drm/i915: Refactor the wait_rendering completion into a common routine
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95 i915_terminally_wedged(error))
96 if (EXIT_COND)
97 return 0;
98
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_event_interruptible_timeout(error->reset_queue,
105 EXIT_COND,
106 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
111 return ret;
112 }
113 #undef EXIT_COND
114
115 return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 int ret;
122
123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124 if (ret)
125 return ret;
126
127 ret = mutex_lock_interruptible(&dev->struct_mutex);
128 if (ret)
129 return ret;
130
131 WARN_ON(i915_verify_lists(dev));
132 return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138 return obj->gtt_space && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143 struct drm_file *file)
144 {
145 struct drm_i915_private *dev_priv = dev->dev_private;
146 struct drm_i915_gem_init *args = data;
147
148 if (drm_core_check_feature(dev, DRIVER_MODESET))
149 return -ENODEV;
150
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
154
155 /* GEM with user mode setting was never supported on ilk and later. */
156 if (INTEL_INFO(dev)->gen >= 5)
157 return -ENODEV;
158
159 mutex_lock(&dev->struct_mutex);
160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 args->gtt_end);
162 dev_priv->gtt.mappable_end = args->gtt_end;
163 mutex_unlock(&dev->struct_mutex);
164
165 return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_get_aperture *args = data;
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
176
177 pinned = 0;
178 mutex_lock(&dev->struct_mutex);
179 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
180 if (obj->pin_count)
181 pinned += obj->gtt_space->size;
182 mutex_unlock(&dev->struct_mutex);
183
184 args->aper_size = dev_priv->gtt.total;
185 args->aper_available_size = args->aper_size - pinned;
186
187 return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204 struct drm_device *dev,
205 uint64_t size,
206 uint32_t *handle_p)
207 {
208 struct drm_i915_gem_object *obj;
209 int ret;
210 u32 handle;
211
212 size = roundup(size, PAGE_SIZE);
213 if (size == 0)
214 return -EINVAL;
215
216 /* Allocate the new object */
217 obj = i915_gem_alloc_object(dev, size);
218 if (obj == NULL)
219 return -ENOMEM;
220
221 ret = drm_gem_handle_create(file, &obj->base, &handle);
222 if (ret) {
223 drm_gem_object_release(&obj->base);
224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225 i915_gem_object_free(obj);
226 return ret;
227 }
228
229 /* drop reference from allocate - handle holds it now */
230 drm_gem_object_unreference(&obj->base);
231 trace_i915_gem_object_create(obj);
232
233 *handle_p = handle;
234 return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241 {
242 /* have to work out size/pitch and return them */
243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252 {
253 return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257 * Creates a new mm object and returns a handle to it.
258 */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262 {
263 struct drm_i915_gem_create *args = data;
264
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273 {
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
298 int length)
299 {
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 char *vaddr;
330 int ret;
331
332 if (unlikely(page_do_bit17_swizzling))
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350 {
351 if (unlikely(swizzled)) {
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
403 {
404 char __user *user_data;
405 ssize_t remain;
406 loff_t offset;
407 int shmem_page_offset, page_length, ret = 0;
408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 int prefaulted = 0;
410 int needs_clflush = 0;
411 struct sg_page_iter sg_iter;
412
413 user_data = to_user_ptr(args->data_ptr);
414 remain = args->size;
415
416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
425 if (obj->gtt_space) {
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
430 }
431
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
438 offset = args->offset;
439
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
442 struct page *page = sg_page_iter_page(&sg_iter);
443
444 if (remain <= 0)
445 break;
446
447 /* Operation in this page
448 *
449 * shmem_page_offset = offset within page in shmem file
450 * page_length = bytes to copy for this page
451 */
452 shmem_page_offset = offset_in_page(offset);
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
456
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
465
466 mutex_unlock(&dev->struct_mutex);
467
468 if (!prefaulted) {
469 ret = fault_in_multipages_writeable(user_data, remain);
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
477
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
481
482 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485 mark_page_accessed(page);
486
487 if (ret)
488 goto out;
489
490 remain -= page_length;
491 user_data += page_length;
492 offset += page_length;
493 }
494
495 out:
496 i915_gem_object_unpin_pages(obj);
497
498 return ret;
499 }
500
501 /**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 struct drm_file *file)
509 {
510 struct drm_i915_gem_pread *args = data;
511 struct drm_i915_gem_object *obj;
512 int ret = 0;
513
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
518 to_user_ptr(args->data_ptr),
519 args->size))
520 return -EFAULT;
521
522 ret = i915_mutex_lock_interruptible(dev);
523 if (ret)
524 return ret;
525
526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 if (&obj->base == NULL) {
528 ret = -ENOENT;
529 goto unlock;
530 }
531
532 /* Bounds check source. */
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
535 ret = -EINVAL;
536 goto out;
537 }
538
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549 ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552 drm_gem_object_unreference(&obj->base);
553 unlock:
554 mutex_unlock(&dev->struct_mutex);
555 return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559 * page faults in the source data
560 */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
567 {
568 void __iomem *vaddr_atomic;
569 void *vaddr;
570 unsigned long unwritten;
571
572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 user_data, length);
577 io_mapping_unmap_atomic(vaddr_atomic);
578 return unwritten;
579 }
580
581 /**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
588 struct drm_i915_gem_pwrite *args,
589 struct drm_file *file)
590 {
591 drm_i915_private_t *dev_priv = dev->dev_private;
592 ssize_t remain;
593 loff_t offset, page_base;
594 char __user *user_data;
595 int page_offset, page_length, ret;
596
597 ret = i915_gem_object_pin(obj, 0, true, true);
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
608
609 user_data = to_user_ptr(args->data_ptr);
610 remain = args->size;
611
612 offset = obj->gtt_offset + args->offset;
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
620 */
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
627 /* If we get a fault while copying data, then (presumably) our
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
630 */
631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
636
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
640 }
641
642 out_unpin:
643 i915_gem_object_unpin(obj);
644 out:
645 return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
658 {
659 char *vaddr;
660 int ret;
661
662 if (unlikely(page_do_bit17_swizzling))
663 return -EINVAL;
664
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
676
677 return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
688 {
689 char *vaddr;
690 int ret;
691
692 vaddr = kmap(page);
693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 user_data,
700 page_length);
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
709 kunmap(page);
710
711 return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
719 {
720 ssize_t remain;
721 loff_t offset;
722 char __user *user_data;
723 int shmem_page_offset, page_length, ret = 0;
724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 int hit_slowpath = 0;
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
728 struct sg_page_iter sg_iter;
729
730 user_data = to_user_ptr(args->data_ptr);
731 remain = args->size;
732
733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
742 if (obj->gtt_space) {
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
760 offset = args->offset;
761 obj->dirty = 1;
762
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
765 struct page *page = sg_page_iter_page(&sg_iter);
766 int partial_cacheline_write;
767
768 if (remain <= 0)
769 break;
770
771 /* Operation in this page
772 *
773 * shmem_page_offset = offset within page in shmem file
774 * page_length = bytes to copy for this page
775 */
776 shmem_page_offset = offset_in_page(offset);
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
781
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
798
799 hit_slowpath = 1;
800 mutex_unlock(&dev->struct_mutex);
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805
806 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809 set_page_dirty(page);
810 mark_page_accessed(page);
811
812 if (ret)
813 goto out;
814
815 remain -= page_length;
816 user_data += page_length;
817 offset += page_length;
818 }
819
820 out:
821 i915_gem_object_unpin_pages(obj);
822
823 if (hit_slowpath) {
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 i915_gem_clflush_object(obj);
832 i915_gem_chipset_flush(dev);
833 }
834 }
835
836 if (needs_clflush_after)
837 i915_gem_chipset_flush(dev);
838
839 return ret;
840 }
841
842 /**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 struct drm_file *file)
850 {
851 struct drm_i915_gem_pwrite *args = data;
852 struct drm_i915_gem_object *obj;
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
859 to_user_ptr(args->data_ptr),
860 args->size))
861 return -EFAULT;
862
863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864 args->size);
865 if (ret)
866 return -EFAULT;
867
868 ret = i915_mutex_lock_interruptible(dev);
869 if (ret)
870 return ret;
871
872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 if (&obj->base == NULL) {
874 ret = -ENOENT;
875 goto unlock;
876 }
877
878 /* Bounds check destination. */
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
881 ret = -EINVAL;
882 goto out;
883 }
884
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895 ret = -EFAULT;
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
902 if (obj->phys_obj) {
903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 goto out;
905 }
906
907 if (obj->cache_level == I915_CACHE_NONE &&
908 obj->tiling_mode == I915_TILING_NONE &&
909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
914 }
915
916 if (ret == -EFAULT || ret == -ENOSPC)
917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920 drm_gem_object_unreference(&obj->base);
921 unlock:
922 mutex_unlock(&dev->struct_mutex);
923 return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 bool interruptible)
929 {
930 if (i915_reset_in_progress(error)) {
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944 }
945
946 /*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
959 ret = i915_add_request(ring, NULL);
960
961 return ret;
962 }
963
964 /**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
968 * @reset_counter: reset sequence associated with the given seqno
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 unsigned reset_counter,
984 bool interruptible, struct timespec *timeout)
985 {
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060 }
1061
1062 /**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
1088 }
1089
1090 static int
1091 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092 struct intel_ring_buffer *ring)
1093 {
1094 i915_gem_retire_requests_ring(ring);
1095
1096 /* Manually manage the write flush as we may have not yet
1097 * retired the buffer.
1098 *
1099 * Note that the last_write_seqno is always the earlier of
1100 * the two (read/write) seqno, so if we haved successfully waited,
1101 * we know we have passed the last write.
1102 */
1103 obj->last_write_seqno = 0;
1104 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * Ensures that all rendering to the object has completed and the object is
1111 * safe to unbind from the GTT or access from the CPU.
1112 */
1113 static __must_check int
1114 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115 bool readonly)
1116 {
1117 struct intel_ring_buffer *ring = obj->ring;
1118 u32 seqno;
1119 int ret;
1120
1121 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122 if (seqno == 0)
1123 return 0;
1124
1125 ret = i915_wait_seqno(ring, seqno);
1126 if (ret)
1127 return ret;
1128
1129 return i915_gem_object_wait_rendering__tail(obj, ring);
1130 }
1131
1132 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1133 * as the object state may change during this call.
1134 */
1135 static __must_check int
1136 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137 bool readonly)
1138 {
1139 struct drm_device *dev = obj->base.dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct intel_ring_buffer *ring = obj->ring;
1142 unsigned reset_counter;
1143 u32 seqno;
1144 int ret;
1145
1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 BUG_ON(!dev_priv->mm.interruptible);
1148
1149 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150 if (seqno == 0)
1151 return 0;
1152
1153 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1154 if (ret)
1155 return ret;
1156
1157 ret = i915_gem_check_olr(ring, seqno);
1158 if (ret)
1159 return ret;
1160
1161 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1162 mutex_unlock(&dev->struct_mutex);
1163 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1164 mutex_lock(&dev->struct_mutex);
1165 if (ret)
1166 return ret;
1167
1168 return i915_gem_object_wait_rendering__tail(obj, ring);
1169 }
1170
1171 /**
1172 * Called when user space prepares to use an object with the CPU, either
1173 * through the mmap ioctl's mapping or a GTT mapping.
1174 */
1175 int
1176 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1177 struct drm_file *file)
1178 {
1179 struct drm_i915_gem_set_domain *args = data;
1180 struct drm_i915_gem_object *obj;
1181 uint32_t read_domains = args->read_domains;
1182 uint32_t write_domain = args->write_domain;
1183 int ret;
1184
1185 /* Only handle setting domains to types used by the CPU. */
1186 if (write_domain & I915_GEM_GPU_DOMAINS)
1187 return -EINVAL;
1188
1189 if (read_domains & I915_GEM_GPU_DOMAINS)
1190 return -EINVAL;
1191
1192 /* Having something in the write domain implies it's in the read
1193 * domain, and only that read domain. Enforce that in the request.
1194 */
1195 if (write_domain != 0 && read_domains != write_domain)
1196 return -EINVAL;
1197
1198 ret = i915_mutex_lock_interruptible(dev);
1199 if (ret)
1200 return ret;
1201
1202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1203 if (&obj->base == NULL) {
1204 ret = -ENOENT;
1205 goto unlock;
1206 }
1207
1208 /* Try to flush the object off the GPU without holding the lock.
1209 * We will repeat the flush holding the lock in the normal manner
1210 * to catch cases where we are gazumped.
1211 */
1212 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213 if (ret)
1214 goto unref;
1215
1216 if (read_domains & I915_GEM_DOMAIN_GTT) {
1217 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1218
1219 /* Silently promote "you're not bound, there was nothing to do"
1220 * to success, since the client was just asking us to
1221 * make sure everything was done.
1222 */
1223 if (ret == -EINVAL)
1224 ret = 0;
1225 } else {
1226 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1227 }
1228
1229 unref:
1230 drm_gem_object_unreference(&obj->base);
1231 unlock:
1232 mutex_unlock(&dev->struct_mutex);
1233 return ret;
1234 }
1235
1236 /**
1237 * Called when user space has done writes to this buffer
1238 */
1239 int
1240 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1241 struct drm_file *file)
1242 {
1243 struct drm_i915_gem_sw_finish *args = data;
1244 struct drm_i915_gem_object *obj;
1245 int ret = 0;
1246
1247 ret = i915_mutex_lock_interruptible(dev);
1248 if (ret)
1249 return ret;
1250
1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1252 if (&obj->base == NULL) {
1253 ret = -ENOENT;
1254 goto unlock;
1255 }
1256
1257 /* Pinned buffers may be scanout, so flush the cache */
1258 if (obj->pin_count)
1259 i915_gem_object_flush_cpu_write_domain(obj);
1260
1261 drm_gem_object_unreference(&obj->base);
1262 unlock:
1263 mutex_unlock(&dev->struct_mutex);
1264 return ret;
1265 }
1266
1267 /**
1268 * Maps the contents of an object, returning the address it is mapped
1269 * into.
1270 *
1271 * While the mapping holds a reference on the contents of the object, it doesn't
1272 * imply a ref on the object itself.
1273 */
1274 int
1275 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1276 struct drm_file *file)
1277 {
1278 struct drm_i915_gem_mmap *args = data;
1279 struct drm_gem_object *obj;
1280 unsigned long addr;
1281
1282 obj = drm_gem_object_lookup(dev, file, args->handle);
1283 if (obj == NULL)
1284 return -ENOENT;
1285
1286 /* prime objects have no backing filp to GEM mmap
1287 * pages from.
1288 */
1289 if (!obj->filp) {
1290 drm_gem_object_unreference_unlocked(obj);
1291 return -EINVAL;
1292 }
1293
1294 addr = vm_mmap(obj->filp, 0, args->size,
1295 PROT_READ | PROT_WRITE, MAP_SHARED,
1296 args->offset);
1297 drm_gem_object_unreference_unlocked(obj);
1298 if (IS_ERR((void *)addr))
1299 return addr;
1300
1301 args->addr_ptr = (uint64_t) addr;
1302
1303 return 0;
1304 }
1305
1306 /**
1307 * i915_gem_fault - fault a page into the GTT
1308 * vma: VMA in question
1309 * vmf: fault info
1310 *
1311 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312 * from userspace. The fault handler takes care of binding the object to
1313 * the GTT (if needed), allocating and programming a fence register (again,
1314 * only if needed based on whether the old reg is still valid or the object
1315 * is tiled) and inserting a new PTE into the faulting process.
1316 *
1317 * Note that the faulting process may involve evicting existing objects
1318 * from the GTT and/or fence registers to make room. So performance may
1319 * suffer if the GTT working set is large or there are few fence registers
1320 * left.
1321 */
1322 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323 {
1324 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325 struct drm_device *dev = obj->base.dev;
1326 drm_i915_private_t *dev_priv = dev->dev_private;
1327 pgoff_t page_offset;
1328 unsigned long pfn;
1329 int ret = 0;
1330 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1331
1332 /* We don't use vmf->pgoff since that has the fake offset */
1333 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334 PAGE_SHIFT;
1335
1336 ret = i915_mutex_lock_interruptible(dev);
1337 if (ret)
1338 goto out;
1339
1340 trace_i915_gem_object_fault(obj, page_offset, true, write);
1341
1342 /* Access to snoopable pages through the GTT is incoherent. */
1343 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344 ret = -EINVAL;
1345 goto unlock;
1346 }
1347
1348 /* Now bind it into the GTT if needed */
1349 ret = i915_gem_object_pin(obj, 0, true, false);
1350 if (ret)
1351 goto unlock;
1352
1353 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354 if (ret)
1355 goto unpin;
1356
1357 ret = i915_gem_object_get_fence(obj);
1358 if (ret)
1359 goto unpin;
1360
1361 obj->fault_mappable = true;
1362
1363 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1364 page_offset;
1365
1366 /* Finally, remap it using the new GTT offset */
1367 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1368 unpin:
1369 i915_gem_object_unpin(obj);
1370 unlock:
1371 mutex_unlock(&dev->struct_mutex);
1372 out:
1373 switch (ret) {
1374 case -EIO:
1375 /* If this -EIO is due to a gpu hang, give the reset code a
1376 * chance to clean up the mess. Otherwise return the proper
1377 * SIGBUS. */
1378 if (i915_terminally_wedged(&dev_priv->gpu_error))
1379 return VM_FAULT_SIGBUS;
1380 case -EAGAIN:
1381 /* Give the error handler a chance to run and move the
1382 * objects off the GPU active list. Next time we service the
1383 * fault, we should be able to transition the page into the
1384 * GTT without touching the GPU (and so avoid further
1385 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1386 * with coherency, just lost writes.
1387 */
1388 set_need_resched();
1389 case 0:
1390 case -ERESTARTSYS:
1391 case -EINTR:
1392 case -EBUSY:
1393 /*
1394 * EBUSY is ok: this just means that another thread
1395 * already did the job.
1396 */
1397 return VM_FAULT_NOPAGE;
1398 case -ENOMEM:
1399 return VM_FAULT_OOM;
1400 case -ENOSPC:
1401 return VM_FAULT_SIGBUS;
1402 default:
1403 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1404 return VM_FAULT_SIGBUS;
1405 }
1406 }
1407
1408 /**
1409 * i915_gem_release_mmap - remove physical page mappings
1410 * @obj: obj in question
1411 *
1412 * Preserve the reservation of the mmapping with the DRM core code, but
1413 * relinquish ownership of the pages back to the system.
1414 *
1415 * It is vital that we remove the page mapping if we have mapped a tiled
1416 * object through the GTT and then lose the fence register due to
1417 * resource pressure. Similarly if the object has been moved out of the
1418 * aperture, than pages mapped into userspace must be revoked. Removing the
1419 * mapping will then trigger a page fault on the next user access, allowing
1420 * fixup by i915_gem_fault().
1421 */
1422 void
1423 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1424 {
1425 if (!obj->fault_mappable)
1426 return;
1427
1428 if (obj->base.dev->dev_mapping)
1429 unmap_mapping_range(obj->base.dev->dev_mapping,
1430 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1431 obj->base.size, 1);
1432
1433 obj->fault_mappable = false;
1434 }
1435
1436 uint32_t
1437 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1438 {
1439 uint32_t gtt_size;
1440
1441 if (INTEL_INFO(dev)->gen >= 4 ||
1442 tiling_mode == I915_TILING_NONE)
1443 return size;
1444
1445 /* Previous chips need a power-of-two fence region when tiling */
1446 if (INTEL_INFO(dev)->gen == 3)
1447 gtt_size = 1024*1024;
1448 else
1449 gtt_size = 512*1024;
1450
1451 while (gtt_size < size)
1452 gtt_size <<= 1;
1453
1454 return gtt_size;
1455 }
1456
1457 /**
1458 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1459 * @obj: object to check
1460 *
1461 * Return the required GTT alignment for an object, taking into account
1462 * potential fence register mapping.
1463 */
1464 uint32_t
1465 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1466 int tiling_mode, bool fenced)
1467 {
1468 /*
1469 * Minimum alignment is 4k (GTT page size), but might be greater
1470 * if a fence register is needed for the object.
1471 */
1472 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1473 tiling_mode == I915_TILING_NONE)
1474 return 4096;
1475
1476 /*
1477 * Previous chips need to be aligned to the size of the smallest
1478 * fence register that can contain the object.
1479 */
1480 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1481 }
1482
1483 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1484 {
1485 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1486 int ret;
1487
1488 if (obj->base.map_list.map)
1489 return 0;
1490
1491 dev_priv->mm.shrinker_no_lock_stealing = true;
1492
1493 ret = drm_gem_create_mmap_offset(&obj->base);
1494 if (ret != -ENOSPC)
1495 goto out;
1496
1497 /* Badly fragmented mmap space? The only way we can recover
1498 * space is by destroying unwanted objects. We can't randomly release
1499 * mmap_offsets as userspace expects them to be persistent for the
1500 * lifetime of the objects. The closest we can is to release the
1501 * offsets on purgeable objects by truncating it and marking it purged,
1502 * which prevents userspace from ever using that object again.
1503 */
1504 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1505 ret = drm_gem_create_mmap_offset(&obj->base);
1506 if (ret != -ENOSPC)
1507 goto out;
1508
1509 i915_gem_shrink_all(dev_priv);
1510 ret = drm_gem_create_mmap_offset(&obj->base);
1511 out:
1512 dev_priv->mm.shrinker_no_lock_stealing = false;
1513
1514 return ret;
1515 }
1516
1517 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1518 {
1519 if (!obj->base.map_list.map)
1520 return;
1521
1522 drm_gem_free_mmap_offset(&obj->base);
1523 }
1524
1525 int
1526 i915_gem_mmap_gtt(struct drm_file *file,
1527 struct drm_device *dev,
1528 uint32_t handle,
1529 uint64_t *offset)
1530 {
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 struct drm_i915_gem_object *obj;
1533 int ret;
1534
1535 ret = i915_mutex_lock_interruptible(dev);
1536 if (ret)
1537 return ret;
1538
1539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1540 if (&obj->base == NULL) {
1541 ret = -ENOENT;
1542 goto unlock;
1543 }
1544
1545 if (obj->base.size > dev_priv->gtt.mappable_end) {
1546 ret = -E2BIG;
1547 goto out;
1548 }
1549
1550 if (obj->madv != I915_MADV_WILLNEED) {
1551 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1552 ret = -EINVAL;
1553 goto out;
1554 }
1555
1556 ret = i915_gem_object_create_mmap_offset(obj);
1557 if (ret)
1558 goto out;
1559
1560 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1561
1562 out:
1563 drm_gem_object_unreference(&obj->base);
1564 unlock:
1565 mutex_unlock(&dev->struct_mutex);
1566 return ret;
1567 }
1568
1569 /**
1570 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1571 * @dev: DRM device
1572 * @data: GTT mapping ioctl data
1573 * @file: GEM object info
1574 *
1575 * Simply returns the fake offset to userspace so it can mmap it.
1576 * The mmap call will end up in drm_gem_mmap(), which will set things
1577 * up so we can get faults in the handler above.
1578 *
1579 * The fault handler will take care of binding the object into the GTT
1580 * (since it may have been evicted to make room for something), allocating
1581 * a fence register, and mapping the appropriate aperture address into
1582 * userspace.
1583 */
1584 int
1585 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1586 struct drm_file *file)
1587 {
1588 struct drm_i915_gem_mmap_gtt *args = data;
1589
1590 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1591 }
1592
1593 /* Immediately discard the backing storage */
1594 static void
1595 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1596 {
1597 struct inode *inode;
1598
1599 i915_gem_object_free_mmap_offset(obj);
1600
1601 if (obj->base.filp == NULL)
1602 return;
1603
1604 /* Our goal here is to return as much of the memory as
1605 * is possible back to the system as we are called from OOM.
1606 * To do this we must instruct the shmfs to drop all of its
1607 * backing pages, *now*.
1608 */
1609 inode = file_inode(obj->base.filp);
1610 shmem_truncate_range(inode, 0, (loff_t)-1);
1611
1612 obj->madv = __I915_MADV_PURGED;
1613 }
1614
1615 static inline int
1616 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1617 {
1618 return obj->madv == I915_MADV_DONTNEED;
1619 }
1620
1621 static void
1622 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1623 {
1624 struct sg_page_iter sg_iter;
1625 int ret;
1626
1627 BUG_ON(obj->madv == __I915_MADV_PURGED);
1628
1629 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1630 if (ret) {
1631 /* In the event of a disaster, abandon all caches and
1632 * hope for the best.
1633 */
1634 WARN_ON(ret != -EIO);
1635 i915_gem_clflush_object(obj);
1636 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1637 }
1638
1639 if (i915_gem_object_needs_bit17_swizzle(obj))
1640 i915_gem_object_save_bit_17_swizzle(obj);
1641
1642 if (obj->madv == I915_MADV_DONTNEED)
1643 obj->dirty = 0;
1644
1645 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1646 struct page *page = sg_page_iter_page(&sg_iter);
1647
1648 if (obj->dirty)
1649 set_page_dirty(page);
1650
1651 if (obj->madv == I915_MADV_WILLNEED)
1652 mark_page_accessed(page);
1653
1654 page_cache_release(page);
1655 }
1656 obj->dirty = 0;
1657
1658 sg_free_table(obj->pages);
1659 kfree(obj->pages);
1660 }
1661
1662 int
1663 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1664 {
1665 const struct drm_i915_gem_object_ops *ops = obj->ops;
1666
1667 if (obj->pages == NULL)
1668 return 0;
1669
1670 BUG_ON(obj->gtt_space);
1671
1672 if (obj->pages_pin_count)
1673 return -EBUSY;
1674
1675 /* ->put_pages might need to allocate memory for the bit17 swizzle
1676 * array, hence protect them from being reaped by removing them from gtt
1677 * lists early. */
1678 list_del(&obj->global_list);
1679
1680 ops->put_pages(obj);
1681 obj->pages = NULL;
1682
1683 if (i915_gem_object_is_purgeable(obj))
1684 i915_gem_object_truncate(obj);
1685
1686 return 0;
1687 }
1688
1689 static long
1690 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1691 bool purgeable_only)
1692 {
1693 struct drm_i915_gem_object *obj, *next;
1694 long count = 0;
1695
1696 list_for_each_entry_safe(obj, next,
1697 &dev_priv->mm.unbound_list,
1698 global_list) {
1699 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1700 i915_gem_object_put_pages(obj) == 0) {
1701 count += obj->base.size >> PAGE_SHIFT;
1702 if (count >= target)
1703 return count;
1704 }
1705 }
1706
1707 list_for_each_entry_safe(obj, next,
1708 &dev_priv->mm.inactive_list,
1709 mm_list) {
1710 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1711 i915_gem_object_unbind(obj) == 0 &&
1712 i915_gem_object_put_pages(obj) == 0) {
1713 count += obj->base.size >> PAGE_SHIFT;
1714 if (count >= target)
1715 return count;
1716 }
1717 }
1718
1719 return count;
1720 }
1721
1722 static long
1723 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1724 {
1725 return __i915_gem_shrink(dev_priv, target, true);
1726 }
1727
1728 static void
1729 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1730 {
1731 struct drm_i915_gem_object *obj, *next;
1732
1733 i915_gem_evict_everything(dev_priv->dev);
1734
1735 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1736 global_list)
1737 i915_gem_object_put_pages(obj);
1738 }
1739
1740 static int
1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744 int page_count, i;
1745 struct address_space *mapping;
1746 struct sg_table *st;
1747 struct scatterlist *sg;
1748 struct sg_page_iter sg_iter;
1749 struct page *page;
1750 unsigned long last_pfn = 0; /* suppress gcc warning */
1751 gfp_t gfp;
1752
1753 /* Assert that the object is not currently in any GPU domain. As it
1754 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 * a GPU cache
1756 */
1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
1760 st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 if (st == NULL)
1762 return -ENOMEM;
1763
1764 page_count = obj->base.size / PAGE_SIZE;
1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 sg_free_table(st);
1767 kfree(st);
1768 return -ENOMEM;
1769 }
1770
1771 /* Get the list of pages out of our struct file. They'll be pinned
1772 * at this point until we release them.
1773 *
1774 * Fail silently without starting the shrinker
1775 */
1776 mapping = file_inode(obj->base.filp)->i_mapping;
1777 gfp = mapping_gfp_mask(mapping);
1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779 gfp &= ~(__GFP_IO | __GFP_WAIT);
1780 sg = st->sgl;
1781 st->nents = 0;
1782 for (i = 0; i < page_count; i++) {
1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 if (IS_ERR(page)) {
1785 i915_gem_purge(dev_priv, page_count);
1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 }
1788 if (IS_ERR(page)) {
1789 /* We've tried hard to allocate the memory by reaping
1790 * our own buffer, now let the real VM do its job and
1791 * go down in flames if truly OOM.
1792 */
1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794 gfp |= __GFP_IO | __GFP_WAIT;
1795
1796 i915_gem_shrink_all(dev_priv);
1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 if (IS_ERR(page))
1799 goto err_pages;
1800
1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802 gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 }
1804 #ifdef CONFIG_SWIOTLB
1805 if (swiotlb_nr_tbl()) {
1806 st->nents++;
1807 sg_set_page(sg, page, PAGE_SIZE, 0);
1808 sg = sg_next(sg);
1809 continue;
1810 }
1811 #endif
1812 if (!i || page_to_pfn(page) != last_pfn + 1) {
1813 if (i)
1814 sg = sg_next(sg);
1815 st->nents++;
1816 sg_set_page(sg, page, PAGE_SIZE, 0);
1817 } else {
1818 sg->length += PAGE_SIZE;
1819 }
1820 last_pfn = page_to_pfn(page);
1821 }
1822 #ifdef CONFIG_SWIOTLB
1823 if (!swiotlb_nr_tbl())
1824 #endif
1825 sg_mark_end(sg);
1826 obj->pages = st;
1827
1828 if (i915_gem_object_needs_bit17_swizzle(obj))
1829 i915_gem_object_do_bit_17_swizzle(obj);
1830
1831 return 0;
1832
1833 err_pages:
1834 sg_mark_end(sg);
1835 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1836 page_cache_release(sg_page_iter_page(&sg_iter));
1837 sg_free_table(st);
1838 kfree(st);
1839 return PTR_ERR(page);
1840 }
1841
1842 /* Ensure that the associated pages are gathered from the backing storage
1843 * and pinned into our object. i915_gem_object_get_pages() may be called
1844 * multiple times before they are released by a single call to
1845 * i915_gem_object_put_pages() - once the pages are no longer referenced
1846 * either as a result of memory pressure (reaping pages under the shrinker)
1847 * or as the object is itself released.
1848 */
1849 int
1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851 {
1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 int ret;
1855
1856 if (obj->pages)
1857 return 0;
1858
1859 if (obj->madv != I915_MADV_WILLNEED) {
1860 DRM_ERROR("Attempting to obtain a purgeable object\n");
1861 return -EINVAL;
1862 }
1863
1864 BUG_ON(obj->pages_pin_count);
1865
1866 ret = ops->get_pages(obj);
1867 if (ret)
1868 return ret;
1869
1870 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1871 return 0;
1872 }
1873
1874 void
1875 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1876 struct intel_ring_buffer *ring)
1877 {
1878 struct drm_device *dev = obj->base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 u32 seqno = intel_ring_get_seqno(ring);
1881
1882 BUG_ON(ring == NULL);
1883 obj->ring = ring;
1884
1885 /* Add a reference if we're newly entering the active list. */
1886 if (!obj->active) {
1887 drm_gem_object_reference(&obj->base);
1888 obj->active = 1;
1889 }
1890
1891 /* Move from whatever list we were on to the tail of execution. */
1892 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1893 list_move_tail(&obj->ring_list, &ring->active_list);
1894
1895 obj->last_read_seqno = seqno;
1896
1897 if (obj->fenced_gpu_access) {
1898 obj->last_fenced_seqno = seqno;
1899
1900 /* Bump MRU to take account of the delayed flush */
1901 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1902 struct drm_i915_fence_reg *reg;
1903
1904 reg = &dev_priv->fence_regs[obj->fence_reg];
1905 list_move_tail(&reg->lru_list,
1906 &dev_priv->mm.fence_list);
1907 }
1908 }
1909 }
1910
1911 static void
1912 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1913 {
1914 struct drm_device *dev = obj->base.dev;
1915 struct drm_i915_private *dev_priv = dev->dev_private;
1916
1917 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1918 BUG_ON(!obj->active);
1919
1920 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1921
1922 list_del_init(&obj->ring_list);
1923 obj->ring = NULL;
1924
1925 obj->last_read_seqno = 0;
1926 obj->last_write_seqno = 0;
1927 obj->base.write_domain = 0;
1928
1929 obj->last_fenced_seqno = 0;
1930 obj->fenced_gpu_access = false;
1931
1932 obj->active = 0;
1933 drm_gem_object_unreference(&obj->base);
1934
1935 WARN_ON(i915_verify_lists(dev));
1936 }
1937
1938 static int
1939 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1940 {
1941 struct drm_i915_private *dev_priv = dev->dev_private;
1942 struct intel_ring_buffer *ring;
1943 int ret, i, j;
1944
1945 /* Carefully retire all requests without writing to the rings */
1946 for_each_ring(ring, dev_priv, i) {
1947 ret = intel_ring_idle(ring);
1948 if (ret)
1949 return ret;
1950 }
1951 i915_gem_retire_requests(dev);
1952
1953 /* Finally reset hw state */
1954 for_each_ring(ring, dev_priv, i) {
1955 intel_ring_init_seqno(ring, seqno);
1956
1957 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1958 ring->sync_seqno[j] = 0;
1959 }
1960
1961 return 0;
1962 }
1963
1964 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1965 {
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 int ret;
1968
1969 if (seqno == 0)
1970 return -EINVAL;
1971
1972 /* HWS page needs to be set less than what we
1973 * will inject to ring
1974 */
1975 ret = i915_gem_init_seqno(dev, seqno - 1);
1976 if (ret)
1977 return ret;
1978
1979 /* Carefully set the last_seqno value so that wrap
1980 * detection still works
1981 */
1982 dev_priv->next_seqno = seqno;
1983 dev_priv->last_seqno = seqno - 1;
1984 if (dev_priv->last_seqno == 0)
1985 dev_priv->last_seqno--;
1986
1987 return 0;
1988 }
1989
1990 int
1991 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1992 {
1993 struct drm_i915_private *dev_priv = dev->dev_private;
1994
1995 /* reserve 0 for non-seqno */
1996 if (dev_priv->next_seqno == 0) {
1997 int ret = i915_gem_init_seqno(dev, 0);
1998 if (ret)
1999 return ret;
2000
2001 dev_priv->next_seqno = 1;
2002 }
2003
2004 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2005 return 0;
2006 }
2007
2008 int __i915_add_request(struct intel_ring_buffer *ring,
2009 struct drm_file *file,
2010 struct drm_i915_gem_object *obj,
2011 u32 *out_seqno)
2012 {
2013 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2014 struct drm_i915_gem_request *request;
2015 u32 request_ring_position, request_start;
2016 int was_empty;
2017 int ret;
2018
2019 request_start = intel_ring_get_tail(ring);
2020 /*
2021 * Emit any outstanding flushes - execbuf can fail to emit the flush
2022 * after having emitted the batchbuffer command. Hence we need to fix
2023 * things up similar to emitting the lazy request. The difference here
2024 * is that the flush _must_ happen before the next request, no matter
2025 * what.
2026 */
2027 ret = intel_ring_flush_all_caches(ring);
2028 if (ret)
2029 return ret;
2030
2031 request = kmalloc(sizeof(*request), GFP_KERNEL);
2032 if (request == NULL)
2033 return -ENOMEM;
2034
2035
2036 /* Record the position of the start of the request so that
2037 * should we detect the updated seqno part-way through the
2038 * GPU processing the request, we never over-estimate the
2039 * position of the head.
2040 */
2041 request_ring_position = intel_ring_get_tail(ring);
2042
2043 ret = ring->add_request(ring);
2044 if (ret) {
2045 kfree(request);
2046 return ret;
2047 }
2048
2049 request->seqno = intel_ring_get_seqno(ring);
2050 request->ring = ring;
2051 request->head = request_start;
2052 request->tail = request_ring_position;
2053 request->ctx = ring->last_context;
2054 request->batch_obj = obj;
2055
2056 /* Whilst this request exists, batch_obj will be on the
2057 * active_list, and so will hold the active reference. Only when this
2058 * request is retired will the the batch_obj be moved onto the
2059 * inactive_list and lose its active reference. Hence we do not need
2060 * to explicitly hold another reference here.
2061 */
2062
2063 if (request->ctx)
2064 i915_gem_context_reference(request->ctx);
2065
2066 request->emitted_jiffies = jiffies;
2067 was_empty = list_empty(&ring->request_list);
2068 list_add_tail(&request->list, &ring->request_list);
2069 request->file_priv = NULL;
2070
2071 if (file) {
2072 struct drm_i915_file_private *file_priv = file->driver_priv;
2073
2074 spin_lock(&file_priv->mm.lock);
2075 request->file_priv = file_priv;
2076 list_add_tail(&request->client_list,
2077 &file_priv->mm.request_list);
2078 spin_unlock(&file_priv->mm.lock);
2079 }
2080
2081 trace_i915_gem_request_add(ring, request->seqno);
2082 ring->outstanding_lazy_request = 0;
2083
2084 if (!dev_priv->mm.suspended) {
2085 if (i915_enable_hangcheck) {
2086 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2087 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2088 }
2089 if (was_empty) {
2090 queue_delayed_work(dev_priv->wq,
2091 &dev_priv->mm.retire_work,
2092 round_jiffies_up_relative(HZ));
2093 intel_mark_busy(dev_priv->dev);
2094 }
2095 }
2096
2097 if (out_seqno)
2098 *out_seqno = request->seqno;
2099 return 0;
2100 }
2101
2102 static inline void
2103 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2104 {
2105 struct drm_i915_file_private *file_priv = request->file_priv;
2106
2107 if (!file_priv)
2108 return;
2109
2110 spin_lock(&file_priv->mm.lock);
2111 if (request->file_priv) {
2112 list_del(&request->client_list);
2113 request->file_priv = NULL;
2114 }
2115 spin_unlock(&file_priv->mm.lock);
2116 }
2117
2118 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2119 {
2120 if (acthd >= obj->gtt_offset &&
2121 acthd < obj->gtt_offset + obj->base.size)
2122 return true;
2123
2124 return false;
2125 }
2126
2127 static bool i915_head_inside_request(const u32 acthd_unmasked,
2128 const u32 request_start,
2129 const u32 request_end)
2130 {
2131 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2132
2133 if (request_start < request_end) {
2134 if (acthd >= request_start && acthd < request_end)
2135 return true;
2136 } else if (request_start > request_end) {
2137 if (acthd >= request_start || acthd < request_end)
2138 return true;
2139 }
2140
2141 return false;
2142 }
2143
2144 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2145 const u32 acthd, bool *inside)
2146 {
2147 /* There is a possibility that unmasked head address
2148 * pointing inside the ring, matches the batch_obj address range.
2149 * However this is extremely unlikely.
2150 */
2151
2152 if (request->batch_obj) {
2153 if (i915_head_inside_object(acthd, request->batch_obj)) {
2154 *inside = true;
2155 return true;
2156 }
2157 }
2158
2159 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2160 *inside = false;
2161 return true;
2162 }
2163
2164 return false;
2165 }
2166
2167 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2168 struct drm_i915_gem_request *request,
2169 u32 acthd)
2170 {
2171 struct i915_ctx_hang_stats *hs = NULL;
2172 bool inside, guilty;
2173
2174 /* Innocent until proven guilty */
2175 guilty = false;
2176
2177 if (ring->hangcheck.action != wait &&
2178 i915_request_guilty(request, acthd, &inside)) {
2179 DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n",
2180 ring->name,
2181 inside ? "inside" : "flushing",
2182 request->batch_obj ?
2183 request->batch_obj->gtt_offset : 0,
2184 request->ctx ? request->ctx->id : 0,
2185 acthd);
2186
2187 guilty = true;
2188 }
2189
2190 /* If contexts are disabled or this is the default context, use
2191 * file_priv->reset_state
2192 */
2193 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2194 hs = &request->ctx->hang_stats;
2195 else if (request->file_priv)
2196 hs = &request->file_priv->hang_stats;
2197
2198 if (hs) {
2199 if (guilty)
2200 hs->batch_active++;
2201 else
2202 hs->batch_pending++;
2203 }
2204 }
2205
2206 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2207 {
2208 list_del(&request->list);
2209 i915_gem_request_remove_from_client(request);
2210
2211 if (request->ctx)
2212 i915_gem_context_unreference(request->ctx);
2213
2214 kfree(request);
2215 }
2216
2217 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2218 struct intel_ring_buffer *ring)
2219 {
2220 u32 completed_seqno;
2221 u32 acthd;
2222
2223 acthd = intel_ring_get_active_head(ring);
2224 completed_seqno = ring->get_seqno(ring, false);
2225
2226 while (!list_empty(&ring->request_list)) {
2227 struct drm_i915_gem_request *request;
2228
2229 request = list_first_entry(&ring->request_list,
2230 struct drm_i915_gem_request,
2231 list);
2232
2233 if (request->seqno > completed_seqno)
2234 i915_set_reset_status(ring, request, acthd);
2235
2236 i915_gem_free_request(request);
2237 }
2238
2239 while (!list_empty(&ring->active_list)) {
2240 struct drm_i915_gem_object *obj;
2241
2242 obj = list_first_entry(&ring->active_list,
2243 struct drm_i915_gem_object,
2244 ring_list);
2245
2246 i915_gem_object_move_to_inactive(obj);
2247 }
2248 }
2249
2250 static void i915_gem_reset_fences(struct drm_device *dev)
2251 {
2252 struct drm_i915_private *dev_priv = dev->dev_private;
2253 int i;
2254
2255 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2256 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2257
2258 if (reg->obj)
2259 i915_gem_object_fence_lost(reg->obj);
2260
2261 i915_gem_write_fence(dev, i, NULL);
2262
2263 reg->pin_count = 0;
2264 reg->obj = NULL;
2265 INIT_LIST_HEAD(&reg->lru_list);
2266 }
2267
2268 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2269 }
2270
2271 void i915_gem_reset(struct drm_device *dev)
2272 {
2273 struct drm_i915_private *dev_priv = dev->dev_private;
2274 struct drm_i915_gem_object *obj;
2275 struct intel_ring_buffer *ring;
2276 int i;
2277
2278 for_each_ring(ring, dev_priv, i)
2279 i915_gem_reset_ring_lists(dev_priv, ring);
2280
2281 /* Move everything out of the GPU domains to ensure we do any
2282 * necessary invalidation upon reuse.
2283 */
2284 list_for_each_entry(obj,
2285 &dev_priv->mm.inactive_list,
2286 mm_list)
2287 {
2288 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2289 }
2290
2291 /* The fence registers are invalidated so clear them out */
2292 i915_gem_reset_fences(dev);
2293 }
2294
2295 /**
2296 * This function clears the request list as sequence numbers are passed.
2297 */
2298 void
2299 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2300 {
2301 uint32_t seqno;
2302
2303 if (list_empty(&ring->request_list))
2304 return;
2305
2306 WARN_ON(i915_verify_lists(ring->dev));
2307
2308 seqno = ring->get_seqno(ring, true);
2309
2310 while (!list_empty(&ring->request_list)) {
2311 struct drm_i915_gem_request *request;
2312
2313 request = list_first_entry(&ring->request_list,
2314 struct drm_i915_gem_request,
2315 list);
2316
2317 if (!i915_seqno_passed(seqno, request->seqno))
2318 break;
2319
2320 trace_i915_gem_request_retire(ring, request->seqno);
2321 /* We know the GPU must have read the request to have
2322 * sent us the seqno + interrupt, so use the position
2323 * of tail of the request to update the last known position
2324 * of the GPU head.
2325 */
2326 ring->last_retired_head = request->tail;
2327
2328 i915_gem_free_request(request);
2329 }
2330
2331 /* Move any buffers on the active list that are no longer referenced
2332 * by the ringbuffer to the flushing/inactive lists as appropriate.
2333 */
2334 while (!list_empty(&ring->active_list)) {
2335 struct drm_i915_gem_object *obj;
2336
2337 obj = list_first_entry(&ring->active_list,
2338 struct drm_i915_gem_object,
2339 ring_list);
2340
2341 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2342 break;
2343
2344 i915_gem_object_move_to_inactive(obj);
2345 }
2346
2347 if (unlikely(ring->trace_irq_seqno &&
2348 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2349 ring->irq_put(ring);
2350 ring->trace_irq_seqno = 0;
2351 }
2352
2353 WARN_ON(i915_verify_lists(ring->dev));
2354 }
2355
2356 void
2357 i915_gem_retire_requests(struct drm_device *dev)
2358 {
2359 drm_i915_private_t *dev_priv = dev->dev_private;
2360 struct intel_ring_buffer *ring;
2361 int i;
2362
2363 for_each_ring(ring, dev_priv, i)
2364 i915_gem_retire_requests_ring(ring);
2365 }
2366
2367 static void
2368 i915_gem_retire_work_handler(struct work_struct *work)
2369 {
2370 drm_i915_private_t *dev_priv;
2371 struct drm_device *dev;
2372 struct intel_ring_buffer *ring;
2373 bool idle;
2374 int i;
2375
2376 dev_priv = container_of(work, drm_i915_private_t,
2377 mm.retire_work.work);
2378 dev = dev_priv->dev;
2379
2380 /* Come back later if the device is busy... */
2381 if (!mutex_trylock(&dev->struct_mutex)) {
2382 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2383 round_jiffies_up_relative(HZ));
2384 return;
2385 }
2386
2387 i915_gem_retire_requests(dev);
2388
2389 /* Send a periodic flush down the ring so we don't hold onto GEM
2390 * objects indefinitely.
2391 */
2392 idle = true;
2393 for_each_ring(ring, dev_priv, i) {
2394 if (ring->gpu_caches_dirty)
2395 i915_add_request(ring, NULL);
2396
2397 idle &= list_empty(&ring->request_list);
2398 }
2399
2400 if (!dev_priv->mm.suspended && !idle)
2401 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2402 round_jiffies_up_relative(HZ));
2403 if (idle)
2404 intel_mark_idle(dev);
2405
2406 mutex_unlock(&dev->struct_mutex);
2407 }
2408
2409 /**
2410 * Ensures that an object will eventually get non-busy by flushing any required
2411 * write domains, emitting any outstanding lazy request and retiring and
2412 * completed requests.
2413 */
2414 static int
2415 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2416 {
2417 int ret;
2418
2419 if (obj->active) {
2420 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2421 if (ret)
2422 return ret;
2423
2424 i915_gem_retire_requests_ring(obj->ring);
2425 }
2426
2427 return 0;
2428 }
2429
2430 /**
2431 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2432 * @DRM_IOCTL_ARGS: standard ioctl arguments
2433 *
2434 * Returns 0 if successful, else an error is returned with the remaining time in
2435 * the timeout parameter.
2436 * -ETIME: object is still busy after timeout
2437 * -ERESTARTSYS: signal interrupted the wait
2438 * -ENONENT: object doesn't exist
2439 * Also possible, but rare:
2440 * -EAGAIN: GPU wedged
2441 * -ENOMEM: damn
2442 * -ENODEV: Internal IRQ fail
2443 * -E?: The add request failed
2444 *
2445 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2446 * non-zero timeout parameter the wait ioctl will wait for the given number of
2447 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2448 * without holding struct_mutex the object may become re-busied before this
2449 * function completes. A similar but shorter * race condition exists in the busy
2450 * ioctl
2451 */
2452 int
2453 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2454 {
2455 drm_i915_private_t *dev_priv = dev->dev_private;
2456 struct drm_i915_gem_wait *args = data;
2457 struct drm_i915_gem_object *obj;
2458 struct intel_ring_buffer *ring = NULL;
2459 struct timespec timeout_stack, *timeout = NULL;
2460 unsigned reset_counter;
2461 u32 seqno = 0;
2462 int ret = 0;
2463
2464 if (args->timeout_ns >= 0) {
2465 timeout_stack = ns_to_timespec(args->timeout_ns);
2466 timeout = &timeout_stack;
2467 }
2468
2469 ret = i915_mutex_lock_interruptible(dev);
2470 if (ret)
2471 return ret;
2472
2473 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2474 if (&obj->base == NULL) {
2475 mutex_unlock(&dev->struct_mutex);
2476 return -ENOENT;
2477 }
2478
2479 /* Need to make sure the object gets inactive eventually. */
2480 ret = i915_gem_object_flush_active(obj);
2481 if (ret)
2482 goto out;
2483
2484 if (obj->active) {
2485 seqno = obj->last_read_seqno;
2486 ring = obj->ring;
2487 }
2488
2489 if (seqno == 0)
2490 goto out;
2491
2492 /* Do this after OLR check to make sure we make forward progress polling
2493 * on this IOCTL with a 0 timeout (like busy ioctl)
2494 */
2495 if (!args->timeout_ns) {
2496 ret = -ETIME;
2497 goto out;
2498 }
2499
2500 drm_gem_object_unreference(&obj->base);
2501 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2502 mutex_unlock(&dev->struct_mutex);
2503
2504 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2505 if (timeout)
2506 args->timeout_ns = timespec_to_ns(timeout);
2507 return ret;
2508
2509 out:
2510 drm_gem_object_unreference(&obj->base);
2511 mutex_unlock(&dev->struct_mutex);
2512 return ret;
2513 }
2514
2515 /**
2516 * i915_gem_object_sync - sync an object to a ring.
2517 *
2518 * @obj: object which may be in use on another ring.
2519 * @to: ring we wish to use the object on. May be NULL.
2520 *
2521 * This code is meant to abstract object synchronization with the GPU.
2522 * Calling with NULL implies synchronizing the object with the CPU
2523 * rather than a particular GPU ring.
2524 *
2525 * Returns 0 if successful, else propagates up the lower layer error.
2526 */
2527 int
2528 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2529 struct intel_ring_buffer *to)
2530 {
2531 struct intel_ring_buffer *from = obj->ring;
2532 u32 seqno;
2533 int ret, idx;
2534
2535 if (from == NULL || to == from)
2536 return 0;
2537
2538 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2539 return i915_gem_object_wait_rendering(obj, false);
2540
2541 idx = intel_ring_sync_index(from, to);
2542
2543 seqno = obj->last_read_seqno;
2544 if (seqno <= from->sync_seqno[idx])
2545 return 0;
2546
2547 ret = i915_gem_check_olr(obj->ring, seqno);
2548 if (ret)
2549 return ret;
2550
2551 ret = to->sync_to(to, from, seqno);
2552 if (!ret)
2553 /* We use last_read_seqno because sync_to()
2554 * might have just caused seqno wrap under
2555 * the radar.
2556 */
2557 from->sync_seqno[idx] = obj->last_read_seqno;
2558
2559 return ret;
2560 }
2561
2562 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2563 {
2564 u32 old_write_domain, old_read_domains;
2565
2566 /* Force a pagefault for domain tracking on next user access */
2567 i915_gem_release_mmap(obj);
2568
2569 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2570 return;
2571
2572 /* Wait for any direct GTT access to complete */
2573 mb();
2574
2575 old_read_domains = obj->base.read_domains;
2576 old_write_domain = obj->base.write_domain;
2577
2578 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2579 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2580
2581 trace_i915_gem_object_change_domain(obj,
2582 old_read_domains,
2583 old_write_domain);
2584 }
2585
2586 /**
2587 * Unbinds an object from the GTT aperture.
2588 */
2589 int
2590 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2591 {
2592 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2593 int ret;
2594
2595 if (obj->gtt_space == NULL)
2596 return 0;
2597
2598 if (obj->pin_count)
2599 return -EBUSY;
2600
2601 BUG_ON(obj->pages == NULL);
2602
2603 ret = i915_gem_object_finish_gpu(obj);
2604 if (ret)
2605 return ret;
2606 /* Continue on if we fail due to EIO, the GPU is hung so we
2607 * should be safe and we need to cleanup or else we might
2608 * cause memory corruption through use-after-free.
2609 */
2610
2611 i915_gem_object_finish_gtt(obj);
2612
2613 /* release the fence reg _after_ flushing */
2614 ret = i915_gem_object_put_fence(obj);
2615 if (ret)
2616 return ret;
2617
2618 trace_i915_gem_object_unbind(obj);
2619
2620 if (obj->has_global_gtt_mapping)
2621 i915_gem_gtt_unbind_object(obj);
2622 if (obj->has_aliasing_ppgtt_mapping) {
2623 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2624 obj->has_aliasing_ppgtt_mapping = 0;
2625 }
2626 i915_gem_gtt_finish_object(obj);
2627 i915_gem_object_unpin_pages(obj);
2628
2629 list_del(&obj->mm_list);
2630 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2631 /* Avoid an unnecessary call to unbind on rebind. */
2632 obj->map_and_fenceable = true;
2633
2634 drm_mm_put_block(obj->gtt_space);
2635 obj->gtt_space = NULL;
2636 obj->gtt_offset = 0;
2637
2638 return 0;
2639 }
2640
2641 int i915_gpu_idle(struct drm_device *dev)
2642 {
2643 drm_i915_private_t *dev_priv = dev->dev_private;
2644 struct intel_ring_buffer *ring;
2645 int ret, i;
2646
2647 /* Flush everything onto the inactive list. */
2648 for_each_ring(ring, dev_priv, i) {
2649 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2650 if (ret)
2651 return ret;
2652
2653 ret = intel_ring_idle(ring);
2654 if (ret)
2655 return ret;
2656 }
2657
2658 return 0;
2659 }
2660
2661 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2662 struct drm_i915_gem_object *obj)
2663 {
2664 drm_i915_private_t *dev_priv = dev->dev_private;
2665 int fence_reg;
2666 int fence_pitch_shift;
2667 uint64_t val;
2668
2669 if (INTEL_INFO(dev)->gen >= 6) {
2670 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2671 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2672 } else {
2673 fence_reg = FENCE_REG_965_0;
2674 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2675 }
2676
2677 if (obj) {
2678 u32 size = obj->gtt_space->size;
2679
2680 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2681 0xfffff000) << 32;
2682 val |= obj->gtt_offset & 0xfffff000;
2683 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2684 if (obj->tiling_mode == I915_TILING_Y)
2685 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2686 val |= I965_FENCE_REG_VALID;
2687 } else
2688 val = 0;
2689
2690 fence_reg += reg * 8;
2691 I915_WRITE64(fence_reg, val);
2692 POSTING_READ(fence_reg);
2693 }
2694
2695 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2696 struct drm_i915_gem_object *obj)
2697 {
2698 drm_i915_private_t *dev_priv = dev->dev_private;
2699 u32 val;
2700
2701 if (obj) {
2702 u32 size = obj->gtt_space->size;
2703 int pitch_val;
2704 int tile_width;
2705
2706 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2707 (size & -size) != size ||
2708 (obj->gtt_offset & (size - 1)),
2709 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2710 obj->gtt_offset, obj->map_and_fenceable, size);
2711
2712 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2713 tile_width = 128;
2714 else
2715 tile_width = 512;
2716
2717 /* Note: pitch better be a power of two tile widths */
2718 pitch_val = obj->stride / tile_width;
2719 pitch_val = ffs(pitch_val) - 1;
2720
2721 val = obj->gtt_offset;
2722 if (obj->tiling_mode == I915_TILING_Y)
2723 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2724 val |= I915_FENCE_SIZE_BITS(size);
2725 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2726 val |= I830_FENCE_REG_VALID;
2727 } else
2728 val = 0;
2729
2730 if (reg < 8)
2731 reg = FENCE_REG_830_0 + reg * 4;
2732 else
2733 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2734
2735 I915_WRITE(reg, val);
2736 POSTING_READ(reg);
2737 }
2738
2739 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2740 struct drm_i915_gem_object *obj)
2741 {
2742 drm_i915_private_t *dev_priv = dev->dev_private;
2743 uint32_t val;
2744
2745 if (obj) {
2746 u32 size = obj->gtt_space->size;
2747 uint32_t pitch_val;
2748
2749 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2750 (size & -size) != size ||
2751 (obj->gtt_offset & (size - 1)),
2752 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2753 obj->gtt_offset, size);
2754
2755 pitch_val = obj->stride / 128;
2756 pitch_val = ffs(pitch_val) - 1;
2757
2758 val = obj->gtt_offset;
2759 if (obj->tiling_mode == I915_TILING_Y)
2760 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2761 val |= I830_FENCE_SIZE_BITS(size);
2762 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2763 val |= I830_FENCE_REG_VALID;
2764 } else
2765 val = 0;
2766
2767 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2768 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2769 }
2770
2771 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2772 {
2773 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2774 }
2775
2776 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2777 struct drm_i915_gem_object *obj)
2778 {
2779 struct drm_i915_private *dev_priv = dev->dev_private;
2780
2781 /* Ensure that all CPU reads are completed before installing a fence
2782 * and all writes before removing the fence.
2783 */
2784 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2785 mb();
2786
2787 switch (INTEL_INFO(dev)->gen) {
2788 case 7:
2789 case 6:
2790 case 5:
2791 case 4: i965_write_fence_reg(dev, reg, obj); break;
2792 case 3: i915_write_fence_reg(dev, reg, obj); break;
2793 case 2: i830_write_fence_reg(dev, reg, obj); break;
2794 default: BUG();
2795 }
2796
2797 /* And similarly be paranoid that no direct access to this region
2798 * is reordered to before the fence is installed.
2799 */
2800 if (i915_gem_object_needs_mb(obj))
2801 mb();
2802 }
2803
2804 static inline int fence_number(struct drm_i915_private *dev_priv,
2805 struct drm_i915_fence_reg *fence)
2806 {
2807 return fence - dev_priv->fence_regs;
2808 }
2809
2810 struct write_fence {
2811 struct drm_device *dev;
2812 struct drm_i915_gem_object *obj;
2813 int fence;
2814 };
2815
2816 static void i915_gem_write_fence__ipi(void *data)
2817 {
2818 struct write_fence *args = data;
2819
2820 /* Required for SNB+ with LLC */
2821 wbinvd();
2822
2823 /* Required for VLV */
2824 i915_gem_write_fence(args->dev, args->fence, args->obj);
2825 }
2826
2827 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2828 struct drm_i915_fence_reg *fence,
2829 bool enable)
2830 {
2831 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2832 struct write_fence args = {
2833 .dev = obj->base.dev,
2834 .fence = fence_number(dev_priv, fence),
2835 .obj = enable ? obj : NULL,
2836 };
2837
2838 /* In order to fully serialize access to the fenced region and
2839 * the update to the fence register we need to take extreme
2840 * measures on SNB+. In theory, the write to the fence register
2841 * flushes all memory transactions before, and coupled with the
2842 * mb() placed around the register write we serialise all memory
2843 * operations with respect to the changes in the tiler. Yet, on
2844 * SNB+ we need to take a step further and emit an explicit wbinvd()
2845 * on each processor in order to manually flush all memory
2846 * transactions before updating the fence register.
2847 *
2848 * However, Valleyview complicates matter. There the wbinvd is
2849 * insufficient and unlike SNB/IVB requires the serialising
2850 * register write. (Note that that register write by itself is
2851 * conversely not sufficient for SNB+.) To compromise, we do both.
2852 */
2853 if (INTEL_INFO(args.dev)->gen >= 6)
2854 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2855 else
2856 i915_gem_write_fence(args.dev, args.fence, args.obj);
2857
2858 if (enable) {
2859 obj->fence_reg = args.fence;
2860 fence->obj = obj;
2861 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2862 } else {
2863 obj->fence_reg = I915_FENCE_REG_NONE;
2864 fence->obj = NULL;
2865 list_del_init(&fence->lru_list);
2866 }
2867 }
2868
2869 static int
2870 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2871 {
2872 if (obj->last_fenced_seqno) {
2873 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2874 if (ret)
2875 return ret;
2876
2877 obj->last_fenced_seqno = 0;
2878 }
2879
2880 obj->fenced_gpu_access = false;
2881 return 0;
2882 }
2883
2884 int
2885 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2886 {
2887 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2888 struct drm_i915_fence_reg *fence;
2889 int ret;
2890
2891 ret = i915_gem_object_wait_fence(obj);
2892 if (ret)
2893 return ret;
2894
2895 if (obj->fence_reg == I915_FENCE_REG_NONE)
2896 return 0;
2897
2898 fence = &dev_priv->fence_regs[obj->fence_reg];
2899
2900 i915_gem_object_fence_lost(obj);
2901 i915_gem_object_update_fence(obj, fence, false);
2902
2903 return 0;
2904 }
2905
2906 static struct drm_i915_fence_reg *
2907 i915_find_fence_reg(struct drm_device *dev)
2908 {
2909 struct drm_i915_private *dev_priv = dev->dev_private;
2910 struct drm_i915_fence_reg *reg, *avail;
2911 int i;
2912
2913 /* First try to find a free reg */
2914 avail = NULL;
2915 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2916 reg = &dev_priv->fence_regs[i];
2917 if (!reg->obj)
2918 return reg;
2919
2920 if (!reg->pin_count)
2921 avail = reg;
2922 }
2923
2924 if (avail == NULL)
2925 return NULL;
2926
2927 /* None available, try to steal one or wait for a user to finish */
2928 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2929 if (reg->pin_count)
2930 continue;
2931
2932 return reg;
2933 }
2934
2935 return NULL;
2936 }
2937
2938 /**
2939 * i915_gem_object_get_fence - set up fencing for an object
2940 * @obj: object to map through a fence reg
2941 *
2942 * When mapping objects through the GTT, userspace wants to be able to write
2943 * to them without having to worry about swizzling if the object is tiled.
2944 * This function walks the fence regs looking for a free one for @obj,
2945 * stealing one if it can't find any.
2946 *
2947 * It then sets up the reg based on the object's properties: address, pitch
2948 * and tiling format.
2949 *
2950 * For an untiled surface, this removes any existing fence.
2951 */
2952 int
2953 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2954 {
2955 struct drm_device *dev = obj->base.dev;
2956 struct drm_i915_private *dev_priv = dev->dev_private;
2957 bool enable = obj->tiling_mode != I915_TILING_NONE;
2958 struct drm_i915_fence_reg *reg;
2959 int ret;
2960
2961 /* Have we updated the tiling parameters upon the object and so
2962 * will need to serialise the write to the associated fence register?
2963 */
2964 if (obj->fence_dirty) {
2965 ret = i915_gem_object_wait_fence(obj);
2966 if (ret)
2967 return ret;
2968 }
2969
2970 /* Just update our place in the LRU if our fence is getting reused. */
2971 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2972 reg = &dev_priv->fence_regs[obj->fence_reg];
2973 if (!obj->fence_dirty) {
2974 list_move_tail(&reg->lru_list,
2975 &dev_priv->mm.fence_list);
2976 return 0;
2977 }
2978 } else if (enable) {
2979 reg = i915_find_fence_reg(dev);
2980 if (reg == NULL)
2981 return -EDEADLK;
2982
2983 if (reg->obj) {
2984 struct drm_i915_gem_object *old = reg->obj;
2985
2986 ret = i915_gem_object_wait_fence(old);
2987 if (ret)
2988 return ret;
2989
2990 i915_gem_object_fence_lost(old);
2991 }
2992 } else
2993 return 0;
2994
2995 i915_gem_object_update_fence(obj, reg, enable);
2996 obj->fence_dirty = false;
2997
2998 return 0;
2999 }
3000
3001 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3002 struct drm_mm_node *gtt_space,
3003 unsigned long cache_level)
3004 {
3005 struct drm_mm_node *other;
3006
3007 /* On non-LLC machines we have to be careful when putting differing
3008 * types of snoopable memory together to avoid the prefetcher
3009 * crossing memory domains and dying.
3010 */
3011 if (HAS_LLC(dev))
3012 return true;
3013
3014 if (gtt_space == NULL)
3015 return true;
3016
3017 if (list_empty(&gtt_space->node_list))
3018 return true;
3019
3020 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3021 if (other->allocated && !other->hole_follows && other->color != cache_level)
3022 return false;
3023
3024 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3025 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3026 return false;
3027
3028 return true;
3029 }
3030
3031 static void i915_gem_verify_gtt(struct drm_device *dev)
3032 {
3033 #if WATCH_GTT
3034 struct drm_i915_private *dev_priv = dev->dev_private;
3035 struct drm_i915_gem_object *obj;
3036 int err = 0;
3037
3038 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3039 if (obj->gtt_space == NULL) {
3040 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3041 err++;
3042 continue;
3043 }
3044
3045 if (obj->cache_level != obj->gtt_space->color) {
3046 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3047 obj->gtt_space->start,
3048 obj->gtt_space->start + obj->gtt_space->size,
3049 obj->cache_level,
3050 obj->gtt_space->color);
3051 err++;
3052 continue;
3053 }
3054
3055 if (!i915_gem_valid_gtt_space(dev,
3056 obj->gtt_space,
3057 obj->cache_level)) {
3058 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3059 obj->gtt_space->start,
3060 obj->gtt_space->start + obj->gtt_space->size,
3061 obj->cache_level);
3062 err++;
3063 continue;
3064 }
3065 }
3066
3067 WARN_ON(err);
3068 #endif
3069 }
3070
3071 /**
3072 * Finds free space in the GTT aperture and binds the object there.
3073 */
3074 static int
3075 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3076 unsigned alignment,
3077 bool map_and_fenceable,
3078 bool nonblocking)
3079 {
3080 struct drm_device *dev = obj->base.dev;
3081 drm_i915_private_t *dev_priv = dev->dev_private;
3082 struct drm_mm_node *node;
3083 u32 size, fence_size, fence_alignment, unfenced_alignment;
3084 bool mappable, fenceable;
3085 size_t gtt_max = map_and_fenceable ?
3086 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
3087 int ret;
3088
3089 fence_size = i915_gem_get_gtt_size(dev,
3090 obj->base.size,
3091 obj->tiling_mode);
3092 fence_alignment = i915_gem_get_gtt_alignment(dev,
3093 obj->base.size,
3094 obj->tiling_mode, true);
3095 unfenced_alignment =
3096 i915_gem_get_gtt_alignment(dev,
3097 obj->base.size,
3098 obj->tiling_mode, false);
3099
3100 if (alignment == 0)
3101 alignment = map_and_fenceable ? fence_alignment :
3102 unfenced_alignment;
3103 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3104 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3105 return -EINVAL;
3106 }
3107
3108 size = map_and_fenceable ? fence_size : obj->base.size;
3109
3110 /* If the object is bigger than the entire aperture, reject it early
3111 * before evicting everything in a vain attempt to find space.
3112 */
3113 if (obj->base.size > gtt_max) {
3114 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3115 obj->base.size,
3116 map_and_fenceable ? "mappable" : "total",
3117 gtt_max);
3118 return -E2BIG;
3119 }
3120
3121 ret = i915_gem_object_get_pages(obj);
3122 if (ret)
3123 return ret;
3124
3125 i915_gem_object_pin_pages(obj);
3126
3127 node = kzalloc(sizeof(*node), GFP_KERNEL);
3128 if (node == NULL) {
3129 i915_gem_object_unpin_pages(obj);
3130 return -ENOMEM;
3131 }
3132
3133 search_free:
3134 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3135 size, alignment,
3136 obj->cache_level, 0, gtt_max);
3137 if (ret) {
3138 ret = i915_gem_evict_something(dev, size, alignment,
3139 obj->cache_level,
3140 map_and_fenceable,
3141 nonblocking);
3142 if (ret == 0)
3143 goto search_free;
3144
3145 i915_gem_object_unpin_pages(obj);
3146 kfree(node);
3147 return ret;
3148 }
3149 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3150 i915_gem_object_unpin_pages(obj);
3151 drm_mm_put_block(node);
3152 return -EINVAL;
3153 }
3154
3155 ret = i915_gem_gtt_prepare_object(obj);
3156 if (ret) {
3157 i915_gem_object_unpin_pages(obj);
3158 drm_mm_put_block(node);
3159 return ret;
3160 }
3161
3162 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3163 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3164
3165 obj->gtt_space = node;
3166 obj->gtt_offset = node->start;
3167
3168 fenceable =
3169 node->size == fence_size &&
3170 (node->start & (fence_alignment - 1)) == 0;
3171
3172 mappable =
3173 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3174
3175 obj->map_and_fenceable = mappable && fenceable;
3176
3177 trace_i915_gem_object_bind(obj, map_and_fenceable);
3178 i915_gem_verify_gtt(dev);
3179 return 0;
3180 }
3181
3182 void
3183 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3184 {
3185 /* If we don't have a page list set up, then we're not pinned
3186 * to GPU, and we can ignore the cache flush because it'll happen
3187 * again at bind time.
3188 */
3189 if (obj->pages == NULL)
3190 return;
3191
3192 /*
3193 * Stolen memory is always coherent with the GPU as it is explicitly
3194 * marked as wc by the system, or the system is cache-coherent.
3195 */
3196 if (obj->stolen)
3197 return;
3198
3199 /* If the GPU is snooping the contents of the CPU cache,
3200 * we do not need to manually clear the CPU cache lines. However,
3201 * the caches are only snooped when the render cache is
3202 * flushed/invalidated. As we always have to emit invalidations
3203 * and flushes when moving into and out of the RENDER domain, correct
3204 * snooping behaviour occurs naturally as the result of our domain
3205 * tracking.
3206 */
3207 if (obj->cache_level != I915_CACHE_NONE)
3208 return;
3209
3210 trace_i915_gem_object_clflush(obj);
3211
3212 drm_clflush_sg(obj->pages);
3213 }
3214
3215 /** Flushes the GTT write domain for the object if it's dirty. */
3216 static void
3217 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3218 {
3219 uint32_t old_write_domain;
3220
3221 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3222 return;
3223
3224 /* No actual flushing is required for the GTT write domain. Writes
3225 * to it immediately go to main memory as far as we know, so there's
3226 * no chipset flush. It also doesn't land in render cache.
3227 *
3228 * However, we do have to enforce the order so that all writes through
3229 * the GTT land before any writes to the device, such as updates to
3230 * the GATT itself.
3231 */
3232 wmb();
3233
3234 old_write_domain = obj->base.write_domain;
3235 obj->base.write_domain = 0;
3236
3237 trace_i915_gem_object_change_domain(obj,
3238 obj->base.read_domains,
3239 old_write_domain);
3240 }
3241
3242 /** Flushes the CPU write domain for the object if it's dirty. */
3243 static void
3244 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3245 {
3246 uint32_t old_write_domain;
3247
3248 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3249 return;
3250
3251 i915_gem_clflush_object(obj);
3252 i915_gem_chipset_flush(obj->base.dev);
3253 old_write_domain = obj->base.write_domain;
3254 obj->base.write_domain = 0;
3255
3256 trace_i915_gem_object_change_domain(obj,
3257 obj->base.read_domains,
3258 old_write_domain);
3259 }
3260
3261 /**
3262 * Moves a single object to the GTT read, and possibly write domain.
3263 *
3264 * This function returns when the move is complete, including waiting on
3265 * flushes to occur.
3266 */
3267 int
3268 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3269 {
3270 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3271 uint32_t old_write_domain, old_read_domains;
3272 int ret;
3273
3274 /* Not valid to be called on unbound objects. */
3275 if (obj->gtt_space == NULL)
3276 return -EINVAL;
3277
3278 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3279 return 0;
3280
3281 ret = i915_gem_object_wait_rendering(obj, !write);
3282 if (ret)
3283 return ret;
3284
3285 i915_gem_object_flush_cpu_write_domain(obj);
3286
3287 /* Serialise direct access to this object with the barriers for
3288 * coherent writes from the GPU, by effectively invalidating the
3289 * GTT domain upon first access.
3290 */
3291 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3292 mb();
3293
3294 old_write_domain = obj->base.write_domain;
3295 old_read_domains = obj->base.read_domains;
3296
3297 /* It should now be out of any other write domains, and we can update
3298 * the domain values for our changes.
3299 */
3300 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3301 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3302 if (write) {
3303 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3304 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3305 obj->dirty = 1;
3306 }
3307
3308 trace_i915_gem_object_change_domain(obj,
3309 old_read_domains,
3310 old_write_domain);
3311
3312 /* And bump the LRU for this access */
3313 if (i915_gem_object_is_inactive(obj))
3314 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3315
3316 return 0;
3317 }
3318
3319 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3320 enum i915_cache_level cache_level)
3321 {
3322 struct drm_device *dev = obj->base.dev;
3323 drm_i915_private_t *dev_priv = dev->dev_private;
3324 int ret;
3325
3326 if (obj->cache_level == cache_level)
3327 return 0;
3328
3329 if (obj->pin_count) {
3330 DRM_DEBUG("can not change the cache level of pinned objects\n");
3331 return -EBUSY;
3332 }
3333
3334 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3335 ret = i915_gem_object_unbind(obj);
3336 if (ret)
3337 return ret;
3338 }
3339
3340 if (obj->gtt_space) {
3341 ret = i915_gem_object_finish_gpu(obj);
3342 if (ret)
3343 return ret;
3344
3345 i915_gem_object_finish_gtt(obj);
3346
3347 /* Before SandyBridge, you could not use tiling or fence
3348 * registers with snooped memory, so relinquish any fences
3349 * currently pointing to our region in the aperture.
3350 */
3351 if (INTEL_INFO(dev)->gen < 6) {
3352 ret = i915_gem_object_put_fence(obj);
3353 if (ret)
3354 return ret;
3355 }
3356
3357 if (obj->has_global_gtt_mapping)
3358 i915_gem_gtt_bind_object(obj, cache_level);
3359 if (obj->has_aliasing_ppgtt_mapping)
3360 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3361 obj, cache_level);
3362
3363 obj->gtt_space->color = cache_level;
3364 }
3365
3366 if (cache_level == I915_CACHE_NONE) {
3367 u32 old_read_domains, old_write_domain;
3368
3369 /* If we're coming from LLC cached, then we haven't
3370 * actually been tracking whether the data is in the
3371 * CPU cache or not, since we only allow one bit set
3372 * in obj->write_domain and have been skipping the clflushes.
3373 * Just set it to the CPU cache for now.
3374 */
3375 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3376 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3377
3378 old_read_domains = obj->base.read_domains;
3379 old_write_domain = obj->base.write_domain;
3380
3381 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3382 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3383
3384 trace_i915_gem_object_change_domain(obj,
3385 old_read_domains,
3386 old_write_domain);
3387 }
3388
3389 obj->cache_level = cache_level;
3390 i915_gem_verify_gtt(dev);
3391 return 0;
3392 }
3393
3394 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3395 struct drm_file *file)
3396 {
3397 struct drm_i915_gem_caching *args = data;
3398 struct drm_i915_gem_object *obj;
3399 int ret;
3400
3401 ret = i915_mutex_lock_interruptible(dev);
3402 if (ret)
3403 return ret;
3404
3405 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3406 if (&obj->base == NULL) {
3407 ret = -ENOENT;
3408 goto unlock;
3409 }
3410
3411 args->caching = obj->cache_level != I915_CACHE_NONE;
3412
3413 drm_gem_object_unreference(&obj->base);
3414 unlock:
3415 mutex_unlock(&dev->struct_mutex);
3416 return ret;
3417 }
3418
3419 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3420 struct drm_file *file)
3421 {
3422 struct drm_i915_gem_caching *args = data;
3423 struct drm_i915_gem_object *obj;
3424 enum i915_cache_level level;
3425 int ret;
3426
3427 switch (args->caching) {
3428 case I915_CACHING_NONE:
3429 level = I915_CACHE_NONE;
3430 break;
3431 case I915_CACHING_CACHED:
3432 level = I915_CACHE_LLC;
3433 break;
3434 default:
3435 return -EINVAL;
3436 }
3437
3438 ret = i915_mutex_lock_interruptible(dev);
3439 if (ret)
3440 return ret;
3441
3442 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3443 if (&obj->base == NULL) {
3444 ret = -ENOENT;
3445 goto unlock;
3446 }
3447
3448 ret = i915_gem_object_set_cache_level(obj, level);
3449
3450 drm_gem_object_unreference(&obj->base);
3451 unlock:
3452 mutex_unlock(&dev->struct_mutex);
3453 return ret;
3454 }
3455
3456 /*
3457 * Prepare buffer for display plane (scanout, cursors, etc).
3458 * Can be called from an uninterruptible phase (modesetting) and allows
3459 * any flushes to be pipelined (for pageflips).
3460 */
3461 int
3462 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3463 u32 alignment,
3464 struct intel_ring_buffer *pipelined)
3465 {
3466 u32 old_read_domains, old_write_domain;
3467 int ret;
3468
3469 if (pipelined != obj->ring) {
3470 ret = i915_gem_object_sync(obj, pipelined);
3471 if (ret)
3472 return ret;
3473 }
3474
3475 /* The display engine is not coherent with the LLC cache on gen6. As
3476 * a result, we make sure that the pinning that is about to occur is
3477 * done with uncached PTEs. This is lowest common denominator for all
3478 * chipsets.
3479 *
3480 * However for gen6+, we could do better by using the GFDT bit instead
3481 * of uncaching, which would allow us to flush all the LLC-cached data
3482 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3483 */
3484 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3485 if (ret)
3486 return ret;
3487
3488 /* As the user may map the buffer once pinned in the display plane
3489 * (e.g. libkms for the bootup splash), we have to ensure that we
3490 * always use map_and_fenceable for all scanout buffers.
3491 */
3492 ret = i915_gem_object_pin(obj, alignment, true, false);
3493 if (ret)
3494 return ret;
3495
3496 i915_gem_object_flush_cpu_write_domain(obj);
3497
3498 old_write_domain = obj->base.write_domain;
3499 old_read_domains = obj->base.read_domains;
3500
3501 /* It should now be out of any other write domains, and we can update
3502 * the domain values for our changes.
3503 */
3504 obj->base.write_domain = 0;
3505 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3506
3507 trace_i915_gem_object_change_domain(obj,
3508 old_read_domains,
3509 old_write_domain);
3510
3511 return 0;
3512 }
3513
3514 int
3515 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3516 {
3517 int ret;
3518
3519 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3520 return 0;
3521
3522 ret = i915_gem_object_wait_rendering(obj, false);
3523 if (ret)
3524 return ret;
3525
3526 /* Ensure that we invalidate the GPU's caches and TLBs. */
3527 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3528 return 0;
3529 }
3530
3531 /**
3532 * Moves a single object to the CPU read, and possibly write domain.
3533 *
3534 * This function returns when the move is complete, including waiting on
3535 * flushes to occur.
3536 */
3537 int
3538 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3539 {
3540 uint32_t old_write_domain, old_read_domains;
3541 int ret;
3542
3543 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3544 return 0;
3545
3546 ret = i915_gem_object_wait_rendering(obj, !write);
3547 if (ret)
3548 return ret;
3549
3550 i915_gem_object_flush_gtt_write_domain(obj);
3551
3552 old_write_domain = obj->base.write_domain;
3553 old_read_domains = obj->base.read_domains;
3554
3555 /* Flush the CPU cache if it's still invalid. */
3556 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3557 i915_gem_clflush_object(obj);
3558
3559 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3560 }
3561
3562 /* It should now be out of any other write domains, and we can update
3563 * the domain values for our changes.
3564 */
3565 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3566
3567 /* If we're writing through the CPU, then the GPU read domains will
3568 * need to be invalidated at next use.
3569 */
3570 if (write) {
3571 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3572 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3573 }
3574
3575 trace_i915_gem_object_change_domain(obj,
3576 old_read_domains,
3577 old_write_domain);
3578
3579 return 0;
3580 }
3581
3582 /* Throttle our rendering by waiting until the ring has completed our requests
3583 * emitted over 20 msec ago.
3584 *
3585 * Note that if we were to use the current jiffies each time around the loop,
3586 * we wouldn't escape the function with any frames outstanding if the time to
3587 * render a frame was over 20ms.
3588 *
3589 * This should get us reasonable parallelism between CPU and GPU but also
3590 * relatively low latency when blocking on a particular request to finish.
3591 */
3592 static int
3593 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3594 {
3595 struct drm_i915_private *dev_priv = dev->dev_private;
3596 struct drm_i915_file_private *file_priv = file->driver_priv;
3597 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3598 struct drm_i915_gem_request *request;
3599 struct intel_ring_buffer *ring = NULL;
3600 unsigned reset_counter;
3601 u32 seqno = 0;
3602 int ret;
3603
3604 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3605 if (ret)
3606 return ret;
3607
3608 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3609 if (ret)
3610 return ret;
3611
3612 spin_lock(&file_priv->mm.lock);
3613 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3614 if (time_after_eq(request->emitted_jiffies, recent_enough))
3615 break;
3616
3617 ring = request->ring;
3618 seqno = request->seqno;
3619 }
3620 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3621 spin_unlock(&file_priv->mm.lock);
3622
3623 if (seqno == 0)
3624 return 0;
3625
3626 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3627 if (ret == 0)
3628 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3629
3630 return ret;
3631 }
3632
3633 int
3634 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3635 uint32_t alignment,
3636 bool map_and_fenceable,
3637 bool nonblocking)
3638 {
3639 int ret;
3640
3641 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3642 return -EBUSY;
3643
3644 if (obj->gtt_space != NULL) {
3645 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3646 (map_and_fenceable && !obj->map_and_fenceable)) {
3647 WARN(obj->pin_count,
3648 "bo is already pinned with incorrect alignment:"
3649 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3650 " obj->map_and_fenceable=%d\n",
3651 obj->gtt_offset, alignment,
3652 map_and_fenceable,
3653 obj->map_and_fenceable);
3654 ret = i915_gem_object_unbind(obj);
3655 if (ret)
3656 return ret;
3657 }
3658 }
3659
3660 if (obj->gtt_space == NULL) {
3661 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3662
3663 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3664 map_and_fenceable,
3665 nonblocking);
3666 if (ret)
3667 return ret;
3668
3669 if (!dev_priv->mm.aliasing_ppgtt)
3670 i915_gem_gtt_bind_object(obj, obj->cache_level);
3671 }
3672
3673 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3674 i915_gem_gtt_bind_object(obj, obj->cache_level);
3675
3676 obj->pin_count++;
3677 obj->pin_mappable |= map_and_fenceable;
3678
3679 return 0;
3680 }
3681
3682 void
3683 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3684 {
3685 BUG_ON(obj->pin_count == 0);
3686 BUG_ON(obj->gtt_space == NULL);
3687
3688 if (--obj->pin_count == 0)
3689 obj->pin_mappable = false;
3690 }
3691
3692 int
3693 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3694 struct drm_file *file)
3695 {
3696 struct drm_i915_gem_pin *args = data;
3697 struct drm_i915_gem_object *obj;
3698 int ret;
3699
3700 ret = i915_mutex_lock_interruptible(dev);
3701 if (ret)
3702 return ret;
3703
3704 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3705 if (&obj->base == NULL) {
3706 ret = -ENOENT;
3707 goto unlock;
3708 }
3709
3710 if (obj->madv != I915_MADV_WILLNEED) {
3711 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3712 ret = -EINVAL;
3713 goto out;
3714 }
3715
3716 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3717 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3718 args->handle);
3719 ret = -EINVAL;
3720 goto out;
3721 }
3722
3723 if (obj->user_pin_count == 0) {
3724 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3725 if (ret)
3726 goto out;
3727 }
3728
3729 obj->user_pin_count++;
3730 obj->pin_filp = file;
3731
3732 /* XXX - flush the CPU caches for pinned objects
3733 * as the X server doesn't manage domains yet
3734 */
3735 i915_gem_object_flush_cpu_write_domain(obj);
3736 args->offset = obj->gtt_offset;
3737 out:
3738 drm_gem_object_unreference(&obj->base);
3739 unlock:
3740 mutex_unlock(&dev->struct_mutex);
3741 return ret;
3742 }
3743
3744 int
3745 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3746 struct drm_file *file)
3747 {
3748 struct drm_i915_gem_pin *args = data;
3749 struct drm_i915_gem_object *obj;
3750 int ret;
3751
3752 ret = i915_mutex_lock_interruptible(dev);
3753 if (ret)
3754 return ret;
3755
3756 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3757 if (&obj->base == NULL) {
3758 ret = -ENOENT;
3759 goto unlock;
3760 }
3761
3762 if (obj->pin_filp != file) {
3763 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3764 args->handle);
3765 ret = -EINVAL;
3766 goto out;
3767 }
3768 obj->user_pin_count--;
3769 if (obj->user_pin_count == 0) {
3770 obj->pin_filp = NULL;
3771 i915_gem_object_unpin(obj);
3772 }
3773
3774 out:
3775 drm_gem_object_unreference(&obj->base);
3776 unlock:
3777 mutex_unlock(&dev->struct_mutex);
3778 return ret;
3779 }
3780
3781 int
3782 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3783 struct drm_file *file)
3784 {
3785 struct drm_i915_gem_busy *args = data;
3786 struct drm_i915_gem_object *obj;
3787 int ret;
3788
3789 ret = i915_mutex_lock_interruptible(dev);
3790 if (ret)
3791 return ret;
3792
3793 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3794 if (&obj->base == NULL) {
3795 ret = -ENOENT;
3796 goto unlock;
3797 }
3798
3799 /* Count all active objects as busy, even if they are currently not used
3800 * by the gpu. Users of this interface expect objects to eventually
3801 * become non-busy without any further actions, therefore emit any
3802 * necessary flushes here.
3803 */
3804 ret = i915_gem_object_flush_active(obj);
3805
3806 args->busy = obj->active;
3807 if (obj->ring) {
3808 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3809 args->busy |= intel_ring_flag(obj->ring) << 16;
3810 }
3811
3812 drm_gem_object_unreference(&obj->base);
3813 unlock:
3814 mutex_unlock(&dev->struct_mutex);
3815 return ret;
3816 }
3817
3818 int
3819 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3820 struct drm_file *file_priv)
3821 {
3822 return i915_gem_ring_throttle(dev, file_priv);
3823 }
3824
3825 int
3826 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3827 struct drm_file *file_priv)
3828 {
3829 struct drm_i915_gem_madvise *args = data;
3830 struct drm_i915_gem_object *obj;
3831 int ret;
3832
3833 switch (args->madv) {
3834 case I915_MADV_DONTNEED:
3835 case I915_MADV_WILLNEED:
3836 break;
3837 default:
3838 return -EINVAL;
3839 }
3840
3841 ret = i915_mutex_lock_interruptible(dev);
3842 if (ret)
3843 return ret;
3844
3845 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3846 if (&obj->base == NULL) {
3847 ret = -ENOENT;
3848 goto unlock;
3849 }
3850
3851 if (obj->pin_count) {
3852 ret = -EINVAL;
3853 goto out;
3854 }
3855
3856 if (obj->madv != __I915_MADV_PURGED)
3857 obj->madv = args->madv;
3858
3859 /* if the object is no longer attached, discard its backing storage */
3860 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3861 i915_gem_object_truncate(obj);
3862
3863 args->retained = obj->madv != __I915_MADV_PURGED;
3864
3865 out:
3866 drm_gem_object_unreference(&obj->base);
3867 unlock:
3868 mutex_unlock(&dev->struct_mutex);
3869 return ret;
3870 }
3871
3872 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3873 const struct drm_i915_gem_object_ops *ops)
3874 {
3875 INIT_LIST_HEAD(&obj->mm_list);
3876 INIT_LIST_HEAD(&obj->global_list);
3877 INIT_LIST_HEAD(&obj->ring_list);
3878 INIT_LIST_HEAD(&obj->exec_list);
3879
3880 obj->ops = ops;
3881
3882 obj->fence_reg = I915_FENCE_REG_NONE;
3883 obj->madv = I915_MADV_WILLNEED;
3884 /* Avoid an unnecessary call to unbind on the first bind. */
3885 obj->map_and_fenceable = true;
3886
3887 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3888 }
3889
3890 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3891 .get_pages = i915_gem_object_get_pages_gtt,
3892 .put_pages = i915_gem_object_put_pages_gtt,
3893 };
3894
3895 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3896 size_t size)
3897 {
3898 struct drm_i915_gem_object *obj;
3899 struct address_space *mapping;
3900 gfp_t mask;
3901
3902 obj = i915_gem_object_alloc(dev);
3903 if (obj == NULL)
3904 return NULL;
3905
3906 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3907 i915_gem_object_free(obj);
3908 return NULL;
3909 }
3910
3911 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3912 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3913 /* 965gm cannot relocate objects above 4GiB. */
3914 mask &= ~__GFP_HIGHMEM;
3915 mask |= __GFP_DMA32;
3916 }
3917
3918 mapping = file_inode(obj->base.filp)->i_mapping;
3919 mapping_set_gfp_mask(mapping, mask);
3920
3921 i915_gem_object_init(obj, &i915_gem_object_ops);
3922
3923 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3924 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3925
3926 if (HAS_LLC(dev)) {
3927 /* On some devices, we can have the GPU use the LLC (the CPU
3928 * cache) for about a 10% performance improvement
3929 * compared to uncached. Graphics requests other than
3930 * display scanout are coherent with the CPU in
3931 * accessing this cache. This means in this mode we
3932 * don't need to clflush on the CPU side, and on the
3933 * GPU side we only need to flush internal caches to
3934 * get data visible to the CPU.
3935 *
3936 * However, we maintain the display planes as UC, and so
3937 * need to rebind when first used as such.
3938 */
3939 obj->cache_level = I915_CACHE_LLC;
3940 } else
3941 obj->cache_level = I915_CACHE_NONE;
3942
3943 return obj;
3944 }
3945
3946 int i915_gem_init_object(struct drm_gem_object *obj)
3947 {
3948 BUG();
3949
3950 return 0;
3951 }
3952
3953 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3954 {
3955 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3956 struct drm_device *dev = obj->base.dev;
3957 drm_i915_private_t *dev_priv = dev->dev_private;
3958
3959 trace_i915_gem_object_destroy(obj);
3960
3961 if (obj->phys_obj)
3962 i915_gem_detach_phys_object(dev, obj);
3963
3964 obj->pin_count = 0;
3965 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3966 bool was_interruptible;
3967
3968 was_interruptible = dev_priv->mm.interruptible;
3969 dev_priv->mm.interruptible = false;
3970
3971 WARN_ON(i915_gem_object_unbind(obj));
3972
3973 dev_priv->mm.interruptible = was_interruptible;
3974 }
3975
3976 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3977 * before progressing. */
3978 if (obj->stolen)
3979 i915_gem_object_unpin_pages(obj);
3980
3981 if (WARN_ON(obj->pages_pin_count))
3982 obj->pages_pin_count = 0;
3983 i915_gem_object_put_pages(obj);
3984 i915_gem_object_free_mmap_offset(obj);
3985 i915_gem_object_release_stolen(obj);
3986
3987 BUG_ON(obj->pages);
3988
3989 if (obj->base.import_attach)
3990 drm_prime_gem_destroy(&obj->base, NULL);
3991
3992 drm_gem_object_release(&obj->base);
3993 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3994
3995 kfree(obj->bit_17);
3996 i915_gem_object_free(obj);
3997 }
3998
3999 int
4000 i915_gem_idle(struct drm_device *dev)
4001 {
4002 drm_i915_private_t *dev_priv = dev->dev_private;
4003 int ret;
4004
4005 mutex_lock(&dev->struct_mutex);
4006
4007 if (dev_priv->mm.suspended) {
4008 mutex_unlock(&dev->struct_mutex);
4009 return 0;
4010 }
4011
4012 ret = i915_gpu_idle(dev);
4013 if (ret) {
4014 mutex_unlock(&dev->struct_mutex);
4015 return ret;
4016 }
4017 i915_gem_retire_requests(dev);
4018
4019 /* Under UMS, be paranoid and evict. */
4020 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4021 i915_gem_evict_everything(dev);
4022
4023 i915_gem_reset_fences(dev);
4024
4025 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4026 * We need to replace this with a semaphore, or something.
4027 * And not confound mm.suspended!
4028 */
4029 dev_priv->mm.suspended = 1;
4030 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4031
4032 i915_kernel_lost_context(dev);
4033 i915_gem_cleanup_ringbuffer(dev);
4034
4035 mutex_unlock(&dev->struct_mutex);
4036
4037 /* Cancel the retire work handler, which should be idle now. */
4038 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4039
4040 return 0;
4041 }
4042
4043 void i915_gem_l3_remap(struct drm_device *dev)
4044 {
4045 drm_i915_private_t *dev_priv = dev->dev_private;
4046 u32 misccpctl;
4047 int i;
4048
4049 if (!HAS_L3_GPU_CACHE(dev))
4050 return;
4051
4052 if (!dev_priv->l3_parity.remap_info)
4053 return;
4054
4055 misccpctl = I915_READ(GEN7_MISCCPCTL);
4056 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4057 POSTING_READ(GEN7_MISCCPCTL);
4058
4059 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4060 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4061 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4062 DRM_DEBUG("0x%x was already programmed to %x\n",
4063 GEN7_L3LOG_BASE + i, remap);
4064 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4065 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4066 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4067 }
4068
4069 /* Make sure all the writes land before disabling dop clock gating */
4070 POSTING_READ(GEN7_L3LOG_BASE);
4071
4072 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4073 }
4074
4075 void i915_gem_init_swizzling(struct drm_device *dev)
4076 {
4077 drm_i915_private_t *dev_priv = dev->dev_private;
4078
4079 if (INTEL_INFO(dev)->gen < 5 ||
4080 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4081 return;
4082
4083 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4084 DISP_TILE_SURFACE_SWIZZLING);
4085
4086 if (IS_GEN5(dev))
4087 return;
4088
4089 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4090 if (IS_GEN6(dev))
4091 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4092 else if (IS_GEN7(dev))
4093 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4094 else
4095 BUG();
4096 }
4097
4098 static bool
4099 intel_enable_blt(struct drm_device *dev)
4100 {
4101 if (!HAS_BLT(dev))
4102 return false;
4103
4104 /* The blitter was dysfunctional on early prototypes */
4105 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4106 DRM_INFO("BLT not supported on this pre-production hardware;"
4107 " graphics performance will be degraded.\n");
4108 return false;
4109 }
4110
4111 return true;
4112 }
4113
4114 static int i915_gem_init_rings(struct drm_device *dev)
4115 {
4116 struct drm_i915_private *dev_priv = dev->dev_private;
4117 int ret;
4118
4119 ret = intel_init_render_ring_buffer(dev);
4120 if (ret)
4121 return ret;
4122
4123 if (HAS_BSD(dev)) {
4124 ret = intel_init_bsd_ring_buffer(dev);
4125 if (ret)
4126 goto cleanup_render_ring;
4127 }
4128
4129 if (intel_enable_blt(dev)) {
4130 ret = intel_init_blt_ring_buffer(dev);
4131 if (ret)
4132 goto cleanup_bsd_ring;
4133 }
4134
4135 if (HAS_VEBOX(dev)) {
4136 ret = intel_init_vebox_ring_buffer(dev);
4137 if (ret)
4138 goto cleanup_blt_ring;
4139 }
4140
4141
4142 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4143 if (ret)
4144 goto cleanup_vebox_ring;
4145
4146 return 0;
4147
4148 cleanup_vebox_ring:
4149 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4150 cleanup_blt_ring:
4151 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4152 cleanup_bsd_ring:
4153 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4154 cleanup_render_ring:
4155 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4156
4157 return ret;
4158 }
4159
4160 int
4161 i915_gem_init_hw(struct drm_device *dev)
4162 {
4163 drm_i915_private_t *dev_priv = dev->dev_private;
4164 int ret;
4165
4166 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4167 return -EIO;
4168
4169 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4170 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4171
4172 if (HAS_PCH_NOP(dev)) {
4173 u32 temp = I915_READ(GEN7_MSG_CTL);
4174 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4175 I915_WRITE(GEN7_MSG_CTL, temp);
4176 }
4177
4178 i915_gem_l3_remap(dev);
4179
4180 i915_gem_init_swizzling(dev);
4181
4182 ret = i915_gem_init_rings(dev);
4183 if (ret)
4184 return ret;
4185
4186 /*
4187 * XXX: There was some w/a described somewhere suggesting loading
4188 * contexts before PPGTT.
4189 */
4190 i915_gem_context_init(dev);
4191 if (dev_priv->mm.aliasing_ppgtt) {
4192 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4193 if (ret) {
4194 i915_gem_cleanup_aliasing_ppgtt(dev);
4195 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4196 }
4197 }
4198
4199 return 0;
4200 }
4201
4202 int i915_gem_init(struct drm_device *dev)
4203 {
4204 struct drm_i915_private *dev_priv = dev->dev_private;
4205 int ret;
4206
4207 mutex_lock(&dev->struct_mutex);
4208
4209 if (IS_VALLEYVIEW(dev)) {
4210 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4211 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4212 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4213 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4214 }
4215
4216 i915_gem_init_global_gtt(dev);
4217
4218 ret = i915_gem_init_hw(dev);
4219 mutex_unlock(&dev->struct_mutex);
4220 if (ret) {
4221 i915_gem_cleanup_aliasing_ppgtt(dev);
4222 return ret;
4223 }
4224
4225 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4226 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4227 dev_priv->dri1.allow_batchbuffer = 1;
4228 return 0;
4229 }
4230
4231 void
4232 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4233 {
4234 drm_i915_private_t *dev_priv = dev->dev_private;
4235 struct intel_ring_buffer *ring;
4236 int i;
4237
4238 for_each_ring(ring, dev_priv, i)
4239 intel_cleanup_ring_buffer(ring);
4240 }
4241
4242 int
4243 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4244 struct drm_file *file_priv)
4245 {
4246 drm_i915_private_t *dev_priv = dev->dev_private;
4247 int ret;
4248
4249 if (drm_core_check_feature(dev, DRIVER_MODESET))
4250 return 0;
4251
4252 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4253 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4254 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4255 }
4256
4257 mutex_lock(&dev->struct_mutex);
4258 dev_priv->mm.suspended = 0;
4259
4260 ret = i915_gem_init_hw(dev);
4261 if (ret != 0) {
4262 mutex_unlock(&dev->struct_mutex);
4263 return ret;
4264 }
4265
4266 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4267 mutex_unlock(&dev->struct_mutex);
4268
4269 ret = drm_irq_install(dev);
4270 if (ret)
4271 goto cleanup_ringbuffer;
4272
4273 return 0;
4274
4275 cleanup_ringbuffer:
4276 mutex_lock(&dev->struct_mutex);
4277 i915_gem_cleanup_ringbuffer(dev);
4278 dev_priv->mm.suspended = 1;
4279 mutex_unlock(&dev->struct_mutex);
4280
4281 return ret;
4282 }
4283
4284 int
4285 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4286 struct drm_file *file_priv)
4287 {
4288 if (drm_core_check_feature(dev, DRIVER_MODESET))
4289 return 0;
4290
4291 drm_irq_uninstall(dev);
4292 return i915_gem_idle(dev);
4293 }
4294
4295 void
4296 i915_gem_lastclose(struct drm_device *dev)
4297 {
4298 int ret;
4299
4300 if (drm_core_check_feature(dev, DRIVER_MODESET))
4301 return;
4302
4303 ret = i915_gem_idle(dev);
4304 if (ret)
4305 DRM_ERROR("failed to idle hardware: %d\n", ret);
4306 }
4307
4308 static void
4309 init_ring_lists(struct intel_ring_buffer *ring)
4310 {
4311 INIT_LIST_HEAD(&ring->active_list);
4312 INIT_LIST_HEAD(&ring->request_list);
4313 }
4314
4315 void
4316 i915_gem_load(struct drm_device *dev)
4317 {
4318 drm_i915_private_t *dev_priv = dev->dev_private;
4319 int i;
4320
4321 dev_priv->slab =
4322 kmem_cache_create("i915_gem_object",
4323 sizeof(struct drm_i915_gem_object), 0,
4324 SLAB_HWCACHE_ALIGN,
4325 NULL);
4326
4327 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4328 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4329 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4330 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4331 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4332 for (i = 0; i < I915_NUM_RINGS; i++)
4333 init_ring_lists(&dev_priv->ring[i]);
4334 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4335 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4336 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4337 i915_gem_retire_work_handler);
4338 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4339
4340 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4341 if (IS_GEN3(dev)) {
4342 I915_WRITE(MI_ARB_STATE,
4343 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4344 }
4345
4346 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4347
4348 /* Old X drivers will take 0-2 for front, back, depth buffers */
4349 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4350 dev_priv->fence_reg_start = 3;
4351
4352 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4353 dev_priv->num_fence_regs = 32;
4354 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4355 dev_priv->num_fence_regs = 16;
4356 else
4357 dev_priv->num_fence_regs = 8;
4358
4359 /* Initialize fence registers to zero */
4360 i915_gem_reset_fences(dev);
4361
4362 i915_gem_detect_bit_6_swizzle(dev);
4363 init_waitqueue_head(&dev_priv->pending_flip_queue);
4364
4365 dev_priv->mm.interruptible = true;
4366
4367 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4368 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4369 register_shrinker(&dev_priv->mm.inactive_shrinker);
4370 }
4371
4372 /*
4373 * Create a physically contiguous memory object for this object
4374 * e.g. for cursor + overlay regs
4375 */
4376 static int i915_gem_init_phys_object(struct drm_device *dev,
4377 int id, int size, int align)
4378 {
4379 drm_i915_private_t *dev_priv = dev->dev_private;
4380 struct drm_i915_gem_phys_object *phys_obj;
4381 int ret;
4382
4383 if (dev_priv->mm.phys_objs[id - 1] || !size)
4384 return 0;
4385
4386 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4387 if (!phys_obj)
4388 return -ENOMEM;
4389
4390 phys_obj->id = id;
4391
4392 phys_obj->handle = drm_pci_alloc(dev, size, align);
4393 if (!phys_obj->handle) {
4394 ret = -ENOMEM;
4395 goto kfree_obj;
4396 }
4397 #ifdef CONFIG_X86
4398 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4399 #endif
4400
4401 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4402
4403 return 0;
4404 kfree_obj:
4405 kfree(phys_obj);
4406 return ret;
4407 }
4408
4409 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4410 {
4411 drm_i915_private_t *dev_priv = dev->dev_private;
4412 struct drm_i915_gem_phys_object *phys_obj;
4413
4414 if (!dev_priv->mm.phys_objs[id - 1])
4415 return;
4416
4417 phys_obj = dev_priv->mm.phys_objs[id - 1];
4418 if (phys_obj->cur_obj) {
4419 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4420 }
4421
4422 #ifdef CONFIG_X86
4423 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4424 #endif
4425 drm_pci_free(dev, phys_obj->handle);
4426 kfree(phys_obj);
4427 dev_priv->mm.phys_objs[id - 1] = NULL;
4428 }
4429
4430 void i915_gem_free_all_phys_object(struct drm_device *dev)
4431 {
4432 int i;
4433
4434 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4435 i915_gem_free_phys_object(dev, i);
4436 }
4437
4438 void i915_gem_detach_phys_object(struct drm_device *dev,
4439 struct drm_i915_gem_object *obj)
4440 {
4441 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4442 char *vaddr;
4443 int i;
4444 int page_count;
4445
4446 if (!obj->phys_obj)
4447 return;
4448 vaddr = obj->phys_obj->handle->vaddr;
4449
4450 page_count = obj->base.size / PAGE_SIZE;
4451 for (i = 0; i < page_count; i++) {
4452 struct page *page = shmem_read_mapping_page(mapping, i);
4453 if (!IS_ERR(page)) {
4454 char *dst = kmap_atomic(page);
4455 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4456 kunmap_atomic(dst);
4457
4458 drm_clflush_pages(&page, 1);
4459
4460 set_page_dirty(page);
4461 mark_page_accessed(page);
4462 page_cache_release(page);
4463 }
4464 }
4465 i915_gem_chipset_flush(dev);
4466
4467 obj->phys_obj->cur_obj = NULL;
4468 obj->phys_obj = NULL;
4469 }
4470
4471 int
4472 i915_gem_attach_phys_object(struct drm_device *dev,
4473 struct drm_i915_gem_object *obj,
4474 int id,
4475 int align)
4476 {
4477 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4478 drm_i915_private_t *dev_priv = dev->dev_private;
4479 int ret = 0;
4480 int page_count;
4481 int i;
4482
4483 if (id > I915_MAX_PHYS_OBJECT)
4484 return -EINVAL;
4485
4486 if (obj->phys_obj) {
4487 if (obj->phys_obj->id == id)
4488 return 0;
4489 i915_gem_detach_phys_object(dev, obj);
4490 }
4491
4492 /* create a new object */
4493 if (!dev_priv->mm.phys_objs[id - 1]) {
4494 ret = i915_gem_init_phys_object(dev, id,
4495 obj->base.size, align);
4496 if (ret) {
4497 DRM_ERROR("failed to init phys object %d size: %zu\n",
4498 id, obj->base.size);
4499 return ret;
4500 }
4501 }
4502
4503 /* bind to the object */
4504 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4505 obj->phys_obj->cur_obj = obj;
4506
4507 page_count = obj->base.size / PAGE_SIZE;
4508
4509 for (i = 0; i < page_count; i++) {
4510 struct page *page;
4511 char *dst, *src;
4512
4513 page = shmem_read_mapping_page(mapping, i);
4514 if (IS_ERR(page))
4515 return PTR_ERR(page);
4516
4517 src = kmap_atomic(page);
4518 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4519 memcpy(dst, src, PAGE_SIZE);
4520 kunmap_atomic(src);
4521
4522 mark_page_accessed(page);
4523 page_cache_release(page);
4524 }
4525
4526 return 0;
4527 }
4528
4529 static int
4530 i915_gem_phys_pwrite(struct drm_device *dev,
4531 struct drm_i915_gem_object *obj,
4532 struct drm_i915_gem_pwrite *args,
4533 struct drm_file *file_priv)
4534 {
4535 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4536 char __user *user_data = to_user_ptr(args->data_ptr);
4537
4538 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4539 unsigned long unwritten;
4540
4541 /* The physical object once assigned is fixed for the lifetime
4542 * of the obj, so we can safely drop the lock and continue
4543 * to access vaddr.
4544 */
4545 mutex_unlock(&dev->struct_mutex);
4546 unwritten = copy_from_user(vaddr, user_data, args->size);
4547 mutex_lock(&dev->struct_mutex);
4548 if (unwritten)
4549 return -EFAULT;
4550 }
4551
4552 i915_gem_chipset_flush(dev);
4553 return 0;
4554 }
4555
4556 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4557 {
4558 struct drm_i915_file_private *file_priv = file->driver_priv;
4559
4560 /* Clean up our request list when the client is going away, so that
4561 * later retire_requests won't dereference our soon-to-be-gone
4562 * file_priv.
4563 */
4564 spin_lock(&file_priv->mm.lock);
4565 while (!list_empty(&file_priv->mm.request_list)) {
4566 struct drm_i915_gem_request *request;
4567
4568 request = list_first_entry(&file_priv->mm.request_list,
4569 struct drm_i915_gem_request,
4570 client_list);
4571 list_del(&request->client_list);
4572 request->file_priv = NULL;
4573 }
4574 spin_unlock(&file_priv->mm.lock);
4575 }
4576
4577 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4578 {
4579 if (!mutex_is_locked(mutex))
4580 return false;
4581
4582 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4583 return mutex->owner == task;
4584 #else
4585 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4586 return false;
4587 #endif
4588 }
4589
4590 static int
4591 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4592 {
4593 struct drm_i915_private *dev_priv =
4594 container_of(shrinker,
4595 struct drm_i915_private,
4596 mm.inactive_shrinker);
4597 struct drm_device *dev = dev_priv->dev;
4598 struct drm_i915_gem_object *obj;
4599 int nr_to_scan = sc->nr_to_scan;
4600 bool unlock = true;
4601 int cnt;
4602
4603 if (!mutex_trylock(&dev->struct_mutex)) {
4604 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4605 return 0;
4606
4607 if (dev_priv->mm.shrinker_no_lock_stealing)
4608 return 0;
4609
4610 unlock = false;
4611 }
4612
4613 if (nr_to_scan) {
4614 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4615 if (nr_to_scan > 0)
4616 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4617 false);
4618 if (nr_to_scan > 0)
4619 i915_gem_shrink_all(dev_priv);
4620 }
4621
4622 cnt = 0;
4623 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4624 if (obj->pages_pin_count == 0)
4625 cnt += obj->base.size >> PAGE_SHIFT;
4626 list_for_each_entry(obj, &dev_priv->mm.inactive_list, global_list)
4627 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4628 cnt += obj->base.size >> PAGE_SHIFT;
4629
4630 if (unlock)
4631 mutex_unlock(&dev->struct_mutex);
4632 return cnt;
4633 }
This page took 0.303853 seconds and 6 git commands to generate.