028 ret = -EINVAL;
1029 goto out;
1030 }
1031
1032 /* prime objects have no backing filp to GEM pread/pwrite
1033 * pages from.
1034 */
1035 if (!obj->base.filp) {
1036 ret = -EINVAL;
1037 goto out;
1038 }
1039
1040 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1041
1042 ret = -EFAULT;
1043 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1044 * it would end up going through the fenced access, and we'll get
1045 * different detiling behavior between reading and writing.
1046 * pread/pwrite currently are reading and writing from the CPU
1047 * perspective, requiring manual detiling by the client.
1048 */
1049 if (obj->phys_handle) {
1050 ret = i915_gem_phys_pwrite(obj, args, file);
1051 goto out;
1052 }
1053
1054 if (obj->tiling_mode == I915_TILING_NONE &&
1055 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1056 cpu_write_needs_clflush(obj)) {
1057 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1058 /* Note that the gtt paths might fail with non-page-backed user
1059 * pointers (e.g. gtt mappings when moving data between
1060 * textures). Fallback to the shmem path in that case. */
1061 }
1062
1063 if (ret == -EFAULT || ret == -ENOSPC)
1064 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1065
1066 out:
1067 drm_gem_object_unreference(&obj->base);
1068 unlock:
1069 mutex_unlock(&dev->struct_mutex);
1070 return ret;
1071 }
1072
1073 int
1074 i915_gem_check_wedge(struct i915_gpu_error *error,
1075 bool interruptible)
1076 {
1077 if (i915_reset_in_progress(error)) {
1078 /* Non-interruptible callers can't handle -EAGAIN, hence return
1079 * -EIO unconditionally for these. */
1080 if (!interruptible)
1081 return -EIO;
1082
1083 /* Recovery complete, but the reset failed ... */
1084 if (i915_terminally_wedged(error))
1085 return -EIO;
1086
1087 /*
1088 * Check if GPU Reset is in progress - we need intel_ring_begin
1089 * to work properly to reinit the hw state while the gpu is
1090 * still marked as reset-in-progress. Handle this with a flag.
1091 */
1092 if (!error->reload_in_reset)
1093 return -EAGAIN;
1094 }
1095
1096 return 0;
1097 }
1098
1099 /*
1100 * Compare seqno against outstanding lazy request. Emit a request if they are
1101 * equal.
1102 */
1103 int
1104 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1105 {
1106 int ret;
1107
1108 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1109
1110 ret = 0;
1111 if (seqno == ring->outstanding_lazy_seqno)
1112 ret = i915_add_request(ring, NULL);
1113
1114 return ret;
1115 }
1116
1117 static void fake_irq(unsigned long data)
1118 {
1119 wake_up_process((struct task_struct *)data);
1120 }
1121
1122 static bool missed_irq(struct drm_i915_private *dev_priv,
1123 struct intel_engine_cs *ring)
1124 {
1125 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1126 }
1127
1128 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1129 {
1130 if (file_priv == NULL)
1131 return true;
1132
1133 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1134 }
1135
1136 /**
1137 * __wait_seqno - wait until execution of seqno has finished
1138 * @ring: the ring expected to report seqno
1139 * @seqno: duh!
1140 * @reset_counter: reset sequence associated with the given seqno
1141 * @interruptible: do an interruptible wait (normally yes)
1142 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1143 *
1144 * Note: It is of utmost importance that the passed in seqno and reset_counter
1145 * values have been read by the caller in an smp safe manner. Where read-side
1146 * locks are involved, it is sufficient to read the reset_counter before
1147 * unlocking the lock that protects the seqno. For lockless tricks, the
1148 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1149 * inserted.
1150 *
1151 * Returns 0 if the seqno was found within the alloted time. Else returns the
1152 * errno with remaining time filled in timeout argument.
1153 */
1154 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1155 unsigned reset_counter,
1156 bool interruptible,
1157 s64 *timeout,
1158 struct drm_i915_file_private *file_priv)
1159 {
1160 struct drm_device *dev = ring->dev;
1161 struct drm_i915_private *dev_priv = dev->dev_private;
1162 const bool irq_test_in_progress =
1163 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1164 DEFINE_WAIT(wait);
1165 unsigned long timeout_expire;
1166 s64 before, now;
1167 int ret;
1168
1169 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1170
1171 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1172 return 0;
1173
1174 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1175
1176 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1177 gen6_rps_boost(dev_priv);
1178 if (file_priv)
1179 mod_delayed_work(dev_priv->wq,
1180 &file_priv->mm.idle_work,
1181 msecs_to_jiffies(100));
1182 }
1183
1184 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1185 return -ENODEV;
1186
1187 /* Record current time in case interrupted by signal, or wedged */
1188 trace_i915_gem_request_wait_begin(ring, seqno);
1189 before = ktime_get_raw_ns();
1190 for (;;) {
1191 struct timer_list timer;
1192
1193 prepare_to_wait(&ring->irq_queue, &wait,
1194 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1195
1196 /* We need to check whether any gpu reset happened in between
1197 * the caller grabbing the seqno and now ... */
1198 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1199 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1200 * is truely gone. */
1201 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1202 if (ret == 0)
1203 ret = -EAGAIN;
1204 break;
1205 }
1206
1207 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1208 ret = 0;
1209 break;
1210 }
1211
1212 if (interruptible && signal_pending(current)) {
1213 ret = -ERESTARTSYS;
1214 break;
1215 }
1216
1217 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1218 ret = -ETIME;
1219 break;
1220 }
1221
1222 timer.function = NULL;
1223 if (timeout || missed_irq(dev_priv, ring)) {
1224 unsigned long expire;
1225
1226 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1227 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1228 mod_timer(&timer, expire);
1229 }
1230
1231 io_schedule();
1232
1233 if (timer.function) {
1234 del_singleshot_timer_sync(&timer);
1235 destroy_timer_on_stack(&timer);
1236 }
1237 }
1238 now = ktime_get_raw_ns();
1239 trace_i915_gem_request_wait_end(ring, seqno);
1240
1241 if (!irq_test_in_progress)
1242 ring->irq_put(ring);
1243
1244 finish_wait(&ring->irq_queue, &wait);
1245
1246 if (timeout) {
1247 s64 tres = *timeout - (now - before);
1248
1249 *timeout = tres < 0 ? 0 : tres;
1250 }
1251
1252 return ret;
1253 }
1254
1255 /**
1256 * Waits for a sequence number to be signaled, and cleans up the
1257 * request and object lists appropriately for that event.
1258 */
1259 int
1260 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1261 {
1262 struct drm_device *dev = ring->dev;
1263 struct drm_i915_private *dev_priv = dev->dev_private;
1264 bool interruptible = dev_priv->mm.interruptible;
1265 int ret;
1266
1267 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1268 BUG_ON(seqno == 0);
1269
1270 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1271 if (ret)
1272 return ret;
1273
1274 ret = i915_gem_check_olr(ring, seqno);
1275 if (ret)
1276 return ret;
1277
1278 return __wait_seqno(ring, seqno,
1279 atomic_read(&dev_priv->gpu_error.reset_counter),
1280 interruptible, NULL, NULL);
1281 }
1282
1283 static int
1284 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1285 struct intel_engine_cs *ring)
1286 {
1287 if (!obj->active)
1288 return 0;
1289
1290 /* Manually manage the write flush as we may have not yet
1291 * retired the buffer.
1292 *
1293 * Note that the last_write_seqno is always the earlier of
1294 * the two (read/write) seqno, so if we haved successfully waited,
1295 * we know we have passed the last write.
1296 */
1297 obj->last_write_seqno = 0;
1298
1299 return 0;
1300 }
1301
1302 /**
1303 * Ensures that all rendering to the object has completed and the object is
1304 * safe to unbind from the GTT or access from the CPU.
1305 */
1306 static __must_check int
1307 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1308 bool readonly)
1309 {
1310 struct intel_engine_cs *ring = obj->ring;
1311 u32 seqno;
1312 int ret;
1313
1314 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1315 if (seqno == 0)
1316 return 0;
1317
1318 ret = i915_wait_seqno(ring, seqno);
1319 if (ret)
1320 return ret;
1321
1322 return i915_gem_object_wait_rendering__tail(obj, ring);
1323 }
1324
1325 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1326 * as the object state may change during this call.
1327 */
1328 static __must_check int
1329 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1330 struct drm_i915_file_private *file_priv,
1331 bool readonly)
1332 {
1333 struct drm_device *dev = obj->base.dev;
1334 struct drm_i915_private *dev_priv = dev->dev_private;
1335 struct intel_engine_cs *ring = obj->ring;
1336 unsigned reset_counter;
1337 u32 seqno;
1338 int ret;
1339
1340 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1341 BUG_ON(!dev_priv->mm.interruptible);
1342
1343 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1344 if (seqno == 0)
1345 return 0;
1346
1347 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1348 if (ret)
1349 return ret;
1350
1351 ret = i915_gem_check_olr(ring, seqno);
1352 if (ret)
1353 return ret;
1354
1355 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1356 mutex_unlock(&dev->struct_mutex);
1357 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1358 mutex_lock(&dev->struct_mutex);
1359 if (ret)
1360 return ret;
1361
1362 return i915_gem_object_wait_rendering__tail(obj, ring);
1363 }
1364
1365 /**
1366 * Called when user space prepares to use an object with the CPU, either
1367 * through the mmap ioctl's mapping or a GTT mapping.
1368 */
1369 int
1370 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1371 struct drm_file *file)
1372 {
1373 struct drm_i915_gem_set_domain *args = data;
1374 struct drm_i915_gem_object *obj;
1375 uint32_t read_domains = args->read_domains;
1376 uint32_t write_domain = args->write_domain;
1377 int ret;
1378
1379 /* Only handle setting domains to types used by the CPU. */
1380 if (write_domain & I915_GEM_GPU_DOMAINS)
1381 return -EINVAL;
1382
1383 if (read_domains & I915_GEM_GPU_DOMAINS)
1384 return -EINVAL;
1385
1386 /* Having something in the write domain implies it's in the read
1387 * domain, and only that read domain. Enforce that in the request.
1388 */
1389 if (write_domain != 0 && read_domains != write_domain)
1390 return -EINVAL;
1391
1392 ret = i915_mutex_lock_interruptible(dev);
1393 if (ret)
1394 return ret;
1395
1396 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1397 if (&obj->base == NULL) {
1398 ret = -ENOENT;
1399 goto unlock;
1400 }
1401
1402 /* Try to flush the object off the GPU without holding the lock.
1403 * We will repeat the flush holding the lock in the normal manner
1404 * to catch cases where we are gazumped.
1405 */
1406 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1407 file->driver_priv,
1408 !write_domain);
1409 if (ret)
1410 goto unref;
1411
1412 if (read_domains & I915_GEM_DOMAIN_GTT) {
1413 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1414
1415 /* Silently promote "you're not bound, there was nothing to do"
1416 * to success, since the client was just asking us to
1417 * make sure everything was done.
1418 */
1419 if (ret == -EINVAL)
1420 ret = 0;
1421 } else {
1422 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1423 }
1424
1425 unref:
1426 drm_gem_object_unreference(&obj->base);
1427 unlock:
1428 mutex_unlock(&dev->struct_mutex);
1429 return ret;
1430 }
1431
1432 /**
1433 * Called when user space has done writes to this buffer
1434 */
1435 int
1436 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1437 struct drm_file *file)
1438 {
1439 struct drm_i915_gem_sw_finish *args = data;
1440 struct drm_i915_gem_object *obj;
1441 int ret = 0;
1442
1443 ret = i915_mutex_lock_interruptible(dev);
1444 if (ret)
1445 return ret;
1446
1447 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1448 if (&obj->base == NULL) {
1449 ret = -ENOENT;
1450 goto unlock;
1451 }
1452
1453 /* Pinned buffers may be scanout, so flush the cache */
1454 if (obj->pin_display)
1455 i915_gem_object_flush_cpu_write_domain(obj, true);
1456
1457 drm_gem_object_unreference(&obj->base);
1458 unlock:
1459 mutex_unlock(&dev->struct_mutex);
1460 return ret;
1461 }
1462
1463 /**
1464 * Maps the contents of an object, returning the address it is mapped
1465 * into.
1466 *
1467 * While the mapping holds a reference on the contents of the object, it doesn't
1468 * imply a ref on the object itself.
1469 */
1470 int
1471 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1472 struct drm_file *file)
1473 {
1474 struct drm_i915_gem_mmap *args = data;
1475 struct drm_gem_object *obj;
1476 unsigned long addr;
1477
1478 obj = drm_gem_object_lookup(dev, file, args->handle);
1479 if (obj == NULL)
1480 return -ENOENT;
1481
1482 /* prime objects have no backing filp to GEM mmap
1483 * pages from.
1484 */
1485 if (!obj->filp) {
1486 drm_gem_object_unreference_unlocked(obj);
1487 return -EINVAL;
1488 }
1489
1490 addr = vm_mmap(obj->filp, 0, args->size,
1491 PROT_READ | PROT_WRITE, MAP_SHARED,
1492 args->offset);
1493 drm_gem_object_unreference_unlocked(obj);
1494 if (IS_ERR((void *)addr))
1495 return addr;
1496
1497 args->addr_ptr = (uint64_t) addr;
1498
1499 return 0;
1500 }
1501
1502 /**
1503 * i915_gem_fault - fault a page into the GTT
1504 * vma: VMA in question
1505 * vmf: fault info
1506 *
1507 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1508 * from userspace. The fault handler takes care of binding the object to
1509 * the GTT (if needed), allocating and programming a fence register (again,
1510 * only if needed based on whether the old reg is still valid or the object
1511 * is tiled) and inserting a new PTE into the faulting process.
1512 *
1513 * Note that the faulting process may involve evicting existing objects
1514 * from the GTT and/or fence registers to make room. So performance may
1515 * suffer if the GTT working set is large or there are few fence registers
1516 * left.
1517 */
1518 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1519 {
1520 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1521 struct drm_device *dev = obj->base.dev;
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 pgoff_t page_offset;
1524 unsigned long pfn;
1525 int ret = 0;
1526 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1527
1528 intel_runtime_pm_get(dev_priv);
1529
1530 /* We don't use vmf->pgoff since that has the fake offset */
1531 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1532 PAGE_SHIFT;
1533
1534 ret = i915_mutex_lock_interruptible(dev);
1535 if (ret)
1536 goto out;
1537
1538 trace_i915_gem_object_fault(obj, page_offset, true, write);
1539
1540 /* Try to flush the object off the GPU first without holding the lock.
1541 * Upon reacquiring the lock, we will perform our sanity checks and then
1542 * repeat the flush holding the lock in the normal manner to catch cases
1543 * where we are gazumped.
1544 */
1545 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1546 if (ret)
1547 goto unlock;
1548
1549 /* Access to snoopable pages through the GTT is incoherent. */
1550 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1551 ret = -EFAULT;
1552 goto unlock;
1553 }
1554
1555 /* Now bind it into the GTT if needed */
1556 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1557 if (ret)
1558 goto unlock;
1559
1560 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1561 if (ret)
1562 goto unpin;
1563
1564 ret = i915_gem_object_get_fence(obj);
1565 if (ret)
1566 goto unpin;
1567
1568 /* Finally, remap it using the new GTT offset */
1569 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1570 pfn >>= PAGE_SHIFT;
1571
1572 if (!obj->fault_mappable) {
1573 unsigned long size = min_t(unsigned long,
1574 vma->vm_end - vma->vm_start,
1575 obj->base.size);
1576 int i;
1577
1578 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1579 ret = vm_insert_pfn(vma,
1580 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1581 pfn + i);
1582 if (ret)
1583 break;
1584 }
1585
1586 obj->fault_mappable = true;
1587 } else
1588 ret = vm_insert_pfn(vma,
1589 (unsigned long)vmf->virtual_address,
1590 pfn + page_offset);
1591 unpin:
1592 i915_gem_object_ggtt_unpin(obj);
1593 unlock:
1594 mutex_unlock(&dev->struct_mutex);
1595 out:
1596 switch (ret) {
1597 case -EIO:
1598 /*
1599 * We eat errors when the gpu is terminally wedged to avoid
1600 * userspace unduly crashing (gl has no provisions for mmaps to
1601 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1602 * and so needs to be reported.
1603 */
1604 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1605 ret = VM_FAULT_SIGBUS;
1606 break;
1607 }
1608 case -EAGAIN:
1609 /*
1610 * EAGAIN means the gpu is hung and we'll wait for the error
1611 * handler to reset everything when re-faulting in
1612 * i915_mutex_lock_interruptible.
1613 */
1614 case 0:
1615 case -ERESTARTSYS:
1616 case -EINTR:
1617 case -EBUSY:
1618 /*
1619 * EBUSY is ok: this just means that another thread
1620 * already did the job.
1621 */
1622 ret = VM_FAULT_NOPAGE;
1623 break;
1624 case -ENOMEM:
1625 ret = VM_FAULT_OOM;
1626 break;
1627 case -ENOSPC:
1628 case -EFAULT:
1629 ret = VM_FAULT_SIGBUS;
1630 break;
1631 default:
1632 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1633 ret = VM_FAULT_SIGBUS;
1634 break;
1635 }
1636
1637 intel_runtime_pm_put(dev_priv);
1638 return ret;
1639 }
1640
1641 /**
1642 * i915_gem_release_mmap - remove physical page mappings
1643 * @obj: obj in question
1644 *
1645 * Preserve the reservation of the mmapping with the DRM core code, but
1646 * relinquish ownership of the pages back to the system.
1647 *
1648 * It is vital that we remove the page mapping if we have mapped a tiled
1649 * object through the GTT and then lose the fence register due to
1650 * resource pressure. Similarly if the object has been moved out of the
1651 * aperture, than pages mapped into userspace must be revoked. Removing the
1652 * mapping will then trigger a page fault on the next user access, allowing
1653 * fixup by i915_gem_fault().
1654 */
1655 void
1656 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1657 {
1658 if (!obj->fault_mappable)
1659 return;
1660
1661 drm_vma_node_unmap(&obj->base.vma_node,
1662 obj->base.dev->anon_inode->i_mapping);
1663 obj->fault_mappable = false;
1664 }
1665
1666 void
1667 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1668 {
1669 struct drm_i915_gem_object *obj;
1670
1671 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1672 i915_gem_release_mmap(obj);
1673 }
1674
1675 uint32_t
1676 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1677 {
1678 uint32_t gtt_size;
1679
1680 if (INTEL_INFO(dev)->gen >= 4 ||
1681 tiling_mode == I915_TILING_NONE)
1682 return size;
1683
1684 /* Previous chips need a power-of-two fence region when tiling */
1685 if (INTEL_INFO(dev)->gen == 3)
1686 gtt_size = 1024*1024;
1687 else
1688 gtt_size = 512*1024;
1689
1690 while (gtt_size < size)
1691 gtt_size <<= 1;
1692
1693 return gtt_size;
1694 }
1695
1696 /**
1697 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1698 * @obj: object to check
1699 *
1700 * Return the required GTT alignment for an object, taking into account
1701 * potential fence register mapping.
1702 */
1703 uint32_t
1704 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1705 int tiling_mode, bool fenced)
1706 {
1707 /*
1708 * Minimum alignment is 4k (GTT page size), but might be greater
1709 * if a fence register is needed for the object.
1710 */
1711 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1712 tiling_mode == I915_TILING_NONE)
1713 return 4096;
1714
1715 /*
1716 * Previous chips need to be aligned to the size of the smallest
1717 * fence register that can contain the object.
1718 */
1719 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1720 }
1721
1722 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1723 {
1724 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1725 int ret;
1726
1727 if (drm_vma_node_has_offset(&obj->base.vma_node))
1728 return 0;
1729
1730 dev_priv->mm.shrinker_no_lock_stealing = true;
1731
1732 ret = drm_gem_create_mmap_offset(&obj->base);
1733 if (ret != -ENOSPC)
1734 goto out;
1735
1736 /* Badly fragmented mmap space? The only way we can recover
1737 * space is by destroying unwanted objects. We can't randomly release
1738 * mmap_offsets as userspace expects them to be persistent for the
1739 * lifetime of the objects. The closest we can is to release the
1740 * offsets on purgeable objects by truncating it and marking it purged,
1741 * which prevents userspace from ever using that object again.
1742 */
1743 i915_gem_shrink(dev_priv,
1744 obj->base.size >> PAGE_SHIFT,
1745 I915_SHRINK_BOUND |
1746 I915_SHRINK_UNBOUND |
1747 I915_SHRINK_PURGEABLE);
1748 ret = drm_gem_create_mmap_offset(&obj->base);
1749 if (ret != -ENOSPC)
1750 goto out;
1751
1752 i915_gem_shrink_all(dev_priv);
1753 ret = drm_gem_create_mmap_offset(&obj->base);
1754 out:
1755 dev_priv->mm.shrinker_no_lock_stealing = false;
1756
1757 return ret;
1758 }
1759
1760 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1761 {
1762 drm_gem_free_mmap_offset(&obj->base);
1763 }
1764
1765 int
1766 i915_gem_mmap_gtt(struct drm_file *file,
1767 struct drm_device *dev,
1768 uint32_t handle,
1769 uint64_t *offset)
1770 {
1771 struct drm_i915_private *dev_priv = dev->dev_private;
1772 struct drm_i915_gem_object *obj;
1773 int ret;
1774
1775 ret = i915_mutex_lock_interruptible(dev);
1776 if (ret)
1777 return ret;
1778
1779 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1780 if (&obj->base == NULL) {
1781 ret = -ENOENT;
1782 goto unlock;
1783 }
1784
1785 if (obj->base.size > dev_priv->gtt.mappable_end) {
1786 ret = -E2BIG;
1787 goto out;
1788 }
1789
1790 if (obj->madv != I915_MADV_WILLNEED) {
1791 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1792 ret = -EFAULT;
1793 goto out;
1794 }
1795
1796 ret = i915_gem_object_create_mmap_offset(obj);
1797 if (ret)
1798 goto out;
1799
1800 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1801
1802 out:
1803 drm_gem_object_unreference(&obj->base);
1804 unlock:
1805 mutex_unlock(&dev->struct_mutex);
1806 return ret;
1807 }
1808
1809 /**
1810 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1811 * @dev: DRM device
1812 * @data: GTT mapping ioctl data
1813 * @file: GEM object info
1814 *
1815 * Simply returns the fake offset to userspace so it can mmap it.
1816 * The mmap call will end up in drm_gem_mmap(), which will set things
1817 * up so we can get faults in the handler above.
1818 *
1819 * The fault handler will take care of binding the object into the GTT
1820 * (since it may have been evicted to make room for something), allocating
1821 * a fence register, and mapping the appropriate aperture address into
1822 * userspace.
1823 */
1824 int
1825 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1826 struct drm_file *file)
1827 {
1828 struct drm_i915_gem_mmap_gtt *args = data;
1829
1830 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1831 }
1832
1833 static inline int
1834 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1835 {
1836 return obj->madv == I915_MADV_DONTNEED;
1837 }
1838
1839 /* Immediately discard the backing storage */
1840 static void
1841 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1842 {
1843 i915_gem_object_free_mmap_offset(obj);
1844
1845 if (obj->base.filp == NULL)
1846 return;
1847
1848 /* Our goal here is to return as much of the memory as
1849 * is possible back to the system as we are called from OOM.
1850 * To do this we must instruct the shmfs to drop all of its
1851 * backing pages, *now*.
1852 */
1853 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1854 obj->madv = __I915_MADV_PURGED;
1855 }
1856
1857 /* Try to discard unwanted pages */
1858 static void
1859 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1860 {
1861 struct address_space *mapping;
1862
1863 switch (obj->madv) {
1864 case I915_MADV_DONTNEED:
1865 i915_gem_object_truncate(obj);
1866 case __I915_MADV_PURGED:
1867 return;
1868 }
1869
1870 if (obj->base.filp == NULL)
1871 return;
1872
1873 mapping = file_inode(obj->base.filp)->i_mapping,
1874 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1875 }
1876
1877 static void
1878 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1879 {
1880 struct sg_page_iter sg_iter;
1881 int ret;
1882
1883 BUG_ON(obj->madv == __I915_MADV_PURGED);
1884
1885 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1886 if (ret) {
1887 /* In the event of a disaster, abandon all caches and
1888 * hope for the best.
1889 */
1890 WARN_ON(ret != -EIO);
1891 i915_gem_clflush_object(obj, true);
1892 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1893 }
1894
1895 if (i915_gem_object_needs_bit17_swizzle(obj))
1896 i915_gem_object_save_bit_17_swizzle(obj);
1897
1898 if (obj->madv == I915_MADV_DONTNEED)
1899 obj->dirty = 0;
1900
1901 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1902 struct page *page = sg_page_iter_page(&sg_iter);
1903
1904 if (obj->dirty)
1905 set_page_dirty(page);
1906
1907 if (obj->madv == I915_MADV_WILLNEED)
1908 mark_page_accessed(page);
1909
1910 page_cache_release(page);
1911 }
1912 obj->dirty = 0;
1913
1914 sg_free_table(obj->pages);
1915 kfree(obj->pages);
1916 }
1917
1918 int
1919 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1920 {
1921 const struct drm_i915_gem_object_ops *ops = obj->ops;
1922
1923 if (obj->pages == NULL)
1924 return 0;
1925
1926 if (obj->pages_pin_count)
1927 return -EBUSY;
1928
1929 BUG_ON(i915_gem_obj_bound_any(obj));
1930
1931 /* ->put_pages might need to allocate memory for the bit17 swizzle
1932 * array, hence protect them from being reaped by removing them from gtt
1933 * lists early. */
1934 list_del(&obj->global_list);
1935
1936 ops->put_pages(obj);
1937 obj->pages = NULL;
1938
1939 i915_gem_object_invalidate(obj);
1940
1941 return 0;
1942 }
1943
1944 unsigned long
1945 i915_gem_shrink(struct drm_i915_private *dev_priv,
1946 long target, unsigned flags)
1947 {
1948 const struct {
1949 struct list_head *list;
1950 unsigned int bit;
1951 } phases[] = {
1952 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
1953 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
1954 { NULL, 0 },
1955 }, *phase;
1956 unsigned long count = 0;
1957
1958 /*
1959 * As we may completely rewrite the (un)bound list whilst unbinding
1960 * (due to retiring requests) we have to strictly process only
1961 * one element of the list at the time, and recheck the list
1962 * on every iteration.
1963 *
1964 * In particular, we must hold a reference whilst removing the
1965 * object as we may end up waiting for and/or retiring the objects.
1966 * This might release the final reference (held by the active list)
1967 * and result in the object being freed from under us. This is
1968 * similar to the precautions the eviction code must take whilst
1969 * removing objects.
1970 *
1971 * Also note that although these lists do not hold a reference to
1972 * the object we can safely grab one here: The final object
1973 * unreferencing and the bound_list are both protected by the
1974 * dev->struct_mutex and so we won't ever be able to observe an
1975 * object on the bound_list with a reference count equals 0.
1976 */
1977 for (phase = phases; phase->list; phase++) {
1978 struct list_head still_in_list;
1979
1980 if ((flags & phase->bit) == 0)
1981 continue;
1982
1983 INIT_LIST_HEAD(&still_in_list);
1984 while (count < target && !list_empty(phase->list)) {
1985 struct drm_i915_gem_object *obj;
1986 struct i915_vma *vma, *v;
1987
1988 obj = list_first_entry(phase->list,
1989 typeof(*obj), global_list);
1990 list_move_tail(&obj->global_list, &still_in_list);
1991
1992 if (flags & I915_SHRINK_PURGEABLE &&
1993 !i915_gem_object_is_purgeable(obj))
1994 continue;
1995
1996 drm_gem_object_reference(&obj->base);
1997
1998 /* For the unbound phase, this should be a no-op! */
1999 list_for_each_entry_safe(vma, v,
2000 &obj->vma_list, vma_link)
2001 if (i915_vma_unbind(vma))
2002 break;
2003
2004 if (i915_gem_object_put_pages(obj) == 0)
2005 count += obj->base.size >> PAGE_SHIFT;
2006
2007 drm_gem_object_unreference(&obj->base);
2008 }
2009 list_splice(&still_in_list, phase->list);
2010 }
2011
2012 return count;
2013 }
2014
2015 static unsigned long
2016 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2017 {
2018 i915_gem_evict_everything(dev_priv->dev);
2019 return i915_gem_shrink(dev_priv, LONG_MAX,
2020 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2021 }
2022
2023 static int
2024 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2025 {
2026 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2027 int page_count, i;
2028 struct address_space *mapping;
2029 struct sg_table *st;
2030 struct scatterlist *sg;
2031 struct sg_page_iter sg_iter;
2032 struct page *page;
2033 unsigned long last_pfn = 0; /* suppress gcc warning */
2034 gfp_t gfp;
2035
2036 /* Assert that the object is not currently in any GPU domain. As it
2037 * wasn't in the GTT, there shouldn't be any way it could have been in
2038 * a GPU cache
2039 */
2040 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2041 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2042
2043 st = kmalloc(sizeof(*st), GFP_KERNEL);
2044 if (st == NULL)
2045 return -ENOMEM;
2046
2047 page_count = obj->base.size / PAGE_SIZE;
2048 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2049 kfree(st);
2050 return -ENOMEM;
2051 }
2052
2053 /* Get the list of pages out of our struct file. They'll be pinned
2054 * at this point until we release them.
2055 *
2056 * Fail silently without starting the shrinker
2057 */
2058 mapping = file_inode(obj->base.filp)->i_mapping;
2059 gfp = mapping_gfp_mask(mapping);
2060 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2061 gfp &= ~(__GFP_IO | __GFP_WAIT);
2062 sg = st->sgl;
2063 st->nents = 0;
2064 for (i = 0; i < page_count; i++) {
2065 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2066 if (IS_ERR(page)) {
2067 i915_gem_shrink(dev_priv,
2068 page_count,
2069 I915_SHRINK_BOUND |
2070 I915_SHRINK_UNBOUND |
2071 I915_SHRINK_PURGEABLE);
2072 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2073 }
2074 if (IS_ERR(page)) {
2075 /* We've tried hard to allocate the memory by reaping
2076 * our own buffer, now let the real VM do its job and
2077 * go down in flames if truly OOM.
2078 */
2079 i915_gem_shrink_all(dev_priv);
2080 page = shmem_read_mapping_page(mapping, i);
2081 if (IS_ERR(page))
2082 goto err_pages;
2083 }
2084 #ifdef CONFIG_SWIOTLB
2085 if (swiotlb_nr_tbl()) {
2086 st->nents++;
2087 sg_set_page(sg, page, PAGE_SIZE, 0);
2088 sg = sg_next(sg);
2089 continue;
2090 }
2091 #endif
2092 if (!i || page_to_pfn(page) != last_pfn + 1) {
2093 if (i)
2094 sg = sg_next(sg);
2095 st->nents++;
2096 sg_set_page(sg, page, PAGE_SIZE, 0);
2097 } else {
2098 sg->length += PAGE_SIZE;
2099 }
2100 last_pfn = page_to_pfn(page);
2101
2102 /* Check that the i965g/gm workaround works. */
2103 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2104 }
2105 #ifdef CONFIG_SWIOTLB
2106 if (!swiotlb_nr_tbl())
2107 #endif
2108 sg_mark_end(sg);
2109 obj->pages = st;
2110
2111 if (i915_gem_object_needs_bit17_swizzle(obj))
2112 i915_gem_object_do_bit_17_swizzle(obj);
2113
2114 return 0;
2115
2116 err_pages:
2117 sg_mark_end(sg);
2118 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2119 page_cache_release(sg_page_iter_page(&sg_iter));
2120 sg_free_table(st);
2121 kfree(st);
2122
2123 /* shmemfs first checks if there is enough memory to allocate the page
2124 * and reports ENOSPC should there be insufficient, along with the usual
2125 * ENOMEM for a genuine allocation failure.
2126 *
2127 * We use ENOSPC in our driver to mean that we have run out of aperture
2128 * space and so want to translate the error from shmemfs back to our
2129 * usual understanding of ENOMEM.
2130 */
2131 if (PTR_ERR(page) == -ENOSPC)
2132 return -ENOMEM;
2133 else
2134 return PTR_ERR(page);
2135 }
2136
2137 /* Ensure that the associated pages are gathered from the backing storage
2138 * and pinned into our object. i915_gem_object_get_pages() may be called
2139 * multiple times before they are released by a single call to
2140 * i915_gem_object_put_pages() - once the pages are no longer referenced
2141 * either as a result of memory pressure (reaping pages under the shrinker)
2142 * or as the object is itself released.
2143 */
2144 int
2145 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2146 {
2147 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2148 const struct drm_i915_gem_object_ops *ops = obj->ops;
2149 int ret;
2150
2151 if (obj->pages)
2152 return 0;
2153
2154 if (obj->madv != I915_MADV_WILLNEED) {
2155 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2156 return -EFAULT;
2157 }
2158
2159 BUG_ON(obj->pages_pin_count);
2160
2161 ret = ops->get_pages(obj);
2162 if (ret)
2163 return ret;
2164
2165 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2166 return 0;
2167 }
2168
2169 static void
2170 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2171 struct intel_engine_cs *ring)
2172 {
2173 u32 seqno = intel_ring_get_seqno(ring);
2174
2175 BUG_ON(ring == NULL);
2176 if (obj->ring != ring && obj->last_write_seqno) {
2177 /* Keep the seqno relative to the current ring */
2178 obj->last_write_seqno = seqno;
2179 }
2180 obj->ring = ring;
2181
2182 /* Add a reference if we're newly entering the active list. */
2183 if (!obj->active) {
2184 drm_gem_object_reference(&obj->base);
2185 obj->active = 1;
2186 }
2187
2188 list_move_tail(&obj->ring_list, &ring->active_list);
2189
2190 obj->last_read_seqno = seqno;
2191 }
2192
2193 void i915_vma_move_to_active(struct i915_vma *vma,
2194 struct intel_engine_cs *ring)
2195 {
2196 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2197 return i915_gem_object_move_to_active(vma->obj, ring);
2198 }
2199
2200 static void
2201 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2202 {
2203 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2204 struct i915_address_space *vm;
2205 struct i915_vma *vma;
2206
2207 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2208 BUG_ON(!obj->active);
2209
2210 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2211 vma = i915_gem_obj_to_vma(obj, vm);
2212 if (vma && !list_empty(&vma->mm_list))
2213 list_move_tail(&vma->mm_list, &vm->inactive_list);
2214 }
2215
2216 intel_fb_obj_flush(obj, true);
2217
2218 list_del_init(&obj->ring_list);
2219 obj->ring = NULL;
2220
2221 obj->last_read_seqno = 0;
2222 obj->last_write_seqno = 0;
2223 obj->base.write_domain = 0;
2224
2225 obj->last_fenced_seqno = 0;
2226
2227 obj->active = 0;
2228 drm_gem_object_unreference(&obj->base);
2229
2230 WARN_ON(i915_verify_lists(dev));
2231 }
2232
2233 static void
2234 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2235 {
2236 struct intel_engine_cs *ring = obj->ring;
2237
2238 if (ring == NULL)
2239 return;
2240
2241 if (i915_seqno_passed(ring->get_seqno(ring, true),
2242 obj->last_read_seqno))
2243 i915_gem_object_move_to_inactive(obj);
2244 }
2245
2246 static int
2247 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2248 {
2249 struct drm_i915_private *dev_priv = dev->dev_private;
2250 struct intel_engine_cs *ring;
2251 int ret, i, j;
2252
2253 /* Carefully retire all requests without writing to the rings */
2254 for_each_ring(ring, dev_priv, i) {
2255 ret = intel_ring_idle(ring);
2256 if (ret)
2257 return ret;
2258 }
2259 i915_gem_retire_requests(dev);
2260
2261 /* Finally reset hw state */
2262 for_each_ring(ring, dev_priv, i) {
2263 intel_ring_init_seqno(ring, seqno);
2264
2265 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2266 ring->semaphore.sync_seqno[j] = 0;
2267 }
2268
2269 return 0;
2270 }
2271
2272 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2273 {
2274 struct drm_i915_private *dev_priv = dev->dev_private;
2275 int ret;
2276
2277 if (seqno == 0)
2278 return -EINVAL;
2279
2280 /* HWS page needs to be set less than what we
2281 * will inject to ring
2282 */
2283 ret = i915_gem_init_seqno(dev, seqno - 1);
2284 if (ret)
2285 return ret;
2286
2287 /* Carefully set the last_seqno value so that wrap
2288 * detection still works
2289 */
2290 dev_priv->next_seqno = seqno;
2291 dev_priv->last_seqno = seqno - 1;
2292 if (dev_priv->last_seqno == 0)
2293 dev_priv->last_seqno--;
2294
2295 return 0;
2296 }
2297
2298 int
2299 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2300 {
2301 struct drm_i915_private *dev_priv = dev->dev_private;
2302
2303 /* reserve 0 for non-seqno */
2304 if (dev_priv->next_seqno == 0) {
2305 int ret = i915_gem_init_seqno(dev, 0);
2306 if (ret)
2307 return ret;
2308
2309 dev_priv->next_seqno = 1;
2310 }
2311
2312 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2313 return 0;
2314 }
2315
2316 int __i915_add_request(struct intel_engine_cs *ring,
2317 struct drm_file *file,
2318 struct drm_i915_gem_object *obj,
2319 u32 *out_seqno)
2320 {
2321 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2322 struct drm_i915_gem_request *request;
2323 struct intel_ringbuffer *ringbuf;
2324 u32 request_ring_position, request_start;
2325 int ret;
2326
2327 request = ring->preallocated_lazy_request;
2328 if (WARN_ON(request == NULL))
2329 return -ENOMEM;
2330
2331 if (i915.enable_execlists) {
2332 struct intel_context *ctx = request->ctx;
2333 ringbuf = ctx->engine[ring->id].ringbuf;
2334 } else
2335 ringbuf = ring->buffer;
2336
2337 request_start = intel_ring_get_tail(ringbuf);
2338 /*
2339 * Emit any outstanding flushes - execbuf can fail to emit the flush
2340 * after having emitted the batchbuffer command. Hence we need to fix
2341 * things up similar to emitting the lazy request. The difference here
2342 * is that the flush _must_ happen before the next request, no matter
2343 * what.
2344 */
2345 if (i915.enable_execlists) {
2346 ret = logical_ring_flush_all_caches(ringbuf);
2347 if (ret)
2348 return ret;
2349 } else {
2350 ret = intel_ring_flush_all_caches(ring);
2351 if (ret)
2352 return ret;
2353 }
2354
2355 /* Record the position of the start of the request so that
2356 * should we detect the updated seqno part-way through the
2357 * GPU processing the request, we never over-estimate the
2358 * position of the head.
2359 */
2360 request_ring_position = intel_ring_get_tail(ringbuf);
2361
2362 if (i915.enable_execlists) {
2363 ret = ring->emit_request(ringbuf);
2364 if (ret)
2365 return ret;
2366 } else {
2367 ret = ring->add_request(ring);
2368 if (ret)
2369 return ret;
2370 }
2371
2372 request->seqno = intel_ring_get_seqno(ring);
2373 request->ring = ring;
2374 request->head = request_start;
2375 request->tail = request_ring_position;
2376
2377 /* Whilst this request exists, batch_obj will be on the
2378 * active_list, and so will hold the active reference. Only when this
2379 * request is retired will the the batch_obj be moved onto the
2380 * inactive_list and lose its active reference. Hence we do not need
2381 * to explicitly hold another reference here.
2382 */
2383 request->batch_obj = obj;
2384
2385 if (!i915.enable_execlists) {
2386 /* Hold a reference to the current context so that we can inspect
2387 * it later in case a hangcheck error event fires.
2388 */
2389 request->ctx = ring->last_context;
2390 if (request->ctx)
2391 i915_gem_context_reference(request->ctx);
2392 }
2393
2394 request->emitted_jiffies = jiffies;
2395 list_add_tail(&request->list, &ring->request_list);
2396 request->file_priv = NULL;
2397
2398 if (file) {
2399 struct drm_i915_file_private *file_priv = file->driver_priv;
2400
2401 spin_lock(&file_priv->mm.lock);
2402 request->file_priv = file_priv;
2403 list_add_tail(&request->client_list,
2404 &file_priv->mm.request_list);
2405 spin_unlock(&file_priv->mm.lock);
2406 }
2407
2408 trace_i915_gem_request_add(ring, request->seqno);
2409 ring->outstanding_lazy_seqno = 0;
2410 ring->preallocated_lazy_request = NULL;
2411
2412 if (!dev_priv->ums.mm_suspended) {
2413 i915_queue_hangcheck(ring->dev);
2414
2415 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2416 queue_delayed_work(dev_priv->wq,
2417 &dev_priv->mm.retire_work,
2418 round_jiffies_up_relative(HZ));
2419 intel_mark_busy(dev_priv->dev);
2420 }
2421
2422 if (out_seqno)
2423 *out_seqno = request->seqno;
2424 return 0;
2425 }
2426
2427 static inline void
2428 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2429 {
2430 struct drm_i915_file_private *file_priv = request->file_priv;
2431
2432 if (!file_priv)
2433 return;
2434
2435 spin_lock(&file_priv->mm.lock);
2436 list_del(&request->client_list);
2437 request->file_priv = NULL;
2438 spin_unlock(&file_priv->mm.lock);
2439 }
2440
2441 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2442 const struct intel_context *ctx)
2443 {
2444 unsigned long elapsed;
2445
2446 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2447
2448 if (ctx->hang_stats.banned)
2449 return true;
2450
2451 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2452 if (!i915_gem_context_is_default(ctx)) {
2453 DRM_DEBUG("context hanging too fast, banning!\n");
2454 return true;
2455 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2456 if (i915_stop_ring_allow_warn(dev_priv))
2457 DRM_ERROR("gpu hanging too fast, banning!\n");
2458 return true;
2459 }
2460 }
2461
2462 return false;
2463 }
2464
2465 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2466 struct intel_context *ctx,
2467 const bool guilty)
2468 {
2469 struct i915_ctx_hang_stats *hs;
2470
2471 if (WARN_ON(!ctx))
2472 return;
2473
2474 hs = &ctx->hang_stats;
2475
2476 if (guilty) {
2477 hs->banned = i915_context_is_banned(dev_priv, ctx);
2478 hs->batch_active++;
2479 hs->guilty_ts = get_seconds();
2480 } else {
2481 hs->batch_pending++;
2482 }
2483 }
2484
2485 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2486 {
2487 list_del(&request->list);
2488 i915_gem_request_remove_from_client(request);
2489
2490 if (request->ctx)
2491 i915_gem_context_unreference(request->ctx);
2492
2493 kfree(request);
2494 }
2495
2496 struct drm_i915_gem_request *
2497 i915_gem_find_active_request(struct intel_engine_cs *ring)
2498 {
2499 struct drm_i915_gem_request *request;
2500 u32 completed_seqno;
2501
2502 completed_seqno = ring->get_seqno(ring, false);
2503
2504 list_for_each_entry(request, &ring->request_list, list) {
2505 if (i915_seqno_passed(completed_seqno, request->seqno))
2506 continue;
2507
2508 return request;
2509 }
2510
2511 return NULL;
2512 }
2513
2514 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2515 struct intel_engine_cs *ring)
2516 {
2517 struct drm_i915_gem_request *request;
2518 bool ring_hung;
2519
2520 request = i915_gem_find_active_request(ring);
2521
2522 if (request == NULL)
2523 return;
2524
2525 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2526
2527 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2528
2529 list_for_each_entry_continue(request, &ring->request_list, list)
2530 i915_set_reset_status(dev_priv, request->ctx, false);
2531 }
2532
2533 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2534 struct intel_engine_cs *ring)
2535 {
2536 while (!list_empty(&ring->active_list)) {
2537 struct drm_i915_gem_object *obj;
2538
2539 obj = list_first_entry(&ring->active_list,
2540 struct drm_i915_gem_object,
2541 ring_list);
2542
2543 i915_gem_object_move_to_inactive(obj);
2544 }
2545
2546 /*
2547 * We must free the requests after all the corresponding objects have
2548 * been moved off active lists. Which is the same order as the normal
2549 * retire_requests function does. This is important if object hold
2550 * implicit references on things like e.g. ppgtt address spaces through
2551 * the request.
2552 */
2553 while (!list_empty(&ring->request_list)) {
2554 struct drm_i915_gem_request *request;
2555
2556 request = list_first_entry(&ring->request_list,
2557 struct drm_i915_gem_request,
2558 list);
2559
2560 i915_gem_free_request(request);
2561 }
2562
2563 while (!list_empty(&ring->execlist_queue)) {
2564 struct intel_ctx_submit_request *submit_req;
2565
2566 submit_req = list_first_entry(&ring->execlist_queue,
2567 struct intel_ctx_submit_request,
2568 execlist_link);
2569 list_del(&submit_req->execlist_link);
2570 intel_runtime_pm_put(dev_priv);
2571 i915_gem_context_unreference(submit_req->ctx);
2572 kfree(submit_req);
2573 }
2574
2575 /* These may not have been flush before the reset, do so now */
2576 kfree(ring->preallocated_lazy_request);
2577 ring->preallocated_lazy_request = NULL;
2578 ring->outstanding_lazy_seqno = 0;
2579 }
2580
2581 void i915_gem_restore_fences(struct drm_device *dev)
2582 {
2583 struct drm_i915_private *dev_priv = dev->dev_private;
2584 int i;
2585
2586 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2587 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2588
2589 /*
2590 * Commit delayed tiling changes if we have an object still
2591 * attached to the fence, otherwise just clear the fence.
2592 */
2593 if (reg->obj) {
2594 i915_gem_object_update_fence(reg->obj, reg,
2595 reg->obj->tiling_mode);
2596 } else {
2597 i915_gem_write_fence(dev, i, NULL);
2598 }
2599 }
2600 }
2601
2602 void i915_gem_reset(struct drm_device *dev)
2603 {
2604 struct drm_i915_private *dev_priv = dev->dev_private;
2605 struct intel_engine_cs *ring;
2606 int i;
2607
2608 /*
2609 * Before we free the objects from the requests, we need to inspect
2610 * them for finding the guilty party. As the requests only borrow
2611 * their reference to the objects, the inspection must be done first.
2612 */
2613 for_each_ring(ring, dev_priv, i)
2614 i915_gem_reset_ring_status(dev_priv, ring);
2615
2616 for_each_ring(ring, dev_priv, i)
2617 i915_gem_reset_ring_cleanup(dev_priv, ring);
2618
2619 i915_gem_context_reset(dev);
2620
2621 i915_gem_restore_fences(dev);
2622 }
2623
2624 /**
2625 * This function clears the request list as sequence numbers are passed.
2626 */
2627 void
2628 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2629 {
2630 uint32_t seqno;
2631
2632 if (list_empty(&ring->request_list))
2633 return;
2634
2635 WARN_ON(i915_verify_lists(ring->dev));
2636
2637 seqno = ring->get_seqno(ring, true);
2638
2639 /* Move any buffers on the active list that are no longer referenced
2640 * by the ringbuffer to the flushing/inactive lists as appropriate,
2641 * before we free the context associated with the requests.
2642 */
2643 while (!list_empty(&ring->active_list)) {
2644 struct drm_i915_gem_object *obj;
2645
2646 obj = list_first_entry(&ring->active_list,
2647 struct drm_i915_gem_object,
2648 ring_list);
2649
2650 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2651 break;
2652
2653 i915_gem_object_move_to_inactive(obj);
2654 }
2655
2656
2657 while (!list_empty(&ring->request_list)) {
2658 struct drm_i915_gem_request *request;
2659 struct intel_ringbuffer *ringbuf;
2660
2661 request = list_first_entry(&ring->request_list,
2662 struct drm_i915_gem_request,
2663 list);
2664
2665 if (!i915_seqno_passed(seqno, request->seqno))
2666 break;
2667
2668 trace_i915_gem_request_retire(ring, request->seqno);
2669
2670 /* This is one of the few common intersection points
2671 * between legacy ringbuffer submission and execlists:
2672 * we need to tell them apart in order to find the correct
2673 * ringbuffer to which the request belongs to.
2674 */
2675 if (i915.enable_execlists) {
2676 struct intel_context *ctx = request->ctx;
2677 ringbuf = ctx->engine[ring->id].ringbuf;
2678 } else
2679 ringbuf = ring->buffer;
2680
2681 /* We know the GPU must have read the request to have
2682 * sent us the seqno + interrupt, so use the position
2683 * of tail of the request to update the last known position
2684 * of the GPU head.
2685 */
2686 ringbuf->last_retired_head = request->tail;
2687
2688 i915_gem_free_request(request);
2689 }
2690
2691 if (unlikely(ring->trace_irq_seqno &&
2692 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2693 ring->irq_put(ring);
2694 ring->trace_irq_seqno = 0;
2695 }
2696
2697 WARN_ON(i915_verify_lists(ring->dev));
2698 }
2699
2700 bool
2701 i915_gem_retire_requests(struct drm_device *dev)
2702 {
2703 struct drm_i915_private *dev_priv = dev->dev_private;
2704 struct intel_engine_cs *ring;
2705 bool idle = true;
2706 int i;
2707
2708 for_each_ring(ring, dev_priv, i) {
2709 i915_gem_retire_requests_ring(ring);
2710 idle &= list_empty(&ring->request_list);
2711 }
2712
2713 if (idle)
2714 mod_delayed_work(dev_priv->wq,
2715 &dev_priv->mm.idle_work,
2716 msecs_to_jiffies(100));
2717
2718 return idle;
2719 }
2720
2721 static void
2722 i915_gem_retire_work_handler(struct work_struct *work)
2723 {
2724 struct drm_i915_private *dev_priv =
2725 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2726 struct drm_device *dev = dev_priv->dev;
2727 bool idle;
2728
2729 /* Come back later if the device is busy... */
2730 idle = false;
2731 if (mutex_trylock(&dev->struct_mutex)) {
2732 idle = i915_gem_retire_requests(dev);
2733 mutex_unlock(&dev->struct_mutex);
2734 }
2735 if (!idle)
2736 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2737 round_jiffies_up_relative(HZ));
2738 }
2739
2740 static void
2741 i915_gem_idle_work_handler(struct work_struct *work)
2742 {
2743 struct drm_i915_private *dev_priv =
2744 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2745
2746 intel_mark_idle(dev_priv->dev);
2747 }
2748
2749 /**
2750 * Ensures that an object will eventually get non-busy by flushing any required
2751 * write domains, emitting any outstanding lazy request and retiring and
2752 * completed requests.
2753 */
2754 static int
2755 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2756 {
2757 int ret;
2758
2759 if (obj->active) {
2760 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2761 if (ret)
2762 return ret;
2763
2764 i915_gem_retire_requests_ring(obj->ring);
2765 }
2766
2767 return 0;
2768 }
2769
2770 /**
2771 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2772 * @DRM_IOCTL_ARGS: standard ioctl arguments
2773 *
2774 * Returns 0 if successful, else an error is returned with the remaining time in
2775 * the timeout parameter.
2776 * -ETIME: object is still busy after timeout
2777 * -ERESTARTSYS: signal interrupted the wait
2778 * -ENONENT: object doesn't exist
2779 * Also possible, but rare:
2780 * -EAGAIN: GPU wedged
2781 * -ENOMEM: damn
2782 * -ENODEV: Internal IRQ fail
2783 * -E?: The add request failed
2784 *
2785 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2786 * non-zero timeout parameter the wait ioctl will wait for the given number of
2787 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2788 * without holding struct_mutex the object may become re-busied before this
2789 * function completes. A similar but shorter * race condition exists in the busy
2790 * ioctl
2791 */
2792 int
2793 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2794 {
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 struct drm_i915_gem_wait *args = data;
2797 struct drm_i915_gem_object *obj;
2798 struct intel_engine_cs *ring = NULL;
2799 unsigned reset_counter;
2800 u32 seqno = 0;
2801 int ret = 0;
2802
2803 ret = i915_mutex_lock_interruptible(dev);
2804 if (ret)
2805 return ret;
2806
2807 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2808 if (&obj->base == NULL) {
2809 mutex_unlock(&dev->struct_mutex);
2810 return -ENOENT;
2811 }
2812
2813 /* Need to make sure the object gets inactive eventually. */
2814 ret = i915_gem_object_flush_active(obj);
2815 if (ret)
2816 goto out;
2817
2818 if (obj->active) {
2819 seqno = obj->last_read_seqno;
2820 ring = obj->ring;
2821 }
2822
2823 if (seqno == 0)
2824 goto out;
2825
2826 /* Do this after OLR check to make sure we make forward progress polling
2827 * on this IOCTL with a timeout <=0 (like busy ioctl)
2828 */
2829 if (args->timeout_ns <= 0) {
2830 ret = -ETIME;
2831 goto out;
2832 }
2833
2834 drm_gem_object_unreference(&obj->base);
2835 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2836 mutex_unlock(&dev->struct_mutex);
2837
2838 return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2839 file->driver_priv);
2840
2841 out:
2842 drm_gem_object_unreference(&obj->base);
2843 mutex_unlock(&dev->struct_mutex);
2844 return ret;
2845 }
2846
2847 /**
2848 * i915_gem_object_sync - sync an object to a ring.
2849 *
2850 * @obj: object which may be in use on another ring.
2851 * @to: ring we wish to use the object on. May be NULL.
2852 *
2853 * This code is meant to abstract object synchronization with the GPU.
2854 * Calling with NULL implies synchronizing the object with the CPU
2855 * rather than a particular GPU ring.
2856 *
2857 * Returns 0 if successful, else propagates up the lower layer error.
2858 */
2859 int
2860 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2861 struct intel_engine_cs *to)
2862 {
2863 struct intel_engine_cs *from = obj->ring;
2864 u32 seqno;
2865 int ret, idx;
2866
2867 if (from == NULL || to == from)
2868 return 0;
2869
2870 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2871 return i915_gem_object_wait_rendering(obj, false);
2872
2873 idx = intel_ring_sync_index(from, to);
2874
2875 seqno = obj->last_read_seqno;
2876 /* Optimization: Avoid semaphore sync when we are sure we already
2877 * waited for an object with higher seqno */
2878 if (seqno <= from->semaphore.sync_seqno[idx])
2879 return 0;
2880
2881 ret = i915_gem_check_olr(obj->ring, seqno);
2882 if (ret)
2883 return ret;
2884
2885 trace_i915_gem_ring_sync_to(from, to, seqno);
2886 ret = to->semaphore.sync_to(to, from, seqno);
2887 if (!ret)
2888 /* We use last_read_seqno because sync_to()
2889 * might have just caused seqno wrap under
2890 * the radar.
2891 */
2892 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2893
2894 return ret;
2895 }
2896
2897 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2898 {
2899 u32 old_write_domain, old_read_domains;
2900
2901 /* Force a pagefault for domain tracking on next user access */
2902 i915_gem_release_mmap(obj);
2903
2904 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2905 return;
2906
2907 /* Wait for any direct GTT access to complete */
2908 mb();
2909
2910 old_read_domains = obj->base.read_domains;
2911 old_write_domain = obj->base.write_domain;
2912
2913 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2914 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2915
2916 trace_i915_gem_object_change_domain(obj,
2917 old_read_domains,
2918 old_write_domain);
2919 }
2920
2921 int i915_vma_unbind(struct i915_vma *vma)
2922 {
2923 struct drm_i915_gem_object *obj = vma->obj;
2924 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2925 int ret;
2926
2927 if (list_empty(&vma->vma_link))
2928 return 0;
2929
2930 if (!drm_mm_node_allocated(&vma->node)) {
2931 i915_gem_vma_destroy(vma);
2932 return 0;
2933 }
2934
2935 if (vma->pin_count)
2936 return -EBUSY;
2937
2938 BUG_ON(obj->pages == NULL);
2939
2940 ret = i915_gem_object_finish_gpu(obj);
2941 if (ret)
2942 return ret;
2943 /* Continue on if we fail due to EIO, the GPU is hung so we
2944 * should be safe and we need to cleanup or else we might
2945 * cause memory corruption through use-after-free.
2946 */
2947
2948 /* Throw away the active reference before moving to the unbound list */
2949 i915_gem_object_retire(obj);
2950
2951 if (i915_is_ggtt(vma->vm)) {
2952 i915_gem_object_finish_gtt(obj);
2953
2954 /* release the fence reg _after_ flushing */
2955 ret = i915_gem_object_put_fence(obj);
2956 if (ret)
2957 return ret;
2958 }
2959
2960 trace_i915_vma_unbind(vma);
2961
2962 vma->unbind_vma(vma);
2963
2964 list_del_init(&vma->mm_list);
2965 if (i915_is_ggtt(vma->vm))
2966 obj->map_and_fenceable = false;
2967
2968 drm_mm_remove_node(&vma->node);
2969 i915_gem_vma_destroy(vma);
2970
2971 /* Since the unbound list is global, only move to that list if
2972 * no more VMAs exist. */
2973 if (list_empty(&obj->vma_list)) {
2974 i915_gem_gtt_finish_object(obj);
2975 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2976 }
2977
2978 /* And finally now the object is completely decoupled from this vma,
2979 * we can drop its hold on the backing storage and allow it to be
2980 * reaped by the shrinker.
2981 */
2982 i915_gem_object_unpin_pages(obj);
2983
2984 return 0;
2985 }
2986
2987 int i915_gpu_idle(struct drm_device *dev)
2988 {
2989 struct drm_i915_private *dev_priv = dev->dev_private;
2990 struct intel_engine_cs *ring;
2991 int ret, i;
2992
2993 /* Flush everything onto the inactive list. */
2994 for_each_ring(ring, dev_priv, i) {
2995 if (!i915.enable_execlists) {
2996 ret = i915_switch_context(ring, ring->default_context);
2997 if (ret)
2998 return ret;
2999 }
3000
3001 ret = intel_ring_idle(ring);
3002 if (ret)
3003 return ret;
3004 }
3005
3006 return 0;
3007 }
3008
3009 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3010 struct drm_i915_gem_object *obj)
3011 {
3012 struct drm_i915_private *dev_priv = dev->dev_private;
3013 int fence_reg;
3014 int fence_pitch_shift;
3015
3016 if (INTEL_INFO(dev)->gen >= 6) {
3017 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3018 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3019 } else {
3020 fence_reg = FENCE_REG_965_0;
3021 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3022 }
3023
3024 fence_reg += reg * 8;
3025
3026 /* To w/a incoherency with non-atomic 64-bit register updates,
3027 * we split the 64-bit update into two 32-bit writes. In order
3028 * for a partial fence not to be evaluated between writes, we
3029 * precede the update with write to turn off the fence register,
3030 * and only enable the fence as the last step.
3031 *
3032 * For extra levels of paranoia, we make sure each step lands
3033 * before applying the next step.
3034 */
3035 I915_WRITE(fence_reg, 0);
3036 POSTING_READ(fence_reg);
3037
3038 if (obj) {
3039 u32 size = i915_gem_obj_ggtt_size(obj);
3040 uint64_t val;
3041
3042 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3043 0xfffff000) << 32;
3044 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3045 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3046 if (obj->tiling_mode == I915_TILING_Y)
3047 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3048 val |= I965_FENCE_REG_VALID;
3049
3050 I915_WRITE(fence_reg + 4, val >> 32);
3051 POSTING_READ(fence_reg + 4);
3052
3053 I915_WRITE(fence_reg + 0, val);
3054 POSTING_READ(fence_reg);
3055 } else {
3056 I915_WRITE(fence_reg + 4, 0);
3057 POSTING_READ(fence_reg + 4);
3058 }
3059 }
3060
3061 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3062 struct drm_i915_gem_object *obj)
3063 {
3064 struct drm_i915_private *dev_priv = dev->dev_private;
3065 u32 val;
3066
3067 if (obj) {
3068 u32 size = i915_gem_obj_ggtt_size(obj);
3069 int pitch_val;
3070 int tile_width;
3071
3072 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3073 (size & -size) != size ||
3074 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3075 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3076 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3077
3078 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3079 tile_width = 128;
3080 else
3081 tile_width = 512;
3082
3083 /* Note: pitch better be a power of two tile widths */
3084 pitch_val = obj->stride / tile_width;
3085 pitch_val = ffs(pitch_val) - 1;
3086
3087 val = i915_gem_obj_ggtt_offset(obj);
3088 if (obj->tiling_mode == I915_TILING_Y)
3089 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3090 val |= I915_FENCE_SIZE_BITS(size);
3091 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3092 val |= I830_FENCE_REG_VALID;
3093 } else
3094 val = 0;
3095
3096 if (reg < 8)
3097 reg = FENCE_REG_830_0 + reg * 4;
3098 else
3099 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3100
3101 I915_WRITE(reg, val);
3102 POSTING_READ(reg);
3103 }
3104
3105 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3106 struct drm_i915_gem_object *obj)
3107 {
3108 struct drm_i915_private *dev_priv = dev->dev_private;
3109 uint32_t val;
3110
3111 if (obj) {
3112 u32 size = i915_gem_obj_ggtt_size(obj);
3113 uint32_t pitch_val;
3114
3115 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3116 (size & -size) != size ||
3117 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3118 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3119 i915_gem_obj_ggtt_offset(obj), size);
3120
3121 pitch_val = obj->stride / 128;
3122 pitch_val = ffs(pitch_val) - 1;
3123
3124 val = i915_gem_obj_ggtt_offset(obj);
3125 if (obj->tiling_mode == I915_TILING_Y)
3126 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3127 val |= I830_FENCE_SIZE_BITS(size);
3128 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3129 val |= I830_FENCE_REG_VALID;
3130 } else
3131 val = 0;
3132
3133 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3134 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3135 }
3136
3137 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3138 {
3139 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3140 }
3141
3142 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3143 struct drm_i915_gem_object *obj)
3144 {
3145 struct drm_i915_private *dev_priv = dev->dev_private;
3146
3147 /* Ensure that all CPU reads are completed before installing a fence
3148 * and all writes before removing the fence.
3149 */
3150 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3151 mb();
3152
3153 WARN(obj && (!obj->stride || !obj->tiling_mode),
3154 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3155 obj->stride, obj->tiling_mode);
3156
3157 switch (INTEL_INFO(dev)->gen) {
3158 case 9:
3159 case 8:
3160 case 7:
3161 case 6:
3162 case 5:
3163 case 4: i965_write_fence_reg(dev, reg, obj); break;
3164 case 3: i915_write_fence_reg(dev, reg, obj); break;
3165 case 2: i830_write_fence_reg(dev, reg, obj); break;
3166 default: BUG();
3167 }
3168
3169 /* And similarly be paranoid that no direct access to this region
3170 * is reordered to before the fence is installed.
3171 */
3172 if (i915_gem_object_needs_mb(obj))
3173 mb();
3174 }
3175
3176 static inline int fence_number(struct drm_i915_private *dev_priv,
3177 struct drm_i915_fence_reg *fence)
3178 {
3179 return fence - dev_priv->fence_regs;
3180 }
3181
3182 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3183 struct drm_i915_fence_reg *fence,
3184 bool enable)
3185 {
3186 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3187 int reg = fence_number(dev_priv, fence);
3188
3189 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3190
3191 if (enable) {
3192 obj->fence_reg = reg;
3193 fence->obj = obj;
3194 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3195 } else {
3196 obj->fence_reg = I915_FENCE_REG_NONE;
3197 fence->obj = NULL;
3198 list_del_init(&fence->lru_list);
3199 }
3200 obj->fence_dirty = false;
3201 }
3202
3203 static int
3204 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3205 {
3206 if (obj->last_fenced_seqno) {
3207 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3208 if (ret)
3209 return ret;
3210
3211 obj->last_fenced_seqno = 0;
3212 }
3213
3214 return 0;
3215 }
3216
3217 int
3218 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3219 {
3220 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3221 struct drm_i915_fence_reg *fence;
3222 int ret;
3223
3224 ret = i915_gem_object_wait_fence(obj);
3225 if (ret)
3226 return ret;
3227
3228 if (obj->fence_reg == I915_FENCE_REG_NONE)
3229 return 0;
3230
3231 fence = &dev_priv->fence_regs[obj->fence_reg];
3232
3233 if (WARN_ON(fence->pin_count))
3234 return -EBUSY;
3235
3236 i915_gem_object_fence_lost(obj);
3237 i915_gem_object_update_fence(obj, fence, false);
3238
3239 return 0;
3240 }
3241
3242 static struct drm_i915_fence_reg *
3243 i915_find_fence_reg(struct drm_device *dev)
3244 {
3245 struct drm_i915_private *dev_priv = dev->dev_private;
3246 struct drm_i915_fence_reg *reg, *avail;
3247 int i;
3248
3249 /* First try to find a free reg */
3250 avail = NULL;
3251 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3252 reg = &dev_priv->fence_regs[i];
3253 if (!reg->obj)
3254 return reg;
3255
3256 if (!reg->pin_count)
3257 avail = reg;
3258 }
3259
3260 if (avail == NULL)
3261 goto deadlock;
3262
3263 /* None available, try to steal one or wait for a user to finish */
3264 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3265 if (reg->pin_count)
3266 continue;
3267
3268 return reg;
3269 }
3270
3271 deadlock:
3272 /* Wait for completion of pending flips which consume fences */
3273 if (intel_has_pending_fb_unpin(dev))
3274 return ERR_PTR(-EAGAIN);
3275
3276 return ERR_PTR(-EDEADLK);
3277 }
3278
3279 /**
3280 * i915_gem_object_get_fence - set up fencing for an object
3281 * @obj: object to map through a fence reg
3282 *
3283 * When mapping objects through the GTT, userspace wants to be able to write
3284 * to them without having to worry about swizzling if the object is tiled.
3285 * This function walks the fence regs looking for a free one for @obj,
3286 * stealing one if it can't find any.
3287 *
3288 * It then sets up the reg based on the object's properties: address, pitch
3289 * and tiling format.
3290 *
3291 * For an untiled surface, this removes any existing fence.
3292 */
3293 int
3294 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3295 {
3296 struct drm_device *dev = obj->base.dev;
3297 struct drm_i915_private *dev_priv = dev->dev_private;
3298 bool enable = obj->tiling_mode != I915_TILING_NONE;
3299 struct drm_i915_fence_reg *reg;
3300 int ret;
3301
3302 /* Have we updated the tiling parameters upon the object and so
3303 * will need to serialise the write to the associated fence register?
3304 */
3305 if (obj->fence_dirty) {
3306 ret = i915_gem_object_wait_fence(obj);
3307 if (ret)
3308 return ret;
3309 }
3310
3311 /* Just update our place in the LRU if our fence is getting reused. */
3312 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3313 reg = &dev_priv->fence_regs[obj->fence_reg];
3314 if (!obj->fence_dirty) {
3315 list_move_tail(&reg->lru_list,
3316 &dev_priv->mm.fence_list);
3317 return 0;
3318 }
3319 } else if (enable) {
3320 if (WARN_ON(!obj->map_and_fenceable))
3321 return -EINVAL;
3322
3323 reg = i915_find_fence_reg(dev);
3324 if (IS_ERR(reg))
3325 return PTR_ERR(reg);
3326
3327 if (reg->obj) {
3328 struct drm_i915_gem_object *old = reg->obj;
3329
3330 ret = i915_gem_object_wait_fence(old);
3331 if (ret)
3332 return ret;
3333
3334 i915_gem_object_fence_lost(old);
3335 }
3336 } else
3337 return 0;
3338
3339 i915_gem_object_update_fence(obj, reg, enable);
3340
3341 return 0;
3342 }
3343
3344 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3345 unsigned long cache_level)
3346 {
3347 struct drm_mm_node *gtt_space = &vma->node;
3348 struct drm_mm_node *other;
3349
3350 /*
3351 * On some machines we have to be careful when putting differing types
3352 * of snoopable memory together to avoid the prefetcher crossing memory
3353 * domains and dying. During vm initialisation, we decide whether or not
3354 * these constraints apply and set the drm_mm.color_adjust
3355 * appropriately.
3356 */
3357 if (vma->vm->mm.color_adjust == NULL)
3358 return true;
3359
3360 if (!drm_mm_node_allocated(gtt_space))
3361 return true;
3362
3363 if (list_empty(&gtt_space->node_list))
3364 return true;
3365
3366 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3367 if (other->allocated && !other->hole_follows && other->color != cache_level)
3368 return false;
3369
3370 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3371 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3372 return false;
3373
3374 return true;
3375 }
3376
3377 /**
3378 * Finds free space in the GTT aperture and binds the object there.
3379 */
3380 static struct i915_vma *
3381 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3382 struct i915_address_space *vm,
3383 unsigned alignment,
3384 uint64_t flags)
3385 {
3386 struct drm_device *dev = obj->base.dev;
3387 struct drm_i915_private *dev_priv = dev->dev_private;
3388 u32 size, fence_size, fence_alignment, unfenced_alignment;
3389 unsigned long start =
3390 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3391 unsigned long end =
3392 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3393 struct i915_vma *vma;
3394 int ret;
3395
3396 fence_size = i915_gem_get_gtt_size(dev,
3397 obj->base.size,
3398 obj->tiling_mode);
3399 fence_alignment = i915_gem_get_gtt_alignment(dev,
3400 obj->base.size,
3401 obj->tiling_mode, true);
3402 unfenced_alignment =
3403 i915_gem_get_gtt_alignment(dev,
3404 obj->base.size,
3405 obj->tiling_mode, false);
3406
3407 if (alignment == 0)
3408 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3409 unfenced_alignment;
3410 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3411 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3412 return ERR_PTR(-EINVAL);
3413 }
3414
3415 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3416
3417 /* If the object is bigger than the entire aperture, reject it early
3418 * before evicting everything in a vain attempt to find space.
3419 */
3420 if (obj->base.size > end) {
3421 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3422 obj->base.size,
3423 flags & PIN_MAPPABLE ? "mappable" : "total",
3424 end);
3425 return ERR_PTR(-E2BIG);
3426 }
3427
3428 ret = i915_gem_object_get_pages(obj);
3429 if (ret)
3430 return ERR_PTR(ret);
3431
3432 i915_gem_object_pin_pages(obj);
3433
3434 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3435 if (IS_ERR(vma))
3436 goto err_unpin;
3437
3438 search_free:
3439 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3440 size, alignment,
3441 obj->cache_level,
3442 start, end,
3443 DRM_MM_SEARCH_DEFAULT,
3444 DRM_MM_CREATE_DEFAULT);
3445 if (ret) {
3446 ret = i915_gem_evict_something(dev, vm, size, alignment,
3447 obj->cache_level,
3448 start, end,
3449 flags);
3450 if (ret == 0)
3451 goto search_free;
3452
3453 goto err_free_vma;
3454 }
3455 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3456 ret = -EINVAL;
3457 goto err_remove_node;
3458 }
3459
3460 ret = i915_gem_gtt_prepare_object(obj);
3461 if (ret)
3462 goto err_remove_node;
3463
3464 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3465 list_add_tail(&vma->mm_list, &vm->inactive_list);
3466
3467 if (i915_is_ggtt(vm)) {
3468 bool mappable, fenceable;
3469
3470 fenceable = (vma->node.size == fence_size &&
3471 (vma->node.start & (fence_alignment - 1)) == 0);
3472
3473 mappable = (vma->node.start + obj->base.size <=
3474 dev_priv->gtt.mappable_end);
3475
3476 obj->map_and_fenceable = mappable && fenceable;
3477 }
3478
3479 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3480
3481 trace_i915_vma_bind(vma, flags);
3482 vma->bind_vma(vma, obj->cache_level,
3483 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3484
3485 return vma;
3486
3487 err_remove_node:
3488 drm_mm_remove_node(&vma->node);
3489 err_free_vma:
3490 i915_gem_vma_destroy(vma);
3491 vma = ERR_PTR(ret);
3492 err_unpin:
3493 i915_gem_object_unpin_pages(obj);
3494 return vma;
3495 }
3496
3497 bool
3498 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3499 bool force)
3500 {
3501 /* If we don't have a page list set up, then we're not pinned
3502 * to GPU, and we can ignore the cache flush because it'll happen
3503 * again at bind time.
3504 */
3505 if (obj->pages == NULL)
3506 return false;
3507
3508 /*
3509 * Stolen memory is always coherent with the GPU as it is explicitly
3510 * marked as wc by the system, or the system is cache-coherent.
3511 */
3512 if (obj->stolen)
3513 return false;
3514
3515 /* If the GPU is snooping the contents of the CPU cache,
3516 * we do not need to manually clear the CPU cache lines. However,
3517 * the caches are only snooped when the render cache is
3518 * flushed/invalidated. As we always have to emit invalidations
3519 * and flushes when moving into and out of the RENDER domain, correct
3520 * snooping behaviour occurs naturally as the result of our domain
3521 * tracking.
3522 */
3523 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3524 return false;
3525
3526 trace_i915_gem_object_clflush(obj);
3527 drm_clflush_sg(obj->pages);
3528
3529 return true;
3530 }
3531
3532 /** Flushes the GTT write domain for the object if it's dirty. */
3533 static void
3534 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3535 {
3536 uint32_t old_write_domain;
3537
3538 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3539 return;
3540
3541 /* No actual flushing is required for the GTT write domain. Writes
3542 * to it immediately go to main memory as far as we know, so there's
3543 * no chipset flush. It also doesn't land in render cache.
3544 *
3545 * However, we do have to enforce the order so that all writes through
3546 * the GTT land before any writes to the device, such as updates to
3547 * the GATT itself.
3548 */
3549 wmb();
3550
3551 old_write_domain = obj->base.write_domain;
3552 obj->base.write_domain = 0;
3553
3554 intel_fb_obj_flush(obj, false);
3555
3556 trace_i915_gem_object_change_domain(obj,
3557 obj->base.read_domains,
3558 old_write_domain);
3559 }
3560
3561 /** Flushes the CPU write domain for the object if it's dirty. */
3562 static void
3563 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3564 bool force)
3565 {
3566 uint32_t old_write_domain;
3567
3568 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3569 return;
3570
3571 if (i915_gem_clflush_object(obj, force))
3572 i915_gem_chipset_flush(obj->base.dev);
3573
3574 old_write_domain = obj->base.write_domain;
3575 obj->base.write_domain = 0;
3576
3577 intel_fb_obj_flush(obj, false);
3578
3579 trace_i915_gem_object_change_domain(obj,
3580 obj->base.read_domains,
3581 old_write_domain);
3582 }
3583
3584 /**
3585 * Moves a single object to the GTT read, and possibly write domain.
3586 *
3587 * This function returns when the move is complete, including waiting on
3588 * flushes to occur.
3589 */
3590 int
3591 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3592 {
3593 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3594 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3595 uint32_t old_write_domain, old_read_domains;
3596 int ret;
3597
3598 /* Not valid to be called on unbound objects. */
3599 if (vma == NULL)
3600 return -EINVAL;
3601
3602 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3603 return 0;
3604
3605 ret = i915_gem_object_wait_rendering(obj, !write);
3606 if (ret)
3607 return ret;
3608
3609 i915_gem_object_retire(obj);
3610 i915_gem_object_flush_cpu_write_domain(obj, false);
3611
3612 /* Serialise direct access to this object with the barriers for
3613 * coherent writes from the GPU, by effectively invalidating the
3614 * GTT domain upon first access.
3615 */
3616 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3617 mb();
3618
3619 old_write_domain = obj->base.write_domain;
3620 old_read_domains = obj->base.read_domains;
3621
3622 /* It should now be out of any other write domains, and we can update
3623 * the domain values for our changes.
3624 */
3625 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3626 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3627 if (write) {
3628 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3629 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3630 obj->dirty = 1;
3631 }
3632
3633 if (write)
3634 intel_fb_obj_invalidate(obj, NULL);
3635
3636 trace_i915_gem_object_change_domain(obj,
3637 old_read_domains,
3638 old_write_domain);
3639
3640 /* And bump the LRU for this access */
3641 if (i915_gem_object_is_inactive(obj))
3642 list_move_tail(&vma->mm_list,
3643 &dev_priv->gtt.base.inactive_list);
3644
3645 return 0;
3646 }
3647
3648 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3649 enum i915_cache_level cache_level)
3650 {
3651 struct drm_device *dev = obj->base.dev;
3652 struct i915_vma *vma, *next;
3653 int ret;
3654
3655 if (obj->cache_level == cache_level)
3656 return 0;
3657
3658 if (i915_gem_obj_is_pinned(obj)) {
3659 DRM_DEBUG("can not change the cache level of pinned objects\n");
3660 return -EBUSY;
3661 }
3662
3663 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3664 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3665 ret = i915_vma_unbind(vma);
3666 if (ret)
3667 return ret;
3668 }
3669 }
3670
3671 if (i915_gem_obj_bound_any(obj)) {
3672 ret = i915_gem_object_finish_gpu(obj);
3673 if (ret)
3674 return ret;
3675
3676 i915_gem_object_finish_gtt(obj);
3677
3678 /* Before SandyBridge, you could not use tiling or fence
3679 * registers with snooped memory, so relinquish any fences
3680 * currently pointing to our region in the aperture.
3681 */
3682 if (INTEL_INFO(dev)->gen < 6) {
3683 ret = i915_gem_object_put_fence(obj);
3684 if (ret)
3685 return ret;
3686 }
3687
3688 list_for_each_entry(vma, &obj->vma_list, vma_link)
3689 if (drm_mm_node_allocated(&vma->node))
3690 vma->bind_vma(vma, cache_level,
3691 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3692 }
3693
3694 list_for_each_entry(vma, &obj->vma_list, vma_link)
3695 vma->node.color = cache_level;
3696 obj->cache_level = cache_level;
3697
3698 if (cpu_write_needs_clflush(obj)) {
3699 u32 old_read_domains, old_write_domain;
3700
3701 /* If we're coming from LLC cached, then we haven't
3702 * actually been tracking whether the data is in the
3703 * CPU cache or not, since we only allow one bit set
3704 * in obj->write_domain and have been skipping the clflushes.
3705 * Just set it to the CPU cache for now.
3706 */
3707 i915_gem_object_retire(obj);
3708 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3709
3710 old_read_domains = obj->base.read_domains;
3711 old_write_domain = obj->base.write_domain;
3712
3713 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3714 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3715
3716 trace_i915_gem_object_change_domain(obj,
3717 old_read_domains,
3718 old_write_domain);
3719 }
3720
3721 return 0;
3722 }
3723
3724 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3725 struct drm_file *file)
3726 {
3727 struct drm_i915_gem_caching *args = data;
3728 struct drm_i915_gem_object *obj;
3729 int ret;
3730
3731 ret = i915_mutex_lock_interruptible(dev);
3732 if (ret)
3733 return ret;
3734
3735 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3736 if (&obj->base == NULL) {
3737 ret = -ENOENT;
3738 goto unlock;
3739 }
3740
3741 switch (obj->cache_level) {
3742 case I915_CACHE_LLC:
3743 case I915_CACHE_L3_LLC:
3744 args->caching = I915_CACHING_CACHED;
3745 break;
3746
3747 case I915_CACHE_WT:
3748 args->caching = I915_CACHING_DISPLAY;
3749 break;
3750
3751 default:
3752 args->caching = I915_CACHING_NONE;
3753 break;
3754 }
3755
3756 drm_gem_object_unreference(&obj->base);
3757 unlock:
3758 mutex_unlock(&dev->struct_mutex);
3759 return ret;
3760 }
3761
3762 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3763 struct drm_file *file)
3764 {
3765 struct drm_i915_gem_caching *args = data;
3766 struct drm_i915_gem_object *obj;
3767 enum i915_cache_level level;
3768 int ret;
3769
3770 switch (args->caching) {
3771 case I915_CACHING_NONE:
3772 level = I915_CACHE_NONE;
3773 break;
3774 case I915_CACHING_CACHED:
3775 level = I915_CACHE_LLC;
3776 break;
3777 case I915_CACHING_DISPLAY:
3778 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3779 break;
3780 default:
3781 return -EINVAL;
3782 }
3783
3784 ret = i915_mutex_lock_interruptible(dev);
3785 if (ret)
3786 return ret;
3787
3788 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3789 if (&obj->base == NULL) {
3790 ret = -ENOENT;
3791 goto unlock;
3792 }
3793
3794 ret = i915_gem_object_set_cache_level(obj, level);
3795
3796 drm_gem_object_unreference(&obj->base);
3797 unlock:
3798 mutex_unlock(&dev->struct_mutex);
3799 return ret;
3800 }
3801
3802 static bool is_pin_display(struct drm_i915_gem_object *obj)
3803 {
3804 struct i915_vma *vma;
3805
3806 vma = i915_gem_obj_to_ggtt(obj);
3807 if (!vma)
3808 return false;
3809
3810 /* There are 3 sources that pin objects:
3811 * 1. The display engine (scanouts, sprites, cursors);
3812 * 2. Reservations for execbuffer;
3813 * 3. The user.
3814 *
3815 * We can ignore reservations as we hold the struct_mutex and
3816 * are only called outside of the reservation path. The user
3817 * can only increment pin_count once, and so if after
3818 * subtracting the potential reference by the user, any pin_count
3819 * remains, it must be due to another use by the display engine.
3820 */
3821 return vma->pin_count - !!obj->user_pin_count;
3822 }
3823
3824 /*
3825 * Prepare buffer for display plane (scanout, cursors, etc).
3826 * Can be called from an uninterruptible phase (modesetting) and allows
3827 * any flushes to be pipelined (for pageflips).
3828 */
3829 int
3830 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3831 u32 alignment,
3832 struct intel_engine_cs *pipelined)
3833 {
3834 u32 old_read_domains, old_write_domain;
3835 bool was_pin_display;
3836 int ret;
3837
3838 if (pipelined != obj->ring) {
3839 ret = i915_gem_object_sync(obj, pipelined);
3840 if (ret)
3841 return ret;
3842 }
3843
3844 /* Mark the pin_display early so that we account for the
3845 * display coherency whilst setting up the cache domains.
3846 */
3847 was_pin_display = obj->pin_display;
3848 obj->pin_display = true;
3849
3850 /* The display engine is not coherent with the LLC cache on gen6. As
3851 * a result, we make sure that the pinning that is about to occur is
3852 * done with uncached PTEs. This is lowest common denominator for all
3853 * chipsets.
3854 *
3855 * However for gen6+, we could do better by using the GFDT bit instead
3856 * of uncaching, which would allow us to flush all the LLC-cached data
3857 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3858 */
3859 ret = i915_gem_object_set_cache_level(obj,
3860 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3861 if (ret)
3862 goto err_unpin_display;
3863
3864 /* As the user may map the buffer once pinned in the display plane
3865 * (e.g. libkms for the bootup splash), we have to ensure that we
3866 * always use map_and_fenceable for all scanout buffers.
3867 */
3868 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3869 if (ret)
3870 goto err_unpin_display;
3871
3872 i915_gem_object_flush_cpu_write_domain(obj, true);
3873
3874 old_write_domain = obj->base.write_domain;
3875 old_read_domains = obj->base.read_domains;
3876
3877 /* It should now be out of any other write domains, and we can update
3878 * the domain values for our changes.
3879 */
3880 obj->base.write_domain = 0;
3881 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3882
3883 trace_i915_gem_object_change_domain(obj,
3884 old_read_domains,
3885 old_write_domain);
3886
3887 return 0;
3888
3889 err_unpin_display:
3890 WARN_ON(was_pin_display != is_pin_display(obj));
3891 obj->pin_display = was_pin_display;
3892 return ret;
3893 }
3894
3895 void
3896 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3897 {
3898 i915_gem_object_ggtt_unpin(obj);
3899 obj->pin_display = is_pin_display(obj);
3900 }
3901
3902 int
3903 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3904 {
3905 int ret;
3906
3907 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3908 return 0;
3909
3910 ret = i915_gem_object_wait_rendering(obj, false);
3911 if (ret)
3912 return ret;
3913
3914 /* Ensure that we invalidate the GPU's caches and TLBs. */
3915 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3916 return 0;
3917 }
3918
3919 /**
3920 * Moves a single object to the CPU read, and possibly write domain.
3921 *
3922 * This function returns when the move is complete, including waiting on
3923 * flushes to occur.
3924 */
3925 int
3926 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3927 {
3928 uint32_t old_write_domain, old_read_domains;
3929 int ret;
3930
3931 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3932 return 0;
3933
3934 ret = i915_gem_object_wait_rendering(obj, !write);
3935 if (ret)
3936 return ret;
3937
3938 i915_gem_object_retire(obj);
3939 i915_gem_object_flush_gtt_write_domain(obj);
3940
3941 old_write_domain = obj->base.write_domain;
3942 old_read_domains = obj->base.read_domains;
3943
3944 /* Flush the CPU cache if it's still invalid. */
3945 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3946 i915_gem_clflush_object(obj, false);
3947
3948 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3949 }
3950
3951 /* It should now be out of any other write domains, and we can update
3952 * the domain values for our changes.
3953 */
3954 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3955
3956 /* If we're writing through the CPU, then the GPU read domains will
3957 * need to be invalidated at next use.
3958 */
3959 if (write) {
3960 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3961 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3962 }
3963
3964 if (write)
3965 intel_fb_obj_invalidate(obj, NULL);
3966
3967 trace_i915_gem_object_change_domain(obj,
3968 old_read_domains,
3969 old_write_domain);
3970
3971 return 0;
3972 }
3973
3974 /* Throttle our rendering by waiting until the ring has completed our requests
3975 * emitted over 20 msec ago.
3976 *
3977 * Note that if we were to use the current jiffies each time around the loop,
3978 * we wouldn't escape the function with any frames outstanding if the time to
3979 * render a frame was over 20ms.
3980 *
3981 * This should get us reasonable parallelism between CPU and GPU but also
3982 * relatively low latency when blocking on a particular request to finish.
3983 */
3984 static int
3985 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3986 {
3987 struct drm_i915_private *dev_priv = dev->dev_private;
3988 struct drm_i915_file_private *file_priv = file->driver_priv;
3989 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3990 struct drm_i915_gem_request *request;
3991 struct intel_engine_cs *ring = NULL;
3992 unsigned reset_counter;
3993 u32 seqno = 0;
3994 int ret;
3995
3996 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3997 if (ret)
3998 return ret;
3999
4000 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4001 if (ret)
4002 return ret;
4003
4004 spin_lock(&file_priv->mm.lock);
4005 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4006 if (time_after_eq(request->emitted_jiffies, recent_enough))
4007 break;
4008
4009 ring = request->ring;
4010 seqno = request->seqno;
4011 }
4012 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4013 spin_unlock(&file_priv->mm.lock);
4014
4015 if (seqno == 0)
4016 return 0;
4017
4018 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4019 if (ret == 0)
4020 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4021
4022 return ret;
4023 }
4024
4025 static bool
4026 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4027 {
4028 struct drm_i915_gem_object *obj = vma->obj;
4029
4030 if (alignment &&
4031 vma->node.start & (alignment - 1))
4032 return true;
4033
4034 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4035 return true;
4036
4037 if (flags & PIN_OFFSET_BIAS &&
4038 vma->node.start < (flags & PIN_OFFSET_MASK))
4039 return true;
4040
4041 return false;
4042 }
4043
4044 int
4045 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4046 struct i915_address_space *vm,
4047 uint32_t alignment,
4048 uint64_t flags)
4049 {
4050 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4051 struct i915_vma *vma;
4052 int ret;
4053
4054 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4055 return -ENODEV;
4056
4057 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4058 return -EINVAL;
4059
4060 vma = i915_gem_obj_to_vma(obj, vm);
4061 if (vma) {
4062 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4063 return -EBUSY;
4064
4065 if (i915_vma_misplaced(vma, alignment, flags)) {
4066 WARN(vma->pin_count,
4067 "bo is already pinned with incorrect alignment:"
4068 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4069 " obj->map_and_fenceable=%d\n",
4070 i915_gem_obj_offset(obj, vm), alignment,
4071 !!(flags & PIN_MAPPABLE),
4072 obj->map_and_fenceable);
4073 ret = i915_vma_unbind(vma);
4074 if (ret)
4075 return ret;
4076
4077 vma = NULL;
4078 }
4079 }
4080
4081 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4082 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4083 if (IS_ERR(vma))
4084 return PTR_ERR(vma);
4085 }
4086
4087 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4088 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4089
4090 vma->pin_count++;
4091 if (flags & PIN_MAPPABLE)
4092 obj->pin_mappable |= true;
4093
4094 return 0;
4095 }
4096
4097 void
4098 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4099 {
4100 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4101
4102 BUG_ON(!vma);
4103 BUG_ON(vma->pin_count == 0);
4104 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4105
4106 if (--vma->pin_count == 0)
4107 obj->pin_mappable = false;
4108 }
4109
4110 bool
4111 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4112 {
4113 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4114 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4115 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4116
4117 WARN_ON(!ggtt_vma ||
4118 dev_priv->fence_regs[obj->fence_reg].pin_count >
4119 ggtt_vma->pin_count);
4120 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4121 return true;
4122 } else
4123 return false;
4124 }
4125
4126 void
4127 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4128 {
4129 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4130 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4131 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4132 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4133 }
4134 }
4135
4136 int
4137 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4138 struct drm_file *file)
4139 {
4140 struct drm_i915_gem_pin *args = data;
4141 struct drm_i915_gem_object *obj;
4142 int ret;
4143
4144 if (INTEL_INFO(dev)->gen >= 6)
4145 return -ENODEV;
4146
4147 ret = i915_mutex_lock_interruptible(dev);
4148 if (ret)
4149 return ret;
4150
4151 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4152 if (&obj->base == NULL) {
4153 ret = -ENOENT;
4154 goto unlock;
4155 }
4156
4157 if (obj->madv != I915_MADV_WILLNEED) {
4158 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4159 ret = -EFAULT;
4160 goto out;
4161 }
4162
4163 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4164 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4165 args->handle);
4166 ret = -EINVAL;
4167 goto out;
4168 }
4169
4170 if (obj->user_pin_count == ULONG_MAX) {
4171 ret = -EBUSY;
4172 goto out;
4173 }
4174
4175 if (obj->user_pin_count == 0) {
4176 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4177 if (ret)
4178 goto out;
4179 }
4180
4181 obj->user_pin_count++;
4182 obj->pin_filp = file;
4183
4184 args->offset = i915_gem_obj_ggtt_offset(obj);
4185 out:
4186 drm_gem_object_unreference(&obj->base);
4187 unlock:
4188 mutex_unlock(&dev->struct_mutex);
4189 return ret;
4190 }
4191
4192 int
4193 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4194 struct drm_file *file)
4195 {
4196 struct drm_i915_gem_pin *args = data;
4197 struct drm_i915_gem_object *obj;
4198 int ret;
4199
4200 ret = i915_mutex_lock_interruptible(dev);
4201 if (ret)
4202 return ret;
4203
4204 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4205 if (&obj->base == NULL) {
4206 ret = -ENOENT;
4207 goto unlock;
4208 }
4209
4210 if (obj->pin_filp != file) {
4211 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4212 args->handle);
4213 ret = -EINVAL;
4214 goto out;
4215 }
4216 obj->user_pin_count--;
4217 if (obj->user_pin_count == 0) {
4218 obj->pin_filp = NULL;
4219 i915_gem_object_ggtt_unpin(obj);
4220 }
4221
4222 out:
4223 drm_gem_object_unreference(&obj->base);
4224 unlock:
4225 mutex_unlock(&dev->struct_mutex);
4226 return ret;
4227 }
4228
4229 int
4230 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4231 struct drm_file *file)
4232 {
4233 struct drm_i915_gem_busy *args = data;
4234 struct drm_i915_gem_object *obj;
4235 int ret;
4236
4237 ret = i915_mutex_lock_interruptible(dev);
4238 if (ret)
4239 return ret;
4240
4241 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4242 if (&obj->base == NULL) {
4243 ret = -ENOENT;
4244 goto unlock;
4245 }
4246
4247 /* Count all active objects as busy, even if they are currently not used
4248 * by the gpu. Users of this interface expect objects to eventually
4249 * become non-busy without any further actions, therefore emit any
4250 * necessary flushes here.
4251 */
4252 ret = i915_gem_object_flush_active(obj);
4253
4254 args->busy = obj->active;
4255 if (obj->ring) {
4256 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4257 args->busy |= intel_ring_flag(obj->ring) << 16;
4258 }
4259
4260 drm_gem_object_unreference(&obj->base);
4261 unlock:
4262 mutex_unlock(&dev->struct_mutex);
4263 return ret;
4264 }
4265
4266 int
4267 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4268 struct drm_file *file_priv)
4269 {
4270 return i915_gem_ring_throttle(dev, file_priv);
4271 }
4272
4273 int
4274 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4275 struct drm_file *file_priv)
4276 {
4277 struct drm_i915_gem_madvise *args = data;
4278 struct drm_i915_gem_object *obj;
4279 int ret;
4280
4281 switch (args->madv) {
4282 case I915_MADV_DONTNEED:
4283 case I915_MADV_WILLNEED:
4284 break;
4285 default:
4286 return -EINVAL;
4287 }
4288
4289 ret = i915_mutex_lock_interruptible(dev);
4290 if (ret)
4291 return ret;
4292
4293 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4294 if (&obj->base == NULL) {
4295 ret = -ENOENT;
4296 goto unlock;
4297 }
4298
4299 if (i915_gem_obj_is_pinned(obj)) {
4300 ret = -EINVAL;
4301 goto out;
4302 }
4303
4304 if (obj->madv != __I915_MADV_PURGED)
4305 obj->madv = args->madv;
4306
4307 /* if the object is no longer attached, discard its backing storage */
4308 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4309 i915_gem_object_truncate(obj);
4310
4311 args->retained = obj->madv != __I915_MADV_PURGED;
4312
4313 out:
4314 drm_gem_object_unreference(&obj->base);
4315 unlock:
4316 mutex_unlock(&dev->struct_mutex);
4317 return ret;
4318 }
4319
4320 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4321 const struct drm_i915_gem_object_ops *ops)
4322 {
4323 INIT_LIST_HEAD(&obj->global_list);
4324 INIT_LIST_HEAD(&obj->ring_list);
4325 INIT_LIST_HEAD(&obj->obj_exec_link);
4326 INIT_LIST_HEAD(&obj->vma_list);
4327
4328 obj->ops = ops;
4329
4330 obj->fence_reg = I915_FENCE_REG_NONE;
4331 obj->madv = I915_MADV_WILLNEED;
4332
4333 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4334 }
4335
4336 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4337 .get_pages = i915_gem_object_get_pages_gtt,
4338 .put_pages = i915_gem_object_put_pages_gtt,
4339 };
4340
4341 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4342 size_t size)
4343 {
4344 struct drm_i915_gem_object *obj;
4345 struct address_space *mapping;
4346 gfp_t mask;
4347
4348 obj = i915_gem_object_alloc(dev);
4349 if (obj == NULL)
4350 return NULL;
4351
4352 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4353 i915_gem_object_free(obj);
4354 return NULL;
4355 }
4356
4357 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4358 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4359 /* 965gm cannot relocate objects above 4GiB. */
4360 mask &= ~__GFP_HIGHMEM;
4361 mask |= __GFP_DMA32;
4362 }
4363
4364 mapping = file_inode(obj->base.filp)->i_mapping;
4365 mapping_set_gfp_mask(mapping, mask);
4366
4367 i915_gem_object_init(obj, &i915_gem_object_ops);
4368
4369 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4370 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4371
4372 if (HAS_LLC(dev)) {
4373 /* On some devices, we can have the GPU use the LLC (the CPU
4374 * cache) for about a 10% performance improvement
4375 * compared to uncached. Graphics requests other than
4376 * display scanout are coherent with the CPU in
4377 * accessing this cache. This means in this mode we
4378 * don't need to clflush on the CPU side, and on the
4379 * GPU side we only need to flush internal caches to
4380 * get data visible to the CPU.
4381 *
4382 * However, we maintain the display planes as UC, and so
4383 * need to rebind when first used as such.
4384 */
4385 obj->cache_level = I915_CACHE_LLC;
4386 } else
4387 obj->cache_level = I915_CACHE_NONE;
4388
4389 trace_i915_gem_object_create(obj);
4390
4391 return obj;
4392 }
4393
4394 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4395 {
4396 /* If we are the last user of the backing storage (be it shmemfs
4397 * pages or stolen etc), we know that the pages are going to be
4398 * immediately released. In this case, we can then skip copying
4399 * back the contents from the GPU.
4400 */
4401
4402 if (obj->madv != I915_MADV_WILLNEED)
4403 return false;
4404
4405 if (obj->base.filp == NULL)
4406 return true;
4407
4408 /* At first glance, this looks racy, but then again so would be
4409 * userspace racing mmap against close. However, the first external
4410 * reference to the filp can only be obtained through the
4411 * i915_gem_mmap_ioctl() which safeguards us against the user
4412 * acquiring such a reference whilst we are in the middle of
4413 * freeing the object.
4414 */
4415 return atomic_long_read(&obj->base.filp->f_count) == 1;
4416 }
4417
4418 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4419 {
4420 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4421 struct drm_device *dev = obj->base.dev;
4422 struct drm_i915_private *dev_priv = dev->dev_private;
4423 struct i915_vma *vma, *next;
4424
4425 intel_runtime_pm_get(dev_priv);
4426
4427 trace_i915_gem_object_destroy(obj);
4428
4429 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4430 int ret;
4431
4432 vma->pin_count = 0;
4433 ret = i915_vma_unbind(vma);
4434 if (WARN_ON(ret == -ERESTARTSYS)) {
4435 bool was_interruptible;
4436
4437 was_interruptible = dev_priv->mm.interruptible;
4438 dev_priv->mm.interruptible = false;
4439
4440 WARN_ON(i915_vma_unbind(vma));
4441
4442 dev_priv->mm.interruptible = was_interruptible;
4443 }
4444 }
4445
4446 i915_gem_object_detach_phys(obj);
4447
4448 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4449 * before progressing. */
4450 if (obj->stolen)
4451 i915_gem_object_unpin_pages(obj);
4452
4453 WARN_ON(obj->frontbuffer_bits);
4454
4455 if (WARN_ON(obj->pages_pin_count))
4456 obj->pages_pin_count = 0;
4457 if (discard_backing_storage(obj))
4458 obj->madv = I915_MADV_DONTNEED;
4459 i915_gem_object_put_pages(obj);
4460 i915_gem_object_free_mmap_offset(obj);
4461
4462 BUG_ON(obj->pages);
4463
4464 if (obj->base.import_attach)
4465 drm_prime_gem_destroy(&obj->base, NULL);
4466
4467 if (obj->ops->release)
4468 obj->ops->release(obj);
4469
4470 drm_gem_object_release(&obj->base);
4471 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4472
4473 kfree(obj->bit_17);
4474 i915_gem_object_free(obj);
4475
4476 intel_runtime_pm_put(dev_priv);
4477 }
4478
4479 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4480 struct i915_address_space *vm)
4481 {
4482 struct i915_vma *vma;
4483 list_for_each_entry(vma, &obj->vma_list, vma_link)
4484 if (vma->vm == vm)
4485 return vma;
4486
4487 return NULL;
4488 }
4489
4490 void i915_gem_vma_destroy(struct i915_vma *vma)
4491 {
4492 struct i915_address_space *vm = NULL;
4493 WARN_ON(vma->node.allocated);
4494
4495 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4496 if (!list_empty(&vma->exec_list))
4497 return;
4498
4499 vm = vma->vm;
4500
4501 if (!i915_is_ggtt(vm))
4502 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4503
4504 list_del(&vma->vma_link);
4505
4506 kfree(vma);
4507 }
4508
4509 static void
4510 i915_gem_stop_ringbuffers(struct drm_device *dev)
4511 {
4512 struct drm_i915_private *dev_priv = dev->dev_private;
4513 struct intel_engine_cs *ring;
4514 int i;
4515
4516 for_each_ring(ring, dev_priv, i)
4517 dev_priv->gt.stop_ring(ring);
4518 }
4519
4520 int
4521 i915_gem_suspend(struct drm_device *dev)
4522 {
4523 struct drm_i915_private *dev_priv = dev->dev_private;
4524 int ret = 0;
4525
4526 mutex_lock(&dev->struct_mutex);
4527 if (dev_priv->ums.mm_suspended)
4528 goto err;
4529
4530 ret = i915_gpu_idle(dev);
4531 if (ret)
4532 goto err;
4533
4534 i915_gem_retire_requests(dev);
4535
4536 /* Under UMS, be paranoid and evict. */
4537 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4538 i915_gem_evict_everything(dev);
4539
4540 i915_kernel_lost_context(dev);
4541 i915_gem_stop_ringbuffers(dev);
4542
4543 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4544 * We need to replace this with a semaphore, or something.
4545 * And not confound ums.mm_suspended!
4546 */
4547 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4548 DRIVER_MODESET);
4549 mutex_unlock(&dev->struct_mutex);
4550
4551 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4552 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4553 flush_delayed_work(&dev_priv->mm.idle_work);
4554
4555 return 0;
4556
4557 err:
4558 mutex_unlock(&dev->struct_mutex);
4559 return ret;
4560 }
4561
4562 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4563 {
4564 struct drm_device *dev = ring->dev;
4565 struct drm_i915_private *dev_priv = dev->dev_private;
4566 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4567 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4568 int i, ret;
4569
4570 if (!HAS_L3_DPF(dev) || !remap_info)
4571 return 0;
4572
4573 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4574 if (ret)
4575 return ret;
4576
4577 /*
4578 * Note: We do not worry about the concurrent register cacheline hang
4579 * here because no other code should access these registers other than
4580 * at initialization time.
4581 */
4582 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4583 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4584 intel_ring_emit(ring, reg_base + i);
4585 intel_ring_emit(ring, remap_info[i/4]);
4586 }
4587
4588 intel_ring_advance(ring);
4589
4590 return ret;
4591 }
4592
4593 void i915_gem_init_swizzling(struct drm_device *dev)
4594 {
4595 struct drm_i915_private *dev_priv = dev->dev_private;
4596
4597 if (INTEL_INFO(dev)->gen < 5 ||
4598 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4599 return;
4600
4601 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4602 DISP_TILE_SURFACE_SWIZZLING);
4603
4604 if (IS_GEN5(dev))
4605 return;
4606
4607 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4608 if (IS_GEN6(dev))
4609 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4610 else if (IS_GEN7(dev))
4611 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4612 else if (IS_GEN8(dev))
4613 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4614 else
4615 BUG();
4616 }
4617
4618 static bool
4619 intel_enable_blt(struct drm_device *dev)
4620 {
4621 if (!HAS_BLT(dev))
4622 return false;
4623
4624 /* The blitter was dysfunctional on early prototypes */
4625 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4626 DRM_INFO("BLT not supported on this pre-production hardware;"
4627 " graphics performance will be degraded.\n");
4628 return false;
4629 }
4630
4631 return true;
4632 }
4633
4634 static void init_unused_ring(struct drm_device *dev, u32 base)
4635 {
4636 struct drm_i915_private *dev_priv = dev->dev_private;
4637
4638 I915_WRITE(RING_CTL(base), 0);
4639 I915_WRITE(RING_HEAD(base), 0);
4640 I915_WRITE(RING_TAIL(base), 0);
4641 I915_WRITE(RING_START(base), 0);
4642 }
4643
4644 static void init_unused_rings(struct drm_device *dev)
4645 {
4646 if (IS_I830(dev)) {
4647 init_unused_ring(dev, PRB1_BASE);
4648 init_unused_ring(dev, SRB0_BASE);
4649 init_unused_ring(dev, SRB1_BASE);
4650 init_unused_ring(dev, SRB2_BASE);
4651 init_unused_ring(dev, SRB3_BASE);
4652 } else if (IS_GEN2(dev)) {
4653 init_unused_ring(dev, SRB0_BASE);
4654 init_unused_ring(dev, SRB1_BASE);
4655 } else if (IS_GEN3(dev)) {
4656 init_unused_ring(dev, PRB1_BASE);
4657 init_unused_ring(dev, PRB2_BASE);
4658 }
4659 }
4660
4661 int i915_gem_init_rings(struct drm_device *dev)
4662 {
4663 struct drm_i915_private *dev_priv = dev->dev_private;
4664 int ret;
4665
4666 /*
4667 * At least 830 can leave some of the unused rings
4668 * "active" (ie. head != tail) after resume which
4669 * will prevent c3 entry. Makes sure all unused rings
4670 * are totally idle.
4671 */
4672 init_unused_rings(dev);
4673
4674 ret = intel_init_render_ring_buffer(dev);
4675 if (ret)
4676 return ret;
4677
4678 if (HAS_BSD(dev)) {
4679 ret = intel_init_bsd_ring_buffer(dev);
4680 if (ret)
4681 goto cleanup_render_ring;
4682 }
4683
4684 if (intel_enable_blt(dev)) {
4685 ret = intel_init_blt_ring_buffer(dev);
4686 if (ret)
4687 goto cleanup_bsd_ring;
4688 }
4689
4690 if (HAS_VEBOX(dev)) {
4691 ret = intel_init_vebox_ring_buffer(dev);
4692 if (ret)
4693 goto cleanup_blt_ring;
4694 }
4695
4696 if (HAS_BSD2(dev)) {
4697 ret = intel_init_bsd2_ring_buffer(dev);
4698 if (ret)
4699 goto cleanup_vebox_ring;
4700 }
4701
4702 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4703 if (ret)
4704 goto cleanup_bsd2_ring;
4705
4706 return 0;
4707
4708 cleanup_bsd2_ring:
4709 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4710 cleanup_vebox_ring:
4711 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4712 cleanup_blt_ring:
4713 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4714 cleanup_bsd_ring:
4715 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4716 cleanup_render_ring:
4717 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4718
4719 return ret;
4720 }
4721
4722 int
4723 i915_gem_init_hw(struct drm_device *dev)
4724 {
4725 struct drm_i915_private *dev_priv = dev->dev_private;
4726 int ret, i;
4727
4728 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4729 return -EIO;
4730
4731 if (dev_priv->ellc_size)
4732 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4733
4734 if (IS_HASWELL(dev))
4735 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4736 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4737
4738 if (HAS_PCH_NOP(dev)) {
4739 if (IS_IVYBRIDGE(dev)) {
4740 u32 temp = I915_READ(GEN7_MSG_CTL);
4741 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4742 I915_WRITE(GEN7_MSG_CTL, temp);
4743 } else if (INTEL_INFO(dev)->gen >= 7) {
4744 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4745 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4746 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4747 }
4748 }
4749
4750 i915_gem_init_swizzling(dev);
4751
4752 ret = dev_priv->gt.init_rings(dev);
4753 if (ret)
4754 return ret;
4755
4756 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4757 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4758
4759 /*
4760 * XXX: Contexts should only be initialized once. Doing a switch to the
4761 * default context switch however is something we'd like to do after
4762 * reset or thaw (the latter may not actually be necessary for HW, but
4763 * goes with our code better). Context switching requires rings (for
4764 * the do_switch), but before enabling PPGTT. So don't move this.
4765 */
4766 ret = i915_gem_context_enable(dev_priv);
4767 if (ret && ret != -EIO) {
4768 DRM_ERROR("Context enable failed %d\n", ret);
4769 i915_gem_cleanup_ringbuffer(dev);
4770
4771 return ret;
4772 }
4773
4774 ret = i915_ppgtt_init_hw(dev);
4775 if (ret && ret != -EIO) {
4776 DRM_ERROR("PPGTT enable failed %d\n", ret);
4777 i915_gem_cleanup_ringbuffer(dev);
4778 }
4779
4780 return ret;
4781 }
4782
4783 int i915_gem_init(struct drm_device *dev)
4784 {
4785 struct drm_i915_private *dev_priv = dev->dev_private;
4786 int ret;
4787
4788 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4789 i915.enable_execlists);
4790
4791 mutex_lock(&dev->struct_mutex);
4792
4793 if (IS_VALLEYVIEW(dev)) {
4794 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4795 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4796 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4797 VLV_GTLC_ALLOWWAKEACK), 10))
4798 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4799 }
4800
4801 if (!i915.enable_execlists) {
4802 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4803 dev_priv->gt.init_rings = i915_gem_init_rings;
4804 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4805 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4806 } else {
4807 dev_priv->gt.do_execbuf = intel_execlists_submission;
4808 dev_priv->gt.init_rings = intel_logical_rings_init;
4809 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4810 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4811 }
4812
4813 ret = i915_gem_init_userptr(dev);
4814 if (ret) {
4815 mutex_unlock(&dev->struct_mutex);
4816 return ret;
4817 }
4818
4819 i915_gem_init_global_gtt(dev);
4820
4821 ret = i915_gem_context_init(dev);
4822 if (ret) {
4823 mutex_unlock(&dev->struct_mutex);
4824 return ret;
4825 }
4826
4827 ret = i915_gem_init_hw(dev);
4828 if (ret == -EIO) {
4829 /* Allow ring initialisation to fail by marking the GPU as
4830 * wedged. But we only want to do this where the GPU is angry,
4831 * for all other failure, such as an allocation failure, bail.
4832 */
4833 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4834 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4835 ret = 0;
4836 }
4837 mutex_unlock(&dev->struct_mutex);
4838
4839 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4840 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4841 dev_priv->dri1.allow_batchbuffer = 1;
4842 return ret;
4843 }
4844
4845 void
4846 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4847 {
4848 struct drm_i915_private *dev_priv = dev->dev_private;
4849 struct intel_engine_cs *ring;
4850 int i;
4851
4852 for_each_ring(ring, dev_priv, i)
4853 dev_priv->gt.cleanup_ring(ring);
4854 }
4855
4856 int
4857 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4858 struct drm_file *file_priv)
4859 {
4860 struct drm_i915_private *dev_priv = dev->dev_private;
4861 int ret;
4862
4863 if (drm_core_check_feature(dev, DRIVER_MODESET))
4864 return 0;
4865
4866 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4867 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4868 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4869 }
4870
4871 mutex_lock(&dev->struct_mutex);
4872 dev_priv->ums.mm_suspended = 0;
4873
4874 ret = i915_gem_init_hw(dev);
4875 if (ret != 0) {
4876 mutex_unlock(&dev->struct_mutex);
4877 return ret;
4878 }
4879
4880 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4881
4882 ret = drm_irq_install(dev, dev->pdev->irq);
4883 if (ret)
4884 goto cleanup_ringbuffer;
4885 mutex_unlock(&dev->struct_mutex);
4886
4887 return 0;
4888
4889 cleanup_ringbuffer:
4890 i915_gem_cleanup_ringbuffer(dev);
4891 dev_priv->ums.mm_suspended = 1;
4892 mutex_unlock(&dev->struct_mutex);
4893
4894 return ret;
4895 }
4896
4897 int
4898 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4899 struct drm_file *file_priv)
4900 {
4901 if (drm_core_check_feature(dev, DRIVER_MODESET))
4902 return 0;
4903
4904 mutex_lock(&dev->struct_mutex);
4905 drm_irq_uninstall(dev);
4906 mutex_unlock(&dev->struct_mutex);
4907
4908 return i915_gem_suspend(dev);
4909 }
4910
4911 void
4912 i915_gem_lastclose(struct drm_device *dev)
4913 {
4914 int ret;
4915
4916 if (drm_core_check_feature(dev, DRIVER_MODESET))
4917 return;
4918
4919 ret = i915_gem_suspend(dev);
4920 if (ret)
4921 DRM_ERROR("failed to idle hardware: %d\n", ret);
4922 }
4923
4924 static void
4925 init_ring_lists(struct intel_engine_cs *ring)
4926 {
4927 INIT_LIST_HEAD(&ring->active_list);
4928 INIT_LIST_HEAD(&ring->request_list);
4929 }
4930
4931 void i915_init_vm(struct drm_i915_private *dev_priv,
4932 struct i915_address_space *vm)
4933 {
4934 if (!i915_is_ggtt(vm))
4935 drm_mm_init(&vm->mm, vm->start, vm->total);
4936 vm->dev = dev_priv->dev;
4937 INIT_LIST_HEAD(&vm->active_list);
4938 INIT_LIST_HEAD(&vm->inactive_list);
4939 INIT_LIST_HEAD(&vm->global_link);
4940 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4941 }
4942
4943 void
4944 i915_gem_load(struct drm_device *dev)
4945 {
4946 struct drm_i915_private *dev_priv = dev->dev_private;
4947 int i;
4948
4949 dev_priv->slab =
4950 kmem_cache_create("i915_gem_object",
4951 sizeof(struct drm_i915_gem_object), 0,
4952 SLAB_HWCACHE_ALIGN,
4953 NULL);
4954
4955 INIT_LIST_HEAD(&dev_priv->vm_list);
4956 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4957
4958 INIT_LIST_HEAD(&dev_priv->context_list);
4959 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4960 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4961 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4962 for (i = 0; i < I915_NUM_RINGS; i++)
4963 init_ring_lists(&dev_priv->ring[i]);
4964 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4965 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4966 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4967 i915_gem_retire_work_handler);
4968 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4969 i915_gem_idle_work_handler);
4970 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4971
4972 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4973 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4974 I915_WRITE(MI_ARB_STATE,
4975 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4976 }
4977
4978 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4979
4980 /* Old X drivers will take 0-2 for front, back, depth buffers */
4981 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4982 dev_priv->fence_reg_start = 3;
4983
4984 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4985 dev_priv->num_fence_regs = 32;
4986 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4987 dev_priv->num_fence_regs = 16;
4988 else
4989 dev_priv->num_fence_regs = 8;
4990
4991 /* Initialize fence registers to zero */
4992 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4993 i915_gem_restore_fences(dev);
4994
4995 i915_gem_detect_bit_6_swizzle(dev);
4996 init_waitqueue_head(&dev_priv->pending_flip_queue);
4997
4998 dev_priv->mm.interruptible = true;
4999
5000 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5001 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5002 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5003 register_shrinker(&dev_priv->mm.shrinker);
5004
5005 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5006 register_oom_notifier(&dev_priv->mm.oom_notifier);
5007
5008 mutex_init(&dev_priv->fb_tracking.lock);
5009 }
5010
5011 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5012 {
5013 struct drm_i915_file_private *file_priv = file->driver_priv;
5014
5015 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5016
5017 /* Clean up our request list when the client is going away, so that
5018 * later retire_requests won't dereference our soon-to-be-gone
5019 * file_priv.
5020 */
5021 spin_lock(&file_priv->mm.lock);
5022 while (!list_empty(&file_priv->mm.request_list)) {
5023 struct drm_i915_gem_request *request;
5024
5025 request = list_first_entry(&file_priv->mm.request_list,
5026 struct drm_i915_gem_request,
5027 client_list);
5028 list_del(&request->client_list);
5029 request->file_priv = NULL;
5030 }
5031 spin_unlock(&file_priv->mm.lock);
5032 }
5033
5034 static void
5035 i915_gem_file_idle_work_handler(struct work_struct *work)
5036 {
5037 struct drm_i915_file_private *file_priv =
5038 container_of(work, typeof(*file_priv), mm.idle_work.work);
5039
5040 atomic_set(&file_priv->rps_wait_boost, false);
5041 }
5042
5043 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5044 {
5045 struct drm_i915_file_private *file_priv;
5046 int ret;
5047
5048 DRM_DEBUG_DRIVER("\n");
5049
5050 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5051 if (!file_priv)
5052 return -ENOMEM;
5053
5054 file->driver_priv = file_priv;
5055 file_priv->dev_priv = dev->dev_private;
5056 file_priv->file = file;
5057
5058 spin_lock_init(&file_priv->mm.lock);
5059 INIT_LIST_HEAD(&file_priv->mm.request_list);
5060 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5061 i915_gem_file_idle_work_handler);
5062
5063 ret = i915_gem_context_open(dev, file);
5064 if (ret)
5065 kfree(file_priv);
5066
5067 return ret;
5068 }
5069
5070 /**
5071 * i915_gem_track_fb - update frontbuffer tracking
5072 * old: current GEM buffer for the frontbuffer slots
5073 * new: new GEM buffer for the frontbuffer slots
5074 * frontbuffer_bits: bitmask of frontbuffer slots
5075 *
5076 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5077 * from @old and setting them in @new. Both @old and @new can be NULL.
5078 */
5079 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5080 struct drm_i915_gem_object *new,
5081 unsigned frontbuffer_bits)
5082 {
5083 if (old) {
5084 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5085 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5086 old->frontbuffer_bits &= ~frontbuffer_bits;
5087 }
5088
5089 if (new) {
5090 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5091 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5092 new->frontbuffer_bits |= frontbuffer_bits;
5093 }
5094 }
5095
5096 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5097 {
5098 if (!mutex_is_locked(mutex))
5099 return false;
5100
5101 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5102 return mutex->owner == task;
5103 #else
5104 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5105 return false;
5106 #endif
5107 }
5108
5109 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5110 {
5111 if (!mutex_trylock(&dev->struct_mutex)) {
5112 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5113 return false;
5114
5115 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5116 return false;
5117
5118 *unlock = false;
5119 } else
5120 *unlock = true;
5121
5122 return true;
5123 }
5124
5125 static int num_vma_bound(struct drm_i915_gem_object *obj)
5126 {
5127 struct i915_vma *vma;
5128 int count = 0;
5129
5130 list_for_each_entry(vma, &obj->vma_list, vma_link)
5131 if (drm_mm_node_allocated(&vma->node))
5132 count++;
5133
5134 return count;
5135 }
5136
5137 static unsigned long
5138 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5139 {
5140 struct drm_i915_private *dev_priv =
5141 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5142 struct drm_device *dev = dev_priv->dev;
5143 struct drm_i915_gem_object *obj;
5144 unsigned long count;
5145 bool unlock;
5146
5147 if (!i915_gem_shrinker_lock(dev, &unlock))
5148 return 0;
5149
5150 count = 0;
5151 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5152 if (obj->pages_pin_count == 0)
5153 count += obj->base.size >> PAGE_SHIFT;
5154
5155 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5156 if (!i915_gem_obj_is_pinned(obj) &&
5157 obj->pages_pin_count == num_vma_bound(obj))
5158 count += obj->base.size >> PAGE_SHIFT;
5159 }
5160
5161 if (unlock)
5162 mutex_unlock(&dev->struct_mutex);
5163
5164 return count;
5165 }
5166
5167 /* All the new VM stuff */
5168 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5169 struct i915_address_space *vm)
5170 {
5171 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5172 struct i915_vma *vma;
5173
5174 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5175
5176 list_for_each_entry(vma, &o->vma_list, vma_link) {
5177 if (vma->vm == vm)
5178 return vma->node.start;
5179
5180 }
5181 WARN(1, "%s vma for this object not found.\n",
5182 i915_is_ggtt(vm) ? "global" : "ppgtt");
5183 return -1;
5184 }
5185
5186 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5187 struct i915_address_space *vm)
5188 {
5189 struct i915_vma *vma;
5190
5191 list_for_each_entry(vma, &o->vma_list, vma_link)
5192 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5193 return true;
5194
5195 return false;
5196 }
5197
5198 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5199 {
5200 struct i915_vma *vma;
5201
5202 list_for_each_entry(vma, &o->vma_list, vma_link)
5203 if (drm_mm_node_allocated(&vma->node))
5204 return true;
5205
5206 return false;
5207 }
5208
5209 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5210 struct i915_address_space *vm)
5211 {
5212 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5213 struct i915_vma *vma;
5214
5215 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5216
5217 BUG_ON(list_empty(&o->vma_list));
5218
5219 list_for_each_entry(vma, &o->vma_list, vma_link)
5220 if (vma->vm == vm)
5221 return vma->node.size;
5222
5223 return 0;
5224 }
5225
5226 static unsigned long
5227 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5228 {
5229 struct drm_i915_private *dev_priv =
5230 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5231 struct drm_device *dev = dev_priv->dev;
5232 unsigned long freed;
5233 bool unlock;
5234
5235 if (!i915_gem_shrinker_lock(dev, &unlock))
5236 return SHRINK_STOP;
5237
5238 freed = i915_gem_shrink(dev_priv,
5239 sc->nr_to_scan,
5240 I915_SHRINK_BOUND |
5241 I915_SHRINK_UNBOUND |
5242 I915_SHRINK_PURGEABLE);
5243 if (freed < sc->nr_to_scan)
5244 freed += i915_gem_shrink(dev_priv,
5245 sc->nr_to_scan - freed,
5246 I915_SHRINK_BOUND |
5247 I915_SHRINK_UNBOUND);
5248 if (unlock)
5249 mutex_unlock(&dev->struct_mutex);
5250
5251 return freed;
5252 }
5253
5254 static int
5255 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5256 {
5257 struct drm_i915_private *dev_priv =
5258 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5259 struct drm_device *dev = dev_priv->dev;
5260 struct drm_i915_gem_object *obj;
5261 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5262 unsigned long pinned, bound, unbound, freed_pages;
5263 bool was_interruptible;
5264 bool unlock;
5265
5266 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5267 schedule_timeout_killable(1);
5268 if (fatal_signal_pending(current))
5269 return NOTIFY_DONE;
5270 }
5271 if (timeout == 0) {
5272 pr_err("Unable to purge GPU memory due lock contention.\n");
5273 return NOTIFY_DONE;
5274 }
5275
5276 was_interruptible = dev_priv->mm.interruptible;
5277 dev_priv->mm.interruptible = false;
5278
5279 freed_pages = i915_gem_shrink_all(dev_priv);
5280
5281 dev_priv->mm.interruptible = was_interruptible;
5282
5283 /* Because we may be allocating inside our own driver, we cannot
5284 * assert that there are no objects with pinned pages that are not
5285 * being pointed to by hardware.
5286 */
5287 unbound = bound = pinned = 0;
5288 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5289 if (!obj->base.filp) /* not backed by a freeable object */
5290 continue;
5291
5292 if (obj->pages_pin_count)
5293 pinned += obj->base.size;
5294 else
5295 unbound += obj->base.size;
5296 }
5297 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5298 if (!obj->base.filp)
5299 continue;
5300
5301 if (obj->pages_pin_count)
5302 pinned += obj->base.size;
5303 else
5304 bound += obj->base.size;
5305 }
5306
5307 if (unlock)
5308 mutex_unlock(&dev->struct_mutex);
5309
5310 if (freed_pages || unbound || bound)
5311 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5312 freed_pages << PAGE_SHIFT, pinned);
5313 if (unbound || bound)
5314 pr_err("%lu and %lu bytes still available in the "
5315 "bound and unbound GPU page lists.\n",
5316 bound, unbound);
5317
5318 *(unsigned long *)ptr += freed_pages;
5319 return NOTIFY_DONE;
5320 }
5321
5322 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5323 {
5324 struct i915_vma *vma;
5325
5326 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5327 if (vma->vm != i915_obj_to_ggtt(obj))
5328 return NULL;
5329
5330 return vma;
5331 }
This page took 0.143698 seconds and 6 git commands to generate.