drm/i915: Only clear write-domains after a successful wait-seqno
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95 i915_terminally_wedged(error))
96 if (EXIT_COND)
97 return 0;
98
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_event_interruptible_timeout(error->reset_queue,
105 EXIT_COND,
106 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
111 return ret;
112 }
113 #undef EXIT_COND
114
115 return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 int ret;
122
123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124 if (ret)
125 return ret;
126
127 ret = mutex_lock_interruptible(&dev->struct_mutex);
128 if (ret)
129 return ret;
130
131 WARN_ON(i915_verify_lists(dev));
132 return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138 return obj->gtt_space && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143 struct drm_file *file)
144 {
145 struct drm_i915_private *dev_priv = dev->dev_private;
146 struct drm_i915_gem_init *args = data;
147
148 if (drm_core_check_feature(dev, DRIVER_MODESET))
149 return -ENODEV;
150
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
154
155 /* GEM with user mode setting was never supported on ilk and later. */
156 if (INTEL_INFO(dev)->gen >= 5)
157 return -ENODEV;
158
159 mutex_lock(&dev->struct_mutex);
160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 args->gtt_end);
162 dev_priv->gtt.mappable_end = args->gtt_end;
163 mutex_unlock(&dev->struct_mutex);
164
165 return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_get_aperture *args = data;
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
176
177 pinned = 0;
178 mutex_lock(&dev->struct_mutex);
179 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
180 if (obj->pin_count)
181 pinned += obj->gtt_space->size;
182 mutex_unlock(&dev->struct_mutex);
183
184 args->aper_size = dev_priv->gtt.total;
185 args->aper_available_size = args->aper_size - pinned;
186
187 return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204 struct drm_device *dev,
205 uint64_t size,
206 uint32_t *handle_p)
207 {
208 struct drm_i915_gem_object *obj;
209 int ret;
210 u32 handle;
211
212 size = roundup(size, PAGE_SIZE);
213 if (size == 0)
214 return -EINVAL;
215
216 /* Allocate the new object */
217 obj = i915_gem_alloc_object(dev, size);
218 if (obj == NULL)
219 return -ENOMEM;
220
221 ret = drm_gem_handle_create(file, &obj->base, &handle);
222 if (ret) {
223 drm_gem_object_release(&obj->base);
224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225 i915_gem_object_free(obj);
226 return ret;
227 }
228
229 /* drop reference from allocate - handle holds it now */
230 drm_gem_object_unreference(&obj->base);
231 trace_i915_gem_object_create(obj);
232
233 *handle_p = handle;
234 return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241 {
242 /* have to work out size/pitch and return them */
243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252 {
253 return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257 * Creates a new mm object and returns a handle to it.
258 */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262 {
263 struct drm_i915_gem_create *args = data;
264
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273 {
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
298 int length)
299 {
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 char *vaddr;
330 int ret;
331
332 if (unlikely(page_do_bit17_swizzling))
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350 {
351 if (unlikely(swizzled)) {
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
403 {
404 char __user *user_data;
405 ssize_t remain;
406 loff_t offset;
407 int shmem_page_offset, page_length, ret = 0;
408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 int prefaulted = 0;
410 int needs_clflush = 0;
411 struct sg_page_iter sg_iter;
412
413 user_data = to_user_ptr(args->data_ptr);
414 remain = args->size;
415
416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
425 if (obj->gtt_space) {
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
430 }
431
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
438 offset = args->offset;
439
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
442 struct page *page = sg_page_iter_page(&sg_iter);
443
444 if (remain <= 0)
445 break;
446
447 /* Operation in this page
448 *
449 * shmem_page_offset = offset within page in shmem file
450 * page_length = bytes to copy for this page
451 */
452 shmem_page_offset = offset_in_page(offset);
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
456
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
465
466 mutex_unlock(&dev->struct_mutex);
467
468 if (!prefaulted) {
469 ret = fault_in_multipages_writeable(user_data, remain);
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
477
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
481
482 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485 mark_page_accessed(page);
486
487 if (ret)
488 goto out;
489
490 remain -= page_length;
491 user_data += page_length;
492 offset += page_length;
493 }
494
495 out:
496 i915_gem_object_unpin_pages(obj);
497
498 return ret;
499 }
500
501 /**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 struct drm_file *file)
509 {
510 struct drm_i915_gem_pread *args = data;
511 struct drm_i915_gem_object *obj;
512 int ret = 0;
513
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
518 to_user_ptr(args->data_ptr),
519 args->size))
520 return -EFAULT;
521
522 ret = i915_mutex_lock_interruptible(dev);
523 if (ret)
524 return ret;
525
526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 if (&obj->base == NULL) {
528 ret = -ENOENT;
529 goto unlock;
530 }
531
532 /* Bounds check source. */
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
535 ret = -EINVAL;
536 goto out;
537 }
538
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549 ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552 drm_gem_object_unreference(&obj->base);
553 unlock:
554 mutex_unlock(&dev->struct_mutex);
555 return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559 * page faults in the source data
560 */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
567 {
568 void __iomem *vaddr_atomic;
569 void *vaddr;
570 unsigned long unwritten;
571
572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 user_data, length);
577 io_mapping_unmap_atomic(vaddr_atomic);
578 return unwritten;
579 }
580
581 /**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
588 struct drm_i915_gem_pwrite *args,
589 struct drm_file *file)
590 {
591 drm_i915_private_t *dev_priv = dev->dev_private;
592 ssize_t remain;
593 loff_t offset, page_base;
594 char __user *user_data;
595 int page_offset, page_length, ret;
596
597 ret = i915_gem_object_pin(obj, 0, true, true);
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
608
609 user_data = to_user_ptr(args->data_ptr);
610 remain = args->size;
611
612 offset = obj->gtt_offset + args->offset;
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
620 */
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
627 /* If we get a fault while copying data, then (presumably) our
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
630 */
631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
636
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
640 }
641
642 out_unpin:
643 i915_gem_object_unpin(obj);
644 out:
645 return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
658 {
659 char *vaddr;
660 int ret;
661
662 if (unlikely(page_do_bit17_swizzling))
663 return -EINVAL;
664
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
676
677 return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
688 {
689 char *vaddr;
690 int ret;
691
692 vaddr = kmap(page);
693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 user_data,
700 page_length);
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
709 kunmap(page);
710
711 return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
719 {
720 ssize_t remain;
721 loff_t offset;
722 char __user *user_data;
723 int shmem_page_offset, page_length, ret = 0;
724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 int hit_slowpath = 0;
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
728 struct sg_page_iter sg_iter;
729
730 user_data = to_user_ptr(args->data_ptr);
731 remain = args->size;
732
733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
742 if (obj->gtt_space) {
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
760 offset = args->offset;
761 obj->dirty = 1;
762
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
765 struct page *page = sg_page_iter_page(&sg_iter);
766 int partial_cacheline_write;
767
768 if (remain <= 0)
769 break;
770
771 /* Operation in this page
772 *
773 * shmem_page_offset = offset within page in shmem file
774 * page_length = bytes to copy for this page
775 */
776 shmem_page_offset = offset_in_page(offset);
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
781
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
798
799 hit_slowpath = 1;
800 mutex_unlock(&dev->struct_mutex);
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805
806 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809 set_page_dirty(page);
810 mark_page_accessed(page);
811
812 if (ret)
813 goto out;
814
815 remain -= page_length;
816 user_data += page_length;
817 offset += page_length;
818 }
819
820 out:
821 i915_gem_object_unpin_pages(obj);
822
823 if (hit_slowpath) {
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 i915_gem_clflush_object(obj);
832 i915_gem_chipset_flush(dev);
833 }
834 }
835
836 if (needs_clflush_after)
837 i915_gem_chipset_flush(dev);
838
839 return ret;
840 }
841
842 /**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 struct drm_file *file)
850 {
851 struct drm_i915_gem_pwrite *args = data;
852 struct drm_i915_gem_object *obj;
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
859 to_user_ptr(args->data_ptr),
860 args->size))
861 return -EFAULT;
862
863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864 args->size);
865 if (ret)
866 return -EFAULT;
867
868 ret = i915_mutex_lock_interruptible(dev);
869 if (ret)
870 return ret;
871
872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 if (&obj->base == NULL) {
874 ret = -ENOENT;
875 goto unlock;
876 }
877
878 /* Bounds check destination. */
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
881 ret = -EINVAL;
882 goto out;
883 }
884
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895 ret = -EFAULT;
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
902 if (obj->phys_obj) {
903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 goto out;
905 }
906
907 if (obj->cache_level == I915_CACHE_NONE &&
908 obj->tiling_mode == I915_TILING_NONE &&
909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
914 }
915
916 if (ret == -EFAULT || ret == -ENOSPC)
917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920 drm_gem_object_unreference(&obj->base);
921 unlock:
922 mutex_unlock(&dev->struct_mutex);
923 return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 bool interruptible)
929 {
930 if (i915_reset_in_progress(error)) {
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944 }
945
946 /*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
959 ret = i915_add_request(ring, NULL);
960
961 return ret;
962 }
963
964 /**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
968 * @reset_counter: reset sequence associated with the given seqno
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 unsigned reset_counter,
984 bool interruptible, struct timespec *timeout)
985 {
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060 }
1061
1062 /**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
1088 }
1089
1090 /**
1091 * Ensures that all rendering to the object has completed and the object is
1092 * safe to unbind from the GTT or access from the CPU.
1093 */
1094 static __must_check int
1095 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1096 bool readonly)
1097 {
1098 struct intel_ring_buffer *ring = obj->ring;
1099 u32 seqno;
1100 int ret;
1101
1102 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1103 if (seqno == 0)
1104 return 0;
1105
1106 ret = i915_wait_seqno(ring, seqno);
1107 if (ret)
1108 return ret;
1109
1110 i915_gem_retire_requests_ring(ring);
1111
1112 /* Manually manage the write flush as we may have not yet
1113 * retired the buffer.
1114 */
1115 if (obj->last_write_seqno &&
1116 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1117 obj->last_write_seqno = 0;
1118 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1119 }
1120
1121 return 0;
1122 }
1123
1124 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1125 * as the object state may change during this call.
1126 */
1127 static __must_check int
1128 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1129 bool readonly)
1130 {
1131 struct drm_device *dev = obj->base.dev;
1132 struct drm_i915_private *dev_priv = dev->dev_private;
1133 struct intel_ring_buffer *ring = obj->ring;
1134 unsigned reset_counter;
1135 u32 seqno;
1136 int ret;
1137
1138 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1139 BUG_ON(!dev_priv->mm.interruptible);
1140
1141 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1142 if (seqno == 0)
1143 return 0;
1144
1145 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1146 if (ret)
1147 return ret;
1148
1149 ret = i915_gem_check_olr(ring, seqno);
1150 if (ret)
1151 return ret;
1152
1153 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1154 mutex_unlock(&dev->struct_mutex);
1155 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1156 mutex_lock(&dev->struct_mutex);
1157
1158 i915_gem_retire_requests_ring(ring);
1159
1160 /* Manually manage the write flush as we may have not yet
1161 * retired the buffer.
1162 */
1163 if (ret == 0 &&
1164 obj->last_write_seqno &&
1165 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1166 obj->last_write_seqno = 0;
1167 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168 }
1169
1170 return ret;
1171 }
1172
1173 /**
1174 * Called when user space prepares to use an object with the CPU, either
1175 * through the mmap ioctl's mapping or a GTT mapping.
1176 */
1177 int
1178 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1179 struct drm_file *file)
1180 {
1181 struct drm_i915_gem_set_domain *args = data;
1182 struct drm_i915_gem_object *obj;
1183 uint32_t read_domains = args->read_domains;
1184 uint32_t write_domain = args->write_domain;
1185 int ret;
1186
1187 /* Only handle setting domains to types used by the CPU. */
1188 if (write_domain & I915_GEM_GPU_DOMAINS)
1189 return -EINVAL;
1190
1191 if (read_domains & I915_GEM_GPU_DOMAINS)
1192 return -EINVAL;
1193
1194 /* Having something in the write domain implies it's in the read
1195 * domain, and only that read domain. Enforce that in the request.
1196 */
1197 if (write_domain != 0 && read_domains != write_domain)
1198 return -EINVAL;
1199
1200 ret = i915_mutex_lock_interruptible(dev);
1201 if (ret)
1202 return ret;
1203
1204 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1205 if (&obj->base == NULL) {
1206 ret = -ENOENT;
1207 goto unlock;
1208 }
1209
1210 /* Try to flush the object off the GPU without holding the lock.
1211 * We will repeat the flush holding the lock in the normal manner
1212 * to catch cases where we are gazumped.
1213 */
1214 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215 if (ret)
1216 goto unref;
1217
1218 if (read_domains & I915_GEM_DOMAIN_GTT) {
1219 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1220
1221 /* Silently promote "you're not bound, there was nothing to do"
1222 * to success, since the client was just asking us to
1223 * make sure everything was done.
1224 */
1225 if (ret == -EINVAL)
1226 ret = 0;
1227 } else {
1228 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1229 }
1230
1231 unref:
1232 drm_gem_object_unreference(&obj->base);
1233 unlock:
1234 mutex_unlock(&dev->struct_mutex);
1235 return ret;
1236 }
1237
1238 /**
1239 * Called when user space has done writes to this buffer
1240 */
1241 int
1242 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1243 struct drm_file *file)
1244 {
1245 struct drm_i915_gem_sw_finish *args = data;
1246 struct drm_i915_gem_object *obj;
1247 int ret = 0;
1248
1249 ret = i915_mutex_lock_interruptible(dev);
1250 if (ret)
1251 return ret;
1252
1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 if (&obj->base == NULL) {
1255 ret = -ENOENT;
1256 goto unlock;
1257 }
1258
1259 /* Pinned buffers may be scanout, so flush the cache */
1260 if (obj->pin_count)
1261 i915_gem_object_flush_cpu_write_domain(obj);
1262
1263 drm_gem_object_unreference(&obj->base);
1264 unlock:
1265 mutex_unlock(&dev->struct_mutex);
1266 return ret;
1267 }
1268
1269 /**
1270 * Maps the contents of an object, returning the address it is mapped
1271 * into.
1272 *
1273 * While the mapping holds a reference on the contents of the object, it doesn't
1274 * imply a ref on the object itself.
1275 */
1276 int
1277 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1278 struct drm_file *file)
1279 {
1280 struct drm_i915_gem_mmap *args = data;
1281 struct drm_gem_object *obj;
1282 unsigned long addr;
1283
1284 obj = drm_gem_object_lookup(dev, file, args->handle);
1285 if (obj == NULL)
1286 return -ENOENT;
1287
1288 /* prime objects have no backing filp to GEM mmap
1289 * pages from.
1290 */
1291 if (!obj->filp) {
1292 drm_gem_object_unreference_unlocked(obj);
1293 return -EINVAL;
1294 }
1295
1296 addr = vm_mmap(obj->filp, 0, args->size,
1297 PROT_READ | PROT_WRITE, MAP_SHARED,
1298 args->offset);
1299 drm_gem_object_unreference_unlocked(obj);
1300 if (IS_ERR((void *)addr))
1301 return addr;
1302
1303 args->addr_ptr = (uint64_t) addr;
1304
1305 return 0;
1306 }
1307
1308 /**
1309 * i915_gem_fault - fault a page into the GTT
1310 * vma: VMA in question
1311 * vmf: fault info
1312 *
1313 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314 * from userspace. The fault handler takes care of binding the object to
1315 * the GTT (if needed), allocating and programming a fence register (again,
1316 * only if needed based on whether the old reg is still valid or the object
1317 * is tiled) and inserting a new PTE into the faulting process.
1318 *
1319 * Note that the faulting process may involve evicting existing objects
1320 * from the GTT and/or fence registers to make room. So performance may
1321 * suffer if the GTT working set is large or there are few fence registers
1322 * left.
1323 */
1324 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325 {
1326 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327 struct drm_device *dev = obj->base.dev;
1328 drm_i915_private_t *dev_priv = dev->dev_private;
1329 pgoff_t page_offset;
1330 unsigned long pfn;
1331 int ret = 0;
1332 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1333
1334 /* We don't use vmf->pgoff since that has the fake offset */
1335 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336 PAGE_SHIFT;
1337
1338 ret = i915_mutex_lock_interruptible(dev);
1339 if (ret)
1340 goto out;
1341
1342 trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
1344 /* Access to snoopable pages through the GTT is incoherent. */
1345 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1346 ret = -EINVAL;
1347 goto unlock;
1348 }
1349
1350 /* Now bind it into the GTT if needed */
1351 ret = i915_gem_object_pin(obj, 0, true, false);
1352 if (ret)
1353 goto unlock;
1354
1355 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1356 if (ret)
1357 goto unpin;
1358
1359 ret = i915_gem_object_get_fence(obj);
1360 if (ret)
1361 goto unpin;
1362
1363 obj->fault_mappable = true;
1364
1365 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1366 page_offset;
1367
1368 /* Finally, remap it using the new GTT offset */
1369 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1370 unpin:
1371 i915_gem_object_unpin(obj);
1372 unlock:
1373 mutex_unlock(&dev->struct_mutex);
1374 out:
1375 switch (ret) {
1376 case -EIO:
1377 /* If this -EIO is due to a gpu hang, give the reset code a
1378 * chance to clean up the mess. Otherwise return the proper
1379 * SIGBUS. */
1380 if (i915_terminally_wedged(&dev_priv->gpu_error))
1381 return VM_FAULT_SIGBUS;
1382 case -EAGAIN:
1383 /* Give the error handler a chance to run and move the
1384 * objects off the GPU active list. Next time we service the
1385 * fault, we should be able to transition the page into the
1386 * GTT without touching the GPU (and so avoid further
1387 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1388 * with coherency, just lost writes.
1389 */
1390 set_need_resched();
1391 case 0:
1392 case -ERESTARTSYS:
1393 case -EINTR:
1394 case -EBUSY:
1395 /*
1396 * EBUSY is ok: this just means that another thread
1397 * already did the job.
1398 */
1399 return VM_FAULT_NOPAGE;
1400 case -ENOMEM:
1401 return VM_FAULT_OOM;
1402 case -ENOSPC:
1403 return VM_FAULT_SIGBUS;
1404 default:
1405 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1406 return VM_FAULT_SIGBUS;
1407 }
1408 }
1409
1410 /**
1411 * i915_gem_release_mmap - remove physical page mappings
1412 * @obj: obj in question
1413 *
1414 * Preserve the reservation of the mmapping with the DRM core code, but
1415 * relinquish ownership of the pages back to the system.
1416 *
1417 * It is vital that we remove the page mapping if we have mapped a tiled
1418 * object through the GTT and then lose the fence register due to
1419 * resource pressure. Similarly if the object has been moved out of the
1420 * aperture, than pages mapped into userspace must be revoked. Removing the
1421 * mapping will then trigger a page fault on the next user access, allowing
1422 * fixup by i915_gem_fault().
1423 */
1424 void
1425 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1426 {
1427 if (!obj->fault_mappable)
1428 return;
1429
1430 if (obj->base.dev->dev_mapping)
1431 unmap_mapping_range(obj->base.dev->dev_mapping,
1432 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1433 obj->base.size, 1);
1434
1435 obj->fault_mappable = false;
1436 }
1437
1438 uint32_t
1439 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1440 {
1441 uint32_t gtt_size;
1442
1443 if (INTEL_INFO(dev)->gen >= 4 ||
1444 tiling_mode == I915_TILING_NONE)
1445 return size;
1446
1447 /* Previous chips need a power-of-two fence region when tiling */
1448 if (INTEL_INFO(dev)->gen == 3)
1449 gtt_size = 1024*1024;
1450 else
1451 gtt_size = 512*1024;
1452
1453 while (gtt_size < size)
1454 gtt_size <<= 1;
1455
1456 return gtt_size;
1457 }
1458
1459 /**
1460 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1461 * @obj: object to check
1462 *
1463 * Return the required GTT alignment for an object, taking into account
1464 * potential fence register mapping.
1465 */
1466 uint32_t
1467 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1468 int tiling_mode, bool fenced)
1469 {
1470 /*
1471 * Minimum alignment is 4k (GTT page size), but might be greater
1472 * if a fence register is needed for the object.
1473 */
1474 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1475 tiling_mode == I915_TILING_NONE)
1476 return 4096;
1477
1478 /*
1479 * Previous chips need to be aligned to the size of the smallest
1480 * fence register that can contain the object.
1481 */
1482 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1483 }
1484
1485 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1486 {
1487 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1488 int ret;
1489
1490 if (obj->base.map_list.map)
1491 return 0;
1492
1493 dev_priv->mm.shrinker_no_lock_stealing = true;
1494
1495 ret = drm_gem_create_mmap_offset(&obj->base);
1496 if (ret != -ENOSPC)
1497 goto out;
1498
1499 /* Badly fragmented mmap space? The only way we can recover
1500 * space is by destroying unwanted objects. We can't randomly release
1501 * mmap_offsets as userspace expects them to be persistent for the
1502 * lifetime of the objects. The closest we can is to release the
1503 * offsets on purgeable objects by truncating it and marking it purged,
1504 * which prevents userspace from ever using that object again.
1505 */
1506 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1507 ret = drm_gem_create_mmap_offset(&obj->base);
1508 if (ret != -ENOSPC)
1509 goto out;
1510
1511 i915_gem_shrink_all(dev_priv);
1512 ret = drm_gem_create_mmap_offset(&obj->base);
1513 out:
1514 dev_priv->mm.shrinker_no_lock_stealing = false;
1515
1516 return ret;
1517 }
1518
1519 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1520 {
1521 if (!obj->base.map_list.map)
1522 return;
1523
1524 drm_gem_free_mmap_offset(&obj->base);
1525 }
1526
1527 int
1528 i915_gem_mmap_gtt(struct drm_file *file,
1529 struct drm_device *dev,
1530 uint32_t handle,
1531 uint64_t *offset)
1532 {
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 struct drm_i915_gem_object *obj;
1535 int ret;
1536
1537 ret = i915_mutex_lock_interruptible(dev);
1538 if (ret)
1539 return ret;
1540
1541 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1542 if (&obj->base == NULL) {
1543 ret = -ENOENT;
1544 goto unlock;
1545 }
1546
1547 if (obj->base.size > dev_priv->gtt.mappable_end) {
1548 ret = -E2BIG;
1549 goto out;
1550 }
1551
1552 if (obj->madv != I915_MADV_WILLNEED) {
1553 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1554 ret = -EINVAL;
1555 goto out;
1556 }
1557
1558 ret = i915_gem_object_create_mmap_offset(obj);
1559 if (ret)
1560 goto out;
1561
1562 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1563
1564 out:
1565 drm_gem_object_unreference(&obj->base);
1566 unlock:
1567 mutex_unlock(&dev->struct_mutex);
1568 return ret;
1569 }
1570
1571 /**
1572 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1573 * @dev: DRM device
1574 * @data: GTT mapping ioctl data
1575 * @file: GEM object info
1576 *
1577 * Simply returns the fake offset to userspace so it can mmap it.
1578 * The mmap call will end up in drm_gem_mmap(), which will set things
1579 * up so we can get faults in the handler above.
1580 *
1581 * The fault handler will take care of binding the object into the GTT
1582 * (since it may have been evicted to make room for something), allocating
1583 * a fence register, and mapping the appropriate aperture address into
1584 * userspace.
1585 */
1586 int
1587 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1588 struct drm_file *file)
1589 {
1590 struct drm_i915_gem_mmap_gtt *args = data;
1591
1592 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1593 }
1594
1595 /* Immediately discard the backing storage */
1596 static void
1597 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1598 {
1599 struct inode *inode;
1600
1601 i915_gem_object_free_mmap_offset(obj);
1602
1603 if (obj->base.filp == NULL)
1604 return;
1605
1606 /* Our goal here is to return as much of the memory as
1607 * is possible back to the system as we are called from OOM.
1608 * To do this we must instruct the shmfs to drop all of its
1609 * backing pages, *now*.
1610 */
1611 inode = file_inode(obj->base.filp);
1612 shmem_truncate_range(inode, 0, (loff_t)-1);
1613
1614 obj->madv = __I915_MADV_PURGED;
1615 }
1616
1617 static inline int
1618 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1619 {
1620 return obj->madv == I915_MADV_DONTNEED;
1621 }
1622
1623 static void
1624 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1625 {
1626 struct sg_page_iter sg_iter;
1627 int ret;
1628
1629 BUG_ON(obj->madv == __I915_MADV_PURGED);
1630
1631 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1632 if (ret) {
1633 /* In the event of a disaster, abandon all caches and
1634 * hope for the best.
1635 */
1636 WARN_ON(ret != -EIO);
1637 i915_gem_clflush_object(obj);
1638 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1639 }
1640
1641 if (i915_gem_object_needs_bit17_swizzle(obj))
1642 i915_gem_object_save_bit_17_swizzle(obj);
1643
1644 if (obj->madv == I915_MADV_DONTNEED)
1645 obj->dirty = 0;
1646
1647 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1648 struct page *page = sg_page_iter_page(&sg_iter);
1649
1650 if (obj->dirty)
1651 set_page_dirty(page);
1652
1653 if (obj->madv == I915_MADV_WILLNEED)
1654 mark_page_accessed(page);
1655
1656 page_cache_release(page);
1657 }
1658 obj->dirty = 0;
1659
1660 sg_free_table(obj->pages);
1661 kfree(obj->pages);
1662 }
1663
1664 int
1665 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1666 {
1667 const struct drm_i915_gem_object_ops *ops = obj->ops;
1668
1669 if (obj->pages == NULL)
1670 return 0;
1671
1672 BUG_ON(obj->gtt_space);
1673
1674 if (obj->pages_pin_count)
1675 return -EBUSY;
1676
1677 /* ->put_pages might need to allocate memory for the bit17 swizzle
1678 * array, hence protect them from being reaped by removing them from gtt
1679 * lists early. */
1680 list_del(&obj->global_list);
1681
1682 ops->put_pages(obj);
1683 obj->pages = NULL;
1684
1685 if (i915_gem_object_is_purgeable(obj))
1686 i915_gem_object_truncate(obj);
1687
1688 return 0;
1689 }
1690
1691 static long
1692 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1693 bool purgeable_only)
1694 {
1695 struct drm_i915_gem_object *obj, *next;
1696 long count = 0;
1697
1698 list_for_each_entry_safe(obj, next,
1699 &dev_priv->mm.unbound_list,
1700 global_list) {
1701 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1702 i915_gem_object_put_pages(obj) == 0) {
1703 count += obj->base.size >> PAGE_SHIFT;
1704 if (count >= target)
1705 return count;
1706 }
1707 }
1708
1709 list_for_each_entry_safe(obj, next,
1710 &dev_priv->mm.inactive_list,
1711 mm_list) {
1712 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1713 i915_gem_object_unbind(obj) == 0 &&
1714 i915_gem_object_put_pages(obj) == 0) {
1715 count += obj->base.size >> PAGE_SHIFT;
1716 if (count >= target)
1717 return count;
1718 }
1719 }
1720
1721 return count;
1722 }
1723
1724 static long
1725 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1726 {
1727 return __i915_gem_shrink(dev_priv, target, true);
1728 }
1729
1730 static void
1731 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1732 {
1733 struct drm_i915_gem_object *obj, *next;
1734
1735 i915_gem_evict_everything(dev_priv->dev);
1736
1737 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1738 global_list)
1739 i915_gem_object_put_pages(obj);
1740 }
1741
1742 static int
1743 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1744 {
1745 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1746 int page_count, i;
1747 struct address_space *mapping;
1748 struct sg_table *st;
1749 struct scatterlist *sg;
1750 struct sg_page_iter sg_iter;
1751 struct page *page;
1752 unsigned long last_pfn = 0; /* suppress gcc warning */
1753 gfp_t gfp;
1754
1755 /* Assert that the object is not currently in any GPU domain. As it
1756 * wasn't in the GTT, there shouldn't be any way it could have been in
1757 * a GPU cache
1758 */
1759 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1760 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1761
1762 st = kmalloc(sizeof(*st), GFP_KERNEL);
1763 if (st == NULL)
1764 return -ENOMEM;
1765
1766 page_count = obj->base.size / PAGE_SIZE;
1767 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1768 sg_free_table(st);
1769 kfree(st);
1770 return -ENOMEM;
1771 }
1772
1773 /* Get the list of pages out of our struct file. They'll be pinned
1774 * at this point until we release them.
1775 *
1776 * Fail silently without starting the shrinker
1777 */
1778 mapping = file_inode(obj->base.filp)->i_mapping;
1779 gfp = mapping_gfp_mask(mapping);
1780 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1781 gfp &= ~(__GFP_IO | __GFP_WAIT);
1782 sg = st->sgl;
1783 st->nents = 0;
1784 for (i = 0; i < page_count; i++) {
1785 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1786 if (IS_ERR(page)) {
1787 i915_gem_purge(dev_priv, page_count);
1788 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1789 }
1790 if (IS_ERR(page)) {
1791 /* We've tried hard to allocate the memory by reaping
1792 * our own buffer, now let the real VM do its job and
1793 * go down in flames if truly OOM.
1794 */
1795 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1796 gfp |= __GFP_IO | __GFP_WAIT;
1797
1798 i915_gem_shrink_all(dev_priv);
1799 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1800 if (IS_ERR(page))
1801 goto err_pages;
1802
1803 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1804 gfp &= ~(__GFP_IO | __GFP_WAIT);
1805 }
1806 #ifdef CONFIG_SWIOTLB
1807 if (swiotlb_nr_tbl()) {
1808 st->nents++;
1809 sg_set_page(sg, page, PAGE_SIZE, 0);
1810 sg = sg_next(sg);
1811 continue;
1812 }
1813 #endif
1814 if (!i || page_to_pfn(page) != last_pfn + 1) {
1815 if (i)
1816 sg = sg_next(sg);
1817 st->nents++;
1818 sg_set_page(sg, page, PAGE_SIZE, 0);
1819 } else {
1820 sg->length += PAGE_SIZE;
1821 }
1822 last_pfn = page_to_pfn(page);
1823 }
1824 #ifdef CONFIG_SWIOTLB
1825 if (!swiotlb_nr_tbl())
1826 #endif
1827 sg_mark_end(sg);
1828 obj->pages = st;
1829
1830 if (i915_gem_object_needs_bit17_swizzle(obj))
1831 i915_gem_object_do_bit_17_swizzle(obj);
1832
1833 return 0;
1834
1835 err_pages:
1836 sg_mark_end(sg);
1837 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1838 page_cache_release(sg_page_iter_page(&sg_iter));
1839 sg_free_table(st);
1840 kfree(st);
1841 return PTR_ERR(page);
1842 }
1843
1844 /* Ensure that the associated pages are gathered from the backing storage
1845 * and pinned into our object. i915_gem_object_get_pages() may be called
1846 * multiple times before they are released by a single call to
1847 * i915_gem_object_put_pages() - once the pages are no longer referenced
1848 * either as a result of memory pressure (reaping pages under the shrinker)
1849 * or as the object is itself released.
1850 */
1851 int
1852 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1853 {
1854 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1855 const struct drm_i915_gem_object_ops *ops = obj->ops;
1856 int ret;
1857
1858 if (obj->pages)
1859 return 0;
1860
1861 if (obj->madv != I915_MADV_WILLNEED) {
1862 DRM_ERROR("Attempting to obtain a purgeable object\n");
1863 return -EINVAL;
1864 }
1865
1866 BUG_ON(obj->pages_pin_count);
1867
1868 ret = ops->get_pages(obj);
1869 if (ret)
1870 return ret;
1871
1872 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1873 return 0;
1874 }
1875
1876 void
1877 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1878 struct intel_ring_buffer *ring)
1879 {
1880 struct drm_device *dev = obj->base.dev;
1881 struct drm_i915_private *dev_priv = dev->dev_private;
1882 u32 seqno = intel_ring_get_seqno(ring);
1883
1884 BUG_ON(ring == NULL);
1885 obj->ring = ring;
1886
1887 /* Add a reference if we're newly entering the active list. */
1888 if (!obj->active) {
1889 drm_gem_object_reference(&obj->base);
1890 obj->active = 1;
1891 }
1892
1893 /* Move from whatever list we were on to the tail of execution. */
1894 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1895 list_move_tail(&obj->ring_list, &ring->active_list);
1896
1897 obj->last_read_seqno = seqno;
1898
1899 if (obj->fenced_gpu_access) {
1900 obj->last_fenced_seqno = seqno;
1901
1902 /* Bump MRU to take account of the delayed flush */
1903 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1904 struct drm_i915_fence_reg *reg;
1905
1906 reg = &dev_priv->fence_regs[obj->fence_reg];
1907 list_move_tail(&reg->lru_list,
1908 &dev_priv->mm.fence_list);
1909 }
1910 }
1911 }
1912
1913 static void
1914 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1915 {
1916 struct drm_device *dev = obj->base.dev;
1917 struct drm_i915_private *dev_priv = dev->dev_private;
1918
1919 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1920 BUG_ON(!obj->active);
1921
1922 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1923
1924 list_del_init(&obj->ring_list);
1925 obj->ring = NULL;
1926
1927 obj->last_read_seqno = 0;
1928 obj->last_write_seqno = 0;
1929 obj->base.write_domain = 0;
1930
1931 obj->last_fenced_seqno = 0;
1932 obj->fenced_gpu_access = false;
1933
1934 obj->active = 0;
1935 drm_gem_object_unreference(&obj->base);
1936
1937 WARN_ON(i915_verify_lists(dev));
1938 }
1939
1940 static int
1941 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1942 {
1943 struct drm_i915_private *dev_priv = dev->dev_private;
1944 struct intel_ring_buffer *ring;
1945 int ret, i, j;
1946
1947 /* Carefully retire all requests without writing to the rings */
1948 for_each_ring(ring, dev_priv, i) {
1949 ret = intel_ring_idle(ring);
1950 if (ret)
1951 return ret;
1952 }
1953 i915_gem_retire_requests(dev);
1954
1955 /* Finally reset hw state */
1956 for_each_ring(ring, dev_priv, i) {
1957 intel_ring_init_seqno(ring, seqno);
1958
1959 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1960 ring->sync_seqno[j] = 0;
1961 }
1962
1963 return 0;
1964 }
1965
1966 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1967 {
1968 struct drm_i915_private *dev_priv = dev->dev_private;
1969 int ret;
1970
1971 if (seqno == 0)
1972 return -EINVAL;
1973
1974 /* HWS page needs to be set less than what we
1975 * will inject to ring
1976 */
1977 ret = i915_gem_init_seqno(dev, seqno - 1);
1978 if (ret)
1979 return ret;
1980
1981 /* Carefully set the last_seqno value so that wrap
1982 * detection still works
1983 */
1984 dev_priv->next_seqno = seqno;
1985 dev_priv->last_seqno = seqno - 1;
1986 if (dev_priv->last_seqno == 0)
1987 dev_priv->last_seqno--;
1988
1989 return 0;
1990 }
1991
1992 int
1993 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1994 {
1995 struct drm_i915_private *dev_priv = dev->dev_private;
1996
1997 /* reserve 0 for non-seqno */
1998 if (dev_priv->next_seqno == 0) {
1999 int ret = i915_gem_init_seqno(dev, 0);
2000 if (ret)
2001 return ret;
2002
2003 dev_priv->next_seqno = 1;
2004 }
2005
2006 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2007 return 0;
2008 }
2009
2010 int __i915_add_request(struct intel_ring_buffer *ring,
2011 struct drm_file *file,
2012 struct drm_i915_gem_object *obj,
2013 u32 *out_seqno)
2014 {
2015 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2016 struct drm_i915_gem_request *request;
2017 u32 request_ring_position, request_start;
2018 int was_empty;
2019 int ret;
2020
2021 request_start = intel_ring_get_tail(ring);
2022 /*
2023 * Emit any outstanding flushes - execbuf can fail to emit the flush
2024 * after having emitted the batchbuffer command. Hence we need to fix
2025 * things up similar to emitting the lazy request. The difference here
2026 * is that the flush _must_ happen before the next request, no matter
2027 * what.
2028 */
2029 ret = intel_ring_flush_all_caches(ring);
2030 if (ret)
2031 return ret;
2032
2033 request = kmalloc(sizeof(*request), GFP_KERNEL);
2034 if (request == NULL)
2035 return -ENOMEM;
2036
2037
2038 /* Record the position of the start of the request so that
2039 * should we detect the updated seqno part-way through the
2040 * GPU processing the request, we never over-estimate the
2041 * position of the head.
2042 */
2043 request_ring_position = intel_ring_get_tail(ring);
2044
2045 ret = ring->add_request(ring);
2046 if (ret) {
2047 kfree(request);
2048 return ret;
2049 }
2050
2051 request->seqno = intel_ring_get_seqno(ring);
2052 request->ring = ring;
2053 request->head = request_start;
2054 request->tail = request_ring_position;
2055 request->ctx = ring->last_context;
2056 request->batch_obj = obj;
2057
2058 /* Whilst this request exists, batch_obj will be on the
2059 * active_list, and so will hold the active reference. Only when this
2060 * request is retired will the the batch_obj be moved onto the
2061 * inactive_list and lose its active reference. Hence we do not need
2062 * to explicitly hold another reference here.
2063 */
2064
2065 if (request->ctx)
2066 i915_gem_context_reference(request->ctx);
2067
2068 request->emitted_jiffies = jiffies;
2069 was_empty = list_empty(&ring->request_list);
2070 list_add_tail(&request->list, &ring->request_list);
2071 request->file_priv = NULL;
2072
2073 if (file) {
2074 struct drm_i915_file_private *file_priv = file->driver_priv;
2075
2076 spin_lock(&file_priv->mm.lock);
2077 request->file_priv = file_priv;
2078 list_add_tail(&request->client_list,
2079 &file_priv->mm.request_list);
2080 spin_unlock(&file_priv->mm.lock);
2081 }
2082
2083 trace_i915_gem_request_add(ring, request->seqno);
2084 ring->outstanding_lazy_request = 0;
2085
2086 if (!dev_priv->mm.suspended) {
2087 if (i915_enable_hangcheck) {
2088 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2089 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2090 }
2091 if (was_empty) {
2092 queue_delayed_work(dev_priv->wq,
2093 &dev_priv->mm.retire_work,
2094 round_jiffies_up_relative(HZ));
2095 intel_mark_busy(dev_priv->dev);
2096 }
2097 }
2098
2099 if (out_seqno)
2100 *out_seqno = request->seqno;
2101 return 0;
2102 }
2103
2104 static inline void
2105 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2106 {
2107 struct drm_i915_file_private *file_priv = request->file_priv;
2108
2109 if (!file_priv)
2110 return;
2111
2112 spin_lock(&file_priv->mm.lock);
2113 if (request->file_priv) {
2114 list_del(&request->client_list);
2115 request->file_priv = NULL;
2116 }
2117 spin_unlock(&file_priv->mm.lock);
2118 }
2119
2120 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2121 {
2122 if (acthd >= obj->gtt_offset &&
2123 acthd < obj->gtt_offset + obj->base.size)
2124 return true;
2125
2126 return false;
2127 }
2128
2129 static bool i915_head_inside_request(const u32 acthd_unmasked,
2130 const u32 request_start,
2131 const u32 request_end)
2132 {
2133 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2134
2135 if (request_start < request_end) {
2136 if (acthd >= request_start && acthd < request_end)
2137 return true;
2138 } else if (request_start > request_end) {
2139 if (acthd >= request_start || acthd < request_end)
2140 return true;
2141 }
2142
2143 return false;
2144 }
2145
2146 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2147 const u32 acthd, bool *inside)
2148 {
2149 /* There is a possibility that unmasked head address
2150 * pointing inside the ring, matches the batch_obj address range.
2151 * However this is extremely unlikely.
2152 */
2153
2154 if (request->batch_obj) {
2155 if (i915_head_inside_object(acthd, request->batch_obj)) {
2156 *inside = true;
2157 return true;
2158 }
2159 }
2160
2161 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2162 *inside = false;
2163 return true;
2164 }
2165
2166 return false;
2167 }
2168
2169 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2170 struct drm_i915_gem_request *request,
2171 u32 acthd)
2172 {
2173 struct i915_ctx_hang_stats *hs = NULL;
2174 bool inside, guilty;
2175
2176 /* Innocent until proven guilty */
2177 guilty = false;
2178
2179 if (ring->hangcheck.action != wait &&
2180 i915_request_guilty(request, acthd, &inside)) {
2181 DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n",
2182 ring->name,
2183 inside ? "inside" : "flushing",
2184 request->batch_obj ?
2185 request->batch_obj->gtt_offset : 0,
2186 request->ctx ? request->ctx->id : 0,
2187 acthd);
2188
2189 guilty = true;
2190 }
2191
2192 /* If contexts are disabled or this is the default context, use
2193 * file_priv->reset_state
2194 */
2195 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2196 hs = &request->ctx->hang_stats;
2197 else if (request->file_priv)
2198 hs = &request->file_priv->hang_stats;
2199
2200 if (hs) {
2201 if (guilty)
2202 hs->batch_active++;
2203 else
2204 hs->batch_pending++;
2205 }
2206 }
2207
2208 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2209 {
2210 list_del(&request->list);
2211 i915_gem_request_remove_from_client(request);
2212
2213 if (request->ctx)
2214 i915_gem_context_unreference(request->ctx);
2215
2216 kfree(request);
2217 }
2218
2219 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2220 struct intel_ring_buffer *ring)
2221 {
2222 u32 completed_seqno;
2223 u32 acthd;
2224
2225 acthd = intel_ring_get_active_head(ring);
2226 completed_seqno = ring->get_seqno(ring, false);
2227
2228 while (!list_empty(&ring->request_list)) {
2229 struct drm_i915_gem_request *request;
2230
2231 request = list_first_entry(&ring->request_list,
2232 struct drm_i915_gem_request,
2233 list);
2234
2235 if (request->seqno > completed_seqno)
2236 i915_set_reset_status(ring, request, acthd);
2237
2238 i915_gem_free_request(request);
2239 }
2240
2241 while (!list_empty(&ring->active_list)) {
2242 struct drm_i915_gem_object *obj;
2243
2244 obj = list_first_entry(&ring->active_list,
2245 struct drm_i915_gem_object,
2246 ring_list);
2247
2248 i915_gem_object_move_to_inactive(obj);
2249 }
2250 }
2251
2252 static void i915_gem_reset_fences(struct drm_device *dev)
2253 {
2254 struct drm_i915_private *dev_priv = dev->dev_private;
2255 int i;
2256
2257 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2258 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2259
2260 if (reg->obj)
2261 i915_gem_object_fence_lost(reg->obj);
2262
2263 i915_gem_write_fence(dev, i, NULL);
2264
2265 reg->pin_count = 0;
2266 reg->obj = NULL;
2267 INIT_LIST_HEAD(&reg->lru_list);
2268 }
2269
2270 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2271 }
2272
2273 void i915_gem_reset(struct drm_device *dev)
2274 {
2275 struct drm_i915_private *dev_priv = dev->dev_private;
2276 struct drm_i915_gem_object *obj;
2277 struct intel_ring_buffer *ring;
2278 int i;
2279
2280 for_each_ring(ring, dev_priv, i)
2281 i915_gem_reset_ring_lists(dev_priv, ring);
2282
2283 /* Move everything out of the GPU domains to ensure we do any
2284 * necessary invalidation upon reuse.
2285 */
2286 list_for_each_entry(obj,
2287 &dev_priv->mm.inactive_list,
2288 mm_list)
2289 {
2290 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2291 }
2292
2293 /* The fence registers are invalidated so clear them out */
2294 i915_gem_reset_fences(dev);
2295 }
2296
2297 /**
2298 * This function clears the request list as sequence numbers are passed.
2299 */
2300 void
2301 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2302 {
2303 uint32_t seqno;
2304
2305 if (list_empty(&ring->request_list))
2306 return;
2307
2308 WARN_ON(i915_verify_lists(ring->dev));
2309
2310 seqno = ring->get_seqno(ring, true);
2311
2312 while (!list_empty(&ring->request_list)) {
2313 struct drm_i915_gem_request *request;
2314
2315 request = list_first_entry(&ring->request_list,
2316 struct drm_i915_gem_request,
2317 list);
2318
2319 if (!i915_seqno_passed(seqno, request->seqno))
2320 break;
2321
2322 trace_i915_gem_request_retire(ring, request->seqno);
2323 /* We know the GPU must have read the request to have
2324 * sent us the seqno + interrupt, so use the position
2325 * of tail of the request to update the last known position
2326 * of the GPU head.
2327 */
2328 ring->last_retired_head = request->tail;
2329
2330 i915_gem_free_request(request);
2331 }
2332
2333 /* Move any buffers on the active list that are no longer referenced
2334 * by the ringbuffer to the flushing/inactive lists as appropriate.
2335 */
2336 while (!list_empty(&ring->active_list)) {
2337 struct drm_i915_gem_object *obj;
2338
2339 obj = list_first_entry(&ring->active_list,
2340 struct drm_i915_gem_object,
2341 ring_list);
2342
2343 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2344 break;
2345
2346 i915_gem_object_move_to_inactive(obj);
2347 }
2348
2349 if (unlikely(ring->trace_irq_seqno &&
2350 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2351 ring->irq_put(ring);
2352 ring->trace_irq_seqno = 0;
2353 }
2354
2355 WARN_ON(i915_verify_lists(ring->dev));
2356 }
2357
2358 void
2359 i915_gem_retire_requests(struct drm_device *dev)
2360 {
2361 drm_i915_private_t *dev_priv = dev->dev_private;
2362 struct intel_ring_buffer *ring;
2363 int i;
2364
2365 for_each_ring(ring, dev_priv, i)
2366 i915_gem_retire_requests_ring(ring);
2367 }
2368
2369 static void
2370 i915_gem_retire_work_handler(struct work_struct *work)
2371 {
2372 drm_i915_private_t *dev_priv;
2373 struct drm_device *dev;
2374 struct intel_ring_buffer *ring;
2375 bool idle;
2376 int i;
2377
2378 dev_priv = container_of(work, drm_i915_private_t,
2379 mm.retire_work.work);
2380 dev = dev_priv->dev;
2381
2382 /* Come back later if the device is busy... */
2383 if (!mutex_trylock(&dev->struct_mutex)) {
2384 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2385 round_jiffies_up_relative(HZ));
2386 return;
2387 }
2388
2389 i915_gem_retire_requests(dev);
2390
2391 /* Send a periodic flush down the ring so we don't hold onto GEM
2392 * objects indefinitely.
2393 */
2394 idle = true;
2395 for_each_ring(ring, dev_priv, i) {
2396 if (ring->gpu_caches_dirty)
2397 i915_add_request(ring, NULL);
2398
2399 idle &= list_empty(&ring->request_list);
2400 }
2401
2402 if (!dev_priv->mm.suspended && !idle)
2403 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2404 round_jiffies_up_relative(HZ));
2405 if (idle)
2406 intel_mark_idle(dev);
2407
2408 mutex_unlock(&dev->struct_mutex);
2409 }
2410
2411 /**
2412 * Ensures that an object will eventually get non-busy by flushing any required
2413 * write domains, emitting any outstanding lazy request and retiring and
2414 * completed requests.
2415 */
2416 static int
2417 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2418 {
2419 int ret;
2420
2421 if (obj->active) {
2422 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2423 if (ret)
2424 return ret;
2425
2426 i915_gem_retire_requests_ring(obj->ring);
2427 }
2428
2429 return 0;
2430 }
2431
2432 /**
2433 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2434 * @DRM_IOCTL_ARGS: standard ioctl arguments
2435 *
2436 * Returns 0 if successful, else an error is returned with the remaining time in
2437 * the timeout parameter.
2438 * -ETIME: object is still busy after timeout
2439 * -ERESTARTSYS: signal interrupted the wait
2440 * -ENONENT: object doesn't exist
2441 * Also possible, but rare:
2442 * -EAGAIN: GPU wedged
2443 * -ENOMEM: damn
2444 * -ENODEV: Internal IRQ fail
2445 * -E?: The add request failed
2446 *
2447 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2448 * non-zero timeout parameter the wait ioctl will wait for the given number of
2449 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2450 * without holding struct_mutex the object may become re-busied before this
2451 * function completes. A similar but shorter * race condition exists in the busy
2452 * ioctl
2453 */
2454 int
2455 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2456 {
2457 drm_i915_private_t *dev_priv = dev->dev_private;
2458 struct drm_i915_gem_wait *args = data;
2459 struct drm_i915_gem_object *obj;
2460 struct intel_ring_buffer *ring = NULL;
2461 struct timespec timeout_stack, *timeout = NULL;
2462 unsigned reset_counter;
2463 u32 seqno = 0;
2464 int ret = 0;
2465
2466 if (args->timeout_ns >= 0) {
2467 timeout_stack = ns_to_timespec(args->timeout_ns);
2468 timeout = &timeout_stack;
2469 }
2470
2471 ret = i915_mutex_lock_interruptible(dev);
2472 if (ret)
2473 return ret;
2474
2475 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2476 if (&obj->base == NULL) {
2477 mutex_unlock(&dev->struct_mutex);
2478 return -ENOENT;
2479 }
2480
2481 /* Need to make sure the object gets inactive eventually. */
2482 ret = i915_gem_object_flush_active(obj);
2483 if (ret)
2484 goto out;
2485
2486 if (obj->active) {
2487 seqno = obj->last_read_seqno;
2488 ring = obj->ring;
2489 }
2490
2491 if (seqno == 0)
2492 goto out;
2493
2494 /* Do this after OLR check to make sure we make forward progress polling
2495 * on this IOCTL with a 0 timeout (like busy ioctl)
2496 */
2497 if (!args->timeout_ns) {
2498 ret = -ETIME;
2499 goto out;
2500 }
2501
2502 drm_gem_object_unreference(&obj->base);
2503 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2504 mutex_unlock(&dev->struct_mutex);
2505
2506 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2507 if (timeout)
2508 args->timeout_ns = timespec_to_ns(timeout);
2509 return ret;
2510
2511 out:
2512 drm_gem_object_unreference(&obj->base);
2513 mutex_unlock(&dev->struct_mutex);
2514 return ret;
2515 }
2516
2517 /**
2518 * i915_gem_object_sync - sync an object to a ring.
2519 *
2520 * @obj: object which may be in use on another ring.
2521 * @to: ring we wish to use the object on. May be NULL.
2522 *
2523 * This code is meant to abstract object synchronization with the GPU.
2524 * Calling with NULL implies synchronizing the object with the CPU
2525 * rather than a particular GPU ring.
2526 *
2527 * Returns 0 if successful, else propagates up the lower layer error.
2528 */
2529 int
2530 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2531 struct intel_ring_buffer *to)
2532 {
2533 struct intel_ring_buffer *from = obj->ring;
2534 u32 seqno;
2535 int ret, idx;
2536
2537 if (from == NULL || to == from)
2538 return 0;
2539
2540 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2541 return i915_gem_object_wait_rendering(obj, false);
2542
2543 idx = intel_ring_sync_index(from, to);
2544
2545 seqno = obj->last_read_seqno;
2546 if (seqno <= from->sync_seqno[idx])
2547 return 0;
2548
2549 ret = i915_gem_check_olr(obj->ring, seqno);
2550 if (ret)
2551 return ret;
2552
2553 ret = to->sync_to(to, from, seqno);
2554 if (!ret)
2555 /* We use last_read_seqno because sync_to()
2556 * might have just caused seqno wrap under
2557 * the radar.
2558 */
2559 from->sync_seqno[idx] = obj->last_read_seqno;
2560
2561 return ret;
2562 }
2563
2564 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2565 {
2566 u32 old_write_domain, old_read_domains;
2567
2568 /* Force a pagefault for domain tracking on next user access */
2569 i915_gem_release_mmap(obj);
2570
2571 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2572 return;
2573
2574 /* Wait for any direct GTT access to complete */
2575 mb();
2576
2577 old_read_domains = obj->base.read_domains;
2578 old_write_domain = obj->base.write_domain;
2579
2580 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2581 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2582
2583 trace_i915_gem_object_change_domain(obj,
2584 old_read_domains,
2585 old_write_domain);
2586 }
2587
2588 /**
2589 * Unbinds an object from the GTT aperture.
2590 */
2591 int
2592 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2593 {
2594 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2595 int ret;
2596
2597 if (obj->gtt_space == NULL)
2598 return 0;
2599
2600 if (obj->pin_count)
2601 return -EBUSY;
2602
2603 BUG_ON(obj->pages == NULL);
2604
2605 ret = i915_gem_object_finish_gpu(obj);
2606 if (ret)
2607 return ret;
2608 /* Continue on if we fail due to EIO, the GPU is hung so we
2609 * should be safe and we need to cleanup or else we might
2610 * cause memory corruption through use-after-free.
2611 */
2612
2613 i915_gem_object_finish_gtt(obj);
2614
2615 /* release the fence reg _after_ flushing */
2616 ret = i915_gem_object_put_fence(obj);
2617 if (ret)
2618 return ret;
2619
2620 trace_i915_gem_object_unbind(obj);
2621
2622 if (obj->has_global_gtt_mapping)
2623 i915_gem_gtt_unbind_object(obj);
2624 if (obj->has_aliasing_ppgtt_mapping) {
2625 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2626 obj->has_aliasing_ppgtt_mapping = 0;
2627 }
2628 i915_gem_gtt_finish_object(obj);
2629 i915_gem_object_unpin_pages(obj);
2630
2631 list_del(&obj->mm_list);
2632 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2633 /* Avoid an unnecessary call to unbind on rebind. */
2634 obj->map_and_fenceable = true;
2635
2636 drm_mm_put_block(obj->gtt_space);
2637 obj->gtt_space = NULL;
2638 obj->gtt_offset = 0;
2639
2640 return 0;
2641 }
2642
2643 int i915_gpu_idle(struct drm_device *dev)
2644 {
2645 drm_i915_private_t *dev_priv = dev->dev_private;
2646 struct intel_ring_buffer *ring;
2647 int ret, i;
2648
2649 /* Flush everything onto the inactive list. */
2650 for_each_ring(ring, dev_priv, i) {
2651 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2652 if (ret)
2653 return ret;
2654
2655 ret = intel_ring_idle(ring);
2656 if (ret)
2657 return ret;
2658 }
2659
2660 return 0;
2661 }
2662
2663 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2664 struct drm_i915_gem_object *obj)
2665 {
2666 drm_i915_private_t *dev_priv = dev->dev_private;
2667 int fence_reg;
2668 int fence_pitch_shift;
2669 uint64_t val;
2670
2671 if (INTEL_INFO(dev)->gen >= 6) {
2672 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2673 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2674 } else {
2675 fence_reg = FENCE_REG_965_0;
2676 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2677 }
2678
2679 if (obj) {
2680 u32 size = obj->gtt_space->size;
2681
2682 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2683 0xfffff000) << 32;
2684 val |= obj->gtt_offset & 0xfffff000;
2685 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2686 if (obj->tiling_mode == I915_TILING_Y)
2687 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2688 val |= I965_FENCE_REG_VALID;
2689 } else
2690 val = 0;
2691
2692 fence_reg += reg * 8;
2693 I915_WRITE64(fence_reg, val);
2694 POSTING_READ(fence_reg);
2695 }
2696
2697 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2698 struct drm_i915_gem_object *obj)
2699 {
2700 drm_i915_private_t *dev_priv = dev->dev_private;
2701 u32 val;
2702
2703 if (obj) {
2704 u32 size = obj->gtt_space->size;
2705 int pitch_val;
2706 int tile_width;
2707
2708 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2709 (size & -size) != size ||
2710 (obj->gtt_offset & (size - 1)),
2711 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2712 obj->gtt_offset, obj->map_and_fenceable, size);
2713
2714 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2715 tile_width = 128;
2716 else
2717 tile_width = 512;
2718
2719 /* Note: pitch better be a power of two tile widths */
2720 pitch_val = obj->stride / tile_width;
2721 pitch_val = ffs(pitch_val) - 1;
2722
2723 val = obj->gtt_offset;
2724 if (obj->tiling_mode == I915_TILING_Y)
2725 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2726 val |= I915_FENCE_SIZE_BITS(size);
2727 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2728 val |= I830_FENCE_REG_VALID;
2729 } else
2730 val = 0;
2731
2732 if (reg < 8)
2733 reg = FENCE_REG_830_0 + reg * 4;
2734 else
2735 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2736
2737 I915_WRITE(reg, val);
2738 POSTING_READ(reg);
2739 }
2740
2741 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2742 struct drm_i915_gem_object *obj)
2743 {
2744 drm_i915_private_t *dev_priv = dev->dev_private;
2745 uint32_t val;
2746
2747 if (obj) {
2748 u32 size = obj->gtt_space->size;
2749 uint32_t pitch_val;
2750
2751 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2752 (size & -size) != size ||
2753 (obj->gtt_offset & (size - 1)),
2754 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2755 obj->gtt_offset, size);
2756
2757 pitch_val = obj->stride / 128;
2758 pitch_val = ffs(pitch_val) - 1;
2759
2760 val = obj->gtt_offset;
2761 if (obj->tiling_mode == I915_TILING_Y)
2762 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2763 val |= I830_FENCE_SIZE_BITS(size);
2764 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2765 val |= I830_FENCE_REG_VALID;
2766 } else
2767 val = 0;
2768
2769 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2770 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2771 }
2772
2773 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2774 {
2775 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2776 }
2777
2778 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2779 struct drm_i915_gem_object *obj)
2780 {
2781 struct drm_i915_private *dev_priv = dev->dev_private;
2782
2783 /* Ensure that all CPU reads are completed before installing a fence
2784 * and all writes before removing the fence.
2785 */
2786 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2787 mb();
2788
2789 switch (INTEL_INFO(dev)->gen) {
2790 case 7:
2791 case 6:
2792 case 5:
2793 case 4: i965_write_fence_reg(dev, reg, obj); break;
2794 case 3: i915_write_fence_reg(dev, reg, obj); break;
2795 case 2: i830_write_fence_reg(dev, reg, obj); break;
2796 default: BUG();
2797 }
2798
2799 /* And similarly be paranoid that no direct access to this region
2800 * is reordered to before the fence is installed.
2801 */
2802 if (i915_gem_object_needs_mb(obj))
2803 mb();
2804 }
2805
2806 static inline int fence_number(struct drm_i915_private *dev_priv,
2807 struct drm_i915_fence_reg *fence)
2808 {
2809 return fence - dev_priv->fence_regs;
2810 }
2811
2812 struct write_fence {
2813 struct drm_device *dev;
2814 struct drm_i915_gem_object *obj;
2815 int fence;
2816 };
2817
2818 static void i915_gem_write_fence__ipi(void *data)
2819 {
2820 struct write_fence *args = data;
2821
2822 /* Required for SNB+ with LLC */
2823 wbinvd();
2824
2825 /* Required for VLV */
2826 i915_gem_write_fence(args->dev, args->fence, args->obj);
2827 }
2828
2829 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2830 struct drm_i915_fence_reg *fence,
2831 bool enable)
2832 {
2833 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2834 struct write_fence args = {
2835 .dev = obj->base.dev,
2836 .fence = fence_number(dev_priv, fence),
2837 .obj = enable ? obj : NULL,
2838 };
2839
2840 /* In order to fully serialize access to the fenced region and
2841 * the update to the fence register we need to take extreme
2842 * measures on SNB+. In theory, the write to the fence register
2843 * flushes all memory transactions before, and coupled with the
2844 * mb() placed around the register write we serialise all memory
2845 * operations with respect to the changes in the tiler. Yet, on
2846 * SNB+ we need to take a step further and emit an explicit wbinvd()
2847 * on each processor in order to manually flush all memory
2848 * transactions before updating the fence register.
2849 *
2850 * However, Valleyview complicates matter. There the wbinvd is
2851 * insufficient and unlike SNB/IVB requires the serialising
2852 * register write. (Note that that register write by itself is
2853 * conversely not sufficient for SNB+.) To compromise, we do both.
2854 */
2855 if (INTEL_INFO(args.dev)->gen >= 6)
2856 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2857 else
2858 i915_gem_write_fence(args.dev, args.fence, args.obj);
2859
2860 if (enable) {
2861 obj->fence_reg = args.fence;
2862 fence->obj = obj;
2863 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2864 } else {
2865 obj->fence_reg = I915_FENCE_REG_NONE;
2866 fence->obj = NULL;
2867 list_del_init(&fence->lru_list);
2868 }
2869 }
2870
2871 static int
2872 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2873 {
2874 if (obj->last_fenced_seqno) {
2875 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2876 if (ret)
2877 return ret;
2878
2879 obj->last_fenced_seqno = 0;
2880 }
2881
2882 obj->fenced_gpu_access = false;
2883 return 0;
2884 }
2885
2886 int
2887 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2888 {
2889 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2890 struct drm_i915_fence_reg *fence;
2891 int ret;
2892
2893 ret = i915_gem_object_wait_fence(obj);
2894 if (ret)
2895 return ret;
2896
2897 if (obj->fence_reg == I915_FENCE_REG_NONE)
2898 return 0;
2899
2900 fence = &dev_priv->fence_regs[obj->fence_reg];
2901
2902 i915_gem_object_fence_lost(obj);
2903 i915_gem_object_update_fence(obj, fence, false);
2904
2905 return 0;
2906 }
2907
2908 static struct drm_i915_fence_reg *
2909 i915_find_fence_reg(struct drm_device *dev)
2910 {
2911 struct drm_i915_private *dev_priv = dev->dev_private;
2912 struct drm_i915_fence_reg *reg, *avail;
2913 int i;
2914
2915 /* First try to find a free reg */
2916 avail = NULL;
2917 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2918 reg = &dev_priv->fence_regs[i];
2919 if (!reg->obj)
2920 return reg;
2921
2922 if (!reg->pin_count)
2923 avail = reg;
2924 }
2925
2926 if (avail == NULL)
2927 return NULL;
2928
2929 /* None available, try to steal one or wait for a user to finish */
2930 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2931 if (reg->pin_count)
2932 continue;
2933
2934 return reg;
2935 }
2936
2937 return NULL;
2938 }
2939
2940 /**
2941 * i915_gem_object_get_fence - set up fencing for an object
2942 * @obj: object to map through a fence reg
2943 *
2944 * When mapping objects through the GTT, userspace wants to be able to write
2945 * to them without having to worry about swizzling if the object is tiled.
2946 * This function walks the fence regs looking for a free one for @obj,
2947 * stealing one if it can't find any.
2948 *
2949 * It then sets up the reg based on the object's properties: address, pitch
2950 * and tiling format.
2951 *
2952 * For an untiled surface, this removes any existing fence.
2953 */
2954 int
2955 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2956 {
2957 struct drm_device *dev = obj->base.dev;
2958 struct drm_i915_private *dev_priv = dev->dev_private;
2959 bool enable = obj->tiling_mode != I915_TILING_NONE;
2960 struct drm_i915_fence_reg *reg;
2961 int ret;
2962
2963 /* Have we updated the tiling parameters upon the object and so
2964 * will need to serialise the write to the associated fence register?
2965 */
2966 if (obj->fence_dirty) {
2967 ret = i915_gem_object_wait_fence(obj);
2968 if (ret)
2969 return ret;
2970 }
2971
2972 /* Just update our place in the LRU if our fence is getting reused. */
2973 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2974 reg = &dev_priv->fence_regs[obj->fence_reg];
2975 if (!obj->fence_dirty) {
2976 list_move_tail(&reg->lru_list,
2977 &dev_priv->mm.fence_list);
2978 return 0;
2979 }
2980 } else if (enable) {
2981 reg = i915_find_fence_reg(dev);
2982 if (reg == NULL)
2983 return -EDEADLK;
2984
2985 if (reg->obj) {
2986 struct drm_i915_gem_object *old = reg->obj;
2987
2988 ret = i915_gem_object_wait_fence(old);
2989 if (ret)
2990 return ret;
2991
2992 i915_gem_object_fence_lost(old);
2993 }
2994 } else
2995 return 0;
2996
2997 i915_gem_object_update_fence(obj, reg, enable);
2998 obj->fence_dirty = false;
2999
3000 return 0;
3001 }
3002
3003 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3004 struct drm_mm_node *gtt_space,
3005 unsigned long cache_level)
3006 {
3007 struct drm_mm_node *other;
3008
3009 /* On non-LLC machines we have to be careful when putting differing
3010 * types of snoopable memory together to avoid the prefetcher
3011 * crossing memory domains and dying.
3012 */
3013 if (HAS_LLC(dev))
3014 return true;
3015
3016 if (gtt_space == NULL)
3017 return true;
3018
3019 if (list_empty(&gtt_space->node_list))
3020 return true;
3021
3022 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3023 if (other->allocated && !other->hole_follows && other->color != cache_level)
3024 return false;
3025
3026 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3027 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3028 return false;
3029
3030 return true;
3031 }
3032
3033 static void i915_gem_verify_gtt(struct drm_device *dev)
3034 {
3035 #if WATCH_GTT
3036 struct drm_i915_private *dev_priv = dev->dev_private;
3037 struct drm_i915_gem_object *obj;
3038 int err = 0;
3039
3040 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3041 if (obj->gtt_space == NULL) {
3042 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3043 err++;
3044 continue;
3045 }
3046
3047 if (obj->cache_level != obj->gtt_space->color) {
3048 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3049 obj->gtt_space->start,
3050 obj->gtt_space->start + obj->gtt_space->size,
3051 obj->cache_level,
3052 obj->gtt_space->color);
3053 err++;
3054 continue;
3055 }
3056
3057 if (!i915_gem_valid_gtt_space(dev,
3058 obj->gtt_space,
3059 obj->cache_level)) {
3060 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3061 obj->gtt_space->start,
3062 obj->gtt_space->start + obj->gtt_space->size,
3063 obj->cache_level);
3064 err++;
3065 continue;
3066 }
3067 }
3068
3069 WARN_ON(err);
3070 #endif
3071 }
3072
3073 /**
3074 * Finds free space in the GTT aperture and binds the object there.
3075 */
3076 static int
3077 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3078 unsigned alignment,
3079 bool map_and_fenceable,
3080 bool nonblocking)
3081 {
3082 struct drm_device *dev = obj->base.dev;
3083 drm_i915_private_t *dev_priv = dev->dev_private;
3084 struct drm_mm_node *node;
3085 u32 size, fence_size, fence_alignment, unfenced_alignment;
3086 bool mappable, fenceable;
3087 size_t gtt_max = map_and_fenceable ?
3088 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
3089 int ret;
3090
3091 fence_size = i915_gem_get_gtt_size(dev,
3092 obj->base.size,
3093 obj->tiling_mode);
3094 fence_alignment = i915_gem_get_gtt_alignment(dev,
3095 obj->base.size,
3096 obj->tiling_mode, true);
3097 unfenced_alignment =
3098 i915_gem_get_gtt_alignment(dev,
3099 obj->base.size,
3100 obj->tiling_mode, false);
3101
3102 if (alignment == 0)
3103 alignment = map_and_fenceable ? fence_alignment :
3104 unfenced_alignment;
3105 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3106 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3107 return -EINVAL;
3108 }
3109
3110 size = map_and_fenceable ? fence_size : obj->base.size;
3111
3112 /* If the object is bigger than the entire aperture, reject it early
3113 * before evicting everything in a vain attempt to find space.
3114 */
3115 if (obj->base.size > gtt_max) {
3116 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3117 obj->base.size,
3118 map_and_fenceable ? "mappable" : "total",
3119 gtt_max);
3120 return -E2BIG;
3121 }
3122
3123 ret = i915_gem_object_get_pages(obj);
3124 if (ret)
3125 return ret;
3126
3127 i915_gem_object_pin_pages(obj);
3128
3129 node = kzalloc(sizeof(*node), GFP_KERNEL);
3130 if (node == NULL) {
3131 i915_gem_object_unpin_pages(obj);
3132 return -ENOMEM;
3133 }
3134
3135 search_free:
3136 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3137 size, alignment,
3138 obj->cache_level, 0, gtt_max);
3139 if (ret) {
3140 ret = i915_gem_evict_something(dev, size, alignment,
3141 obj->cache_level,
3142 map_and_fenceable,
3143 nonblocking);
3144 if (ret == 0)
3145 goto search_free;
3146
3147 i915_gem_object_unpin_pages(obj);
3148 kfree(node);
3149 return ret;
3150 }
3151 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3152 i915_gem_object_unpin_pages(obj);
3153 drm_mm_put_block(node);
3154 return -EINVAL;
3155 }
3156
3157 ret = i915_gem_gtt_prepare_object(obj);
3158 if (ret) {
3159 i915_gem_object_unpin_pages(obj);
3160 drm_mm_put_block(node);
3161 return ret;
3162 }
3163
3164 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3165 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3166
3167 obj->gtt_space = node;
3168 obj->gtt_offset = node->start;
3169
3170 fenceable =
3171 node->size == fence_size &&
3172 (node->start & (fence_alignment - 1)) == 0;
3173
3174 mappable =
3175 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3176
3177 obj->map_and_fenceable = mappable && fenceable;
3178
3179 trace_i915_gem_object_bind(obj, map_and_fenceable);
3180 i915_gem_verify_gtt(dev);
3181 return 0;
3182 }
3183
3184 void
3185 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3186 {
3187 /* If we don't have a page list set up, then we're not pinned
3188 * to GPU, and we can ignore the cache flush because it'll happen
3189 * again at bind time.
3190 */
3191 if (obj->pages == NULL)
3192 return;
3193
3194 /*
3195 * Stolen memory is always coherent with the GPU as it is explicitly
3196 * marked as wc by the system, or the system is cache-coherent.
3197 */
3198 if (obj->stolen)
3199 return;
3200
3201 /* If the GPU is snooping the contents of the CPU cache,
3202 * we do not need to manually clear the CPU cache lines. However,
3203 * the caches are only snooped when the render cache is
3204 * flushed/invalidated. As we always have to emit invalidations
3205 * and flushes when moving into and out of the RENDER domain, correct
3206 * snooping behaviour occurs naturally as the result of our domain
3207 * tracking.
3208 */
3209 if (obj->cache_level != I915_CACHE_NONE)
3210 return;
3211
3212 trace_i915_gem_object_clflush(obj);
3213
3214 drm_clflush_sg(obj->pages);
3215 }
3216
3217 /** Flushes the GTT write domain for the object if it's dirty. */
3218 static void
3219 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3220 {
3221 uint32_t old_write_domain;
3222
3223 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3224 return;
3225
3226 /* No actual flushing is required for the GTT write domain. Writes
3227 * to it immediately go to main memory as far as we know, so there's
3228 * no chipset flush. It also doesn't land in render cache.
3229 *
3230 * However, we do have to enforce the order so that all writes through
3231 * the GTT land before any writes to the device, such as updates to
3232 * the GATT itself.
3233 */
3234 wmb();
3235
3236 old_write_domain = obj->base.write_domain;
3237 obj->base.write_domain = 0;
3238
3239 trace_i915_gem_object_change_domain(obj,
3240 obj->base.read_domains,
3241 old_write_domain);
3242 }
3243
3244 /** Flushes the CPU write domain for the object if it's dirty. */
3245 static void
3246 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3247 {
3248 uint32_t old_write_domain;
3249
3250 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3251 return;
3252
3253 i915_gem_clflush_object(obj);
3254 i915_gem_chipset_flush(obj->base.dev);
3255 old_write_domain = obj->base.write_domain;
3256 obj->base.write_domain = 0;
3257
3258 trace_i915_gem_object_change_domain(obj,
3259 obj->base.read_domains,
3260 old_write_domain);
3261 }
3262
3263 /**
3264 * Moves a single object to the GTT read, and possibly write domain.
3265 *
3266 * This function returns when the move is complete, including waiting on
3267 * flushes to occur.
3268 */
3269 int
3270 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3271 {
3272 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3273 uint32_t old_write_domain, old_read_domains;
3274 int ret;
3275
3276 /* Not valid to be called on unbound objects. */
3277 if (obj->gtt_space == NULL)
3278 return -EINVAL;
3279
3280 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3281 return 0;
3282
3283 ret = i915_gem_object_wait_rendering(obj, !write);
3284 if (ret)
3285 return ret;
3286
3287 i915_gem_object_flush_cpu_write_domain(obj);
3288
3289 /* Serialise direct access to this object with the barriers for
3290 * coherent writes from the GPU, by effectively invalidating the
3291 * GTT domain upon first access.
3292 */
3293 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3294 mb();
3295
3296 old_write_domain = obj->base.write_domain;
3297 old_read_domains = obj->base.read_domains;
3298
3299 /* It should now be out of any other write domains, and we can update
3300 * the domain values for our changes.
3301 */
3302 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3303 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3304 if (write) {
3305 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3306 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3307 obj->dirty = 1;
3308 }
3309
3310 trace_i915_gem_object_change_domain(obj,
3311 old_read_domains,
3312 old_write_domain);
3313
3314 /* And bump the LRU for this access */
3315 if (i915_gem_object_is_inactive(obj))
3316 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3317
3318 return 0;
3319 }
3320
3321 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3322 enum i915_cache_level cache_level)
3323 {
3324 struct drm_device *dev = obj->base.dev;
3325 drm_i915_private_t *dev_priv = dev->dev_private;
3326 int ret;
3327
3328 if (obj->cache_level == cache_level)
3329 return 0;
3330
3331 if (obj->pin_count) {
3332 DRM_DEBUG("can not change the cache level of pinned objects\n");
3333 return -EBUSY;
3334 }
3335
3336 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3337 ret = i915_gem_object_unbind(obj);
3338 if (ret)
3339 return ret;
3340 }
3341
3342 if (obj->gtt_space) {
3343 ret = i915_gem_object_finish_gpu(obj);
3344 if (ret)
3345 return ret;
3346
3347 i915_gem_object_finish_gtt(obj);
3348
3349 /* Before SandyBridge, you could not use tiling or fence
3350 * registers with snooped memory, so relinquish any fences
3351 * currently pointing to our region in the aperture.
3352 */
3353 if (INTEL_INFO(dev)->gen < 6) {
3354 ret = i915_gem_object_put_fence(obj);
3355 if (ret)
3356 return ret;
3357 }
3358
3359 if (obj->has_global_gtt_mapping)
3360 i915_gem_gtt_bind_object(obj, cache_level);
3361 if (obj->has_aliasing_ppgtt_mapping)
3362 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3363 obj, cache_level);
3364
3365 obj->gtt_space->color = cache_level;
3366 }
3367
3368 if (cache_level == I915_CACHE_NONE) {
3369 u32 old_read_domains, old_write_domain;
3370
3371 /* If we're coming from LLC cached, then we haven't
3372 * actually been tracking whether the data is in the
3373 * CPU cache or not, since we only allow one bit set
3374 * in obj->write_domain and have been skipping the clflushes.
3375 * Just set it to the CPU cache for now.
3376 */
3377 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3378 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3379
3380 old_read_domains = obj->base.read_domains;
3381 old_write_domain = obj->base.write_domain;
3382
3383 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3384 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3385
3386 trace_i915_gem_object_change_domain(obj,
3387 old_read_domains,
3388 old_write_domain);
3389 }
3390
3391 obj->cache_level = cache_level;
3392 i915_gem_verify_gtt(dev);
3393 return 0;
3394 }
3395
3396 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3397 struct drm_file *file)
3398 {
3399 struct drm_i915_gem_caching *args = data;
3400 struct drm_i915_gem_object *obj;
3401 int ret;
3402
3403 ret = i915_mutex_lock_interruptible(dev);
3404 if (ret)
3405 return ret;
3406
3407 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3408 if (&obj->base == NULL) {
3409 ret = -ENOENT;
3410 goto unlock;
3411 }
3412
3413 args->caching = obj->cache_level != I915_CACHE_NONE;
3414
3415 drm_gem_object_unreference(&obj->base);
3416 unlock:
3417 mutex_unlock(&dev->struct_mutex);
3418 return ret;
3419 }
3420
3421 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3422 struct drm_file *file)
3423 {
3424 struct drm_i915_gem_caching *args = data;
3425 struct drm_i915_gem_object *obj;
3426 enum i915_cache_level level;
3427 int ret;
3428
3429 switch (args->caching) {
3430 case I915_CACHING_NONE:
3431 level = I915_CACHE_NONE;
3432 break;
3433 case I915_CACHING_CACHED:
3434 level = I915_CACHE_LLC;
3435 break;
3436 default:
3437 return -EINVAL;
3438 }
3439
3440 ret = i915_mutex_lock_interruptible(dev);
3441 if (ret)
3442 return ret;
3443
3444 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3445 if (&obj->base == NULL) {
3446 ret = -ENOENT;
3447 goto unlock;
3448 }
3449
3450 ret = i915_gem_object_set_cache_level(obj, level);
3451
3452 drm_gem_object_unreference(&obj->base);
3453 unlock:
3454 mutex_unlock(&dev->struct_mutex);
3455 return ret;
3456 }
3457
3458 /*
3459 * Prepare buffer for display plane (scanout, cursors, etc).
3460 * Can be called from an uninterruptible phase (modesetting) and allows
3461 * any flushes to be pipelined (for pageflips).
3462 */
3463 int
3464 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3465 u32 alignment,
3466 struct intel_ring_buffer *pipelined)
3467 {
3468 u32 old_read_domains, old_write_domain;
3469 int ret;
3470
3471 if (pipelined != obj->ring) {
3472 ret = i915_gem_object_sync(obj, pipelined);
3473 if (ret)
3474 return ret;
3475 }
3476
3477 /* The display engine is not coherent with the LLC cache on gen6. As
3478 * a result, we make sure that the pinning that is about to occur is
3479 * done with uncached PTEs. This is lowest common denominator for all
3480 * chipsets.
3481 *
3482 * However for gen6+, we could do better by using the GFDT bit instead
3483 * of uncaching, which would allow us to flush all the LLC-cached data
3484 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3485 */
3486 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3487 if (ret)
3488 return ret;
3489
3490 /* As the user may map the buffer once pinned in the display plane
3491 * (e.g. libkms for the bootup splash), we have to ensure that we
3492 * always use map_and_fenceable for all scanout buffers.
3493 */
3494 ret = i915_gem_object_pin(obj, alignment, true, false);
3495 if (ret)
3496 return ret;
3497
3498 i915_gem_object_flush_cpu_write_domain(obj);
3499
3500 old_write_domain = obj->base.write_domain;
3501 old_read_domains = obj->base.read_domains;
3502
3503 /* It should now be out of any other write domains, and we can update
3504 * the domain values for our changes.
3505 */
3506 obj->base.write_domain = 0;
3507 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3508
3509 trace_i915_gem_object_change_domain(obj,
3510 old_read_domains,
3511 old_write_domain);
3512
3513 return 0;
3514 }
3515
3516 int
3517 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3518 {
3519 int ret;
3520
3521 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3522 return 0;
3523
3524 ret = i915_gem_object_wait_rendering(obj, false);
3525 if (ret)
3526 return ret;
3527
3528 /* Ensure that we invalidate the GPU's caches and TLBs. */
3529 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3530 return 0;
3531 }
3532
3533 /**
3534 * Moves a single object to the CPU read, and possibly write domain.
3535 *
3536 * This function returns when the move is complete, including waiting on
3537 * flushes to occur.
3538 */
3539 int
3540 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3541 {
3542 uint32_t old_write_domain, old_read_domains;
3543 int ret;
3544
3545 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3546 return 0;
3547
3548 ret = i915_gem_object_wait_rendering(obj, !write);
3549 if (ret)
3550 return ret;
3551
3552 i915_gem_object_flush_gtt_write_domain(obj);
3553
3554 old_write_domain = obj->base.write_domain;
3555 old_read_domains = obj->base.read_domains;
3556
3557 /* Flush the CPU cache if it's still invalid. */
3558 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3559 i915_gem_clflush_object(obj);
3560
3561 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3562 }
3563
3564 /* It should now be out of any other write domains, and we can update
3565 * the domain values for our changes.
3566 */
3567 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3568
3569 /* If we're writing through the CPU, then the GPU read domains will
3570 * need to be invalidated at next use.
3571 */
3572 if (write) {
3573 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3574 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3575 }
3576
3577 trace_i915_gem_object_change_domain(obj,
3578 old_read_domains,
3579 old_write_domain);
3580
3581 return 0;
3582 }
3583
3584 /* Throttle our rendering by waiting until the ring has completed our requests
3585 * emitted over 20 msec ago.
3586 *
3587 * Note that if we were to use the current jiffies each time around the loop,
3588 * we wouldn't escape the function with any frames outstanding if the time to
3589 * render a frame was over 20ms.
3590 *
3591 * This should get us reasonable parallelism between CPU and GPU but also
3592 * relatively low latency when blocking on a particular request to finish.
3593 */
3594 static int
3595 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3596 {
3597 struct drm_i915_private *dev_priv = dev->dev_private;
3598 struct drm_i915_file_private *file_priv = file->driver_priv;
3599 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3600 struct drm_i915_gem_request *request;
3601 struct intel_ring_buffer *ring = NULL;
3602 unsigned reset_counter;
3603 u32 seqno = 0;
3604 int ret;
3605
3606 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3607 if (ret)
3608 return ret;
3609
3610 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3611 if (ret)
3612 return ret;
3613
3614 spin_lock(&file_priv->mm.lock);
3615 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3616 if (time_after_eq(request->emitted_jiffies, recent_enough))
3617 break;
3618
3619 ring = request->ring;
3620 seqno = request->seqno;
3621 }
3622 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3623 spin_unlock(&file_priv->mm.lock);
3624
3625 if (seqno == 0)
3626 return 0;
3627
3628 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3629 if (ret == 0)
3630 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3631
3632 return ret;
3633 }
3634
3635 int
3636 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3637 uint32_t alignment,
3638 bool map_and_fenceable,
3639 bool nonblocking)
3640 {
3641 int ret;
3642
3643 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3644 return -EBUSY;
3645
3646 if (obj->gtt_space != NULL) {
3647 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3648 (map_and_fenceable && !obj->map_and_fenceable)) {
3649 WARN(obj->pin_count,
3650 "bo is already pinned with incorrect alignment:"
3651 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3652 " obj->map_and_fenceable=%d\n",
3653 obj->gtt_offset, alignment,
3654 map_and_fenceable,
3655 obj->map_and_fenceable);
3656 ret = i915_gem_object_unbind(obj);
3657 if (ret)
3658 return ret;
3659 }
3660 }
3661
3662 if (obj->gtt_space == NULL) {
3663 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3664
3665 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3666 map_and_fenceable,
3667 nonblocking);
3668 if (ret)
3669 return ret;
3670
3671 if (!dev_priv->mm.aliasing_ppgtt)
3672 i915_gem_gtt_bind_object(obj, obj->cache_level);
3673 }
3674
3675 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3676 i915_gem_gtt_bind_object(obj, obj->cache_level);
3677
3678 obj->pin_count++;
3679 obj->pin_mappable |= map_and_fenceable;
3680
3681 return 0;
3682 }
3683
3684 void
3685 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3686 {
3687 BUG_ON(obj->pin_count == 0);
3688 BUG_ON(obj->gtt_space == NULL);
3689
3690 if (--obj->pin_count == 0)
3691 obj->pin_mappable = false;
3692 }
3693
3694 int
3695 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3696 struct drm_file *file)
3697 {
3698 struct drm_i915_gem_pin *args = data;
3699 struct drm_i915_gem_object *obj;
3700 int ret;
3701
3702 ret = i915_mutex_lock_interruptible(dev);
3703 if (ret)
3704 return ret;
3705
3706 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3707 if (&obj->base == NULL) {
3708 ret = -ENOENT;
3709 goto unlock;
3710 }
3711
3712 if (obj->madv != I915_MADV_WILLNEED) {
3713 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3714 ret = -EINVAL;
3715 goto out;
3716 }
3717
3718 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3719 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3720 args->handle);
3721 ret = -EINVAL;
3722 goto out;
3723 }
3724
3725 if (obj->user_pin_count == 0) {
3726 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3727 if (ret)
3728 goto out;
3729 }
3730
3731 obj->user_pin_count++;
3732 obj->pin_filp = file;
3733
3734 /* XXX - flush the CPU caches for pinned objects
3735 * as the X server doesn't manage domains yet
3736 */
3737 i915_gem_object_flush_cpu_write_domain(obj);
3738 args->offset = obj->gtt_offset;
3739 out:
3740 drm_gem_object_unreference(&obj->base);
3741 unlock:
3742 mutex_unlock(&dev->struct_mutex);
3743 return ret;
3744 }
3745
3746 int
3747 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3748 struct drm_file *file)
3749 {
3750 struct drm_i915_gem_pin *args = data;
3751 struct drm_i915_gem_object *obj;
3752 int ret;
3753
3754 ret = i915_mutex_lock_interruptible(dev);
3755 if (ret)
3756 return ret;
3757
3758 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3759 if (&obj->base == NULL) {
3760 ret = -ENOENT;
3761 goto unlock;
3762 }
3763
3764 if (obj->pin_filp != file) {
3765 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3766 args->handle);
3767 ret = -EINVAL;
3768 goto out;
3769 }
3770 obj->user_pin_count--;
3771 if (obj->user_pin_count == 0) {
3772 obj->pin_filp = NULL;
3773 i915_gem_object_unpin(obj);
3774 }
3775
3776 out:
3777 drm_gem_object_unreference(&obj->base);
3778 unlock:
3779 mutex_unlock(&dev->struct_mutex);
3780 return ret;
3781 }
3782
3783 int
3784 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3785 struct drm_file *file)
3786 {
3787 struct drm_i915_gem_busy *args = data;
3788 struct drm_i915_gem_object *obj;
3789 int ret;
3790
3791 ret = i915_mutex_lock_interruptible(dev);
3792 if (ret)
3793 return ret;
3794
3795 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3796 if (&obj->base == NULL) {
3797 ret = -ENOENT;
3798 goto unlock;
3799 }
3800
3801 /* Count all active objects as busy, even if they are currently not used
3802 * by the gpu. Users of this interface expect objects to eventually
3803 * become non-busy without any further actions, therefore emit any
3804 * necessary flushes here.
3805 */
3806 ret = i915_gem_object_flush_active(obj);
3807
3808 args->busy = obj->active;
3809 if (obj->ring) {
3810 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3811 args->busy |= intel_ring_flag(obj->ring) << 16;
3812 }
3813
3814 drm_gem_object_unreference(&obj->base);
3815 unlock:
3816 mutex_unlock(&dev->struct_mutex);
3817 return ret;
3818 }
3819
3820 int
3821 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3822 struct drm_file *file_priv)
3823 {
3824 return i915_gem_ring_throttle(dev, file_priv);
3825 }
3826
3827 int
3828 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3829 struct drm_file *file_priv)
3830 {
3831 struct drm_i915_gem_madvise *args = data;
3832 struct drm_i915_gem_object *obj;
3833 int ret;
3834
3835 switch (args->madv) {
3836 case I915_MADV_DONTNEED:
3837 case I915_MADV_WILLNEED:
3838 break;
3839 default:
3840 return -EINVAL;
3841 }
3842
3843 ret = i915_mutex_lock_interruptible(dev);
3844 if (ret)
3845 return ret;
3846
3847 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3848 if (&obj->base == NULL) {
3849 ret = -ENOENT;
3850 goto unlock;
3851 }
3852
3853 if (obj->pin_count) {
3854 ret = -EINVAL;
3855 goto out;
3856 }
3857
3858 if (obj->madv != __I915_MADV_PURGED)
3859 obj->madv = args->madv;
3860
3861 /* if the object is no longer attached, discard its backing storage */
3862 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3863 i915_gem_object_truncate(obj);
3864
3865 args->retained = obj->madv != __I915_MADV_PURGED;
3866
3867 out:
3868 drm_gem_object_unreference(&obj->base);
3869 unlock:
3870 mutex_unlock(&dev->struct_mutex);
3871 return ret;
3872 }
3873
3874 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3875 const struct drm_i915_gem_object_ops *ops)
3876 {
3877 INIT_LIST_HEAD(&obj->mm_list);
3878 INIT_LIST_HEAD(&obj->global_list);
3879 INIT_LIST_HEAD(&obj->ring_list);
3880 INIT_LIST_HEAD(&obj->exec_list);
3881
3882 obj->ops = ops;
3883
3884 obj->fence_reg = I915_FENCE_REG_NONE;
3885 obj->madv = I915_MADV_WILLNEED;
3886 /* Avoid an unnecessary call to unbind on the first bind. */
3887 obj->map_and_fenceable = true;
3888
3889 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3890 }
3891
3892 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3893 .get_pages = i915_gem_object_get_pages_gtt,
3894 .put_pages = i915_gem_object_put_pages_gtt,
3895 };
3896
3897 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3898 size_t size)
3899 {
3900 struct drm_i915_gem_object *obj;
3901 struct address_space *mapping;
3902 gfp_t mask;
3903
3904 obj = i915_gem_object_alloc(dev);
3905 if (obj == NULL)
3906 return NULL;
3907
3908 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3909 i915_gem_object_free(obj);
3910 return NULL;
3911 }
3912
3913 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3914 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3915 /* 965gm cannot relocate objects above 4GiB. */
3916 mask &= ~__GFP_HIGHMEM;
3917 mask |= __GFP_DMA32;
3918 }
3919
3920 mapping = file_inode(obj->base.filp)->i_mapping;
3921 mapping_set_gfp_mask(mapping, mask);
3922
3923 i915_gem_object_init(obj, &i915_gem_object_ops);
3924
3925 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3926 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3927
3928 if (HAS_LLC(dev)) {
3929 /* On some devices, we can have the GPU use the LLC (the CPU
3930 * cache) for about a 10% performance improvement
3931 * compared to uncached. Graphics requests other than
3932 * display scanout are coherent with the CPU in
3933 * accessing this cache. This means in this mode we
3934 * don't need to clflush on the CPU side, and on the
3935 * GPU side we only need to flush internal caches to
3936 * get data visible to the CPU.
3937 *
3938 * However, we maintain the display planes as UC, and so
3939 * need to rebind when first used as such.
3940 */
3941 obj->cache_level = I915_CACHE_LLC;
3942 } else
3943 obj->cache_level = I915_CACHE_NONE;
3944
3945 return obj;
3946 }
3947
3948 int i915_gem_init_object(struct drm_gem_object *obj)
3949 {
3950 BUG();
3951
3952 return 0;
3953 }
3954
3955 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3956 {
3957 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3958 struct drm_device *dev = obj->base.dev;
3959 drm_i915_private_t *dev_priv = dev->dev_private;
3960
3961 trace_i915_gem_object_destroy(obj);
3962
3963 if (obj->phys_obj)
3964 i915_gem_detach_phys_object(dev, obj);
3965
3966 obj->pin_count = 0;
3967 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3968 bool was_interruptible;
3969
3970 was_interruptible = dev_priv->mm.interruptible;
3971 dev_priv->mm.interruptible = false;
3972
3973 WARN_ON(i915_gem_object_unbind(obj));
3974
3975 dev_priv->mm.interruptible = was_interruptible;
3976 }
3977
3978 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3979 * before progressing. */
3980 if (obj->stolen)
3981 i915_gem_object_unpin_pages(obj);
3982
3983 if (WARN_ON(obj->pages_pin_count))
3984 obj->pages_pin_count = 0;
3985 i915_gem_object_put_pages(obj);
3986 i915_gem_object_free_mmap_offset(obj);
3987 i915_gem_object_release_stolen(obj);
3988
3989 BUG_ON(obj->pages);
3990
3991 if (obj->base.import_attach)
3992 drm_prime_gem_destroy(&obj->base, NULL);
3993
3994 drm_gem_object_release(&obj->base);
3995 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3996
3997 kfree(obj->bit_17);
3998 i915_gem_object_free(obj);
3999 }
4000
4001 int
4002 i915_gem_idle(struct drm_device *dev)
4003 {
4004 drm_i915_private_t *dev_priv = dev->dev_private;
4005 int ret;
4006
4007 mutex_lock(&dev->struct_mutex);
4008
4009 if (dev_priv->mm.suspended) {
4010 mutex_unlock(&dev->struct_mutex);
4011 return 0;
4012 }
4013
4014 ret = i915_gpu_idle(dev);
4015 if (ret) {
4016 mutex_unlock(&dev->struct_mutex);
4017 return ret;
4018 }
4019 i915_gem_retire_requests(dev);
4020
4021 /* Under UMS, be paranoid and evict. */
4022 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4023 i915_gem_evict_everything(dev);
4024
4025 i915_gem_reset_fences(dev);
4026
4027 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4028 * We need to replace this with a semaphore, or something.
4029 * And not confound mm.suspended!
4030 */
4031 dev_priv->mm.suspended = 1;
4032 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4033
4034 i915_kernel_lost_context(dev);
4035 i915_gem_cleanup_ringbuffer(dev);
4036
4037 mutex_unlock(&dev->struct_mutex);
4038
4039 /* Cancel the retire work handler, which should be idle now. */
4040 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4041
4042 return 0;
4043 }
4044
4045 void i915_gem_l3_remap(struct drm_device *dev)
4046 {
4047 drm_i915_private_t *dev_priv = dev->dev_private;
4048 u32 misccpctl;
4049 int i;
4050
4051 if (!HAS_L3_GPU_CACHE(dev))
4052 return;
4053
4054 if (!dev_priv->l3_parity.remap_info)
4055 return;
4056
4057 misccpctl = I915_READ(GEN7_MISCCPCTL);
4058 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4059 POSTING_READ(GEN7_MISCCPCTL);
4060
4061 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4062 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4063 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4064 DRM_DEBUG("0x%x was already programmed to %x\n",
4065 GEN7_L3LOG_BASE + i, remap);
4066 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4067 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4068 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4069 }
4070
4071 /* Make sure all the writes land before disabling dop clock gating */
4072 POSTING_READ(GEN7_L3LOG_BASE);
4073
4074 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4075 }
4076
4077 void i915_gem_init_swizzling(struct drm_device *dev)
4078 {
4079 drm_i915_private_t *dev_priv = dev->dev_private;
4080
4081 if (INTEL_INFO(dev)->gen < 5 ||
4082 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4083 return;
4084
4085 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4086 DISP_TILE_SURFACE_SWIZZLING);
4087
4088 if (IS_GEN5(dev))
4089 return;
4090
4091 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4092 if (IS_GEN6(dev))
4093 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4094 else if (IS_GEN7(dev))
4095 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4096 else
4097 BUG();
4098 }
4099
4100 static bool
4101 intel_enable_blt(struct drm_device *dev)
4102 {
4103 if (!HAS_BLT(dev))
4104 return false;
4105
4106 /* The blitter was dysfunctional on early prototypes */
4107 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4108 DRM_INFO("BLT not supported on this pre-production hardware;"
4109 " graphics performance will be degraded.\n");
4110 return false;
4111 }
4112
4113 return true;
4114 }
4115
4116 static int i915_gem_init_rings(struct drm_device *dev)
4117 {
4118 struct drm_i915_private *dev_priv = dev->dev_private;
4119 int ret;
4120
4121 ret = intel_init_render_ring_buffer(dev);
4122 if (ret)
4123 return ret;
4124
4125 if (HAS_BSD(dev)) {
4126 ret = intel_init_bsd_ring_buffer(dev);
4127 if (ret)
4128 goto cleanup_render_ring;
4129 }
4130
4131 if (intel_enable_blt(dev)) {
4132 ret = intel_init_blt_ring_buffer(dev);
4133 if (ret)
4134 goto cleanup_bsd_ring;
4135 }
4136
4137 if (HAS_VEBOX(dev)) {
4138 ret = intel_init_vebox_ring_buffer(dev);
4139 if (ret)
4140 goto cleanup_blt_ring;
4141 }
4142
4143
4144 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4145 if (ret)
4146 goto cleanup_vebox_ring;
4147
4148 return 0;
4149
4150 cleanup_vebox_ring:
4151 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4152 cleanup_blt_ring:
4153 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4154 cleanup_bsd_ring:
4155 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4156 cleanup_render_ring:
4157 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4158
4159 return ret;
4160 }
4161
4162 int
4163 i915_gem_init_hw(struct drm_device *dev)
4164 {
4165 drm_i915_private_t *dev_priv = dev->dev_private;
4166 int ret;
4167
4168 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4169 return -EIO;
4170
4171 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4172 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4173
4174 if (HAS_PCH_NOP(dev)) {
4175 u32 temp = I915_READ(GEN7_MSG_CTL);
4176 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4177 I915_WRITE(GEN7_MSG_CTL, temp);
4178 }
4179
4180 i915_gem_l3_remap(dev);
4181
4182 i915_gem_init_swizzling(dev);
4183
4184 ret = i915_gem_init_rings(dev);
4185 if (ret)
4186 return ret;
4187
4188 /*
4189 * XXX: There was some w/a described somewhere suggesting loading
4190 * contexts before PPGTT.
4191 */
4192 i915_gem_context_init(dev);
4193 if (dev_priv->mm.aliasing_ppgtt) {
4194 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4195 if (ret) {
4196 i915_gem_cleanup_aliasing_ppgtt(dev);
4197 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4198 }
4199 }
4200
4201 return 0;
4202 }
4203
4204 int i915_gem_init(struct drm_device *dev)
4205 {
4206 struct drm_i915_private *dev_priv = dev->dev_private;
4207 int ret;
4208
4209 mutex_lock(&dev->struct_mutex);
4210
4211 if (IS_VALLEYVIEW(dev)) {
4212 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4213 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4214 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4215 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4216 }
4217
4218 i915_gem_init_global_gtt(dev);
4219
4220 ret = i915_gem_init_hw(dev);
4221 mutex_unlock(&dev->struct_mutex);
4222 if (ret) {
4223 i915_gem_cleanup_aliasing_ppgtt(dev);
4224 return ret;
4225 }
4226
4227 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4228 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4229 dev_priv->dri1.allow_batchbuffer = 1;
4230 return 0;
4231 }
4232
4233 void
4234 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4235 {
4236 drm_i915_private_t *dev_priv = dev->dev_private;
4237 struct intel_ring_buffer *ring;
4238 int i;
4239
4240 for_each_ring(ring, dev_priv, i)
4241 intel_cleanup_ring_buffer(ring);
4242 }
4243
4244 int
4245 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4246 struct drm_file *file_priv)
4247 {
4248 drm_i915_private_t *dev_priv = dev->dev_private;
4249 int ret;
4250
4251 if (drm_core_check_feature(dev, DRIVER_MODESET))
4252 return 0;
4253
4254 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4255 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4256 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4257 }
4258
4259 mutex_lock(&dev->struct_mutex);
4260 dev_priv->mm.suspended = 0;
4261
4262 ret = i915_gem_init_hw(dev);
4263 if (ret != 0) {
4264 mutex_unlock(&dev->struct_mutex);
4265 return ret;
4266 }
4267
4268 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4269 mutex_unlock(&dev->struct_mutex);
4270
4271 ret = drm_irq_install(dev);
4272 if (ret)
4273 goto cleanup_ringbuffer;
4274
4275 return 0;
4276
4277 cleanup_ringbuffer:
4278 mutex_lock(&dev->struct_mutex);
4279 i915_gem_cleanup_ringbuffer(dev);
4280 dev_priv->mm.suspended = 1;
4281 mutex_unlock(&dev->struct_mutex);
4282
4283 return ret;
4284 }
4285
4286 int
4287 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4288 struct drm_file *file_priv)
4289 {
4290 if (drm_core_check_feature(dev, DRIVER_MODESET))
4291 return 0;
4292
4293 drm_irq_uninstall(dev);
4294 return i915_gem_idle(dev);
4295 }
4296
4297 void
4298 i915_gem_lastclose(struct drm_device *dev)
4299 {
4300 int ret;
4301
4302 if (drm_core_check_feature(dev, DRIVER_MODESET))
4303 return;
4304
4305 ret = i915_gem_idle(dev);
4306 if (ret)
4307 DRM_ERROR("failed to idle hardware: %d\n", ret);
4308 }
4309
4310 static void
4311 init_ring_lists(struct intel_ring_buffer *ring)
4312 {
4313 INIT_LIST_HEAD(&ring->active_list);
4314 INIT_LIST_HEAD(&ring->request_list);
4315 }
4316
4317 void
4318 i915_gem_load(struct drm_device *dev)
4319 {
4320 drm_i915_private_t *dev_priv = dev->dev_private;
4321 int i;
4322
4323 dev_priv->slab =
4324 kmem_cache_create("i915_gem_object",
4325 sizeof(struct drm_i915_gem_object), 0,
4326 SLAB_HWCACHE_ALIGN,
4327 NULL);
4328
4329 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4330 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4331 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4332 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4333 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4334 for (i = 0; i < I915_NUM_RINGS; i++)
4335 init_ring_lists(&dev_priv->ring[i]);
4336 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4337 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4338 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4339 i915_gem_retire_work_handler);
4340 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4341
4342 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4343 if (IS_GEN3(dev)) {
4344 I915_WRITE(MI_ARB_STATE,
4345 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4346 }
4347
4348 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4349
4350 /* Old X drivers will take 0-2 for front, back, depth buffers */
4351 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4352 dev_priv->fence_reg_start = 3;
4353
4354 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4355 dev_priv->num_fence_regs = 32;
4356 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4357 dev_priv->num_fence_regs = 16;
4358 else
4359 dev_priv->num_fence_regs = 8;
4360
4361 /* Initialize fence registers to zero */
4362 i915_gem_reset_fences(dev);
4363
4364 i915_gem_detect_bit_6_swizzle(dev);
4365 init_waitqueue_head(&dev_priv->pending_flip_queue);
4366
4367 dev_priv->mm.interruptible = true;
4368
4369 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4370 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4371 register_shrinker(&dev_priv->mm.inactive_shrinker);
4372 }
4373
4374 /*
4375 * Create a physically contiguous memory object for this object
4376 * e.g. for cursor + overlay regs
4377 */
4378 static int i915_gem_init_phys_object(struct drm_device *dev,
4379 int id, int size, int align)
4380 {
4381 drm_i915_private_t *dev_priv = dev->dev_private;
4382 struct drm_i915_gem_phys_object *phys_obj;
4383 int ret;
4384
4385 if (dev_priv->mm.phys_objs[id - 1] || !size)
4386 return 0;
4387
4388 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4389 if (!phys_obj)
4390 return -ENOMEM;
4391
4392 phys_obj->id = id;
4393
4394 phys_obj->handle = drm_pci_alloc(dev, size, align);
4395 if (!phys_obj->handle) {
4396 ret = -ENOMEM;
4397 goto kfree_obj;
4398 }
4399 #ifdef CONFIG_X86
4400 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4401 #endif
4402
4403 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4404
4405 return 0;
4406 kfree_obj:
4407 kfree(phys_obj);
4408 return ret;
4409 }
4410
4411 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4412 {
4413 drm_i915_private_t *dev_priv = dev->dev_private;
4414 struct drm_i915_gem_phys_object *phys_obj;
4415
4416 if (!dev_priv->mm.phys_objs[id - 1])
4417 return;
4418
4419 phys_obj = dev_priv->mm.phys_objs[id - 1];
4420 if (phys_obj->cur_obj) {
4421 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4422 }
4423
4424 #ifdef CONFIG_X86
4425 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4426 #endif
4427 drm_pci_free(dev, phys_obj->handle);
4428 kfree(phys_obj);
4429 dev_priv->mm.phys_objs[id - 1] = NULL;
4430 }
4431
4432 void i915_gem_free_all_phys_object(struct drm_device *dev)
4433 {
4434 int i;
4435
4436 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4437 i915_gem_free_phys_object(dev, i);
4438 }
4439
4440 void i915_gem_detach_phys_object(struct drm_device *dev,
4441 struct drm_i915_gem_object *obj)
4442 {
4443 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4444 char *vaddr;
4445 int i;
4446 int page_count;
4447
4448 if (!obj->phys_obj)
4449 return;
4450 vaddr = obj->phys_obj->handle->vaddr;
4451
4452 page_count = obj->base.size / PAGE_SIZE;
4453 for (i = 0; i < page_count; i++) {
4454 struct page *page = shmem_read_mapping_page(mapping, i);
4455 if (!IS_ERR(page)) {
4456 char *dst = kmap_atomic(page);
4457 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4458 kunmap_atomic(dst);
4459
4460 drm_clflush_pages(&page, 1);
4461
4462 set_page_dirty(page);
4463 mark_page_accessed(page);
4464 page_cache_release(page);
4465 }
4466 }
4467 i915_gem_chipset_flush(dev);
4468
4469 obj->phys_obj->cur_obj = NULL;
4470 obj->phys_obj = NULL;
4471 }
4472
4473 int
4474 i915_gem_attach_phys_object(struct drm_device *dev,
4475 struct drm_i915_gem_object *obj,
4476 int id,
4477 int align)
4478 {
4479 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4480 drm_i915_private_t *dev_priv = dev->dev_private;
4481 int ret = 0;
4482 int page_count;
4483 int i;
4484
4485 if (id > I915_MAX_PHYS_OBJECT)
4486 return -EINVAL;
4487
4488 if (obj->phys_obj) {
4489 if (obj->phys_obj->id == id)
4490 return 0;
4491 i915_gem_detach_phys_object(dev, obj);
4492 }
4493
4494 /* create a new object */
4495 if (!dev_priv->mm.phys_objs[id - 1]) {
4496 ret = i915_gem_init_phys_object(dev, id,
4497 obj->base.size, align);
4498 if (ret) {
4499 DRM_ERROR("failed to init phys object %d size: %zu\n",
4500 id, obj->base.size);
4501 return ret;
4502 }
4503 }
4504
4505 /* bind to the object */
4506 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4507 obj->phys_obj->cur_obj = obj;
4508
4509 page_count = obj->base.size / PAGE_SIZE;
4510
4511 for (i = 0; i < page_count; i++) {
4512 struct page *page;
4513 char *dst, *src;
4514
4515 page = shmem_read_mapping_page(mapping, i);
4516 if (IS_ERR(page))
4517 return PTR_ERR(page);
4518
4519 src = kmap_atomic(page);
4520 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4521 memcpy(dst, src, PAGE_SIZE);
4522 kunmap_atomic(src);
4523
4524 mark_page_accessed(page);
4525 page_cache_release(page);
4526 }
4527
4528 return 0;
4529 }
4530
4531 static int
4532 i915_gem_phys_pwrite(struct drm_device *dev,
4533 struct drm_i915_gem_object *obj,
4534 struct drm_i915_gem_pwrite *args,
4535 struct drm_file *file_priv)
4536 {
4537 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4538 char __user *user_data = to_user_ptr(args->data_ptr);
4539
4540 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4541 unsigned long unwritten;
4542
4543 /* The physical object once assigned is fixed for the lifetime
4544 * of the obj, so we can safely drop the lock and continue
4545 * to access vaddr.
4546 */
4547 mutex_unlock(&dev->struct_mutex);
4548 unwritten = copy_from_user(vaddr, user_data, args->size);
4549 mutex_lock(&dev->struct_mutex);
4550 if (unwritten)
4551 return -EFAULT;
4552 }
4553
4554 i915_gem_chipset_flush(dev);
4555 return 0;
4556 }
4557
4558 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4559 {
4560 struct drm_i915_file_private *file_priv = file->driver_priv;
4561
4562 /* Clean up our request list when the client is going away, so that
4563 * later retire_requests won't dereference our soon-to-be-gone
4564 * file_priv.
4565 */
4566 spin_lock(&file_priv->mm.lock);
4567 while (!list_empty(&file_priv->mm.request_list)) {
4568 struct drm_i915_gem_request *request;
4569
4570 request = list_first_entry(&file_priv->mm.request_list,
4571 struct drm_i915_gem_request,
4572 client_list);
4573 list_del(&request->client_list);
4574 request->file_priv = NULL;
4575 }
4576 spin_unlock(&file_priv->mm.lock);
4577 }
4578
4579 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4580 {
4581 if (!mutex_is_locked(mutex))
4582 return false;
4583
4584 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4585 return mutex->owner == task;
4586 #else
4587 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4588 return false;
4589 #endif
4590 }
4591
4592 static int
4593 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4594 {
4595 struct drm_i915_private *dev_priv =
4596 container_of(shrinker,
4597 struct drm_i915_private,
4598 mm.inactive_shrinker);
4599 struct drm_device *dev = dev_priv->dev;
4600 struct drm_i915_gem_object *obj;
4601 int nr_to_scan = sc->nr_to_scan;
4602 bool unlock = true;
4603 int cnt;
4604
4605 if (!mutex_trylock(&dev->struct_mutex)) {
4606 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4607 return 0;
4608
4609 if (dev_priv->mm.shrinker_no_lock_stealing)
4610 return 0;
4611
4612 unlock = false;
4613 }
4614
4615 if (nr_to_scan) {
4616 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4617 if (nr_to_scan > 0)
4618 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4619 false);
4620 if (nr_to_scan > 0)
4621 i915_gem_shrink_all(dev_priv);
4622 }
4623
4624 cnt = 0;
4625 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4626 if (obj->pages_pin_count == 0)
4627 cnt += obj->base.size >> PAGE_SHIFT;
4628 list_for_each_entry(obj, &dev_priv->mm.inactive_list, global_list)
4629 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4630 cnt += obj->base.size >> PAGE_SHIFT;
4631
4632 if (unlock)
4633 mutex_unlock(&dev->struct_mutex);
4634 return cnt;
4635 }
This page took 0.124452 seconds and 6 git commands to generate.