drm/i915: Rename struct intel_context
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51 {
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 return true;
59
60 return obj->pin_display;
61 }
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66 {
67 spin_lock(&dev_priv->mm.object_stat_lock);
68 dev_priv->mm.object_count++;
69 dev_priv->mm.object_memory += size;
70 spin_unlock(&dev_priv->mm.object_stat_lock);
71 }
72
73 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75 {
76 spin_lock(&dev_priv->mm.object_stat_lock);
77 dev_priv->mm.object_count--;
78 dev_priv->mm.object_memory -= size;
79 spin_unlock(&dev_priv->mm.object_stat_lock);
80 }
81
82 static int
83 i915_gem_wait_for_error(struct i915_gpu_error *error)
84 {
85 int ret;
86
87 if (!i915_reset_in_progress(error))
88 return 0;
89
90 /*
91 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92 * userspace. If it takes that long something really bad is going on and
93 * we should simply try to bail out and fail as gracefully as possible.
94 */
95 ret = wait_event_interruptible_timeout(error->reset_queue,
96 !i915_reset_in_progress(error),
97 10*HZ);
98 if (ret == 0) {
99 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100 return -EIO;
101 } else if (ret < 0) {
102 return ret;
103 } else {
104 return 0;
105 }
106 }
107
108 int i915_mutex_lock_interruptible(struct drm_device *dev)
109 {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 int ret;
112
113 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
121 WARN_ON(i915_verify_lists(dev));
122 return 0;
123 }
124
125 int
126 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127 struct drm_file *file)
128 {
129 struct drm_i915_private *dev_priv = to_i915(dev);
130 struct i915_ggtt *ggtt = &dev_priv->ggtt;
131 struct drm_i915_gem_get_aperture *args = data;
132 struct i915_vma *vma;
133 size_t pinned;
134
135 pinned = 0;
136 mutex_lock(&dev->struct_mutex);
137 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138 if (vma->pin_count)
139 pinned += vma->node.size;
140 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141 if (vma->pin_count)
142 pinned += vma->node.size;
143 mutex_unlock(&dev->struct_mutex);
144
145 args->aper_size = ggtt->base.total;
146 args->aper_available_size = args->aper_size - pinned;
147
148 return 0;
149 }
150
151 static int
152 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153 {
154 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155 char *vaddr = obj->phys_handle->vaddr;
156 struct sg_table *st;
157 struct scatterlist *sg;
158 int i;
159
160 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161 return -EINVAL;
162
163 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164 struct page *page;
165 char *src;
166
167 page = shmem_read_mapping_page(mapping, i);
168 if (IS_ERR(page))
169 return PTR_ERR(page);
170
171 src = kmap_atomic(page);
172 memcpy(vaddr, src, PAGE_SIZE);
173 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174 kunmap_atomic(src);
175
176 put_page(page);
177 vaddr += PAGE_SIZE;
178 }
179
180 i915_gem_chipset_flush(to_i915(obj->base.dev));
181
182 st = kmalloc(sizeof(*st), GFP_KERNEL);
183 if (st == NULL)
184 return -ENOMEM;
185
186 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187 kfree(st);
188 return -ENOMEM;
189 }
190
191 sg = st->sgl;
192 sg->offset = 0;
193 sg->length = obj->base.size;
194
195 sg_dma_address(sg) = obj->phys_handle->busaddr;
196 sg_dma_len(sg) = obj->base.size;
197
198 obj->pages = st;
199 return 0;
200 }
201
202 static void
203 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204 {
205 int ret;
206
207 BUG_ON(obj->madv == __I915_MADV_PURGED);
208
209 ret = i915_gem_object_set_to_cpu_domain(obj, true);
210 if (WARN_ON(ret)) {
211 /* In the event of a disaster, abandon all caches and
212 * hope for the best.
213 */
214 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215 }
216
217 if (obj->madv == I915_MADV_DONTNEED)
218 obj->dirty = 0;
219
220 if (obj->dirty) {
221 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222 char *vaddr = obj->phys_handle->vaddr;
223 int i;
224
225 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 struct page *page;
227 char *dst;
228
229 page = shmem_read_mapping_page(mapping, i);
230 if (IS_ERR(page))
231 continue;
232
233 dst = kmap_atomic(page);
234 drm_clflush_virt_range(vaddr, PAGE_SIZE);
235 memcpy(dst, vaddr, PAGE_SIZE);
236 kunmap_atomic(dst);
237
238 set_page_dirty(page);
239 if (obj->madv == I915_MADV_WILLNEED)
240 mark_page_accessed(page);
241 put_page(page);
242 vaddr += PAGE_SIZE;
243 }
244 obj->dirty = 0;
245 }
246
247 sg_free_table(obj->pages);
248 kfree(obj->pages);
249 }
250
251 static void
252 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253 {
254 drm_pci_free(obj->base.dev, obj->phys_handle);
255 }
256
257 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258 .get_pages = i915_gem_object_get_pages_phys,
259 .put_pages = i915_gem_object_put_pages_phys,
260 .release = i915_gem_object_release_phys,
261 };
262
263 static int
264 drop_pages(struct drm_i915_gem_object *obj)
265 {
266 struct i915_vma *vma, *next;
267 int ret;
268
269 drm_gem_object_reference(&obj->base);
270 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271 if (i915_vma_unbind(vma))
272 break;
273
274 ret = i915_gem_object_put_pages(obj);
275 drm_gem_object_unreference(&obj->base);
276
277 return ret;
278 }
279
280 int
281 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282 int align)
283 {
284 drm_dma_handle_t *phys;
285 int ret;
286
287 if (obj->phys_handle) {
288 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289 return -EBUSY;
290
291 return 0;
292 }
293
294 if (obj->madv != I915_MADV_WILLNEED)
295 return -EFAULT;
296
297 if (obj->base.filp == NULL)
298 return -EINVAL;
299
300 ret = drop_pages(obj);
301 if (ret)
302 return ret;
303
304 /* create a new object */
305 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306 if (!phys)
307 return -ENOMEM;
308
309 obj->phys_handle = phys;
310 obj->ops = &i915_gem_phys_ops;
311
312 return i915_gem_object_get_pages(obj);
313 }
314
315 static int
316 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317 struct drm_i915_gem_pwrite *args,
318 struct drm_file *file_priv)
319 {
320 struct drm_device *dev = obj->base.dev;
321 void *vaddr = obj->phys_handle->vaddr + args->offset;
322 char __user *user_data = to_user_ptr(args->data_ptr);
323 int ret = 0;
324
325 /* We manually control the domain here and pretend that it
326 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327 */
328 ret = i915_gem_object_wait_rendering(obj, false);
329 if (ret)
330 return ret;
331
332 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334 unsigned long unwritten;
335
336 /* The physical object once assigned is fixed for the lifetime
337 * of the obj, so we can safely drop the lock and continue
338 * to access vaddr.
339 */
340 mutex_unlock(&dev->struct_mutex);
341 unwritten = copy_from_user(vaddr, user_data, args->size);
342 mutex_lock(&dev->struct_mutex);
343 if (unwritten) {
344 ret = -EFAULT;
345 goto out;
346 }
347 }
348
349 drm_clflush_virt_range(vaddr, args->size);
350 i915_gem_chipset_flush(to_i915(dev));
351
352 out:
353 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354 return ret;
355 }
356
357 void *i915_gem_object_alloc(struct drm_device *dev)
358 {
359 struct drm_i915_private *dev_priv = dev->dev_private;
360 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 }
362
363 void i915_gem_object_free(struct drm_i915_gem_object *obj)
364 {
365 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366 kmem_cache_free(dev_priv->objects, obj);
367 }
368
369 static int
370 i915_gem_create(struct drm_file *file,
371 struct drm_device *dev,
372 uint64_t size,
373 uint32_t *handle_p)
374 {
375 struct drm_i915_gem_object *obj;
376 int ret;
377 u32 handle;
378
379 size = roundup(size, PAGE_SIZE);
380 if (size == 0)
381 return -EINVAL;
382
383 /* Allocate the new object */
384 obj = i915_gem_object_create(dev, size);
385 if (IS_ERR(obj))
386 return PTR_ERR(obj);
387
388 ret = drm_gem_handle_create(file, &obj->base, &handle);
389 /* drop reference from allocate - handle holds it now */
390 drm_gem_object_unreference_unlocked(&obj->base);
391 if (ret)
392 return ret;
393
394 *handle_p = handle;
395 return 0;
396 }
397
398 int
399 i915_gem_dumb_create(struct drm_file *file,
400 struct drm_device *dev,
401 struct drm_mode_create_dumb *args)
402 {
403 /* have to work out size/pitch and return them */
404 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405 args->size = args->pitch * args->height;
406 return i915_gem_create(file, dev,
407 args->size, &args->handle);
408 }
409
410 /**
411 * Creates a new mm object and returns a handle to it.
412 */
413 int
414 i915_gem_create_ioctl(struct drm_device *dev, void *data,
415 struct drm_file *file)
416 {
417 struct drm_i915_gem_create *args = data;
418
419 return i915_gem_create(file, dev,
420 args->size, &args->handle);
421 }
422
423 static inline int
424 __copy_to_user_swizzled(char __user *cpu_vaddr,
425 const char *gpu_vaddr, int gpu_offset,
426 int length)
427 {
428 int ret, cpu_offset = 0;
429
430 while (length > 0) {
431 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432 int this_length = min(cacheline_end - gpu_offset, length);
433 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436 gpu_vaddr + swizzled_gpu_offset,
437 this_length);
438 if (ret)
439 return ret + length;
440
441 cpu_offset += this_length;
442 gpu_offset += this_length;
443 length -= this_length;
444 }
445
446 return 0;
447 }
448
449 static inline int
450 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451 const char __user *cpu_vaddr,
452 int length)
453 {
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462 cpu_vaddr + cpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473 }
474
475 /*
476 * Pins the specified object's pages and synchronizes the object with
477 * GPU accesses. Sets needs_clflush to non-zero if the caller should
478 * flush the object from the CPU cache.
479 */
480 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481 int *needs_clflush)
482 {
483 int ret;
484
485 *needs_clflush = 0;
486
487 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488 return -EINVAL;
489
490 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491 /* If we're not in the cpu read domain, set ourself into the gtt
492 * read domain and manually flush cachelines (if required). This
493 * optimizes for the case when the gpu will dirty the data
494 * anyway again before the next pread happens. */
495 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496 obj->cache_level);
497 ret = i915_gem_object_wait_rendering(obj, true);
498 if (ret)
499 return ret;
500 }
501
502 ret = i915_gem_object_get_pages(obj);
503 if (ret)
504 return ret;
505
506 i915_gem_object_pin_pages(obj);
507
508 return ret;
509 }
510
511 /* Per-page copy function for the shmem pread fastpath.
512 * Flushes invalid cachelines before reading the target if
513 * needs_clflush is set. */
514 static int
515 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516 char __user *user_data,
517 bool page_do_bit17_swizzling, bool needs_clflush)
518 {
519 char *vaddr;
520 int ret;
521
522 if (unlikely(page_do_bit17_swizzling))
523 return -EINVAL;
524
525 vaddr = kmap_atomic(page);
526 if (needs_clflush)
527 drm_clflush_virt_range(vaddr + shmem_page_offset,
528 page_length);
529 ret = __copy_to_user_inatomic(user_data,
530 vaddr + shmem_page_offset,
531 page_length);
532 kunmap_atomic(vaddr);
533
534 return ret ? -EFAULT : 0;
535 }
536
537 static void
538 shmem_clflush_swizzled_range(char *addr, unsigned long length,
539 bool swizzled)
540 {
541 if (unlikely(swizzled)) {
542 unsigned long start = (unsigned long) addr;
543 unsigned long end = (unsigned long) addr + length;
544
545 /* For swizzling simply ensure that we always flush both
546 * channels. Lame, but simple and it works. Swizzled
547 * pwrite/pread is far from a hotpath - current userspace
548 * doesn't use it at all. */
549 start = round_down(start, 128);
550 end = round_up(end, 128);
551
552 drm_clflush_virt_range((void *)start, end - start);
553 } else {
554 drm_clflush_virt_range(addr, length);
555 }
556
557 }
558
559 /* Only difference to the fast-path function is that this can handle bit17
560 * and uses non-atomic copy and kmap functions. */
561 static int
562 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563 char __user *user_data,
564 bool page_do_bit17_swizzling, bool needs_clflush)
565 {
566 char *vaddr;
567 int ret;
568
569 vaddr = kmap(page);
570 if (needs_clflush)
571 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572 page_length,
573 page_do_bit17_swizzling);
574
575 if (page_do_bit17_swizzling)
576 ret = __copy_to_user_swizzled(user_data,
577 vaddr, shmem_page_offset,
578 page_length);
579 else
580 ret = __copy_to_user(user_data,
581 vaddr + shmem_page_offset,
582 page_length);
583 kunmap(page);
584
585 return ret ? - EFAULT : 0;
586 }
587
588 static int
589 i915_gem_shmem_pread(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pread *args,
592 struct drm_file *file)
593 {
594 char __user *user_data;
595 ssize_t remain;
596 loff_t offset;
597 int shmem_page_offset, page_length, ret = 0;
598 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599 int prefaulted = 0;
600 int needs_clflush = 0;
601 struct sg_page_iter sg_iter;
602
603 user_data = to_user_ptr(args->data_ptr);
604 remain = args->size;
605
606 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607
608 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609 if (ret)
610 return ret;
611
612 offset = args->offset;
613
614 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615 offset >> PAGE_SHIFT) {
616 struct page *page = sg_page_iter_page(&sg_iter);
617
618 if (remain <= 0)
619 break;
620
621 /* Operation in this page
622 *
623 * shmem_page_offset = offset within page in shmem file
624 * page_length = bytes to copy for this page
625 */
626 shmem_page_offset = offset_in_page(offset);
627 page_length = remain;
628 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629 page_length = PAGE_SIZE - shmem_page_offset;
630
631 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632 (page_to_phys(page) & (1 << 17)) != 0;
633
634 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635 user_data, page_do_bit17_swizzling,
636 needs_clflush);
637 if (ret == 0)
638 goto next_page;
639
640 mutex_unlock(&dev->struct_mutex);
641
642 if (likely(!i915.prefault_disable) && !prefaulted) {
643 ret = fault_in_multipages_writeable(user_data, remain);
644 /* Userspace is tricking us, but we've already clobbered
645 * its pages with the prefault and promised to write the
646 * data up to the first fault. Hence ignore any errors
647 * and just continue. */
648 (void)ret;
649 prefaulted = 1;
650 }
651
652 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653 user_data, page_do_bit17_swizzling,
654 needs_clflush);
655
656 mutex_lock(&dev->struct_mutex);
657
658 if (ret)
659 goto out;
660
661 next_page:
662 remain -= page_length;
663 user_data += page_length;
664 offset += page_length;
665 }
666
667 out:
668 i915_gem_object_unpin_pages(obj);
669
670 return ret;
671 }
672
673 /**
674 * Reads data from the object referenced by handle.
675 *
676 * On error, the contents of *data are undefined.
677 */
678 int
679 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680 struct drm_file *file)
681 {
682 struct drm_i915_gem_pread *args = data;
683 struct drm_i915_gem_object *obj;
684 int ret = 0;
685
686 if (args->size == 0)
687 return 0;
688
689 if (!access_ok(VERIFY_WRITE,
690 to_user_ptr(args->data_ptr),
691 args->size))
692 return -EFAULT;
693
694 ret = i915_mutex_lock_interruptible(dev);
695 if (ret)
696 return ret;
697
698 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
699 if (&obj->base == NULL) {
700 ret = -ENOENT;
701 goto unlock;
702 }
703
704 /* Bounds check source. */
705 if (args->offset > obj->base.size ||
706 args->size > obj->base.size - args->offset) {
707 ret = -EINVAL;
708 goto out;
709 }
710
711 /* prime objects have no backing filp to GEM pread/pwrite
712 * pages from.
713 */
714 if (!obj->base.filp) {
715 ret = -EINVAL;
716 goto out;
717 }
718
719 trace_i915_gem_object_pread(obj, args->offset, args->size);
720
721 ret = i915_gem_shmem_pread(dev, obj, args, file);
722
723 out:
724 drm_gem_object_unreference(&obj->base);
725 unlock:
726 mutex_unlock(&dev->struct_mutex);
727 return ret;
728 }
729
730 /* This is the fast write path which cannot handle
731 * page faults in the source data
732 */
733
734 static inline int
735 fast_user_write(struct io_mapping *mapping,
736 loff_t page_base, int page_offset,
737 char __user *user_data,
738 int length)
739 {
740 void __iomem *vaddr_atomic;
741 void *vaddr;
742 unsigned long unwritten;
743
744 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745 /* We can use the cpu mem copy function because this is X86. */
746 vaddr = (void __force*)vaddr_atomic + page_offset;
747 unwritten = __copy_from_user_inatomic_nocache(vaddr,
748 user_data, length);
749 io_mapping_unmap_atomic(vaddr_atomic);
750 return unwritten;
751 }
752
753 /**
754 * This is the fast pwrite path, where we copy the data directly from the
755 * user into the GTT, uncached.
756 */
757 static int
758 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759 struct drm_i915_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file)
762 {
763 struct drm_i915_private *dev_priv = to_i915(dev);
764 struct i915_ggtt *ggtt = &dev_priv->ggtt;
765 ssize_t remain;
766 loff_t offset, page_base;
767 char __user *user_data;
768 int page_offset, page_length, ret;
769
770 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
771 if (ret)
772 goto out;
773
774 ret = i915_gem_object_set_to_gtt_domain(obj, true);
775 if (ret)
776 goto out_unpin;
777
778 ret = i915_gem_object_put_fence(obj);
779 if (ret)
780 goto out_unpin;
781
782 user_data = to_user_ptr(args->data_ptr);
783 remain = args->size;
784
785 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786
787 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788
789 while (remain > 0) {
790 /* Operation in this page
791 *
792 * page_base = page offset within aperture
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
795 */
796 page_base = offset & PAGE_MASK;
797 page_offset = offset_in_page(offset);
798 page_length = remain;
799 if ((page_offset + remain) > PAGE_SIZE)
800 page_length = PAGE_SIZE - page_offset;
801
802 /* If we get a fault while copying data, then (presumably) our
803 * source page isn't available. Return the error and we'll
804 * retry in the slow path.
805 */
806 if (fast_user_write(ggtt->mappable, page_base,
807 page_offset, user_data, page_length)) {
808 ret = -EFAULT;
809 goto out_flush;
810 }
811
812 remain -= page_length;
813 user_data += page_length;
814 offset += page_length;
815 }
816
817 out_flush:
818 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
819 out_unpin:
820 i915_gem_object_ggtt_unpin(obj);
821 out:
822 return ret;
823 }
824
825 /* Per-page copy function for the shmem pwrite fastpath.
826 * Flushes invalid cachelines before writing to the target if
827 * needs_clflush_before is set and flushes out any written cachelines after
828 * writing if needs_clflush is set. */
829 static int
830 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831 char __user *user_data,
832 bool page_do_bit17_swizzling,
833 bool needs_clflush_before,
834 bool needs_clflush_after)
835 {
836 char *vaddr;
837 int ret;
838
839 if (unlikely(page_do_bit17_swizzling))
840 return -EINVAL;
841
842 vaddr = kmap_atomic(page);
843 if (needs_clflush_before)
844 drm_clflush_virt_range(vaddr + shmem_page_offset,
845 page_length);
846 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847 user_data, page_length);
848 if (needs_clflush_after)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 kunmap_atomic(vaddr);
852
853 return ret ? -EFAULT : 0;
854 }
855
856 /* Only difference to the fast-path function is that this can handle bit17
857 * and uses non-atomic copy and kmap functions. */
858 static int
859 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860 char __user *user_data,
861 bool page_do_bit17_swizzling,
862 bool needs_clflush_before,
863 bool needs_clflush_after)
864 {
865 char *vaddr;
866 int ret;
867
868 vaddr = kmap(page);
869 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871 page_length,
872 page_do_bit17_swizzling);
873 if (page_do_bit17_swizzling)
874 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875 user_data,
876 page_length);
877 else
878 ret = __copy_from_user(vaddr + shmem_page_offset,
879 user_data,
880 page_length);
881 if (needs_clflush_after)
882 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883 page_length,
884 page_do_bit17_swizzling);
885 kunmap(page);
886
887 return ret ? -EFAULT : 0;
888 }
889
890 static int
891 i915_gem_shmem_pwrite(struct drm_device *dev,
892 struct drm_i915_gem_object *obj,
893 struct drm_i915_gem_pwrite *args,
894 struct drm_file *file)
895 {
896 ssize_t remain;
897 loff_t offset;
898 char __user *user_data;
899 int shmem_page_offset, page_length, ret = 0;
900 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901 int hit_slowpath = 0;
902 int needs_clflush_after = 0;
903 int needs_clflush_before = 0;
904 struct sg_page_iter sg_iter;
905
906 user_data = to_user_ptr(args->data_ptr);
907 remain = args->size;
908
909 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910
911 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912 /* If we're not in the cpu write domain, set ourself into the gtt
913 * write domain and manually flush cachelines (if required). This
914 * optimizes for the case when the gpu will use the data
915 * right away and we therefore have to clflush anyway. */
916 needs_clflush_after = cpu_write_needs_clflush(obj);
917 ret = i915_gem_object_wait_rendering(obj, false);
918 if (ret)
919 return ret;
920 }
921 /* Same trick applies to invalidate partially written cachelines read
922 * before writing. */
923 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924 needs_clflush_before =
925 !cpu_cache_is_coherent(dev, obj->cache_level);
926
927 ret = i915_gem_object_get_pages(obj);
928 if (ret)
929 return ret;
930
931 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932
933 i915_gem_object_pin_pages(obj);
934
935 offset = args->offset;
936 obj->dirty = 1;
937
938 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939 offset >> PAGE_SHIFT) {
940 struct page *page = sg_page_iter_page(&sg_iter);
941 int partial_cacheline_write;
942
943 if (remain <= 0)
944 break;
945
946 /* Operation in this page
947 *
948 * shmem_page_offset = offset within page in shmem file
949 * page_length = bytes to copy for this page
950 */
951 shmem_page_offset = offset_in_page(offset);
952
953 page_length = remain;
954 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - shmem_page_offset;
956
957 /* If we don't overwrite a cacheline completely we need to be
958 * careful to have up-to-date data by first clflushing. Don't
959 * overcomplicate things and flush the entire patch. */
960 partial_cacheline_write = needs_clflush_before &&
961 ((shmem_page_offset | page_length)
962 & (boot_cpu_data.x86_clflush_size - 1));
963
964 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965 (page_to_phys(page) & (1 << 17)) != 0;
966
967 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968 user_data, page_do_bit17_swizzling,
969 partial_cacheline_write,
970 needs_clflush_after);
971 if (ret == 0)
972 goto next_page;
973
974 hit_slowpath = 1;
975 mutex_unlock(&dev->struct_mutex);
976 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 partial_cacheline_write,
979 needs_clflush_after);
980
981 mutex_lock(&dev->struct_mutex);
982
983 if (ret)
984 goto out;
985
986 next_page:
987 remain -= page_length;
988 user_data += page_length;
989 offset += page_length;
990 }
991
992 out:
993 i915_gem_object_unpin_pages(obj);
994
995 if (hit_slowpath) {
996 /*
997 * Fixup: Flush cpu caches in case we didn't flush the dirty
998 * cachelines in-line while writing and the object moved
999 * out of the cpu write domain while we've dropped the lock.
1000 */
1001 if (!needs_clflush_after &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003 if (i915_gem_clflush_object(obj, obj->pin_display))
1004 needs_clflush_after = true;
1005 }
1006 }
1007
1008 if (needs_clflush_after)
1009 i915_gem_chipset_flush(to_i915(dev));
1010 else
1011 obj->cache_dirty = true;
1012
1013 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014 return ret;
1015 }
1016
1017 /**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022 int
1023 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024 struct drm_file *file)
1025 {
1026 struct drm_i915_private *dev_priv = dev->dev_private;
1027 struct drm_i915_gem_pwrite *args = data;
1028 struct drm_i915_gem_object *obj;
1029 int ret;
1030
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_READ,
1035 to_user_ptr(args->data_ptr),
1036 args->size))
1037 return -EFAULT;
1038
1039 if (likely(!i915.prefault_disable)) {
1040 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1041 args->size);
1042 if (ret)
1043 return -EFAULT;
1044 }
1045
1046 intel_runtime_pm_get(dev_priv);
1047
1048 ret = i915_mutex_lock_interruptible(dev);
1049 if (ret)
1050 goto put_rpm;
1051
1052 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1053 if (&obj->base == NULL) {
1054 ret = -ENOENT;
1055 goto unlock;
1056 }
1057
1058 /* Bounds check destination. */
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
1061 ret = -EINVAL;
1062 goto out;
1063 }
1064
1065 /* prime objects have no backing filp to GEM pread/pwrite
1066 * pages from.
1067 */
1068 if (!obj->base.filp) {
1069 ret = -EINVAL;
1070 goto out;
1071 }
1072
1073 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
1075 ret = -EFAULT;
1076 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077 * it would end up going through the fenced access, and we'll get
1078 * different detiling behavior between reading and writing.
1079 * pread/pwrite currently are reading and writing from the CPU
1080 * perspective, requiring manual detiling by the client.
1081 */
1082 if (obj->tiling_mode == I915_TILING_NONE &&
1083 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084 cpu_write_needs_clflush(obj)) {
1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1086 /* Note that the gtt paths might fail with non-page-backed user
1087 * pointers (e.g. gtt mappings when moving data between
1088 * textures). Fallback to the shmem path in that case. */
1089 }
1090
1091 if (ret == -EFAULT || ret == -ENOSPC) {
1092 if (obj->phys_handle)
1093 ret = i915_gem_phys_pwrite(obj, args, file);
1094 else
1095 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096 }
1097
1098 out:
1099 drm_gem_object_unreference(&obj->base);
1100 unlock:
1101 mutex_unlock(&dev->struct_mutex);
1102 put_rpm:
1103 intel_runtime_pm_put(dev_priv);
1104
1105 return ret;
1106 }
1107
1108 static int
1109 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110 {
1111 if (__i915_terminally_wedged(reset_counter))
1112 return -EIO;
1113
1114 if (__i915_reset_in_progress(reset_counter)) {
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
1120 return -EAGAIN;
1121 }
1122
1123 return 0;
1124 }
1125
1126 static void fake_irq(unsigned long data)
1127 {
1128 wake_up_process((struct task_struct *)data);
1129 }
1130
1131 static bool missed_irq(struct drm_i915_private *dev_priv,
1132 struct intel_engine_cs *engine)
1133 {
1134 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 }
1136
1137 static unsigned long local_clock_us(unsigned *cpu)
1138 {
1139 unsigned long t;
1140
1141 /* Cheaply and approximately convert from nanoseconds to microseconds.
1142 * The result and subsequent calculations are also defined in the same
1143 * approximate microseconds units. The principal source of timing
1144 * error here is from the simple truncation.
1145 *
1146 * Note that local_clock() is only defined wrt to the current CPU;
1147 * the comparisons are no longer valid if we switch CPUs. Instead of
1148 * blocking preemption for the entire busywait, we can detect the CPU
1149 * switch and use that as indicator of system load and a reason to
1150 * stop busywaiting, see busywait_stop().
1151 */
1152 *cpu = get_cpu();
1153 t = local_clock() >> 10;
1154 put_cpu();
1155
1156 return t;
1157 }
1158
1159 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160 {
1161 unsigned this_cpu;
1162
1163 if (time_after(local_clock_us(&this_cpu), timeout))
1164 return true;
1165
1166 return this_cpu != cpu;
1167 }
1168
1169 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170 {
1171 unsigned long timeout;
1172 unsigned cpu;
1173
1174 /* When waiting for high frequency requests, e.g. during synchronous
1175 * rendering split between the CPU and GPU, the finite amount of time
1176 * required to set up the irq and wait upon it limits the response
1177 * rate. By busywaiting on the request completion for a short while we
1178 * can service the high frequency waits as quick as possible. However,
1179 * if it is a slow request, we want to sleep as quickly as possible.
1180 * The tradeoff between waiting and sleeping is roughly the time it
1181 * takes to sleep on a request, on the order of a microsecond.
1182 */
1183
1184 if (req->engine->irq_refcount)
1185 return -EBUSY;
1186
1187 /* Only spin if we know the GPU is processing this request */
1188 if (!i915_gem_request_started(req, true))
1189 return -EAGAIN;
1190
1191 timeout = local_clock_us(&cpu) + 5;
1192 while (!need_resched()) {
1193 if (i915_gem_request_completed(req, true))
1194 return 0;
1195
1196 if (signal_pending_state(state, current))
1197 break;
1198
1199 if (busywait_stop(timeout, cpu))
1200 break;
1201
1202 cpu_relax_lowlatency();
1203 }
1204
1205 if (i915_gem_request_completed(req, false))
1206 return 0;
1207
1208 return -EAGAIN;
1209 }
1210
1211 /**
1212 * __i915_wait_request - wait until execution of request has finished
1213 * @req: duh!
1214 * @interruptible: do an interruptible wait (normally yes)
1215 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216 *
1217 * Note: It is of utmost importance that the passed in seqno and reset_counter
1218 * values have been read by the caller in an smp safe manner. Where read-side
1219 * locks are involved, it is sufficient to read the reset_counter before
1220 * unlocking the lock that protects the seqno. For lockless tricks, the
1221 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222 * inserted.
1223 *
1224 * Returns 0 if the request was found within the alloted time. Else returns the
1225 * errno with remaining time filled in timeout argument.
1226 */
1227 int __i915_wait_request(struct drm_i915_gem_request *req,
1228 bool interruptible,
1229 s64 *timeout,
1230 struct intel_rps_client *rps)
1231 {
1232 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233 struct drm_i915_private *dev_priv = req->i915;
1234 const bool irq_test_in_progress =
1235 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1236 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1237 DEFINE_WAIT(wait);
1238 unsigned long timeout_expire;
1239 s64 before = 0; /* Only to silence a compiler warning. */
1240 int ret;
1241
1242 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1243
1244 if (list_empty(&req->list))
1245 return 0;
1246
1247 if (i915_gem_request_completed(req, true))
1248 return 0;
1249
1250 timeout_expire = 0;
1251 if (timeout) {
1252 if (WARN_ON(*timeout < 0))
1253 return -EINVAL;
1254
1255 if (*timeout == 0)
1256 return -ETIME;
1257
1258 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1259
1260 /*
1261 * Record current time in case interrupted by signal, or wedged.
1262 */
1263 before = ktime_get_raw_ns();
1264 }
1265
1266 if (INTEL_INFO(dev_priv)->gen >= 6)
1267 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1268
1269 trace_i915_gem_request_wait_begin(req);
1270
1271 /* Optimistic spin for the next jiffie before touching IRQs */
1272 ret = __i915_spin_request(req, state);
1273 if (ret == 0)
1274 goto out;
1275
1276 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1277 ret = -ENODEV;
1278 goto out;
1279 }
1280
1281 for (;;) {
1282 struct timer_list timer;
1283
1284 prepare_to_wait(&engine->irq_queue, &wait, state);
1285
1286 /* We need to check whether any gpu reset happened in between
1287 * the request being submitted and now. If a reset has occurred,
1288 * the request is effectively complete (we either are in the
1289 * process of or have discarded the rendering and completely
1290 * reset the GPU. The results of the request are lost and we
1291 * are free to continue on with the original operation.
1292 */
1293 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1294 ret = 0;
1295 break;
1296 }
1297
1298 if (i915_gem_request_completed(req, false)) {
1299 ret = 0;
1300 break;
1301 }
1302
1303 if (signal_pending_state(state, current)) {
1304 ret = -ERESTARTSYS;
1305 break;
1306 }
1307
1308 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1309 ret = -ETIME;
1310 break;
1311 }
1312
1313 timer.function = NULL;
1314 if (timeout || missed_irq(dev_priv, engine)) {
1315 unsigned long expire;
1316
1317 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1318 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1319 mod_timer(&timer, expire);
1320 }
1321
1322 io_schedule();
1323
1324 if (timer.function) {
1325 del_singleshot_timer_sync(&timer);
1326 destroy_timer_on_stack(&timer);
1327 }
1328 }
1329 if (!irq_test_in_progress)
1330 engine->irq_put(engine);
1331
1332 finish_wait(&engine->irq_queue, &wait);
1333
1334 out:
1335 trace_i915_gem_request_wait_end(req);
1336
1337 if (timeout) {
1338 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1339
1340 *timeout = tres < 0 ? 0 : tres;
1341
1342 /*
1343 * Apparently ktime isn't accurate enough and occasionally has a
1344 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1345 * things up to make the test happy. We allow up to 1 jiffy.
1346 *
1347 * This is a regrssion from the timespec->ktime conversion.
1348 */
1349 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1350 *timeout = 0;
1351 }
1352
1353 return ret;
1354 }
1355
1356 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1357 struct drm_file *file)
1358 {
1359 struct drm_i915_file_private *file_priv;
1360
1361 WARN_ON(!req || !file || req->file_priv);
1362
1363 if (!req || !file)
1364 return -EINVAL;
1365
1366 if (req->file_priv)
1367 return -EINVAL;
1368
1369 file_priv = file->driver_priv;
1370
1371 spin_lock(&file_priv->mm.lock);
1372 req->file_priv = file_priv;
1373 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1374 spin_unlock(&file_priv->mm.lock);
1375
1376 req->pid = get_pid(task_pid(current));
1377
1378 return 0;
1379 }
1380
1381 static inline void
1382 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1383 {
1384 struct drm_i915_file_private *file_priv = request->file_priv;
1385
1386 if (!file_priv)
1387 return;
1388
1389 spin_lock(&file_priv->mm.lock);
1390 list_del(&request->client_list);
1391 request->file_priv = NULL;
1392 spin_unlock(&file_priv->mm.lock);
1393
1394 put_pid(request->pid);
1395 request->pid = NULL;
1396 }
1397
1398 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1399 {
1400 trace_i915_gem_request_retire(request);
1401
1402 /* We know the GPU must have read the request to have
1403 * sent us the seqno + interrupt, so use the position
1404 * of tail of the request to update the last known position
1405 * of the GPU head.
1406 *
1407 * Note this requires that we are always called in request
1408 * completion order.
1409 */
1410 request->ringbuf->last_retired_head = request->postfix;
1411
1412 list_del_init(&request->list);
1413 i915_gem_request_remove_from_client(request);
1414
1415 if (request->previous_context) {
1416 if (i915.enable_execlists)
1417 intel_lr_context_unpin(request->previous_context,
1418 request->engine);
1419 }
1420
1421 i915_gem_context_unreference(request->ctx);
1422 i915_gem_request_unreference(request);
1423 }
1424
1425 static void
1426 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1427 {
1428 struct intel_engine_cs *engine = req->engine;
1429 struct drm_i915_gem_request *tmp;
1430
1431 lockdep_assert_held(&engine->i915->dev->struct_mutex);
1432
1433 if (list_empty(&req->list))
1434 return;
1435
1436 do {
1437 tmp = list_first_entry(&engine->request_list,
1438 typeof(*tmp), list);
1439
1440 i915_gem_request_retire(tmp);
1441 } while (tmp != req);
1442
1443 WARN_ON(i915_verify_lists(engine->dev));
1444 }
1445
1446 /**
1447 * Waits for a request to be signaled, and cleans up the
1448 * request and object lists appropriately for that event.
1449 */
1450 int
1451 i915_wait_request(struct drm_i915_gem_request *req)
1452 {
1453 struct drm_i915_private *dev_priv = req->i915;
1454 bool interruptible;
1455 int ret;
1456
1457 interruptible = dev_priv->mm.interruptible;
1458
1459 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1460
1461 ret = __i915_wait_request(req, interruptible, NULL, NULL);
1462 if (ret)
1463 return ret;
1464
1465 /* If the GPU hung, we want to keep the requests to find the guilty. */
1466 if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1467 __i915_gem_request_retire__upto(req);
1468
1469 return 0;
1470 }
1471
1472 /**
1473 * Ensures that all rendering to the object has completed and the object is
1474 * safe to unbind from the GTT or access from the CPU.
1475 */
1476 int
1477 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1478 bool readonly)
1479 {
1480 int ret, i;
1481
1482 if (!obj->active)
1483 return 0;
1484
1485 if (readonly) {
1486 if (obj->last_write_req != NULL) {
1487 ret = i915_wait_request(obj->last_write_req);
1488 if (ret)
1489 return ret;
1490
1491 i = obj->last_write_req->engine->id;
1492 if (obj->last_read_req[i] == obj->last_write_req)
1493 i915_gem_object_retire__read(obj, i);
1494 else
1495 i915_gem_object_retire__write(obj);
1496 }
1497 } else {
1498 for (i = 0; i < I915_NUM_ENGINES; i++) {
1499 if (obj->last_read_req[i] == NULL)
1500 continue;
1501
1502 ret = i915_wait_request(obj->last_read_req[i]);
1503 if (ret)
1504 return ret;
1505
1506 i915_gem_object_retire__read(obj, i);
1507 }
1508 GEM_BUG_ON(obj->active);
1509 }
1510
1511 return 0;
1512 }
1513
1514 static void
1515 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1516 struct drm_i915_gem_request *req)
1517 {
1518 int ring = req->engine->id;
1519
1520 if (obj->last_read_req[ring] == req)
1521 i915_gem_object_retire__read(obj, ring);
1522 else if (obj->last_write_req == req)
1523 i915_gem_object_retire__write(obj);
1524
1525 if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1526 __i915_gem_request_retire__upto(req);
1527 }
1528
1529 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1530 * as the object state may change during this call.
1531 */
1532 static __must_check int
1533 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1534 struct intel_rps_client *rps,
1535 bool readonly)
1536 {
1537 struct drm_device *dev = obj->base.dev;
1538 struct drm_i915_private *dev_priv = dev->dev_private;
1539 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1540 int ret, i, n = 0;
1541
1542 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1543 BUG_ON(!dev_priv->mm.interruptible);
1544
1545 if (!obj->active)
1546 return 0;
1547
1548 if (readonly) {
1549 struct drm_i915_gem_request *req;
1550
1551 req = obj->last_write_req;
1552 if (req == NULL)
1553 return 0;
1554
1555 requests[n++] = i915_gem_request_reference(req);
1556 } else {
1557 for (i = 0; i < I915_NUM_ENGINES; i++) {
1558 struct drm_i915_gem_request *req;
1559
1560 req = obj->last_read_req[i];
1561 if (req == NULL)
1562 continue;
1563
1564 requests[n++] = i915_gem_request_reference(req);
1565 }
1566 }
1567
1568 mutex_unlock(&dev->struct_mutex);
1569 ret = 0;
1570 for (i = 0; ret == 0 && i < n; i++)
1571 ret = __i915_wait_request(requests[i], true, NULL, rps);
1572 mutex_lock(&dev->struct_mutex);
1573
1574 for (i = 0; i < n; i++) {
1575 if (ret == 0)
1576 i915_gem_object_retire_request(obj, requests[i]);
1577 i915_gem_request_unreference(requests[i]);
1578 }
1579
1580 return ret;
1581 }
1582
1583 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1584 {
1585 struct drm_i915_file_private *fpriv = file->driver_priv;
1586 return &fpriv->rps;
1587 }
1588
1589 /**
1590 * Called when user space prepares to use an object with the CPU, either
1591 * through the mmap ioctl's mapping or a GTT mapping.
1592 */
1593 int
1594 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1595 struct drm_file *file)
1596 {
1597 struct drm_i915_gem_set_domain *args = data;
1598 struct drm_i915_gem_object *obj;
1599 uint32_t read_domains = args->read_domains;
1600 uint32_t write_domain = args->write_domain;
1601 int ret;
1602
1603 /* Only handle setting domains to types used by the CPU. */
1604 if (write_domain & I915_GEM_GPU_DOMAINS)
1605 return -EINVAL;
1606
1607 if (read_domains & I915_GEM_GPU_DOMAINS)
1608 return -EINVAL;
1609
1610 /* Having something in the write domain implies it's in the read
1611 * domain, and only that read domain. Enforce that in the request.
1612 */
1613 if (write_domain != 0 && read_domains != write_domain)
1614 return -EINVAL;
1615
1616 ret = i915_mutex_lock_interruptible(dev);
1617 if (ret)
1618 return ret;
1619
1620 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1621 if (&obj->base == NULL) {
1622 ret = -ENOENT;
1623 goto unlock;
1624 }
1625
1626 /* Try to flush the object off the GPU without holding the lock.
1627 * We will repeat the flush holding the lock in the normal manner
1628 * to catch cases where we are gazumped.
1629 */
1630 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1631 to_rps_client(file),
1632 !write_domain);
1633 if (ret)
1634 goto unref;
1635
1636 if (read_domains & I915_GEM_DOMAIN_GTT)
1637 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1638 else
1639 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1640
1641 if (write_domain != 0)
1642 intel_fb_obj_invalidate(obj,
1643 write_domain == I915_GEM_DOMAIN_GTT ?
1644 ORIGIN_GTT : ORIGIN_CPU);
1645
1646 unref:
1647 drm_gem_object_unreference(&obj->base);
1648 unlock:
1649 mutex_unlock(&dev->struct_mutex);
1650 return ret;
1651 }
1652
1653 /**
1654 * Called when user space has done writes to this buffer
1655 */
1656 int
1657 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1658 struct drm_file *file)
1659 {
1660 struct drm_i915_gem_sw_finish *args = data;
1661 struct drm_i915_gem_object *obj;
1662 int ret = 0;
1663
1664 ret = i915_mutex_lock_interruptible(dev);
1665 if (ret)
1666 return ret;
1667
1668 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1669 if (&obj->base == NULL) {
1670 ret = -ENOENT;
1671 goto unlock;
1672 }
1673
1674 /* Pinned buffers may be scanout, so flush the cache */
1675 if (obj->pin_display)
1676 i915_gem_object_flush_cpu_write_domain(obj);
1677
1678 drm_gem_object_unreference(&obj->base);
1679 unlock:
1680 mutex_unlock(&dev->struct_mutex);
1681 return ret;
1682 }
1683
1684 /**
1685 * Maps the contents of an object, returning the address it is mapped
1686 * into.
1687 *
1688 * While the mapping holds a reference on the contents of the object, it doesn't
1689 * imply a ref on the object itself.
1690 *
1691 * IMPORTANT:
1692 *
1693 * DRM driver writers who look a this function as an example for how to do GEM
1694 * mmap support, please don't implement mmap support like here. The modern way
1695 * to implement DRM mmap support is with an mmap offset ioctl (like
1696 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1697 * That way debug tooling like valgrind will understand what's going on, hiding
1698 * the mmap call in a driver private ioctl will break that. The i915 driver only
1699 * does cpu mmaps this way because we didn't know better.
1700 */
1701 int
1702 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1703 struct drm_file *file)
1704 {
1705 struct drm_i915_gem_mmap *args = data;
1706 struct drm_gem_object *obj;
1707 unsigned long addr;
1708
1709 if (args->flags & ~(I915_MMAP_WC))
1710 return -EINVAL;
1711
1712 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1713 return -ENODEV;
1714
1715 obj = drm_gem_object_lookup(dev, file, args->handle);
1716 if (obj == NULL)
1717 return -ENOENT;
1718
1719 /* prime objects have no backing filp to GEM mmap
1720 * pages from.
1721 */
1722 if (!obj->filp) {
1723 drm_gem_object_unreference_unlocked(obj);
1724 return -EINVAL;
1725 }
1726
1727 addr = vm_mmap(obj->filp, 0, args->size,
1728 PROT_READ | PROT_WRITE, MAP_SHARED,
1729 args->offset);
1730 if (args->flags & I915_MMAP_WC) {
1731 struct mm_struct *mm = current->mm;
1732 struct vm_area_struct *vma;
1733
1734 down_write(&mm->mmap_sem);
1735 vma = find_vma(mm, addr);
1736 if (vma)
1737 vma->vm_page_prot =
1738 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1739 else
1740 addr = -ENOMEM;
1741 up_write(&mm->mmap_sem);
1742 }
1743 drm_gem_object_unreference_unlocked(obj);
1744 if (IS_ERR((void *)addr))
1745 return addr;
1746
1747 args->addr_ptr = (uint64_t) addr;
1748
1749 return 0;
1750 }
1751
1752 /**
1753 * i915_gem_fault - fault a page into the GTT
1754 * @vma: VMA in question
1755 * @vmf: fault info
1756 *
1757 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1758 * from userspace. The fault handler takes care of binding the object to
1759 * the GTT (if needed), allocating and programming a fence register (again,
1760 * only if needed based on whether the old reg is still valid or the object
1761 * is tiled) and inserting a new PTE into the faulting process.
1762 *
1763 * Note that the faulting process may involve evicting existing objects
1764 * from the GTT and/or fence registers to make room. So performance may
1765 * suffer if the GTT working set is large or there are few fence registers
1766 * left.
1767 */
1768 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1769 {
1770 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1771 struct drm_device *dev = obj->base.dev;
1772 struct drm_i915_private *dev_priv = to_i915(dev);
1773 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1774 struct i915_ggtt_view view = i915_ggtt_view_normal;
1775 pgoff_t page_offset;
1776 unsigned long pfn;
1777 int ret = 0;
1778 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1779
1780 intel_runtime_pm_get(dev_priv);
1781
1782 /* We don't use vmf->pgoff since that has the fake offset */
1783 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1784 PAGE_SHIFT;
1785
1786 ret = i915_mutex_lock_interruptible(dev);
1787 if (ret)
1788 goto out;
1789
1790 trace_i915_gem_object_fault(obj, page_offset, true, write);
1791
1792 /* Try to flush the object off the GPU first without holding the lock.
1793 * Upon reacquiring the lock, we will perform our sanity checks and then
1794 * repeat the flush holding the lock in the normal manner to catch cases
1795 * where we are gazumped.
1796 */
1797 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1798 if (ret)
1799 goto unlock;
1800
1801 /* Access to snoopable pages through the GTT is incoherent. */
1802 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1803 ret = -EFAULT;
1804 goto unlock;
1805 }
1806
1807 /* Use a partial view if the object is bigger than the aperture. */
1808 if (obj->base.size >= ggtt->mappable_end &&
1809 obj->tiling_mode == I915_TILING_NONE) {
1810 static const unsigned int chunk_size = 256; // 1 MiB
1811
1812 memset(&view, 0, sizeof(view));
1813 view.type = I915_GGTT_VIEW_PARTIAL;
1814 view.params.partial.offset = rounddown(page_offset, chunk_size);
1815 view.params.partial.size =
1816 min_t(unsigned int,
1817 chunk_size,
1818 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1819 view.params.partial.offset);
1820 }
1821
1822 /* Now pin it into the GTT if needed */
1823 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1824 if (ret)
1825 goto unlock;
1826
1827 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1828 if (ret)
1829 goto unpin;
1830
1831 ret = i915_gem_object_get_fence(obj);
1832 if (ret)
1833 goto unpin;
1834
1835 /* Finally, remap it using the new GTT offset */
1836 pfn = ggtt->mappable_base +
1837 i915_gem_obj_ggtt_offset_view(obj, &view);
1838 pfn >>= PAGE_SHIFT;
1839
1840 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1841 /* Overriding existing pages in partial view does not cause
1842 * us any trouble as TLBs are still valid because the fault
1843 * is due to userspace losing part of the mapping or never
1844 * having accessed it before (at this partials' range).
1845 */
1846 unsigned long base = vma->vm_start +
1847 (view.params.partial.offset << PAGE_SHIFT);
1848 unsigned int i;
1849
1850 for (i = 0; i < view.params.partial.size; i++) {
1851 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1852 if (ret)
1853 break;
1854 }
1855
1856 obj->fault_mappable = true;
1857 } else {
1858 if (!obj->fault_mappable) {
1859 unsigned long size = min_t(unsigned long,
1860 vma->vm_end - vma->vm_start,
1861 obj->base.size);
1862 int i;
1863
1864 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1865 ret = vm_insert_pfn(vma,
1866 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1867 pfn + i);
1868 if (ret)
1869 break;
1870 }
1871
1872 obj->fault_mappable = true;
1873 } else
1874 ret = vm_insert_pfn(vma,
1875 (unsigned long)vmf->virtual_address,
1876 pfn + page_offset);
1877 }
1878 unpin:
1879 i915_gem_object_ggtt_unpin_view(obj, &view);
1880 unlock:
1881 mutex_unlock(&dev->struct_mutex);
1882 out:
1883 switch (ret) {
1884 case -EIO:
1885 /*
1886 * We eat errors when the gpu is terminally wedged to avoid
1887 * userspace unduly crashing (gl has no provisions for mmaps to
1888 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1889 * and so needs to be reported.
1890 */
1891 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1892 ret = VM_FAULT_SIGBUS;
1893 break;
1894 }
1895 case -EAGAIN:
1896 /*
1897 * EAGAIN means the gpu is hung and we'll wait for the error
1898 * handler to reset everything when re-faulting in
1899 * i915_mutex_lock_interruptible.
1900 */
1901 case 0:
1902 case -ERESTARTSYS:
1903 case -EINTR:
1904 case -EBUSY:
1905 /*
1906 * EBUSY is ok: this just means that another thread
1907 * already did the job.
1908 */
1909 ret = VM_FAULT_NOPAGE;
1910 break;
1911 case -ENOMEM:
1912 ret = VM_FAULT_OOM;
1913 break;
1914 case -ENOSPC:
1915 case -EFAULT:
1916 ret = VM_FAULT_SIGBUS;
1917 break;
1918 default:
1919 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1920 ret = VM_FAULT_SIGBUS;
1921 break;
1922 }
1923
1924 intel_runtime_pm_put(dev_priv);
1925 return ret;
1926 }
1927
1928 /**
1929 * i915_gem_release_mmap - remove physical page mappings
1930 * @obj: obj in question
1931 *
1932 * Preserve the reservation of the mmapping with the DRM core code, but
1933 * relinquish ownership of the pages back to the system.
1934 *
1935 * It is vital that we remove the page mapping if we have mapped a tiled
1936 * object through the GTT and then lose the fence register due to
1937 * resource pressure. Similarly if the object has been moved out of the
1938 * aperture, than pages mapped into userspace must be revoked. Removing the
1939 * mapping will then trigger a page fault on the next user access, allowing
1940 * fixup by i915_gem_fault().
1941 */
1942 void
1943 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1944 {
1945 /* Serialisation between user GTT access and our code depends upon
1946 * revoking the CPU's PTE whilst the mutex is held. The next user
1947 * pagefault then has to wait until we release the mutex.
1948 */
1949 lockdep_assert_held(&obj->base.dev->struct_mutex);
1950
1951 if (!obj->fault_mappable)
1952 return;
1953
1954 drm_vma_node_unmap(&obj->base.vma_node,
1955 obj->base.dev->anon_inode->i_mapping);
1956
1957 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1958 * memory transactions from userspace before we return. The TLB
1959 * flushing implied above by changing the PTE above *should* be
1960 * sufficient, an extra barrier here just provides us with a bit
1961 * of paranoid documentation about our requirement to serialise
1962 * memory writes before touching registers / GSM.
1963 */
1964 wmb();
1965
1966 obj->fault_mappable = false;
1967 }
1968
1969 void
1970 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1971 {
1972 struct drm_i915_gem_object *obj;
1973
1974 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1975 i915_gem_release_mmap(obj);
1976 }
1977
1978 uint32_t
1979 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1980 {
1981 uint32_t gtt_size;
1982
1983 if (INTEL_INFO(dev)->gen >= 4 ||
1984 tiling_mode == I915_TILING_NONE)
1985 return size;
1986
1987 /* Previous chips need a power-of-two fence region when tiling */
1988 if (IS_GEN3(dev))
1989 gtt_size = 1024*1024;
1990 else
1991 gtt_size = 512*1024;
1992
1993 while (gtt_size < size)
1994 gtt_size <<= 1;
1995
1996 return gtt_size;
1997 }
1998
1999 /**
2000 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2001 * @obj: object to check
2002 *
2003 * Return the required GTT alignment for an object, taking into account
2004 * potential fence register mapping.
2005 */
2006 uint32_t
2007 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2008 int tiling_mode, bool fenced)
2009 {
2010 /*
2011 * Minimum alignment is 4k (GTT page size), but might be greater
2012 * if a fence register is needed for the object.
2013 */
2014 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2015 tiling_mode == I915_TILING_NONE)
2016 return 4096;
2017
2018 /*
2019 * Previous chips need to be aligned to the size of the smallest
2020 * fence register that can contain the object.
2021 */
2022 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2023 }
2024
2025 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2026 {
2027 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2028 int ret;
2029
2030 dev_priv->mm.shrinker_no_lock_stealing = true;
2031
2032 ret = drm_gem_create_mmap_offset(&obj->base);
2033 if (ret != -ENOSPC)
2034 goto out;
2035
2036 /* Badly fragmented mmap space? The only way we can recover
2037 * space is by destroying unwanted objects. We can't randomly release
2038 * mmap_offsets as userspace expects them to be persistent for the
2039 * lifetime of the objects. The closest we can is to release the
2040 * offsets on purgeable objects by truncating it and marking it purged,
2041 * which prevents userspace from ever using that object again.
2042 */
2043 i915_gem_shrink(dev_priv,
2044 obj->base.size >> PAGE_SHIFT,
2045 I915_SHRINK_BOUND |
2046 I915_SHRINK_UNBOUND |
2047 I915_SHRINK_PURGEABLE);
2048 ret = drm_gem_create_mmap_offset(&obj->base);
2049 if (ret != -ENOSPC)
2050 goto out;
2051
2052 i915_gem_shrink_all(dev_priv);
2053 ret = drm_gem_create_mmap_offset(&obj->base);
2054 out:
2055 dev_priv->mm.shrinker_no_lock_stealing = false;
2056
2057 return ret;
2058 }
2059
2060 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2061 {
2062 drm_gem_free_mmap_offset(&obj->base);
2063 }
2064
2065 int
2066 i915_gem_mmap_gtt(struct drm_file *file,
2067 struct drm_device *dev,
2068 uint32_t handle,
2069 uint64_t *offset)
2070 {
2071 struct drm_i915_gem_object *obj;
2072 int ret;
2073
2074 ret = i915_mutex_lock_interruptible(dev);
2075 if (ret)
2076 return ret;
2077
2078 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2079 if (&obj->base == NULL) {
2080 ret = -ENOENT;
2081 goto unlock;
2082 }
2083
2084 if (obj->madv != I915_MADV_WILLNEED) {
2085 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2086 ret = -EFAULT;
2087 goto out;
2088 }
2089
2090 ret = i915_gem_object_create_mmap_offset(obj);
2091 if (ret)
2092 goto out;
2093
2094 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2095
2096 out:
2097 drm_gem_object_unreference(&obj->base);
2098 unlock:
2099 mutex_unlock(&dev->struct_mutex);
2100 return ret;
2101 }
2102
2103 /**
2104 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2105 * @dev: DRM device
2106 * @data: GTT mapping ioctl data
2107 * @file: GEM object info
2108 *
2109 * Simply returns the fake offset to userspace so it can mmap it.
2110 * The mmap call will end up in drm_gem_mmap(), which will set things
2111 * up so we can get faults in the handler above.
2112 *
2113 * The fault handler will take care of binding the object into the GTT
2114 * (since it may have been evicted to make room for something), allocating
2115 * a fence register, and mapping the appropriate aperture address into
2116 * userspace.
2117 */
2118 int
2119 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2120 struct drm_file *file)
2121 {
2122 struct drm_i915_gem_mmap_gtt *args = data;
2123
2124 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2125 }
2126
2127 /* Immediately discard the backing storage */
2128 static void
2129 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2130 {
2131 i915_gem_object_free_mmap_offset(obj);
2132
2133 if (obj->base.filp == NULL)
2134 return;
2135
2136 /* Our goal here is to return as much of the memory as
2137 * is possible back to the system as we are called from OOM.
2138 * To do this we must instruct the shmfs to drop all of its
2139 * backing pages, *now*.
2140 */
2141 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2142 obj->madv = __I915_MADV_PURGED;
2143 }
2144
2145 /* Try to discard unwanted pages */
2146 static void
2147 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2148 {
2149 struct address_space *mapping;
2150
2151 switch (obj->madv) {
2152 case I915_MADV_DONTNEED:
2153 i915_gem_object_truncate(obj);
2154 case __I915_MADV_PURGED:
2155 return;
2156 }
2157
2158 if (obj->base.filp == NULL)
2159 return;
2160
2161 mapping = file_inode(obj->base.filp)->i_mapping,
2162 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2163 }
2164
2165 static void
2166 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2167 {
2168 struct sgt_iter sgt_iter;
2169 struct page *page;
2170 int ret;
2171
2172 BUG_ON(obj->madv == __I915_MADV_PURGED);
2173
2174 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2175 if (WARN_ON(ret)) {
2176 /* In the event of a disaster, abandon all caches and
2177 * hope for the best.
2178 */
2179 i915_gem_clflush_object(obj, true);
2180 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2181 }
2182
2183 i915_gem_gtt_finish_object(obj);
2184
2185 if (i915_gem_object_needs_bit17_swizzle(obj))
2186 i915_gem_object_save_bit_17_swizzle(obj);
2187
2188 if (obj->madv == I915_MADV_DONTNEED)
2189 obj->dirty = 0;
2190
2191 for_each_sgt_page(page, sgt_iter, obj->pages) {
2192 if (obj->dirty)
2193 set_page_dirty(page);
2194
2195 if (obj->madv == I915_MADV_WILLNEED)
2196 mark_page_accessed(page);
2197
2198 put_page(page);
2199 }
2200 obj->dirty = 0;
2201
2202 sg_free_table(obj->pages);
2203 kfree(obj->pages);
2204 }
2205
2206 int
2207 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2208 {
2209 const struct drm_i915_gem_object_ops *ops = obj->ops;
2210
2211 if (obj->pages == NULL)
2212 return 0;
2213
2214 if (obj->pages_pin_count)
2215 return -EBUSY;
2216
2217 BUG_ON(i915_gem_obj_bound_any(obj));
2218
2219 /* ->put_pages might need to allocate memory for the bit17 swizzle
2220 * array, hence protect them from being reaped by removing them from gtt
2221 * lists early. */
2222 list_del(&obj->global_list);
2223
2224 if (obj->mapping) {
2225 if (is_vmalloc_addr(obj->mapping))
2226 vunmap(obj->mapping);
2227 else
2228 kunmap(kmap_to_page(obj->mapping));
2229 obj->mapping = NULL;
2230 }
2231
2232 ops->put_pages(obj);
2233 obj->pages = NULL;
2234
2235 i915_gem_object_invalidate(obj);
2236
2237 return 0;
2238 }
2239
2240 static int
2241 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2242 {
2243 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2244 int page_count, i;
2245 struct address_space *mapping;
2246 struct sg_table *st;
2247 struct scatterlist *sg;
2248 struct sgt_iter sgt_iter;
2249 struct page *page;
2250 unsigned long last_pfn = 0; /* suppress gcc warning */
2251 int ret;
2252 gfp_t gfp;
2253
2254 /* Assert that the object is not currently in any GPU domain. As it
2255 * wasn't in the GTT, there shouldn't be any way it could have been in
2256 * a GPU cache
2257 */
2258 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2259 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2260
2261 st = kmalloc(sizeof(*st), GFP_KERNEL);
2262 if (st == NULL)
2263 return -ENOMEM;
2264
2265 page_count = obj->base.size / PAGE_SIZE;
2266 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2267 kfree(st);
2268 return -ENOMEM;
2269 }
2270
2271 /* Get the list of pages out of our struct file. They'll be pinned
2272 * at this point until we release them.
2273 *
2274 * Fail silently without starting the shrinker
2275 */
2276 mapping = file_inode(obj->base.filp)->i_mapping;
2277 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2278 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2279 sg = st->sgl;
2280 st->nents = 0;
2281 for (i = 0; i < page_count; i++) {
2282 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2283 if (IS_ERR(page)) {
2284 i915_gem_shrink(dev_priv,
2285 page_count,
2286 I915_SHRINK_BOUND |
2287 I915_SHRINK_UNBOUND |
2288 I915_SHRINK_PURGEABLE);
2289 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2290 }
2291 if (IS_ERR(page)) {
2292 /* We've tried hard to allocate the memory by reaping
2293 * our own buffer, now let the real VM do its job and
2294 * go down in flames if truly OOM.
2295 */
2296 i915_gem_shrink_all(dev_priv);
2297 page = shmem_read_mapping_page(mapping, i);
2298 if (IS_ERR(page)) {
2299 ret = PTR_ERR(page);
2300 goto err_pages;
2301 }
2302 }
2303 #ifdef CONFIG_SWIOTLB
2304 if (swiotlb_nr_tbl()) {
2305 st->nents++;
2306 sg_set_page(sg, page, PAGE_SIZE, 0);
2307 sg = sg_next(sg);
2308 continue;
2309 }
2310 #endif
2311 if (!i || page_to_pfn(page) != last_pfn + 1) {
2312 if (i)
2313 sg = sg_next(sg);
2314 st->nents++;
2315 sg_set_page(sg, page, PAGE_SIZE, 0);
2316 } else {
2317 sg->length += PAGE_SIZE;
2318 }
2319 last_pfn = page_to_pfn(page);
2320
2321 /* Check that the i965g/gm workaround works. */
2322 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2323 }
2324 #ifdef CONFIG_SWIOTLB
2325 if (!swiotlb_nr_tbl())
2326 #endif
2327 sg_mark_end(sg);
2328 obj->pages = st;
2329
2330 ret = i915_gem_gtt_prepare_object(obj);
2331 if (ret)
2332 goto err_pages;
2333
2334 if (i915_gem_object_needs_bit17_swizzle(obj))
2335 i915_gem_object_do_bit_17_swizzle(obj);
2336
2337 if (obj->tiling_mode != I915_TILING_NONE &&
2338 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2339 i915_gem_object_pin_pages(obj);
2340
2341 return 0;
2342
2343 err_pages:
2344 sg_mark_end(sg);
2345 for_each_sgt_page(page, sgt_iter, st)
2346 put_page(page);
2347 sg_free_table(st);
2348 kfree(st);
2349
2350 /* shmemfs first checks if there is enough memory to allocate the page
2351 * and reports ENOSPC should there be insufficient, along with the usual
2352 * ENOMEM for a genuine allocation failure.
2353 *
2354 * We use ENOSPC in our driver to mean that we have run out of aperture
2355 * space and so want to translate the error from shmemfs back to our
2356 * usual understanding of ENOMEM.
2357 */
2358 if (ret == -ENOSPC)
2359 ret = -ENOMEM;
2360
2361 return ret;
2362 }
2363
2364 /* Ensure that the associated pages are gathered from the backing storage
2365 * and pinned into our object. i915_gem_object_get_pages() may be called
2366 * multiple times before they are released by a single call to
2367 * i915_gem_object_put_pages() - once the pages are no longer referenced
2368 * either as a result of memory pressure (reaping pages under the shrinker)
2369 * or as the object is itself released.
2370 */
2371 int
2372 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2373 {
2374 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2375 const struct drm_i915_gem_object_ops *ops = obj->ops;
2376 int ret;
2377
2378 if (obj->pages)
2379 return 0;
2380
2381 if (obj->madv != I915_MADV_WILLNEED) {
2382 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2383 return -EFAULT;
2384 }
2385
2386 BUG_ON(obj->pages_pin_count);
2387
2388 ret = ops->get_pages(obj);
2389 if (ret)
2390 return ret;
2391
2392 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2393
2394 obj->get_page.sg = obj->pages->sgl;
2395 obj->get_page.last = 0;
2396
2397 return 0;
2398 }
2399
2400 /* The 'mapping' part of i915_gem_object_pin_map() below */
2401 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2402 {
2403 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2404 struct sg_table *sgt = obj->pages;
2405 struct sgt_iter sgt_iter;
2406 struct page *page;
2407 struct page *stack_pages[32];
2408 struct page **pages = stack_pages;
2409 unsigned long i = 0;
2410 void *addr;
2411
2412 /* A single page can always be kmapped */
2413 if (n_pages == 1)
2414 return kmap(sg_page(sgt->sgl));
2415
2416 if (n_pages > ARRAY_SIZE(stack_pages)) {
2417 /* Too big for stack -- allocate temporary array instead */
2418 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2419 if (!pages)
2420 return NULL;
2421 }
2422
2423 for_each_sgt_page(page, sgt_iter, sgt)
2424 pages[i++] = page;
2425
2426 /* Check that we have the expected number of pages */
2427 GEM_BUG_ON(i != n_pages);
2428
2429 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2430
2431 if (pages != stack_pages)
2432 drm_free_large(pages);
2433
2434 return addr;
2435 }
2436
2437 /* get, pin, and map the pages of the object into kernel space */
2438 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2439 {
2440 int ret;
2441
2442 lockdep_assert_held(&obj->base.dev->struct_mutex);
2443
2444 ret = i915_gem_object_get_pages(obj);
2445 if (ret)
2446 return ERR_PTR(ret);
2447
2448 i915_gem_object_pin_pages(obj);
2449
2450 if (!obj->mapping) {
2451 obj->mapping = i915_gem_object_map(obj);
2452 if (!obj->mapping) {
2453 i915_gem_object_unpin_pages(obj);
2454 return ERR_PTR(-ENOMEM);
2455 }
2456 }
2457
2458 return obj->mapping;
2459 }
2460
2461 void i915_vma_move_to_active(struct i915_vma *vma,
2462 struct drm_i915_gem_request *req)
2463 {
2464 struct drm_i915_gem_object *obj = vma->obj;
2465 struct intel_engine_cs *engine;
2466
2467 engine = i915_gem_request_get_engine(req);
2468
2469 /* Add a reference if we're newly entering the active list. */
2470 if (obj->active == 0)
2471 drm_gem_object_reference(&obj->base);
2472 obj->active |= intel_engine_flag(engine);
2473
2474 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2475 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2476
2477 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2478 }
2479
2480 static void
2481 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2482 {
2483 GEM_BUG_ON(obj->last_write_req == NULL);
2484 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2485
2486 i915_gem_request_assign(&obj->last_write_req, NULL);
2487 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2488 }
2489
2490 static void
2491 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2492 {
2493 struct i915_vma *vma;
2494
2495 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2496 GEM_BUG_ON(!(obj->active & (1 << ring)));
2497
2498 list_del_init(&obj->engine_list[ring]);
2499 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2500
2501 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2502 i915_gem_object_retire__write(obj);
2503
2504 obj->active &= ~(1 << ring);
2505 if (obj->active)
2506 return;
2507
2508 /* Bump our place on the bound list to keep it roughly in LRU order
2509 * so that we don't steal from recently used but inactive objects
2510 * (unless we are forced to ofc!)
2511 */
2512 list_move_tail(&obj->global_list,
2513 &to_i915(obj->base.dev)->mm.bound_list);
2514
2515 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2516 if (!list_empty(&vma->vm_link))
2517 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2518 }
2519
2520 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2521 drm_gem_object_unreference(&obj->base);
2522 }
2523
2524 static int
2525 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2526 {
2527 struct intel_engine_cs *engine;
2528 int ret;
2529
2530 /* Carefully retire all requests without writing to the rings */
2531 for_each_engine(engine, dev_priv) {
2532 ret = intel_engine_idle(engine);
2533 if (ret)
2534 return ret;
2535 }
2536 i915_gem_retire_requests(dev_priv);
2537
2538 /* Finally reset hw state */
2539 for_each_engine(engine, dev_priv)
2540 intel_ring_init_seqno(engine, seqno);
2541
2542 return 0;
2543 }
2544
2545 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2546 {
2547 struct drm_i915_private *dev_priv = dev->dev_private;
2548 int ret;
2549
2550 if (seqno == 0)
2551 return -EINVAL;
2552
2553 /* HWS page needs to be set less than what we
2554 * will inject to ring
2555 */
2556 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2557 if (ret)
2558 return ret;
2559
2560 /* Carefully set the last_seqno value so that wrap
2561 * detection still works
2562 */
2563 dev_priv->next_seqno = seqno;
2564 dev_priv->last_seqno = seqno - 1;
2565 if (dev_priv->last_seqno == 0)
2566 dev_priv->last_seqno--;
2567
2568 return 0;
2569 }
2570
2571 int
2572 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2573 {
2574 /* reserve 0 for non-seqno */
2575 if (dev_priv->next_seqno == 0) {
2576 int ret = i915_gem_init_seqno(dev_priv, 0);
2577 if (ret)
2578 return ret;
2579
2580 dev_priv->next_seqno = 1;
2581 }
2582
2583 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2584 return 0;
2585 }
2586
2587 /*
2588 * NB: This function is not allowed to fail. Doing so would mean the the
2589 * request is not being tracked for completion but the work itself is
2590 * going to happen on the hardware. This would be a Bad Thing(tm).
2591 */
2592 void __i915_add_request(struct drm_i915_gem_request *request,
2593 struct drm_i915_gem_object *obj,
2594 bool flush_caches)
2595 {
2596 struct intel_engine_cs *engine;
2597 struct drm_i915_private *dev_priv;
2598 struct intel_ringbuffer *ringbuf;
2599 u32 request_start;
2600 u32 reserved_tail;
2601 int ret;
2602
2603 if (WARN_ON(request == NULL))
2604 return;
2605
2606 engine = request->engine;
2607 dev_priv = request->i915;
2608 ringbuf = request->ringbuf;
2609
2610 /*
2611 * To ensure that this call will not fail, space for its emissions
2612 * should already have been reserved in the ring buffer. Let the ring
2613 * know that it is time to use that space up.
2614 */
2615 request_start = intel_ring_get_tail(ringbuf);
2616 reserved_tail = request->reserved_space;
2617 request->reserved_space = 0;
2618
2619 /*
2620 * Emit any outstanding flushes - execbuf can fail to emit the flush
2621 * after having emitted the batchbuffer command. Hence we need to fix
2622 * things up similar to emitting the lazy request. The difference here
2623 * is that the flush _must_ happen before the next request, no matter
2624 * what.
2625 */
2626 if (flush_caches) {
2627 if (i915.enable_execlists)
2628 ret = logical_ring_flush_all_caches(request);
2629 else
2630 ret = intel_ring_flush_all_caches(request);
2631 /* Not allowed to fail! */
2632 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2633 }
2634
2635 trace_i915_gem_request_add(request);
2636
2637 request->head = request_start;
2638
2639 /* Whilst this request exists, batch_obj will be on the
2640 * active_list, and so will hold the active reference. Only when this
2641 * request is retired will the the batch_obj be moved onto the
2642 * inactive_list and lose its active reference. Hence we do not need
2643 * to explicitly hold another reference here.
2644 */
2645 request->batch_obj = obj;
2646
2647 /* Seal the request and mark it as pending execution. Note that
2648 * we may inspect this state, without holding any locks, during
2649 * hangcheck. Hence we apply the barrier to ensure that we do not
2650 * see a more recent value in the hws than we are tracking.
2651 */
2652 request->emitted_jiffies = jiffies;
2653 request->previous_seqno = engine->last_submitted_seqno;
2654 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2655 list_add_tail(&request->list, &engine->request_list);
2656
2657 /* Record the position of the start of the request so that
2658 * should we detect the updated seqno part-way through the
2659 * GPU processing the request, we never over-estimate the
2660 * position of the head.
2661 */
2662 request->postfix = intel_ring_get_tail(ringbuf);
2663
2664 if (i915.enable_execlists)
2665 ret = engine->emit_request(request);
2666 else {
2667 ret = engine->add_request(request);
2668
2669 request->tail = intel_ring_get_tail(ringbuf);
2670 }
2671 /* Not allowed to fail! */
2672 WARN(ret, "emit|add_request failed: %d!\n", ret);
2673
2674 i915_queue_hangcheck(engine->i915);
2675
2676 queue_delayed_work(dev_priv->wq,
2677 &dev_priv->mm.retire_work,
2678 round_jiffies_up_relative(HZ));
2679 intel_mark_busy(dev_priv);
2680
2681 /* Sanity check that the reserved size was large enough. */
2682 ret = intel_ring_get_tail(ringbuf) - request_start;
2683 if (ret < 0)
2684 ret += ringbuf->size;
2685 WARN_ONCE(ret > reserved_tail,
2686 "Not enough space reserved (%d bytes) "
2687 "for adding the request (%d bytes)\n",
2688 reserved_tail, ret);
2689 }
2690
2691 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2692 const struct i915_gem_context *ctx)
2693 {
2694 unsigned long elapsed;
2695
2696 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2697
2698 if (ctx->hang_stats.banned)
2699 return true;
2700
2701 if (ctx->hang_stats.ban_period_seconds &&
2702 elapsed <= ctx->hang_stats.ban_period_seconds) {
2703 if (!i915_gem_context_is_default(ctx)) {
2704 DRM_DEBUG("context hanging too fast, banning!\n");
2705 return true;
2706 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2707 if (i915_stop_ring_allow_warn(dev_priv))
2708 DRM_ERROR("gpu hanging too fast, banning!\n");
2709 return true;
2710 }
2711 }
2712
2713 return false;
2714 }
2715
2716 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2717 struct i915_gem_context *ctx,
2718 const bool guilty)
2719 {
2720 struct i915_ctx_hang_stats *hs;
2721
2722 if (WARN_ON(!ctx))
2723 return;
2724
2725 hs = &ctx->hang_stats;
2726
2727 if (guilty) {
2728 hs->banned = i915_context_is_banned(dev_priv, ctx);
2729 hs->batch_active++;
2730 hs->guilty_ts = get_seconds();
2731 } else {
2732 hs->batch_pending++;
2733 }
2734 }
2735
2736 void i915_gem_request_free(struct kref *req_ref)
2737 {
2738 struct drm_i915_gem_request *req = container_of(req_ref,
2739 typeof(*req), ref);
2740 kmem_cache_free(req->i915->requests, req);
2741 }
2742
2743 static inline int
2744 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2745 struct i915_gem_context *ctx,
2746 struct drm_i915_gem_request **req_out)
2747 {
2748 struct drm_i915_private *dev_priv = engine->i915;
2749 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2750 struct drm_i915_gem_request *req;
2751 int ret;
2752
2753 if (!req_out)
2754 return -EINVAL;
2755
2756 *req_out = NULL;
2757
2758 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2759 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2760 * and restart.
2761 */
2762 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2763 if (ret)
2764 return ret;
2765
2766 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2767 if (req == NULL)
2768 return -ENOMEM;
2769
2770 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
2771 if (ret)
2772 goto err;
2773
2774 kref_init(&req->ref);
2775 req->i915 = dev_priv;
2776 req->engine = engine;
2777 req->reset_counter = reset_counter;
2778 req->ctx = ctx;
2779 i915_gem_context_reference(req->ctx);
2780
2781 /*
2782 * Reserve space in the ring buffer for all the commands required to
2783 * eventually emit this request. This is to guarantee that the
2784 * i915_add_request() call can't fail. Note that the reserve may need
2785 * to be redone if the request is not actually submitted straight
2786 * away, e.g. because a GPU scheduler has deferred it.
2787 */
2788 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
2789
2790 if (i915.enable_execlists)
2791 ret = intel_logical_ring_alloc_request_extras(req);
2792 else
2793 ret = intel_ring_alloc_request_extras(req);
2794 if (ret)
2795 goto err_ctx;
2796
2797 *req_out = req;
2798 return 0;
2799
2800 err_ctx:
2801 i915_gem_context_unreference(ctx);
2802 err:
2803 kmem_cache_free(dev_priv->requests, req);
2804 return ret;
2805 }
2806
2807 /**
2808 * i915_gem_request_alloc - allocate a request structure
2809 *
2810 * @engine: engine that we wish to issue the request on.
2811 * @ctx: context that the request will be associated with.
2812 * This can be NULL if the request is not directly related to
2813 * any specific user context, in which case this function will
2814 * choose an appropriate context to use.
2815 *
2816 * Returns a pointer to the allocated request if successful,
2817 * or an error code if not.
2818 */
2819 struct drm_i915_gem_request *
2820 i915_gem_request_alloc(struct intel_engine_cs *engine,
2821 struct i915_gem_context *ctx)
2822 {
2823 struct drm_i915_gem_request *req;
2824 int err;
2825
2826 if (ctx == NULL)
2827 ctx = engine->i915->kernel_context;
2828 err = __i915_gem_request_alloc(engine, ctx, &req);
2829 return err ? ERR_PTR(err) : req;
2830 }
2831
2832 struct drm_i915_gem_request *
2833 i915_gem_find_active_request(struct intel_engine_cs *engine)
2834 {
2835 struct drm_i915_gem_request *request;
2836
2837 list_for_each_entry(request, &engine->request_list, list) {
2838 if (i915_gem_request_completed(request, false))
2839 continue;
2840
2841 return request;
2842 }
2843
2844 return NULL;
2845 }
2846
2847 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2848 struct intel_engine_cs *engine)
2849 {
2850 struct drm_i915_gem_request *request;
2851 bool ring_hung;
2852
2853 request = i915_gem_find_active_request(engine);
2854
2855 if (request == NULL)
2856 return;
2857
2858 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2859
2860 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2861
2862 list_for_each_entry_continue(request, &engine->request_list, list)
2863 i915_set_reset_status(dev_priv, request->ctx, false);
2864 }
2865
2866 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2867 struct intel_engine_cs *engine)
2868 {
2869 struct intel_ringbuffer *buffer;
2870
2871 while (!list_empty(&engine->active_list)) {
2872 struct drm_i915_gem_object *obj;
2873
2874 obj = list_first_entry(&engine->active_list,
2875 struct drm_i915_gem_object,
2876 engine_list[engine->id]);
2877
2878 i915_gem_object_retire__read(obj, engine->id);
2879 }
2880
2881 /*
2882 * Clear the execlists queue up before freeing the requests, as those
2883 * are the ones that keep the context and ringbuffer backing objects
2884 * pinned in place.
2885 */
2886
2887 if (i915.enable_execlists) {
2888 /* Ensure irq handler finishes or is cancelled. */
2889 tasklet_kill(&engine->irq_tasklet);
2890
2891 intel_execlists_cancel_requests(engine);
2892 }
2893
2894 /*
2895 * We must free the requests after all the corresponding objects have
2896 * been moved off active lists. Which is the same order as the normal
2897 * retire_requests function does. This is important if object hold
2898 * implicit references on things like e.g. ppgtt address spaces through
2899 * the request.
2900 */
2901 while (!list_empty(&engine->request_list)) {
2902 struct drm_i915_gem_request *request;
2903
2904 request = list_first_entry(&engine->request_list,
2905 struct drm_i915_gem_request,
2906 list);
2907
2908 i915_gem_request_retire(request);
2909 }
2910
2911 /* Having flushed all requests from all queues, we know that all
2912 * ringbuffers must now be empty. However, since we do not reclaim
2913 * all space when retiring the request (to prevent HEADs colliding
2914 * with rapid ringbuffer wraparound) the amount of available space
2915 * upon reset is less than when we start. Do one more pass over
2916 * all the ringbuffers to reset last_retired_head.
2917 */
2918 list_for_each_entry(buffer, &engine->buffers, link) {
2919 buffer->last_retired_head = buffer->tail;
2920 intel_ring_update_space(buffer);
2921 }
2922
2923 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2924 }
2925
2926 void i915_gem_reset(struct drm_device *dev)
2927 {
2928 struct drm_i915_private *dev_priv = dev->dev_private;
2929 struct intel_engine_cs *engine;
2930
2931 /*
2932 * Before we free the objects from the requests, we need to inspect
2933 * them for finding the guilty party. As the requests only borrow
2934 * their reference to the objects, the inspection must be done first.
2935 */
2936 for_each_engine(engine, dev_priv)
2937 i915_gem_reset_engine_status(dev_priv, engine);
2938
2939 for_each_engine(engine, dev_priv)
2940 i915_gem_reset_engine_cleanup(dev_priv, engine);
2941
2942 i915_gem_context_reset(dev);
2943
2944 i915_gem_restore_fences(dev);
2945
2946 WARN_ON(i915_verify_lists(dev));
2947 }
2948
2949 /**
2950 * This function clears the request list as sequence numbers are passed.
2951 */
2952 void
2953 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2954 {
2955 WARN_ON(i915_verify_lists(engine->dev));
2956
2957 /* Retire requests first as we use it above for the early return.
2958 * If we retire requests last, we may use a later seqno and so clear
2959 * the requests lists without clearing the active list, leading to
2960 * confusion.
2961 */
2962 while (!list_empty(&engine->request_list)) {
2963 struct drm_i915_gem_request *request;
2964
2965 request = list_first_entry(&engine->request_list,
2966 struct drm_i915_gem_request,
2967 list);
2968
2969 if (!i915_gem_request_completed(request, true))
2970 break;
2971
2972 i915_gem_request_retire(request);
2973 }
2974
2975 /* Move any buffers on the active list that are no longer referenced
2976 * by the ringbuffer to the flushing/inactive lists as appropriate,
2977 * before we free the context associated with the requests.
2978 */
2979 while (!list_empty(&engine->active_list)) {
2980 struct drm_i915_gem_object *obj;
2981
2982 obj = list_first_entry(&engine->active_list,
2983 struct drm_i915_gem_object,
2984 engine_list[engine->id]);
2985
2986 if (!list_empty(&obj->last_read_req[engine->id]->list))
2987 break;
2988
2989 i915_gem_object_retire__read(obj, engine->id);
2990 }
2991
2992 if (unlikely(engine->trace_irq_req &&
2993 i915_gem_request_completed(engine->trace_irq_req, true))) {
2994 engine->irq_put(engine);
2995 i915_gem_request_assign(&engine->trace_irq_req, NULL);
2996 }
2997
2998 WARN_ON(i915_verify_lists(engine->dev));
2999 }
3000
3001 bool
3002 i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3003 {
3004 struct intel_engine_cs *engine;
3005 bool idle = true;
3006
3007 for_each_engine(engine, dev_priv) {
3008 i915_gem_retire_requests_ring(engine);
3009 idle &= list_empty(&engine->request_list);
3010 if (i915.enable_execlists) {
3011 spin_lock_bh(&engine->execlist_lock);
3012 idle &= list_empty(&engine->execlist_queue);
3013 spin_unlock_bh(&engine->execlist_lock);
3014 }
3015 }
3016
3017 if (idle)
3018 mod_delayed_work(dev_priv->wq,
3019 &dev_priv->mm.idle_work,
3020 msecs_to_jiffies(100));
3021
3022 return idle;
3023 }
3024
3025 static void
3026 i915_gem_retire_work_handler(struct work_struct *work)
3027 {
3028 struct drm_i915_private *dev_priv =
3029 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3030 struct drm_device *dev = dev_priv->dev;
3031 bool idle;
3032
3033 /* Come back later if the device is busy... */
3034 idle = false;
3035 if (mutex_trylock(&dev->struct_mutex)) {
3036 idle = i915_gem_retire_requests(dev_priv);
3037 mutex_unlock(&dev->struct_mutex);
3038 }
3039 if (!idle)
3040 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3041 round_jiffies_up_relative(HZ));
3042 }
3043
3044 static void
3045 i915_gem_idle_work_handler(struct work_struct *work)
3046 {
3047 struct drm_i915_private *dev_priv =
3048 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3049 struct drm_device *dev = dev_priv->dev;
3050 struct intel_engine_cs *engine;
3051
3052 for_each_engine(engine, dev_priv)
3053 if (!list_empty(&engine->request_list))
3054 return;
3055
3056 /* we probably should sync with hangcheck here, using cancel_work_sync.
3057 * Also locking seems to be fubar here, engine->request_list is protected
3058 * by dev->struct_mutex. */
3059
3060 intel_mark_idle(dev_priv);
3061
3062 if (mutex_trylock(&dev->struct_mutex)) {
3063 for_each_engine(engine, dev_priv)
3064 i915_gem_batch_pool_fini(&engine->batch_pool);
3065
3066 mutex_unlock(&dev->struct_mutex);
3067 }
3068 }
3069
3070 /**
3071 * Ensures that an object will eventually get non-busy by flushing any required
3072 * write domains, emitting any outstanding lazy request and retiring and
3073 * completed requests.
3074 */
3075 static int
3076 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3077 {
3078 int i;
3079
3080 if (!obj->active)
3081 return 0;
3082
3083 for (i = 0; i < I915_NUM_ENGINES; i++) {
3084 struct drm_i915_gem_request *req;
3085
3086 req = obj->last_read_req[i];
3087 if (req == NULL)
3088 continue;
3089
3090 if (i915_gem_request_completed(req, true))
3091 i915_gem_object_retire__read(obj, i);
3092 }
3093
3094 return 0;
3095 }
3096
3097 /**
3098 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3099 * @DRM_IOCTL_ARGS: standard ioctl arguments
3100 *
3101 * Returns 0 if successful, else an error is returned with the remaining time in
3102 * the timeout parameter.
3103 * -ETIME: object is still busy after timeout
3104 * -ERESTARTSYS: signal interrupted the wait
3105 * -ENONENT: object doesn't exist
3106 * Also possible, but rare:
3107 * -EAGAIN: GPU wedged
3108 * -ENOMEM: damn
3109 * -ENODEV: Internal IRQ fail
3110 * -E?: The add request failed
3111 *
3112 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3113 * non-zero timeout parameter the wait ioctl will wait for the given number of
3114 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3115 * without holding struct_mutex the object may become re-busied before this
3116 * function completes. A similar but shorter * race condition exists in the busy
3117 * ioctl
3118 */
3119 int
3120 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3121 {
3122 struct drm_i915_gem_wait *args = data;
3123 struct drm_i915_gem_object *obj;
3124 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3125 int i, n = 0;
3126 int ret;
3127
3128 if (args->flags != 0)
3129 return -EINVAL;
3130
3131 ret = i915_mutex_lock_interruptible(dev);
3132 if (ret)
3133 return ret;
3134
3135 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3136 if (&obj->base == NULL) {
3137 mutex_unlock(&dev->struct_mutex);
3138 return -ENOENT;
3139 }
3140
3141 /* Need to make sure the object gets inactive eventually. */
3142 ret = i915_gem_object_flush_active(obj);
3143 if (ret)
3144 goto out;
3145
3146 if (!obj->active)
3147 goto out;
3148
3149 /* Do this after OLR check to make sure we make forward progress polling
3150 * on this IOCTL with a timeout == 0 (like busy ioctl)
3151 */
3152 if (args->timeout_ns == 0) {
3153 ret = -ETIME;
3154 goto out;
3155 }
3156
3157 drm_gem_object_unreference(&obj->base);
3158
3159 for (i = 0; i < I915_NUM_ENGINES; i++) {
3160 if (obj->last_read_req[i] == NULL)
3161 continue;
3162
3163 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3164 }
3165
3166 mutex_unlock(&dev->struct_mutex);
3167
3168 for (i = 0; i < n; i++) {
3169 if (ret == 0)
3170 ret = __i915_wait_request(req[i], true,
3171 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3172 to_rps_client(file));
3173 i915_gem_request_unreference(req[i]);
3174 }
3175 return ret;
3176
3177 out:
3178 drm_gem_object_unreference(&obj->base);
3179 mutex_unlock(&dev->struct_mutex);
3180 return ret;
3181 }
3182
3183 static int
3184 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3185 struct intel_engine_cs *to,
3186 struct drm_i915_gem_request *from_req,
3187 struct drm_i915_gem_request **to_req)
3188 {
3189 struct intel_engine_cs *from;
3190 int ret;
3191
3192 from = i915_gem_request_get_engine(from_req);
3193 if (to == from)
3194 return 0;
3195
3196 if (i915_gem_request_completed(from_req, true))
3197 return 0;
3198
3199 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3200 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3201 ret = __i915_wait_request(from_req,
3202 i915->mm.interruptible,
3203 NULL,
3204 &i915->rps.semaphores);
3205 if (ret)
3206 return ret;
3207
3208 i915_gem_object_retire_request(obj, from_req);
3209 } else {
3210 int idx = intel_ring_sync_index(from, to);
3211 u32 seqno = i915_gem_request_get_seqno(from_req);
3212
3213 WARN_ON(!to_req);
3214
3215 if (seqno <= from->semaphore.sync_seqno[idx])
3216 return 0;
3217
3218 if (*to_req == NULL) {
3219 struct drm_i915_gem_request *req;
3220
3221 req = i915_gem_request_alloc(to, NULL);
3222 if (IS_ERR(req))
3223 return PTR_ERR(req);
3224
3225 *to_req = req;
3226 }
3227
3228 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3229 ret = to->semaphore.sync_to(*to_req, from, seqno);
3230 if (ret)
3231 return ret;
3232
3233 /* We use last_read_req because sync_to()
3234 * might have just caused seqno wrap under
3235 * the radar.
3236 */
3237 from->semaphore.sync_seqno[idx] =
3238 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3239 }
3240
3241 return 0;
3242 }
3243
3244 /**
3245 * i915_gem_object_sync - sync an object to a ring.
3246 *
3247 * @obj: object which may be in use on another ring.
3248 * @to: ring we wish to use the object on. May be NULL.
3249 * @to_req: request we wish to use the object for. See below.
3250 * This will be allocated and returned if a request is
3251 * required but not passed in.
3252 *
3253 * This code is meant to abstract object synchronization with the GPU.
3254 * Calling with NULL implies synchronizing the object with the CPU
3255 * rather than a particular GPU ring. Conceptually we serialise writes
3256 * between engines inside the GPU. We only allow one engine to write
3257 * into a buffer at any time, but multiple readers. To ensure each has
3258 * a coherent view of memory, we must:
3259 *
3260 * - If there is an outstanding write request to the object, the new
3261 * request must wait for it to complete (either CPU or in hw, requests
3262 * on the same ring will be naturally ordered).
3263 *
3264 * - If we are a write request (pending_write_domain is set), the new
3265 * request must wait for outstanding read requests to complete.
3266 *
3267 * For CPU synchronisation (NULL to) no request is required. For syncing with
3268 * rings to_req must be non-NULL. However, a request does not have to be
3269 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3270 * request will be allocated automatically and returned through *to_req. Note
3271 * that it is not guaranteed that commands will be emitted (because the system
3272 * might already be idle). Hence there is no need to create a request that
3273 * might never have any work submitted. Note further that if a request is
3274 * returned in *to_req, it is the responsibility of the caller to submit
3275 * that request (after potentially adding more work to it).
3276 *
3277 * Returns 0 if successful, else propagates up the lower layer error.
3278 */
3279 int
3280 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3281 struct intel_engine_cs *to,
3282 struct drm_i915_gem_request **to_req)
3283 {
3284 const bool readonly = obj->base.pending_write_domain == 0;
3285 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3286 int ret, i, n;
3287
3288 if (!obj->active)
3289 return 0;
3290
3291 if (to == NULL)
3292 return i915_gem_object_wait_rendering(obj, readonly);
3293
3294 n = 0;
3295 if (readonly) {
3296 if (obj->last_write_req)
3297 req[n++] = obj->last_write_req;
3298 } else {
3299 for (i = 0; i < I915_NUM_ENGINES; i++)
3300 if (obj->last_read_req[i])
3301 req[n++] = obj->last_read_req[i];
3302 }
3303 for (i = 0; i < n; i++) {
3304 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3305 if (ret)
3306 return ret;
3307 }
3308
3309 return 0;
3310 }
3311
3312 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3313 {
3314 u32 old_write_domain, old_read_domains;
3315
3316 /* Force a pagefault for domain tracking on next user access */
3317 i915_gem_release_mmap(obj);
3318
3319 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3320 return;
3321
3322 old_read_domains = obj->base.read_domains;
3323 old_write_domain = obj->base.write_domain;
3324
3325 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3326 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3327
3328 trace_i915_gem_object_change_domain(obj,
3329 old_read_domains,
3330 old_write_domain);
3331 }
3332
3333 static void __i915_vma_iounmap(struct i915_vma *vma)
3334 {
3335 GEM_BUG_ON(vma->pin_count);
3336
3337 if (vma->iomap == NULL)
3338 return;
3339
3340 io_mapping_unmap(vma->iomap);
3341 vma->iomap = NULL;
3342 }
3343
3344 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3345 {
3346 struct drm_i915_gem_object *obj = vma->obj;
3347 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3348 int ret;
3349
3350 if (list_empty(&vma->obj_link))
3351 return 0;
3352
3353 if (!drm_mm_node_allocated(&vma->node)) {
3354 i915_gem_vma_destroy(vma);
3355 return 0;
3356 }
3357
3358 if (vma->pin_count)
3359 return -EBUSY;
3360
3361 BUG_ON(obj->pages == NULL);
3362
3363 if (wait) {
3364 ret = i915_gem_object_wait_rendering(obj, false);
3365 if (ret)
3366 return ret;
3367 }
3368
3369 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3370 i915_gem_object_finish_gtt(obj);
3371
3372 /* release the fence reg _after_ flushing */
3373 ret = i915_gem_object_put_fence(obj);
3374 if (ret)
3375 return ret;
3376
3377 __i915_vma_iounmap(vma);
3378 }
3379
3380 trace_i915_vma_unbind(vma);
3381
3382 vma->vm->unbind_vma(vma);
3383 vma->bound = 0;
3384
3385 list_del_init(&vma->vm_link);
3386 if (vma->is_ggtt) {
3387 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3388 obj->map_and_fenceable = false;
3389 } else if (vma->ggtt_view.pages) {
3390 sg_free_table(vma->ggtt_view.pages);
3391 kfree(vma->ggtt_view.pages);
3392 }
3393 vma->ggtt_view.pages = NULL;
3394 }
3395
3396 drm_mm_remove_node(&vma->node);
3397 i915_gem_vma_destroy(vma);
3398
3399 /* Since the unbound list is global, only move to that list if
3400 * no more VMAs exist. */
3401 if (list_empty(&obj->vma_list))
3402 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3403
3404 /* And finally now the object is completely decoupled from this vma,
3405 * we can drop its hold on the backing storage and allow it to be
3406 * reaped by the shrinker.
3407 */
3408 i915_gem_object_unpin_pages(obj);
3409
3410 return 0;
3411 }
3412
3413 int i915_vma_unbind(struct i915_vma *vma)
3414 {
3415 return __i915_vma_unbind(vma, true);
3416 }
3417
3418 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3419 {
3420 return __i915_vma_unbind(vma, false);
3421 }
3422
3423 int i915_gpu_idle(struct drm_device *dev)
3424 {
3425 struct drm_i915_private *dev_priv = dev->dev_private;
3426 struct intel_engine_cs *engine;
3427 int ret;
3428
3429 /* Flush everything onto the inactive list. */
3430 for_each_engine(engine, dev_priv) {
3431 if (!i915.enable_execlists) {
3432 struct drm_i915_gem_request *req;
3433
3434 req = i915_gem_request_alloc(engine, NULL);
3435 if (IS_ERR(req))
3436 return PTR_ERR(req);
3437
3438 ret = i915_switch_context(req);
3439 i915_add_request_no_flush(req);
3440 if (ret)
3441 return ret;
3442 }
3443
3444 ret = intel_engine_idle(engine);
3445 if (ret)
3446 return ret;
3447 }
3448
3449 WARN_ON(i915_verify_lists(dev));
3450 return 0;
3451 }
3452
3453 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3454 unsigned long cache_level)
3455 {
3456 struct drm_mm_node *gtt_space = &vma->node;
3457 struct drm_mm_node *other;
3458
3459 /*
3460 * On some machines we have to be careful when putting differing types
3461 * of snoopable memory together to avoid the prefetcher crossing memory
3462 * domains and dying. During vm initialisation, we decide whether or not
3463 * these constraints apply and set the drm_mm.color_adjust
3464 * appropriately.
3465 */
3466 if (vma->vm->mm.color_adjust == NULL)
3467 return true;
3468
3469 if (!drm_mm_node_allocated(gtt_space))
3470 return true;
3471
3472 if (list_empty(&gtt_space->node_list))
3473 return true;
3474
3475 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3476 if (other->allocated && !other->hole_follows && other->color != cache_level)
3477 return false;
3478
3479 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3480 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3481 return false;
3482
3483 return true;
3484 }
3485
3486 /**
3487 * Finds free space in the GTT aperture and binds the object or a view of it
3488 * there.
3489 */
3490 static struct i915_vma *
3491 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3492 struct i915_address_space *vm,
3493 const struct i915_ggtt_view *ggtt_view,
3494 unsigned alignment,
3495 uint64_t flags)
3496 {
3497 struct drm_device *dev = obj->base.dev;
3498 struct drm_i915_private *dev_priv = to_i915(dev);
3499 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3500 u32 fence_alignment, unfenced_alignment;
3501 u32 search_flag, alloc_flag;
3502 u64 start, end;
3503 u64 size, fence_size;
3504 struct i915_vma *vma;
3505 int ret;
3506
3507 if (i915_is_ggtt(vm)) {
3508 u32 view_size;
3509
3510 if (WARN_ON(!ggtt_view))
3511 return ERR_PTR(-EINVAL);
3512
3513 view_size = i915_ggtt_view_size(obj, ggtt_view);
3514
3515 fence_size = i915_gem_get_gtt_size(dev,
3516 view_size,
3517 obj->tiling_mode);
3518 fence_alignment = i915_gem_get_gtt_alignment(dev,
3519 view_size,
3520 obj->tiling_mode,
3521 true);
3522 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3523 view_size,
3524 obj->tiling_mode,
3525 false);
3526 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3527 } else {
3528 fence_size = i915_gem_get_gtt_size(dev,
3529 obj->base.size,
3530 obj->tiling_mode);
3531 fence_alignment = i915_gem_get_gtt_alignment(dev,
3532 obj->base.size,
3533 obj->tiling_mode,
3534 true);
3535 unfenced_alignment =
3536 i915_gem_get_gtt_alignment(dev,
3537 obj->base.size,
3538 obj->tiling_mode,
3539 false);
3540 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3541 }
3542
3543 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3544 end = vm->total;
3545 if (flags & PIN_MAPPABLE)
3546 end = min_t(u64, end, ggtt->mappable_end);
3547 if (flags & PIN_ZONE_4G)
3548 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3549
3550 if (alignment == 0)
3551 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3552 unfenced_alignment;
3553 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3554 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3555 ggtt_view ? ggtt_view->type : 0,
3556 alignment);
3557 return ERR_PTR(-EINVAL);
3558 }
3559
3560 /* If binding the object/GGTT view requires more space than the entire
3561 * aperture has, reject it early before evicting everything in a vain
3562 * attempt to find space.
3563 */
3564 if (size > end) {
3565 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3566 ggtt_view ? ggtt_view->type : 0,
3567 size,
3568 flags & PIN_MAPPABLE ? "mappable" : "total",
3569 end);
3570 return ERR_PTR(-E2BIG);
3571 }
3572
3573 ret = i915_gem_object_get_pages(obj);
3574 if (ret)
3575 return ERR_PTR(ret);
3576
3577 i915_gem_object_pin_pages(obj);
3578
3579 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3580 i915_gem_obj_lookup_or_create_vma(obj, vm);
3581
3582 if (IS_ERR(vma))
3583 goto err_unpin;
3584
3585 if (flags & PIN_OFFSET_FIXED) {
3586 uint64_t offset = flags & PIN_OFFSET_MASK;
3587
3588 if (offset & (alignment - 1) || offset + size > end) {
3589 ret = -EINVAL;
3590 goto err_free_vma;
3591 }
3592 vma->node.start = offset;
3593 vma->node.size = size;
3594 vma->node.color = obj->cache_level;
3595 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3596 if (ret) {
3597 ret = i915_gem_evict_for_vma(vma);
3598 if (ret == 0)
3599 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3600 }
3601 if (ret)
3602 goto err_free_vma;
3603 } else {
3604 if (flags & PIN_HIGH) {
3605 search_flag = DRM_MM_SEARCH_BELOW;
3606 alloc_flag = DRM_MM_CREATE_TOP;
3607 } else {
3608 search_flag = DRM_MM_SEARCH_DEFAULT;
3609 alloc_flag = DRM_MM_CREATE_DEFAULT;
3610 }
3611
3612 search_free:
3613 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3614 size, alignment,
3615 obj->cache_level,
3616 start, end,
3617 search_flag,
3618 alloc_flag);
3619 if (ret) {
3620 ret = i915_gem_evict_something(dev, vm, size, alignment,
3621 obj->cache_level,
3622 start, end,
3623 flags);
3624 if (ret == 0)
3625 goto search_free;
3626
3627 goto err_free_vma;
3628 }
3629 }
3630 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3631 ret = -EINVAL;
3632 goto err_remove_node;
3633 }
3634
3635 trace_i915_vma_bind(vma, flags);
3636 ret = i915_vma_bind(vma, obj->cache_level, flags);
3637 if (ret)
3638 goto err_remove_node;
3639
3640 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3641 list_add_tail(&vma->vm_link, &vm->inactive_list);
3642
3643 return vma;
3644
3645 err_remove_node:
3646 drm_mm_remove_node(&vma->node);
3647 err_free_vma:
3648 i915_gem_vma_destroy(vma);
3649 vma = ERR_PTR(ret);
3650 err_unpin:
3651 i915_gem_object_unpin_pages(obj);
3652 return vma;
3653 }
3654
3655 bool
3656 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3657 bool force)
3658 {
3659 /* If we don't have a page list set up, then we're not pinned
3660 * to GPU, and we can ignore the cache flush because it'll happen
3661 * again at bind time.
3662 */
3663 if (obj->pages == NULL)
3664 return false;
3665
3666 /*
3667 * Stolen memory is always coherent with the GPU as it is explicitly
3668 * marked as wc by the system, or the system is cache-coherent.
3669 */
3670 if (obj->stolen || obj->phys_handle)
3671 return false;
3672
3673 /* If the GPU is snooping the contents of the CPU cache,
3674 * we do not need to manually clear the CPU cache lines. However,
3675 * the caches are only snooped when the render cache is
3676 * flushed/invalidated. As we always have to emit invalidations
3677 * and flushes when moving into and out of the RENDER domain, correct
3678 * snooping behaviour occurs naturally as the result of our domain
3679 * tracking.
3680 */
3681 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3682 obj->cache_dirty = true;
3683 return false;
3684 }
3685
3686 trace_i915_gem_object_clflush(obj);
3687 drm_clflush_sg(obj->pages);
3688 obj->cache_dirty = false;
3689
3690 return true;
3691 }
3692
3693 /** Flushes the GTT write domain for the object if it's dirty. */
3694 static void
3695 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3696 {
3697 uint32_t old_write_domain;
3698
3699 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3700 return;
3701
3702 /* No actual flushing is required for the GTT write domain. Writes
3703 * to it immediately go to main memory as far as we know, so there's
3704 * no chipset flush. It also doesn't land in render cache.
3705 *
3706 * However, we do have to enforce the order so that all writes through
3707 * the GTT land before any writes to the device, such as updates to
3708 * the GATT itself.
3709 */
3710 wmb();
3711
3712 old_write_domain = obj->base.write_domain;
3713 obj->base.write_domain = 0;
3714
3715 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3716
3717 trace_i915_gem_object_change_domain(obj,
3718 obj->base.read_domains,
3719 old_write_domain);
3720 }
3721
3722 /** Flushes the CPU write domain for the object if it's dirty. */
3723 static void
3724 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3725 {
3726 uint32_t old_write_domain;
3727
3728 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3729 return;
3730
3731 if (i915_gem_clflush_object(obj, obj->pin_display))
3732 i915_gem_chipset_flush(to_i915(obj->base.dev));
3733
3734 old_write_domain = obj->base.write_domain;
3735 obj->base.write_domain = 0;
3736
3737 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3738
3739 trace_i915_gem_object_change_domain(obj,
3740 obj->base.read_domains,
3741 old_write_domain);
3742 }
3743
3744 /**
3745 * Moves a single object to the GTT read, and possibly write domain.
3746 *
3747 * This function returns when the move is complete, including waiting on
3748 * flushes to occur.
3749 */
3750 int
3751 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3752 {
3753 struct drm_device *dev = obj->base.dev;
3754 struct drm_i915_private *dev_priv = to_i915(dev);
3755 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3756 uint32_t old_write_domain, old_read_domains;
3757 struct i915_vma *vma;
3758 int ret;
3759
3760 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3761 return 0;
3762
3763 ret = i915_gem_object_wait_rendering(obj, !write);
3764 if (ret)
3765 return ret;
3766
3767 /* Flush and acquire obj->pages so that we are coherent through
3768 * direct access in memory with previous cached writes through
3769 * shmemfs and that our cache domain tracking remains valid.
3770 * For example, if the obj->filp was moved to swap without us
3771 * being notified and releasing the pages, we would mistakenly
3772 * continue to assume that the obj remained out of the CPU cached
3773 * domain.
3774 */
3775 ret = i915_gem_object_get_pages(obj);
3776 if (ret)
3777 return ret;
3778
3779 i915_gem_object_flush_cpu_write_domain(obj);
3780
3781 /* Serialise direct access to this object with the barriers for
3782 * coherent writes from the GPU, by effectively invalidating the
3783 * GTT domain upon first access.
3784 */
3785 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3786 mb();
3787
3788 old_write_domain = obj->base.write_domain;
3789 old_read_domains = obj->base.read_domains;
3790
3791 /* It should now be out of any other write domains, and we can update
3792 * the domain values for our changes.
3793 */
3794 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3795 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3796 if (write) {
3797 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3798 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3799 obj->dirty = 1;
3800 }
3801
3802 trace_i915_gem_object_change_domain(obj,
3803 old_read_domains,
3804 old_write_domain);
3805
3806 /* And bump the LRU for this access */
3807 vma = i915_gem_obj_to_ggtt(obj);
3808 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3809 list_move_tail(&vma->vm_link,
3810 &ggtt->base.inactive_list);
3811
3812 return 0;
3813 }
3814
3815 /**
3816 * Changes the cache-level of an object across all VMA.
3817 *
3818 * After this function returns, the object will be in the new cache-level
3819 * across all GTT and the contents of the backing storage will be coherent,
3820 * with respect to the new cache-level. In order to keep the backing storage
3821 * coherent for all users, we only allow a single cache level to be set
3822 * globally on the object and prevent it from being changed whilst the
3823 * hardware is reading from the object. That is if the object is currently
3824 * on the scanout it will be set to uncached (or equivalent display
3825 * cache coherency) and all non-MOCS GPU access will also be uncached so
3826 * that all direct access to the scanout remains coherent.
3827 */
3828 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3829 enum i915_cache_level cache_level)
3830 {
3831 struct drm_device *dev = obj->base.dev;
3832 struct i915_vma *vma, *next;
3833 bool bound = false;
3834 int ret = 0;
3835
3836 if (obj->cache_level == cache_level)
3837 goto out;
3838
3839 /* Inspect the list of currently bound VMA and unbind any that would
3840 * be invalid given the new cache-level. This is principally to
3841 * catch the issue of the CS prefetch crossing page boundaries and
3842 * reading an invalid PTE on older architectures.
3843 */
3844 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3845 if (!drm_mm_node_allocated(&vma->node))
3846 continue;
3847
3848 if (vma->pin_count) {
3849 DRM_DEBUG("can not change the cache level of pinned objects\n");
3850 return -EBUSY;
3851 }
3852
3853 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3854 ret = i915_vma_unbind(vma);
3855 if (ret)
3856 return ret;
3857 } else
3858 bound = true;
3859 }
3860
3861 /* We can reuse the existing drm_mm nodes but need to change the
3862 * cache-level on the PTE. We could simply unbind them all and
3863 * rebind with the correct cache-level on next use. However since
3864 * we already have a valid slot, dma mapping, pages etc, we may as
3865 * rewrite the PTE in the belief that doing so tramples upon less
3866 * state and so involves less work.
3867 */
3868 if (bound) {
3869 /* Before we change the PTE, the GPU must not be accessing it.
3870 * If we wait upon the object, we know that all the bound
3871 * VMA are no longer active.
3872 */
3873 ret = i915_gem_object_wait_rendering(obj, false);
3874 if (ret)
3875 return ret;
3876
3877 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3878 /* Access to snoopable pages through the GTT is
3879 * incoherent and on some machines causes a hard
3880 * lockup. Relinquish the CPU mmaping to force
3881 * userspace to refault in the pages and we can
3882 * then double check if the GTT mapping is still
3883 * valid for that pointer access.
3884 */
3885 i915_gem_release_mmap(obj);
3886
3887 /* As we no longer need a fence for GTT access,
3888 * we can relinquish it now (and so prevent having
3889 * to steal a fence from someone else on the next
3890 * fence request). Note GPU activity would have
3891 * dropped the fence as all snoopable access is
3892 * supposed to be linear.
3893 */
3894 ret = i915_gem_object_put_fence(obj);
3895 if (ret)
3896 return ret;
3897 } else {
3898 /* We either have incoherent backing store and
3899 * so no GTT access or the architecture is fully
3900 * coherent. In such cases, existing GTT mmaps
3901 * ignore the cache bit in the PTE and we can
3902 * rewrite it without confusing the GPU or having
3903 * to force userspace to fault back in its mmaps.
3904 */
3905 }
3906
3907 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3908 if (!drm_mm_node_allocated(&vma->node))
3909 continue;
3910
3911 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3912 if (ret)
3913 return ret;
3914 }
3915 }
3916
3917 list_for_each_entry(vma, &obj->vma_list, obj_link)
3918 vma->node.color = cache_level;
3919 obj->cache_level = cache_level;
3920
3921 out:
3922 /* Flush the dirty CPU caches to the backing storage so that the
3923 * object is now coherent at its new cache level (with respect
3924 * to the access domain).
3925 */
3926 if (obj->cache_dirty &&
3927 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3928 cpu_write_needs_clflush(obj)) {
3929 if (i915_gem_clflush_object(obj, true))
3930 i915_gem_chipset_flush(to_i915(obj->base.dev));
3931 }
3932
3933 return 0;
3934 }
3935
3936 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3937 struct drm_file *file)
3938 {
3939 struct drm_i915_gem_caching *args = data;
3940 struct drm_i915_gem_object *obj;
3941
3942 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3943 if (&obj->base == NULL)
3944 return -ENOENT;
3945
3946 switch (obj->cache_level) {
3947 case I915_CACHE_LLC:
3948 case I915_CACHE_L3_LLC:
3949 args->caching = I915_CACHING_CACHED;
3950 break;
3951
3952 case I915_CACHE_WT:
3953 args->caching = I915_CACHING_DISPLAY;
3954 break;
3955
3956 default:
3957 args->caching = I915_CACHING_NONE;
3958 break;
3959 }
3960
3961 drm_gem_object_unreference_unlocked(&obj->base);
3962 return 0;
3963 }
3964
3965 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3966 struct drm_file *file)
3967 {
3968 struct drm_i915_private *dev_priv = dev->dev_private;
3969 struct drm_i915_gem_caching *args = data;
3970 struct drm_i915_gem_object *obj;
3971 enum i915_cache_level level;
3972 int ret;
3973
3974 switch (args->caching) {
3975 case I915_CACHING_NONE:
3976 level = I915_CACHE_NONE;
3977 break;
3978 case I915_CACHING_CACHED:
3979 /*
3980 * Due to a HW issue on BXT A stepping, GPU stores via a
3981 * snooped mapping may leave stale data in a corresponding CPU
3982 * cacheline, whereas normally such cachelines would get
3983 * invalidated.
3984 */
3985 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3986 return -ENODEV;
3987
3988 level = I915_CACHE_LLC;
3989 break;
3990 case I915_CACHING_DISPLAY:
3991 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3992 break;
3993 default:
3994 return -EINVAL;
3995 }
3996
3997 intel_runtime_pm_get(dev_priv);
3998
3999 ret = i915_mutex_lock_interruptible(dev);
4000 if (ret)
4001 goto rpm_put;
4002
4003 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4004 if (&obj->base == NULL) {
4005 ret = -ENOENT;
4006 goto unlock;
4007 }
4008
4009 ret = i915_gem_object_set_cache_level(obj, level);
4010
4011 drm_gem_object_unreference(&obj->base);
4012 unlock:
4013 mutex_unlock(&dev->struct_mutex);
4014 rpm_put:
4015 intel_runtime_pm_put(dev_priv);
4016
4017 return ret;
4018 }
4019
4020 /*
4021 * Prepare buffer for display plane (scanout, cursors, etc).
4022 * Can be called from an uninterruptible phase (modesetting) and allows
4023 * any flushes to be pipelined (for pageflips).
4024 */
4025 int
4026 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4027 u32 alignment,
4028 const struct i915_ggtt_view *view)
4029 {
4030 u32 old_read_domains, old_write_domain;
4031 int ret;
4032
4033 /* Mark the pin_display early so that we account for the
4034 * display coherency whilst setting up the cache domains.
4035 */
4036 obj->pin_display++;
4037
4038 /* The display engine is not coherent with the LLC cache on gen6. As
4039 * a result, we make sure that the pinning that is about to occur is
4040 * done with uncached PTEs. This is lowest common denominator for all
4041 * chipsets.
4042 *
4043 * However for gen6+, we could do better by using the GFDT bit instead
4044 * of uncaching, which would allow us to flush all the LLC-cached data
4045 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4046 */
4047 ret = i915_gem_object_set_cache_level(obj,
4048 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4049 if (ret)
4050 goto err_unpin_display;
4051
4052 /* As the user may map the buffer once pinned in the display plane
4053 * (e.g. libkms for the bootup splash), we have to ensure that we
4054 * always use map_and_fenceable for all scanout buffers.
4055 */
4056 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4057 view->type == I915_GGTT_VIEW_NORMAL ?
4058 PIN_MAPPABLE : 0);
4059 if (ret)
4060 goto err_unpin_display;
4061
4062 i915_gem_object_flush_cpu_write_domain(obj);
4063
4064 old_write_domain = obj->base.write_domain;
4065 old_read_domains = obj->base.read_domains;
4066
4067 /* It should now be out of any other write domains, and we can update
4068 * the domain values for our changes.
4069 */
4070 obj->base.write_domain = 0;
4071 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4072
4073 trace_i915_gem_object_change_domain(obj,
4074 old_read_domains,
4075 old_write_domain);
4076
4077 return 0;
4078
4079 err_unpin_display:
4080 obj->pin_display--;
4081 return ret;
4082 }
4083
4084 void
4085 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4086 const struct i915_ggtt_view *view)
4087 {
4088 if (WARN_ON(obj->pin_display == 0))
4089 return;
4090
4091 i915_gem_object_ggtt_unpin_view(obj, view);
4092
4093 obj->pin_display--;
4094 }
4095
4096 /**
4097 * Moves a single object to the CPU read, and possibly write domain.
4098 *
4099 * This function returns when the move is complete, including waiting on
4100 * flushes to occur.
4101 */
4102 int
4103 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4104 {
4105 uint32_t old_write_domain, old_read_domains;
4106 int ret;
4107
4108 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4109 return 0;
4110
4111 ret = i915_gem_object_wait_rendering(obj, !write);
4112 if (ret)
4113 return ret;
4114
4115 i915_gem_object_flush_gtt_write_domain(obj);
4116
4117 old_write_domain = obj->base.write_domain;
4118 old_read_domains = obj->base.read_domains;
4119
4120 /* Flush the CPU cache if it's still invalid. */
4121 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4122 i915_gem_clflush_object(obj, false);
4123
4124 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4125 }
4126
4127 /* It should now be out of any other write domains, and we can update
4128 * the domain values for our changes.
4129 */
4130 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4131
4132 /* If we're writing through the CPU, then the GPU read domains will
4133 * need to be invalidated at next use.
4134 */
4135 if (write) {
4136 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4137 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4138 }
4139
4140 trace_i915_gem_object_change_domain(obj,
4141 old_read_domains,
4142 old_write_domain);
4143
4144 return 0;
4145 }
4146
4147 /* Throttle our rendering by waiting until the ring has completed our requests
4148 * emitted over 20 msec ago.
4149 *
4150 * Note that if we were to use the current jiffies each time around the loop,
4151 * we wouldn't escape the function with any frames outstanding if the time to
4152 * render a frame was over 20ms.
4153 *
4154 * This should get us reasonable parallelism between CPU and GPU but also
4155 * relatively low latency when blocking on a particular request to finish.
4156 */
4157 static int
4158 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4159 {
4160 struct drm_i915_private *dev_priv = dev->dev_private;
4161 struct drm_i915_file_private *file_priv = file->driver_priv;
4162 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4163 struct drm_i915_gem_request *request, *target = NULL;
4164 int ret;
4165
4166 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4167 if (ret)
4168 return ret;
4169
4170 /* ABI: return -EIO if already wedged */
4171 if (i915_terminally_wedged(&dev_priv->gpu_error))
4172 return -EIO;
4173
4174 spin_lock(&file_priv->mm.lock);
4175 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4176 if (time_after_eq(request->emitted_jiffies, recent_enough))
4177 break;
4178
4179 /*
4180 * Note that the request might not have been submitted yet.
4181 * In which case emitted_jiffies will be zero.
4182 */
4183 if (!request->emitted_jiffies)
4184 continue;
4185
4186 target = request;
4187 }
4188 if (target)
4189 i915_gem_request_reference(target);
4190 spin_unlock(&file_priv->mm.lock);
4191
4192 if (target == NULL)
4193 return 0;
4194
4195 ret = __i915_wait_request(target, true, NULL, NULL);
4196 if (ret == 0)
4197 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4198
4199 i915_gem_request_unreference(target);
4200
4201 return ret;
4202 }
4203
4204 static bool
4205 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4206 {
4207 struct drm_i915_gem_object *obj = vma->obj;
4208
4209 if (alignment &&
4210 vma->node.start & (alignment - 1))
4211 return true;
4212
4213 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4214 return true;
4215
4216 if (flags & PIN_OFFSET_BIAS &&
4217 vma->node.start < (flags & PIN_OFFSET_MASK))
4218 return true;
4219
4220 if (flags & PIN_OFFSET_FIXED &&
4221 vma->node.start != (flags & PIN_OFFSET_MASK))
4222 return true;
4223
4224 return false;
4225 }
4226
4227 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4228 {
4229 struct drm_i915_gem_object *obj = vma->obj;
4230 bool mappable, fenceable;
4231 u32 fence_size, fence_alignment;
4232
4233 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4234 obj->base.size,
4235 obj->tiling_mode);
4236 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4237 obj->base.size,
4238 obj->tiling_mode,
4239 true);
4240
4241 fenceable = (vma->node.size == fence_size &&
4242 (vma->node.start & (fence_alignment - 1)) == 0);
4243
4244 mappable = (vma->node.start + fence_size <=
4245 to_i915(obj->base.dev)->ggtt.mappable_end);
4246
4247 obj->map_and_fenceable = mappable && fenceable;
4248 }
4249
4250 static int
4251 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4252 struct i915_address_space *vm,
4253 const struct i915_ggtt_view *ggtt_view,
4254 uint32_t alignment,
4255 uint64_t flags)
4256 {
4257 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4258 struct i915_vma *vma;
4259 unsigned bound;
4260 int ret;
4261
4262 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4263 return -ENODEV;
4264
4265 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4266 return -EINVAL;
4267
4268 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4269 return -EINVAL;
4270
4271 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4272 return -EINVAL;
4273
4274 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4275 i915_gem_obj_to_vma(obj, vm);
4276
4277 if (vma) {
4278 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4279 return -EBUSY;
4280
4281 if (i915_vma_misplaced(vma, alignment, flags)) {
4282 WARN(vma->pin_count,
4283 "bo is already pinned in %s with incorrect alignment:"
4284 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4285 " obj->map_and_fenceable=%d\n",
4286 ggtt_view ? "ggtt" : "ppgtt",
4287 upper_32_bits(vma->node.start),
4288 lower_32_bits(vma->node.start),
4289 alignment,
4290 !!(flags & PIN_MAPPABLE),
4291 obj->map_and_fenceable);
4292 ret = i915_vma_unbind(vma);
4293 if (ret)
4294 return ret;
4295
4296 vma = NULL;
4297 }
4298 }
4299
4300 bound = vma ? vma->bound : 0;
4301 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4302 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4303 flags);
4304 if (IS_ERR(vma))
4305 return PTR_ERR(vma);
4306 } else {
4307 ret = i915_vma_bind(vma, obj->cache_level, flags);
4308 if (ret)
4309 return ret;
4310 }
4311
4312 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4313 (bound ^ vma->bound) & GLOBAL_BIND) {
4314 __i915_vma_set_map_and_fenceable(vma);
4315 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4316 }
4317
4318 vma->pin_count++;
4319 return 0;
4320 }
4321
4322 int
4323 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4324 struct i915_address_space *vm,
4325 uint32_t alignment,
4326 uint64_t flags)
4327 {
4328 return i915_gem_object_do_pin(obj, vm,
4329 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4330 alignment, flags);
4331 }
4332
4333 int
4334 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4335 const struct i915_ggtt_view *view,
4336 uint32_t alignment,
4337 uint64_t flags)
4338 {
4339 struct drm_device *dev = obj->base.dev;
4340 struct drm_i915_private *dev_priv = to_i915(dev);
4341 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4342
4343 BUG_ON(!view);
4344
4345 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4346 alignment, flags | PIN_GLOBAL);
4347 }
4348
4349 void
4350 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4351 const struct i915_ggtt_view *view)
4352 {
4353 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4354
4355 WARN_ON(vma->pin_count == 0);
4356 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4357
4358 --vma->pin_count;
4359 }
4360
4361 int
4362 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4363 struct drm_file *file)
4364 {
4365 struct drm_i915_gem_busy *args = data;
4366 struct drm_i915_gem_object *obj;
4367 int ret;
4368
4369 ret = i915_mutex_lock_interruptible(dev);
4370 if (ret)
4371 return ret;
4372
4373 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4374 if (&obj->base == NULL) {
4375 ret = -ENOENT;
4376 goto unlock;
4377 }
4378
4379 /* Count all active objects as busy, even if they are currently not used
4380 * by the gpu. Users of this interface expect objects to eventually
4381 * become non-busy without any further actions, therefore emit any
4382 * necessary flushes here.
4383 */
4384 ret = i915_gem_object_flush_active(obj);
4385 if (ret)
4386 goto unref;
4387
4388 args->busy = 0;
4389 if (obj->active) {
4390 int i;
4391
4392 for (i = 0; i < I915_NUM_ENGINES; i++) {
4393 struct drm_i915_gem_request *req;
4394
4395 req = obj->last_read_req[i];
4396 if (req)
4397 args->busy |= 1 << (16 + req->engine->exec_id);
4398 }
4399 if (obj->last_write_req)
4400 args->busy |= obj->last_write_req->engine->exec_id;
4401 }
4402
4403 unref:
4404 drm_gem_object_unreference(&obj->base);
4405 unlock:
4406 mutex_unlock(&dev->struct_mutex);
4407 return ret;
4408 }
4409
4410 int
4411 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4412 struct drm_file *file_priv)
4413 {
4414 return i915_gem_ring_throttle(dev, file_priv);
4415 }
4416
4417 int
4418 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4419 struct drm_file *file_priv)
4420 {
4421 struct drm_i915_private *dev_priv = dev->dev_private;
4422 struct drm_i915_gem_madvise *args = data;
4423 struct drm_i915_gem_object *obj;
4424 int ret;
4425
4426 switch (args->madv) {
4427 case I915_MADV_DONTNEED:
4428 case I915_MADV_WILLNEED:
4429 break;
4430 default:
4431 return -EINVAL;
4432 }
4433
4434 ret = i915_mutex_lock_interruptible(dev);
4435 if (ret)
4436 return ret;
4437
4438 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4439 if (&obj->base == NULL) {
4440 ret = -ENOENT;
4441 goto unlock;
4442 }
4443
4444 if (i915_gem_obj_is_pinned(obj)) {
4445 ret = -EINVAL;
4446 goto out;
4447 }
4448
4449 if (obj->pages &&
4450 obj->tiling_mode != I915_TILING_NONE &&
4451 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4452 if (obj->madv == I915_MADV_WILLNEED)
4453 i915_gem_object_unpin_pages(obj);
4454 if (args->madv == I915_MADV_WILLNEED)
4455 i915_gem_object_pin_pages(obj);
4456 }
4457
4458 if (obj->madv != __I915_MADV_PURGED)
4459 obj->madv = args->madv;
4460
4461 /* if the object is no longer attached, discard its backing storage */
4462 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4463 i915_gem_object_truncate(obj);
4464
4465 args->retained = obj->madv != __I915_MADV_PURGED;
4466
4467 out:
4468 drm_gem_object_unreference(&obj->base);
4469 unlock:
4470 mutex_unlock(&dev->struct_mutex);
4471 return ret;
4472 }
4473
4474 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4475 const struct drm_i915_gem_object_ops *ops)
4476 {
4477 int i;
4478
4479 INIT_LIST_HEAD(&obj->global_list);
4480 for (i = 0; i < I915_NUM_ENGINES; i++)
4481 INIT_LIST_HEAD(&obj->engine_list[i]);
4482 INIT_LIST_HEAD(&obj->obj_exec_link);
4483 INIT_LIST_HEAD(&obj->vma_list);
4484 INIT_LIST_HEAD(&obj->batch_pool_link);
4485
4486 obj->ops = ops;
4487
4488 obj->fence_reg = I915_FENCE_REG_NONE;
4489 obj->madv = I915_MADV_WILLNEED;
4490
4491 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4492 }
4493
4494 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4495 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4496 .get_pages = i915_gem_object_get_pages_gtt,
4497 .put_pages = i915_gem_object_put_pages_gtt,
4498 };
4499
4500 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4501 size_t size)
4502 {
4503 struct drm_i915_gem_object *obj;
4504 struct address_space *mapping;
4505 gfp_t mask;
4506 int ret;
4507
4508 obj = i915_gem_object_alloc(dev);
4509 if (obj == NULL)
4510 return ERR_PTR(-ENOMEM);
4511
4512 ret = drm_gem_object_init(dev, &obj->base, size);
4513 if (ret)
4514 goto fail;
4515
4516 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4517 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4518 /* 965gm cannot relocate objects above 4GiB. */
4519 mask &= ~__GFP_HIGHMEM;
4520 mask |= __GFP_DMA32;
4521 }
4522
4523 mapping = file_inode(obj->base.filp)->i_mapping;
4524 mapping_set_gfp_mask(mapping, mask);
4525
4526 i915_gem_object_init(obj, &i915_gem_object_ops);
4527
4528 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4529 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4530
4531 if (HAS_LLC(dev)) {
4532 /* On some devices, we can have the GPU use the LLC (the CPU
4533 * cache) for about a 10% performance improvement
4534 * compared to uncached. Graphics requests other than
4535 * display scanout are coherent with the CPU in
4536 * accessing this cache. This means in this mode we
4537 * don't need to clflush on the CPU side, and on the
4538 * GPU side we only need to flush internal caches to
4539 * get data visible to the CPU.
4540 *
4541 * However, we maintain the display planes as UC, and so
4542 * need to rebind when first used as such.
4543 */
4544 obj->cache_level = I915_CACHE_LLC;
4545 } else
4546 obj->cache_level = I915_CACHE_NONE;
4547
4548 trace_i915_gem_object_create(obj);
4549
4550 return obj;
4551
4552 fail:
4553 i915_gem_object_free(obj);
4554
4555 return ERR_PTR(ret);
4556 }
4557
4558 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4559 {
4560 /* If we are the last user of the backing storage (be it shmemfs
4561 * pages or stolen etc), we know that the pages are going to be
4562 * immediately released. In this case, we can then skip copying
4563 * back the contents from the GPU.
4564 */
4565
4566 if (obj->madv != I915_MADV_WILLNEED)
4567 return false;
4568
4569 if (obj->base.filp == NULL)
4570 return true;
4571
4572 /* At first glance, this looks racy, but then again so would be
4573 * userspace racing mmap against close. However, the first external
4574 * reference to the filp can only be obtained through the
4575 * i915_gem_mmap_ioctl() which safeguards us against the user
4576 * acquiring such a reference whilst we are in the middle of
4577 * freeing the object.
4578 */
4579 return atomic_long_read(&obj->base.filp->f_count) == 1;
4580 }
4581
4582 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4583 {
4584 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4585 struct drm_device *dev = obj->base.dev;
4586 struct drm_i915_private *dev_priv = dev->dev_private;
4587 struct i915_vma *vma, *next;
4588
4589 intel_runtime_pm_get(dev_priv);
4590
4591 trace_i915_gem_object_destroy(obj);
4592
4593 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4594 int ret;
4595
4596 vma->pin_count = 0;
4597 ret = i915_vma_unbind(vma);
4598 if (WARN_ON(ret == -ERESTARTSYS)) {
4599 bool was_interruptible;
4600
4601 was_interruptible = dev_priv->mm.interruptible;
4602 dev_priv->mm.interruptible = false;
4603
4604 WARN_ON(i915_vma_unbind(vma));
4605
4606 dev_priv->mm.interruptible = was_interruptible;
4607 }
4608 }
4609
4610 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4611 * before progressing. */
4612 if (obj->stolen)
4613 i915_gem_object_unpin_pages(obj);
4614
4615 WARN_ON(obj->frontbuffer_bits);
4616
4617 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4618 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4619 obj->tiling_mode != I915_TILING_NONE)
4620 i915_gem_object_unpin_pages(obj);
4621
4622 if (WARN_ON(obj->pages_pin_count))
4623 obj->pages_pin_count = 0;
4624 if (discard_backing_storage(obj))
4625 obj->madv = I915_MADV_DONTNEED;
4626 i915_gem_object_put_pages(obj);
4627 i915_gem_object_free_mmap_offset(obj);
4628
4629 BUG_ON(obj->pages);
4630
4631 if (obj->base.import_attach)
4632 drm_prime_gem_destroy(&obj->base, NULL);
4633
4634 if (obj->ops->release)
4635 obj->ops->release(obj);
4636
4637 drm_gem_object_release(&obj->base);
4638 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4639
4640 kfree(obj->bit_17);
4641 i915_gem_object_free(obj);
4642
4643 intel_runtime_pm_put(dev_priv);
4644 }
4645
4646 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4647 struct i915_address_space *vm)
4648 {
4649 struct i915_vma *vma;
4650 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4651 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4652 vma->vm == vm)
4653 return vma;
4654 }
4655 return NULL;
4656 }
4657
4658 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4659 const struct i915_ggtt_view *view)
4660 {
4661 struct i915_vma *vma;
4662
4663 GEM_BUG_ON(!view);
4664
4665 list_for_each_entry(vma, &obj->vma_list, obj_link)
4666 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4667 return vma;
4668 return NULL;
4669 }
4670
4671 void i915_gem_vma_destroy(struct i915_vma *vma)
4672 {
4673 WARN_ON(vma->node.allocated);
4674
4675 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4676 if (!list_empty(&vma->exec_list))
4677 return;
4678
4679 if (!vma->is_ggtt)
4680 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4681
4682 list_del(&vma->obj_link);
4683
4684 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4685 }
4686
4687 static void
4688 i915_gem_stop_engines(struct drm_device *dev)
4689 {
4690 struct drm_i915_private *dev_priv = dev->dev_private;
4691 struct intel_engine_cs *engine;
4692
4693 for_each_engine(engine, dev_priv)
4694 dev_priv->gt.stop_engine(engine);
4695 }
4696
4697 int
4698 i915_gem_suspend(struct drm_device *dev)
4699 {
4700 struct drm_i915_private *dev_priv = dev->dev_private;
4701 int ret = 0;
4702
4703 mutex_lock(&dev->struct_mutex);
4704 ret = i915_gpu_idle(dev);
4705 if (ret)
4706 goto err;
4707
4708 i915_gem_retire_requests(dev_priv);
4709
4710 i915_gem_stop_engines(dev);
4711 i915_gem_context_lost(dev_priv);
4712 mutex_unlock(&dev->struct_mutex);
4713
4714 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4715 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4716 flush_delayed_work(&dev_priv->mm.idle_work);
4717
4718 /* Assert that we sucessfully flushed all the work and
4719 * reset the GPU back to its idle, low power state.
4720 */
4721 WARN_ON(dev_priv->mm.busy);
4722
4723 return 0;
4724
4725 err:
4726 mutex_unlock(&dev->struct_mutex);
4727 return ret;
4728 }
4729
4730 void i915_gem_init_swizzling(struct drm_device *dev)
4731 {
4732 struct drm_i915_private *dev_priv = dev->dev_private;
4733
4734 if (INTEL_INFO(dev)->gen < 5 ||
4735 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4736 return;
4737
4738 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4739 DISP_TILE_SURFACE_SWIZZLING);
4740
4741 if (IS_GEN5(dev))
4742 return;
4743
4744 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4745 if (IS_GEN6(dev))
4746 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4747 else if (IS_GEN7(dev))
4748 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4749 else if (IS_GEN8(dev))
4750 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4751 else
4752 BUG();
4753 }
4754
4755 static void init_unused_ring(struct drm_device *dev, u32 base)
4756 {
4757 struct drm_i915_private *dev_priv = dev->dev_private;
4758
4759 I915_WRITE(RING_CTL(base), 0);
4760 I915_WRITE(RING_HEAD(base), 0);
4761 I915_WRITE(RING_TAIL(base), 0);
4762 I915_WRITE(RING_START(base), 0);
4763 }
4764
4765 static void init_unused_rings(struct drm_device *dev)
4766 {
4767 if (IS_I830(dev)) {
4768 init_unused_ring(dev, PRB1_BASE);
4769 init_unused_ring(dev, SRB0_BASE);
4770 init_unused_ring(dev, SRB1_BASE);
4771 init_unused_ring(dev, SRB2_BASE);
4772 init_unused_ring(dev, SRB3_BASE);
4773 } else if (IS_GEN2(dev)) {
4774 init_unused_ring(dev, SRB0_BASE);
4775 init_unused_ring(dev, SRB1_BASE);
4776 } else if (IS_GEN3(dev)) {
4777 init_unused_ring(dev, PRB1_BASE);
4778 init_unused_ring(dev, PRB2_BASE);
4779 }
4780 }
4781
4782 int i915_gem_init_engines(struct drm_device *dev)
4783 {
4784 struct drm_i915_private *dev_priv = dev->dev_private;
4785 int ret;
4786
4787 ret = intel_init_render_ring_buffer(dev);
4788 if (ret)
4789 return ret;
4790
4791 if (HAS_BSD(dev)) {
4792 ret = intel_init_bsd_ring_buffer(dev);
4793 if (ret)
4794 goto cleanup_render_ring;
4795 }
4796
4797 if (HAS_BLT(dev)) {
4798 ret = intel_init_blt_ring_buffer(dev);
4799 if (ret)
4800 goto cleanup_bsd_ring;
4801 }
4802
4803 if (HAS_VEBOX(dev)) {
4804 ret = intel_init_vebox_ring_buffer(dev);
4805 if (ret)
4806 goto cleanup_blt_ring;
4807 }
4808
4809 if (HAS_BSD2(dev)) {
4810 ret = intel_init_bsd2_ring_buffer(dev);
4811 if (ret)
4812 goto cleanup_vebox_ring;
4813 }
4814
4815 return 0;
4816
4817 cleanup_vebox_ring:
4818 intel_cleanup_engine(&dev_priv->engine[VECS]);
4819 cleanup_blt_ring:
4820 intel_cleanup_engine(&dev_priv->engine[BCS]);
4821 cleanup_bsd_ring:
4822 intel_cleanup_engine(&dev_priv->engine[VCS]);
4823 cleanup_render_ring:
4824 intel_cleanup_engine(&dev_priv->engine[RCS]);
4825
4826 return ret;
4827 }
4828
4829 int
4830 i915_gem_init_hw(struct drm_device *dev)
4831 {
4832 struct drm_i915_private *dev_priv = dev->dev_private;
4833 struct intel_engine_cs *engine;
4834 int ret;
4835
4836 /* Double layer security blanket, see i915_gem_init() */
4837 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4838
4839 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4840 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4841
4842 if (IS_HASWELL(dev))
4843 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4844 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4845
4846 if (HAS_PCH_NOP(dev)) {
4847 if (IS_IVYBRIDGE(dev)) {
4848 u32 temp = I915_READ(GEN7_MSG_CTL);
4849 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4850 I915_WRITE(GEN7_MSG_CTL, temp);
4851 } else if (INTEL_INFO(dev)->gen >= 7) {
4852 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4853 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4854 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4855 }
4856 }
4857
4858 i915_gem_init_swizzling(dev);
4859
4860 /*
4861 * At least 830 can leave some of the unused rings
4862 * "active" (ie. head != tail) after resume which
4863 * will prevent c3 entry. Makes sure all unused rings
4864 * are totally idle.
4865 */
4866 init_unused_rings(dev);
4867
4868 BUG_ON(!dev_priv->kernel_context);
4869
4870 ret = i915_ppgtt_init_hw(dev);
4871 if (ret) {
4872 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4873 goto out;
4874 }
4875
4876 /* Need to do basic initialisation of all rings first: */
4877 for_each_engine(engine, dev_priv) {
4878 ret = engine->init_hw(engine);
4879 if (ret)
4880 goto out;
4881 }
4882
4883 intel_mocs_init_l3cc_table(dev);
4884
4885 /* We can't enable contexts until all firmware is loaded */
4886 if (HAS_GUC(dev)) {
4887 ret = intel_guc_setup(dev);
4888 if (ret)
4889 goto out;
4890 }
4891
4892 /*
4893 * Increment the next seqno by 0x100 so we have a visible break
4894 * on re-initialisation
4895 */
4896 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4897
4898 out:
4899 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4900 return ret;
4901 }
4902
4903 int i915_gem_init(struct drm_device *dev)
4904 {
4905 struct drm_i915_private *dev_priv = dev->dev_private;
4906 int ret;
4907
4908 mutex_lock(&dev->struct_mutex);
4909
4910 if (!i915.enable_execlists) {
4911 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4912 dev_priv->gt.init_engines = i915_gem_init_engines;
4913 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4914 dev_priv->gt.stop_engine = intel_stop_engine;
4915 } else {
4916 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4917 dev_priv->gt.init_engines = intel_logical_rings_init;
4918 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4919 dev_priv->gt.stop_engine = intel_logical_ring_stop;
4920 }
4921
4922 /* This is just a security blanket to placate dragons.
4923 * On some systems, we very sporadically observe that the first TLBs
4924 * used by the CS may be stale, despite us poking the TLB reset. If
4925 * we hold the forcewake during initialisation these problems
4926 * just magically go away.
4927 */
4928 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4929
4930 i915_gem_init_userptr(dev_priv);
4931 i915_gem_init_ggtt(dev);
4932
4933 ret = i915_gem_context_init(dev);
4934 if (ret)
4935 goto out_unlock;
4936
4937 ret = dev_priv->gt.init_engines(dev);
4938 if (ret)
4939 goto out_unlock;
4940
4941 ret = i915_gem_init_hw(dev);
4942 if (ret == -EIO) {
4943 /* Allow ring initialisation to fail by marking the GPU as
4944 * wedged. But we only want to do this where the GPU is angry,
4945 * for all other failure, such as an allocation failure, bail.
4946 */
4947 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4948 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4949 ret = 0;
4950 }
4951
4952 out_unlock:
4953 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4954 mutex_unlock(&dev->struct_mutex);
4955
4956 return ret;
4957 }
4958
4959 void
4960 i915_gem_cleanup_engines(struct drm_device *dev)
4961 {
4962 struct drm_i915_private *dev_priv = dev->dev_private;
4963 struct intel_engine_cs *engine;
4964
4965 for_each_engine(engine, dev_priv)
4966 dev_priv->gt.cleanup_engine(engine);
4967 }
4968
4969 static void
4970 init_engine_lists(struct intel_engine_cs *engine)
4971 {
4972 INIT_LIST_HEAD(&engine->active_list);
4973 INIT_LIST_HEAD(&engine->request_list);
4974 }
4975
4976 void
4977 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4978 {
4979 struct drm_device *dev = dev_priv->dev;
4980
4981 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4982 !IS_CHERRYVIEW(dev_priv))
4983 dev_priv->num_fence_regs = 32;
4984 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4985 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4986 dev_priv->num_fence_regs = 16;
4987 else
4988 dev_priv->num_fence_regs = 8;
4989
4990 if (intel_vgpu_active(dev_priv))
4991 dev_priv->num_fence_regs =
4992 I915_READ(vgtif_reg(avail_rs.fence_num));
4993
4994 /* Initialize fence registers to zero */
4995 i915_gem_restore_fences(dev);
4996
4997 i915_gem_detect_bit_6_swizzle(dev);
4998 }
4999
5000 void
5001 i915_gem_load_init(struct drm_device *dev)
5002 {
5003 struct drm_i915_private *dev_priv = dev->dev_private;
5004 int i;
5005
5006 dev_priv->objects =
5007 kmem_cache_create("i915_gem_object",
5008 sizeof(struct drm_i915_gem_object), 0,
5009 SLAB_HWCACHE_ALIGN,
5010 NULL);
5011 dev_priv->vmas =
5012 kmem_cache_create("i915_gem_vma",
5013 sizeof(struct i915_vma), 0,
5014 SLAB_HWCACHE_ALIGN,
5015 NULL);
5016 dev_priv->requests =
5017 kmem_cache_create("i915_gem_request",
5018 sizeof(struct drm_i915_gem_request), 0,
5019 SLAB_HWCACHE_ALIGN,
5020 NULL);
5021
5022 INIT_LIST_HEAD(&dev_priv->vm_list);
5023 INIT_LIST_HEAD(&dev_priv->context_list);
5024 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5025 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5026 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5027 for (i = 0; i < I915_NUM_ENGINES; i++)
5028 init_engine_lists(&dev_priv->engine[i]);
5029 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5030 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5031 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5032 i915_gem_retire_work_handler);
5033 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5034 i915_gem_idle_work_handler);
5035 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5036
5037 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5038
5039 /*
5040 * Set initial sequence number for requests.
5041 * Using this number allows the wraparound to happen early,
5042 * catching any obvious problems.
5043 */
5044 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5045 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5046
5047 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5048
5049 init_waitqueue_head(&dev_priv->pending_flip_queue);
5050
5051 dev_priv->mm.interruptible = true;
5052
5053 mutex_init(&dev_priv->fb_tracking.lock);
5054 }
5055
5056 void i915_gem_load_cleanup(struct drm_device *dev)
5057 {
5058 struct drm_i915_private *dev_priv = to_i915(dev);
5059
5060 kmem_cache_destroy(dev_priv->requests);
5061 kmem_cache_destroy(dev_priv->vmas);
5062 kmem_cache_destroy(dev_priv->objects);
5063 }
5064
5065 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5066 {
5067 struct drm_i915_gem_object *obj;
5068
5069 /* Called just before we write the hibernation image.
5070 *
5071 * We need to update the domain tracking to reflect that the CPU
5072 * will be accessing all the pages to create and restore from the
5073 * hibernation, and so upon restoration those pages will be in the
5074 * CPU domain.
5075 *
5076 * To make sure the hibernation image contains the latest state,
5077 * we update that state just before writing out the image.
5078 */
5079
5080 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5081 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5082 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5083 }
5084
5085 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5086 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5087 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5088 }
5089
5090 return 0;
5091 }
5092
5093 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5094 {
5095 struct drm_i915_file_private *file_priv = file->driver_priv;
5096
5097 /* Clean up our request list when the client is going away, so that
5098 * later retire_requests won't dereference our soon-to-be-gone
5099 * file_priv.
5100 */
5101 spin_lock(&file_priv->mm.lock);
5102 while (!list_empty(&file_priv->mm.request_list)) {
5103 struct drm_i915_gem_request *request;
5104
5105 request = list_first_entry(&file_priv->mm.request_list,
5106 struct drm_i915_gem_request,
5107 client_list);
5108 list_del(&request->client_list);
5109 request->file_priv = NULL;
5110 }
5111 spin_unlock(&file_priv->mm.lock);
5112
5113 if (!list_empty(&file_priv->rps.link)) {
5114 spin_lock(&to_i915(dev)->rps.client_lock);
5115 list_del(&file_priv->rps.link);
5116 spin_unlock(&to_i915(dev)->rps.client_lock);
5117 }
5118 }
5119
5120 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5121 {
5122 struct drm_i915_file_private *file_priv;
5123 int ret;
5124
5125 DRM_DEBUG_DRIVER("\n");
5126
5127 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5128 if (!file_priv)
5129 return -ENOMEM;
5130
5131 file->driver_priv = file_priv;
5132 file_priv->dev_priv = dev->dev_private;
5133 file_priv->file = file;
5134 INIT_LIST_HEAD(&file_priv->rps.link);
5135
5136 spin_lock_init(&file_priv->mm.lock);
5137 INIT_LIST_HEAD(&file_priv->mm.request_list);
5138
5139 file_priv->bsd_ring = -1;
5140
5141 ret = i915_gem_context_open(dev, file);
5142 if (ret)
5143 kfree(file_priv);
5144
5145 return ret;
5146 }
5147
5148 /**
5149 * i915_gem_track_fb - update frontbuffer tracking
5150 * @old: current GEM buffer for the frontbuffer slots
5151 * @new: new GEM buffer for the frontbuffer slots
5152 * @frontbuffer_bits: bitmask of frontbuffer slots
5153 *
5154 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5155 * from @old and setting them in @new. Both @old and @new can be NULL.
5156 */
5157 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5158 struct drm_i915_gem_object *new,
5159 unsigned frontbuffer_bits)
5160 {
5161 if (old) {
5162 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5163 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5164 old->frontbuffer_bits &= ~frontbuffer_bits;
5165 }
5166
5167 if (new) {
5168 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5169 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5170 new->frontbuffer_bits |= frontbuffer_bits;
5171 }
5172 }
5173
5174 /* All the new VM stuff */
5175 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5176 struct i915_address_space *vm)
5177 {
5178 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5179 struct i915_vma *vma;
5180
5181 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5182
5183 list_for_each_entry(vma, &o->vma_list, obj_link) {
5184 if (vma->is_ggtt &&
5185 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5186 continue;
5187 if (vma->vm == vm)
5188 return vma->node.start;
5189 }
5190
5191 WARN(1, "%s vma for this object not found.\n",
5192 i915_is_ggtt(vm) ? "global" : "ppgtt");
5193 return -1;
5194 }
5195
5196 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5197 const struct i915_ggtt_view *view)
5198 {
5199 struct i915_vma *vma;
5200
5201 list_for_each_entry(vma, &o->vma_list, obj_link)
5202 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5203 return vma->node.start;
5204
5205 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5206 return -1;
5207 }
5208
5209 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5210 struct i915_address_space *vm)
5211 {
5212 struct i915_vma *vma;
5213
5214 list_for_each_entry(vma, &o->vma_list, obj_link) {
5215 if (vma->is_ggtt &&
5216 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5217 continue;
5218 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5219 return true;
5220 }
5221
5222 return false;
5223 }
5224
5225 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5226 const struct i915_ggtt_view *view)
5227 {
5228 struct i915_vma *vma;
5229
5230 list_for_each_entry(vma, &o->vma_list, obj_link)
5231 if (vma->is_ggtt &&
5232 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5233 drm_mm_node_allocated(&vma->node))
5234 return true;
5235
5236 return false;
5237 }
5238
5239 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5240 {
5241 struct i915_vma *vma;
5242
5243 list_for_each_entry(vma, &o->vma_list, obj_link)
5244 if (drm_mm_node_allocated(&vma->node))
5245 return true;
5246
5247 return false;
5248 }
5249
5250 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5251 {
5252 struct i915_vma *vma;
5253
5254 GEM_BUG_ON(list_empty(&o->vma_list));
5255
5256 list_for_each_entry(vma, &o->vma_list, obj_link) {
5257 if (vma->is_ggtt &&
5258 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5259 return vma->node.size;
5260 }
5261
5262 return 0;
5263 }
5264
5265 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5266 {
5267 struct i915_vma *vma;
5268 list_for_each_entry(vma, &obj->vma_list, obj_link)
5269 if (vma->pin_count > 0)
5270 return true;
5271
5272 return false;
5273 }
5274
5275 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5276 struct page *
5277 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5278 {
5279 struct page *page;
5280
5281 /* Only default objects have per-page dirty tracking */
5282 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5283 return NULL;
5284
5285 page = i915_gem_object_get_page(obj, n);
5286 set_page_dirty(page);
5287 return page;
5288 }
5289
5290 /* Allocate a new GEM object and fill it with the supplied data */
5291 struct drm_i915_gem_object *
5292 i915_gem_object_create_from_data(struct drm_device *dev,
5293 const void *data, size_t size)
5294 {
5295 struct drm_i915_gem_object *obj;
5296 struct sg_table *sg;
5297 size_t bytes;
5298 int ret;
5299
5300 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5301 if (IS_ERR(obj))
5302 return obj;
5303
5304 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5305 if (ret)
5306 goto fail;
5307
5308 ret = i915_gem_object_get_pages(obj);
5309 if (ret)
5310 goto fail;
5311
5312 i915_gem_object_pin_pages(obj);
5313 sg = obj->pages;
5314 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5315 obj->dirty = 1; /* Backing store is now out of date */
5316 i915_gem_object_unpin_pages(obj);
5317
5318 if (WARN_ON(bytes != size)) {
5319 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5320 ret = -EFAULT;
5321 goto fail;
5322 }
5323
5324 return obj;
5325
5326 fail:
5327 drm_gem_object_unreference(&obj->base);
5328 return ERR_PTR(ret);
5329 }
This page took 0.147843 seconds and 6 git commands to generate.