Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/bdev
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33
34 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
35
36 static void
37 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
38 uint32_t read_domains,
39 uint32_t write_domain);
40 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
43 static int i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj,
44 int write);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
52 static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
53 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
54
55 static void
56 i915_gem_cleanup_ringbuffer(struct drm_device *dev);
57
58 int
59 i915_gem_init_ioctl(struct drm_device *dev, void *data,
60 struct drm_file *file_priv)
61 {
62 drm_i915_private_t *dev_priv = dev->dev_private;
63 struct drm_i915_gem_init *args = data;
64
65 mutex_lock(&dev->struct_mutex);
66
67 if (args->gtt_start >= args->gtt_end ||
68 (args->gtt_start & (PAGE_SIZE - 1)) != 0 ||
69 (args->gtt_end & (PAGE_SIZE - 1)) != 0) {
70 mutex_unlock(&dev->struct_mutex);
71 return -EINVAL;
72 }
73
74 drm_mm_init(&dev_priv->mm.gtt_space, args->gtt_start,
75 args->gtt_end - args->gtt_start);
76
77 dev->gtt_total = (uint32_t) (args->gtt_end - args->gtt_start);
78
79 mutex_unlock(&dev->struct_mutex);
80
81 return 0;
82 }
83
84 int
85 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
86 struct drm_file *file_priv)
87 {
88 struct drm_i915_gem_get_aperture *args = data;
89
90 if (!(dev->driver->driver_features & DRIVER_GEM))
91 return -ENODEV;
92
93 args->aper_size = dev->gtt_total;
94 args->aper_available_size = (args->aper_size -
95 atomic_read(&dev->pin_memory));
96
97 return 0;
98 }
99
100
101 /**
102 * Creates a new mm object and returns a handle to it.
103 */
104 int
105 i915_gem_create_ioctl(struct drm_device *dev, void *data,
106 struct drm_file *file_priv)
107 {
108 struct drm_i915_gem_create *args = data;
109 struct drm_gem_object *obj;
110 int handle, ret;
111
112 args->size = roundup(args->size, PAGE_SIZE);
113
114 /* Allocate the new object */
115 obj = drm_gem_object_alloc(dev, args->size);
116 if (obj == NULL)
117 return -ENOMEM;
118
119 ret = drm_gem_handle_create(file_priv, obj, &handle);
120 mutex_lock(&dev->struct_mutex);
121 drm_gem_object_handle_unreference(obj);
122 mutex_unlock(&dev->struct_mutex);
123
124 if (ret)
125 return ret;
126
127 args->handle = handle;
128
129 return 0;
130 }
131
132 /**
133 * Reads data from the object referenced by handle.
134 *
135 * On error, the contents of *data are undefined.
136 */
137 int
138 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
139 struct drm_file *file_priv)
140 {
141 struct drm_i915_gem_pread *args = data;
142 struct drm_gem_object *obj;
143 struct drm_i915_gem_object *obj_priv;
144 ssize_t read;
145 loff_t offset;
146 int ret;
147
148 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
149 if (obj == NULL)
150 return -EBADF;
151 obj_priv = obj->driver_private;
152
153 /* Bounds check source.
154 *
155 * XXX: This could use review for overflow issues...
156 */
157 if (args->offset > obj->size || args->size > obj->size ||
158 args->offset + args->size > obj->size) {
159 drm_gem_object_unreference(obj);
160 return -EINVAL;
161 }
162
163 mutex_lock(&dev->struct_mutex);
164
165 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
166 args->size);
167 if (ret != 0) {
168 drm_gem_object_unreference(obj);
169 mutex_unlock(&dev->struct_mutex);
170 return ret;
171 }
172
173 offset = args->offset;
174
175 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
176 args->size, &offset);
177 if (read != args->size) {
178 drm_gem_object_unreference(obj);
179 mutex_unlock(&dev->struct_mutex);
180 if (read < 0)
181 return read;
182 else
183 return -EINVAL;
184 }
185
186 drm_gem_object_unreference(obj);
187 mutex_unlock(&dev->struct_mutex);
188
189 return 0;
190 }
191
192 /* This is the fast write path which cannot handle
193 * page faults in the source data
194 */
195
196 static inline int
197 fast_user_write(struct io_mapping *mapping,
198 loff_t page_base, int page_offset,
199 char __user *user_data,
200 int length)
201 {
202 char *vaddr_atomic;
203 unsigned long unwritten;
204
205 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
206 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
207 user_data, length);
208 io_mapping_unmap_atomic(vaddr_atomic);
209 if (unwritten)
210 return -EFAULT;
211 return 0;
212 }
213
214 /* Here's the write path which can sleep for
215 * page faults
216 */
217
218 static inline int
219 slow_user_write(struct io_mapping *mapping,
220 loff_t page_base, int page_offset,
221 char __user *user_data,
222 int length)
223 {
224 char __iomem *vaddr;
225 unsigned long unwritten;
226
227 vaddr = io_mapping_map_wc(mapping, page_base);
228 if (vaddr == NULL)
229 return -EFAULT;
230 unwritten = __copy_from_user(vaddr + page_offset,
231 user_data, length);
232 io_mapping_unmap(vaddr);
233 if (unwritten)
234 return -EFAULT;
235 return 0;
236 }
237
238 static int
239 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
240 struct drm_i915_gem_pwrite *args,
241 struct drm_file *file_priv)
242 {
243 struct drm_i915_gem_object *obj_priv = obj->driver_private;
244 drm_i915_private_t *dev_priv = dev->dev_private;
245 ssize_t remain;
246 loff_t offset, page_base;
247 char __user *user_data;
248 int page_offset, page_length;
249 int ret;
250
251 user_data = (char __user *) (uintptr_t) args->data_ptr;
252 remain = args->size;
253 if (!access_ok(VERIFY_READ, user_data, remain))
254 return -EFAULT;
255
256
257 mutex_lock(&dev->struct_mutex);
258 ret = i915_gem_object_pin(obj, 0);
259 if (ret) {
260 mutex_unlock(&dev->struct_mutex);
261 return ret;
262 }
263 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
264 if (ret)
265 goto fail;
266
267 obj_priv = obj->driver_private;
268 offset = obj_priv->gtt_offset + args->offset;
269 obj_priv->dirty = 1;
270
271 while (remain > 0) {
272 /* Operation in this page
273 *
274 * page_base = page offset within aperture
275 * page_offset = offset within page
276 * page_length = bytes to copy for this page
277 */
278 page_base = (offset & ~(PAGE_SIZE-1));
279 page_offset = offset & (PAGE_SIZE-1);
280 page_length = remain;
281 if ((page_offset + remain) > PAGE_SIZE)
282 page_length = PAGE_SIZE - page_offset;
283
284 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
285 page_offset, user_data, page_length);
286
287 /* If we get a fault while copying data, then (presumably) our
288 * source page isn't available. In this case, use the
289 * non-atomic function
290 */
291 if (ret) {
292 ret = slow_user_write (dev_priv->mm.gtt_mapping,
293 page_base, page_offset,
294 user_data, page_length);
295 if (ret)
296 goto fail;
297 }
298
299 remain -= page_length;
300 user_data += page_length;
301 offset += page_length;
302 }
303
304 fail:
305 i915_gem_object_unpin(obj);
306 mutex_unlock(&dev->struct_mutex);
307
308 return ret;
309 }
310
311 static int
312 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
313 struct drm_i915_gem_pwrite *args,
314 struct drm_file *file_priv)
315 {
316 int ret;
317 loff_t offset;
318 ssize_t written;
319
320 mutex_lock(&dev->struct_mutex);
321
322 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
323 if (ret) {
324 mutex_unlock(&dev->struct_mutex);
325 return ret;
326 }
327
328 offset = args->offset;
329
330 written = vfs_write(obj->filp,
331 (char __user *)(uintptr_t) args->data_ptr,
332 args->size, &offset);
333 if (written != args->size) {
334 mutex_unlock(&dev->struct_mutex);
335 if (written < 0)
336 return written;
337 else
338 return -EINVAL;
339 }
340
341 mutex_unlock(&dev->struct_mutex);
342
343 return 0;
344 }
345
346 /**
347 * Writes data to the object referenced by handle.
348 *
349 * On error, the contents of the buffer that were to be modified are undefined.
350 */
351 int
352 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
353 struct drm_file *file_priv)
354 {
355 struct drm_i915_gem_pwrite *args = data;
356 struct drm_gem_object *obj;
357 struct drm_i915_gem_object *obj_priv;
358 int ret = 0;
359
360 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
361 if (obj == NULL)
362 return -EBADF;
363 obj_priv = obj->driver_private;
364
365 /* Bounds check destination.
366 *
367 * XXX: This could use review for overflow issues...
368 */
369 if (args->offset > obj->size || args->size > obj->size ||
370 args->offset + args->size > obj->size) {
371 drm_gem_object_unreference(obj);
372 return -EINVAL;
373 }
374
375 /* We can only do the GTT pwrite on untiled buffers, as otherwise
376 * it would end up going through the fenced access, and we'll get
377 * different detiling behavior between reading and writing.
378 * pread/pwrite currently are reading and writing from the CPU
379 * perspective, requiring manual detiling by the client.
380 */
381 if (obj_priv->tiling_mode == I915_TILING_NONE &&
382 dev->gtt_total != 0)
383 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
384 else
385 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
386
387 #if WATCH_PWRITE
388 if (ret)
389 DRM_INFO("pwrite failed %d\n", ret);
390 #endif
391
392 drm_gem_object_unreference(obj);
393
394 return ret;
395 }
396
397 /**
398 * Called when user space prepares to use an object with the CPU, either
399 * through the mmap ioctl's mapping or a GTT mapping.
400 */
401 int
402 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
403 struct drm_file *file_priv)
404 {
405 struct drm_i915_gem_set_domain *args = data;
406 struct drm_gem_object *obj;
407 uint32_t read_domains = args->read_domains;
408 uint32_t write_domain = args->write_domain;
409 int ret;
410
411 if (!(dev->driver->driver_features & DRIVER_GEM))
412 return -ENODEV;
413
414 /* Only handle setting domains to types used by the CPU. */
415 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
416 return -EINVAL;
417
418 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
419 return -EINVAL;
420
421 /* Having something in the write domain implies it's in the read
422 * domain, and only that read domain. Enforce that in the request.
423 */
424 if (write_domain != 0 && read_domains != write_domain)
425 return -EINVAL;
426
427 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
428 if (obj == NULL)
429 return -EBADF;
430
431 mutex_lock(&dev->struct_mutex);
432 #if WATCH_BUF
433 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
434 obj, obj->size, read_domains, write_domain);
435 #endif
436 if (read_domains & I915_GEM_DOMAIN_GTT) {
437 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
438
439 /* Silently promote "you're not bound, there was nothing to do"
440 * to success, since the client was just asking us to
441 * make sure everything was done.
442 */
443 if (ret == -EINVAL)
444 ret = 0;
445 } else {
446 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
447 }
448
449 drm_gem_object_unreference(obj);
450 mutex_unlock(&dev->struct_mutex);
451 return ret;
452 }
453
454 /**
455 * Called when user space has done writes to this buffer
456 */
457 int
458 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
459 struct drm_file *file_priv)
460 {
461 struct drm_i915_gem_sw_finish *args = data;
462 struct drm_gem_object *obj;
463 struct drm_i915_gem_object *obj_priv;
464 int ret = 0;
465
466 if (!(dev->driver->driver_features & DRIVER_GEM))
467 return -ENODEV;
468
469 mutex_lock(&dev->struct_mutex);
470 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
471 if (obj == NULL) {
472 mutex_unlock(&dev->struct_mutex);
473 return -EBADF;
474 }
475
476 #if WATCH_BUF
477 DRM_INFO("%s: sw_finish %d (%p %d)\n",
478 __func__, args->handle, obj, obj->size);
479 #endif
480 obj_priv = obj->driver_private;
481
482 /* Pinned buffers may be scanout, so flush the cache */
483 if (obj_priv->pin_count)
484 i915_gem_object_flush_cpu_write_domain(obj);
485
486 drm_gem_object_unreference(obj);
487 mutex_unlock(&dev->struct_mutex);
488 return ret;
489 }
490
491 /**
492 * Maps the contents of an object, returning the address it is mapped
493 * into.
494 *
495 * While the mapping holds a reference on the contents of the object, it doesn't
496 * imply a ref on the object itself.
497 */
498 int
499 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
500 struct drm_file *file_priv)
501 {
502 struct drm_i915_gem_mmap *args = data;
503 struct drm_gem_object *obj;
504 loff_t offset;
505 unsigned long addr;
506
507 if (!(dev->driver->driver_features & DRIVER_GEM))
508 return -ENODEV;
509
510 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
511 if (obj == NULL)
512 return -EBADF;
513
514 offset = args->offset;
515
516 down_write(&current->mm->mmap_sem);
517 addr = do_mmap(obj->filp, 0, args->size,
518 PROT_READ | PROT_WRITE, MAP_SHARED,
519 args->offset);
520 up_write(&current->mm->mmap_sem);
521 mutex_lock(&dev->struct_mutex);
522 drm_gem_object_unreference(obj);
523 mutex_unlock(&dev->struct_mutex);
524 if (IS_ERR((void *)addr))
525 return addr;
526
527 args->addr_ptr = (uint64_t) addr;
528
529 return 0;
530 }
531
532 static void
533 i915_gem_object_free_page_list(struct drm_gem_object *obj)
534 {
535 struct drm_i915_gem_object *obj_priv = obj->driver_private;
536 int page_count = obj->size / PAGE_SIZE;
537 int i;
538
539 if (obj_priv->page_list == NULL)
540 return;
541
542
543 for (i = 0; i < page_count; i++)
544 if (obj_priv->page_list[i] != NULL) {
545 if (obj_priv->dirty)
546 set_page_dirty(obj_priv->page_list[i]);
547 mark_page_accessed(obj_priv->page_list[i]);
548 page_cache_release(obj_priv->page_list[i]);
549 }
550 obj_priv->dirty = 0;
551
552 drm_free(obj_priv->page_list,
553 page_count * sizeof(struct page *),
554 DRM_MEM_DRIVER);
555 obj_priv->page_list = NULL;
556 }
557
558 static void
559 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
560 {
561 struct drm_device *dev = obj->dev;
562 drm_i915_private_t *dev_priv = dev->dev_private;
563 struct drm_i915_gem_object *obj_priv = obj->driver_private;
564
565 /* Add a reference if we're newly entering the active list. */
566 if (!obj_priv->active) {
567 drm_gem_object_reference(obj);
568 obj_priv->active = 1;
569 }
570 /* Move from whatever list we were on to the tail of execution. */
571 list_move_tail(&obj_priv->list,
572 &dev_priv->mm.active_list);
573 obj_priv->last_rendering_seqno = seqno;
574 }
575
576 static void
577 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
578 {
579 struct drm_device *dev = obj->dev;
580 drm_i915_private_t *dev_priv = dev->dev_private;
581 struct drm_i915_gem_object *obj_priv = obj->driver_private;
582
583 BUG_ON(!obj_priv->active);
584 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
585 obj_priv->last_rendering_seqno = 0;
586 }
587
588 static void
589 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
590 {
591 struct drm_device *dev = obj->dev;
592 drm_i915_private_t *dev_priv = dev->dev_private;
593 struct drm_i915_gem_object *obj_priv = obj->driver_private;
594
595 i915_verify_inactive(dev, __FILE__, __LINE__);
596 if (obj_priv->pin_count != 0)
597 list_del_init(&obj_priv->list);
598 else
599 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
600
601 obj_priv->last_rendering_seqno = 0;
602 if (obj_priv->active) {
603 obj_priv->active = 0;
604 drm_gem_object_unreference(obj);
605 }
606 i915_verify_inactive(dev, __FILE__, __LINE__);
607 }
608
609 /**
610 * Creates a new sequence number, emitting a write of it to the status page
611 * plus an interrupt, which will trigger i915_user_interrupt_handler.
612 *
613 * Must be called with struct_lock held.
614 *
615 * Returned sequence numbers are nonzero on success.
616 */
617 static uint32_t
618 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
619 {
620 drm_i915_private_t *dev_priv = dev->dev_private;
621 struct drm_i915_gem_request *request;
622 uint32_t seqno;
623 int was_empty;
624 RING_LOCALS;
625
626 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
627 if (request == NULL)
628 return 0;
629
630 /* Grab the seqno we're going to make this request be, and bump the
631 * next (skipping 0 so it can be the reserved no-seqno value).
632 */
633 seqno = dev_priv->mm.next_gem_seqno;
634 dev_priv->mm.next_gem_seqno++;
635 if (dev_priv->mm.next_gem_seqno == 0)
636 dev_priv->mm.next_gem_seqno++;
637
638 BEGIN_LP_RING(4);
639 OUT_RING(MI_STORE_DWORD_INDEX);
640 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
641 OUT_RING(seqno);
642
643 OUT_RING(MI_USER_INTERRUPT);
644 ADVANCE_LP_RING();
645
646 DRM_DEBUG("%d\n", seqno);
647
648 request->seqno = seqno;
649 request->emitted_jiffies = jiffies;
650 was_empty = list_empty(&dev_priv->mm.request_list);
651 list_add_tail(&request->list, &dev_priv->mm.request_list);
652
653 /* Associate any objects on the flushing list matching the write
654 * domain we're flushing with our flush.
655 */
656 if (flush_domains != 0) {
657 struct drm_i915_gem_object *obj_priv, *next;
658
659 list_for_each_entry_safe(obj_priv, next,
660 &dev_priv->mm.flushing_list, list) {
661 struct drm_gem_object *obj = obj_priv->obj;
662
663 if ((obj->write_domain & flush_domains) ==
664 obj->write_domain) {
665 obj->write_domain = 0;
666 i915_gem_object_move_to_active(obj, seqno);
667 }
668 }
669
670 }
671
672 if (was_empty && !dev_priv->mm.suspended)
673 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
674 return seqno;
675 }
676
677 /**
678 * Command execution barrier
679 *
680 * Ensures that all commands in the ring are finished
681 * before signalling the CPU
682 */
683 static uint32_t
684 i915_retire_commands(struct drm_device *dev)
685 {
686 drm_i915_private_t *dev_priv = dev->dev_private;
687 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
688 uint32_t flush_domains = 0;
689 RING_LOCALS;
690
691 /* The sampler always gets flushed on i965 (sigh) */
692 if (IS_I965G(dev))
693 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
694 BEGIN_LP_RING(2);
695 OUT_RING(cmd);
696 OUT_RING(0); /* noop */
697 ADVANCE_LP_RING();
698 return flush_domains;
699 }
700
701 /**
702 * Moves buffers associated only with the given active seqno from the active
703 * to inactive list, potentially freeing them.
704 */
705 static void
706 i915_gem_retire_request(struct drm_device *dev,
707 struct drm_i915_gem_request *request)
708 {
709 drm_i915_private_t *dev_priv = dev->dev_private;
710
711 /* Move any buffers on the active list that are no longer referenced
712 * by the ringbuffer to the flushing/inactive lists as appropriate.
713 */
714 while (!list_empty(&dev_priv->mm.active_list)) {
715 struct drm_gem_object *obj;
716 struct drm_i915_gem_object *obj_priv;
717
718 obj_priv = list_first_entry(&dev_priv->mm.active_list,
719 struct drm_i915_gem_object,
720 list);
721 obj = obj_priv->obj;
722
723 /* If the seqno being retired doesn't match the oldest in the
724 * list, then the oldest in the list must still be newer than
725 * this seqno.
726 */
727 if (obj_priv->last_rendering_seqno != request->seqno)
728 return;
729 #if WATCH_LRU
730 DRM_INFO("%s: retire %d moves to inactive list %p\n",
731 __func__, request->seqno, obj);
732 #endif
733
734 if (obj->write_domain != 0)
735 i915_gem_object_move_to_flushing(obj);
736 else
737 i915_gem_object_move_to_inactive(obj);
738 }
739 }
740
741 /**
742 * Returns true if seq1 is later than seq2.
743 */
744 static int
745 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
746 {
747 return (int32_t)(seq1 - seq2) >= 0;
748 }
749
750 uint32_t
751 i915_get_gem_seqno(struct drm_device *dev)
752 {
753 drm_i915_private_t *dev_priv = dev->dev_private;
754
755 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
756 }
757
758 /**
759 * This function clears the request list as sequence numbers are passed.
760 */
761 void
762 i915_gem_retire_requests(struct drm_device *dev)
763 {
764 drm_i915_private_t *dev_priv = dev->dev_private;
765 uint32_t seqno;
766
767 seqno = i915_get_gem_seqno(dev);
768
769 while (!list_empty(&dev_priv->mm.request_list)) {
770 struct drm_i915_gem_request *request;
771 uint32_t retiring_seqno;
772
773 request = list_first_entry(&dev_priv->mm.request_list,
774 struct drm_i915_gem_request,
775 list);
776 retiring_seqno = request->seqno;
777
778 if (i915_seqno_passed(seqno, retiring_seqno) ||
779 dev_priv->mm.wedged) {
780 i915_gem_retire_request(dev, request);
781
782 list_del(&request->list);
783 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
784 } else
785 break;
786 }
787 }
788
789 void
790 i915_gem_retire_work_handler(struct work_struct *work)
791 {
792 drm_i915_private_t *dev_priv;
793 struct drm_device *dev;
794
795 dev_priv = container_of(work, drm_i915_private_t,
796 mm.retire_work.work);
797 dev = dev_priv->dev;
798
799 mutex_lock(&dev->struct_mutex);
800 i915_gem_retire_requests(dev);
801 if (!dev_priv->mm.suspended &&
802 !list_empty(&dev_priv->mm.request_list))
803 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
804 mutex_unlock(&dev->struct_mutex);
805 }
806
807 /**
808 * Waits for a sequence number to be signaled, and cleans up the
809 * request and object lists appropriately for that event.
810 */
811 static int
812 i915_wait_request(struct drm_device *dev, uint32_t seqno)
813 {
814 drm_i915_private_t *dev_priv = dev->dev_private;
815 int ret = 0;
816
817 BUG_ON(seqno == 0);
818
819 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
820 dev_priv->mm.waiting_gem_seqno = seqno;
821 i915_user_irq_get(dev);
822 ret = wait_event_interruptible(dev_priv->irq_queue,
823 i915_seqno_passed(i915_get_gem_seqno(dev),
824 seqno) ||
825 dev_priv->mm.wedged);
826 i915_user_irq_put(dev);
827 dev_priv->mm.waiting_gem_seqno = 0;
828 }
829 if (dev_priv->mm.wedged)
830 ret = -EIO;
831
832 if (ret && ret != -ERESTARTSYS)
833 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
834 __func__, ret, seqno, i915_get_gem_seqno(dev));
835
836 /* Directly dispatch request retiring. While we have the work queue
837 * to handle this, the waiter on a request often wants an associated
838 * buffer to have made it to the inactive list, and we would need
839 * a separate wait queue to handle that.
840 */
841 if (ret == 0)
842 i915_gem_retire_requests(dev);
843
844 return ret;
845 }
846
847 static void
848 i915_gem_flush(struct drm_device *dev,
849 uint32_t invalidate_domains,
850 uint32_t flush_domains)
851 {
852 drm_i915_private_t *dev_priv = dev->dev_private;
853 uint32_t cmd;
854 RING_LOCALS;
855
856 #if WATCH_EXEC
857 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
858 invalidate_domains, flush_domains);
859 #endif
860
861 if (flush_domains & I915_GEM_DOMAIN_CPU)
862 drm_agp_chipset_flush(dev);
863
864 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
865 I915_GEM_DOMAIN_GTT)) {
866 /*
867 * read/write caches:
868 *
869 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
870 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
871 * also flushed at 2d versus 3d pipeline switches.
872 *
873 * read-only caches:
874 *
875 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
876 * MI_READ_FLUSH is set, and is always flushed on 965.
877 *
878 * I915_GEM_DOMAIN_COMMAND may not exist?
879 *
880 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
881 * invalidated when MI_EXE_FLUSH is set.
882 *
883 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
884 * invalidated with every MI_FLUSH.
885 *
886 * TLBs:
887 *
888 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
889 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
890 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
891 * are flushed at any MI_FLUSH.
892 */
893
894 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
895 if ((invalidate_domains|flush_domains) &
896 I915_GEM_DOMAIN_RENDER)
897 cmd &= ~MI_NO_WRITE_FLUSH;
898 if (!IS_I965G(dev)) {
899 /*
900 * On the 965, the sampler cache always gets flushed
901 * and this bit is reserved.
902 */
903 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
904 cmd |= MI_READ_FLUSH;
905 }
906 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
907 cmd |= MI_EXE_FLUSH;
908
909 #if WATCH_EXEC
910 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
911 #endif
912 BEGIN_LP_RING(2);
913 OUT_RING(cmd);
914 OUT_RING(0); /* noop */
915 ADVANCE_LP_RING();
916 }
917 }
918
919 /**
920 * Ensures that all rendering to the object has completed and the object is
921 * safe to unbind from the GTT or access from the CPU.
922 */
923 static int
924 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
925 {
926 struct drm_device *dev = obj->dev;
927 struct drm_i915_gem_object *obj_priv = obj->driver_private;
928 int ret;
929
930 /* This function only exists to support waiting for existing rendering,
931 * not for emitting required flushes.
932 */
933 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
934
935 /* If there is rendering queued on the buffer being evicted, wait for
936 * it.
937 */
938 if (obj_priv->active) {
939 #if WATCH_BUF
940 DRM_INFO("%s: object %p wait for seqno %08x\n",
941 __func__, obj, obj_priv->last_rendering_seqno);
942 #endif
943 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
944 if (ret != 0)
945 return ret;
946 }
947
948 return 0;
949 }
950
951 /**
952 * Unbinds an object from the GTT aperture.
953 */
954 static int
955 i915_gem_object_unbind(struct drm_gem_object *obj)
956 {
957 struct drm_device *dev = obj->dev;
958 struct drm_i915_gem_object *obj_priv = obj->driver_private;
959 int ret = 0;
960
961 #if WATCH_BUF
962 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
963 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
964 #endif
965 if (obj_priv->gtt_space == NULL)
966 return 0;
967
968 if (obj_priv->pin_count != 0) {
969 DRM_ERROR("Attempting to unbind pinned buffer\n");
970 return -EINVAL;
971 }
972
973 /* Move the object to the CPU domain to ensure that
974 * any possible CPU writes while it's not in the GTT
975 * are flushed when we go to remap it. This will
976 * also ensure that all pending GPU writes are finished
977 * before we unbind.
978 */
979 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
980 if (ret) {
981 if (ret != -ERESTARTSYS)
982 DRM_ERROR("set_domain failed: %d\n", ret);
983 return ret;
984 }
985
986 if (obj_priv->agp_mem != NULL) {
987 drm_unbind_agp(obj_priv->agp_mem);
988 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
989 obj_priv->agp_mem = NULL;
990 }
991
992 BUG_ON(obj_priv->active);
993
994 i915_gem_object_free_page_list(obj);
995
996 if (obj_priv->gtt_space) {
997 atomic_dec(&dev->gtt_count);
998 atomic_sub(obj->size, &dev->gtt_memory);
999
1000 drm_mm_put_block(obj_priv->gtt_space);
1001 obj_priv->gtt_space = NULL;
1002 }
1003
1004 /* Remove ourselves from the LRU list if present. */
1005 if (!list_empty(&obj_priv->list))
1006 list_del_init(&obj_priv->list);
1007
1008 return 0;
1009 }
1010
1011 static int
1012 i915_gem_evict_something(struct drm_device *dev)
1013 {
1014 drm_i915_private_t *dev_priv = dev->dev_private;
1015 struct drm_gem_object *obj;
1016 struct drm_i915_gem_object *obj_priv;
1017 int ret = 0;
1018
1019 for (;;) {
1020 /* If there's an inactive buffer available now, grab it
1021 * and be done.
1022 */
1023 if (!list_empty(&dev_priv->mm.inactive_list)) {
1024 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1025 struct drm_i915_gem_object,
1026 list);
1027 obj = obj_priv->obj;
1028 BUG_ON(obj_priv->pin_count != 0);
1029 #if WATCH_LRU
1030 DRM_INFO("%s: evicting %p\n", __func__, obj);
1031 #endif
1032 BUG_ON(obj_priv->active);
1033
1034 /* Wait on the rendering and unbind the buffer. */
1035 ret = i915_gem_object_unbind(obj);
1036 break;
1037 }
1038
1039 /* If we didn't get anything, but the ring is still processing
1040 * things, wait for one of those things to finish and hopefully
1041 * leave us a buffer to evict.
1042 */
1043 if (!list_empty(&dev_priv->mm.request_list)) {
1044 struct drm_i915_gem_request *request;
1045
1046 request = list_first_entry(&dev_priv->mm.request_list,
1047 struct drm_i915_gem_request,
1048 list);
1049
1050 ret = i915_wait_request(dev, request->seqno);
1051 if (ret)
1052 break;
1053
1054 /* if waiting caused an object to become inactive,
1055 * then loop around and wait for it. Otherwise, we
1056 * assume that waiting freed and unbound something,
1057 * so there should now be some space in the GTT
1058 */
1059 if (!list_empty(&dev_priv->mm.inactive_list))
1060 continue;
1061 break;
1062 }
1063
1064 /* If we didn't have anything on the request list but there
1065 * are buffers awaiting a flush, emit one and try again.
1066 * When we wait on it, those buffers waiting for that flush
1067 * will get moved to inactive.
1068 */
1069 if (!list_empty(&dev_priv->mm.flushing_list)) {
1070 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1071 struct drm_i915_gem_object,
1072 list);
1073 obj = obj_priv->obj;
1074
1075 i915_gem_flush(dev,
1076 obj->write_domain,
1077 obj->write_domain);
1078 i915_add_request(dev, obj->write_domain);
1079
1080 obj = NULL;
1081 continue;
1082 }
1083
1084 DRM_ERROR("inactive empty %d request empty %d "
1085 "flushing empty %d\n",
1086 list_empty(&dev_priv->mm.inactive_list),
1087 list_empty(&dev_priv->mm.request_list),
1088 list_empty(&dev_priv->mm.flushing_list));
1089 /* If we didn't do any of the above, there's nothing to be done
1090 * and we just can't fit it in.
1091 */
1092 return -ENOMEM;
1093 }
1094 return ret;
1095 }
1096
1097 static int
1098 i915_gem_evict_everything(struct drm_device *dev)
1099 {
1100 int ret;
1101
1102 for (;;) {
1103 ret = i915_gem_evict_something(dev);
1104 if (ret != 0)
1105 break;
1106 }
1107 return ret;
1108 }
1109
1110 static int
1111 i915_gem_object_get_page_list(struct drm_gem_object *obj)
1112 {
1113 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1114 int page_count, i;
1115 struct address_space *mapping;
1116 struct inode *inode;
1117 struct page *page;
1118 int ret;
1119
1120 if (obj_priv->page_list)
1121 return 0;
1122
1123 /* Get the list of pages out of our struct file. They'll be pinned
1124 * at this point until we release them.
1125 */
1126 page_count = obj->size / PAGE_SIZE;
1127 BUG_ON(obj_priv->page_list != NULL);
1128 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1129 DRM_MEM_DRIVER);
1130 if (obj_priv->page_list == NULL) {
1131 DRM_ERROR("Faled to allocate page list\n");
1132 return -ENOMEM;
1133 }
1134
1135 inode = obj->filp->f_path.dentry->d_inode;
1136 mapping = inode->i_mapping;
1137 for (i = 0; i < page_count; i++) {
1138 page = read_mapping_page(mapping, i, NULL);
1139 if (IS_ERR(page)) {
1140 ret = PTR_ERR(page);
1141 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1142 i915_gem_object_free_page_list(obj);
1143 return ret;
1144 }
1145 obj_priv->page_list[i] = page;
1146 }
1147 return 0;
1148 }
1149
1150 /**
1151 * Finds free space in the GTT aperture and binds the object there.
1152 */
1153 static int
1154 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1155 {
1156 struct drm_device *dev = obj->dev;
1157 drm_i915_private_t *dev_priv = dev->dev_private;
1158 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1159 struct drm_mm_node *free_space;
1160 int page_count, ret;
1161
1162 if (alignment == 0)
1163 alignment = PAGE_SIZE;
1164 if (alignment & (PAGE_SIZE - 1)) {
1165 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1166 return -EINVAL;
1167 }
1168
1169 search_free:
1170 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1171 obj->size, alignment, 0);
1172 if (free_space != NULL) {
1173 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1174 alignment);
1175 if (obj_priv->gtt_space != NULL) {
1176 obj_priv->gtt_space->private = obj;
1177 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1178 }
1179 }
1180 if (obj_priv->gtt_space == NULL) {
1181 /* If the gtt is empty and we're still having trouble
1182 * fitting our object in, we're out of memory.
1183 */
1184 #if WATCH_LRU
1185 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1186 #endif
1187 if (list_empty(&dev_priv->mm.inactive_list) &&
1188 list_empty(&dev_priv->mm.flushing_list) &&
1189 list_empty(&dev_priv->mm.active_list)) {
1190 DRM_ERROR("GTT full, but LRU list empty\n");
1191 return -ENOMEM;
1192 }
1193
1194 ret = i915_gem_evict_something(dev);
1195 if (ret != 0) {
1196 if (ret != -ERESTARTSYS)
1197 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1198 return ret;
1199 }
1200 goto search_free;
1201 }
1202
1203 #if WATCH_BUF
1204 DRM_INFO("Binding object of size %d at 0x%08x\n",
1205 obj->size, obj_priv->gtt_offset);
1206 #endif
1207 ret = i915_gem_object_get_page_list(obj);
1208 if (ret) {
1209 drm_mm_put_block(obj_priv->gtt_space);
1210 obj_priv->gtt_space = NULL;
1211 return ret;
1212 }
1213
1214 page_count = obj->size / PAGE_SIZE;
1215 /* Create an AGP memory structure pointing at our pages, and bind it
1216 * into the GTT.
1217 */
1218 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1219 obj_priv->page_list,
1220 page_count,
1221 obj_priv->gtt_offset,
1222 obj_priv->agp_type);
1223 if (obj_priv->agp_mem == NULL) {
1224 i915_gem_object_free_page_list(obj);
1225 drm_mm_put_block(obj_priv->gtt_space);
1226 obj_priv->gtt_space = NULL;
1227 return -ENOMEM;
1228 }
1229 atomic_inc(&dev->gtt_count);
1230 atomic_add(obj->size, &dev->gtt_memory);
1231
1232 /* Assert that the object is not currently in any GPU domain. As it
1233 * wasn't in the GTT, there shouldn't be any way it could have been in
1234 * a GPU cache
1235 */
1236 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1237 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1238
1239 return 0;
1240 }
1241
1242 void
1243 i915_gem_clflush_object(struct drm_gem_object *obj)
1244 {
1245 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1246
1247 /* If we don't have a page list set up, then we're not pinned
1248 * to GPU, and we can ignore the cache flush because it'll happen
1249 * again at bind time.
1250 */
1251 if (obj_priv->page_list == NULL)
1252 return;
1253
1254 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1255 }
1256
1257 /** Flushes any GPU write domain for the object if it's dirty. */
1258 static void
1259 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1260 {
1261 struct drm_device *dev = obj->dev;
1262 uint32_t seqno;
1263
1264 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1265 return;
1266
1267 /* Queue the GPU write cache flushing we need. */
1268 i915_gem_flush(dev, 0, obj->write_domain);
1269 seqno = i915_add_request(dev, obj->write_domain);
1270 obj->write_domain = 0;
1271 i915_gem_object_move_to_active(obj, seqno);
1272 }
1273
1274 /** Flushes the GTT write domain for the object if it's dirty. */
1275 static void
1276 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1277 {
1278 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1279 return;
1280
1281 /* No actual flushing is required for the GTT write domain. Writes
1282 * to it immediately go to main memory as far as we know, so there's
1283 * no chipset flush. It also doesn't land in render cache.
1284 */
1285 obj->write_domain = 0;
1286 }
1287
1288 /** Flushes the CPU write domain for the object if it's dirty. */
1289 static void
1290 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1291 {
1292 struct drm_device *dev = obj->dev;
1293
1294 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1295 return;
1296
1297 i915_gem_clflush_object(obj);
1298 drm_agp_chipset_flush(dev);
1299 obj->write_domain = 0;
1300 }
1301
1302 /**
1303 * Moves a single object to the GTT read, and possibly write domain.
1304 *
1305 * This function returns when the move is complete, including waiting on
1306 * flushes to occur.
1307 */
1308 static int
1309 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1310 {
1311 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1312 int ret;
1313
1314 /* Not valid to be called on unbound objects. */
1315 if (obj_priv->gtt_space == NULL)
1316 return -EINVAL;
1317
1318 i915_gem_object_flush_gpu_write_domain(obj);
1319 /* Wait on any GPU rendering and flushing to occur. */
1320 ret = i915_gem_object_wait_rendering(obj);
1321 if (ret != 0)
1322 return ret;
1323
1324 /* If we're writing through the GTT domain, then CPU and GPU caches
1325 * will need to be invalidated at next use.
1326 */
1327 if (write)
1328 obj->read_domains &= I915_GEM_DOMAIN_GTT;
1329
1330 i915_gem_object_flush_cpu_write_domain(obj);
1331
1332 /* It should now be out of any other write domains, and we can update
1333 * the domain values for our changes.
1334 */
1335 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1336 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1337 if (write) {
1338 obj->write_domain = I915_GEM_DOMAIN_GTT;
1339 obj_priv->dirty = 1;
1340 }
1341
1342 return 0;
1343 }
1344
1345 /**
1346 * Moves a single object to the CPU read, and possibly write domain.
1347 *
1348 * This function returns when the move is complete, including waiting on
1349 * flushes to occur.
1350 */
1351 static int
1352 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1353 {
1354 struct drm_device *dev = obj->dev;
1355 int ret;
1356
1357 i915_gem_object_flush_gpu_write_domain(obj);
1358 /* Wait on any GPU rendering and flushing to occur. */
1359 ret = i915_gem_object_wait_rendering(obj);
1360 if (ret != 0)
1361 return ret;
1362
1363 i915_gem_object_flush_gtt_write_domain(obj);
1364
1365 /* If we have a partially-valid cache of the object in the CPU,
1366 * finish invalidating it and free the per-page flags.
1367 */
1368 i915_gem_object_set_to_full_cpu_read_domain(obj);
1369
1370 /* Flush the CPU cache if it's still invalid. */
1371 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
1372 i915_gem_clflush_object(obj);
1373 drm_agp_chipset_flush(dev);
1374
1375 obj->read_domains |= I915_GEM_DOMAIN_CPU;
1376 }
1377
1378 /* It should now be out of any other write domains, and we can update
1379 * the domain values for our changes.
1380 */
1381 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1382
1383 /* If we're writing through the CPU, then the GPU read domains will
1384 * need to be invalidated at next use.
1385 */
1386 if (write) {
1387 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1388 obj->write_domain = I915_GEM_DOMAIN_CPU;
1389 }
1390
1391 return 0;
1392 }
1393
1394 /*
1395 * Set the next domain for the specified object. This
1396 * may not actually perform the necessary flushing/invaliding though,
1397 * as that may want to be batched with other set_domain operations
1398 *
1399 * This is (we hope) the only really tricky part of gem. The goal
1400 * is fairly simple -- track which caches hold bits of the object
1401 * and make sure they remain coherent. A few concrete examples may
1402 * help to explain how it works. For shorthand, we use the notation
1403 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1404 * a pair of read and write domain masks.
1405 *
1406 * Case 1: the batch buffer
1407 *
1408 * 1. Allocated
1409 * 2. Written by CPU
1410 * 3. Mapped to GTT
1411 * 4. Read by GPU
1412 * 5. Unmapped from GTT
1413 * 6. Freed
1414 *
1415 * Let's take these a step at a time
1416 *
1417 * 1. Allocated
1418 * Pages allocated from the kernel may still have
1419 * cache contents, so we set them to (CPU, CPU) always.
1420 * 2. Written by CPU (using pwrite)
1421 * The pwrite function calls set_domain (CPU, CPU) and
1422 * this function does nothing (as nothing changes)
1423 * 3. Mapped by GTT
1424 * This function asserts that the object is not
1425 * currently in any GPU-based read or write domains
1426 * 4. Read by GPU
1427 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1428 * As write_domain is zero, this function adds in the
1429 * current read domains (CPU+COMMAND, 0).
1430 * flush_domains is set to CPU.
1431 * invalidate_domains is set to COMMAND
1432 * clflush is run to get data out of the CPU caches
1433 * then i915_dev_set_domain calls i915_gem_flush to
1434 * emit an MI_FLUSH and drm_agp_chipset_flush
1435 * 5. Unmapped from GTT
1436 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1437 * flush_domains and invalidate_domains end up both zero
1438 * so no flushing/invalidating happens
1439 * 6. Freed
1440 * yay, done
1441 *
1442 * Case 2: The shared render buffer
1443 *
1444 * 1. Allocated
1445 * 2. Mapped to GTT
1446 * 3. Read/written by GPU
1447 * 4. set_domain to (CPU,CPU)
1448 * 5. Read/written by CPU
1449 * 6. Read/written by GPU
1450 *
1451 * 1. Allocated
1452 * Same as last example, (CPU, CPU)
1453 * 2. Mapped to GTT
1454 * Nothing changes (assertions find that it is not in the GPU)
1455 * 3. Read/written by GPU
1456 * execbuffer calls set_domain (RENDER, RENDER)
1457 * flush_domains gets CPU
1458 * invalidate_domains gets GPU
1459 * clflush (obj)
1460 * MI_FLUSH and drm_agp_chipset_flush
1461 * 4. set_domain (CPU, CPU)
1462 * flush_domains gets GPU
1463 * invalidate_domains gets CPU
1464 * wait_rendering (obj) to make sure all drawing is complete.
1465 * This will include an MI_FLUSH to get the data from GPU
1466 * to memory
1467 * clflush (obj) to invalidate the CPU cache
1468 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1469 * 5. Read/written by CPU
1470 * cache lines are loaded and dirtied
1471 * 6. Read written by GPU
1472 * Same as last GPU access
1473 *
1474 * Case 3: The constant buffer
1475 *
1476 * 1. Allocated
1477 * 2. Written by CPU
1478 * 3. Read by GPU
1479 * 4. Updated (written) by CPU again
1480 * 5. Read by GPU
1481 *
1482 * 1. Allocated
1483 * (CPU, CPU)
1484 * 2. Written by CPU
1485 * (CPU, CPU)
1486 * 3. Read by GPU
1487 * (CPU+RENDER, 0)
1488 * flush_domains = CPU
1489 * invalidate_domains = RENDER
1490 * clflush (obj)
1491 * MI_FLUSH
1492 * drm_agp_chipset_flush
1493 * 4. Updated (written) by CPU again
1494 * (CPU, CPU)
1495 * flush_domains = 0 (no previous write domain)
1496 * invalidate_domains = 0 (no new read domains)
1497 * 5. Read by GPU
1498 * (CPU+RENDER, 0)
1499 * flush_domains = CPU
1500 * invalidate_domains = RENDER
1501 * clflush (obj)
1502 * MI_FLUSH
1503 * drm_agp_chipset_flush
1504 */
1505 static void
1506 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
1507 uint32_t read_domains,
1508 uint32_t write_domain)
1509 {
1510 struct drm_device *dev = obj->dev;
1511 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512 uint32_t invalidate_domains = 0;
1513 uint32_t flush_domains = 0;
1514
1515 BUG_ON(read_domains & I915_GEM_DOMAIN_CPU);
1516 BUG_ON(write_domain == I915_GEM_DOMAIN_CPU);
1517
1518 #if WATCH_BUF
1519 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
1520 __func__, obj,
1521 obj->read_domains, read_domains,
1522 obj->write_domain, write_domain);
1523 #endif
1524 /*
1525 * If the object isn't moving to a new write domain,
1526 * let the object stay in multiple read domains
1527 */
1528 if (write_domain == 0)
1529 read_domains |= obj->read_domains;
1530 else
1531 obj_priv->dirty = 1;
1532
1533 /*
1534 * Flush the current write domain if
1535 * the new read domains don't match. Invalidate
1536 * any read domains which differ from the old
1537 * write domain
1538 */
1539 if (obj->write_domain && obj->write_domain != read_domains) {
1540 flush_domains |= obj->write_domain;
1541 invalidate_domains |= read_domains & ~obj->write_domain;
1542 }
1543 /*
1544 * Invalidate any read caches which may have
1545 * stale data. That is, any new read domains.
1546 */
1547 invalidate_domains |= read_domains & ~obj->read_domains;
1548 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
1549 #if WATCH_BUF
1550 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
1551 __func__, flush_domains, invalidate_domains);
1552 #endif
1553 i915_gem_clflush_object(obj);
1554 }
1555
1556 if ((write_domain | flush_domains) != 0)
1557 obj->write_domain = write_domain;
1558 obj->read_domains = read_domains;
1559
1560 dev->invalidate_domains |= invalidate_domains;
1561 dev->flush_domains |= flush_domains;
1562 #if WATCH_BUF
1563 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
1564 __func__,
1565 obj->read_domains, obj->write_domain,
1566 dev->invalidate_domains, dev->flush_domains);
1567 #endif
1568 }
1569
1570 /**
1571 * Moves the object from a partially CPU read to a full one.
1572 *
1573 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
1574 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
1575 */
1576 static void
1577 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
1578 {
1579 struct drm_device *dev = obj->dev;
1580 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1581
1582 if (!obj_priv->page_cpu_valid)
1583 return;
1584
1585 /* If we're partially in the CPU read domain, finish moving it in.
1586 */
1587 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
1588 int i;
1589
1590 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
1591 if (obj_priv->page_cpu_valid[i])
1592 continue;
1593 drm_clflush_pages(obj_priv->page_list + i, 1);
1594 }
1595 drm_agp_chipset_flush(dev);
1596 }
1597
1598 /* Free the page_cpu_valid mappings which are now stale, whether
1599 * or not we've got I915_GEM_DOMAIN_CPU.
1600 */
1601 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
1602 DRM_MEM_DRIVER);
1603 obj_priv->page_cpu_valid = NULL;
1604 }
1605
1606 /**
1607 * Set the CPU read domain on a range of the object.
1608 *
1609 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
1610 * not entirely valid. The page_cpu_valid member of the object flags which
1611 * pages have been flushed, and will be respected by
1612 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
1613 * of the whole object.
1614 *
1615 * This function returns when the move is complete, including waiting on
1616 * flushes to occur.
1617 */
1618 static int
1619 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
1620 uint64_t offset, uint64_t size)
1621 {
1622 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1623 int i, ret;
1624
1625 if (offset == 0 && size == obj->size)
1626 return i915_gem_object_set_to_cpu_domain(obj, 0);
1627
1628 i915_gem_object_flush_gpu_write_domain(obj);
1629 /* Wait on any GPU rendering and flushing to occur. */
1630 ret = i915_gem_object_wait_rendering(obj);
1631 if (ret != 0)
1632 return ret;
1633 i915_gem_object_flush_gtt_write_domain(obj);
1634
1635 /* If we're already fully in the CPU read domain, we're done. */
1636 if (obj_priv->page_cpu_valid == NULL &&
1637 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
1638 return 0;
1639
1640 /* Otherwise, create/clear the per-page CPU read domain flag if we're
1641 * newly adding I915_GEM_DOMAIN_CPU
1642 */
1643 if (obj_priv->page_cpu_valid == NULL) {
1644 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
1645 DRM_MEM_DRIVER);
1646 if (obj_priv->page_cpu_valid == NULL)
1647 return -ENOMEM;
1648 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
1649 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
1650
1651 /* Flush the cache on any pages that are still invalid from the CPU's
1652 * perspective.
1653 */
1654 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
1655 i++) {
1656 if (obj_priv->page_cpu_valid[i])
1657 continue;
1658
1659 drm_clflush_pages(obj_priv->page_list + i, 1);
1660
1661 obj_priv->page_cpu_valid[i] = 1;
1662 }
1663
1664 /* It should now be out of any other write domains, and we can update
1665 * the domain values for our changes.
1666 */
1667 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1668
1669 obj->read_domains |= I915_GEM_DOMAIN_CPU;
1670
1671 return 0;
1672 }
1673
1674 /**
1675 * Pin an object to the GTT and evaluate the relocations landing in it.
1676 */
1677 static int
1678 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
1679 struct drm_file *file_priv,
1680 struct drm_i915_gem_exec_object *entry)
1681 {
1682 struct drm_device *dev = obj->dev;
1683 drm_i915_private_t *dev_priv = dev->dev_private;
1684 struct drm_i915_gem_relocation_entry reloc;
1685 struct drm_i915_gem_relocation_entry __user *relocs;
1686 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1687 int i, ret;
1688 void __iomem *reloc_page;
1689
1690 /* Choose the GTT offset for our buffer and put it there. */
1691 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
1692 if (ret)
1693 return ret;
1694
1695 entry->offset = obj_priv->gtt_offset;
1696
1697 relocs = (struct drm_i915_gem_relocation_entry __user *)
1698 (uintptr_t) entry->relocs_ptr;
1699 /* Apply the relocations, using the GTT aperture to avoid cache
1700 * flushing requirements.
1701 */
1702 for (i = 0; i < entry->relocation_count; i++) {
1703 struct drm_gem_object *target_obj;
1704 struct drm_i915_gem_object *target_obj_priv;
1705 uint32_t reloc_val, reloc_offset;
1706 uint32_t __iomem *reloc_entry;
1707
1708 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
1709 if (ret != 0) {
1710 i915_gem_object_unpin(obj);
1711 return ret;
1712 }
1713
1714 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
1715 reloc.target_handle);
1716 if (target_obj == NULL) {
1717 i915_gem_object_unpin(obj);
1718 return -EBADF;
1719 }
1720 target_obj_priv = target_obj->driver_private;
1721
1722 /* The target buffer should have appeared before us in the
1723 * exec_object list, so it should have a GTT space bound by now.
1724 */
1725 if (target_obj_priv->gtt_space == NULL) {
1726 DRM_ERROR("No GTT space found for object %d\n",
1727 reloc.target_handle);
1728 drm_gem_object_unreference(target_obj);
1729 i915_gem_object_unpin(obj);
1730 return -EINVAL;
1731 }
1732
1733 if (reloc.offset > obj->size - 4) {
1734 DRM_ERROR("Relocation beyond object bounds: "
1735 "obj %p target %d offset %d size %d.\n",
1736 obj, reloc.target_handle,
1737 (int) reloc.offset, (int) obj->size);
1738 drm_gem_object_unreference(target_obj);
1739 i915_gem_object_unpin(obj);
1740 return -EINVAL;
1741 }
1742 if (reloc.offset & 3) {
1743 DRM_ERROR("Relocation not 4-byte aligned: "
1744 "obj %p target %d offset %d.\n",
1745 obj, reloc.target_handle,
1746 (int) reloc.offset);
1747 drm_gem_object_unreference(target_obj);
1748 i915_gem_object_unpin(obj);
1749 return -EINVAL;
1750 }
1751
1752 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
1753 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
1754 DRM_ERROR("reloc with read/write CPU domains: "
1755 "obj %p target %d offset %d "
1756 "read %08x write %08x",
1757 obj, reloc.target_handle,
1758 (int) reloc.offset,
1759 reloc.read_domains,
1760 reloc.write_domain);
1761 return -EINVAL;
1762 }
1763
1764 if (reloc.write_domain && target_obj->pending_write_domain &&
1765 reloc.write_domain != target_obj->pending_write_domain) {
1766 DRM_ERROR("Write domain conflict: "
1767 "obj %p target %d offset %d "
1768 "new %08x old %08x\n",
1769 obj, reloc.target_handle,
1770 (int) reloc.offset,
1771 reloc.write_domain,
1772 target_obj->pending_write_domain);
1773 drm_gem_object_unreference(target_obj);
1774 i915_gem_object_unpin(obj);
1775 return -EINVAL;
1776 }
1777
1778 #if WATCH_RELOC
1779 DRM_INFO("%s: obj %p offset %08x target %d "
1780 "read %08x write %08x gtt %08x "
1781 "presumed %08x delta %08x\n",
1782 __func__,
1783 obj,
1784 (int) reloc.offset,
1785 (int) reloc.target_handle,
1786 (int) reloc.read_domains,
1787 (int) reloc.write_domain,
1788 (int) target_obj_priv->gtt_offset,
1789 (int) reloc.presumed_offset,
1790 reloc.delta);
1791 #endif
1792
1793 target_obj->pending_read_domains |= reloc.read_domains;
1794 target_obj->pending_write_domain |= reloc.write_domain;
1795
1796 /* If the relocation already has the right value in it, no
1797 * more work needs to be done.
1798 */
1799 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
1800 drm_gem_object_unreference(target_obj);
1801 continue;
1802 }
1803
1804 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1805 if (ret != 0) {
1806 drm_gem_object_unreference(target_obj);
1807 i915_gem_object_unpin(obj);
1808 return -EINVAL;
1809 }
1810
1811 /* Map the page containing the relocation we're going to
1812 * perform.
1813 */
1814 reloc_offset = obj_priv->gtt_offset + reloc.offset;
1815 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
1816 (reloc_offset &
1817 ~(PAGE_SIZE - 1)));
1818 reloc_entry = (uint32_t __iomem *)(reloc_page +
1819 (reloc_offset & (PAGE_SIZE - 1)));
1820 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
1821
1822 #if WATCH_BUF
1823 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
1824 obj, (unsigned int) reloc.offset,
1825 readl(reloc_entry), reloc_val);
1826 #endif
1827 writel(reloc_val, reloc_entry);
1828 io_mapping_unmap_atomic(reloc_page);
1829
1830 /* Write the updated presumed offset for this entry back out
1831 * to the user.
1832 */
1833 reloc.presumed_offset = target_obj_priv->gtt_offset;
1834 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
1835 if (ret != 0) {
1836 drm_gem_object_unreference(target_obj);
1837 i915_gem_object_unpin(obj);
1838 return ret;
1839 }
1840
1841 drm_gem_object_unreference(target_obj);
1842 }
1843
1844 #if WATCH_BUF
1845 if (0)
1846 i915_gem_dump_object(obj, 128, __func__, ~0);
1847 #endif
1848 return 0;
1849 }
1850
1851 /** Dispatch a batchbuffer to the ring
1852 */
1853 static int
1854 i915_dispatch_gem_execbuffer(struct drm_device *dev,
1855 struct drm_i915_gem_execbuffer *exec,
1856 uint64_t exec_offset)
1857 {
1858 drm_i915_private_t *dev_priv = dev->dev_private;
1859 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
1860 (uintptr_t) exec->cliprects_ptr;
1861 int nbox = exec->num_cliprects;
1862 int i = 0, count;
1863 uint32_t exec_start, exec_len;
1864 RING_LOCALS;
1865
1866 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
1867 exec_len = (uint32_t) exec->batch_len;
1868
1869 if ((exec_start | exec_len) & 0x7) {
1870 DRM_ERROR("alignment\n");
1871 return -EINVAL;
1872 }
1873
1874 if (!exec_start)
1875 return -EINVAL;
1876
1877 count = nbox ? nbox : 1;
1878
1879 for (i = 0; i < count; i++) {
1880 if (i < nbox) {
1881 int ret = i915_emit_box(dev, boxes, i,
1882 exec->DR1, exec->DR4);
1883 if (ret)
1884 return ret;
1885 }
1886
1887 if (IS_I830(dev) || IS_845G(dev)) {
1888 BEGIN_LP_RING(4);
1889 OUT_RING(MI_BATCH_BUFFER);
1890 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1891 OUT_RING(exec_start + exec_len - 4);
1892 OUT_RING(0);
1893 ADVANCE_LP_RING();
1894 } else {
1895 BEGIN_LP_RING(2);
1896 if (IS_I965G(dev)) {
1897 OUT_RING(MI_BATCH_BUFFER_START |
1898 (2 << 6) |
1899 MI_BATCH_NON_SECURE_I965);
1900 OUT_RING(exec_start);
1901 } else {
1902 OUT_RING(MI_BATCH_BUFFER_START |
1903 (2 << 6));
1904 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1905 }
1906 ADVANCE_LP_RING();
1907 }
1908 }
1909
1910 /* XXX breadcrumb */
1911 return 0;
1912 }
1913
1914 /* Throttle our rendering by waiting until the ring has completed our requests
1915 * emitted over 20 msec ago.
1916 *
1917 * This should get us reasonable parallelism between CPU and GPU but also
1918 * relatively low latency when blocking on a particular request to finish.
1919 */
1920 static int
1921 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
1922 {
1923 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1924 int ret = 0;
1925 uint32_t seqno;
1926
1927 mutex_lock(&dev->struct_mutex);
1928 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
1929 i915_file_priv->mm.last_gem_throttle_seqno =
1930 i915_file_priv->mm.last_gem_seqno;
1931 if (seqno)
1932 ret = i915_wait_request(dev, seqno);
1933 mutex_unlock(&dev->struct_mutex);
1934 return ret;
1935 }
1936
1937 int
1938 i915_gem_execbuffer(struct drm_device *dev, void *data,
1939 struct drm_file *file_priv)
1940 {
1941 drm_i915_private_t *dev_priv = dev->dev_private;
1942 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1943 struct drm_i915_gem_execbuffer *args = data;
1944 struct drm_i915_gem_exec_object *exec_list = NULL;
1945 struct drm_gem_object **object_list = NULL;
1946 struct drm_gem_object *batch_obj;
1947 int ret, i, pinned = 0;
1948 uint64_t exec_offset;
1949 uint32_t seqno, flush_domains;
1950 int pin_tries;
1951
1952 #if WATCH_EXEC
1953 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
1954 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1955 #endif
1956
1957 if (args->buffer_count < 1) {
1958 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1959 return -EINVAL;
1960 }
1961 /* Copy in the exec list from userland */
1962 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
1963 DRM_MEM_DRIVER);
1964 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
1965 DRM_MEM_DRIVER);
1966 if (exec_list == NULL || object_list == NULL) {
1967 DRM_ERROR("Failed to allocate exec or object list "
1968 "for %d buffers\n",
1969 args->buffer_count);
1970 ret = -ENOMEM;
1971 goto pre_mutex_err;
1972 }
1973 ret = copy_from_user(exec_list,
1974 (struct drm_i915_relocation_entry __user *)
1975 (uintptr_t) args->buffers_ptr,
1976 sizeof(*exec_list) * args->buffer_count);
1977 if (ret != 0) {
1978 DRM_ERROR("copy %d exec entries failed %d\n",
1979 args->buffer_count, ret);
1980 goto pre_mutex_err;
1981 }
1982
1983 mutex_lock(&dev->struct_mutex);
1984
1985 i915_verify_inactive(dev, __FILE__, __LINE__);
1986
1987 if (dev_priv->mm.wedged) {
1988 DRM_ERROR("Execbuf while wedged\n");
1989 mutex_unlock(&dev->struct_mutex);
1990 return -EIO;
1991 }
1992
1993 if (dev_priv->mm.suspended) {
1994 DRM_ERROR("Execbuf while VT-switched.\n");
1995 mutex_unlock(&dev->struct_mutex);
1996 return -EBUSY;
1997 }
1998
1999 /* Look up object handles */
2000 for (i = 0; i < args->buffer_count; i++) {
2001 object_list[i] = drm_gem_object_lookup(dev, file_priv,
2002 exec_list[i].handle);
2003 if (object_list[i] == NULL) {
2004 DRM_ERROR("Invalid object handle %d at index %d\n",
2005 exec_list[i].handle, i);
2006 ret = -EBADF;
2007 goto err;
2008 }
2009 }
2010
2011 /* Pin and relocate */
2012 for (pin_tries = 0; ; pin_tries++) {
2013 ret = 0;
2014 for (i = 0; i < args->buffer_count; i++) {
2015 object_list[i]->pending_read_domains = 0;
2016 object_list[i]->pending_write_domain = 0;
2017 ret = i915_gem_object_pin_and_relocate(object_list[i],
2018 file_priv,
2019 &exec_list[i]);
2020 if (ret)
2021 break;
2022 pinned = i + 1;
2023 }
2024 /* success */
2025 if (ret == 0)
2026 break;
2027
2028 /* error other than GTT full, or we've already tried again */
2029 if (ret != -ENOMEM || pin_tries >= 1) {
2030 DRM_ERROR("Failed to pin buffers %d\n", ret);
2031 goto err;
2032 }
2033
2034 /* unpin all of our buffers */
2035 for (i = 0; i < pinned; i++)
2036 i915_gem_object_unpin(object_list[i]);
2037
2038 /* evict everyone we can from the aperture */
2039 ret = i915_gem_evict_everything(dev);
2040 if (ret)
2041 goto err;
2042 }
2043
2044 /* Set the pending read domains for the batch buffer to COMMAND */
2045 batch_obj = object_list[args->buffer_count-1];
2046 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2047 batch_obj->pending_write_domain = 0;
2048
2049 i915_verify_inactive(dev, __FILE__, __LINE__);
2050
2051 /* Zero the global flush/invalidate flags. These
2052 * will be modified as new domains are computed
2053 * for each object
2054 */
2055 dev->invalidate_domains = 0;
2056 dev->flush_domains = 0;
2057
2058 for (i = 0; i < args->buffer_count; i++) {
2059 struct drm_gem_object *obj = object_list[i];
2060
2061 /* Compute new gpu domains and update invalidate/flush */
2062 i915_gem_object_set_to_gpu_domain(obj,
2063 obj->pending_read_domains,
2064 obj->pending_write_domain);
2065 }
2066
2067 i915_verify_inactive(dev, __FILE__, __LINE__);
2068
2069 if (dev->invalidate_domains | dev->flush_domains) {
2070 #if WATCH_EXEC
2071 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2072 __func__,
2073 dev->invalidate_domains,
2074 dev->flush_domains);
2075 #endif
2076 i915_gem_flush(dev,
2077 dev->invalidate_domains,
2078 dev->flush_domains);
2079 if (dev->flush_domains)
2080 (void)i915_add_request(dev, dev->flush_domains);
2081 }
2082
2083 i915_verify_inactive(dev, __FILE__, __LINE__);
2084
2085 #if WATCH_COHERENCY
2086 for (i = 0; i < args->buffer_count; i++) {
2087 i915_gem_object_check_coherency(object_list[i],
2088 exec_list[i].handle);
2089 }
2090 #endif
2091
2092 exec_offset = exec_list[args->buffer_count - 1].offset;
2093
2094 #if WATCH_EXEC
2095 i915_gem_dump_object(object_list[args->buffer_count - 1],
2096 args->batch_len,
2097 __func__,
2098 ~0);
2099 #endif
2100
2101 /* Exec the batchbuffer */
2102 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2103 if (ret) {
2104 DRM_ERROR("dispatch failed %d\n", ret);
2105 goto err;
2106 }
2107
2108 /*
2109 * Ensure that the commands in the batch buffer are
2110 * finished before the interrupt fires
2111 */
2112 flush_domains = i915_retire_commands(dev);
2113
2114 i915_verify_inactive(dev, __FILE__, __LINE__);
2115
2116 /*
2117 * Get a seqno representing the execution of the current buffer,
2118 * which we can wait on. We would like to mitigate these interrupts,
2119 * likely by only creating seqnos occasionally (so that we have
2120 * *some* interrupts representing completion of buffers that we can
2121 * wait on when trying to clear up gtt space).
2122 */
2123 seqno = i915_add_request(dev, flush_domains);
2124 BUG_ON(seqno == 0);
2125 i915_file_priv->mm.last_gem_seqno = seqno;
2126 for (i = 0; i < args->buffer_count; i++) {
2127 struct drm_gem_object *obj = object_list[i];
2128
2129 i915_gem_object_move_to_active(obj, seqno);
2130 #if WATCH_LRU
2131 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2132 #endif
2133 }
2134 #if WATCH_LRU
2135 i915_dump_lru(dev, __func__);
2136 #endif
2137
2138 i915_verify_inactive(dev, __FILE__, __LINE__);
2139
2140 /* Copy the new buffer offsets back to the user's exec list. */
2141 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2142 (uintptr_t) args->buffers_ptr,
2143 exec_list,
2144 sizeof(*exec_list) * args->buffer_count);
2145 if (ret)
2146 DRM_ERROR("failed to copy %d exec entries "
2147 "back to user (%d)\n",
2148 args->buffer_count, ret);
2149 err:
2150 if (object_list != NULL) {
2151 for (i = 0; i < pinned; i++)
2152 i915_gem_object_unpin(object_list[i]);
2153
2154 for (i = 0; i < args->buffer_count; i++)
2155 drm_gem_object_unreference(object_list[i]);
2156 }
2157 mutex_unlock(&dev->struct_mutex);
2158
2159 pre_mutex_err:
2160 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2161 DRM_MEM_DRIVER);
2162 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2163 DRM_MEM_DRIVER);
2164
2165 return ret;
2166 }
2167
2168 int
2169 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2170 {
2171 struct drm_device *dev = obj->dev;
2172 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2173 int ret;
2174
2175 i915_verify_inactive(dev, __FILE__, __LINE__);
2176 if (obj_priv->gtt_space == NULL) {
2177 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2178 if (ret != 0) {
2179 DRM_ERROR("Failure to bind: %d", ret);
2180 return ret;
2181 }
2182 }
2183 obj_priv->pin_count++;
2184
2185 /* If the object is not active and not pending a flush,
2186 * remove it from the inactive list
2187 */
2188 if (obj_priv->pin_count == 1) {
2189 atomic_inc(&dev->pin_count);
2190 atomic_add(obj->size, &dev->pin_memory);
2191 if (!obj_priv->active &&
2192 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2193 I915_GEM_DOMAIN_GTT)) == 0 &&
2194 !list_empty(&obj_priv->list))
2195 list_del_init(&obj_priv->list);
2196 }
2197 i915_verify_inactive(dev, __FILE__, __LINE__);
2198
2199 return 0;
2200 }
2201
2202 void
2203 i915_gem_object_unpin(struct drm_gem_object *obj)
2204 {
2205 struct drm_device *dev = obj->dev;
2206 drm_i915_private_t *dev_priv = dev->dev_private;
2207 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2208
2209 i915_verify_inactive(dev, __FILE__, __LINE__);
2210 obj_priv->pin_count--;
2211 BUG_ON(obj_priv->pin_count < 0);
2212 BUG_ON(obj_priv->gtt_space == NULL);
2213
2214 /* If the object is no longer pinned, and is
2215 * neither active nor being flushed, then stick it on
2216 * the inactive list
2217 */
2218 if (obj_priv->pin_count == 0) {
2219 if (!obj_priv->active &&
2220 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2221 I915_GEM_DOMAIN_GTT)) == 0)
2222 list_move_tail(&obj_priv->list,
2223 &dev_priv->mm.inactive_list);
2224 atomic_dec(&dev->pin_count);
2225 atomic_sub(obj->size, &dev->pin_memory);
2226 }
2227 i915_verify_inactive(dev, __FILE__, __LINE__);
2228 }
2229
2230 int
2231 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2232 struct drm_file *file_priv)
2233 {
2234 struct drm_i915_gem_pin *args = data;
2235 struct drm_gem_object *obj;
2236 struct drm_i915_gem_object *obj_priv;
2237 int ret;
2238
2239 mutex_lock(&dev->struct_mutex);
2240
2241 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2242 if (obj == NULL) {
2243 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2244 args->handle);
2245 mutex_unlock(&dev->struct_mutex);
2246 return -EBADF;
2247 }
2248 obj_priv = obj->driver_private;
2249
2250 ret = i915_gem_object_pin(obj, args->alignment);
2251 if (ret != 0) {
2252 drm_gem_object_unreference(obj);
2253 mutex_unlock(&dev->struct_mutex);
2254 return ret;
2255 }
2256
2257 /* XXX - flush the CPU caches for pinned objects
2258 * as the X server doesn't manage domains yet
2259 */
2260 i915_gem_object_flush_cpu_write_domain(obj);
2261 args->offset = obj_priv->gtt_offset;
2262 drm_gem_object_unreference(obj);
2263 mutex_unlock(&dev->struct_mutex);
2264
2265 return 0;
2266 }
2267
2268 int
2269 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2270 struct drm_file *file_priv)
2271 {
2272 struct drm_i915_gem_pin *args = data;
2273 struct drm_gem_object *obj;
2274
2275 mutex_lock(&dev->struct_mutex);
2276
2277 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2278 if (obj == NULL) {
2279 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2280 args->handle);
2281 mutex_unlock(&dev->struct_mutex);
2282 return -EBADF;
2283 }
2284
2285 i915_gem_object_unpin(obj);
2286
2287 drm_gem_object_unreference(obj);
2288 mutex_unlock(&dev->struct_mutex);
2289 return 0;
2290 }
2291
2292 int
2293 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2294 struct drm_file *file_priv)
2295 {
2296 struct drm_i915_gem_busy *args = data;
2297 struct drm_gem_object *obj;
2298 struct drm_i915_gem_object *obj_priv;
2299
2300 mutex_lock(&dev->struct_mutex);
2301 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2302 if (obj == NULL) {
2303 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2304 args->handle);
2305 mutex_unlock(&dev->struct_mutex);
2306 return -EBADF;
2307 }
2308
2309 obj_priv = obj->driver_private;
2310 args->busy = obj_priv->active;
2311
2312 drm_gem_object_unreference(obj);
2313 mutex_unlock(&dev->struct_mutex);
2314 return 0;
2315 }
2316
2317 int
2318 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2319 struct drm_file *file_priv)
2320 {
2321 return i915_gem_ring_throttle(dev, file_priv);
2322 }
2323
2324 int i915_gem_init_object(struct drm_gem_object *obj)
2325 {
2326 struct drm_i915_gem_object *obj_priv;
2327
2328 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2329 if (obj_priv == NULL)
2330 return -ENOMEM;
2331
2332 /*
2333 * We've just allocated pages from the kernel,
2334 * so they've just been written by the CPU with
2335 * zeros. They'll need to be clflushed before we
2336 * use them with the GPU.
2337 */
2338 obj->write_domain = I915_GEM_DOMAIN_CPU;
2339 obj->read_domains = I915_GEM_DOMAIN_CPU;
2340
2341 obj_priv->agp_type = AGP_USER_MEMORY;
2342
2343 obj->driver_private = obj_priv;
2344 obj_priv->obj = obj;
2345 INIT_LIST_HEAD(&obj_priv->list);
2346 return 0;
2347 }
2348
2349 void i915_gem_free_object(struct drm_gem_object *obj)
2350 {
2351 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2352
2353 while (obj_priv->pin_count > 0)
2354 i915_gem_object_unpin(obj);
2355
2356 i915_gem_object_unbind(obj);
2357
2358 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2359 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2360 }
2361
2362 /** Unbinds all objects that are on the given buffer list. */
2363 static int
2364 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2365 {
2366 struct drm_gem_object *obj;
2367 struct drm_i915_gem_object *obj_priv;
2368 int ret;
2369
2370 while (!list_empty(head)) {
2371 obj_priv = list_first_entry(head,
2372 struct drm_i915_gem_object,
2373 list);
2374 obj = obj_priv->obj;
2375
2376 if (obj_priv->pin_count != 0) {
2377 DRM_ERROR("Pinned object in unbind list\n");
2378 mutex_unlock(&dev->struct_mutex);
2379 return -EINVAL;
2380 }
2381
2382 ret = i915_gem_object_unbind(obj);
2383 if (ret != 0) {
2384 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2385 ret);
2386 mutex_unlock(&dev->struct_mutex);
2387 return ret;
2388 }
2389 }
2390
2391
2392 return 0;
2393 }
2394
2395 static int
2396 i915_gem_idle(struct drm_device *dev)
2397 {
2398 drm_i915_private_t *dev_priv = dev->dev_private;
2399 uint32_t seqno, cur_seqno, last_seqno;
2400 int stuck, ret;
2401
2402 mutex_lock(&dev->struct_mutex);
2403
2404 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2405 mutex_unlock(&dev->struct_mutex);
2406 return 0;
2407 }
2408
2409 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2410 * We need to replace this with a semaphore, or something.
2411 */
2412 dev_priv->mm.suspended = 1;
2413
2414 /* Cancel the retire work handler, wait for it to finish if running
2415 */
2416 mutex_unlock(&dev->struct_mutex);
2417 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2418 mutex_lock(&dev->struct_mutex);
2419
2420 i915_kernel_lost_context(dev);
2421
2422 /* Flush the GPU along with all non-CPU write domains
2423 */
2424 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2425 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2426 seqno = i915_add_request(dev, ~(I915_GEM_DOMAIN_CPU |
2427 I915_GEM_DOMAIN_GTT));
2428
2429 if (seqno == 0) {
2430 mutex_unlock(&dev->struct_mutex);
2431 return -ENOMEM;
2432 }
2433
2434 dev_priv->mm.waiting_gem_seqno = seqno;
2435 last_seqno = 0;
2436 stuck = 0;
2437 for (;;) {
2438 cur_seqno = i915_get_gem_seqno(dev);
2439 if (i915_seqno_passed(cur_seqno, seqno))
2440 break;
2441 if (last_seqno == cur_seqno) {
2442 if (stuck++ > 100) {
2443 DRM_ERROR("hardware wedged\n");
2444 dev_priv->mm.wedged = 1;
2445 DRM_WAKEUP(&dev_priv->irq_queue);
2446 break;
2447 }
2448 }
2449 msleep(10);
2450 last_seqno = cur_seqno;
2451 }
2452 dev_priv->mm.waiting_gem_seqno = 0;
2453
2454 i915_gem_retire_requests(dev);
2455
2456 if (!dev_priv->mm.wedged) {
2457 /* Active and flushing should now be empty as we've
2458 * waited for a sequence higher than any pending execbuffer
2459 */
2460 WARN_ON(!list_empty(&dev_priv->mm.active_list));
2461 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
2462 /* Request should now be empty as we've also waited
2463 * for the last request in the list
2464 */
2465 WARN_ON(!list_empty(&dev_priv->mm.request_list));
2466 }
2467
2468 /* Empty the active and flushing lists to inactive. If there's
2469 * anything left at this point, it means that we're wedged and
2470 * nothing good's going to happen by leaving them there. So strip
2471 * the GPU domains and just stuff them onto inactive.
2472 */
2473 while (!list_empty(&dev_priv->mm.active_list)) {
2474 struct drm_i915_gem_object *obj_priv;
2475
2476 obj_priv = list_first_entry(&dev_priv->mm.active_list,
2477 struct drm_i915_gem_object,
2478 list);
2479 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
2480 i915_gem_object_move_to_inactive(obj_priv->obj);
2481 }
2482
2483 while (!list_empty(&dev_priv->mm.flushing_list)) {
2484 struct drm_i915_gem_object *obj_priv;
2485
2486 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2487 struct drm_i915_gem_object,
2488 list);
2489 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
2490 i915_gem_object_move_to_inactive(obj_priv->obj);
2491 }
2492
2493
2494 /* Move all inactive buffers out of the GTT. */
2495 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
2496 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
2497 if (ret) {
2498 mutex_unlock(&dev->struct_mutex);
2499 return ret;
2500 }
2501
2502 i915_gem_cleanup_ringbuffer(dev);
2503 mutex_unlock(&dev->struct_mutex);
2504
2505 return 0;
2506 }
2507
2508 static int
2509 i915_gem_init_hws(struct drm_device *dev)
2510 {
2511 drm_i915_private_t *dev_priv = dev->dev_private;
2512 struct drm_gem_object *obj;
2513 struct drm_i915_gem_object *obj_priv;
2514 int ret;
2515
2516 /* If we need a physical address for the status page, it's already
2517 * initialized at driver load time.
2518 */
2519 if (!I915_NEED_GFX_HWS(dev))
2520 return 0;
2521
2522 obj = drm_gem_object_alloc(dev, 4096);
2523 if (obj == NULL) {
2524 DRM_ERROR("Failed to allocate status page\n");
2525 return -ENOMEM;
2526 }
2527 obj_priv = obj->driver_private;
2528 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
2529
2530 ret = i915_gem_object_pin(obj, 4096);
2531 if (ret != 0) {
2532 drm_gem_object_unreference(obj);
2533 return ret;
2534 }
2535
2536 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
2537
2538 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
2539 if (dev_priv->hw_status_page == NULL) {
2540 DRM_ERROR("Failed to map status page.\n");
2541 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
2542 drm_gem_object_unreference(obj);
2543 return -EINVAL;
2544 }
2545 dev_priv->hws_obj = obj;
2546 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
2547 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
2548 I915_READ(HWS_PGA); /* posting read */
2549 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
2550
2551 return 0;
2552 }
2553
2554 static int
2555 i915_gem_init_ringbuffer(struct drm_device *dev)
2556 {
2557 drm_i915_private_t *dev_priv = dev->dev_private;
2558 struct drm_gem_object *obj;
2559 struct drm_i915_gem_object *obj_priv;
2560 int ret;
2561 u32 head;
2562
2563 ret = i915_gem_init_hws(dev);
2564 if (ret != 0)
2565 return ret;
2566
2567 obj = drm_gem_object_alloc(dev, 128 * 1024);
2568 if (obj == NULL) {
2569 DRM_ERROR("Failed to allocate ringbuffer\n");
2570 return -ENOMEM;
2571 }
2572 obj_priv = obj->driver_private;
2573
2574 ret = i915_gem_object_pin(obj, 4096);
2575 if (ret != 0) {
2576 drm_gem_object_unreference(obj);
2577 return ret;
2578 }
2579
2580 /* Set up the kernel mapping for the ring. */
2581 dev_priv->ring.Size = obj->size;
2582 dev_priv->ring.tail_mask = obj->size - 1;
2583
2584 dev_priv->ring.map.offset = dev->agp->base + obj_priv->gtt_offset;
2585 dev_priv->ring.map.size = obj->size;
2586 dev_priv->ring.map.type = 0;
2587 dev_priv->ring.map.flags = 0;
2588 dev_priv->ring.map.mtrr = 0;
2589
2590 drm_core_ioremap_wc(&dev_priv->ring.map, dev);
2591 if (dev_priv->ring.map.handle == NULL) {
2592 DRM_ERROR("Failed to map ringbuffer.\n");
2593 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2594 drm_gem_object_unreference(obj);
2595 return -EINVAL;
2596 }
2597 dev_priv->ring.ring_obj = obj;
2598 dev_priv->ring.virtual_start = dev_priv->ring.map.handle;
2599
2600 /* Stop the ring if it's running. */
2601 I915_WRITE(PRB0_CTL, 0);
2602 I915_WRITE(PRB0_TAIL, 0);
2603 I915_WRITE(PRB0_HEAD, 0);
2604
2605 /* Initialize the ring. */
2606 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
2607 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2608
2609 /* G45 ring initialization fails to reset head to zero */
2610 if (head != 0) {
2611 DRM_ERROR("Ring head not reset to zero "
2612 "ctl %08x head %08x tail %08x start %08x\n",
2613 I915_READ(PRB0_CTL),
2614 I915_READ(PRB0_HEAD),
2615 I915_READ(PRB0_TAIL),
2616 I915_READ(PRB0_START));
2617 I915_WRITE(PRB0_HEAD, 0);
2618
2619 DRM_ERROR("Ring head forced to zero "
2620 "ctl %08x head %08x tail %08x start %08x\n",
2621 I915_READ(PRB0_CTL),
2622 I915_READ(PRB0_HEAD),
2623 I915_READ(PRB0_TAIL),
2624 I915_READ(PRB0_START));
2625 }
2626
2627 I915_WRITE(PRB0_CTL,
2628 ((obj->size - 4096) & RING_NR_PAGES) |
2629 RING_NO_REPORT |
2630 RING_VALID);
2631
2632 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2633
2634 /* If the head is still not zero, the ring is dead */
2635 if (head != 0) {
2636 DRM_ERROR("Ring initialization failed "
2637 "ctl %08x head %08x tail %08x start %08x\n",
2638 I915_READ(PRB0_CTL),
2639 I915_READ(PRB0_HEAD),
2640 I915_READ(PRB0_TAIL),
2641 I915_READ(PRB0_START));
2642 return -EIO;
2643 }
2644
2645 /* Update our cache of the ring state */
2646 i915_kernel_lost_context(dev);
2647
2648 return 0;
2649 }
2650
2651 static void
2652 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
2653 {
2654 drm_i915_private_t *dev_priv = dev->dev_private;
2655
2656 if (dev_priv->ring.ring_obj == NULL)
2657 return;
2658
2659 drm_core_ioremapfree(&dev_priv->ring.map, dev);
2660
2661 i915_gem_object_unpin(dev_priv->ring.ring_obj);
2662 drm_gem_object_unreference(dev_priv->ring.ring_obj);
2663 dev_priv->ring.ring_obj = NULL;
2664 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2665
2666 if (dev_priv->hws_obj != NULL) {
2667 struct drm_gem_object *obj = dev_priv->hws_obj;
2668 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2669
2670 kunmap(obj_priv->page_list[0]);
2671 i915_gem_object_unpin(obj);
2672 drm_gem_object_unreference(obj);
2673 dev_priv->hws_obj = NULL;
2674 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
2675 dev_priv->hw_status_page = NULL;
2676
2677 /* Write high address into HWS_PGA when disabling. */
2678 I915_WRITE(HWS_PGA, 0x1ffff000);
2679 }
2680 }
2681
2682 int
2683 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
2684 struct drm_file *file_priv)
2685 {
2686 drm_i915_private_t *dev_priv = dev->dev_private;
2687 int ret;
2688
2689 if (dev_priv->mm.wedged) {
2690 DRM_ERROR("Reenabling wedged hardware, good luck\n");
2691 dev_priv->mm.wedged = 0;
2692 }
2693
2694 ret = i915_gem_init_ringbuffer(dev);
2695 if (ret != 0)
2696 return ret;
2697
2698 dev_priv->mm.gtt_mapping = io_mapping_create_wc(dev->agp->base,
2699 dev->agp->agp_info.aper_size
2700 * 1024 * 1024);
2701
2702 mutex_lock(&dev->struct_mutex);
2703 BUG_ON(!list_empty(&dev_priv->mm.active_list));
2704 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2705 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
2706 BUG_ON(!list_empty(&dev_priv->mm.request_list));
2707 dev_priv->mm.suspended = 0;
2708 mutex_unlock(&dev->struct_mutex);
2709
2710 drm_irq_install(dev);
2711
2712 return 0;
2713 }
2714
2715 int
2716 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
2717 struct drm_file *file_priv)
2718 {
2719 drm_i915_private_t *dev_priv = dev->dev_private;
2720 int ret;
2721
2722 ret = i915_gem_idle(dev);
2723 drm_irq_uninstall(dev);
2724
2725 io_mapping_free(dev_priv->mm.gtt_mapping);
2726 return ret;
2727 }
2728
2729 void
2730 i915_gem_lastclose(struct drm_device *dev)
2731 {
2732 int ret;
2733
2734 ret = i915_gem_idle(dev);
2735 if (ret)
2736 DRM_ERROR("failed to idle hardware: %d\n", ret);
2737 }
2738
2739 void
2740 i915_gem_load(struct drm_device *dev)
2741 {
2742 drm_i915_private_t *dev_priv = dev->dev_private;
2743
2744 INIT_LIST_HEAD(&dev_priv->mm.active_list);
2745 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
2746 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
2747 INIT_LIST_HEAD(&dev_priv->mm.request_list);
2748 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
2749 i915_gem_retire_work_handler);
2750 dev_priv->mm.next_gem_seqno = 1;
2751
2752 i915_gem_detect_bit_6_swizzle(dev);
2753 }
This page took 0.124602 seconds and 6 git commands to generate.