Merge branch 'drm-intel-fixes' into drm-intel-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 struct change_domains {
40 uint32_t invalidate_domains;
41 uint32_t flush_domains;
42 uint32_t flush_rings;
43 };
44
45 static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
46 static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
47
48 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
49 bool pipelined);
50 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
51 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
52 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
53 int write);
54 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
55 uint64_t offset,
56 uint64_t size);
57 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
58 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
59 bool interruptible);
60 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
61 unsigned alignment,
62 bool map_and_fenceable);
63 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
64 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
65 struct drm_i915_gem_pwrite *args,
66 struct drm_file *file_priv);
67 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
68
69 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
70 int nr_to_scan,
71 gfp_t gfp_mask);
72
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
90 struct drm_i915_gem_object *obj)
91 {
92 dev_priv->mm.gtt_count++;
93 dev_priv->mm.gtt_memory += obj->gtt_space->size;
94 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
95 dev_priv->mm.mappable_gtt_used +=
96 min_t(size_t, obj->gtt_space->size,
97 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
98 }
99 }
100
101 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
102 struct drm_i915_gem_object *obj)
103 {
104 dev_priv->mm.gtt_count--;
105 dev_priv->mm.gtt_memory -= obj->gtt_space->size;
106 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
107 dev_priv->mm.mappable_gtt_used -=
108 min_t(size_t, obj->gtt_space->size,
109 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
110 }
111 }
112
113 /**
114 * Update the mappable working set counters. Call _only_ when there is a change
115 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
116 * @mappable: new state the changed mappable flag (either pin_ or fault_).
117 */
118 static void
119 i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
120 struct drm_i915_gem_object *obj,
121 bool mappable)
122 {
123 if (mappable) {
124 if (obj->pin_mappable && obj->fault_mappable)
125 /* Combined state was already mappable. */
126 return;
127 dev_priv->mm.gtt_mappable_count++;
128 dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
129 } else {
130 if (obj->pin_mappable || obj->fault_mappable)
131 /* Combined state still mappable. */
132 return;
133 dev_priv->mm.gtt_mappable_count--;
134 dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
135 }
136 }
137
138 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
139 struct drm_i915_gem_object *obj,
140 bool mappable)
141 {
142 dev_priv->mm.pin_count++;
143 dev_priv->mm.pin_memory += obj->gtt_space->size;
144 if (mappable) {
145 obj->pin_mappable = true;
146 i915_gem_info_update_mappable(dev_priv, obj, true);
147 }
148 }
149
150 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
151 struct drm_i915_gem_object *obj)
152 {
153 dev_priv->mm.pin_count--;
154 dev_priv->mm.pin_memory -= obj->gtt_space->size;
155 if (obj->pin_mappable) {
156 obj->pin_mappable = false;
157 i915_gem_info_update_mappable(dev_priv, obj, false);
158 }
159 }
160
161 int
162 i915_gem_check_is_wedged(struct drm_device *dev)
163 {
164 struct drm_i915_private *dev_priv = dev->dev_private;
165 struct completion *x = &dev_priv->error_completion;
166 unsigned long flags;
167 int ret;
168
169 if (!atomic_read(&dev_priv->mm.wedged))
170 return 0;
171
172 ret = wait_for_completion_interruptible(x);
173 if (ret)
174 return ret;
175
176 /* Success, we reset the GPU! */
177 if (!atomic_read(&dev_priv->mm.wedged))
178 return 0;
179
180 /* GPU is hung, bump the completion count to account for
181 * the token we just consumed so that we never hit zero and
182 * end up waiting upon a subsequent completion event that
183 * will never happen.
184 */
185 spin_lock_irqsave(&x->wait.lock, flags);
186 x->done++;
187 spin_unlock_irqrestore(&x->wait.lock, flags);
188 return -EIO;
189 }
190
191 static int i915_mutex_lock_interruptible(struct drm_device *dev)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 int ret;
195
196 ret = i915_gem_check_is_wedged(dev);
197 if (ret)
198 return ret;
199
200 ret = mutex_lock_interruptible(&dev->struct_mutex);
201 if (ret)
202 return ret;
203
204 if (atomic_read(&dev_priv->mm.wedged)) {
205 mutex_unlock(&dev->struct_mutex);
206 return -EAGAIN;
207 }
208
209 WARN_ON(i915_verify_lists(dev));
210 return 0;
211 }
212
213 static inline bool
214 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
215 {
216 return obj_priv->gtt_space &&
217 !obj_priv->active &&
218 obj_priv->pin_count == 0;
219 }
220
221 int i915_gem_do_init(struct drm_device *dev,
222 unsigned long start,
223 unsigned long mappable_end,
224 unsigned long end)
225 {
226 drm_i915_private_t *dev_priv = dev->dev_private;
227
228 if (start >= end ||
229 (start & (PAGE_SIZE - 1)) != 0 ||
230 (end & (PAGE_SIZE - 1)) != 0) {
231 return -EINVAL;
232 }
233
234 drm_mm_init(&dev_priv->mm.gtt_space, start,
235 end - start);
236
237 dev_priv->mm.gtt_total = end - start;
238 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
239 dev_priv->mm.gtt_mappable_end = mappable_end;
240
241 return 0;
242 }
243
244 int
245 i915_gem_init_ioctl(struct drm_device *dev, void *data,
246 struct drm_file *file_priv)
247 {
248 struct drm_i915_gem_init *args = data;
249 int ret;
250
251 mutex_lock(&dev->struct_mutex);
252 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
253 mutex_unlock(&dev->struct_mutex);
254
255 return ret;
256 }
257
258 int
259 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
260 struct drm_file *file_priv)
261 {
262 struct drm_i915_private *dev_priv = dev->dev_private;
263 struct drm_i915_gem_get_aperture *args = data;
264
265 if (!(dev->driver->driver_features & DRIVER_GEM))
266 return -ENODEV;
267
268 mutex_lock(&dev->struct_mutex);
269 args->aper_size = dev_priv->mm.gtt_total;
270 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
271 mutex_unlock(&dev->struct_mutex);
272
273 return 0;
274 }
275
276
277 /**
278 * Creates a new mm object and returns a handle to it.
279 */
280 int
281 i915_gem_create_ioctl(struct drm_device *dev, void *data,
282 struct drm_file *file_priv)
283 {
284 struct drm_i915_gem_create *args = data;
285 struct drm_gem_object *obj;
286 int ret;
287 u32 handle;
288
289 args->size = roundup(args->size, PAGE_SIZE);
290
291 /* Allocate the new object */
292 obj = i915_gem_alloc_object(dev, args->size);
293 if (obj == NULL)
294 return -ENOMEM;
295
296 ret = drm_gem_handle_create(file_priv, obj, &handle);
297 if (ret) {
298 drm_gem_object_release(obj);
299 i915_gem_info_remove_obj(dev->dev_private, obj->size);
300 kfree(obj);
301 return ret;
302 }
303
304 /* drop reference from allocate - handle holds it now */
305 drm_gem_object_unreference(obj);
306 trace_i915_gem_object_create(obj);
307
308 args->handle = handle;
309 return 0;
310 }
311
312 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
313 {
314 drm_i915_private_t *dev_priv = obj->dev->dev_private;
315 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
316
317 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
318 obj_priv->tiling_mode != I915_TILING_NONE;
319 }
320
321 static inline void
322 slow_shmem_copy(struct page *dst_page,
323 int dst_offset,
324 struct page *src_page,
325 int src_offset,
326 int length)
327 {
328 char *dst_vaddr, *src_vaddr;
329
330 dst_vaddr = kmap(dst_page);
331 src_vaddr = kmap(src_page);
332
333 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
334
335 kunmap(src_page);
336 kunmap(dst_page);
337 }
338
339 static inline void
340 slow_shmem_bit17_copy(struct page *gpu_page,
341 int gpu_offset,
342 struct page *cpu_page,
343 int cpu_offset,
344 int length,
345 int is_read)
346 {
347 char *gpu_vaddr, *cpu_vaddr;
348
349 /* Use the unswizzled path if this page isn't affected. */
350 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
351 if (is_read)
352 return slow_shmem_copy(cpu_page, cpu_offset,
353 gpu_page, gpu_offset, length);
354 else
355 return slow_shmem_copy(gpu_page, gpu_offset,
356 cpu_page, cpu_offset, length);
357 }
358
359 gpu_vaddr = kmap(gpu_page);
360 cpu_vaddr = kmap(cpu_page);
361
362 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
363 * XORing with the other bits (A9 for Y, A9 and A10 for X)
364 */
365 while (length > 0) {
366 int cacheline_end = ALIGN(gpu_offset + 1, 64);
367 int this_length = min(cacheline_end - gpu_offset, length);
368 int swizzled_gpu_offset = gpu_offset ^ 64;
369
370 if (is_read) {
371 memcpy(cpu_vaddr + cpu_offset,
372 gpu_vaddr + swizzled_gpu_offset,
373 this_length);
374 } else {
375 memcpy(gpu_vaddr + swizzled_gpu_offset,
376 cpu_vaddr + cpu_offset,
377 this_length);
378 }
379 cpu_offset += this_length;
380 gpu_offset += this_length;
381 length -= this_length;
382 }
383
384 kunmap(cpu_page);
385 kunmap(gpu_page);
386 }
387
388 /**
389 * This is the fast shmem pread path, which attempts to copy_from_user directly
390 * from the backing pages of the object to the user's address space. On a
391 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
392 */
393 static int
394 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
395 struct drm_i915_gem_pread *args,
396 struct drm_file *file_priv)
397 {
398 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
399 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
400 ssize_t remain;
401 loff_t offset;
402 char __user *user_data;
403 int page_offset, page_length;
404
405 user_data = (char __user *) (uintptr_t) args->data_ptr;
406 remain = args->size;
407
408 obj_priv = to_intel_bo(obj);
409 offset = args->offset;
410
411 while (remain > 0) {
412 struct page *page;
413 char *vaddr;
414 int ret;
415
416 /* Operation in this page
417 *
418 * page_offset = offset within page
419 * page_length = bytes to copy for this page
420 */
421 page_offset = offset & (PAGE_SIZE-1);
422 page_length = remain;
423 if ((page_offset + remain) > PAGE_SIZE)
424 page_length = PAGE_SIZE - page_offset;
425
426 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
427 GFP_HIGHUSER | __GFP_RECLAIMABLE);
428 if (IS_ERR(page))
429 return PTR_ERR(page);
430
431 vaddr = kmap_atomic(page);
432 ret = __copy_to_user_inatomic(user_data,
433 vaddr + page_offset,
434 page_length);
435 kunmap_atomic(vaddr);
436
437 mark_page_accessed(page);
438 page_cache_release(page);
439 if (ret)
440 return -EFAULT;
441
442 remain -= page_length;
443 user_data += page_length;
444 offset += page_length;
445 }
446
447 return 0;
448 }
449
450 /**
451 * This is the fallback shmem pread path, which allocates temporary storage
452 * in kernel space to copy_to_user into outside of the struct_mutex, so we
453 * can copy out of the object's backing pages while holding the struct mutex
454 * and not take page faults.
455 */
456 static int
457 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
458 struct drm_i915_gem_pread *args,
459 struct drm_file *file_priv)
460 {
461 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
462 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
463 struct mm_struct *mm = current->mm;
464 struct page **user_pages;
465 ssize_t remain;
466 loff_t offset, pinned_pages, i;
467 loff_t first_data_page, last_data_page, num_pages;
468 int shmem_page_offset;
469 int data_page_index, data_page_offset;
470 int page_length;
471 int ret;
472 uint64_t data_ptr = args->data_ptr;
473 int do_bit17_swizzling;
474
475 remain = args->size;
476
477 /* Pin the user pages containing the data. We can't fault while
478 * holding the struct mutex, yet we want to hold it while
479 * dereferencing the user data.
480 */
481 first_data_page = data_ptr / PAGE_SIZE;
482 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
483 num_pages = last_data_page - first_data_page + 1;
484
485 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
486 if (user_pages == NULL)
487 return -ENOMEM;
488
489 mutex_unlock(&dev->struct_mutex);
490 down_read(&mm->mmap_sem);
491 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
492 num_pages, 1, 0, user_pages, NULL);
493 up_read(&mm->mmap_sem);
494 mutex_lock(&dev->struct_mutex);
495 if (pinned_pages < num_pages) {
496 ret = -EFAULT;
497 goto out;
498 }
499
500 ret = i915_gem_object_set_cpu_read_domain_range(obj,
501 args->offset,
502 args->size);
503 if (ret)
504 goto out;
505
506 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
507
508 obj_priv = to_intel_bo(obj);
509 offset = args->offset;
510
511 while (remain > 0) {
512 struct page *page;
513
514 /* Operation in this page
515 *
516 * shmem_page_offset = offset within page in shmem file
517 * data_page_index = page number in get_user_pages return
518 * data_page_offset = offset with data_page_index page.
519 * page_length = bytes to copy for this page
520 */
521 shmem_page_offset = offset & ~PAGE_MASK;
522 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
523 data_page_offset = data_ptr & ~PAGE_MASK;
524
525 page_length = remain;
526 if ((shmem_page_offset + page_length) > PAGE_SIZE)
527 page_length = PAGE_SIZE - shmem_page_offset;
528 if ((data_page_offset + page_length) > PAGE_SIZE)
529 page_length = PAGE_SIZE - data_page_offset;
530
531 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
532 GFP_HIGHUSER | __GFP_RECLAIMABLE);
533 if (IS_ERR(page))
534 return PTR_ERR(page);
535
536 if (do_bit17_swizzling) {
537 slow_shmem_bit17_copy(page,
538 shmem_page_offset,
539 user_pages[data_page_index],
540 data_page_offset,
541 page_length,
542 1);
543 } else {
544 slow_shmem_copy(user_pages[data_page_index],
545 data_page_offset,
546 page,
547 shmem_page_offset,
548 page_length);
549 }
550
551 mark_page_accessed(page);
552 page_cache_release(page);
553
554 remain -= page_length;
555 data_ptr += page_length;
556 offset += page_length;
557 }
558
559 out:
560 for (i = 0; i < pinned_pages; i++) {
561 SetPageDirty(user_pages[i]);
562 mark_page_accessed(user_pages[i]);
563 page_cache_release(user_pages[i]);
564 }
565 drm_free_large(user_pages);
566
567 return ret;
568 }
569
570 /**
571 * Reads data from the object referenced by handle.
572 *
573 * On error, the contents of *data are undefined.
574 */
575 int
576 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
577 struct drm_file *file_priv)
578 {
579 struct drm_i915_gem_pread *args = data;
580 struct drm_gem_object *obj;
581 struct drm_i915_gem_object *obj_priv;
582 int ret = 0;
583
584 if (args->size == 0)
585 return 0;
586
587 if (!access_ok(VERIFY_WRITE,
588 (char __user *)(uintptr_t)args->data_ptr,
589 args->size))
590 return -EFAULT;
591
592 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
593 args->size);
594 if (ret)
595 return -EFAULT;
596
597 ret = i915_mutex_lock_interruptible(dev);
598 if (ret)
599 return ret;
600
601 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
602 if (obj == NULL) {
603 ret = -ENOENT;
604 goto unlock;
605 }
606 obj_priv = to_intel_bo(obj);
607
608 /* Bounds check source. */
609 if (args->offset > obj->size || args->size > obj->size - args->offset) {
610 ret = -EINVAL;
611 goto out;
612 }
613
614 ret = i915_gem_object_set_cpu_read_domain_range(obj,
615 args->offset,
616 args->size);
617 if (ret)
618 goto out;
619
620 ret = -EFAULT;
621 if (!i915_gem_object_needs_bit17_swizzle(obj))
622 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
623 if (ret == -EFAULT)
624 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
625
626 out:
627 drm_gem_object_unreference(obj);
628 unlock:
629 mutex_unlock(&dev->struct_mutex);
630 return ret;
631 }
632
633 /* This is the fast write path which cannot handle
634 * page faults in the source data
635 */
636
637 static inline int
638 fast_user_write(struct io_mapping *mapping,
639 loff_t page_base, int page_offset,
640 char __user *user_data,
641 int length)
642 {
643 char *vaddr_atomic;
644 unsigned long unwritten;
645
646 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
647 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
648 user_data, length);
649 io_mapping_unmap_atomic(vaddr_atomic);
650 return unwritten;
651 }
652
653 /* Here's the write path which can sleep for
654 * page faults
655 */
656
657 static inline void
658 slow_kernel_write(struct io_mapping *mapping,
659 loff_t gtt_base, int gtt_offset,
660 struct page *user_page, int user_offset,
661 int length)
662 {
663 char __iomem *dst_vaddr;
664 char *src_vaddr;
665
666 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
667 src_vaddr = kmap(user_page);
668
669 memcpy_toio(dst_vaddr + gtt_offset,
670 src_vaddr + user_offset,
671 length);
672
673 kunmap(user_page);
674 io_mapping_unmap(dst_vaddr);
675 }
676
677 /**
678 * This is the fast pwrite path, where we copy the data directly from the
679 * user into the GTT, uncached.
680 */
681 static int
682 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
683 struct drm_i915_gem_pwrite *args,
684 struct drm_file *file_priv)
685 {
686 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
687 drm_i915_private_t *dev_priv = dev->dev_private;
688 ssize_t remain;
689 loff_t offset, page_base;
690 char __user *user_data;
691 int page_offset, page_length;
692
693 user_data = (char __user *) (uintptr_t) args->data_ptr;
694 remain = args->size;
695
696 obj_priv = to_intel_bo(obj);
697 offset = obj_priv->gtt_offset + args->offset;
698
699 while (remain > 0) {
700 /* Operation in this page
701 *
702 * page_base = page offset within aperture
703 * page_offset = offset within page
704 * page_length = bytes to copy for this page
705 */
706 page_base = (offset & ~(PAGE_SIZE-1));
707 page_offset = offset & (PAGE_SIZE-1);
708 page_length = remain;
709 if ((page_offset + remain) > PAGE_SIZE)
710 page_length = PAGE_SIZE - page_offset;
711
712 /* If we get a fault while copying data, then (presumably) our
713 * source page isn't available. Return the error and we'll
714 * retry in the slow path.
715 */
716 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
717 page_offset, user_data, page_length))
718
719 return -EFAULT;
720
721 remain -= page_length;
722 user_data += page_length;
723 offset += page_length;
724 }
725
726 return 0;
727 }
728
729 /**
730 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
731 * the memory and maps it using kmap_atomic for copying.
732 *
733 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
734 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
735 */
736 static int
737 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
738 struct drm_i915_gem_pwrite *args,
739 struct drm_file *file_priv)
740 {
741 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
742 drm_i915_private_t *dev_priv = dev->dev_private;
743 ssize_t remain;
744 loff_t gtt_page_base, offset;
745 loff_t first_data_page, last_data_page, num_pages;
746 loff_t pinned_pages, i;
747 struct page **user_pages;
748 struct mm_struct *mm = current->mm;
749 int gtt_page_offset, data_page_offset, data_page_index, page_length;
750 int ret;
751 uint64_t data_ptr = args->data_ptr;
752
753 remain = args->size;
754
755 /* Pin the user pages containing the data. We can't fault while
756 * holding the struct mutex, and all of the pwrite implementations
757 * want to hold it while dereferencing the user data.
758 */
759 first_data_page = data_ptr / PAGE_SIZE;
760 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
761 num_pages = last_data_page - first_data_page + 1;
762
763 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
764 if (user_pages == NULL)
765 return -ENOMEM;
766
767 mutex_unlock(&dev->struct_mutex);
768 down_read(&mm->mmap_sem);
769 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
770 num_pages, 0, 0, user_pages, NULL);
771 up_read(&mm->mmap_sem);
772 mutex_lock(&dev->struct_mutex);
773 if (pinned_pages < num_pages) {
774 ret = -EFAULT;
775 goto out_unpin_pages;
776 }
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
779 if (ret)
780 goto out_unpin_pages;
781
782 obj_priv = to_intel_bo(obj);
783 offset = obj_priv->gtt_offset + args->offset;
784
785 while (remain > 0) {
786 /* Operation in this page
787 *
788 * gtt_page_base = page offset within aperture
789 * gtt_page_offset = offset within page in aperture
790 * data_page_index = page number in get_user_pages return
791 * data_page_offset = offset with data_page_index page.
792 * page_length = bytes to copy for this page
793 */
794 gtt_page_base = offset & PAGE_MASK;
795 gtt_page_offset = offset & ~PAGE_MASK;
796 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
797 data_page_offset = data_ptr & ~PAGE_MASK;
798
799 page_length = remain;
800 if ((gtt_page_offset + page_length) > PAGE_SIZE)
801 page_length = PAGE_SIZE - gtt_page_offset;
802 if ((data_page_offset + page_length) > PAGE_SIZE)
803 page_length = PAGE_SIZE - data_page_offset;
804
805 slow_kernel_write(dev_priv->mm.gtt_mapping,
806 gtt_page_base, gtt_page_offset,
807 user_pages[data_page_index],
808 data_page_offset,
809 page_length);
810
811 remain -= page_length;
812 offset += page_length;
813 data_ptr += page_length;
814 }
815
816 out_unpin_pages:
817 for (i = 0; i < pinned_pages; i++)
818 page_cache_release(user_pages[i]);
819 drm_free_large(user_pages);
820
821 return ret;
822 }
823
824 /**
825 * This is the fast shmem pwrite path, which attempts to directly
826 * copy_from_user into the kmapped pages backing the object.
827 */
828 static int
829 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
830 struct drm_i915_gem_pwrite *args,
831 struct drm_file *file_priv)
832 {
833 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
834 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
835 ssize_t remain;
836 loff_t offset;
837 char __user *user_data;
838 int page_offset, page_length;
839
840 user_data = (char __user *) (uintptr_t) args->data_ptr;
841 remain = args->size;
842
843 obj_priv = to_intel_bo(obj);
844 offset = args->offset;
845 obj_priv->dirty = 1;
846
847 while (remain > 0) {
848 struct page *page;
849 char *vaddr;
850 int ret;
851
852 /* Operation in this page
853 *
854 * page_offset = offset within page
855 * page_length = bytes to copy for this page
856 */
857 page_offset = offset & (PAGE_SIZE-1);
858 page_length = remain;
859 if ((page_offset + remain) > PAGE_SIZE)
860 page_length = PAGE_SIZE - page_offset;
861
862 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
863 GFP_HIGHUSER | __GFP_RECLAIMABLE);
864 if (IS_ERR(page))
865 return PTR_ERR(page);
866
867 vaddr = kmap_atomic(page, KM_USER0);
868 ret = __copy_from_user_inatomic(vaddr + page_offset,
869 user_data,
870 page_length);
871 kunmap_atomic(vaddr, KM_USER0);
872
873 set_page_dirty(page);
874 mark_page_accessed(page);
875 page_cache_release(page);
876
877 /* If we get a fault while copying data, then (presumably) our
878 * source page isn't available. Return the error and we'll
879 * retry in the slow path.
880 */
881 if (ret)
882 return -EFAULT;
883
884 remain -= page_length;
885 user_data += page_length;
886 offset += page_length;
887 }
888
889 return 0;
890 }
891
892 /**
893 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
894 * the memory and maps it using kmap_atomic for copying.
895 *
896 * This avoids taking mmap_sem for faulting on the user's address while the
897 * struct_mutex is held.
898 */
899 static int
900 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
901 struct drm_i915_gem_pwrite *args,
902 struct drm_file *file_priv)
903 {
904 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
905 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
906 struct mm_struct *mm = current->mm;
907 struct page **user_pages;
908 ssize_t remain;
909 loff_t offset, pinned_pages, i;
910 loff_t first_data_page, last_data_page, num_pages;
911 int shmem_page_offset;
912 int data_page_index, data_page_offset;
913 int page_length;
914 int ret;
915 uint64_t data_ptr = args->data_ptr;
916 int do_bit17_swizzling;
917
918 remain = args->size;
919
920 /* Pin the user pages containing the data. We can't fault while
921 * holding the struct mutex, and all of the pwrite implementations
922 * want to hold it while dereferencing the user data.
923 */
924 first_data_page = data_ptr / PAGE_SIZE;
925 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
926 num_pages = last_data_page - first_data_page + 1;
927
928 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
929 if (user_pages == NULL)
930 return -ENOMEM;
931
932 mutex_unlock(&dev->struct_mutex);
933 down_read(&mm->mmap_sem);
934 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
935 num_pages, 0, 0, user_pages, NULL);
936 up_read(&mm->mmap_sem);
937 mutex_lock(&dev->struct_mutex);
938 if (pinned_pages < num_pages) {
939 ret = -EFAULT;
940 goto out;
941 }
942
943 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
944 if (ret)
945 goto out;
946
947 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
948
949 obj_priv = to_intel_bo(obj);
950 offset = args->offset;
951 obj_priv->dirty = 1;
952
953 while (remain > 0) {
954 struct page *page;
955
956 /* Operation in this page
957 *
958 * shmem_page_offset = offset within page in shmem file
959 * data_page_index = page number in get_user_pages return
960 * data_page_offset = offset with data_page_index page.
961 * page_length = bytes to copy for this page
962 */
963 shmem_page_offset = offset & ~PAGE_MASK;
964 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
965 data_page_offset = data_ptr & ~PAGE_MASK;
966
967 page_length = remain;
968 if ((shmem_page_offset + page_length) > PAGE_SIZE)
969 page_length = PAGE_SIZE - shmem_page_offset;
970 if ((data_page_offset + page_length) > PAGE_SIZE)
971 page_length = PAGE_SIZE - data_page_offset;
972
973 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
974 GFP_HIGHUSER | __GFP_RECLAIMABLE);
975 if (IS_ERR(page)) {
976 ret = PTR_ERR(page);
977 goto out;
978 }
979
980 if (do_bit17_swizzling) {
981 slow_shmem_bit17_copy(page,
982 shmem_page_offset,
983 user_pages[data_page_index],
984 data_page_offset,
985 page_length,
986 0);
987 } else {
988 slow_shmem_copy(page,
989 shmem_page_offset,
990 user_pages[data_page_index],
991 data_page_offset,
992 page_length);
993 }
994
995 set_page_dirty(page);
996 mark_page_accessed(page);
997 page_cache_release(page);
998
999 remain -= page_length;
1000 data_ptr += page_length;
1001 offset += page_length;
1002 }
1003
1004 out:
1005 for (i = 0; i < pinned_pages; i++)
1006 page_cache_release(user_pages[i]);
1007 drm_free_large(user_pages);
1008
1009 return ret;
1010 }
1011
1012 /**
1013 * Writes data to the object referenced by handle.
1014 *
1015 * On error, the contents of the buffer that were to be modified are undefined.
1016 */
1017 int
1018 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1019 struct drm_file *file)
1020 {
1021 struct drm_i915_gem_pwrite *args = data;
1022 struct drm_gem_object *obj;
1023 struct drm_i915_gem_object *obj_priv;
1024 int ret;
1025
1026 if (args->size == 0)
1027 return 0;
1028
1029 if (!access_ok(VERIFY_READ,
1030 (char __user *)(uintptr_t)args->data_ptr,
1031 args->size))
1032 return -EFAULT;
1033
1034 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1035 args->size);
1036 if (ret)
1037 return -EFAULT;
1038
1039 ret = i915_mutex_lock_interruptible(dev);
1040 if (ret)
1041 return ret;
1042
1043 obj = drm_gem_object_lookup(dev, file, args->handle);
1044 if (obj == NULL) {
1045 ret = -ENOENT;
1046 goto unlock;
1047 }
1048 obj_priv = to_intel_bo(obj);
1049
1050 /* Bounds check destination. */
1051 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1052 ret = -EINVAL;
1053 goto out;
1054 }
1055
1056 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1057 * it would end up going through the fenced access, and we'll get
1058 * different detiling behavior between reading and writing.
1059 * pread/pwrite currently are reading and writing from the CPU
1060 * perspective, requiring manual detiling by the client.
1061 */
1062 if (obj_priv->phys_obj)
1063 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1064 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1065 obj_priv->gtt_space &&
1066 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1067 ret = i915_gem_object_pin(obj, 0, true);
1068 if (ret)
1069 goto out;
1070
1071 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1072 if (ret)
1073 goto out_unpin;
1074
1075 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1076 if (ret == -EFAULT)
1077 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1078
1079 out_unpin:
1080 i915_gem_object_unpin(obj);
1081 } else {
1082 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1083 if (ret)
1084 goto out;
1085
1086 ret = -EFAULT;
1087 if (!i915_gem_object_needs_bit17_swizzle(obj))
1088 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1089 if (ret == -EFAULT)
1090 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1091 }
1092
1093 out:
1094 drm_gem_object_unreference(obj);
1095 unlock:
1096 mutex_unlock(&dev->struct_mutex);
1097 return ret;
1098 }
1099
1100 /**
1101 * Called when user space prepares to use an object with the CPU, either
1102 * through the mmap ioctl's mapping or a GTT mapping.
1103 */
1104 int
1105 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1106 struct drm_file *file_priv)
1107 {
1108 struct drm_i915_private *dev_priv = dev->dev_private;
1109 struct drm_i915_gem_set_domain *args = data;
1110 struct drm_gem_object *obj;
1111 struct drm_i915_gem_object *obj_priv;
1112 uint32_t read_domains = args->read_domains;
1113 uint32_t write_domain = args->write_domain;
1114 int ret;
1115
1116 if (!(dev->driver->driver_features & DRIVER_GEM))
1117 return -ENODEV;
1118
1119 /* Only handle setting domains to types used by the CPU. */
1120 if (write_domain & I915_GEM_GPU_DOMAINS)
1121 return -EINVAL;
1122
1123 if (read_domains & I915_GEM_GPU_DOMAINS)
1124 return -EINVAL;
1125
1126 /* Having something in the write domain implies it's in the read
1127 * domain, and only that read domain. Enforce that in the request.
1128 */
1129 if (write_domain != 0 && read_domains != write_domain)
1130 return -EINVAL;
1131
1132 ret = i915_mutex_lock_interruptible(dev);
1133 if (ret)
1134 return ret;
1135
1136 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1137 if (obj == NULL) {
1138 ret = -ENOENT;
1139 goto unlock;
1140 }
1141 obj_priv = to_intel_bo(obj);
1142
1143 intel_mark_busy(dev, obj);
1144
1145 if (read_domains & I915_GEM_DOMAIN_GTT) {
1146 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1147
1148 /* Update the LRU on the fence for the CPU access that's
1149 * about to occur.
1150 */
1151 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1152 struct drm_i915_fence_reg *reg =
1153 &dev_priv->fence_regs[obj_priv->fence_reg];
1154 list_move_tail(&reg->lru_list,
1155 &dev_priv->mm.fence_list);
1156 }
1157
1158 /* Silently promote "you're not bound, there was nothing to do"
1159 * to success, since the client was just asking us to
1160 * make sure everything was done.
1161 */
1162 if (ret == -EINVAL)
1163 ret = 0;
1164 } else {
1165 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1166 }
1167
1168 /* Maintain LRU order of "inactive" objects */
1169 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1170 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1171
1172 drm_gem_object_unreference(obj);
1173 unlock:
1174 mutex_unlock(&dev->struct_mutex);
1175 return ret;
1176 }
1177
1178 /**
1179 * Called when user space has done writes to this buffer
1180 */
1181 int
1182 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1183 struct drm_file *file_priv)
1184 {
1185 struct drm_i915_gem_sw_finish *args = data;
1186 struct drm_gem_object *obj;
1187 int ret = 0;
1188
1189 if (!(dev->driver->driver_features & DRIVER_GEM))
1190 return -ENODEV;
1191
1192 ret = i915_mutex_lock_interruptible(dev);
1193 if (ret)
1194 return ret;
1195
1196 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1197 if (obj == NULL) {
1198 ret = -ENOENT;
1199 goto unlock;
1200 }
1201
1202 /* Pinned buffers may be scanout, so flush the cache */
1203 if (to_intel_bo(obj)->pin_count)
1204 i915_gem_object_flush_cpu_write_domain(obj);
1205
1206 drm_gem_object_unreference(obj);
1207 unlock:
1208 mutex_unlock(&dev->struct_mutex);
1209 return ret;
1210 }
1211
1212 /**
1213 * Maps the contents of an object, returning the address it is mapped
1214 * into.
1215 *
1216 * While the mapping holds a reference on the contents of the object, it doesn't
1217 * imply a ref on the object itself.
1218 */
1219 int
1220 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1221 struct drm_file *file_priv)
1222 {
1223 struct drm_i915_private *dev_priv = dev->dev_private;
1224 struct drm_i915_gem_mmap *args = data;
1225 struct drm_gem_object *obj;
1226 loff_t offset;
1227 unsigned long addr;
1228
1229 if (!(dev->driver->driver_features & DRIVER_GEM))
1230 return -ENODEV;
1231
1232 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1233 if (obj == NULL)
1234 return -ENOENT;
1235
1236 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1237 drm_gem_object_unreference_unlocked(obj);
1238 return -E2BIG;
1239 }
1240
1241 offset = args->offset;
1242
1243 down_write(&current->mm->mmap_sem);
1244 addr = do_mmap(obj->filp, 0, args->size,
1245 PROT_READ | PROT_WRITE, MAP_SHARED,
1246 args->offset);
1247 up_write(&current->mm->mmap_sem);
1248 drm_gem_object_unreference_unlocked(obj);
1249 if (IS_ERR((void *)addr))
1250 return addr;
1251
1252 args->addr_ptr = (uint64_t) addr;
1253
1254 return 0;
1255 }
1256
1257 /**
1258 * i915_gem_fault - fault a page into the GTT
1259 * vma: VMA in question
1260 * vmf: fault info
1261 *
1262 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1263 * from userspace. The fault handler takes care of binding the object to
1264 * the GTT (if needed), allocating and programming a fence register (again,
1265 * only if needed based on whether the old reg is still valid or the object
1266 * is tiled) and inserting a new PTE into the faulting process.
1267 *
1268 * Note that the faulting process may involve evicting existing objects
1269 * from the GTT and/or fence registers to make room. So performance may
1270 * suffer if the GTT working set is large or there are few fence registers
1271 * left.
1272 */
1273 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1274 {
1275 struct drm_gem_object *obj = vma->vm_private_data;
1276 struct drm_device *dev = obj->dev;
1277 drm_i915_private_t *dev_priv = dev->dev_private;
1278 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1279 pgoff_t page_offset;
1280 unsigned long pfn;
1281 int ret = 0;
1282 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1283
1284 /* We don't use vmf->pgoff since that has the fake offset */
1285 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1286 PAGE_SHIFT;
1287
1288 /* Now bind it into the GTT if needed */
1289 mutex_lock(&dev->struct_mutex);
1290 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
1291
1292 if (obj_priv->gtt_space) {
1293 if (!obj_priv->map_and_fenceable) {
1294 ret = i915_gem_object_unbind(obj);
1295 if (ret)
1296 goto unlock;
1297 }
1298 }
1299
1300 if (!obj_priv->gtt_space) {
1301 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1302 if (ret)
1303 goto unlock;
1304 }
1305
1306 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1307 if (ret)
1308 goto unlock;
1309
1310 if (!obj_priv->fault_mappable) {
1311 obj_priv->fault_mappable = true;
1312 i915_gem_info_update_mappable(dev_priv, obj_priv, true);
1313 }
1314
1315 /* Need a new fence register? */
1316 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1317 ret = i915_gem_object_get_fence_reg(obj, true);
1318 if (ret)
1319 goto unlock;
1320 }
1321
1322 if (i915_gem_object_is_inactive(obj_priv))
1323 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1324
1325 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1326 page_offset;
1327
1328 /* Finally, remap it using the new GTT offset */
1329 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1330 unlock:
1331 mutex_unlock(&dev->struct_mutex);
1332
1333 switch (ret) {
1334 case -EAGAIN:
1335 set_need_resched();
1336 case 0:
1337 case -ERESTARTSYS:
1338 return VM_FAULT_NOPAGE;
1339 case -ENOMEM:
1340 return VM_FAULT_OOM;
1341 default:
1342 return VM_FAULT_SIGBUS;
1343 }
1344 }
1345
1346 /**
1347 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1348 * @obj: obj in question
1349 *
1350 * GEM memory mapping works by handing back to userspace a fake mmap offset
1351 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1352 * up the object based on the offset and sets up the various memory mapping
1353 * structures.
1354 *
1355 * This routine allocates and attaches a fake offset for @obj.
1356 */
1357 static int
1358 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1359 {
1360 struct drm_device *dev = obj->dev;
1361 struct drm_gem_mm *mm = dev->mm_private;
1362 struct drm_map_list *list;
1363 struct drm_local_map *map;
1364 int ret = 0;
1365
1366 /* Set the object up for mmap'ing */
1367 list = &obj->map_list;
1368 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1369 if (!list->map)
1370 return -ENOMEM;
1371
1372 map = list->map;
1373 map->type = _DRM_GEM;
1374 map->size = obj->size;
1375 map->handle = obj;
1376
1377 /* Get a DRM GEM mmap offset allocated... */
1378 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1379 obj->size / PAGE_SIZE, 0, 0);
1380 if (!list->file_offset_node) {
1381 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1382 ret = -ENOSPC;
1383 goto out_free_list;
1384 }
1385
1386 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1387 obj->size / PAGE_SIZE, 0);
1388 if (!list->file_offset_node) {
1389 ret = -ENOMEM;
1390 goto out_free_list;
1391 }
1392
1393 list->hash.key = list->file_offset_node->start;
1394 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1395 if (ret) {
1396 DRM_ERROR("failed to add to map hash\n");
1397 goto out_free_mm;
1398 }
1399
1400 return 0;
1401
1402 out_free_mm:
1403 drm_mm_put_block(list->file_offset_node);
1404 out_free_list:
1405 kfree(list->map);
1406 list->map = NULL;
1407
1408 return ret;
1409 }
1410
1411 /**
1412 * i915_gem_release_mmap - remove physical page mappings
1413 * @obj: obj in question
1414 *
1415 * Preserve the reservation of the mmapping with the DRM core code, but
1416 * relinquish ownership of the pages back to the system.
1417 *
1418 * It is vital that we remove the page mapping if we have mapped a tiled
1419 * object through the GTT and then lose the fence register due to
1420 * resource pressure. Similarly if the object has been moved out of the
1421 * aperture, than pages mapped into userspace must be revoked. Removing the
1422 * mapping will then trigger a page fault on the next user access, allowing
1423 * fixup by i915_gem_fault().
1424 */
1425 void
1426 i915_gem_release_mmap(struct drm_gem_object *obj)
1427 {
1428 struct drm_device *dev = obj->dev;
1429 struct drm_i915_private *dev_priv = dev->dev_private;
1430 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1431
1432 if (unlikely(obj->map_list.map && dev->dev_mapping))
1433 unmap_mapping_range(dev->dev_mapping,
1434 (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
1435 obj->size, 1);
1436
1437 if (obj_priv->fault_mappable) {
1438 obj_priv->fault_mappable = false;
1439 i915_gem_info_update_mappable(dev_priv, obj_priv, false);
1440 }
1441 }
1442
1443 static void
1444 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1445 {
1446 struct drm_device *dev = obj->dev;
1447 struct drm_gem_mm *mm = dev->mm_private;
1448 struct drm_map_list *list = &obj->map_list;
1449
1450 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1451 drm_mm_put_block(list->file_offset_node);
1452 kfree(list->map);
1453 list->map = NULL;
1454 }
1455
1456 /**
1457 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1458 * @obj: object to check
1459 *
1460 * Return the required GTT alignment for an object, taking into account
1461 * potential fence register mapping.
1462 */
1463 static uint32_t
1464 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
1465 {
1466 struct drm_device *dev = obj_priv->base.dev;
1467
1468 /*
1469 * Minimum alignment is 4k (GTT page size), but might be greater
1470 * if a fence register is needed for the object.
1471 */
1472 if (INTEL_INFO(dev)->gen >= 4 ||
1473 obj_priv->tiling_mode == I915_TILING_NONE)
1474 return 4096;
1475
1476 /*
1477 * Previous chips need to be aligned to the size of the smallest
1478 * fence register that can contain the object.
1479 */
1480 return i915_gem_get_gtt_size(obj_priv);
1481 }
1482
1483 /**
1484 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1485 * unfenced object
1486 * @obj: object to check
1487 *
1488 * Return the required GTT alignment for an object, only taking into account
1489 * unfenced tiled surface requirements.
1490 */
1491 static uint32_t
1492 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj_priv)
1493 {
1494 struct drm_device *dev = obj_priv->base.dev;
1495 int tile_height;
1496
1497 /*
1498 * Minimum alignment is 4k (GTT page size) for sane hw.
1499 */
1500 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1501 obj_priv->tiling_mode == I915_TILING_NONE)
1502 return 4096;
1503
1504 /*
1505 * Older chips need unfenced tiled buffers to be aligned to the left
1506 * edge of an even tile row (where tile rows are counted as if the bo is
1507 * placed in a fenced gtt region).
1508 */
1509 if (IS_GEN2(dev) ||
1510 (obj_priv->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1511 tile_height = 32;
1512 else
1513 tile_height = 8;
1514
1515 return tile_height * obj_priv->stride * 2;
1516 }
1517
1518 static uint32_t
1519 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
1520 {
1521 struct drm_device *dev = obj_priv->base.dev;
1522 uint32_t size;
1523
1524 /*
1525 * Minimum alignment is 4k (GTT page size), but might be greater
1526 * if a fence register is needed for the object.
1527 */
1528 if (INTEL_INFO(dev)->gen >= 4)
1529 return obj_priv->base.size;
1530
1531 /*
1532 * Previous chips need to be aligned to the size of the smallest
1533 * fence register that can contain the object.
1534 */
1535 if (INTEL_INFO(dev)->gen == 3)
1536 size = 1024*1024;
1537 else
1538 size = 512*1024;
1539
1540 while (size < obj_priv->base.size)
1541 size <<= 1;
1542
1543 return size;
1544 }
1545
1546 /**
1547 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1548 * @dev: DRM device
1549 * @data: GTT mapping ioctl data
1550 * @file_priv: GEM object info
1551 *
1552 * Simply returns the fake offset to userspace so it can mmap it.
1553 * The mmap call will end up in drm_gem_mmap(), which will set things
1554 * up so we can get faults in the handler above.
1555 *
1556 * The fault handler will take care of binding the object into the GTT
1557 * (since it may have been evicted to make room for something), allocating
1558 * a fence register, and mapping the appropriate aperture address into
1559 * userspace.
1560 */
1561 int
1562 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1563 struct drm_file *file_priv)
1564 {
1565 struct drm_i915_private *dev_priv = dev->dev_private;
1566 struct drm_i915_gem_mmap_gtt *args = data;
1567 struct drm_gem_object *obj;
1568 struct drm_i915_gem_object *obj_priv;
1569 int ret;
1570
1571 if (!(dev->driver->driver_features & DRIVER_GEM))
1572 return -ENODEV;
1573
1574 ret = i915_mutex_lock_interruptible(dev);
1575 if (ret)
1576 return ret;
1577
1578 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1579 if (obj == NULL) {
1580 ret = -ENOENT;
1581 goto unlock;
1582 }
1583 obj_priv = to_intel_bo(obj);
1584
1585 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1586 ret = -E2BIG;
1587 goto unlock;
1588 }
1589
1590 if (obj_priv->madv != I915_MADV_WILLNEED) {
1591 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1592 ret = -EINVAL;
1593 goto out;
1594 }
1595
1596 if (!obj->map_list.map) {
1597 ret = i915_gem_create_mmap_offset(obj);
1598 if (ret)
1599 goto out;
1600 }
1601
1602 args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
1603
1604 out:
1605 drm_gem_object_unreference(obj);
1606 unlock:
1607 mutex_unlock(&dev->struct_mutex);
1608 return ret;
1609 }
1610
1611 static int
1612 i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
1613 gfp_t gfpmask)
1614 {
1615 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1616 int page_count, i;
1617 struct address_space *mapping;
1618 struct inode *inode;
1619 struct page *page;
1620
1621 /* Get the list of pages out of our struct file. They'll be pinned
1622 * at this point until we release them.
1623 */
1624 page_count = obj->size / PAGE_SIZE;
1625 BUG_ON(obj_priv->pages != NULL);
1626 obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1627 if (obj_priv->pages == NULL)
1628 return -ENOMEM;
1629
1630 inode = obj->filp->f_path.dentry->d_inode;
1631 mapping = inode->i_mapping;
1632 for (i = 0; i < page_count; i++) {
1633 page = read_cache_page_gfp(mapping, i,
1634 GFP_HIGHUSER |
1635 __GFP_COLD |
1636 __GFP_RECLAIMABLE |
1637 gfpmask);
1638 if (IS_ERR(page))
1639 goto err_pages;
1640
1641 obj_priv->pages[i] = page;
1642 }
1643
1644 if (obj_priv->tiling_mode != I915_TILING_NONE)
1645 i915_gem_object_do_bit_17_swizzle(obj);
1646
1647 return 0;
1648
1649 err_pages:
1650 while (i--)
1651 page_cache_release(obj_priv->pages[i]);
1652
1653 drm_free_large(obj_priv->pages);
1654 obj_priv->pages = NULL;
1655 return PTR_ERR(page);
1656 }
1657
1658 static void
1659 i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
1660 {
1661 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1662 int page_count = obj->size / PAGE_SIZE;
1663 int i;
1664
1665 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1666
1667 if (obj_priv->tiling_mode != I915_TILING_NONE)
1668 i915_gem_object_save_bit_17_swizzle(obj);
1669
1670 if (obj_priv->madv == I915_MADV_DONTNEED)
1671 obj_priv->dirty = 0;
1672
1673 for (i = 0; i < page_count; i++) {
1674 if (obj_priv->dirty)
1675 set_page_dirty(obj_priv->pages[i]);
1676
1677 if (obj_priv->madv == I915_MADV_WILLNEED)
1678 mark_page_accessed(obj_priv->pages[i]);
1679
1680 page_cache_release(obj_priv->pages[i]);
1681 }
1682 obj_priv->dirty = 0;
1683
1684 drm_free_large(obj_priv->pages);
1685 obj_priv->pages = NULL;
1686 }
1687
1688 static uint32_t
1689 i915_gem_next_request_seqno(struct drm_device *dev,
1690 struct intel_ring_buffer *ring)
1691 {
1692 drm_i915_private_t *dev_priv = dev->dev_private;
1693 return ring->outstanding_lazy_request = dev_priv->next_seqno;
1694 }
1695
1696 static void
1697 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1698 struct intel_ring_buffer *ring)
1699 {
1700 struct drm_device *dev = obj->dev;
1701 struct drm_i915_private *dev_priv = dev->dev_private;
1702 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1703 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1704
1705 BUG_ON(ring == NULL);
1706 obj_priv->ring = ring;
1707
1708 /* Add a reference if we're newly entering the active list. */
1709 if (!obj_priv->active) {
1710 drm_gem_object_reference(obj);
1711 obj_priv->active = 1;
1712 }
1713
1714 /* Move from whatever list we were on to the tail of execution. */
1715 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1716 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1717 obj_priv->last_rendering_seqno = seqno;
1718 }
1719
1720 static void
1721 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1722 {
1723 struct drm_device *dev = obj->dev;
1724 drm_i915_private_t *dev_priv = dev->dev_private;
1725 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1726
1727 BUG_ON(!obj_priv->active);
1728 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1729 list_del_init(&obj_priv->ring_list);
1730 obj_priv->last_rendering_seqno = 0;
1731 }
1732
1733 /* Immediately discard the backing storage */
1734 static void
1735 i915_gem_object_truncate(struct drm_gem_object *obj)
1736 {
1737 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1738 struct inode *inode;
1739
1740 /* Our goal here is to return as much of the memory as
1741 * is possible back to the system as we are called from OOM.
1742 * To do this we must instruct the shmfs to drop all of its
1743 * backing pages, *now*. Here we mirror the actions taken
1744 * when by shmem_delete_inode() to release the backing store.
1745 */
1746 inode = obj->filp->f_path.dentry->d_inode;
1747 truncate_inode_pages(inode->i_mapping, 0);
1748 if (inode->i_op->truncate_range)
1749 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1750
1751 obj_priv->madv = __I915_MADV_PURGED;
1752 }
1753
1754 static inline int
1755 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1756 {
1757 return obj_priv->madv == I915_MADV_DONTNEED;
1758 }
1759
1760 static void
1761 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1762 {
1763 struct drm_device *dev = obj->dev;
1764 drm_i915_private_t *dev_priv = dev->dev_private;
1765 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1766
1767 if (obj_priv->pin_count != 0)
1768 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1769 else
1770 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1771 list_del_init(&obj_priv->ring_list);
1772
1773 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1774
1775 obj_priv->last_rendering_seqno = 0;
1776 obj_priv->ring = NULL;
1777 if (obj_priv->active) {
1778 obj_priv->active = 0;
1779 drm_gem_object_unreference(obj);
1780 }
1781 WARN_ON(i915_verify_lists(dev));
1782 }
1783
1784 static void
1785 i915_gem_process_flushing_list(struct drm_device *dev,
1786 uint32_t flush_domains,
1787 struct intel_ring_buffer *ring)
1788 {
1789 drm_i915_private_t *dev_priv = dev->dev_private;
1790 struct drm_i915_gem_object *obj_priv, *next;
1791
1792 list_for_each_entry_safe(obj_priv, next,
1793 &ring->gpu_write_list,
1794 gpu_write_list) {
1795 struct drm_gem_object *obj = &obj_priv->base;
1796
1797 if (obj->write_domain & flush_domains) {
1798 uint32_t old_write_domain = obj->write_domain;
1799
1800 obj->write_domain = 0;
1801 list_del_init(&obj_priv->gpu_write_list);
1802 i915_gem_object_move_to_active(obj, ring);
1803
1804 /* update the fence lru list */
1805 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1806 struct drm_i915_fence_reg *reg =
1807 &dev_priv->fence_regs[obj_priv->fence_reg];
1808 list_move_tail(&reg->lru_list,
1809 &dev_priv->mm.fence_list);
1810 }
1811
1812 trace_i915_gem_object_change_domain(obj,
1813 obj->read_domains,
1814 old_write_domain);
1815 }
1816 }
1817 }
1818
1819 int
1820 i915_add_request(struct drm_device *dev,
1821 struct drm_file *file,
1822 struct drm_i915_gem_request *request,
1823 struct intel_ring_buffer *ring)
1824 {
1825 drm_i915_private_t *dev_priv = dev->dev_private;
1826 struct drm_i915_file_private *file_priv = NULL;
1827 uint32_t seqno;
1828 int was_empty;
1829 int ret;
1830
1831 BUG_ON(request == NULL);
1832
1833 if (file != NULL)
1834 file_priv = file->driver_priv;
1835
1836 ret = ring->add_request(ring, &seqno);
1837 if (ret)
1838 return ret;
1839
1840 ring->outstanding_lazy_request = false;
1841
1842 request->seqno = seqno;
1843 request->ring = ring;
1844 request->emitted_jiffies = jiffies;
1845 was_empty = list_empty(&ring->request_list);
1846 list_add_tail(&request->list, &ring->request_list);
1847
1848 if (file_priv) {
1849 spin_lock(&file_priv->mm.lock);
1850 request->file_priv = file_priv;
1851 list_add_tail(&request->client_list,
1852 &file_priv->mm.request_list);
1853 spin_unlock(&file_priv->mm.lock);
1854 }
1855
1856 if (!dev_priv->mm.suspended) {
1857 mod_timer(&dev_priv->hangcheck_timer,
1858 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1859 if (was_empty)
1860 queue_delayed_work(dev_priv->wq,
1861 &dev_priv->mm.retire_work, HZ);
1862 }
1863 return 0;
1864 }
1865
1866 /**
1867 * Command execution barrier
1868 *
1869 * Ensures that all commands in the ring are finished
1870 * before signalling the CPU
1871 */
1872 static void
1873 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1874 {
1875 uint32_t flush_domains = 0;
1876
1877 /* The sampler always gets flushed on i965 (sigh) */
1878 if (INTEL_INFO(dev)->gen >= 4)
1879 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1880
1881 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1882 }
1883
1884 static inline void
1885 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1886 {
1887 struct drm_i915_file_private *file_priv = request->file_priv;
1888
1889 if (!file_priv)
1890 return;
1891
1892 spin_lock(&file_priv->mm.lock);
1893 list_del(&request->client_list);
1894 request->file_priv = NULL;
1895 spin_unlock(&file_priv->mm.lock);
1896 }
1897
1898 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1899 struct intel_ring_buffer *ring)
1900 {
1901 while (!list_empty(&ring->request_list)) {
1902 struct drm_i915_gem_request *request;
1903
1904 request = list_first_entry(&ring->request_list,
1905 struct drm_i915_gem_request,
1906 list);
1907
1908 list_del(&request->list);
1909 i915_gem_request_remove_from_client(request);
1910 kfree(request);
1911 }
1912
1913 while (!list_empty(&ring->active_list)) {
1914 struct drm_i915_gem_object *obj_priv;
1915
1916 obj_priv = list_first_entry(&ring->active_list,
1917 struct drm_i915_gem_object,
1918 ring_list);
1919
1920 obj_priv->base.write_domain = 0;
1921 list_del_init(&obj_priv->gpu_write_list);
1922 i915_gem_object_move_to_inactive(&obj_priv->base);
1923 }
1924 }
1925
1926 void i915_gem_reset(struct drm_device *dev)
1927 {
1928 struct drm_i915_private *dev_priv = dev->dev_private;
1929 struct drm_i915_gem_object *obj_priv;
1930 int i;
1931
1932 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1933 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1934 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1935
1936 /* Remove anything from the flushing lists. The GPU cache is likely
1937 * to be lost on reset along with the data, so simply move the
1938 * lost bo to the inactive list.
1939 */
1940 while (!list_empty(&dev_priv->mm.flushing_list)) {
1941 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1942 struct drm_i915_gem_object,
1943 mm_list);
1944
1945 obj_priv->base.write_domain = 0;
1946 list_del_init(&obj_priv->gpu_write_list);
1947 i915_gem_object_move_to_inactive(&obj_priv->base);
1948 }
1949
1950 /* Move everything out of the GPU domains to ensure we do any
1951 * necessary invalidation upon reuse.
1952 */
1953 list_for_each_entry(obj_priv,
1954 &dev_priv->mm.inactive_list,
1955 mm_list)
1956 {
1957 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1958 }
1959
1960 /* The fence registers are invalidated so clear them out */
1961 for (i = 0; i < 16; i++) {
1962 struct drm_i915_fence_reg *reg;
1963
1964 reg = &dev_priv->fence_regs[i];
1965 if (!reg->obj)
1966 continue;
1967
1968 i915_gem_clear_fence_reg(reg->obj);
1969 }
1970 }
1971
1972 /**
1973 * This function clears the request list as sequence numbers are passed.
1974 */
1975 static void
1976 i915_gem_retire_requests_ring(struct drm_device *dev,
1977 struct intel_ring_buffer *ring)
1978 {
1979 drm_i915_private_t *dev_priv = dev->dev_private;
1980 uint32_t seqno;
1981
1982 if (!ring->status_page.page_addr ||
1983 list_empty(&ring->request_list))
1984 return;
1985
1986 WARN_ON(i915_verify_lists(dev));
1987
1988 seqno = ring->get_seqno(ring);
1989 while (!list_empty(&ring->request_list)) {
1990 struct drm_i915_gem_request *request;
1991
1992 request = list_first_entry(&ring->request_list,
1993 struct drm_i915_gem_request,
1994 list);
1995
1996 if (!i915_seqno_passed(seqno, request->seqno))
1997 break;
1998
1999 trace_i915_gem_request_retire(dev, request->seqno);
2000
2001 list_del(&request->list);
2002 i915_gem_request_remove_from_client(request);
2003 kfree(request);
2004 }
2005
2006 /* Move any buffers on the active list that are no longer referenced
2007 * by the ringbuffer to the flushing/inactive lists as appropriate.
2008 */
2009 while (!list_empty(&ring->active_list)) {
2010 struct drm_gem_object *obj;
2011 struct drm_i915_gem_object *obj_priv;
2012
2013 obj_priv = list_first_entry(&ring->active_list,
2014 struct drm_i915_gem_object,
2015 ring_list);
2016
2017 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
2018 break;
2019
2020 obj = &obj_priv->base;
2021 if (obj->write_domain != 0)
2022 i915_gem_object_move_to_flushing(obj);
2023 else
2024 i915_gem_object_move_to_inactive(obj);
2025 }
2026
2027 if (unlikely (dev_priv->trace_irq_seqno &&
2028 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
2029 ring->user_irq_put(ring);
2030 dev_priv->trace_irq_seqno = 0;
2031 }
2032
2033 WARN_ON(i915_verify_lists(dev));
2034 }
2035
2036 void
2037 i915_gem_retire_requests(struct drm_device *dev)
2038 {
2039 drm_i915_private_t *dev_priv = dev->dev_private;
2040
2041 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
2042 struct drm_i915_gem_object *obj_priv, *tmp;
2043
2044 /* We must be careful that during unbind() we do not
2045 * accidentally infinitely recurse into retire requests.
2046 * Currently:
2047 * retire -> free -> unbind -> wait -> retire_ring
2048 */
2049 list_for_each_entry_safe(obj_priv, tmp,
2050 &dev_priv->mm.deferred_free_list,
2051 mm_list)
2052 i915_gem_free_object_tail(&obj_priv->base);
2053 }
2054
2055 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
2056 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
2057 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
2058 }
2059
2060 static void
2061 i915_gem_retire_work_handler(struct work_struct *work)
2062 {
2063 drm_i915_private_t *dev_priv;
2064 struct drm_device *dev;
2065
2066 dev_priv = container_of(work, drm_i915_private_t,
2067 mm.retire_work.work);
2068 dev = dev_priv->dev;
2069
2070 /* Come back later if the device is busy... */
2071 if (!mutex_trylock(&dev->struct_mutex)) {
2072 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2073 return;
2074 }
2075
2076 i915_gem_retire_requests(dev);
2077
2078 if (!dev_priv->mm.suspended &&
2079 (!list_empty(&dev_priv->render_ring.request_list) ||
2080 !list_empty(&dev_priv->bsd_ring.request_list) ||
2081 !list_empty(&dev_priv->blt_ring.request_list)))
2082 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2083 mutex_unlock(&dev->struct_mutex);
2084 }
2085
2086 int
2087 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2088 bool interruptible, struct intel_ring_buffer *ring)
2089 {
2090 drm_i915_private_t *dev_priv = dev->dev_private;
2091 u32 ier;
2092 int ret = 0;
2093
2094 BUG_ON(seqno == 0);
2095
2096 if (atomic_read(&dev_priv->mm.wedged))
2097 return -EAGAIN;
2098
2099 if (seqno == ring->outstanding_lazy_request) {
2100 struct drm_i915_gem_request *request;
2101
2102 request = kzalloc(sizeof(*request), GFP_KERNEL);
2103 if (request == NULL)
2104 return -ENOMEM;
2105
2106 ret = i915_add_request(dev, NULL, request, ring);
2107 if (ret) {
2108 kfree(request);
2109 return ret;
2110 }
2111
2112 seqno = request->seqno;
2113 }
2114
2115 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2116 if (HAS_PCH_SPLIT(dev))
2117 ier = I915_READ(DEIER) | I915_READ(GTIER);
2118 else
2119 ier = I915_READ(IER);
2120 if (!ier) {
2121 DRM_ERROR("something (likely vbetool) disabled "
2122 "interrupts, re-enabling\n");
2123 i915_driver_irq_preinstall(dev);
2124 i915_driver_irq_postinstall(dev);
2125 }
2126
2127 trace_i915_gem_request_wait_begin(dev, seqno);
2128
2129 ring->waiting_seqno = seqno;
2130 ring->user_irq_get(ring);
2131 if (interruptible)
2132 ret = wait_event_interruptible(ring->irq_queue,
2133 i915_seqno_passed(ring->get_seqno(ring), seqno)
2134 || atomic_read(&dev_priv->mm.wedged));
2135 else
2136 wait_event(ring->irq_queue,
2137 i915_seqno_passed(ring->get_seqno(ring), seqno)
2138 || atomic_read(&dev_priv->mm.wedged));
2139
2140 ring->user_irq_put(ring);
2141 ring->waiting_seqno = 0;
2142
2143 trace_i915_gem_request_wait_end(dev, seqno);
2144 }
2145 if (atomic_read(&dev_priv->mm.wedged))
2146 ret = -EAGAIN;
2147
2148 if (ret && ret != -ERESTARTSYS)
2149 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2150 __func__, ret, seqno, ring->get_seqno(ring),
2151 dev_priv->next_seqno);
2152
2153 /* Directly dispatch request retiring. While we have the work queue
2154 * to handle this, the waiter on a request often wants an associated
2155 * buffer to have made it to the inactive list, and we would need
2156 * a separate wait queue to handle that.
2157 */
2158 if (ret == 0)
2159 i915_gem_retire_requests_ring(dev, ring);
2160
2161 return ret;
2162 }
2163
2164 /**
2165 * Waits for a sequence number to be signaled, and cleans up the
2166 * request and object lists appropriately for that event.
2167 */
2168 static int
2169 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2170 struct intel_ring_buffer *ring)
2171 {
2172 return i915_do_wait_request(dev, seqno, 1, ring);
2173 }
2174
2175 static void
2176 i915_gem_flush_ring(struct drm_device *dev,
2177 struct drm_file *file_priv,
2178 struct intel_ring_buffer *ring,
2179 uint32_t invalidate_domains,
2180 uint32_t flush_domains)
2181 {
2182 ring->flush(ring, invalidate_domains, flush_domains);
2183 i915_gem_process_flushing_list(dev, flush_domains, ring);
2184 }
2185
2186 static void
2187 i915_gem_flush(struct drm_device *dev,
2188 struct drm_file *file_priv,
2189 uint32_t invalidate_domains,
2190 uint32_t flush_domains,
2191 uint32_t flush_rings)
2192 {
2193 drm_i915_private_t *dev_priv = dev->dev_private;
2194
2195 if (flush_domains & I915_GEM_DOMAIN_CPU)
2196 drm_agp_chipset_flush(dev);
2197
2198 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2199 if (flush_rings & RING_RENDER)
2200 i915_gem_flush_ring(dev, file_priv,
2201 &dev_priv->render_ring,
2202 invalidate_domains, flush_domains);
2203 if (flush_rings & RING_BSD)
2204 i915_gem_flush_ring(dev, file_priv,
2205 &dev_priv->bsd_ring,
2206 invalidate_domains, flush_domains);
2207 if (flush_rings & RING_BLT)
2208 i915_gem_flush_ring(dev, file_priv,
2209 &dev_priv->blt_ring,
2210 invalidate_domains, flush_domains);
2211 }
2212 }
2213
2214 /**
2215 * Ensures that all rendering to the object has completed and the object is
2216 * safe to unbind from the GTT or access from the CPU.
2217 */
2218 static int
2219 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2220 bool interruptible)
2221 {
2222 struct drm_device *dev = obj->dev;
2223 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2224 int ret;
2225
2226 /* This function only exists to support waiting for existing rendering,
2227 * not for emitting required flushes.
2228 */
2229 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2230
2231 /* If there is rendering queued on the buffer being evicted, wait for
2232 * it.
2233 */
2234 if (obj_priv->active) {
2235 ret = i915_do_wait_request(dev,
2236 obj_priv->last_rendering_seqno,
2237 interruptible,
2238 obj_priv->ring);
2239 if (ret)
2240 return ret;
2241 }
2242
2243 return 0;
2244 }
2245
2246 /**
2247 * Unbinds an object from the GTT aperture.
2248 */
2249 int
2250 i915_gem_object_unbind(struct drm_gem_object *obj)
2251 {
2252 struct drm_device *dev = obj->dev;
2253 struct drm_i915_private *dev_priv = dev->dev_private;
2254 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2255 int ret = 0;
2256
2257 if (obj_priv->gtt_space == NULL)
2258 return 0;
2259
2260 if (obj_priv->pin_count != 0) {
2261 DRM_ERROR("Attempting to unbind pinned buffer\n");
2262 return -EINVAL;
2263 }
2264
2265 /* blow away mappings if mapped through GTT */
2266 i915_gem_release_mmap(obj);
2267
2268 /* Move the object to the CPU domain to ensure that
2269 * any possible CPU writes while it's not in the GTT
2270 * are flushed when we go to remap it. This will
2271 * also ensure that all pending GPU writes are finished
2272 * before we unbind.
2273 */
2274 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2275 if (ret == -ERESTARTSYS)
2276 return ret;
2277 /* Continue on if we fail due to EIO, the GPU is hung so we
2278 * should be safe and we need to cleanup or else we might
2279 * cause memory corruption through use-after-free.
2280 */
2281 if (ret) {
2282 i915_gem_clflush_object(obj);
2283 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2284 }
2285
2286 /* release the fence reg _after_ flushing */
2287 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2288 i915_gem_clear_fence_reg(obj);
2289
2290 drm_unbind_agp(obj_priv->agp_mem);
2291 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2292
2293 i915_gem_object_put_pages_gtt(obj);
2294
2295 i915_gem_info_remove_gtt(dev_priv, obj_priv);
2296 list_del_init(&obj_priv->mm_list);
2297 /* Avoid an unnecessary call to unbind on rebind. */
2298 obj_priv->map_and_fenceable = true;
2299
2300 drm_mm_put_block(obj_priv->gtt_space);
2301 obj_priv->gtt_space = NULL;
2302 obj_priv->gtt_offset = 0;
2303
2304 if (i915_gem_object_is_purgeable(obj_priv))
2305 i915_gem_object_truncate(obj);
2306
2307 trace_i915_gem_object_unbind(obj);
2308
2309 return ret;
2310 }
2311
2312 static int i915_ring_idle(struct drm_device *dev,
2313 struct intel_ring_buffer *ring)
2314 {
2315 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2316 return 0;
2317
2318 i915_gem_flush_ring(dev, NULL, ring,
2319 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2320 return i915_wait_request(dev,
2321 i915_gem_next_request_seqno(dev, ring),
2322 ring);
2323 }
2324
2325 int
2326 i915_gpu_idle(struct drm_device *dev)
2327 {
2328 drm_i915_private_t *dev_priv = dev->dev_private;
2329 bool lists_empty;
2330 int ret;
2331
2332 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2333 list_empty(&dev_priv->mm.active_list));
2334 if (lists_empty)
2335 return 0;
2336
2337 /* Flush everything onto the inactive list. */
2338 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2339 if (ret)
2340 return ret;
2341
2342 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2343 if (ret)
2344 return ret;
2345
2346 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2347 if (ret)
2348 return ret;
2349
2350 return 0;
2351 }
2352
2353 static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
2354 {
2355 struct drm_device *dev = obj->dev;
2356 drm_i915_private_t *dev_priv = dev->dev_private;
2357 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2358 u32 size = i915_gem_get_gtt_size(obj_priv);
2359 int regnum = obj_priv->fence_reg;
2360 uint64_t val;
2361
2362 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2363 0xfffff000) << 32;
2364 val |= obj_priv->gtt_offset & 0xfffff000;
2365 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2366 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2367
2368 if (obj_priv->tiling_mode == I915_TILING_Y)
2369 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2370 val |= I965_FENCE_REG_VALID;
2371
2372 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2373 }
2374
2375 static void i965_write_fence_reg(struct drm_gem_object *obj)
2376 {
2377 struct drm_device *dev = obj->dev;
2378 drm_i915_private_t *dev_priv = dev->dev_private;
2379 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2380 u32 size = i915_gem_get_gtt_size(obj_priv);
2381 int regnum = obj_priv->fence_reg;
2382 uint64_t val;
2383
2384 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2385 0xfffff000) << 32;
2386 val |= obj_priv->gtt_offset & 0xfffff000;
2387 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2388 if (obj_priv->tiling_mode == I915_TILING_Y)
2389 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2390 val |= I965_FENCE_REG_VALID;
2391
2392 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2393 }
2394
2395 static void i915_write_fence_reg(struct drm_gem_object *obj)
2396 {
2397 struct drm_device *dev = obj->dev;
2398 drm_i915_private_t *dev_priv = dev->dev_private;
2399 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2400 u32 size = i915_gem_get_gtt_size(obj_priv);
2401 uint32_t fence_reg, val, pitch_val;
2402 int tile_width;
2403
2404 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2405 (obj_priv->gtt_offset & (size - 1))) {
2406 WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
2407 __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
2408 obj_priv->gtt_space->start, obj_priv->gtt_space->size);
2409 return;
2410 }
2411
2412 if (obj_priv->tiling_mode == I915_TILING_Y &&
2413 HAS_128_BYTE_Y_TILING(dev))
2414 tile_width = 128;
2415 else
2416 tile_width = 512;
2417
2418 /* Note: pitch better be a power of two tile widths */
2419 pitch_val = obj_priv->stride / tile_width;
2420 pitch_val = ffs(pitch_val) - 1;
2421
2422 if (obj_priv->tiling_mode == I915_TILING_Y &&
2423 HAS_128_BYTE_Y_TILING(dev))
2424 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2425 else
2426 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2427
2428 val = obj_priv->gtt_offset;
2429 if (obj_priv->tiling_mode == I915_TILING_Y)
2430 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2431 val |= I915_FENCE_SIZE_BITS(size);
2432 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2433 val |= I830_FENCE_REG_VALID;
2434
2435 fence_reg = obj_priv->fence_reg;
2436 if (fence_reg < 8)
2437 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2438 else
2439 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2440 I915_WRITE(fence_reg, val);
2441 }
2442
2443 static void i830_write_fence_reg(struct drm_gem_object *obj)
2444 {
2445 struct drm_device *dev = obj->dev;
2446 drm_i915_private_t *dev_priv = dev->dev_private;
2447 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2448 u32 size = i915_gem_get_gtt_size(obj_priv);
2449 int regnum = obj_priv->fence_reg;
2450 uint32_t val;
2451 uint32_t pitch_val;
2452 uint32_t fence_size_bits;
2453
2454 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2455 (obj_priv->gtt_offset & (obj->size - 1))) {
2456 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2457 __func__, obj_priv->gtt_offset);
2458 return;
2459 }
2460
2461 pitch_val = obj_priv->stride / 128;
2462 pitch_val = ffs(pitch_val) - 1;
2463 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2464
2465 val = obj_priv->gtt_offset;
2466 if (obj_priv->tiling_mode == I915_TILING_Y)
2467 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2468 fence_size_bits = I830_FENCE_SIZE_BITS(size);
2469 WARN_ON(fence_size_bits & ~0x00000f00);
2470 val |= fence_size_bits;
2471 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2472 val |= I830_FENCE_REG_VALID;
2473
2474 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2475 }
2476
2477 static int i915_find_fence_reg(struct drm_device *dev,
2478 bool interruptible)
2479 {
2480 struct drm_i915_private *dev_priv = dev->dev_private;
2481 struct drm_i915_fence_reg *reg;
2482 struct drm_i915_gem_object *obj_priv = NULL;
2483 int i, avail, ret;
2484
2485 /* First try to find a free reg */
2486 avail = 0;
2487 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2488 reg = &dev_priv->fence_regs[i];
2489 if (!reg->obj)
2490 return i;
2491
2492 obj_priv = to_intel_bo(reg->obj);
2493 if (!obj_priv->pin_count)
2494 avail++;
2495 }
2496
2497 if (avail == 0)
2498 return -ENOSPC;
2499
2500 /* None available, try to steal one or wait for a user to finish */
2501 avail = I915_FENCE_REG_NONE;
2502 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2503 lru_list) {
2504 obj_priv = to_intel_bo(reg->obj);
2505 if (obj_priv->pin_count)
2506 continue;
2507
2508 /* found one! */
2509 avail = obj_priv->fence_reg;
2510 break;
2511 }
2512
2513 BUG_ON(avail == I915_FENCE_REG_NONE);
2514
2515 /* We only have a reference on obj from the active list. put_fence_reg
2516 * might drop that one, causing a use-after-free in it. So hold a
2517 * private reference to obj like the other callers of put_fence_reg
2518 * (set_tiling ioctl) do. */
2519 drm_gem_object_reference(&obj_priv->base);
2520 ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
2521 drm_gem_object_unreference(&obj_priv->base);
2522 if (ret != 0)
2523 return ret;
2524
2525 return avail;
2526 }
2527
2528 /**
2529 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2530 * @obj: object to map through a fence reg
2531 *
2532 * When mapping objects through the GTT, userspace wants to be able to write
2533 * to them without having to worry about swizzling if the object is tiled.
2534 *
2535 * This function walks the fence regs looking for a free one for @obj,
2536 * stealing one if it can't find any.
2537 *
2538 * It then sets up the reg based on the object's properties: address, pitch
2539 * and tiling format.
2540 */
2541 int
2542 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2543 bool interruptible)
2544 {
2545 struct drm_device *dev = obj->dev;
2546 struct drm_i915_private *dev_priv = dev->dev_private;
2547 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2548 struct drm_i915_fence_reg *reg = NULL;
2549 int ret;
2550
2551 /* Just update our place in the LRU if our fence is getting used. */
2552 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2553 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2554 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2555 return 0;
2556 }
2557
2558 switch (obj_priv->tiling_mode) {
2559 case I915_TILING_NONE:
2560 WARN(1, "allocating a fence for non-tiled object?\n");
2561 break;
2562 case I915_TILING_X:
2563 if (!obj_priv->stride)
2564 return -EINVAL;
2565 WARN((obj_priv->stride & (512 - 1)),
2566 "object 0x%08x is X tiled but has non-512B pitch\n",
2567 obj_priv->gtt_offset);
2568 break;
2569 case I915_TILING_Y:
2570 if (!obj_priv->stride)
2571 return -EINVAL;
2572 WARN((obj_priv->stride & (128 - 1)),
2573 "object 0x%08x is Y tiled but has non-128B pitch\n",
2574 obj_priv->gtt_offset);
2575 break;
2576 }
2577
2578 ret = i915_find_fence_reg(dev, interruptible);
2579 if (ret < 0)
2580 return ret;
2581
2582 obj_priv->fence_reg = ret;
2583 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2584 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2585
2586 reg->obj = obj;
2587
2588 switch (INTEL_INFO(dev)->gen) {
2589 case 6:
2590 sandybridge_write_fence_reg(obj);
2591 break;
2592 case 5:
2593 case 4:
2594 i965_write_fence_reg(obj);
2595 break;
2596 case 3:
2597 i915_write_fence_reg(obj);
2598 break;
2599 case 2:
2600 i830_write_fence_reg(obj);
2601 break;
2602 }
2603
2604 trace_i915_gem_object_get_fence(obj,
2605 obj_priv->fence_reg,
2606 obj_priv->tiling_mode);
2607
2608 return 0;
2609 }
2610
2611 /**
2612 * i915_gem_clear_fence_reg - clear out fence register info
2613 * @obj: object to clear
2614 *
2615 * Zeroes out the fence register itself and clears out the associated
2616 * data structures in dev_priv and obj_priv.
2617 */
2618 static void
2619 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2620 {
2621 struct drm_device *dev = obj->dev;
2622 drm_i915_private_t *dev_priv = dev->dev_private;
2623 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2624 struct drm_i915_fence_reg *reg =
2625 &dev_priv->fence_regs[obj_priv->fence_reg];
2626 uint32_t fence_reg;
2627
2628 switch (INTEL_INFO(dev)->gen) {
2629 case 6:
2630 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2631 (obj_priv->fence_reg * 8), 0);
2632 break;
2633 case 5:
2634 case 4:
2635 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2636 break;
2637 case 3:
2638 if (obj_priv->fence_reg >= 8)
2639 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2640 else
2641 case 2:
2642 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2643
2644 I915_WRITE(fence_reg, 0);
2645 break;
2646 }
2647
2648 reg->obj = NULL;
2649 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2650 list_del_init(&reg->lru_list);
2651 }
2652
2653 /**
2654 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2655 * to the buffer to finish, and then resets the fence register.
2656 * @obj: tiled object holding a fence register.
2657 * @bool: whether the wait upon the fence is interruptible
2658 *
2659 * Zeroes out the fence register itself and clears out the associated
2660 * data structures in dev_priv and obj_priv.
2661 */
2662 int
2663 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2664 bool interruptible)
2665 {
2666 struct drm_device *dev = obj->dev;
2667 struct drm_i915_private *dev_priv = dev->dev_private;
2668 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2669 struct drm_i915_fence_reg *reg;
2670
2671 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2672 return 0;
2673
2674 /* If we've changed tiling, GTT-mappings of the object
2675 * need to re-fault to ensure that the correct fence register
2676 * setup is in place.
2677 */
2678 i915_gem_release_mmap(obj);
2679
2680 /* On the i915, GPU access to tiled buffers is via a fence,
2681 * therefore we must wait for any outstanding access to complete
2682 * before clearing the fence.
2683 */
2684 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2685 if (reg->gpu) {
2686 int ret;
2687
2688 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2689 if (ret)
2690 return ret;
2691
2692 ret = i915_gem_object_wait_rendering(obj, interruptible);
2693 if (ret)
2694 return ret;
2695
2696 reg->gpu = false;
2697 }
2698
2699 i915_gem_object_flush_gtt_write_domain(obj);
2700 i915_gem_clear_fence_reg(obj);
2701
2702 return 0;
2703 }
2704
2705 /**
2706 * Finds free space in the GTT aperture and binds the object there.
2707 */
2708 static int
2709 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2710 unsigned alignment,
2711 bool map_and_fenceable)
2712 {
2713 struct drm_device *dev = obj->dev;
2714 drm_i915_private_t *dev_priv = dev->dev_private;
2715 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2716 struct drm_mm_node *free_space;
2717 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2718 u32 size, fence_size, fence_alignment, unfenced_alignment;
2719 bool mappable, fenceable;
2720 int ret;
2721
2722 if (obj_priv->madv != I915_MADV_WILLNEED) {
2723 DRM_ERROR("Attempting to bind a purgeable object\n");
2724 return -EINVAL;
2725 }
2726
2727 fence_size = i915_gem_get_gtt_size(obj_priv);
2728 fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
2729 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj_priv);
2730
2731 if (alignment == 0)
2732 alignment = map_and_fenceable ? fence_alignment :
2733 unfenced_alignment;
2734 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2735 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2736 return -EINVAL;
2737 }
2738
2739 size = map_and_fenceable ? fence_size : obj->size;
2740
2741 /* If the object is bigger than the entire aperture, reject it early
2742 * before evicting everything in a vain attempt to find space.
2743 */
2744 if (obj->size >
2745 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2746 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2747 return -E2BIG;
2748 }
2749
2750 search_free:
2751 if (map_and_fenceable)
2752 free_space =
2753 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2754 size, alignment, 0,
2755 dev_priv->mm.gtt_mappable_end,
2756 0);
2757 else
2758 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2759 size, alignment, 0);
2760
2761 if (free_space != NULL) {
2762 if (map_and_fenceable)
2763 obj_priv->gtt_space =
2764 drm_mm_get_block_range_generic(free_space,
2765 size, alignment, 0,
2766 dev_priv->mm.gtt_mappable_end,
2767 0);
2768 else
2769 obj_priv->gtt_space =
2770 drm_mm_get_block(free_space, size, alignment);
2771 }
2772 if (obj_priv->gtt_space == NULL) {
2773 /* If the gtt is empty and we're still having trouble
2774 * fitting our object in, we're out of memory.
2775 */
2776 ret = i915_gem_evict_something(dev, size, alignment,
2777 map_and_fenceable);
2778 if (ret)
2779 return ret;
2780
2781 goto search_free;
2782 }
2783
2784 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2785 if (ret) {
2786 drm_mm_put_block(obj_priv->gtt_space);
2787 obj_priv->gtt_space = NULL;
2788
2789 if (ret == -ENOMEM) {
2790 /* first try to clear up some space from the GTT */
2791 ret = i915_gem_evict_something(dev, size,
2792 alignment,
2793 map_and_fenceable);
2794 if (ret) {
2795 /* now try to shrink everyone else */
2796 if (gfpmask) {
2797 gfpmask = 0;
2798 goto search_free;
2799 }
2800
2801 return ret;
2802 }
2803
2804 goto search_free;
2805 }
2806
2807 return ret;
2808 }
2809
2810 /* Create an AGP memory structure pointing at our pages, and bind it
2811 * into the GTT.
2812 */
2813 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2814 obj_priv->pages,
2815 obj->size >> PAGE_SHIFT,
2816 obj_priv->gtt_space->start,
2817 obj_priv->agp_type);
2818 if (obj_priv->agp_mem == NULL) {
2819 i915_gem_object_put_pages_gtt(obj);
2820 drm_mm_put_block(obj_priv->gtt_space);
2821 obj_priv->gtt_space = NULL;
2822
2823 ret = i915_gem_evict_something(dev, size,
2824 alignment, map_and_fenceable);
2825 if (ret)
2826 return ret;
2827
2828 goto search_free;
2829 }
2830
2831 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2832
2833 /* keep track of bounds object by adding it to the inactive list */
2834 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2835 i915_gem_info_add_gtt(dev_priv, obj_priv);
2836
2837 /* Assert that the object is not currently in any GPU domain. As it
2838 * wasn't in the GTT, there shouldn't be any way it could have been in
2839 * a GPU cache
2840 */
2841 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2842 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2843
2844 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
2845
2846 fenceable =
2847 obj_priv->gtt_space->size == fence_size &&
2848 (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
2849
2850 mappable =
2851 obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
2852
2853 obj_priv->map_and_fenceable = mappable && fenceable;
2854
2855 return 0;
2856 }
2857
2858 void
2859 i915_gem_clflush_object(struct drm_gem_object *obj)
2860 {
2861 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2862
2863 /* If we don't have a page list set up, then we're not pinned
2864 * to GPU, and we can ignore the cache flush because it'll happen
2865 * again at bind time.
2866 */
2867 if (obj_priv->pages == NULL)
2868 return;
2869
2870 trace_i915_gem_object_clflush(obj);
2871
2872 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2873 }
2874
2875 /** Flushes any GPU write domain for the object if it's dirty. */
2876 static int
2877 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2878 bool pipelined)
2879 {
2880 struct drm_device *dev = obj->dev;
2881
2882 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2883 return 0;
2884
2885 /* Queue the GPU write cache flushing we need. */
2886 i915_gem_flush_ring(dev, NULL,
2887 to_intel_bo(obj)->ring,
2888 0, obj->write_domain);
2889 BUG_ON(obj->write_domain);
2890
2891 if (pipelined)
2892 return 0;
2893
2894 return i915_gem_object_wait_rendering(obj, true);
2895 }
2896
2897 /** Flushes the GTT write domain for the object if it's dirty. */
2898 static void
2899 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2900 {
2901 uint32_t old_write_domain;
2902
2903 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2904 return;
2905
2906 /* No actual flushing is required for the GTT write domain. Writes
2907 * to it immediately go to main memory as far as we know, so there's
2908 * no chipset flush. It also doesn't land in render cache.
2909 */
2910 i915_gem_release_mmap(obj);
2911
2912 old_write_domain = obj->write_domain;
2913 obj->write_domain = 0;
2914
2915 trace_i915_gem_object_change_domain(obj,
2916 obj->read_domains,
2917 old_write_domain);
2918 }
2919
2920 /** Flushes the CPU write domain for the object if it's dirty. */
2921 static void
2922 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2923 {
2924 struct drm_device *dev = obj->dev;
2925 uint32_t old_write_domain;
2926
2927 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2928 return;
2929
2930 i915_gem_clflush_object(obj);
2931 drm_agp_chipset_flush(dev);
2932 old_write_domain = obj->write_domain;
2933 obj->write_domain = 0;
2934
2935 trace_i915_gem_object_change_domain(obj,
2936 obj->read_domains,
2937 old_write_domain);
2938 }
2939
2940 /**
2941 * Moves a single object to the GTT read, and possibly write domain.
2942 *
2943 * This function returns when the move is complete, including waiting on
2944 * flushes to occur.
2945 */
2946 int
2947 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2948 {
2949 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2950 uint32_t old_write_domain, old_read_domains;
2951 int ret;
2952
2953 /* Not valid to be called on unbound objects. */
2954 if (obj_priv->gtt_space == NULL)
2955 return -EINVAL;
2956
2957 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2958 if (ret != 0)
2959 return ret;
2960
2961 i915_gem_object_flush_cpu_write_domain(obj);
2962
2963 if (write) {
2964 ret = i915_gem_object_wait_rendering(obj, true);
2965 if (ret)
2966 return ret;
2967 }
2968
2969 old_write_domain = obj->write_domain;
2970 old_read_domains = obj->read_domains;
2971
2972 /* It should now be out of any other write domains, and we can update
2973 * the domain values for our changes.
2974 */
2975 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2976 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2977 if (write) {
2978 obj->read_domains = I915_GEM_DOMAIN_GTT;
2979 obj->write_domain = I915_GEM_DOMAIN_GTT;
2980 obj_priv->dirty = 1;
2981 }
2982
2983 trace_i915_gem_object_change_domain(obj,
2984 old_read_domains,
2985 old_write_domain);
2986
2987 return 0;
2988 }
2989
2990 /*
2991 * Prepare buffer for display plane. Use uninterruptible for possible flush
2992 * wait, as in modesetting process we're not supposed to be interrupted.
2993 */
2994 int
2995 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2996 bool pipelined)
2997 {
2998 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2999 uint32_t old_read_domains;
3000 int ret;
3001
3002 /* Not valid to be called on unbound objects. */
3003 if (obj_priv->gtt_space == NULL)
3004 return -EINVAL;
3005
3006 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
3007 if (ret)
3008 return ret;
3009
3010 /* Currently, we are always called from an non-interruptible context. */
3011 if (!pipelined) {
3012 ret = i915_gem_object_wait_rendering(obj, false);
3013 if (ret)
3014 return ret;
3015 }
3016
3017 i915_gem_object_flush_cpu_write_domain(obj);
3018
3019 old_read_domains = obj->read_domains;
3020 obj->read_domains |= I915_GEM_DOMAIN_GTT;
3021
3022 trace_i915_gem_object_change_domain(obj,
3023 old_read_domains,
3024 obj->write_domain);
3025
3026 return 0;
3027 }
3028
3029 int
3030 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
3031 bool interruptible)
3032 {
3033 if (!obj->active)
3034 return 0;
3035
3036 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
3037 i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
3038 0, obj->base.write_domain);
3039
3040 return i915_gem_object_wait_rendering(&obj->base, interruptible);
3041 }
3042
3043 /**
3044 * Moves a single object to the CPU read, and possibly write domain.
3045 *
3046 * This function returns when the move is complete, including waiting on
3047 * flushes to occur.
3048 */
3049 static int
3050 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3051 {
3052 uint32_t old_write_domain, old_read_domains;
3053 int ret;
3054
3055 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3056 if (ret != 0)
3057 return ret;
3058
3059 i915_gem_object_flush_gtt_write_domain(obj);
3060
3061 /* If we have a partially-valid cache of the object in the CPU,
3062 * finish invalidating it and free the per-page flags.
3063 */
3064 i915_gem_object_set_to_full_cpu_read_domain(obj);
3065
3066 if (write) {
3067 ret = i915_gem_object_wait_rendering(obj, true);
3068 if (ret)
3069 return ret;
3070 }
3071
3072 old_write_domain = obj->write_domain;
3073 old_read_domains = obj->read_domains;
3074
3075 /* Flush the CPU cache if it's still invalid. */
3076 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3077 i915_gem_clflush_object(obj);
3078
3079 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3080 }
3081
3082 /* It should now be out of any other write domains, and we can update
3083 * the domain values for our changes.
3084 */
3085 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3086
3087 /* If we're writing through the CPU, then the GPU read domains will
3088 * need to be invalidated at next use.
3089 */
3090 if (write) {
3091 obj->read_domains = I915_GEM_DOMAIN_CPU;
3092 obj->write_domain = I915_GEM_DOMAIN_CPU;
3093 }
3094
3095 trace_i915_gem_object_change_domain(obj,
3096 old_read_domains,
3097 old_write_domain);
3098
3099 return 0;
3100 }
3101
3102 /*
3103 * Set the next domain for the specified object. This
3104 * may not actually perform the necessary flushing/invaliding though,
3105 * as that may want to be batched with other set_domain operations
3106 *
3107 * This is (we hope) the only really tricky part of gem. The goal
3108 * is fairly simple -- track which caches hold bits of the object
3109 * and make sure they remain coherent. A few concrete examples may
3110 * help to explain how it works. For shorthand, we use the notation
3111 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3112 * a pair of read and write domain masks.
3113 *
3114 * Case 1: the batch buffer
3115 *
3116 * 1. Allocated
3117 * 2. Written by CPU
3118 * 3. Mapped to GTT
3119 * 4. Read by GPU
3120 * 5. Unmapped from GTT
3121 * 6. Freed
3122 *
3123 * Let's take these a step at a time
3124 *
3125 * 1. Allocated
3126 * Pages allocated from the kernel may still have
3127 * cache contents, so we set them to (CPU, CPU) always.
3128 * 2. Written by CPU (using pwrite)
3129 * The pwrite function calls set_domain (CPU, CPU) and
3130 * this function does nothing (as nothing changes)
3131 * 3. Mapped by GTT
3132 * This function asserts that the object is not
3133 * currently in any GPU-based read or write domains
3134 * 4. Read by GPU
3135 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3136 * As write_domain is zero, this function adds in the
3137 * current read domains (CPU+COMMAND, 0).
3138 * flush_domains is set to CPU.
3139 * invalidate_domains is set to COMMAND
3140 * clflush is run to get data out of the CPU caches
3141 * then i915_dev_set_domain calls i915_gem_flush to
3142 * emit an MI_FLUSH and drm_agp_chipset_flush
3143 * 5. Unmapped from GTT
3144 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3145 * flush_domains and invalidate_domains end up both zero
3146 * so no flushing/invalidating happens
3147 * 6. Freed
3148 * yay, done
3149 *
3150 * Case 2: The shared render buffer
3151 *
3152 * 1. Allocated
3153 * 2. Mapped to GTT
3154 * 3. Read/written by GPU
3155 * 4. set_domain to (CPU,CPU)
3156 * 5. Read/written by CPU
3157 * 6. Read/written by GPU
3158 *
3159 * 1. Allocated
3160 * Same as last example, (CPU, CPU)
3161 * 2. Mapped to GTT
3162 * Nothing changes (assertions find that it is not in the GPU)
3163 * 3. Read/written by GPU
3164 * execbuffer calls set_domain (RENDER, RENDER)
3165 * flush_domains gets CPU
3166 * invalidate_domains gets GPU
3167 * clflush (obj)
3168 * MI_FLUSH and drm_agp_chipset_flush
3169 * 4. set_domain (CPU, CPU)
3170 * flush_domains gets GPU
3171 * invalidate_domains gets CPU
3172 * wait_rendering (obj) to make sure all drawing is complete.
3173 * This will include an MI_FLUSH to get the data from GPU
3174 * to memory
3175 * clflush (obj) to invalidate the CPU cache
3176 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3177 * 5. Read/written by CPU
3178 * cache lines are loaded and dirtied
3179 * 6. Read written by GPU
3180 * Same as last GPU access
3181 *
3182 * Case 3: The constant buffer
3183 *
3184 * 1. Allocated
3185 * 2. Written by CPU
3186 * 3. Read by GPU
3187 * 4. Updated (written) by CPU again
3188 * 5. Read by GPU
3189 *
3190 * 1. Allocated
3191 * (CPU, CPU)
3192 * 2. Written by CPU
3193 * (CPU, CPU)
3194 * 3. Read by GPU
3195 * (CPU+RENDER, 0)
3196 * flush_domains = CPU
3197 * invalidate_domains = RENDER
3198 * clflush (obj)
3199 * MI_FLUSH
3200 * drm_agp_chipset_flush
3201 * 4. Updated (written) by CPU again
3202 * (CPU, CPU)
3203 * flush_domains = 0 (no previous write domain)
3204 * invalidate_domains = 0 (no new read domains)
3205 * 5. Read by GPU
3206 * (CPU+RENDER, 0)
3207 * flush_domains = CPU
3208 * invalidate_domains = RENDER
3209 * clflush (obj)
3210 * MI_FLUSH
3211 * drm_agp_chipset_flush
3212 */
3213 static void
3214 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3215 struct intel_ring_buffer *ring,
3216 struct change_domains *cd)
3217 {
3218 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3219 uint32_t invalidate_domains = 0;
3220 uint32_t flush_domains = 0;
3221
3222 /*
3223 * If the object isn't moving to a new write domain,
3224 * let the object stay in multiple read domains
3225 */
3226 if (obj->pending_write_domain == 0)
3227 obj->pending_read_domains |= obj->read_domains;
3228
3229 /*
3230 * Flush the current write domain if
3231 * the new read domains don't match. Invalidate
3232 * any read domains which differ from the old
3233 * write domain
3234 */
3235 if (obj->write_domain &&
3236 (obj->write_domain != obj->pending_read_domains ||
3237 obj_priv->ring != ring)) {
3238 flush_domains |= obj->write_domain;
3239 invalidate_domains |=
3240 obj->pending_read_domains & ~obj->write_domain;
3241 }
3242 /*
3243 * Invalidate any read caches which may have
3244 * stale data. That is, any new read domains.
3245 */
3246 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3247 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3248 i915_gem_clflush_object(obj);
3249
3250 /* blow away mappings if mapped through GTT */
3251 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
3252 i915_gem_release_mmap(obj);
3253
3254 /* The actual obj->write_domain will be updated with
3255 * pending_write_domain after we emit the accumulated flush for all
3256 * of our domain changes in execbuffers (which clears objects'
3257 * write_domains). So if we have a current write domain that we
3258 * aren't changing, set pending_write_domain to that.
3259 */
3260 if (flush_domains == 0 && obj->pending_write_domain == 0)
3261 obj->pending_write_domain = obj->write_domain;
3262
3263 cd->invalidate_domains |= invalidate_domains;
3264 cd->flush_domains |= flush_domains;
3265 if (flush_domains & I915_GEM_GPU_DOMAINS)
3266 cd->flush_rings |= obj_priv->ring->id;
3267 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3268 cd->flush_rings |= ring->id;
3269 }
3270
3271 /**
3272 * Moves the object from a partially CPU read to a full one.
3273 *
3274 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3275 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3276 */
3277 static void
3278 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3279 {
3280 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3281
3282 if (!obj_priv->page_cpu_valid)
3283 return;
3284
3285 /* If we're partially in the CPU read domain, finish moving it in.
3286 */
3287 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3288 int i;
3289
3290 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3291 if (obj_priv->page_cpu_valid[i])
3292 continue;
3293 drm_clflush_pages(obj_priv->pages + i, 1);
3294 }
3295 }
3296
3297 /* Free the page_cpu_valid mappings which are now stale, whether
3298 * or not we've got I915_GEM_DOMAIN_CPU.
3299 */
3300 kfree(obj_priv->page_cpu_valid);
3301 obj_priv->page_cpu_valid = NULL;
3302 }
3303
3304 /**
3305 * Set the CPU read domain on a range of the object.
3306 *
3307 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3308 * not entirely valid. The page_cpu_valid member of the object flags which
3309 * pages have been flushed, and will be respected by
3310 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3311 * of the whole object.
3312 *
3313 * This function returns when the move is complete, including waiting on
3314 * flushes to occur.
3315 */
3316 static int
3317 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3318 uint64_t offset, uint64_t size)
3319 {
3320 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3321 uint32_t old_read_domains;
3322 int i, ret;
3323
3324 if (offset == 0 && size == obj->size)
3325 return i915_gem_object_set_to_cpu_domain(obj, 0);
3326
3327 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3328 if (ret != 0)
3329 return ret;
3330 i915_gem_object_flush_gtt_write_domain(obj);
3331
3332 /* If we're already fully in the CPU read domain, we're done. */
3333 if (obj_priv->page_cpu_valid == NULL &&
3334 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3335 return 0;
3336
3337 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3338 * newly adding I915_GEM_DOMAIN_CPU
3339 */
3340 if (obj_priv->page_cpu_valid == NULL) {
3341 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3342 GFP_KERNEL);
3343 if (obj_priv->page_cpu_valid == NULL)
3344 return -ENOMEM;
3345 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3346 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3347
3348 /* Flush the cache on any pages that are still invalid from the CPU's
3349 * perspective.
3350 */
3351 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3352 i++) {
3353 if (obj_priv->page_cpu_valid[i])
3354 continue;
3355
3356 drm_clflush_pages(obj_priv->pages + i, 1);
3357
3358 obj_priv->page_cpu_valid[i] = 1;
3359 }
3360
3361 /* It should now be out of any other write domains, and we can update
3362 * the domain values for our changes.
3363 */
3364 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3365
3366 old_read_domains = obj->read_domains;
3367 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3368
3369 trace_i915_gem_object_change_domain(obj,
3370 old_read_domains,
3371 obj->write_domain);
3372
3373 return 0;
3374 }
3375
3376 static int
3377 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
3378 struct drm_file *file_priv,
3379 struct drm_i915_gem_exec_object2 *entry,
3380 struct drm_i915_gem_relocation_entry *reloc)
3381 {
3382 struct drm_device *dev = obj->base.dev;
3383 struct drm_gem_object *target_obj;
3384 uint32_t target_offset;
3385 int ret = -EINVAL;
3386
3387 target_obj = drm_gem_object_lookup(dev, file_priv,
3388 reloc->target_handle);
3389 if (target_obj == NULL)
3390 return -ENOENT;
3391
3392 target_offset = to_intel_bo(target_obj)->gtt_offset;
3393
3394 #if WATCH_RELOC
3395 DRM_INFO("%s: obj %p offset %08x target %d "
3396 "read %08x write %08x gtt %08x "
3397 "presumed %08x delta %08x\n",
3398 __func__,
3399 obj,
3400 (int) reloc->offset,
3401 (int) reloc->target_handle,
3402 (int) reloc->read_domains,
3403 (int) reloc->write_domain,
3404 (int) target_offset,
3405 (int) reloc->presumed_offset,
3406 reloc->delta);
3407 #endif
3408
3409 /* The target buffer should have appeared before us in the
3410 * exec_object list, so it should have a GTT space bound by now.
3411 */
3412 if (target_offset == 0) {
3413 DRM_ERROR("No GTT space found for object %d\n",
3414 reloc->target_handle);
3415 goto err;
3416 }
3417
3418 /* Validate that the target is in a valid r/w GPU domain */
3419 if (reloc->write_domain & (reloc->write_domain - 1)) {
3420 DRM_ERROR("reloc with multiple write domains: "
3421 "obj %p target %d offset %d "
3422 "read %08x write %08x",
3423 obj, reloc->target_handle,
3424 (int) reloc->offset,
3425 reloc->read_domains,
3426 reloc->write_domain);
3427 goto err;
3428 }
3429 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3430 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3431 DRM_ERROR("reloc with read/write CPU domains: "
3432 "obj %p target %d offset %d "
3433 "read %08x write %08x",
3434 obj, reloc->target_handle,
3435 (int) reloc->offset,
3436 reloc->read_domains,
3437 reloc->write_domain);
3438 goto err;
3439 }
3440 if (reloc->write_domain && target_obj->pending_write_domain &&
3441 reloc->write_domain != target_obj->pending_write_domain) {
3442 DRM_ERROR("Write domain conflict: "
3443 "obj %p target %d offset %d "
3444 "new %08x old %08x\n",
3445 obj, reloc->target_handle,
3446 (int) reloc->offset,
3447 reloc->write_domain,
3448 target_obj->pending_write_domain);
3449 goto err;
3450 }
3451
3452 target_obj->pending_read_domains |= reloc->read_domains;
3453 target_obj->pending_write_domain |= reloc->write_domain;
3454
3455 /* If the relocation already has the right value in it, no
3456 * more work needs to be done.
3457 */
3458 if (target_offset == reloc->presumed_offset)
3459 goto out;
3460
3461 /* Check that the relocation address is valid... */
3462 if (reloc->offset > obj->base.size - 4) {
3463 DRM_ERROR("Relocation beyond object bounds: "
3464 "obj %p target %d offset %d size %d.\n",
3465 obj, reloc->target_handle,
3466 (int) reloc->offset,
3467 (int) obj->base.size);
3468 goto err;
3469 }
3470 if (reloc->offset & 3) {
3471 DRM_ERROR("Relocation not 4-byte aligned: "
3472 "obj %p target %d offset %d.\n",
3473 obj, reloc->target_handle,
3474 (int) reloc->offset);
3475 goto err;
3476 }
3477
3478 /* and points to somewhere within the target object. */
3479 if (reloc->delta >= target_obj->size) {
3480 DRM_ERROR("Relocation beyond target object bounds: "
3481 "obj %p target %d delta %d size %d.\n",
3482 obj, reloc->target_handle,
3483 (int) reloc->delta,
3484 (int) target_obj->size);
3485 goto err;
3486 }
3487
3488 reloc->delta += target_offset;
3489 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3490 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
3491 char *vaddr;
3492
3493 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
3494 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
3495 kunmap_atomic(vaddr);
3496 } else {
3497 struct drm_i915_private *dev_priv = dev->dev_private;
3498 uint32_t __iomem *reloc_entry;
3499 void __iomem *reloc_page;
3500
3501 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3502 if (ret)
3503 goto err;
3504
3505 /* Map the page containing the relocation we're going to perform. */
3506 reloc->offset += obj->gtt_offset;
3507 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3508 reloc->offset & PAGE_MASK);
3509 reloc_entry = (uint32_t __iomem *)
3510 (reloc_page + (reloc->offset & ~PAGE_MASK));
3511 iowrite32(reloc->delta, reloc_entry);
3512 io_mapping_unmap_atomic(reloc_page);
3513 }
3514
3515 /* and update the user's relocation entry */
3516 reloc->presumed_offset = target_offset;
3517
3518 out:
3519 ret = 0;
3520 err:
3521 drm_gem_object_unreference(target_obj);
3522 return ret;
3523 }
3524
3525 static int
3526 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
3527 struct drm_file *file_priv,
3528 struct drm_i915_gem_exec_object2 *entry)
3529 {
3530 struct drm_i915_gem_relocation_entry __user *user_relocs;
3531 int i, ret;
3532
3533 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3534 for (i = 0; i < entry->relocation_count; i++) {
3535 struct drm_i915_gem_relocation_entry reloc;
3536
3537 if (__copy_from_user_inatomic(&reloc,
3538 user_relocs+i,
3539 sizeof(reloc)))
3540 return -EFAULT;
3541
3542 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
3543 if (ret)
3544 return ret;
3545
3546 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3547 &reloc.presumed_offset,
3548 sizeof(reloc.presumed_offset)))
3549 return -EFAULT;
3550 }
3551
3552 return 0;
3553 }
3554
3555 static int
3556 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
3557 struct drm_file *file_priv,
3558 struct drm_i915_gem_exec_object2 *entry,
3559 struct drm_i915_gem_relocation_entry *relocs)
3560 {
3561 int i, ret;
3562
3563 for (i = 0; i < entry->relocation_count; i++) {
3564 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
3565 if (ret)
3566 return ret;
3567 }
3568
3569 return 0;
3570 }
3571
3572 static int
3573 i915_gem_execbuffer_relocate(struct drm_device *dev,
3574 struct drm_file *file,
3575 struct drm_gem_object **object_list,
3576 struct drm_i915_gem_exec_object2 *exec_list,
3577 int count)
3578 {
3579 int i, ret;
3580
3581 for (i = 0; i < count; i++) {
3582 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3583 obj->base.pending_read_domains = 0;
3584 obj->base.pending_write_domain = 0;
3585 ret = i915_gem_execbuffer_relocate_object(obj, file,
3586 &exec_list[i]);
3587 if (ret)
3588 return ret;
3589 }
3590
3591 return 0;
3592 }
3593
3594 static int
3595 i915_gem_execbuffer_reserve(struct drm_device *dev,
3596 struct drm_file *file,
3597 struct drm_gem_object **object_list,
3598 struct drm_i915_gem_exec_object2 *exec_list,
3599 int count)
3600 {
3601 struct drm_i915_private *dev_priv = dev->dev_private;
3602 int ret, i, retry;
3603
3604 /* attempt to pin all of the buffers into the GTT */
3605 retry = 0;
3606 do {
3607 ret = 0;
3608 for (i = 0; i < count; i++) {
3609 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3610 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3611 bool need_fence =
3612 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3613 obj->tiling_mode != I915_TILING_NONE;
3614
3615 /* g33/pnv can't fence buffers in the unmappable part */
3616 bool need_mappable =
3617 entry->relocation_count ? true : need_fence;
3618
3619 /* Check fence reg constraints and rebind if necessary */
3620 if (need_mappable && !obj->map_and_fenceable) {
3621 ret = i915_gem_object_unbind(&obj->base);
3622 if (ret)
3623 break;
3624 }
3625
3626 ret = i915_gem_object_pin(&obj->base,
3627 entry->alignment,
3628 need_mappable);
3629 if (ret)
3630 break;
3631
3632 /*
3633 * Pre-965 chips need a fence register set up in order
3634 * to properly handle blits to/from tiled surfaces.
3635 */
3636 if (need_fence) {
3637 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3638 if (ret) {
3639 i915_gem_object_unpin(&obj->base);
3640 break;
3641 }
3642
3643 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3644 }
3645
3646 entry->offset = obj->gtt_offset;
3647 }
3648
3649 while (i--)
3650 i915_gem_object_unpin(object_list[i]);
3651
3652 if (ret != -ENOSPC || retry > 1)
3653 return ret;
3654
3655 /* First attempt, just clear anything that is purgeable.
3656 * Second attempt, clear the entire GTT.
3657 */
3658 ret = i915_gem_evict_everything(dev, retry == 0);
3659 if (ret)
3660 return ret;
3661
3662 retry++;
3663 } while (1);
3664 }
3665
3666 static int
3667 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
3668 struct drm_file *file,
3669 struct drm_gem_object **object_list,
3670 struct drm_i915_gem_exec_object2 *exec_list,
3671 int count)
3672 {
3673 struct drm_i915_gem_relocation_entry *reloc;
3674 int i, total, ret;
3675
3676 for (i = 0; i < count; i++) {
3677 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3678 obj->in_execbuffer = false;
3679 }
3680
3681 mutex_unlock(&dev->struct_mutex);
3682
3683 total = 0;
3684 for (i = 0; i < count; i++)
3685 total += exec_list[i].relocation_count;
3686
3687 reloc = drm_malloc_ab(total, sizeof(*reloc));
3688 if (reloc == NULL) {
3689 mutex_lock(&dev->struct_mutex);
3690 return -ENOMEM;
3691 }
3692
3693 total = 0;
3694 for (i = 0; i < count; i++) {
3695 struct drm_i915_gem_relocation_entry __user *user_relocs;
3696
3697 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3698
3699 if (copy_from_user(reloc+total, user_relocs,
3700 exec_list[i].relocation_count *
3701 sizeof(*reloc))) {
3702 ret = -EFAULT;
3703 mutex_lock(&dev->struct_mutex);
3704 goto err;
3705 }
3706
3707 total += exec_list[i].relocation_count;
3708 }
3709
3710 ret = i915_mutex_lock_interruptible(dev);
3711 if (ret) {
3712 mutex_lock(&dev->struct_mutex);
3713 goto err;
3714 }
3715
3716 ret = i915_gem_execbuffer_reserve(dev, file,
3717 object_list, exec_list,
3718 count);
3719 if (ret)
3720 goto err;
3721
3722 total = 0;
3723 for (i = 0; i < count; i++) {
3724 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3725 obj->base.pending_read_domains = 0;
3726 obj->base.pending_write_domain = 0;
3727 ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
3728 &exec_list[i],
3729 reloc + total);
3730 if (ret)
3731 goto err;
3732
3733 total += exec_list[i].relocation_count;
3734 }
3735
3736 /* Leave the user relocations as are, this is the painfully slow path,
3737 * and we want to avoid the complication of dropping the lock whilst
3738 * having buffers reserved in the aperture and so causing spurious
3739 * ENOSPC for random operations.
3740 */
3741
3742 err:
3743 drm_free_large(reloc);
3744 return ret;
3745 }
3746
3747 static int
3748 i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3749 struct drm_file *file,
3750 struct intel_ring_buffer *ring,
3751 struct drm_gem_object **objects,
3752 int count)
3753 {
3754 struct change_domains cd;
3755 int ret, i;
3756
3757 cd.invalidate_domains = 0;
3758 cd.flush_domains = 0;
3759 cd.flush_rings = 0;
3760 for (i = 0; i < count; i++)
3761 i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
3762
3763 if (cd.invalidate_domains | cd.flush_domains) {
3764 #if WATCH_EXEC
3765 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3766 __func__,
3767 cd.invalidate_domains,
3768 cd.flush_domains);
3769 #endif
3770 i915_gem_flush(dev, file,
3771 cd.invalidate_domains,
3772 cd.flush_domains,
3773 cd.flush_rings);
3774 }
3775
3776 for (i = 0; i < count; i++) {
3777 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3778 /* XXX replace with semaphores */
3779 if (obj->ring && ring != obj->ring) {
3780 ret = i915_gem_object_wait_rendering(&obj->base, true);
3781 if (ret)
3782 return ret;
3783 }
3784 }
3785
3786 return 0;
3787 }
3788
3789 /* Throttle our rendering by waiting until the ring has completed our requests
3790 * emitted over 20 msec ago.
3791 *
3792 * Note that if we were to use the current jiffies each time around the loop,
3793 * we wouldn't escape the function with any frames outstanding if the time to
3794 * render a frame was over 20ms.
3795 *
3796 * This should get us reasonable parallelism between CPU and GPU but also
3797 * relatively low latency when blocking on a particular request to finish.
3798 */
3799 static int
3800 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3801 {
3802 struct drm_i915_private *dev_priv = dev->dev_private;
3803 struct drm_i915_file_private *file_priv = file->driver_priv;
3804 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3805 struct drm_i915_gem_request *request;
3806 struct intel_ring_buffer *ring = NULL;
3807 u32 seqno = 0;
3808 int ret;
3809
3810 spin_lock(&file_priv->mm.lock);
3811 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3812 if (time_after_eq(request->emitted_jiffies, recent_enough))
3813 break;
3814
3815 ring = request->ring;
3816 seqno = request->seqno;
3817 }
3818 spin_unlock(&file_priv->mm.lock);
3819
3820 if (seqno == 0)
3821 return 0;
3822
3823 ret = 0;
3824 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3825 /* And wait for the seqno passing without holding any locks and
3826 * causing extra latency for others. This is safe as the irq
3827 * generation is designed to be run atomically and so is
3828 * lockless.
3829 */
3830 ring->user_irq_get(ring);
3831 ret = wait_event_interruptible(ring->irq_queue,
3832 i915_seqno_passed(ring->get_seqno(ring), seqno)
3833 || atomic_read(&dev_priv->mm.wedged));
3834 ring->user_irq_put(ring);
3835
3836 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3837 ret = -EIO;
3838 }
3839
3840 if (ret == 0)
3841 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3842
3843 return ret;
3844 }
3845
3846 static int
3847 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3848 uint64_t exec_offset)
3849 {
3850 uint32_t exec_start, exec_len;
3851
3852 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3853 exec_len = (uint32_t) exec->batch_len;
3854
3855 if ((exec_start | exec_len) & 0x7)
3856 return -EINVAL;
3857
3858 if (!exec_start)
3859 return -EINVAL;
3860
3861 return 0;
3862 }
3863
3864 static int
3865 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3866 int count)
3867 {
3868 int i;
3869
3870 for (i = 0; i < count; i++) {
3871 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3872 int length; /* limited by fault_in_pages_readable() */
3873
3874 /* First check for malicious input causing overflow */
3875 if (exec[i].relocation_count >
3876 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
3877 return -EINVAL;
3878
3879 length = exec[i].relocation_count *
3880 sizeof(struct drm_i915_gem_relocation_entry);
3881 if (!access_ok(VERIFY_READ, ptr, length))
3882 return -EFAULT;
3883
3884 /* we may also need to update the presumed offsets */
3885 if (!access_ok(VERIFY_WRITE, ptr, length))
3886 return -EFAULT;
3887
3888 if (fault_in_pages_readable(ptr, length))
3889 return -EFAULT;
3890 }
3891
3892 return 0;
3893 }
3894
3895 static int
3896 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3897 struct drm_file *file,
3898 struct drm_i915_gem_execbuffer2 *args,
3899 struct drm_i915_gem_exec_object2 *exec_list)
3900 {
3901 drm_i915_private_t *dev_priv = dev->dev_private;
3902 struct drm_gem_object **object_list = NULL;
3903 struct drm_gem_object *batch_obj;
3904 struct drm_clip_rect *cliprects = NULL;
3905 struct drm_i915_gem_request *request = NULL;
3906 int ret, i, flips;
3907 uint64_t exec_offset;
3908
3909 struct intel_ring_buffer *ring = NULL;
3910
3911 ret = i915_gem_check_is_wedged(dev);
3912 if (ret)
3913 return ret;
3914
3915 ret = validate_exec_list(exec_list, args->buffer_count);
3916 if (ret)
3917 return ret;
3918
3919 #if WATCH_EXEC
3920 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3921 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3922 #endif
3923 switch (args->flags & I915_EXEC_RING_MASK) {
3924 case I915_EXEC_DEFAULT:
3925 case I915_EXEC_RENDER:
3926 ring = &dev_priv->render_ring;
3927 break;
3928 case I915_EXEC_BSD:
3929 if (!HAS_BSD(dev)) {
3930 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3931 return -EINVAL;
3932 }
3933 ring = &dev_priv->bsd_ring;
3934 break;
3935 case I915_EXEC_BLT:
3936 if (!HAS_BLT(dev)) {
3937 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3938 return -EINVAL;
3939 }
3940 ring = &dev_priv->blt_ring;
3941 break;
3942 default:
3943 DRM_ERROR("execbuf with unknown ring: %d\n",
3944 (int)(args->flags & I915_EXEC_RING_MASK));
3945 return -EINVAL;
3946 }
3947
3948 if (args->buffer_count < 1) {
3949 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3950 return -EINVAL;
3951 }
3952 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3953 if (object_list == NULL) {
3954 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3955 args->buffer_count);
3956 ret = -ENOMEM;
3957 goto pre_mutex_err;
3958 }
3959
3960 if (args->num_cliprects != 0) {
3961 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3962 GFP_KERNEL);
3963 if (cliprects == NULL) {
3964 ret = -ENOMEM;
3965 goto pre_mutex_err;
3966 }
3967
3968 ret = copy_from_user(cliprects,
3969 (struct drm_clip_rect __user *)
3970 (uintptr_t) args->cliprects_ptr,
3971 sizeof(*cliprects) * args->num_cliprects);
3972 if (ret != 0) {
3973 DRM_ERROR("copy %d cliprects failed: %d\n",
3974 args->num_cliprects, ret);
3975 ret = -EFAULT;
3976 goto pre_mutex_err;
3977 }
3978 }
3979
3980 request = kzalloc(sizeof(*request), GFP_KERNEL);
3981 if (request == NULL) {
3982 ret = -ENOMEM;
3983 goto pre_mutex_err;
3984 }
3985
3986 ret = i915_mutex_lock_interruptible(dev);
3987 if (ret)
3988 goto pre_mutex_err;
3989
3990 if (dev_priv->mm.suspended) {
3991 mutex_unlock(&dev->struct_mutex);
3992 ret = -EBUSY;
3993 goto pre_mutex_err;
3994 }
3995
3996 /* Look up object handles */
3997 for (i = 0; i < args->buffer_count; i++) {
3998 struct drm_i915_gem_object *obj_priv;
3999
4000 object_list[i] = drm_gem_object_lookup(dev, file,
4001 exec_list[i].handle);
4002 if (object_list[i] == NULL) {
4003 DRM_ERROR("Invalid object handle %d at index %d\n",
4004 exec_list[i].handle, i);
4005 /* prevent error path from reading uninitialized data */
4006 args->buffer_count = i + 1;
4007 ret = -ENOENT;
4008 goto err;
4009 }
4010
4011 obj_priv = to_intel_bo(object_list[i]);
4012 if (obj_priv->in_execbuffer) {
4013 DRM_ERROR("Object %p appears more than once in object list\n",
4014 object_list[i]);
4015 /* prevent error path from reading uninitialized data */
4016 args->buffer_count = i + 1;
4017 ret = -EINVAL;
4018 goto err;
4019 }
4020 obj_priv->in_execbuffer = true;
4021 }
4022
4023 /* Move the objects en-masse into the GTT, evicting if necessary. */
4024 ret = i915_gem_execbuffer_reserve(dev, file,
4025 object_list, exec_list,
4026 args->buffer_count);
4027 if (ret)
4028 goto err;
4029
4030 /* The objects are in their final locations, apply the relocations. */
4031 ret = i915_gem_execbuffer_relocate(dev, file,
4032 object_list, exec_list,
4033 args->buffer_count);
4034 if (ret) {
4035 if (ret == -EFAULT) {
4036 ret = i915_gem_execbuffer_relocate_slow(dev, file,
4037 object_list,
4038 exec_list,
4039 args->buffer_count);
4040 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
4041 }
4042 if (ret)
4043 goto err;
4044 }
4045
4046 /* Set the pending read domains for the batch buffer to COMMAND */
4047 batch_obj = object_list[args->buffer_count-1];
4048 if (batch_obj->pending_write_domain) {
4049 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
4050 ret = -EINVAL;
4051 goto err;
4052 }
4053 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
4054
4055 /* Sanity check the batch buffer */
4056 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
4057 ret = i915_gem_check_execbuffer(args, exec_offset);
4058 if (ret != 0) {
4059 DRM_ERROR("execbuf with invalid offset/length\n");
4060 goto err;
4061 }
4062
4063 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
4064 object_list, args->buffer_count);
4065 if (ret)
4066 goto err;
4067
4068 #if WATCH_COHERENCY
4069 for (i = 0; i < args->buffer_count; i++) {
4070 i915_gem_object_check_coherency(object_list[i],
4071 exec_list[i].handle);
4072 }
4073 #endif
4074
4075 #if WATCH_EXEC
4076 i915_gem_dump_object(batch_obj,
4077 args->batch_len,
4078 __func__,
4079 ~0);
4080 #endif
4081
4082 /* Check for any pending flips. As we only maintain a flip queue depth
4083 * of 1, we can simply insert a WAIT for the next display flip prior
4084 * to executing the batch and avoid stalling the CPU.
4085 */
4086 flips = 0;
4087 for (i = 0; i < args->buffer_count; i++) {
4088 if (object_list[i]->write_domain)
4089 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
4090 }
4091 if (flips) {
4092 int plane, flip_mask;
4093
4094 for (plane = 0; flips >> plane; plane++) {
4095 if (((flips >> plane) & 1) == 0)
4096 continue;
4097
4098 if (plane)
4099 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
4100 else
4101 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
4102
4103 ret = intel_ring_begin(ring, 2);
4104 if (ret)
4105 goto err;
4106
4107 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
4108 intel_ring_emit(ring, MI_NOOP);
4109 intel_ring_advance(ring);
4110 }
4111 }
4112
4113 /* Exec the batchbuffer */
4114 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
4115 if (ret) {
4116 DRM_ERROR("dispatch failed %d\n", ret);
4117 goto err;
4118 }
4119
4120 for (i = 0; i < args->buffer_count; i++) {
4121 struct drm_gem_object *obj = object_list[i];
4122
4123 obj->read_domains = obj->pending_read_domains;
4124 obj->write_domain = obj->pending_write_domain;
4125
4126 i915_gem_object_move_to_active(obj, ring);
4127 if (obj->write_domain) {
4128 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4129 obj_priv->dirty = 1;
4130 list_move_tail(&obj_priv->gpu_write_list,
4131 &ring->gpu_write_list);
4132 intel_mark_busy(dev, obj);
4133 }
4134
4135 trace_i915_gem_object_change_domain(obj,
4136 obj->read_domains,
4137 obj->write_domain);
4138 }
4139
4140 /*
4141 * Ensure that the commands in the batch buffer are
4142 * finished before the interrupt fires
4143 */
4144 i915_retire_commands(dev, ring);
4145
4146 if (i915_add_request(dev, file, request, ring))
4147 i915_gem_next_request_seqno(dev, ring);
4148 else
4149 request = NULL;
4150
4151 err:
4152 for (i = 0; i < args->buffer_count; i++) {
4153 if (object_list[i] == NULL)
4154 break;
4155
4156 to_intel_bo(object_list[i])->in_execbuffer = false;
4157 drm_gem_object_unreference(object_list[i]);
4158 }
4159
4160 mutex_unlock(&dev->struct_mutex);
4161
4162 pre_mutex_err:
4163 drm_free_large(object_list);
4164 kfree(cliprects);
4165 kfree(request);
4166
4167 return ret;
4168 }
4169
4170 /*
4171 * Legacy execbuffer just creates an exec2 list from the original exec object
4172 * list array and passes it to the real function.
4173 */
4174 int
4175 i915_gem_execbuffer(struct drm_device *dev, void *data,
4176 struct drm_file *file_priv)
4177 {
4178 struct drm_i915_gem_execbuffer *args = data;
4179 struct drm_i915_gem_execbuffer2 exec2;
4180 struct drm_i915_gem_exec_object *exec_list = NULL;
4181 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4182 int ret, i;
4183
4184 #if WATCH_EXEC
4185 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4186 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4187 #endif
4188
4189 if (args->buffer_count < 1) {
4190 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4191 return -EINVAL;
4192 }
4193
4194 /* Copy in the exec list from userland */
4195 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4196 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4197 if (exec_list == NULL || exec2_list == NULL) {
4198 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4199 args->buffer_count);
4200 drm_free_large(exec_list);
4201 drm_free_large(exec2_list);
4202 return -ENOMEM;
4203 }
4204 ret = copy_from_user(exec_list,
4205 (struct drm_i915_relocation_entry __user *)
4206 (uintptr_t) args->buffers_ptr,
4207 sizeof(*exec_list) * args->buffer_count);
4208 if (ret != 0) {
4209 DRM_ERROR("copy %d exec entries failed %d\n",
4210 args->buffer_count, ret);
4211 drm_free_large(exec_list);
4212 drm_free_large(exec2_list);
4213 return -EFAULT;
4214 }
4215
4216 for (i = 0; i < args->buffer_count; i++) {
4217 exec2_list[i].handle = exec_list[i].handle;
4218 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4219 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4220 exec2_list[i].alignment = exec_list[i].alignment;
4221 exec2_list[i].offset = exec_list[i].offset;
4222 if (INTEL_INFO(dev)->gen < 4)
4223 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4224 else
4225 exec2_list[i].flags = 0;
4226 }
4227
4228 exec2.buffers_ptr = args->buffers_ptr;
4229 exec2.buffer_count = args->buffer_count;
4230 exec2.batch_start_offset = args->batch_start_offset;
4231 exec2.batch_len = args->batch_len;
4232 exec2.DR1 = args->DR1;
4233 exec2.DR4 = args->DR4;
4234 exec2.num_cliprects = args->num_cliprects;
4235 exec2.cliprects_ptr = args->cliprects_ptr;
4236 exec2.flags = I915_EXEC_RENDER;
4237
4238 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4239 if (!ret) {
4240 /* Copy the new buffer offsets back to the user's exec list. */
4241 for (i = 0; i < args->buffer_count; i++)
4242 exec_list[i].offset = exec2_list[i].offset;
4243 /* ... and back out to userspace */
4244 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4245 (uintptr_t) args->buffers_ptr,
4246 exec_list,
4247 sizeof(*exec_list) * args->buffer_count);
4248 if (ret) {
4249 ret = -EFAULT;
4250 DRM_ERROR("failed to copy %d exec entries "
4251 "back to user (%d)\n",
4252 args->buffer_count, ret);
4253 }
4254 }
4255
4256 drm_free_large(exec_list);
4257 drm_free_large(exec2_list);
4258 return ret;
4259 }
4260
4261 int
4262 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4263 struct drm_file *file_priv)
4264 {
4265 struct drm_i915_gem_execbuffer2 *args = data;
4266 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4267 int ret;
4268
4269 #if WATCH_EXEC
4270 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4271 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4272 #endif
4273
4274 if (args->buffer_count < 1) {
4275 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4276 return -EINVAL;
4277 }
4278
4279 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4280 if (exec2_list == NULL) {
4281 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4282 args->buffer_count);
4283 return -ENOMEM;
4284 }
4285 ret = copy_from_user(exec2_list,
4286 (struct drm_i915_relocation_entry __user *)
4287 (uintptr_t) args->buffers_ptr,
4288 sizeof(*exec2_list) * args->buffer_count);
4289 if (ret != 0) {
4290 DRM_ERROR("copy %d exec entries failed %d\n",
4291 args->buffer_count, ret);
4292 drm_free_large(exec2_list);
4293 return -EFAULT;
4294 }
4295
4296 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4297 if (!ret) {
4298 /* Copy the new buffer offsets back to the user's exec list. */
4299 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4300 (uintptr_t) args->buffers_ptr,
4301 exec2_list,
4302 sizeof(*exec2_list) * args->buffer_count);
4303 if (ret) {
4304 ret = -EFAULT;
4305 DRM_ERROR("failed to copy %d exec entries "
4306 "back to user (%d)\n",
4307 args->buffer_count, ret);
4308 }
4309 }
4310
4311 drm_free_large(exec2_list);
4312 return ret;
4313 }
4314
4315 int
4316 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4317 bool map_and_fenceable)
4318 {
4319 struct drm_device *dev = obj->dev;
4320 struct drm_i915_private *dev_priv = dev->dev_private;
4321 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4322 int ret;
4323
4324 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4325 BUG_ON(map_and_fenceable && !map_and_fenceable);
4326 WARN_ON(i915_verify_lists(dev));
4327
4328 if (obj_priv->gtt_space != NULL) {
4329 if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
4330 (map_and_fenceable && !obj_priv->map_and_fenceable)) {
4331 WARN(obj_priv->pin_count,
4332 "bo is already pinned with incorrect alignment:"
4333 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
4334 " obj->map_and_fenceable=%d\n",
4335 obj_priv->gtt_offset, alignment,
4336 map_and_fenceable,
4337 obj_priv->map_and_fenceable);
4338 ret = i915_gem_object_unbind(obj);
4339 if (ret)
4340 return ret;
4341 }
4342 }
4343
4344 if (obj_priv->gtt_space == NULL) {
4345 ret = i915_gem_object_bind_to_gtt(obj, alignment,
4346 map_and_fenceable);
4347 if (ret)
4348 return ret;
4349 }
4350
4351 if (obj_priv->pin_count++ == 0) {
4352 i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
4353 if (!obj_priv->active)
4354 list_move_tail(&obj_priv->mm_list,
4355 &dev_priv->mm.pinned_list);
4356 }
4357 BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
4358
4359 WARN_ON(i915_verify_lists(dev));
4360 return 0;
4361 }
4362
4363 void
4364 i915_gem_object_unpin(struct drm_gem_object *obj)
4365 {
4366 struct drm_device *dev = obj->dev;
4367 drm_i915_private_t *dev_priv = dev->dev_private;
4368 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4369
4370 WARN_ON(i915_verify_lists(dev));
4371 BUG_ON(obj_priv->pin_count == 0);
4372 BUG_ON(obj_priv->gtt_space == NULL);
4373
4374 if (--obj_priv->pin_count == 0) {
4375 if (!obj_priv->active)
4376 list_move_tail(&obj_priv->mm_list,
4377 &dev_priv->mm.inactive_list);
4378 i915_gem_info_remove_pin(dev_priv, obj_priv);
4379 }
4380 WARN_ON(i915_verify_lists(dev));
4381 }
4382
4383 int
4384 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4385 struct drm_file *file_priv)
4386 {
4387 struct drm_i915_gem_pin *args = data;
4388 struct drm_gem_object *obj;
4389 struct drm_i915_gem_object *obj_priv;
4390 int ret;
4391
4392 ret = i915_mutex_lock_interruptible(dev);
4393 if (ret)
4394 return ret;
4395
4396 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4397 if (obj == NULL) {
4398 ret = -ENOENT;
4399 goto unlock;
4400 }
4401 obj_priv = to_intel_bo(obj);
4402
4403 if (obj_priv->madv != I915_MADV_WILLNEED) {
4404 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4405 ret = -EINVAL;
4406 goto out;
4407 }
4408
4409 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4410 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4411 args->handle);
4412 ret = -EINVAL;
4413 goto out;
4414 }
4415
4416 obj_priv->user_pin_count++;
4417 obj_priv->pin_filp = file_priv;
4418 if (obj_priv->user_pin_count == 1) {
4419 ret = i915_gem_object_pin(obj, args->alignment, true);
4420 if (ret)
4421 goto out;
4422 }
4423
4424 /* XXX - flush the CPU caches for pinned objects
4425 * as the X server doesn't manage domains yet
4426 */
4427 i915_gem_object_flush_cpu_write_domain(obj);
4428 args->offset = obj_priv->gtt_offset;
4429 out:
4430 drm_gem_object_unreference(obj);
4431 unlock:
4432 mutex_unlock(&dev->struct_mutex);
4433 return ret;
4434 }
4435
4436 int
4437 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4438 struct drm_file *file_priv)
4439 {
4440 struct drm_i915_gem_pin *args = data;
4441 struct drm_gem_object *obj;
4442 struct drm_i915_gem_object *obj_priv;
4443 int ret;
4444
4445 ret = i915_mutex_lock_interruptible(dev);
4446 if (ret)
4447 return ret;
4448
4449 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4450 if (obj == NULL) {
4451 ret = -ENOENT;
4452 goto unlock;
4453 }
4454 obj_priv = to_intel_bo(obj);
4455
4456 if (obj_priv->pin_filp != file_priv) {
4457 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4458 args->handle);
4459 ret = -EINVAL;
4460 goto out;
4461 }
4462 obj_priv->user_pin_count--;
4463 if (obj_priv->user_pin_count == 0) {
4464 obj_priv->pin_filp = NULL;
4465 i915_gem_object_unpin(obj);
4466 }
4467
4468 out:
4469 drm_gem_object_unreference(obj);
4470 unlock:
4471 mutex_unlock(&dev->struct_mutex);
4472 return ret;
4473 }
4474
4475 int
4476 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4477 struct drm_file *file_priv)
4478 {
4479 struct drm_i915_gem_busy *args = data;
4480 struct drm_gem_object *obj;
4481 struct drm_i915_gem_object *obj_priv;
4482 int ret;
4483
4484 ret = i915_mutex_lock_interruptible(dev);
4485 if (ret)
4486 return ret;
4487
4488 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4489 if (obj == NULL) {
4490 ret = -ENOENT;
4491 goto unlock;
4492 }
4493 obj_priv = to_intel_bo(obj);
4494
4495 /* Count all active objects as busy, even if they are currently not used
4496 * by the gpu. Users of this interface expect objects to eventually
4497 * become non-busy without any further actions, therefore emit any
4498 * necessary flushes here.
4499 */
4500 args->busy = obj_priv->active;
4501 if (args->busy) {
4502 /* Unconditionally flush objects, even when the gpu still uses this
4503 * object. Userspace calling this function indicates that it wants to
4504 * use this buffer rather sooner than later, so issuing the required
4505 * flush earlier is beneficial.
4506 */
4507 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4508 i915_gem_flush_ring(dev, file_priv,
4509 obj_priv->ring,
4510 0, obj->write_domain);
4511
4512 /* Update the active list for the hardware's current position.
4513 * Otherwise this only updates on a delayed timer or when irqs
4514 * are actually unmasked, and our working set ends up being
4515 * larger than required.
4516 */
4517 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4518
4519 args->busy = obj_priv->active;
4520 }
4521
4522 drm_gem_object_unreference(obj);
4523 unlock:
4524 mutex_unlock(&dev->struct_mutex);
4525 return ret;
4526 }
4527
4528 int
4529 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4530 struct drm_file *file_priv)
4531 {
4532 return i915_gem_ring_throttle(dev, file_priv);
4533 }
4534
4535 int
4536 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4537 struct drm_file *file_priv)
4538 {
4539 struct drm_i915_gem_madvise *args = data;
4540 struct drm_gem_object *obj;
4541 struct drm_i915_gem_object *obj_priv;
4542 int ret;
4543
4544 switch (args->madv) {
4545 case I915_MADV_DONTNEED:
4546 case I915_MADV_WILLNEED:
4547 break;
4548 default:
4549 return -EINVAL;
4550 }
4551
4552 ret = i915_mutex_lock_interruptible(dev);
4553 if (ret)
4554 return ret;
4555
4556 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4557 if (obj == NULL) {
4558 ret = -ENOENT;
4559 goto unlock;
4560 }
4561 obj_priv = to_intel_bo(obj);
4562
4563 if (obj_priv->pin_count) {
4564 ret = -EINVAL;
4565 goto out;
4566 }
4567
4568 if (obj_priv->madv != __I915_MADV_PURGED)
4569 obj_priv->madv = args->madv;
4570
4571 /* if the object is no longer bound, discard its backing storage */
4572 if (i915_gem_object_is_purgeable(obj_priv) &&
4573 obj_priv->gtt_space == NULL)
4574 i915_gem_object_truncate(obj);
4575
4576 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4577
4578 out:
4579 drm_gem_object_unreference(obj);
4580 unlock:
4581 mutex_unlock(&dev->struct_mutex);
4582 return ret;
4583 }
4584
4585 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4586 size_t size)
4587 {
4588 struct drm_i915_private *dev_priv = dev->dev_private;
4589 struct drm_i915_gem_object *obj;
4590
4591 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4592 if (obj == NULL)
4593 return NULL;
4594
4595 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4596 kfree(obj);
4597 return NULL;
4598 }
4599
4600 i915_gem_info_add_obj(dev_priv, size);
4601
4602 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4603 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4604
4605 obj->agp_type = AGP_USER_MEMORY;
4606 obj->base.driver_private = NULL;
4607 obj->fence_reg = I915_FENCE_REG_NONE;
4608 INIT_LIST_HEAD(&obj->mm_list);
4609 INIT_LIST_HEAD(&obj->ring_list);
4610 INIT_LIST_HEAD(&obj->gpu_write_list);
4611 obj->madv = I915_MADV_WILLNEED;
4612 /* Avoid an unnecessary call to unbind on the first bind. */
4613 obj->map_and_fenceable = true;
4614
4615 return &obj->base;
4616 }
4617
4618 int i915_gem_init_object(struct drm_gem_object *obj)
4619 {
4620 BUG();
4621
4622 return 0;
4623 }
4624
4625 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4626 {
4627 struct drm_device *dev = obj->dev;
4628 drm_i915_private_t *dev_priv = dev->dev_private;
4629 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4630 int ret;
4631
4632 ret = i915_gem_object_unbind(obj);
4633 if (ret == -ERESTARTSYS) {
4634 list_move(&obj_priv->mm_list,
4635 &dev_priv->mm.deferred_free_list);
4636 return;
4637 }
4638
4639 if (obj->map_list.map)
4640 i915_gem_free_mmap_offset(obj);
4641
4642 drm_gem_object_release(obj);
4643 i915_gem_info_remove_obj(dev_priv, obj->size);
4644
4645 kfree(obj_priv->page_cpu_valid);
4646 kfree(obj_priv->bit_17);
4647 kfree(obj_priv);
4648 }
4649
4650 void i915_gem_free_object(struct drm_gem_object *obj)
4651 {
4652 struct drm_device *dev = obj->dev;
4653 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4654
4655 trace_i915_gem_object_destroy(obj);
4656
4657 while (obj_priv->pin_count > 0)
4658 i915_gem_object_unpin(obj);
4659
4660 if (obj_priv->phys_obj)
4661 i915_gem_detach_phys_object(dev, obj);
4662
4663 i915_gem_free_object_tail(obj);
4664 }
4665
4666 int
4667 i915_gem_idle(struct drm_device *dev)
4668 {
4669 drm_i915_private_t *dev_priv = dev->dev_private;
4670 int ret;
4671
4672 mutex_lock(&dev->struct_mutex);
4673
4674 if (dev_priv->mm.suspended) {
4675 mutex_unlock(&dev->struct_mutex);
4676 return 0;
4677 }
4678
4679 ret = i915_gpu_idle(dev);
4680 if (ret) {
4681 mutex_unlock(&dev->struct_mutex);
4682 return ret;
4683 }
4684
4685 /* Under UMS, be paranoid and evict. */
4686 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4687 ret = i915_gem_evict_inactive(dev, false);
4688 if (ret) {
4689 mutex_unlock(&dev->struct_mutex);
4690 return ret;
4691 }
4692 }
4693
4694 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4695 * We need to replace this with a semaphore, or something.
4696 * And not confound mm.suspended!
4697 */
4698 dev_priv->mm.suspended = 1;
4699 del_timer_sync(&dev_priv->hangcheck_timer);
4700
4701 i915_kernel_lost_context(dev);
4702 i915_gem_cleanup_ringbuffer(dev);
4703
4704 mutex_unlock(&dev->struct_mutex);
4705
4706 /* Cancel the retire work handler, which should be idle now. */
4707 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4708
4709 return 0;
4710 }
4711
4712 /*
4713 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4714 * over cache flushing.
4715 */
4716 static int
4717 i915_gem_init_pipe_control(struct drm_device *dev)
4718 {
4719 drm_i915_private_t *dev_priv = dev->dev_private;
4720 struct drm_gem_object *obj;
4721 struct drm_i915_gem_object *obj_priv;
4722 int ret;
4723
4724 obj = i915_gem_alloc_object(dev, 4096);
4725 if (obj == NULL) {
4726 DRM_ERROR("Failed to allocate seqno page\n");
4727 ret = -ENOMEM;
4728 goto err;
4729 }
4730 obj_priv = to_intel_bo(obj);
4731 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4732
4733 ret = i915_gem_object_pin(obj, 4096, true);
4734 if (ret)
4735 goto err_unref;
4736
4737 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4738 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4739 if (dev_priv->seqno_page == NULL)
4740 goto err_unpin;
4741
4742 dev_priv->seqno_obj = obj;
4743 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4744
4745 return 0;
4746
4747 err_unpin:
4748 i915_gem_object_unpin(obj);
4749 err_unref:
4750 drm_gem_object_unreference(obj);
4751 err:
4752 return ret;
4753 }
4754
4755
4756 static void
4757 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4758 {
4759 drm_i915_private_t *dev_priv = dev->dev_private;
4760 struct drm_gem_object *obj;
4761 struct drm_i915_gem_object *obj_priv;
4762
4763 obj = dev_priv->seqno_obj;
4764 obj_priv = to_intel_bo(obj);
4765 kunmap(obj_priv->pages[0]);
4766 i915_gem_object_unpin(obj);
4767 drm_gem_object_unreference(obj);
4768 dev_priv->seqno_obj = NULL;
4769
4770 dev_priv->seqno_page = NULL;
4771 }
4772
4773 int
4774 i915_gem_init_ringbuffer(struct drm_device *dev)
4775 {
4776 drm_i915_private_t *dev_priv = dev->dev_private;
4777 int ret;
4778
4779 if (HAS_PIPE_CONTROL(dev)) {
4780 ret = i915_gem_init_pipe_control(dev);
4781 if (ret)
4782 return ret;
4783 }
4784
4785 ret = intel_init_render_ring_buffer(dev);
4786 if (ret)
4787 goto cleanup_pipe_control;
4788
4789 if (HAS_BSD(dev)) {
4790 ret = intel_init_bsd_ring_buffer(dev);
4791 if (ret)
4792 goto cleanup_render_ring;
4793 }
4794
4795 if (HAS_BLT(dev)) {
4796 ret = intel_init_blt_ring_buffer(dev);
4797 if (ret)
4798 goto cleanup_bsd_ring;
4799 }
4800
4801 dev_priv->next_seqno = 1;
4802
4803 return 0;
4804
4805 cleanup_bsd_ring:
4806 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4807 cleanup_render_ring:
4808 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4809 cleanup_pipe_control:
4810 if (HAS_PIPE_CONTROL(dev))
4811 i915_gem_cleanup_pipe_control(dev);
4812 return ret;
4813 }
4814
4815 void
4816 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4817 {
4818 drm_i915_private_t *dev_priv = dev->dev_private;
4819
4820 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4821 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4822 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4823 if (HAS_PIPE_CONTROL(dev))
4824 i915_gem_cleanup_pipe_control(dev);
4825 }
4826
4827 int
4828 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4829 struct drm_file *file_priv)
4830 {
4831 drm_i915_private_t *dev_priv = dev->dev_private;
4832 int ret;
4833
4834 if (drm_core_check_feature(dev, DRIVER_MODESET))
4835 return 0;
4836
4837 if (atomic_read(&dev_priv->mm.wedged)) {
4838 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4839 atomic_set(&dev_priv->mm.wedged, 0);
4840 }
4841
4842 mutex_lock(&dev->struct_mutex);
4843 dev_priv->mm.suspended = 0;
4844
4845 ret = i915_gem_init_ringbuffer(dev);
4846 if (ret != 0) {
4847 mutex_unlock(&dev->struct_mutex);
4848 return ret;
4849 }
4850
4851 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4852 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4853 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4854 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4855 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4856 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4857 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4858 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4859 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4860 mutex_unlock(&dev->struct_mutex);
4861
4862 ret = drm_irq_install(dev);
4863 if (ret)
4864 goto cleanup_ringbuffer;
4865
4866 return 0;
4867
4868 cleanup_ringbuffer:
4869 mutex_lock(&dev->struct_mutex);
4870 i915_gem_cleanup_ringbuffer(dev);
4871 dev_priv->mm.suspended = 1;
4872 mutex_unlock(&dev->struct_mutex);
4873
4874 return ret;
4875 }
4876
4877 int
4878 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4879 struct drm_file *file_priv)
4880 {
4881 if (drm_core_check_feature(dev, DRIVER_MODESET))
4882 return 0;
4883
4884 drm_irq_uninstall(dev);
4885 return i915_gem_idle(dev);
4886 }
4887
4888 void
4889 i915_gem_lastclose(struct drm_device *dev)
4890 {
4891 int ret;
4892
4893 if (drm_core_check_feature(dev, DRIVER_MODESET))
4894 return;
4895
4896 ret = i915_gem_idle(dev);
4897 if (ret)
4898 DRM_ERROR("failed to idle hardware: %d\n", ret);
4899 }
4900
4901 static void
4902 init_ring_lists(struct intel_ring_buffer *ring)
4903 {
4904 INIT_LIST_HEAD(&ring->active_list);
4905 INIT_LIST_HEAD(&ring->request_list);
4906 INIT_LIST_HEAD(&ring->gpu_write_list);
4907 }
4908
4909 void
4910 i915_gem_load(struct drm_device *dev)
4911 {
4912 int i;
4913 drm_i915_private_t *dev_priv = dev->dev_private;
4914
4915 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4916 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4917 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4918 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4919 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4920 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4921 init_ring_lists(&dev_priv->render_ring);
4922 init_ring_lists(&dev_priv->bsd_ring);
4923 init_ring_lists(&dev_priv->blt_ring);
4924 for (i = 0; i < 16; i++)
4925 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4926 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4927 i915_gem_retire_work_handler);
4928 init_completion(&dev_priv->error_completion);
4929
4930 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4931 if (IS_GEN3(dev)) {
4932 u32 tmp = I915_READ(MI_ARB_STATE);
4933 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4934 /* arb state is a masked write, so set bit + bit in mask */
4935 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4936 I915_WRITE(MI_ARB_STATE, tmp);
4937 }
4938 }
4939
4940 /* Old X drivers will take 0-2 for front, back, depth buffers */
4941 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4942 dev_priv->fence_reg_start = 3;
4943
4944 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4945 dev_priv->num_fence_regs = 16;
4946 else
4947 dev_priv->num_fence_regs = 8;
4948
4949 /* Initialize fence registers to zero */
4950 switch (INTEL_INFO(dev)->gen) {
4951 case 6:
4952 for (i = 0; i < 16; i++)
4953 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4954 break;
4955 case 5:
4956 case 4:
4957 for (i = 0; i < 16; i++)
4958 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4959 break;
4960 case 3:
4961 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4962 for (i = 0; i < 8; i++)
4963 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4964 case 2:
4965 for (i = 0; i < 8; i++)
4966 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4967 break;
4968 }
4969 i915_gem_detect_bit_6_swizzle(dev);
4970 init_waitqueue_head(&dev_priv->pending_flip_queue);
4971
4972 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4973 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4974 register_shrinker(&dev_priv->mm.inactive_shrinker);
4975 }
4976
4977 /*
4978 * Create a physically contiguous memory object for this object
4979 * e.g. for cursor + overlay regs
4980 */
4981 static int i915_gem_init_phys_object(struct drm_device *dev,
4982 int id, int size, int align)
4983 {
4984 drm_i915_private_t *dev_priv = dev->dev_private;
4985 struct drm_i915_gem_phys_object *phys_obj;
4986 int ret;
4987
4988 if (dev_priv->mm.phys_objs[id - 1] || !size)
4989 return 0;
4990
4991 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4992 if (!phys_obj)
4993 return -ENOMEM;
4994
4995 phys_obj->id = id;
4996
4997 phys_obj->handle = drm_pci_alloc(dev, size, align);
4998 if (!phys_obj->handle) {
4999 ret = -ENOMEM;
5000 goto kfree_obj;
5001 }
5002 #ifdef CONFIG_X86
5003 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
5004 #endif
5005
5006 dev_priv->mm.phys_objs[id - 1] = phys_obj;
5007
5008 return 0;
5009 kfree_obj:
5010 kfree(phys_obj);
5011 return ret;
5012 }
5013
5014 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
5015 {
5016 drm_i915_private_t *dev_priv = dev->dev_private;
5017 struct drm_i915_gem_phys_object *phys_obj;
5018
5019 if (!dev_priv->mm.phys_objs[id - 1])
5020 return;
5021
5022 phys_obj = dev_priv->mm.phys_objs[id - 1];
5023 if (phys_obj->cur_obj) {
5024 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
5025 }
5026
5027 #ifdef CONFIG_X86
5028 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
5029 #endif
5030 drm_pci_free(dev, phys_obj->handle);
5031 kfree(phys_obj);
5032 dev_priv->mm.phys_objs[id - 1] = NULL;
5033 }
5034
5035 void i915_gem_free_all_phys_object(struct drm_device *dev)
5036 {
5037 int i;
5038
5039 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
5040 i915_gem_free_phys_object(dev, i);
5041 }
5042
5043 void i915_gem_detach_phys_object(struct drm_device *dev,
5044 struct drm_gem_object *obj)
5045 {
5046 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
5047 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5048 char *vaddr;
5049 int i;
5050 int page_count;
5051
5052 if (!obj_priv->phys_obj)
5053 return;
5054 vaddr = obj_priv->phys_obj->handle->vaddr;
5055
5056 page_count = obj->size / PAGE_SIZE;
5057
5058 for (i = 0; i < page_count; i++) {
5059 struct page *page = read_cache_page_gfp(mapping, i,
5060 GFP_HIGHUSER | __GFP_RECLAIMABLE);
5061 if (!IS_ERR(page)) {
5062 char *dst = kmap_atomic(page);
5063 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
5064 kunmap_atomic(dst);
5065
5066 drm_clflush_pages(&page, 1);
5067
5068 set_page_dirty(page);
5069 mark_page_accessed(page);
5070 page_cache_release(page);
5071 }
5072 }
5073 drm_agp_chipset_flush(dev);
5074
5075 obj_priv->phys_obj->cur_obj = NULL;
5076 obj_priv->phys_obj = NULL;
5077 }
5078
5079 int
5080 i915_gem_attach_phys_object(struct drm_device *dev,
5081 struct drm_gem_object *obj,
5082 int id,
5083 int align)
5084 {
5085 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
5086 drm_i915_private_t *dev_priv = dev->dev_private;
5087 struct drm_i915_gem_object *obj_priv;
5088 int ret = 0;
5089 int page_count;
5090 int i;
5091
5092 if (id > I915_MAX_PHYS_OBJECT)
5093 return -EINVAL;
5094
5095 obj_priv = to_intel_bo(obj);
5096
5097 if (obj_priv->phys_obj) {
5098 if (obj_priv->phys_obj->id == id)
5099 return 0;
5100 i915_gem_detach_phys_object(dev, obj);
5101 }
5102
5103 /* create a new object */
5104 if (!dev_priv->mm.phys_objs[id - 1]) {
5105 ret = i915_gem_init_phys_object(dev, id,
5106 obj->size, align);
5107 if (ret) {
5108 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
5109 return ret;
5110 }
5111 }
5112
5113 /* bind to the object */
5114 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
5115 obj_priv->phys_obj->cur_obj = obj;
5116
5117 page_count = obj->size / PAGE_SIZE;
5118
5119 for (i = 0; i < page_count; i++) {
5120 struct page *page;
5121 char *dst, *src;
5122
5123 page = read_cache_page_gfp(mapping, i,
5124 GFP_HIGHUSER | __GFP_RECLAIMABLE);
5125 if (IS_ERR(page))
5126 return PTR_ERR(page);
5127
5128 src = kmap_atomic(page);
5129 dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5130 memcpy(dst, src, PAGE_SIZE);
5131 kunmap_atomic(src);
5132
5133 mark_page_accessed(page);
5134 page_cache_release(page);
5135 }
5136
5137 return 0;
5138 }
5139
5140 static int
5141 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5142 struct drm_i915_gem_pwrite *args,
5143 struct drm_file *file_priv)
5144 {
5145 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5146 void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
5147 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
5148
5149 DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
5150
5151 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
5152 unsigned long unwritten;
5153
5154 /* The physical object once assigned is fixed for the lifetime
5155 * of the obj, so we can safely drop the lock and continue
5156 * to access vaddr.
5157 */
5158 mutex_unlock(&dev->struct_mutex);
5159 unwritten = copy_from_user(vaddr, user_data, args->size);
5160 mutex_lock(&dev->struct_mutex);
5161 if (unwritten)
5162 return -EFAULT;
5163 }
5164
5165 drm_agp_chipset_flush(dev);
5166 return 0;
5167 }
5168
5169 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5170 {
5171 struct drm_i915_file_private *file_priv = file->driver_priv;
5172
5173 /* Clean up our request list when the client is going away, so that
5174 * later retire_requests won't dereference our soon-to-be-gone
5175 * file_priv.
5176 */
5177 spin_lock(&file_priv->mm.lock);
5178 while (!list_empty(&file_priv->mm.request_list)) {
5179 struct drm_i915_gem_request *request;
5180
5181 request = list_first_entry(&file_priv->mm.request_list,
5182 struct drm_i915_gem_request,
5183 client_list);
5184 list_del(&request->client_list);
5185 request->file_priv = NULL;
5186 }
5187 spin_unlock(&file_priv->mm.lock);
5188 }
5189
5190 static int
5191 i915_gpu_is_active(struct drm_device *dev)
5192 {
5193 drm_i915_private_t *dev_priv = dev->dev_private;
5194 int lists_empty;
5195
5196 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5197 list_empty(&dev_priv->mm.active_list);
5198
5199 return !lists_empty;
5200 }
5201
5202 static int
5203 i915_gem_inactive_shrink(struct shrinker *shrinker,
5204 int nr_to_scan,
5205 gfp_t gfp_mask)
5206 {
5207 struct drm_i915_private *dev_priv =
5208 container_of(shrinker,
5209 struct drm_i915_private,
5210 mm.inactive_shrinker);
5211 struct drm_device *dev = dev_priv->dev;
5212 struct drm_i915_gem_object *obj, *next;
5213 int cnt;
5214
5215 if (!mutex_trylock(&dev->struct_mutex))
5216 return 0;
5217
5218 /* "fast-path" to count number of available objects */
5219 if (nr_to_scan == 0) {
5220 cnt = 0;
5221 list_for_each_entry(obj,
5222 &dev_priv->mm.inactive_list,
5223 mm_list)
5224 cnt++;
5225 mutex_unlock(&dev->struct_mutex);
5226 return cnt / 100 * sysctl_vfs_cache_pressure;
5227 }
5228
5229 rescan:
5230 /* first scan for clean buffers */
5231 i915_gem_retire_requests(dev);
5232
5233 list_for_each_entry_safe(obj, next,
5234 &dev_priv->mm.inactive_list,
5235 mm_list) {
5236 if (i915_gem_object_is_purgeable(obj)) {
5237 i915_gem_object_unbind(&obj->base);
5238 if (--nr_to_scan == 0)
5239 break;
5240 }
5241 }
5242
5243 /* second pass, evict/count anything still on the inactive list */
5244 cnt = 0;
5245 list_for_each_entry_safe(obj, next,
5246 &dev_priv->mm.inactive_list,
5247 mm_list) {
5248 if (nr_to_scan) {
5249 i915_gem_object_unbind(&obj->base);
5250 nr_to_scan--;
5251 } else
5252 cnt++;
5253 }
5254
5255 if (nr_to_scan && i915_gpu_is_active(dev)) {
5256 /*
5257 * We are desperate for pages, so as a last resort, wait
5258 * for the GPU to finish and discard whatever we can.
5259 * This has a dramatic impact to reduce the number of
5260 * OOM-killer events whilst running the GPU aggressively.
5261 */
5262 if (i915_gpu_idle(dev) == 0)
5263 goto rescan;
5264 }
5265 mutex_unlock(&dev->struct_mutex);
5266 return cnt / 100 * sysctl_vfs_cache_pressure;
5267 }
This page took 0.137127 seconds and 6 git commands to generate.