drm/i915: Break busywaiting for requests on pending signals
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 page_cache_release(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825 out:
826 return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839 {
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868 {
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899 {
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990 next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996 out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 needs_clflush_after = true;
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014 else
1015 obj->cache_dirty = true;
1016
1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 return ret;
1019 }
1020
1021 /**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 struct drm_file *file)
1029 {
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_pwrite *args = data;
1032 struct drm_i915_gem_object *obj;
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
1039 to_user_ptr(args->data_ptr),
1040 args->size))
1041 return -EFAULT;
1042
1043 if (likely(!i915.prefault_disable)) {
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
1049
1050 intel_runtime_pm_get(dev_priv);
1051
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto put_rpm;
1055
1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 if (&obj->base == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1060 }
1061
1062 /* Bounds check destination. */
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
1065 ret = -EINVAL;
1066 goto out;
1067 }
1068
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079 ret = -EFAULT;
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
1093 }
1094
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
1101
1102 out:
1103 drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
1109 return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 bool interruptible)
1115 {
1116 if (i915_reset_in_progress(error)) {
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
1124 return -EIO;
1125
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
1133 }
1134
1135 return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140 wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 struct intel_engine_cs *ring)
1145 {
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1150 {
1151 unsigned long timeout;
1152
1153 if (i915_gem_request_get_ring(req)->irq_refcount)
1154 return -EBUSY;
1155
1156 timeout = jiffies + 1;
1157 while (!need_resched()) {
1158 if (i915_gem_request_completed(req, true))
1159 return 0;
1160
1161 if (signal_pending_state(state, current))
1162 break;
1163
1164 if (time_after_eq(jiffies, timeout))
1165 break;
1166
1167 cpu_relax_lowlatency();
1168 }
1169 if (i915_gem_request_completed(req, false))
1170 return 0;
1171
1172 return -EAGAIN;
1173 }
1174
1175 /**
1176 * __i915_wait_request - wait until execution of request has finished
1177 * @req: duh!
1178 * @reset_counter: reset sequence associated with the given request
1179 * @interruptible: do an interruptible wait (normally yes)
1180 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1181 *
1182 * Note: It is of utmost importance that the passed in seqno and reset_counter
1183 * values have been read by the caller in an smp safe manner. Where read-side
1184 * locks are involved, it is sufficient to read the reset_counter before
1185 * unlocking the lock that protects the seqno. For lockless tricks, the
1186 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1187 * inserted.
1188 *
1189 * Returns 0 if the request was found within the alloted time. Else returns the
1190 * errno with remaining time filled in timeout argument.
1191 */
1192 int __i915_wait_request(struct drm_i915_gem_request *req,
1193 unsigned reset_counter,
1194 bool interruptible,
1195 s64 *timeout,
1196 struct intel_rps_client *rps)
1197 {
1198 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1199 struct drm_device *dev = ring->dev;
1200 struct drm_i915_private *dev_priv = dev->dev_private;
1201 const bool irq_test_in_progress =
1202 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1203 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1204 DEFINE_WAIT(wait);
1205 unsigned long timeout_expire;
1206 s64 before, now;
1207 int ret;
1208
1209 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1210
1211 if (list_empty(&req->list))
1212 return 0;
1213
1214 if (i915_gem_request_completed(req, true))
1215 return 0;
1216
1217 timeout_expire = 0;
1218 if (timeout) {
1219 if (WARN_ON(*timeout < 0))
1220 return -EINVAL;
1221
1222 if (*timeout == 0)
1223 return -ETIME;
1224
1225 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1226 }
1227
1228 if (INTEL_INFO(dev_priv)->gen >= 6)
1229 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1230
1231 /* Record current time in case interrupted by signal, or wedged */
1232 trace_i915_gem_request_wait_begin(req);
1233 before = ktime_get_raw_ns();
1234
1235 /* Optimistic spin for the next jiffie before touching IRQs */
1236 ret = __i915_spin_request(req, state);
1237 if (ret == 0)
1238 goto out;
1239
1240 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1241 ret = -ENODEV;
1242 goto out;
1243 }
1244
1245 for (;;) {
1246 struct timer_list timer;
1247
1248 prepare_to_wait(&ring->irq_queue, &wait, state);
1249
1250 /* We need to check whether any gpu reset happened in between
1251 * the caller grabbing the seqno and now ... */
1252 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1253 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1254 * is truely gone. */
1255 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1256 if (ret == 0)
1257 ret = -EAGAIN;
1258 break;
1259 }
1260
1261 if (i915_gem_request_completed(req, false)) {
1262 ret = 0;
1263 break;
1264 }
1265
1266 if (signal_pending_state(state, current)) {
1267 ret = -ERESTARTSYS;
1268 break;
1269 }
1270
1271 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1272 ret = -ETIME;
1273 break;
1274 }
1275
1276 timer.function = NULL;
1277 if (timeout || missed_irq(dev_priv, ring)) {
1278 unsigned long expire;
1279
1280 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1281 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1282 mod_timer(&timer, expire);
1283 }
1284
1285 io_schedule();
1286
1287 if (timer.function) {
1288 del_singleshot_timer_sync(&timer);
1289 destroy_timer_on_stack(&timer);
1290 }
1291 }
1292 if (!irq_test_in_progress)
1293 ring->irq_put(ring);
1294
1295 finish_wait(&ring->irq_queue, &wait);
1296
1297 out:
1298 now = ktime_get_raw_ns();
1299 trace_i915_gem_request_wait_end(req);
1300
1301 if (timeout) {
1302 s64 tres = *timeout - (now - before);
1303
1304 *timeout = tres < 0 ? 0 : tres;
1305
1306 /*
1307 * Apparently ktime isn't accurate enough and occasionally has a
1308 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1309 * things up to make the test happy. We allow up to 1 jiffy.
1310 *
1311 * This is a regrssion from the timespec->ktime conversion.
1312 */
1313 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1314 *timeout = 0;
1315 }
1316
1317 return ret;
1318 }
1319
1320 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1321 struct drm_file *file)
1322 {
1323 struct drm_i915_private *dev_private;
1324 struct drm_i915_file_private *file_priv;
1325
1326 WARN_ON(!req || !file || req->file_priv);
1327
1328 if (!req || !file)
1329 return -EINVAL;
1330
1331 if (req->file_priv)
1332 return -EINVAL;
1333
1334 dev_private = req->ring->dev->dev_private;
1335 file_priv = file->driver_priv;
1336
1337 spin_lock(&file_priv->mm.lock);
1338 req->file_priv = file_priv;
1339 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1340 spin_unlock(&file_priv->mm.lock);
1341
1342 req->pid = get_pid(task_pid(current));
1343
1344 return 0;
1345 }
1346
1347 static inline void
1348 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1349 {
1350 struct drm_i915_file_private *file_priv = request->file_priv;
1351
1352 if (!file_priv)
1353 return;
1354
1355 spin_lock(&file_priv->mm.lock);
1356 list_del(&request->client_list);
1357 request->file_priv = NULL;
1358 spin_unlock(&file_priv->mm.lock);
1359
1360 put_pid(request->pid);
1361 request->pid = NULL;
1362 }
1363
1364 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1365 {
1366 trace_i915_gem_request_retire(request);
1367
1368 /* We know the GPU must have read the request to have
1369 * sent us the seqno + interrupt, so use the position
1370 * of tail of the request to update the last known position
1371 * of the GPU head.
1372 *
1373 * Note this requires that we are always called in request
1374 * completion order.
1375 */
1376 request->ringbuf->last_retired_head = request->postfix;
1377
1378 list_del_init(&request->list);
1379 i915_gem_request_remove_from_client(request);
1380
1381 i915_gem_request_unreference(request);
1382 }
1383
1384 static void
1385 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1386 {
1387 struct intel_engine_cs *engine = req->ring;
1388 struct drm_i915_gem_request *tmp;
1389
1390 lockdep_assert_held(&engine->dev->struct_mutex);
1391
1392 if (list_empty(&req->list))
1393 return;
1394
1395 do {
1396 tmp = list_first_entry(&engine->request_list,
1397 typeof(*tmp), list);
1398
1399 i915_gem_request_retire(tmp);
1400 } while (tmp != req);
1401
1402 WARN_ON(i915_verify_lists(engine->dev));
1403 }
1404
1405 /**
1406 * Waits for a request to be signaled, and cleans up the
1407 * request and object lists appropriately for that event.
1408 */
1409 int
1410 i915_wait_request(struct drm_i915_gem_request *req)
1411 {
1412 struct drm_device *dev;
1413 struct drm_i915_private *dev_priv;
1414 bool interruptible;
1415 int ret;
1416
1417 BUG_ON(req == NULL);
1418
1419 dev = req->ring->dev;
1420 dev_priv = dev->dev_private;
1421 interruptible = dev_priv->mm.interruptible;
1422
1423 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1424
1425 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1426 if (ret)
1427 return ret;
1428
1429 ret = __i915_wait_request(req,
1430 atomic_read(&dev_priv->gpu_error.reset_counter),
1431 interruptible, NULL, NULL);
1432 if (ret)
1433 return ret;
1434
1435 __i915_gem_request_retire__upto(req);
1436 return 0;
1437 }
1438
1439 /**
1440 * Ensures that all rendering to the object has completed and the object is
1441 * safe to unbind from the GTT or access from the CPU.
1442 */
1443 int
1444 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1445 bool readonly)
1446 {
1447 int ret, i;
1448
1449 if (!obj->active)
1450 return 0;
1451
1452 if (readonly) {
1453 if (obj->last_write_req != NULL) {
1454 ret = i915_wait_request(obj->last_write_req);
1455 if (ret)
1456 return ret;
1457
1458 i = obj->last_write_req->ring->id;
1459 if (obj->last_read_req[i] == obj->last_write_req)
1460 i915_gem_object_retire__read(obj, i);
1461 else
1462 i915_gem_object_retire__write(obj);
1463 }
1464 } else {
1465 for (i = 0; i < I915_NUM_RINGS; i++) {
1466 if (obj->last_read_req[i] == NULL)
1467 continue;
1468
1469 ret = i915_wait_request(obj->last_read_req[i]);
1470 if (ret)
1471 return ret;
1472
1473 i915_gem_object_retire__read(obj, i);
1474 }
1475 RQ_BUG_ON(obj->active);
1476 }
1477
1478 return 0;
1479 }
1480
1481 static void
1482 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1483 struct drm_i915_gem_request *req)
1484 {
1485 int ring = req->ring->id;
1486
1487 if (obj->last_read_req[ring] == req)
1488 i915_gem_object_retire__read(obj, ring);
1489 else if (obj->last_write_req == req)
1490 i915_gem_object_retire__write(obj);
1491
1492 __i915_gem_request_retire__upto(req);
1493 }
1494
1495 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1496 * as the object state may change during this call.
1497 */
1498 static __must_check int
1499 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1500 struct intel_rps_client *rps,
1501 bool readonly)
1502 {
1503 struct drm_device *dev = obj->base.dev;
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1506 unsigned reset_counter;
1507 int ret, i, n = 0;
1508
1509 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1510 BUG_ON(!dev_priv->mm.interruptible);
1511
1512 if (!obj->active)
1513 return 0;
1514
1515 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1516 if (ret)
1517 return ret;
1518
1519 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1520
1521 if (readonly) {
1522 struct drm_i915_gem_request *req;
1523
1524 req = obj->last_write_req;
1525 if (req == NULL)
1526 return 0;
1527
1528 requests[n++] = i915_gem_request_reference(req);
1529 } else {
1530 for (i = 0; i < I915_NUM_RINGS; i++) {
1531 struct drm_i915_gem_request *req;
1532
1533 req = obj->last_read_req[i];
1534 if (req == NULL)
1535 continue;
1536
1537 requests[n++] = i915_gem_request_reference(req);
1538 }
1539 }
1540
1541 mutex_unlock(&dev->struct_mutex);
1542 for (i = 0; ret == 0 && i < n; i++)
1543 ret = __i915_wait_request(requests[i], reset_counter, true,
1544 NULL, rps);
1545 mutex_lock(&dev->struct_mutex);
1546
1547 for (i = 0; i < n; i++) {
1548 if (ret == 0)
1549 i915_gem_object_retire_request(obj, requests[i]);
1550 i915_gem_request_unreference(requests[i]);
1551 }
1552
1553 return ret;
1554 }
1555
1556 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1557 {
1558 struct drm_i915_file_private *fpriv = file->driver_priv;
1559 return &fpriv->rps;
1560 }
1561
1562 /**
1563 * Called when user space prepares to use an object with the CPU, either
1564 * through the mmap ioctl's mapping or a GTT mapping.
1565 */
1566 int
1567 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1568 struct drm_file *file)
1569 {
1570 struct drm_i915_gem_set_domain *args = data;
1571 struct drm_i915_gem_object *obj;
1572 uint32_t read_domains = args->read_domains;
1573 uint32_t write_domain = args->write_domain;
1574 int ret;
1575
1576 /* Only handle setting domains to types used by the CPU. */
1577 if (write_domain & I915_GEM_GPU_DOMAINS)
1578 return -EINVAL;
1579
1580 if (read_domains & I915_GEM_GPU_DOMAINS)
1581 return -EINVAL;
1582
1583 /* Having something in the write domain implies it's in the read
1584 * domain, and only that read domain. Enforce that in the request.
1585 */
1586 if (write_domain != 0 && read_domains != write_domain)
1587 return -EINVAL;
1588
1589 ret = i915_mutex_lock_interruptible(dev);
1590 if (ret)
1591 return ret;
1592
1593 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1594 if (&obj->base == NULL) {
1595 ret = -ENOENT;
1596 goto unlock;
1597 }
1598
1599 /* Try to flush the object off the GPU without holding the lock.
1600 * We will repeat the flush holding the lock in the normal manner
1601 * to catch cases where we are gazumped.
1602 */
1603 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1604 to_rps_client(file),
1605 !write_domain);
1606 if (ret)
1607 goto unref;
1608
1609 if (read_domains & I915_GEM_DOMAIN_GTT)
1610 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1611 else
1612 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1613
1614 if (write_domain != 0)
1615 intel_fb_obj_invalidate(obj,
1616 write_domain == I915_GEM_DOMAIN_GTT ?
1617 ORIGIN_GTT : ORIGIN_CPU);
1618
1619 unref:
1620 drm_gem_object_unreference(&obj->base);
1621 unlock:
1622 mutex_unlock(&dev->struct_mutex);
1623 return ret;
1624 }
1625
1626 /**
1627 * Called when user space has done writes to this buffer
1628 */
1629 int
1630 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1631 struct drm_file *file)
1632 {
1633 struct drm_i915_gem_sw_finish *args = data;
1634 struct drm_i915_gem_object *obj;
1635 int ret = 0;
1636
1637 ret = i915_mutex_lock_interruptible(dev);
1638 if (ret)
1639 return ret;
1640
1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642 if (&obj->base == NULL) {
1643 ret = -ENOENT;
1644 goto unlock;
1645 }
1646
1647 /* Pinned buffers may be scanout, so flush the cache */
1648 if (obj->pin_display)
1649 i915_gem_object_flush_cpu_write_domain(obj);
1650
1651 drm_gem_object_unreference(&obj->base);
1652 unlock:
1653 mutex_unlock(&dev->struct_mutex);
1654 return ret;
1655 }
1656
1657 /**
1658 * Maps the contents of an object, returning the address it is mapped
1659 * into.
1660 *
1661 * While the mapping holds a reference on the contents of the object, it doesn't
1662 * imply a ref on the object itself.
1663 *
1664 * IMPORTANT:
1665 *
1666 * DRM driver writers who look a this function as an example for how to do GEM
1667 * mmap support, please don't implement mmap support like here. The modern way
1668 * to implement DRM mmap support is with an mmap offset ioctl (like
1669 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1670 * That way debug tooling like valgrind will understand what's going on, hiding
1671 * the mmap call in a driver private ioctl will break that. The i915 driver only
1672 * does cpu mmaps this way because we didn't know better.
1673 */
1674 int
1675 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1676 struct drm_file *file)
1677 {
1678 struct drm_i915_gem_mmap *args = data;
1679 struct drm_gem_object *obj;
1680 unsigned long addr;
1681
1682 if (args->flags & ~(I915_MMAP_WC))
1683 return -EINVAL;
1684
1685 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1686 return -ENODEV;
1687
1688 obj = drm_gem_object_lookup(dev, file, args->handle);
1689 if (obj == NULL)
1690 return -ENOENT;
1691
1692 /* prime objects have no backing filp to GEM mmap
1693 * pages from.
1694 */
1695 if (!obj->filp) {
1696 drm_gem_object_unreference_unlocked(obj);
1697 return -EINVAL;
1698 }
1699
1700 addr = vm_mmap(obj->filp, 0, args->size,
1701 PROT_READ | PROT_WRITE, MAP_SHARED,
1702 args->offset);
1703 if (args->flags & I915_MMAP_WC) {
1704 struct mm_struct *mm = current->mm;
1705 struct vm_area_struct *vma;
1706
1707 down_write(&mm->mmap_sem);
1708 vma = find_vma(mm, addr);
1709 if (vma)
1710 vma->vm_page_prot =
1711 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1712 else
1713 addr = -ENOMEM;
1714 up_write(&mm->mmap_sem);
1715 }
1716 drm_gem_object_unreference_unlocked(obj);
1717 if (IS_ERR((void *)addr))
1718 return addr;
1719
1720 args->addr_ptr = (uint64_t) addr;
1721
1722 return 0;
1723 }
1724
1725 /**
1726 * i915_gem_fault - fault a page into the GTT
1727 * @vma: VMA in question
1728 * @vmf: fault info
1729 *
1730 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1731 * from userspace. The fault handler takes care of binding the object to
1732 * the GTT (if needed), allocating and programming a fence register (again,
1733 * only if needed based on whether the old reg is still valid or the object
1734 * is tiled) and inserting a new PTE into the faulting process.
1735 *
1736 * Note that the faulting process may involve evicting existing objects
1737 * from the GTT and/or fence registers to make room. So performance may
1738 * suffer if the GTT working set is large or there are few fence registers
1739 * left.
1740 */
1741 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1742 {
1743 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1744 struct drm_device *dev = obj->base.dev;
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 struct i915_ggtt_view view = i915_ggtt_view_normal;
1747 pgoff_t page_offset;
1748 unsigned long pfn;
1749 int ret = 0;
1750 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1751
1752 intel_runtime_pm_get(dev_priv);
1753
1754 /* We don't use vmf->pgoff since that has the fake offset */
1755 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1756 PAGE_SHIFT;
1757
1758 ret = i915_mutex_lock_interruptible(dev);
1759 if (ret)
1760 goto out;
1761
1762 trace_i915_gem_object_fault(obj, page_offset, true, write);
1763
1764 /* Try to flush the object off the GPU first without holding the lock.
1765 * Upon reacquiring the lock, we will perform our sanity checks and then
1766 * repeat the flush holding the lock in the normal manner to catch cases
1767 * where we are gazumped.
1768 */
1769 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1770 if (ret)
1771 goto unlock;
1772
1773 /* Access to snoopable pages through the GTT is incoherent. */
1774 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1775 ret = -EFAULT;
1776 goto unlock;
1777 }
1778
1779 /* Use a partial view if the object is bigger than the aperture. */
1780 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1781 obj->tiling_mode == I915_TILING_NONE) {
1782 static const unsigned int chunk_size = 256; // 1 MiB
1783
1784 memset(&view, 0, sizeof(view));
1785 view.type = I915_GGTT_VIEW_PARTIAL;
1786 view.params.partial.offset = rounddown(page_offset, chunk_size);
1787 view.params.partial.size =
1788 min_t(unsigned int,
1789 chunk_size,
1790 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1791 view.params.partial.offset);
1792 }
1793
1794 /* Now pin it into the GTT if needed */
1795 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1796 if (ret)
1797 goto unlock;
1798
1799 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1800 if (ret)
1801 goto unpin;
1802
1803 ret = i915_gem_object_get_fence(obj);
1804 if (ret)
1805 goto unpin;
1806
1807 /* Finally, remap it using the new GTT offset */
1808 pfn = dev_priv->gtt.mappable_base +
1809 i915_gem_obj_ggtt_offset_view(obj, &view);
1810 pfn >>= PAGE_SHIFT;
1811
1812 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1813 /* Overriding existing pages in partial view does not cause
1814 * us any trouble as TLBs are still valid because the fault
1815 * is due to userspace losing part of the mapping or never
1816 * having accessed it before (at this partials' range).
1817 */
1818 unsigned long base = vma->vm_start +
1819 (view.params.partial.offset << PAGE_SHIFT);
1820 unsigned int i;
1821
1822 for (i = 0; i < view.params.partial.size; i++) {
1823 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1824 if (ret)
1825 break;
1826 }
1827
1828 obj->fault_mappable = true;
1829 } else {
1830 if (!obj->fault_mappable) {
1831 unsigned long size = min_t(unsigned long,
1832 vma->vm_end - vma->vm_start,
1833 obj->base.size);
1834 int i;
1835
1836 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1837 ret = vm_insert_pfn(vma,
1838 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1839 pfn + i);
1840 if (ret)
1841 break;
1842 }
1843
1844 obj->fault_mappable = true;
1845 } else
1846 ret = vm_insert_pfn(vma,
1847 (unsigned long)vmf->virtual_address,
1848 pfn + page_offset);
1849 }
1850 unpin:
1851 i915_gem_object_ggtt_unpin_view(obj, &view);
1852 unlock:
1853 mutex_unlock(&dev->struct_mutex);
1854 out:
1855 switch (ret) {
1856 case -EIO:
1857 /*
1858 * We eat errors when the gpu is terminally wedged to avoid
1859 * userspace unduly crashing (gl has no provisions for mmaps to
1860 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1861 * and so needs to be reported.
1862 */
1863 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1864 ret = VM_FAULT_SIGBUS;
1865 break;
1866 }
1867 case -EAGAIN:
1868 /*
1869 * EAGAIN means the gpu is hung and we'll wait for the error
1870 * handler to reset everything when re-faulting in
1871 * i915_mutex_lock_interruptible.
1872 */
1873 case 0:
1874 case -ERESTARTSYS:
1875 case -EINTR:
1876 case -EBUSY:
1877 /*
1878 * EBUSY is ok: this just means that another thread
1879 * already did the job.
1880 */
1881 ret = VM_FAULT_NOPAGE;
1882 break;
1883 case -ENOMEM:
1884 ret = VM_FAULT_OOM;
1885 break;
1886 case -ENOSPC:
1887 case -EFAULT:
1888 ret = VM_FAULT_SIGBUS;
1889 break;
1890 default:
1891 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1892 ret = VM_FAULT_SIGBUS;
1893 break;
1894 }
1895
1896 intel_runtime_pm_put(dev_priv);
1897 return ret;
1898 }
1899
1900 /**
1901 * i915_gem_release_mmap - remove physical page mappings
1902 * @obj: obj in question
1903 *
1904 * Preserve the reservation of the mmapping with the DRM core code, but
1905 * relinquish ownership of the pages back to the system.
1906 *
1907 * It is vital that we remove the page mapping if we have mapped a tiled
1908 * object through the GTT and then lose the fence register due to
1909 * resource pressure. Similarly if the object has been moved out of the
1910 * aperture, than pages mapped into userspace must be revoked. Removing the
1911 * mapping will then trigger a page fault on the next user access, allowing
1912 * fixup by i915_gem_fault().
1913 */
1914 void
1915 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1916 {
1917 if (!obj->fault_mappable)
1918 return;
1919
1920 drm_vma_node_unmap(&obj->base.vma_node,
1921 obj->base.dev->anon_inode->i_mapping);
1922 obj->fault_mappable = false;
1923 }
1924
1925 void
1926 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1927 {
1928 struct drm_i915_gem_object *obj;
1929
1930 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1931 i915_gem_release_mmap(obj);
1932 }
1933
1934 uint32_t
1935 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1936 {
1937 uint32_t gtt_size;
1938
1939 if (INTEL_INFO(dev)->gen >= 4 ||
1940 tiling_mode == I915_TILING_NONE)
1941 return size;
1942
1943 /* Previous chips need a power-of-two fence region when tiling */
1944 if (INTEL_INFO(dev)->gen == 3)
1945 gtt_size = 1024*1024;
1946 else
1947 gtt_size = 512*1024;
1948
1949 while (gtt_size < size)
1950 gtt_size <<= 1;
1951
1952 return gtt_size;
1953 }
1954
1955 /**
1956 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1957 * @obj: object to check
1958 *
1959 * Return the required GTT alignment for an object, taking into account
1960 * potential fence register mapping.
1961 */
1962 uint32_t
1963 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1964 int tiling_mode, bool fenced)
1965 {
1966 /*
1967 * Minimum alignment is 4k (GTT page size), but might be greater
1968 * if a fence register is needed for the object.
1969 */
1970 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1971 tiling_mode == I915_TILING_NONE)
1972 return 4096;
1973
1974 /*
1975 * Previous chips need to be aligned to the size of the smallest
1976 * fence register that can contain the object.
1977 */
1978 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1979 }
1980
1981 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1982 {
1983 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1984 int ret;
1985
1986 if (drm_vma_node_has_offset(&obj->base.vma_node))
1987 return 0;
1988
1989 dev_priv->mm.shrinker_no_lock_stealing = true;
1990
1991 ret = drm_gem_create_mmap_offset(&obj->base);
1992 if (ret != -ENOSPC)
1993 goto out;
1994
1995 /* Badly fragmented mmap space? The only way we can recover
1996 * space is by destroying unwanted objects. We can't randomly release
1997 * mmap_offsets as userspace expects them to be persistent for the
1998 * lifetime of the objects. The closest we can is to release the
1999 * offsets on purgeable objects by truncating it and marking it purged,
2000 * which prevents userspace from ever using that object again.
2001 */
2002 i915_gem_shrink(dev_priv,
2003 obj->base.size >> PAGE_SHIFT,
2004 I915_SHRINK_BOUND |
2005 I915_SHRINK_UNBOUND |
2006 I915_SHRINK_PURGEABLE);
2007 ret = drm_gem_create_mmap_offset(&obj->base);
2008 if (ret != -ENOSPC)
2009 goto out;
2010
2011 i915_gem_shrink_all(dev_priv);
2012 ret = drm_gem_create_mmap_offset(&obj->base);
2013 out:
2014 dev_priv->mm.shrinker_no_lock_stealing = false;
2015
2016 return ret;
2017 }
2018
2019 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2020 {
2021 drm_gem_free_mmap_offset(&obj->base);
2022 }
2023
2024 int
2025 i915_gem_mmap_gtt(struct drm_file *file,
2026 struct drm_device *dev,
2027 uint32_t handle,
2028 uint64_t *offset)
2029 {
2030 struct drm_i915_gem_object *obj;
2031 int ret;
2032
2033 ret = i915_mutex_lock_interruptible(dev);
2034 if (ret)
2035 return ret;
2036
2037 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2038 if (&obj->base == NULL) {
2039 ret = -ENOENT;
2040 goto unlock;
2041 }
2042
2043 if (obj->madv != I915_MADV_WILLNEED) {
2044 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2045 ret = -EFAULT;
2046 goto out;
2047 }
2048
2049 ret = i915_gem_object_create_mmap_offset(obj);
2050 if (ret)
2051 goto out;
2052
2053 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2054
2055 out:
2056 drm_gem_object_unreference(&obj->base);
2057 unlock:
2058 mutex_unlock(&dev->struct_mutex);
2059 return ret;
2060 }
2061
2062 /**
2063 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2064 * @dev: DRM device
2065 * @data: GTT mapping ioctl data
2066 * @file: GEM object info
2067 *
2068 * Simply returns the fake offset to userspace so it can mmap it.
2069 * The mmap call will end up in drm_gem_mmap(), which will set things
2070 * up so we can get faults in the handler above.
2071 *
2072 * The fault handler will take care of binding the object into the GTT
2073 * (since it may have been evicted to make room for something), allocating
2074 * a fence register, and mapping the appropriate aperture address into
2075 * userspace.
2076 */
2077 int
2078 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2079 struct drm_file *file)
2080 {
2081 struct drm_i915_gem_mmap_gtt *args = data;
2082
2083 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2084 }
2085
2086 /* Immediately discard the backing storage */
2087 static void
2088 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2089 {
2090 i915_gem_object_free_mmap_offset(obj);
2091
2092 if (obj->base.filp == NULL)
2093 return;
2094
2095 /* Our goal here is to return as much of the memory as
2096 * is possible back to the system as we are called from OOM.
2097 * To do this we must instruct the shmfs to drop all of its
2098 * backing pages, *now*.
2099 */
2100 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2101 obj->madv = __I915_MADV_PURGED;
2102 }
2103
2104 /* Try to discard unwanted pages */
2105 static void
2106 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2107 {
2108 struct address_space *mapping;
2109
2110 switch (obj->madv) {
2111 case I915_MADV_DONTNEED:
2112 i915_gem_object_truncate(obj);
2113 case __I915_MADV_PURGED:
2114 return;
2115 }
2116
2117 if (obj->base.filp == NULL)
2118 return;
2119
2120 mapping = file_inode(obj->base.filp)->i_mapping,
2121 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2122 }
2123
2124 static void
2125 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2126 {
2127 struct sg_page_iter sg_iter;
2128 int ret;
2129
2130 BUG_ON(obj->madv == __I915_MADV_PURGED);
2131
2132 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2133 if (ret) {
2134 /* In the event of a disaster, abandon all caches and
2135 * hope for the best.
2136 */
2137 WARN_ON(ret != -EIO);
2138 i915_gem_clflush_object(obj, true);
2139 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2140 }
2141
2142 i915_gem_gtt_finish_object(obj);
2143
2144 if (i915_gem_object_needs_bit17_swizzle(obj))
2145 i915_gem_object_save_bit_17_swizzle(obj);
2146
2147 if (obj->madv == I915_MADV_DONTNEED)
2148 obj->dirty = 0;
2149
2150 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2151 struct page *page = sg_page_iter_page(&sg_iter);
2152
2153 if (obj->dirty)
2154 set_page_dirty(page);
2155
2156 if (obj->madv == I915_MADV_WILLNEED)
2157 mark_page_accessed(page);
2158
2159 page_cache_release(page);
2160 }
2161 obj->dirty = 0;
2162
2163 sg_free_table(obj->pages);
2164 kfree(obj->pages);
2165 }
2166
2167 int
2168 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2169 {
2170 const struct drm_i915_gem_object_ops *ops = obj->ops;
2171
2172 if (obj->pages == NULL)
2173 return 0;
2174
2175 if (obj->pages_pin_count)
2176 return -EBUSY;
2177
2178 BUG_ON(i915_gem_obj_bound_any(obj));
2179
2180 /* ->put_pages might need to allocate memory for the bit17 swizzle
2181 * array, hence protect them from being reaped by removing them from gtt
2182 * lists early. */
2183 list_del(&obj->global_list);
2184
2185 ops->put_pages(obj);
2186 obj->pages = NULL;
2187
2188 i915_gem_object_invalidate(obj);
2189
2190 return 0;
2191 }
2192
2193 static int
2194 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2195 {
2196 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2197 int page_count, i;
2198 struct address_space *mapping;
2199 struct sg_table *st;
2200 struct scatterlist *sg;
2201 struct sg_page_iter sg_iter;
2202 struct page *page;
2203 unsigned long last_pfn = 0; /* suppress gcc warning */
2204 int ret;
2205 gfp_t gfp;
2206
2207 /* Assert that the object is not currently in any GPU domain. As it
2208 * wasn't in the GTT, there shouldn't be any way it could have been in
2209 * a GPU cache
2210 */
2211 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2212 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2213
2214 st = kmalloc(sizeof(*st), GFP_KERNEL);
2215 if (st == NULL)
2216 return -ENOMEM;
2217
2218 page_count = obj->base.size / PAGE_SIZE;
2219 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2220 kfree(st);
2221 return -ENOMEM;
2222 }
2223
2224 /* Get the list of pages out of our struct file. They'll be pinned
2225 * at this point until we release them.
2226 *
2227 * Fail silently without starting the shrinker
2228 */
2229 mapping = file_inode(obj->base.filp)->i_mapping;
2230 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2231 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2232 sg = st->sgl;
2233 st->nents = 0;
2234 for (i = 0; i < page_count; i++) {
2235 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2236 if (IS_ERR(page)) {
2237 i915_gem_shrink(dev_priv,
2238 page_count,
2239 I915_SHRINK_BOUND |
2240 I915_SHRINK_UNBOUND |
2241 I915_SHRINK_PURGEABLE);
2242 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2243 }
2244 if (IS_ERR(page)) {
2245 /* We've tried hard to allocate the memory by reaping
2246 * our own buffer, now let the real VM do its job and
2247 * go down in flames if truly OOM.
2248 */
2249 i915_gem_shrink_all(dev_priv);
2250 page = shmem_read_mapping_page(mapping, i);
2251 if (IS_ERR(page)) {
2252 ret = PTR_ERR(page);
2253 goto err_pages;
2254 }
2255 }
2256 #ifdef CONFIG_SWIOTLB
2257 if (swiotlb_nr_tbl()) {
2258 st->nents++;
2259 sg_set_page(sg, page, PAGE_SIZE, 0);
2260 sg = sg_next(sg);
2261 continue;
2262 }
2263 #endif
2264 if (!i || page_to_pfn(page) != last_pfn + 1) {
2265 if (i)
2266 sg = sg_next(sg);
2267 st->nents++;
2268 sg_set_page(sg, page, PAGE_SIZE, 0);
2269 } else {
2270 sg->length += PAGE_SIZE;
2271 }
2272 last_pfn = page_to_pfn(page);
2273
2274 /* Check that the i965g/gm workaround works. */
2275 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2276 }
2277 #ifdef CONFIG_SWIOTLB
2278 if (!swiotlb_nr_tbl())
2279 #endif
2280 sg_mark_end(sg);
2281 obj->pages = st;
2282
2283 ret = i915_gem_gtt_prepare_object(obj);
2284 if (ret)
2285 goto err_pages;
2286
2287 if (i915_gem_object_needs_bit17_swizzle(obj))
2288 i915_gem_object_do_bit_17_swizzle(obj);
2289
2290 if (obj->tiling_mode != I915_TILING_NONE &&
2291 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2292 i915_gem_object_pin_pages(obj);
2293
2294 return 0;
2295
2296 err_pages:
2297 sg_mark_end(sg);
2298 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2299 page_cache_release(sg_page_iter_page(&sg_iter));
2300 sg_free_table(st);
2301 kfree(st);
2302
2303 /* shmemfs first checks if there is enough memory to allocate the page
2304 * and reports ENOSPC should there be insufficient, along with the usual
2305 * ENOMEM for a genuine allocation failure.
2306 *
2307 * We use ENOSPC in our driver to mean that we have run out of aperture
2308 * space and so want to translate the error from shmemfs back to our
2309 * usual understanding of ENOMEM.
2310 */
2311 if (ret == -ENOSPC)
2312 ret = -ENOMEM;
2313
2314 return ret;
2315 }
2316
2317 /* Ensure that the associated pages are gathered from the backing storage
2318 * and pinned into our object. i915_gem_object_get_pages() may be called
2319 * multiple times before they are released by a single call to
2320 * i915_gem_object_put_pages() - once the pages are no longer referenced
2321 * either as a result of memory pressure (reaping pages under the shrinker)
2322 * or as the object is itself released.
2323 */
2324 int
2325 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2326 {
2327 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2328 const struct drm_i915_gem_object_ops *ops = obj->ops;
2329 int ret;
2330
2331 if (obj->pages)
2332 return 0;
2333
2334 if (obj->madv != I915_MADV_WILLNEED) {
2335 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2336 return -EFAULT;
2337 }
2338
2339 BUG_ON(obj->pages_pin_count);
2340
2341 ret = ops->get_pages(obj);
2342 if (ret)
2343 return ret;
2344
2345 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2346
2347 obj->get_page.sg = obj->pages->sgl;
2348 obj->get_page.last = 0;
2349
2350 return 0;
2351 }
2352
2353 void i915_vma_move_to_active(struct i915_vma *vma,
2354 struct drm_i915_gem_request *req)
2355 {
2356 struct drm_i915_gem_object *obj = vma->obj;
2357 struct intel_engine_cs *ring;
2358
2359 ring = i915_gem_request_get_ring(req);
2360
2361 /* Add a reference if we're newly entering the active list. */
2362 if (obj->active == 0)
2363 drm_gem_object_reference(&obj->base);
2364 obj->active |= intel_ring_flag(ring);
2365
2366 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2367 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2368
2369 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2370 }
2371
2372 static void
2373 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2374 {
2375 RQ_BUG_ON(obj->last_write_req == NULL);
2376 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2377
2378 i915_gem_request_assign(&obj->last_write_req, NULL);
2379 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2380 }
2381
2382 static void
2383 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2384 {
2385 struct i915_vma *vma;
2386
2387 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2388 RQ_BUG_ON(!(obj->active & (1 << ring)));
2389
2390 list_del_init(&obj->ring_list[ring]);
2391 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2392
2393 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2394 i915_gem_object_retire__write(obj);
2395
2396 obj->active &= ~(1 << ring);
2397 if (obj->active)
2398 return;
2399
2400 /* Bump our place on the bound list to keep it roughly in LRU order
2401 * so that we don't steal from recently used but inactive objects
2402 * (unless we are forced to ofc!)
2403 */
2404 list_move_tail(&obj->global_list,
2405 &to_i915(obj->base.dev)->mm.bound_list);
2406
2407 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2408 if (!list_empty(&vma->mm_list))
2409 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2410 }
2411
2412 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2413 drm_gem_object_unreference(&obj->base);
2414 }
2415
2416 static int
2417 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2418 {
2419 struct drm_i915_private *dev_priv = dev->dev_private;
2420 struct intel_engine_cs *ring;
2421 int ret, i, j;
2422
2423 /* Carefully retire all requests without writing to the rings */
2424 for_each_ring(ring, dev_priv, i) {
2425 ret = intel_ring_idle(ring);
2426 if (ret)
2427 return ret;
2428 }
2429 i915_gem_retire_requests(dev);
2430
2431 /* Finally reset hw state */
2432 for_each_ring(ring, dev_priv, i) {
2433 intel_ring_init_seqno(ring, seqno);
2434
2435 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2436 ring->semaphore.sync_seqno[j] = 0;
2437 }
2438
2439 return 0;
2440 }
2441
2442 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2443 {
2444 struct drm_i915_private *dev_priv = dev->dev_private;
2445 int ret;
2446
2447 if (seqno == 0)
2448 return -EINVAL;
2449
2450 /* HWS page needs to be set less than what we
2451 * will inject to ring
2452 */
2453 ret = i915_gem_init_seqno(dev, seqno - 1);
2454 if (ret)
2455 return ret;
2456
2457 /* Carefully set the last_seqno value so that wrap
2458 * detection still works
2459 */
2460 dev_priv->next_seqno = seqno;
2461 dev_priv->last_seqno = seqno - 1;
2462 if (dev_priv->last_seqno == 0)
2463 dev_priv->last_seqno--;
2464
2465 return 0;
2466 }
2467
2468 int
2469 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2470 {
2471 struct drm_i915_private *dev_priv = dev->dev_private;
2472
2473 /* reserve 0 for non-seqno */
2474 if (dev_priv->next_seqno == 0) {
2475 int ret = i915_gem_init_seqno(dev, 0);
2476 if (ret)
2477 return ret;
2478
2479 dev_priv->next_seqno = 1;
2480 }
2481
2482 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2483 return 0;
2484 }
2485
2486 /*
2487 * NB: This function is not allowed to fail. Doing so would mean the the
2488 * request is not being tracked for completion but the work itself is
2489 * going to happen on the hardware. This would be a Bad Thing(tm).
2490 */
2491 void __i915_add_request(struct drm_i915_gem_request *request,
2492 struct drm_i915_gem_object *obj,
2493 bool flush_caches)
2494 {
2495 struct intel_engine_cs *ring;
2496 struct drm_i915_private *dev_priv;
2497 struct intel_ringbuffer *ringbuf;
2498 u32 request_start;
2499 int ret;
2500
2501 if (WARN_ON(request == NULL))
2502 return;
2503
2504 ring = request->ring;
2505 dev_priv = ring->dev->dev_private;
2506 ringbuf = request->ringbuf;
2507
2508 /*
2509 * To ensure that this call will not fail, space for its emissions
2510 * should already have been reserved in the ring buffer. Let the ring
2511 * know that it is time to use that space up.
2512 */
2513 intel_ring_reserved_space_use(ringbuf);
2514
2515 request_start = intel_ring_get_tail(ringbuf);
2516 /*
2517 * Emit any outstanding flushes - execbuf can fail to emit the flush
2518 * after having emitted the batchbuffer command. Hence we need to fix
2519 * things up similar to emitting the lazy request. The difference here
2520 * is that the flush _must_ happen before the next request, no matter
2521 * what.
2522 */
2523 if (flush_caches) {
2524 if (i915.enable_execlists)
2525 ret = logical_ring_flush_all_caches(request);
2526 else
2527 ret = intel_ring_flush_all_caches(request);
2528 /* Not allowed to fail! */
2529 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2530 }
2531
2532 /* Record the position of the start of the request so that
2533 * should we detect the updated seqno part-way through the
2534 * GPU processing the request, we never over-estimate the
2535 * position of the head.
2536 */
2537 request->postfix = intel_ring_get_tail(ringbuf);
2538
2539 if (i915.enable_execlists)
2540 ret = ring->emit_request(request);
2541 else {
2542 ret = ring->add_request(request);
2543
2544 request->tail = intel_ring_get_tail(ringbuf);
2545 }
2546 /* Not allowed to fail! */
2547 WARN(ret, "emit|add_request failed: %d!\n", ret);
2548
2549 request->head = request_start;
2550
2551 /* Whilst this request exists, batch_obj will be on the
2552 * active_list, and so will hold the active reference. Only when this
2553 * request is retired will the the batch_obj be moved onto the
2554 * inactive_list and lose its active reference. Hence we do not need
2555 * to explicitly hold another reference here.
2556 */
2557 request->batch_obj = obj;
2558
2559 request->emitted_jiffies = jiffies;
2560 ring->last_submitted_seqno = request->seqno;
2561 list_add_tail(&request->list, &ring->request_list);
2562
2563 trace_i915_gem_request_add(request);
2564
2565 i915_queue_hangcheck(ring->dev);
2566
2567 queue_delayed_work(dev_priv->wq,
2568 &dev_priv->mm.retire_work,
2569 round_jiffies_up_relative(HZ));
2570 intel_mark_busy(dev_priv->dev);
2571
2572 /* Sanity check that the reserved size was large enough. */
2573 intel_ring_reserved_space_end(ringbuf);
2574 }
2575
2576 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2577 const struct intel_context *ctx)
2578 {
2579 unsigned long elapsed;
2580
2581 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2582
2583 if (ctx->hang_stats.banned)
2584 return true;
2585
2586 if (ctx->hang_stats.ban_period_seconds &&
2587 elapsed <= ctx->hang_stats.ban_period_seconds) {
2588 if (!i915_gem_context_is_default(ctx)) {
2589 DRM_DEBUG("context hanging too fast, banning!\n");
2590 return true;
2591 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2592 if (i915_stop_ring_allow_warn(dev_priv))
2593 DRM_ERROR("gpu hanging too fast, banning!\n");
2594 return true;
2595 }
2596 }
2597
2598 return false;
2599 }
2600
2601 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2602 struct intel_context *ctx,
2603 const bool guilty)
2604 {
2605 struct i915_ctx_hang_stats *hs;
2606
2607 if (WARN_ON(!ctx))
2608 return;
2609
2610 hs = &ctx->hang_stats;
2611
2612 if (guilty) {
2613 hs->banned = i915_context_is_banned(dev_priv, ctx);
2614 hs->batch_active++;
2615 hs->guilty_ts = get_seconds();
2616 } else {
2617 hs->batch_pending++;
2618 }
2619 }
2620
2621 void i915_gem_request_free(struct kref *req_ref)
2622 {
2623 struct drm_i915_gem_request *req = container_of(req_ref,
2624 typeof(*req), ref);
2625 struct intel_context *ctx = req->ctx;
2626
2627 if (req->file_priv)
2628 i915_gem_request_remove_from_client(req);
2629
2630 if (ctx) {
2631 if (i915.enable_execlists) {
2632 if (ctx != req->ring->default_context)
2633 intel_lr_context_unpin(req);
2634 }
2635
2636 i915_gem_context_unreference(ctx);
2637 }
2638
2639 kmem_cache_free(req->i915->requests, req);
2640 }
2641
2642 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2643 struct intel_context *ctx,
2644 struct drm_i915_gem_request **req_out)
2645 {
2646 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2647 struct drm_i915_gem_request *req;
2648 int ret;
2649
2650 if (!req_out)
2651 return -EINVAL;
2652
2653 *req_out = NULL;
2654
2655 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2656 if (req == NULL)
2657 return -ENOMEM;
2658
2659 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2660 if (ret)
2661 goto err;
2662
2663 kref_init(&req->ref);
2664 req->i915 = dev_priv;
2665 req->ring = ring;
2666 req->ctx = ctx;
2667 i915_gem_context_reference(req->ctx);
2668
2669 if (i915.enable_execlists)
2670 ret = intel_logical_ring_alloc_request_extras(req);
2671 else
2672 ret = intel_ring_alloc_request_extras(req);
2673 if (ret) {
2674 i915_gem_context_unreference(req->ctx);
2675 goto err;
2676 }
2677
2678 /*
2679 * Reserve space in the ring buffer for all the commands required to
2680 * eventually emit this request. This is to guarantee that the
2681 * i915_add_request() call can't fail. Note that the reserve may need
2682 * to be redone if the request is not actually submitted straight
2683 * away, e.g. because a GPU scheduler has deferred it.
2684 */
2685 if (i915.enable_execlists)
2686 ret = intel_logical_ring_reserve_space(req);
2687 else
2688 ret = intel_ring_reserve_space(req);
2689 if (ret) {
2690 /*
2691 * At this point, the request is fully allocated even if not
2692 * fully prepared. Thus it can be cleaned up using the proper
2693 * free code.
2694 */
2695 i915_gem_request_cancel(req);
2696 return ret;
2697 }
2698
2699 *req_out = req;
2700 return 0;
2701
2702 err:
2703 kmem_cache_free(dev_priv->requests, req);
2704 return ret;
2705 }
2706
2707 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2708 {
2709 intel_ring_reserved_space_cancel(req->ringbuf);
2710
2711 i915_gem_request_unreference(req);
2712 }
2713
2714 struct drm_i915_gem_request *
2715 i915_gem_find_active_request(struct intel_engine_cs *ring)
2716 {
2717 struct drm_i915_gem_request *request;
2718
2719 list_for_each_entry(request, &ring->request_list, list) {
2720 if (i915_gem_request_completed(request, false))
2721 continue;
2722
2723 return request;
2724 }
2725
2726 return NULL;
2727 }
2728
2729 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2730 struct intel_engine_cs *ring)
2731 {
2732 struct drm_i915_gem_request *request;
2733 bool ring_hung;
2734
2735 request = i915_gem_find_active_request(ring);
2736
2737 if (request == NULL)
2738 return;
2739
2740 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2741
2742 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2743
2744 list_for_each_entry_continue(request, &ring->request_list, list)
2745 i915_set_reset_status(dev_priv, request->ctx, false);
2746 }
2747
2748 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2749 struct intel_engine_cs *ring)
2750 {
2751 while (!list_empty(&ring->active_list)) {
2752 struct drm_i915_gem_object *obj;
2753
2754 obj = list_first_entry(&ring->active_list,
2755 struct drm_i915_gem_object,
2756 ring_list[ring->id]);
2757
2758 i915_gem_object_retire__read(obj, ring->id);
2759 }
2760
2761 /*
2762 * Clear the execlists queue up before freeing the requests, as those
2763 * are the ones that keep the context and ringbuffer backing objects
2764 * pinned in place.
2765 */
2766 while (!list_empty(&ring->execlist_queue)) {
2767 struct drm_i915_gem_request *submit_req;
2768
2769 submit_req = list_first_entry(&ring->execlist_queue,
2770 struct drm_i915_gem_request,
2771 execlist_link);
2772 list_del(&submit_req->execlist_link);
2773
2774 if (submit_req->ctx != ring->default_context)
2775 intel_lr_context_unpin(submit_req);
2776
2777 i915_gem_request_unreference(submit_req);
2778 }
2779
2780 /*
2781 * We must free the requests after all the corresponding objects have
2782 * been moved off active lists. Which is the same order as the normal
2783 * retire_requests function does. This is important if object hold
2784 * implicit references on things like e.g. ppgtt address spaces through
2785 * the request.
2786 */
2787 while (!list_empty(&ring->request_list)) {
2788 struct drm_i915_gem_request *request;
2789
2790 request = list_first_entry(&ring->request_list,
2791 struct drm_i915_gem_request,
2792 list);
2793
2794 i915_gem_request_retire(request);
2795 }
2796 }
2797
2798 void i915_gem_reset(struct drm_device *dev)
2799 {
2800 struct drm_i915_private *dev_priv = dev->dev_private;
2801 struct intel_engine_cs *ring;
2802 int i;
2803
2804 /*
2805 * Before we free the objects from the requests, we need to inspect
2806 * them for finding the guilty party. As the requests only borrow
2807 * their reference to the objects, the inspection must be done first.
2808 */
2809 for_each_ring(ring, dev_priv, i)
2810 i915_gem_reset_ring_status(dev_priv, ring);
2811
2812 for_each_ring(ring, dev_priv, i)
2813 i915_gem_reset_ring_cleanup(dev_priv, ring);
2814
2815 i915_gem_context_reset(dev);
2816
2817 i915_gem_restore_fences(dev);
2818
2819 WARN_ON(i915_verify_lists(dev));
2820 }
2821
2822 /**
2823 * This function clears the request list as sequence numbers are passed.
2824 */
2825 void
2826 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2827 {
2828 WARN_ON(i915_verify_lists(ring->dev));
2829
2830 /* Retire requests first as we use it above for the early return.
2831 * If we retire requests last, we may use a later seqno and so clear
2832 * the requests lists without clearing the active list, leading to
2833 * confusion.
2834 */
2835 while (!list_empty(&ring->request_list)) {
2836 struct drm_i915_gem_request *request;
2837
2838 request = list_first_entry(&ring->request_list,
2839 struct drm_i915_gem_request,
2840 list);
2841
2842 if (!i915_gem_request_completed(request, true))
2843 break;
2844
2845 i915_gem_request_retire(request);
2846 }
2847
2848 /* Move any buffers on the active list that are no longer referenced
2849 * by the ringbuffer to the flushing/inactive lists as appropriate,
2850 * before we free the context associated with the requests.
2851 */
2852 while (!list_empty(&ring->active_list)) {
2853 struct drm_i915_gem_object *obj;
2854
2855 obj = list_first_entry(&ring->active_list,
2856 struct drm_i915_gem_object,
2857 ring_list[ring->id]);
2858
2859 if (!list_empty(&obj->last_read_req[ring->id]->list))
2860 break;
2861
2862 i915_gem_object_retire__read(obj, ring->id);
2863 }
2864
2865 if (unlikely(ring->trace_irq_req &&
2866 i915_gem_request_completed(ring->trace_irq_req, true))) {
2867 ring->irq_put(ring);
2868 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2869 }
2870
2871 WARN_ON(i915_verify_lists(ring->dev));
2872 }
2873
2874 bool
2875 i915_gem_retire_requests(struct drm_device *dev)
2876 {
2877 struct drm_i915_private *dev_priv = dev->dev_private;
2878 struct intel_engine_cs *ring;
2879 bool idle = true;
2880 int i;
2881
2882 for_each_ring(ring, dev_priv, i) {
2883 i915_gem_retire_requests_ring(ring);
2884 idle &= list_empty(&ring->request_list);
2885 if (i915.enable_execlists) {
2886 unsigned long flags;
2887
2888 spin_lock_irqsave(&ring->execlist_lock, flags);
2889 idle &= list_empty(&ring->execlist_queue);
2890 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2891
2892 intel_execlists_retire_requests(ring);
2893 }
2894 }
2895
2896 if (idle)
2897 mod_delayed_work(dev_priv->wq,
2898 &dev_priv->mm.idle_work,
2899 msecs_to_jiffies(100));
2900
2901 return idle;
2902 }
2903
2904 static void
2905 i915_gem_retire_work_handler(struct work_struct *work)
2906 {
2907 struct drm_i915_private *dev_priv =
2908 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2909 struct drm_device *dev = dev_priv->dev;
2910 bool idle;
2911
2912 /* Come back later if the device is busy... */
2913 idle = false;
2914 if (mutex_trylock(&dev->struct_mutex)) {
2915 idle = i915_gem_retire_requests(dev);
2916 mutex_unlock(&dev->struct_mutex);
2917 }
2918 if (!idle)
2919 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2920 round_jiffies_up_relative(HZ));
2921 }
2922
2923 static void
2924 i915_gem_idle_work_handler(struct work_struct *work)
2925 {
2926 struct drm_i915_private *dev_priv =
2927 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2928 struct drm_device *dev = dev_priv->dev;
2929 struct intel_engine_cs *ring;
2930 int i;
2931
2932 for_each_ring(ring, dev_priv, i)
2933 if (!list_empty(&ring->request_list))
2934 return;
2935
2936 intel_mark_idle(dev);
2937
2938 if (mutex_trylock(&dev->struct_mutex)) {
2939 struct intel_engine_cs *ring;
2940 int i;
2941
2942 for_each_ring(ring, dev_priv, i)
2943 i915_gem_batch_pool_fini(&ring->batch_pool);
2944
2945 mutex_unlock(&dev->struct_mutex);
2946 }
2947 }
2948
2949 /**
2950 * Ensures that an object will eventually get non-busy by flushing any required
2951 * write domains, emitting any outstanding lazy request and retiring and
2952 * completed requests.
2953 */
2954 static int
2955 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2956 {
2957 int i;
2958
2959 if (!obj->active)
2960 return 0;
2961
2962 for (i = 0; i < I915_NUM_RINGS; i++) {
2963 struct drm_i915_gem_request *req;
2964
2965 req = obj->last_read_req[i];
2966 if (req == NULL)
2967 continue;
2968
2969 if (list_empty(&req->list))
2970 goto retire;
2971
2972 if (i915_gem_request_completed(req, true)) {
2973 __i915_gem_request_retire__upto(req);
2974 retire:
2975 i915_gem_object_retire__read(obj, i);
2976 }
2977 }
2978
2979 return 0;
2980 }
2981
2982 /**
2983 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2984 * @DRM_IOCTL_ARGS: standard ioctl arguments
2985 *
2986 * Returns 0 if successful, else an error is returned with the remaining time in
2987 * the timeout parameter.
2988 * -ETIME: object is still busy after timeout
2989 * -ERESTARTSYS: signal interrupted the wait
2990 * -ENONENT: object doesn't exist
2991 * Also possible, but rare:
2992 * -EAGAIN: GPU wedged
2993 * -ENOMEM: damn
2994 * -ENODEV: Internal IRQ fail
2995 * -E?: The add request failed
2996 *
2997 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2998 * non-zero timeout parameter the wait ioctl will wait for the given number of
2999 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3000 * without holding struct_mutex the object may become re-busied before this
3001 * function completes. A similar but shorter * race condition exists in the busy
3002 * ioctl
3003 */
3004 int
3005 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3006 {
3007 struct drm_i915_private *dev_priv = dev->dev_private;
3008 struct drm_i915_gem_wait *args = data;
3009 struct drm_i915_gem_object *obj;
3010 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3011 unsigned reset_counter;
3012 int i, n = 0;
3013 int ret;
3014
3015 if (args->flags != 0)
3016 return -EINVAL;
3017
3018 ret = i915_mutex_lock_interruptible(dev);
3019 if (ret)
3020 return ret;
3021
3022 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3023 if (&obj->base == NULL) {
3024 mutex_unlock(&dev->struct_mutex);
3025 return -ENOENT;
3026 }
3027
3028 /* Need to make sure the object gets inactive eventually. */
3029 ret = i915_gem_object_flush_active(obj);
3030 if (ret)
3031 goto out;
3032
3033 if (!obj->active)
3034 goto out;
3035
3036 /* Do this after OLR check to make sure we make forward progress polling
3037 * on this IOCTL with a timeout == 0 (like busy ioctl)
3038 */
3039 if (args->timeout_ns == 0) {
3040 ret = -ETIME;
3041 goto out;
3042 }
3043
3044 drm_gem_object_unreference(&obj->base);
3045 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3046
3047 for (i = 0; i < I915_NUM_RINGS; i++) {
3048 if (obj->last_read_req[i] == NULL)
3049 continue;
3050
3051 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3052 }
3053
3054 mutex_unlock(&dev->struct_mutex);
3055
3056 for (i = 0; i < n; i++) {
3057 if (ret == 0)
3058 ret = __i915_wait_request(req[i], reset_counter, true,
3059 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3060 file->driver_priv);
3061 i915_gem_request_unreference__unlocked(req[i]);
3062 }
3063 return ret;
3064
3065 out:
3066 drm_gem_object_unreference(&obj->base);
3067 mutex_unlock(&dev->struct_mutex);
3068 return ret;
3069 }
3070
3071 static int
3072 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3073 struct intel_engine_cs *to,
3074 struct drm_i915_gem_request *from_req,
3075 struct drm_i915_gem_request **to_req)
3076 {
3077 struct intel_engine_cs *from;
3078 int ret;
3079
3080 from = i915_gem_request_get_ring(from_req);
3081 if (to == from)
3082 return 0;
3083
3084 if (i915_gem_request_completed(from_req, true))
3085 return 0;
3086
3087 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3088 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3089 ret = __i915_wait_request(from_req,
3090 atomic_read(&i915->gpu_error.reset_counter),
3091 i915->mm.interruptible,
3092 NULL,
3093 &i915->rps.semaphores);
3094 if (ret)
3095 return ret;
3096
3097 i915_gem_object_retire_request(obj, from_req);
3098 } else {
3099 int idx = intel_ring_sync_index(from, to);
3100 u32 seqno = i915_gem_request_get_seqno(from_req);
3101
3102 WARN_ON(!to_req);
3103
3104 if (seqno <= from->semaphore.sync_seqno[idx])
3105 return 0;
3106
3107 if (*to_req == NULL) {
3108 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3109 if (ret)
3110 return ret;
3111 }
3112
3113 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3114 ret = to->semaphore.sync_to(*to_req, from, seqno);
3115 if (ret)
3116 return ret;
3117
3118 /* We use last_read_req because sync_to()
3119 * might have just caused seqno wrap under
3120 * the radar.
3121 */
3122 from->semaphore.sync_seqno[idx] =
3123 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3124 }
3125
3126 return 0;
3127 }
3128
3129 /**
3130 * i915_gem_object_sync - sync an object to a ring.
3131 *
3132 * @obj: object which may be in use on another ring.
3133 * @to: ring we wish to use the object on. May be NULL.
3134 * @to_req: request we wish to use the object for. See below.
3135 * This will be allocated and returned if a request is
3136 * required but not passed in.
3137 *
3138 * This code is meant to abstract object synchronization with the GPU.
3139 * Calling with NULL implies synchronizing the object with the CPU
3140 * rather than a particular GPU ring. Conceptually we serialise writes
3141 * between engines inside the GPU. We only allow one engine to write
3142 * into a buffer at any time, but multiple readers. To ensure each has
3143 * a coherent view of memory, we must:
3144 *
3145 * - If there is an outstanding write request to the object, the new
3146 * request must wait for it to complete (either CPU or in hw, requests
3147 * on the same ring will be naturally ordered).
3148 *
3149 * - If we are a write request (pending_write_domain is set), the new
3150 * request must wait for outstanding read requests to complete.
3151 *
3152 * For CPU synchronisation (NULL to) no request is required. For syncing with
3153 * rings to_req must be non-NULL. However, a request does not have to be
3154 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3155 * request will be allocated automatically and returned through *to_req. Note
3156 * that it is not guaranteed that commands will be emitted (because the system
3157 * might already be idle). Hence there is no need to create a request that
3158 * might never have any work submitted. Note further that if a request is
3159 * returned in *to_req, it is the responsibility of the caller to submit
3160 * that request (after potentially adding more work to it).
3161 *
3162 * Returns 0 if successful, else propagates up the lower layer error.
3163 */
3164 int
3165 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3166 struct intel_engine_cs *to,
3167 struct drm_i915_gem_request **to_req)
3168 {
3169 const bool readonly = obj->base.pending_write_domain == 0;
3170 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3171 int ret, i, n;
3172
3173 if (!obj->active)
3174 return 0;
3175
3176 if (to == NULL)
3177 return i915_gem_object_wait_rendering(obj, readonly);
3178
3179 n = 0;
3180 if (readonly) {
3181 if (obj->last_write_req)
3182 req[n++] = obj->last_write_req;
3183 } else {
3184 for (i = 0; i < I915_NUM_RINGS; i++)
3185 if (obj->last_read_req[i])
3186 req[n++] = obj->last_read_req[i];
3187 }
3188 for (i = 0; i < n; i++) {
3189 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3190 if (ret)
3191 return ret;
3192 }
3193
3194 return 0;
3195 }
3196
3197 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3198 {
3199 u32 old_write_domain, old_read_domains;
3200
3201 /* Force a pagefault for domain tracking on next user access */
3202 i915_gem_release_mmap(obj);
3203
3204 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3205 return;
3206
3207 /* Wait for any direct GTT access to complete */
3208 mb();
3209
3210 old_read_domains = obj->base.read_domains;
3211 old_write_domain = obj->base.write_domain;
3212
3213 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3214 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3215
3216 trace_i915_gem_object_change_domain(obj,
3217 old_read_domains,
3218 old_write_domain);
3219 }
3220
3221 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3222 {
3223 struct drm_i915_gem_object *obj = vma->obj;
3224 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3225 int ret;
3226
3227 if (list_empty(&vma->vma_link))
3228 return 0;
3229
3230 if (!drm_mm_node_allocated(&vma->node)) {
3231 i915_gem_vma_destroy(vma);
3232 return 0;
3233 }
3234
3235 if (vma->pin_count)
3236 return -EBUSY;
3237
3238 BUG_ON(obj->pages == NULL);
3239
3240 if (wait) {
3241 ret = i915_gem_object_wait_rendering(obj, false);
3242 if (ret)
3243 return ret;
3244 }
3245
3246 if (i915_is_ggtt(vma->vm) &&
3247 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3248 i915_gem_object_finish_gtt(obj);
3249
3250 /* release the fence reg _after_ flushing */
3251 ret = i915_gem_object_put_fence(obj);
3252 if (ret)
3253 return ret;
3254 }
3255
3256 trace_i915_vma_unbind(vma);
3257
3258 vma->vm->unbind_vma(vma);
3259 vma->bound = 0;
3260
3261 list_del_init(&vma->mm_list);
3262 if (i915_is_ggtt(vma->vm)) {
3263 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3264 obj->map_and_fenceable = false;
3265 } else if (vma->ggtt_view.pages) {
3266 sg_free_table(vma->ggtt_view.pages);
3267 kfree(vma->ggtt_view.pages);
3268 }
3269 vma->ggtt_view.pages = NULL;
3270 }
3271
3272 drm_mm_remove_node(&vma->node);
3273 i915_gem_vma_destroy(vma);
3274
3275 /* Since the unbound list is global, only move to that list if
3276 * no more VMAs exist. */
3277 if (list_empty(&obj->vma_list))
3278 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3279
3280 /* And finally now the object is completely decoupled from this vma,
3281 * we can drop its hold on the backing storage and allow it to be
3282 * reaped by the shrinker.
3283 */
3284 i915_gem_object_unpin_pages(obj);
3285
3286 return 0;
3287 }
3288
3289 int i915_vma_unbind(struct i915_vma *vma)
3290 {
3291 return __i915_vma_unbind(vma, true);
3292 }
3293
3294 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3295 {
3296 return __i915_vma_unbind(vma, false);
3297 }
3298
3299 int i915_gpu_idle(struct drm_device *dev)
3300 {
3301 struct drm_i915_private *dev_priv = dev->dev_private;
3302 struct intel_engine_cs *ring;
3303 int ret, i;
3304
3305 /* Flush everything onto the inactive list. */
3306 for_each_ring(ring, dev_priv, i) {
3307 if (!i915.enable_execlists) {
3308 struct drm_i915_gem_request *req;
3309
3310 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3311 if (ret)
3312 return ret;
3313
3314 ret = i915_switch_context(req);
3315 if (ret) {
3316 i915_gem_request_cancel(req);
3317 return ret;
3318 }
3319
3320 i915_add_request_no_flush(req);
3321 }
3322
3323 ret = intel_ring_idle(ring);
3324 if (ret)
3325 return ret;
3326 }
3327
3328 WARN_ON(i915_verify_lists(dev));
3329 return 0;
3330 }
3331
3332 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3333 unsigned long cache_level)
3334 {
3335 struct drm_mm_node *gtt_space = &vma->node;
3336 struct drm_mm_node *other;
3337
3338 /*
3339 * On some machines we have to be careful when putting differing types
3340 * of snoopable memory together to avoid the prefetcher crossing memory
3341 * domains and dying. During vm initialisation, we decide whether or not
3342 * these constraints apply and set the drm_mm.color_adjust
3343 * appropriately.
3344 */
3345 if (vma->vm->mm.color_adjust == NULL)
3346 return true;
3347
3348 if (!drm_mm_node_allocated(gtt_space))
3349 return true;
3350
3351 if (list_empty(&gtt_space->node_list))
3352 return true;
3353
3354 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3355 if (other->allocated && !other->hole_follows && other->color != cache_level)
3356 return false;
3357
3358 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3359 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3360 return false;
3361
3362 return true;
3363 }
3364
3365 /**
3366 * Finds free space in the GTT aperture and binds the object or a view of it
3367 * there.
3368 */
3369 static struct i915_vma *
3370 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3371 struct i915_address_space *vm,
3372 const struct i915_ggtt_view *ggtt_view,
3373 unsigned alignment,
3374 uint64_t flags)
3375 {
3376 struct drm_device *dev = obj->base.dev;
3377 struct drm_i915_private *dev_priv = dev->dev_private;
3378 u32 fence_alignment, unfenced_alignment;
3379 u32 search_flag, alloc_flag;
3380 u64 start, end;
3381 u64 size, fence_size;
3382 struct i915_vma *vma;
3383 int ret;
3384
3385 if (i915_is_ggtt(vm)) {
3386 u32 view_size;
3387
3388 if (WARN_ON(!ggtt_view))
3389 return ERR_PTR(-EINVAL);
3390
3391 view_size = i915_ggtt_view_size(obj, ggtt_view);
3392
3393 fence_size = i915_gem_get_gtt_size(dev,
3394 view_size,
3395 obj->tiling_mode);
3396 fence_alignment = i915_gem_get_gtt_alignment(dev,
3397 view_size,
3398 obj->tiling_mode,
3399 true);
3400 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3401 view_size,
3402 obj->tiling_mode,
3403 false);
3404 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3405 } else {
3406 fence_size = i915_gem_get_gtt_size(dev,
3407 obj->base.size,
3408 obj->tiling_mode);
3409 fence_alignment = i915_gem_get_gtt_alignment(dev,
3410 obj->base.size,
3411 obj->tiling_mode,
3412 true);
3413 unfenced_alignment =
3414 i915_gem_get_gtt_alignment(dev,
3415 obj->base.size,
3416 obj->tiling_mode,
3417 false);
3418 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3419 }
3420
3421 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3422 end = vm->total;
3423 if (flags & PIN_MAPPABLE)
3424 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3425 if (flags & PIN_ZONE_4G)
3426 end = min_t(u64, end, (1ULL << 32));
3427
3428 if (alignment == 0)
3429 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3430 unfenced_alignment;
3431 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3432 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3433 ggtt_view ? ggtt_view->type : 0,
3434 alignment);
3435 return ERR_PTR(-EINVAL);
3436 }
3437
3438 /* If binding the object/GGTT view requires more space than the entire
3439 * aperture has, reject it early before evicting everything in a vain
3440 * attempt to find space.
3441 */
3442 if (size > end) {
3443 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3444 ggtt_view ? ggtt_view->type : 0,
3445 size,
3446 flags & PIN_MAPPABLE ? "mappable" : "total",
3447 end);
3448 return ERR_PTR(-E2BIG);
3449 }
3450
3451 ret = i915_gem_object_get_pages(obj);
3452 if (ret)
3453 return ERR_PTR(ret);
3454
3455 i915_gem_object_pin_pages(obj);
3456
3457 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3458 i915_gem_obj_lookup_or_create_vma(obj, vm);
3459
3460 if (IS_ERR(vma))
3461 goto err_unpin;
3462
3463 if (flags & PIN_HIGH) {
3464 search_flag = DRM_MM_SEARCH_BELOW;
3465 alloc_flag = DRM_MM_CREATE_TOP;
3466 } else {
3467 search_flag = DRM_MM_SEARCH_DEFAULT;
3468 alloc_flag = DRM_MM_CREATE_DEFAULT;
3469 }
3470
3471 search_free:
3472 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3473 size, alignment,
3474 obj->cache_level,
3475 start, end,
3476 search_flag,
3477 alloc_flag);
3478 if (ret) {
3479 ret = i915_gem_evict_something(dev, vm, size, alignment,
3480 obj->cache_level,
3481 start, end,
3482 flags);
3483 if (ret == 0)
3484 goto search_free;
3485
3486 goto err_free_vma;
3487 }
3488 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3489 ret = -EINVAL;
3490 goto err_remove_node;
3491 }
3492
3493 trace_i915_vma_bind(vma, flags);
3494 ret = i915_vma_bind(vma, obj->cache_level, flags);
3495 if (ret)
3496 goto err_remove_node;
3497
3498 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3499 list_add_tail(&vma->mm_list, &vm->inactive_list);
3500
3501 return vma;
3502
3503 err_remove_node:
3504 drm_mm_remove_node(&vma->node);
3505 err_free_vma:
3506 i915_gem_vma_destroy(vma);
3507 vma = ERR_PTR(ret);
3508 err_unpin:
3509 i915_gem_object_unpin_pages(obj);
3510 return vma;
3511 }
3512
3513 bool
3514 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3515 bool force)
3516 {
3517 /* If we don't have a page list set up, then we're not pinned
3518 * to GPU, and we can ignore the cache flush because it'll happen
3519 * again at bind time.
3520 */
3521 if (obj->pages == NULL)
3522 return false;
3523
3524 /*
3525 * Stolen memory is always coherent with the GPU as it is explicitly
3526 * marked as wc by the system, or the system is cache-coherent.
3527 */
3528 if (obj->stolen || obj->phys_handle)
3529 return false;
3530
3531 /* If the GPU is snooping the contents of the CPU cache,
3532 * we do not need to manually clear the CPU cache lines. However,
3533 * the caches are only snooped when the render cache is
3534 * flushed/invalidated. As we always have to emit invalidations
3535 * and flushes when moving into and out of the RENDER domain, correct
3536 * snooping behaviour occurs naturally as the result of our domain
3537 * tracking.
3538 */
3539 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3540 obj->cache_dirty = true;
3541 return false;
3542 }
3543
3544 trace_i915_gem_object_clflush(obj);
3545 drm_clflush_sg(obj->pages);
3546 obj->cache_dirty = false;
3547
3548 return true;
3549 }
3550
3551 /** Flushes the GTT write domain for the object if it's dirty. */
3552 static void
3553 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3554 {
3555 uint32_t old_write_domain;
3556
3557 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3558 return;
3559
3560 /* No actual flushing is required for the GTT write domain. Writes
3561 * to it immediately go to main memory as far as we know, so there's
3562 * no chipset flush. It also doesn't land in render cache.
3563 *
3564 * However, we do have to enforce the order so that all writes through
3565 * the GTT land before any writes to the device, such as updates to
3566 * the GATT itself.
3567 */
3568 wmb();
3569
3570 old_write_domain = obj->base.write_domain;
3571 obj->base.write_domain = 0;
3572
3573 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3574
3575 trace_i915_gem_object_change_domain(obj,
3576 obj->base.read_domains,
3577 old_write_domain);
3578 }
3579
3580 /** Flushes the CPU write domain for the object if it's dirty. */
3581 static void
3582 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3583 {
3584 uint32_t old_write_domain;
3585
3586 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3587 return;
3588
3589 if (i915_gem_clflush_object(obj, obj->pin_display))
3590 i915_gem_chipset_flush(obj->base.dev);
3591
3592 old_write_domain = obj->base.write_domain;
3593 obj->base.write_domain = 0;
3594
3595 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3596
3597 trace_i915_gem_object_change_domain(obj,
3598 obj->base.read_domains,
3599 old_write_domain);
3600 }
3601
3602 /**
3603 * Moves a single object to the GTT read, and possibly write domain.
3604 *
3605 * This function returns when the move is complete, including waiting on
3606 * flushes to occur.
3607 */
3608 int
3609 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3610 {
3611 uint32_t old_write_domain, old_read_domains;
3612 struct i915_vma *vma;
3613 int ret;
3614
3615 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3616 return 0;
3617
3618 ret = i915_gem_object_wait_rendering(obj, !write);
3619 if (ret)
3620 return ret;
3621
3622 /* Flush and acquire obj->pages so that we are coherent through
3623 * direct access in memory with previous cached writes through
3624 * shmemfs and that our cache domain tracking remains valid.
3625 * For example, if the obj->filp was moved to swap without us
3626 * being notified and releasing the pages, we would mistakenly
3627 * continue to assume that the obj remained out of the CPU cached
3628 * domain.
3629 */
3630 ret = i915_gem_object_get_pages(obj);
3631 if (ret)
3632 return ret;
3633
3634 i915_gem_object_flush_cpu_write_domain(obj);
3635
3636 /* Serialise direct access to this object with the barriers for
3637 * coherent writes from the GPU, by effectively invalidating the
3638 * GTT domain upon first access.
3639 */
3640 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3641 mb();
3642
3643 old_write_domain = obj->base.write_domain;
3644 old_read_domains = obj->base.read_domains;
3645
3646 /* It should now be out of any other write domains, and we can update
3647 * the domain values for our changes.
3648 */
3649 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3650 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3651 if (write) {
3652 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3653 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3654 obj->dirty = 1;
3655 }
3656
3657 trace_i915_gem_object_change_domain(obj,
3658 old_read_domains,
3659 old_write_domain);
3660
3661 /* And bump the LRU for this access */
3662 vma = i915_gem_obj_to_ggtt(obj);
3663 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3664 list_move_tail(&vma->mm_list,
3665 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3666
3667 return 0;
3668 }
3669
3670 /**
3671 * Changes the cache-level of an object across all VMA.
3672 *
3673 * After this function returns, the object will be in the new cache-level
3674 * across all GTT and the contents of the backing storage will be coherent,
3675 * with respect to the new cache-level. In order to keep the backing storage
3676 * coherent for all users, we only allow a single cache level to be set
3677 * globally on the object and prevent it from being changed whilst the
3678 * hardware is reading from the object. That is if the object is currently
3679 * on the scanout it will be set to uncached (or equivalent display
3680 * cache coherency) and all non-MOCS GPU access will also be uncached so
3681 * that all direct access to the scanout remains coherent.
3682 */
3683 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3684 enum i915_cache_level cache_level)
3685 {
3686 struct drm_device *dev = obj->base.dev;
3687 struct i915_vma *vma, *next;
3688 bool bound = false;
3689 int ret = 0;
3690
3691 if (obj->cache_level == cache_level)
3692 goto out;
3693
3694 /* Inspect the list of currently bound VMA and unbind any that would
3695 * be invalid given the new cache-level. This is principally to
3696 * catch the issue of the CS prefetch crossing page boundaries and
3697 * reading an invalid PTE on older architectures.
3698 */
3699 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3700 if (!drm_mm_node_allocated(&vma->node))
3701 continue;
3702
3703 if (vma->pin_count) {
3704 DRM_DEBUG("can not change the cache level of pinned objects\n");
3705 return -EBUSY;
3706 }
3707
3708 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3709 ret = i915_vma_unbind(vma);
3710 if (ret)
3711 return ret;
3712 } else
3713 bound = true;
3714 }
3715
3716 /* We can reuse the existing drm_mm nodes but need to change the
3717 * cache-level on the PTE. We could simply unbind them all and
3718 * rebind with the correct cache-level on next use. However since
3719 * we already have a valid slot, dma mapping, pages etc, we may as
3720 * rewrite the PTE in the belief that doing so tramples upon less
3721 * state and so involves less work.
3722 */
3723 if (bound) {
3724 /* Before we change the PTE, the GPU must not be accessing it.
3725 * If we wait upon the object, we know that all the bound
3726 * VMA are no longer active.
3727 */
3728 ret = i915_gem_object_wait_rendering(obj, false);
3729 if (ret)
3730 return ret;
3731
3732 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3733 /* Access to snoopable pages through the GTT is
3734 * incoherent and on some machines causes a hard
3735 * lockup. Relinquish the CPU mmaping to force
3736 * userspace to refault in the pages and we can
3737 * then double check if the GTT mapping is still
3738 * valid for that pointer access.
3739 */
3740 i915_gem_release_mmap(obj);
3741
3742 /* As we no longer need a fence for GTT access,
3743 * we can relinquish it now (and so prevent having
3744 * to steal a fence from someone else on the next
3745 * fence request). Note GPU activity would have
3746 * dropped the fence as all snoopable access is
3747 * supposed to be linear.
3748 */
3749 ret = i915_gem_object_put_fence(obj);
3750 if (ret)
3751 return ret;
3752 } else {
3753 /* We either have incoherent backing store and
3754 * so no GTT access or the architecture is fully
3755 * coherent. In such cases, existing GTT mmaps
3756 * ignore the cache bit in the PTE and we can
3757 * rewrite it without confusing the GPU or having
3758 * to force userspace to fault back in its mmaps.
3759 */
3760 }
3761
3762 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3763 if (!drm_mm_node_allocated(&vma->node))
3764 continue;
3765
3766 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3767 if (ret)
3768 return ret;
3769 }
3770 }
3771
3772 list_for_each_entry(vma, &obj->vma_list, vma_link)
3773 vma->node.color = cache_level;
3774 obj->cache_level = cache_level;
3775
3776 out:
3777 /* Flush the dirty CPU caches to the backing storage so that the
3778 * object is now coherent at its new cache level (with respect
3779 * to the access domain).
3780 */
3781 if (obj->cache_dirty &&
3782 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3783 cpu_write_needs_clflush(obj)) {
3784 if (i915_gem_clflush_object(obj, true))
3785 i915_gem_chipset_flush(obj->base.dev);
3786 }
3787
3788 return 0;
3789 }
3790
3791 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3792 struct drm_file *file)
3793 {
3794 struct drm_i915_gem_caching *args = data;
3795 struct drm_i915_gem_object *obj;
3796
3797 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3798 if (&obj->base == NULL)
3799 return -ENOENT;
3800
3801 switch (obj->cache_level) {
3802 case I915_CACHE_LLC:
3803 case I915_CACHE_L3_LLC:
3804 args->caching = I915_CACHING_CACHED;
3805 break;
3806
3807 case I915_CACHE_WT:
3808 args->caching = I915_CACHING_DISPLAY;
3809 break;
3810
3811 default:
3812 args->caching = I915_CACHING_NONE;
3813 break;
3814 }
3815
3816 drm_gem_object_unreference_unlocked(&obj->base);
3817 return 0;
3818 }
3819
3820 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3821 struct drm_file *file)
3822 {
3823 struct drm_i915_private *dev_priv = dev->dev_private;
3824 struct drm_i915_gem_caching *args = data;
3825 struct drm_i915_gem_object *obj;
3826 enum i915_cache_level level;
3827 int ret;
3828
3829 switch (args->caching) {
3830 case I915_CACHING_NONE:
3831 level = I915_CACHE_NONE;
3832 break;
3833 case I915_CACHING_CACHED:
3834 /*
3835 * Due to a HW issue on BXT A stepping, GPU stores via a
3836 * snooped mapping may leave stale data in a corresponding CPU
3837 * cacheline, whereas normally such cachelines would get
3838 * invalidated.
3839 */
3840 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3841 return -ENODEV;
3842
3843 level = I915_CACHE_LLC;
3844 break;
3845 case I915_CACHING_DISPLAY:
3846 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3847 break;
3848 default:
3849 return -EINVAL;
3850 }
3851
3852 intel_runtime_pm_get(dev_priv);
3853
3854 ret = i915_mutex_lock_interruptible(dev);
3855 if (ret)
3856 goto rpm_put;
3857
3858 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3859 if (&obj->base == NULL) {
3860 ret = -ENOENT;
3861 goto unlock;
3862 }
3863
3864 ret = i915_gem_object_set_cache_level(obj, level);
3865
3866 drm_gem_object_unreference(&obj->base);
3867 unlock:
3868 mutex_unlock(&dev->struct_mutex);
3869 rpm_put:
3870 intel_runtime_pm_put(dev_priv);
3871
3872 return ret;
3873 }
3874
3875 /*
3876 * Prepare buffer for display plane (scanout, cursors, etc).
3877 * Can be called from an uninterruptible phase (modesetting) and allows
3878 * any flushes to be pipelined (for pageflips).
3879 */
3880 int
3881 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3882 u32 alignment,
3883 struct intel_engine_cs *pipelined,
3884 struct drm_i915_gem_request **pipelined_request,
3885 const struct i915_ggtt_view *view)
3886 {
3887 u32 old_read_domains, old_write_domain;
3888 int ret;
3889
3890 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3891 if (ret)
3892 return ret;
3893
3894 /* Mark the pin_display early so that we account for the
3895 * display coherency whilst setting up the cache domains.
3896 */
3897 obj->pin_display++;
3898
3899 /* The display engine is not coherent with the LLC cache on gen6. As
3900 * a result, we make sure that the pinning that is about to occur is
3901 * done with uncached PTEs. This is lowest common denominator for all
3902 * chipsets.
3903 *
3904 * However for gen6+, we could do better by using the GFDT bit instead
3905 * of uncaching, which would allow us to flush all the LLC-cached data
3906 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3907 */
3908 ret = i915_gem_object_set_cache_level(obj,
3909 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3910 if (ret)
3911 goto err_unpin_display;
3912
3913 /* As the user may map the buffer once pinned in the display plane
3914 * (e.g. libkms for the bootup splash), we have to ensure that we
3915 * always use map_and_fenceable for all scanout buffers.
3916 */
3917 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3918 view->type == I915_GGTT_VIEW_NORMAL ?
3919 PIN_MAPPABLE : 0);
3920 if (ret)
3921 goto err_unpin_display;
3922
3923 i915_gem_object_flush_cpu_write_domain(obj);
3924
3925 old_write_domain = obj->base.write_domain;
3926 old_read_domains = obj->base.read_domains;
3927
3928 /* It should now be out of any other write domains, and we can update
3929 * the domain values for our changes.
3930 */
3931 obj->base.write_domain = 0;
3932 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3933
3934 trace_i915_gem_object_change_domain(obj,
3935 old_read_domains,
3936 old_write_domain);
3937
3938 return 0;
3939
3940 err_unpin_display:
3941 obj->pin_display--;
3942 return ret;
3943 }
3944
3945 void
3946 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3947 const struct i915_ggtt_view *view)
3948 {
3949 if (WARN_ON(obj->pin_display == 0))
3950 return;
3951
3952 i915_gem_object_ggtt_unpin_view(obj, view);
3953
3954 obj->pin_display--;
3955 }
3956
3957 /**
3958 * Moves a single object to the CPU read, and possibly write domain.
3959 *
3960 * This function returns when the move is complete, including waiting on
3961 * flushes to occur.
3962 */
3963 int
3964 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3965 {
3966 uint32_t old_write_domain, old_read_domains;
3967 int ret;
3968
3969 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3970 return 0;
3971
3972 ret = i915_gem_object_wait_rendering(obj, !write);
3973 if (ret)
3974 return ret;
3975
3976 i915_gem_object_flush_gtt_write_domain(obj);
3977
3978 old_write_domain = obj->base.write_domain;
3979 old_read_domains = obj->base.read_domains;
3980
3981 /* Flush the CPU cache if it's still invalid. */
3982 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3983 i915_gem_clflush_object(obj, false);
3984
3985 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3986 }
3987
3988 /* It should now be out of any other write domains, and we can update
3989 * the domain values for our changes.
3990 */
3991 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3992
3993 /* If we're writing through the CPU, then the GPU read domains will
3994 * need to be invalidated at next use.
3995 */
3996 if (write) {
3997 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3998 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3999 }
4000
4001 trace_i915_gem_object_change_domain(obj,
4002 old_read_domains,
4003 old_write_domain);
4004
4005 return 0;
4006 }
4007
4008 /* Throttle our rendering by waiting until the ring has completed our requests
4009 * emitted over 20 msec ago.
4010 *
4011 * Note that if we were to use the current jiffies each time around the loop,
4012 * we wouldn't escape the function with any frames outstanding if the time to
4013 * render a frame was over 20ms.
4014 *
4015 * This should get us reasonable parallelism between CPU and GPU but also
4016 * relatively low latency when blocking on a particular request to finish.
4017 */
4018 static int
4019 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4020 {
4021 struct drm_i915_private *dev_priv = dev->dev_private;
4022 struct drm_i915_file_private *file_priv = file->driver_priv;
4023 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4024 struct drm_i915_gem_request *request, *target = NULL;
4025 unsigned reset_counter;
4026 int ret;
4027
4028 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4029 if (ret)
4030 return ret;
4031
4032 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4033 if (ret)
4034 return ret;
4035
4036 spin_lock(&file_priv->mm.lock);
4037 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4038 if (time_after_eq(request->emitted_jiffies, recent_enough))
4039 break;
4040
4041 /*
4042 * Note that the request might not have been submitted yet.
4043 * In which case emitted_jiffies will be zero.
4044 */
4045 if (!request->emitted_jiffies)
4046 continue;
4047
4048 target = request;
4049 }
4050 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4051 if (target)
4052 i915_gem_request_reference(target);
4053 spin_unlock(&file_priv->mm.lock);
4054
4055 if (target == NULL)
4056 return 0;
4057
4058 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4059 if (ret == 0)
4060 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4061
4062 i915_gem_request_unreference__unlocked(target);
4063
4064 return ret;
4065 }
4066
4067 static bool
4068 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4069 {
4070 struct drm_i915_gem_object *obj = vma->obj;
4071
4072 if (alignment &&
4073 vma->node.start & (alignment - 1))
4074 return true;
4075
4076 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4077 return true;
4078
4079 if (flags & PIN_OFFSET_BIAS &&
4080 vma->node.start < (flags & PIN_OFFSET_MASK))
4081 return true;
4082
4083 return false;
4084 }
4085
4086 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4087 {
4088 struct drm_i915_gem_object *obj = vma->obj;
4089 bool mappable, fenceable;
4090 u32 fence_size, fence_alignment;
4091
4092 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4093 obj->base.size,
4094 obj->tiling_mode);
4095 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4096 obj->base.size,
4097 obj->tiling_mode,
4098 true);
4099
4100 fenceable = (vma->node.size == fence_size &&
4101 (vma->node.start & (fence_alignment - 1)) == 0);
4102
4103 mappable = (vma->node.start + fence_size <=
4104 to_i915(obj->base.dev)->gtt.mappable_end);
4105
4106 obj->map_and_fenceable = mappable && fenceable;
4107 }
4108
4109 static int
4110 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4111 struct i915_address_space *vm,
4112 const struct i915_ggtt_view *ggtt_view,
4113 uint32_t alignment,
4114 uint64_t flags)
4115 {
4116 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4117 struct i915_vma *vma;
4118 unsigned bound;
4119 int ret;
4120
4121 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4122 return -ENODEV;
4123
4124 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4125 return -EINVAL;
4126
4127 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4128 return -EINVAL;
4129
4130 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4131 return -EINVAL;
4132
4133 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4134 i915_gem_obj_to_vma(obj, vm);
4135
4136 if (IS_ERR(vma))
4137 return PTR_ERR(vma);
4138
4139 if (vma) {
4140 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4141 return -EBUSY;
4142
4143 if (i915_vma_misplaced(vma, alignment, flags)) {
4144 WARN(vma->pin_count,
4145 "bo is already pinned in %s with incorrect alignment:"
4146 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4147 " obj->map_and_fenceable=%d\n",
4148 ggtt_view ? "ggtt" : "ppgtt",
4149 upper_32_bits(vma->node.start),
4150 lower_32_bits(vma->node.start),
4151 alignment,
4152 !!(flags & PIN_MAPPABLE),
4153 obj->map_and_fenceable);
4154 ret = i915_vma_unbind(vma);
4155 if (ret)
4156 return ret;
4157
4158 vma = NULL;
4159 }
4160 }
4161
4162 bound = vma ? vma->bound : 0;
4163 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4164 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4165 flags);
4166 if (IS_ERR(vma))
4167 return PTR_ERR(vma);
4168 } else {
4169 ret = i915_vma_bind(vma, obj->cache_level, flags);
4170 if (ret)
4171 return ret;
4172 }
4173
4174 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4175 (bound ^ vma->bound) & GLOBAL_BIND) {
4176 __i915_vma_set_map_and_fenceable(vma);
4177 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4178 }
4179
4180 vma->pin_count++;
4181 return 0;
4182 }
4183
4184 int
4185 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4186 struct i915_address_space *vm,
4187 uint32_t alignment,
4188 uint64_t flags)
4189 {
4190 return i915_gem_object_do_pin(obj, vm,
4191 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4192 alignment, flags);
4193 }
4194
4195 int
4196 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4197 const struct i915_ggtt_view *view,
4198 uint32_t alignment,
4199 uint64_t flags)
4200 {
4201 if (WARN_ONCE(!view, "no view specified"))
4202 return -EINVAL;
4203
4204 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4205 alignment, flags | PIN_GLOBAL);
4206 }
4207
4208 void
4209 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4210 const struct i915_ggtt_view *view)
4211 {
4212 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4213
4214 BUG_ON(!vma);
4215 WARN_ON(vma->pin_count == 0);
4216 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4217
4218 --vma->pin_count;
4219 }
4220
4221 int
4222 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4223 struct drm_file *file)
4224 {
4225 struct drm_i915_gem_busy *args = data;
4226 struct drm_i915_gem_object *obj;
4227 int ret;
4228
4229 ret = i915_mutex_lock_interruptible(dev);
4230 if (ret)
4231 return ret;
4232
4233 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4234 if (&obj->base == NULL) {
4235 ret = -ENOENT;
4236 goto unlock;
4237 }
4238
4239 /* Count all active objects as busy, even if they are currently not used
4240 * by the gpu. Users of this interface expect objects to eventually
4241 * become non-busy without any further actions, therefore emit any
4242 * necessary flushes here.
4243 */
4244 ret = i915_gem_object_flush_active(obj);
4245 if (ret)
4246 goto unref;
4247
4248 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4249 args->busy = obj->active << 16;
4250 if (obj->last_write_req)
4251 args->busy |= obj->last_write_req->ring->id;
4252
4253 unref:
4254 drm_gem_object_unreference(&obj->base);
4255 unlock:
4256 mutex_unlock(&dev->struct_mutex);
4257 return ret;
4258 }
4259
4260 int
4261 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4262 struct drm_file *file_priv)
4263 {
4264 return i915_gem_ring_throttle(dev, file_priv);
4265 }
4266
4267 int
4268 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4269 struct drm_file *file_priv)
4270 {
4271 struct drm_i915_private *dev_priv = dev->dev_private;
4272 struct drm_i915_gem_madvise *args = data;
4273 struct drm_i915_gem_object *obj;
4274 int ret;
4275
4276 switch (args->madv) {
4277 case I915_MADV_DONTNEED:
4278 case I915_MADV_WILLNEED:
4279 break;
4280 default:
4281 return -EINVAL;
4282 }
4283
4284 ret = i915_mutex_lock_interruptible(dev);
4285 if (ret)
4286 return ret;
4287
4288 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4289 if (&obj->base == NULL) {
4290 ret = -ENOENT;
4291 goto unlock;
4292 }
4293
4294 if (i915_gem_obj_is_pinned(obj)) {
4295 ret = -EINVAL;
4296 goto out;
4297 }
4298
4299 if (obj->pages &&
4300 obj->tiling_mode != I915_TILING_NONE &&
4301 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4302 if (obj->madv == I915_MADV_WILLNEED)
4303 i915_gem_object_unpin_pages(obj);
4304 if (args->madv == I915_MADV_WILLNEED)
4305 i915_gem_object_pin_pages(obj);
4306 }
4307
4308 if (obj->madv != __I915_MADV_PURGED)
4309 obj->madv = args->madv;
4310
4311 /* if the object is no longer attached, discard its backing storage */
4312 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4313 i915_gem_object_truncate(obj);
4314
4315 args->retained = obj->madv != __I915_MADV_PURGED;
4316
4317 out:
4318 drm_gem_object_unreference(&obj->base);
4319 unlock:
4320 mutex_unlock(&dev->struct_mutex);
4321 return ret;
4322 }
4323
4324 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4325 const struct drm_i915_gem_object_ops *ops)
4326 {
4327 int i;
4328
4329 INIT_LIST_HEAD(&obj->global_list);
4330 for (i = 0; i < I915_NUM_RINGS; i++)
4331 INIT_LIST_HEAD(&obj->ring_list[i]);
4332 INIT_LIST_HEAD(&obj->obj_exec_link);
4333 INIT_LIST_HEAD(&obj->vma_list);
4334 INIT_LIST_HEAD(&obj->batch_pool_link);
4335
4336 obj->ops = ops;
4337
4338 obj->fence_reg = I915_FENCE_REG_NONE;
4339 obj->madv = I915_MADV_WILLNEED;
4340
4341 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4342 }
4343
4344 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4345 .get_pages = i915_gem_object_get_pages_gtt,
4346 .put_pages = i915_gem_object_put_pages_gtt,
4347 };
4348
4349 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4350 size_t size)
4351 {
4352 struct drm_i915_gem_object *obj;
4353 struct address_space *mapping;
4354 gfp_t mask;
4355
4356 obj = i915_gem_object_alloc(dev);
4357 if (obj == NULL)
4358 return NULL;
4359
4360 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4361 i915_gem_object_free(obj);
4362 return NULL;
4363 }
4364
4365 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4366 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4367 /* 965gm cannot relocate objects above 4GiB. */
4368 mask &= ~__GFP_HIGHMEM;
4369 mask |= __GFP_DMA32;
4370 }
4371
4372 mapping = file_inode(obj->base.filp)->i_mapping;
4373 mapping_set_gfp_mask(mapping, mask);
4374
4375 i915_gem_object_init(obj, &i915_gem_object_ops);
4376
4377 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4378 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4379
4380 if (HAS_LLC(dev)) {
4381 /* On some devices, we can have the GPU use the LLC (the CPU
4382 * cache) for about a 10% performance improvement
4383 * compared to uncached. Graphics requests other than
4384 * display scanout are coherent with the CPU in
4385 * accessing this cache. This means in this mode we
4386 * don't need to clflush on the CPU side, and on the
4387 * GPU side we only need to flush internal caches to
4388 * get data visible to the CPU.
4389 *
4390 * However, we maintain the display planes as UC, and so
4391 * need to rebind when first used as such.
4392 */
4393 obj->cache_level = I915_CACHE_LLC;
4394 } else
4395 obj->cache_level = I915_CACHE_NONE;
4396
4397 trace_i915_gem_object_create(obj);
4398
4399 return obj;
4400 }
4401
4402 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4403 {
4404 /* If we are the last user of the backing storage (be it shmemfs
4405 * pages or stolen etc), we know that the pages are going to be
4406 * immediately released. In this case, we can then skip copying
4407 * back the contents from the GPU.
4408 */
4409
4410 if (obj->madv != I915_MADV_WILLNEED)
4411 return false;
4412
4413 if (obj->base.filp == NULL)
4414 return true;
4415
4416 /* At first glance, this looks racy, but then again so would be
4417 * userspace racing mmap against close. However, the first external
4418 * reference to the filp can only be obtained through the
4419 * i915_gem_mmap_ioctl() which safeguards us against the user
4420 * acquiring such a reference whilst we are in the middle of
4421 * freeing the object.
4422 */
4423 return atomic_long_read(&obj->base.filp->f_count) == 1;
4424 }
4425
4426 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4427 {
4428 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4429 struct drm_device *dev = obj->base.dev;
4430 struct drm_i915_private *dev_priv = dev->dev_private;
4431 struct i915_vma *vma, *next;
4432
4433 intel_runtime_pm_get(dev_priv);
4434
4435 trace_i915_gem_object_destroy(obj);
4436
4437 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4438 int ret;
4439
4440 vma->pin_count = 0;
4441 ret = i915_vma_unbind(vma);
4442 if (WARN_ON(ret == -ERESTARTSYS)) {
4443 bool was_interruptible;
4444
4445 was_interruptible = dev_priv->mm.interruptible;
4446 dev_priv->mm.interruptible = false;
4447
4448 WARN_ON(i915_vma_unbind(vma));
4449
4450 dev_priv->mm.interruptible = was_interruptible;
4451 }
4452 }
4453
4454 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4455 * before progressing. */
4456 if (obj->stolen)
4457 i915_gem_object_unpin_pages(obj);
4458
4459 WARN_ON(obj->frontbuffer_bits);
4460
4461 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4462 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4463 obj->tiling_mode != I915_TILING_NONE)
4464 i915_gem_object_unpin_pages(obj);
4465
4466 if (WARN_ON(obj->pages_pin_count))
4467 obj->pages_pin_count = 0;
4468 if (discard_backing_storage(obj))
4469 obj->madv = I915_MADV_DONTNEED;
4470 i915_gem_object_put_pages(obj);
4471 i915_gem_object_free_mmap_offset(obj);
4472
4473 BUG_ON(obj->pages);
4474
4475 if (obj->base.import_attach)
4476 drm_prime_gem_destroy(&obj->base, NULL);
4477
4478 if (obj->ops->release)
4479 obj->ops->release(obj);
4480
4481 drm_gem_object_release(&obj->base);
4482 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4483
4484 kfree(obj->bit_17);
4485 i915_gem_object_free(obj);
4486
4487 intel_runtime_pm_put(dev_priv);
4488 }
4489
4490 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4491 struct i915_address_space *vm)
4492 {
4493 struct i915_vma *vma;
4494 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4495 if (i915_is_ggtt(vma->vm) &&
4496 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4497 continue;
4498 if (vma->vm == vm)
4499 return vma;
4500 }
4501 return NULL;
4502 }
4503
4504 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4505 const struct i915_ggtt_view *view)
4506 {
4507 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4508 struct i915_vma *vma;
4509
4510 if (WARN_ONCE(!view, "no view specified"))
4511 return ERR_PTR(-EINVAL);
4512
4513 list_for_each_entry(vma, &obj->vma_list, vma_link)
4514 if (vma->vm == ggtt &&
4515 i915_ggtt_view_equal(&vma->ggtt_view, view))
4516 return vma;
4517 return NULL;
4518 }
4519
4520 void i915_gem_vma_destroy(struct i915_vma *vma)
4521 {
4522 struct i915_address_space *vm = NULL;
4523 WARN_ON(vma->node.allocated);
4524
4525 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4526 if (!list_empty(&vma->exec_list))
4527 return;
4528
4529 vm = vma->vm;
4530
4531 if (!i915_is_ggtt(vm))
4532 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4533
4534 list_del(&vma->vma_link);
4535
4536 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4537 }
4538
4539 static void
4540 i915_gem_stop_ringbuffers(struct drm_device *dev)
4541 {
4542 struct drm_i915_private *dev_priv = dev->dev_private;
4543 struct intel_engine_cs *ring;
4544 int i;
4545
4546 for_each_ring(ring, dev_priv, i)
4547 dev_priv->gt.stop_ring(ring);
4548 }
4549
4550 int
4551 i915_gem_suspend(struct drm_device *dev)
4552 {
4553 struct drm_i915_private *dev_priv = dev->dev_private;
4554 int ret = 0;
4555
4556 mutex_lock(&dev->struct_mutex);
4557 ret = i915_gpu_idle(dev);
4558 if (ret)
4559 goto err;
4560
4561 i915_gem_retire_requests(dev);
4562
4563 i915_gem_stop_ringbuffers(dev);
4564 mutex_unlock(&dev->struct_mutex);
4565
4566 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4567 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4568 flush_delayed_work(&dev_priv->mm.idle_work);
4569
4570 /* Assert that we sucessfully flushed all the work and
4571 * reset the GPU back to its idle, low power state.
4572 */
4573 WARN_ON(dev_priv->mm.busy);
4574
4575 return 0;
4576
4577 err:
4578 mutex_unlock(&dev->struct_mutex);
4579 return ret;
4580 }
4581
4582 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4583 {
4584 struct intel_engine_cs *ring = req->ring;
4585 struct drm_device *dev = ring->dev;
4586 struct drm_i915_private *dev_priv = dev->dev_private;
4587 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4588 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4589 int i, ret;
4590
4591 if (!HAS_L3_DPF(dev) || !remap_info)
4592 return 0;
4593
4594 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4595 if (ret)
4596 return ret;
4597
4598 /*
4599 * Note: We do not worry about the concurrent register cacheline hang
4600 * here because no other code should access these registers other than
4601 * at initialization time.
4602 */
4603 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4604 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4605 intel_ring_emit(ring, reg_base + i);
4606 intel_ring_emit(ring, remap_info[i/4]);
4607 }
4608
4609 intel_ring_advance(ring);
4610
4611 return ret;
4612 }
4613
4614 void i915_gem_init_swizzling(struct drm_device *dev)
4615 {
4616 struct drm_i915_private *dev_priv = dev->dev_private;
4617
4618 if (INTEL_INFO(dev)->gen < 5 ||
4619 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4620 return;
4621
4622 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4623 DISP_TILE_SURFACE_SWIZZLING);
4624
4625 if (IS_GEN5(dev))
4626 return;
4627
4628 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4629 if (IS_GEN6(dev))
4630 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4631 else if (IS_GEN7(dev))
4632 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4633 else if (IS_GEN8(dev))
4634 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4635 else
4636 BUG();
4637 }
4638
4639 static void init_unused_ring(struct drm_device *dev, u32 base)
4640 {
4641 struct drm_i915_private *dev_priv = dev->dev_private;
4642
4643 I915_WRITE(RING_CTL(base), 0);
4644 I915_WRITE(RING_HEAD(base), 0);
4645 I915_WRITE(RING_TAIL(base), 0);
4646 I915_WRITE(RING_START(base), 0);
4647 }
4648
4649 static void init_unused_rings(struct drm_device *dev)
4650 {
4651 if (IS_I830(dev)) {
4652 init_unused_ring(dev, PRB1_BASE);
4653 init_unused_ring(dev, SRB0_BASE);
4654 init_unused_ring(dev, SRB1_BASE);
4655 init_unused_ring(dev, SRB2_BASE);
4656 init_unused_ring(dev, SRB3_BASE);
4657 } else if (IS_GEN2(dev)) {
4658 init_unused_ring(dev, SRB0_BASE);
4659 init_unused_ring(dev, SRB1_BASE);
4660 } else if (IS_GEN3(dev)) {
4661 init_unused_ring(dev, PRB1_BASE);
4662 init_unused_ring(dev, PRB2_BASE);
4663 }
4664 }
4665
4666 int i915_gem_init_rings(struct drm_device *dev)
4667 {
4668 struct drm_i915_private *dev_priv = dev->dev_private;
4669 int ret;
4670
4671 ret = intel_init_render_ring_buffer(dev);
4672 if (ret)
4673 return ret;
4674
4675 if (HAS_BSD(dev)) {
4676 ret = intel_init_bsd_ring_buffer(dev);
4677 if (ret)
4678 goto cleanup_render_ring;
4679 }
4680
4681 if (HAS_BLT(dev)) {
4682 ret = intel_init_blt_ring_buffer(dev);
4683 if (ret)
4684 goto cleanup_bsd_ring;
4685 }
4686
4687 if (HAS_VEBOX(dev)) {
4688 ret = intel_init_vebox_ring_buffer(dev);
4689 if (ret)
4690 goto cleanup_blt_ring;
4691 }
4692
4693 if (HAS_BSD2(dev)) {
4694 ret = intel_init_bsd2_ring_buffer(dev);
4695 if (ret)
4696 goto cleanup_vebox_ring;
4697 }
4698
4699 return 0;
4700
4701 cleanup_vebox_ring:
4702 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4703 cleanup_blt_ring:
4704 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4705 cleanup_bsd_ring:
4706 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4707 cleanup_render_ring:
4708 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4709
4710 return ret;
4711 }
4712
4713 int
4714 i915_gem_init_hw(struct drm_device *dev)
4715 {
4716 struct drm_i915_private *dev_priv = dev->dev_private;
4717 struct intel_engine_cs *ring;
4718 int ret, i, j;
4719
4720 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4721 return -EIO;
4722
4723 /* Double layer security blanket, see i915_gem_init() */
4724 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4725
4726 if (dev_priv->ellc_size)
4727 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4728
4729 if (IS_HASWELL(dev))
4730 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4731 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4732
4733 if (HAS_PCH_NOP(dev)) {
4734 if (IS_IVYBRIDGE(dev)) {
4735 u32 temp = I915_READ(GEN7_MSG_CTL);
4736 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4737 I915_WRITE(GEN7_MSG_CTL, temp);
4738 } else if (INTEL_INFO(dev)->gen >= 7) {
4739 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4740 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4741 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4742 }
4743 }
4744
4745 i915_gem_init_swizzling(dev);
4746
4747 /*
4748 * At least 830 can leave some of the unused rings
4749 * "active" (ie. head != tail) after resume which
4750 * will prevent c3 entry. Makes sure all unused rings
4751 * are totally idle.
4752 */
4753 init_unused_rings(dev);
4754
4755 BUG_ON(!dev_priv->ring[RCS].default_context);
4756
4757 ret = i915_ppgtt_init_hw(dev);
4758 if (ret) {
4759 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4760 goto out;
4761 }
4762
4763 /* Need to do basic initialisation of all rings first: */
4764 for_each_ring(ring, dev_priv, i) {
4765 ret = ring->init_hw(ring);
4766 if (ret)
4767 goto out;
4768 }
4769
4770 /* We can't enable contexts until all firmware is loaded */
4771 if (HAS_GUC_UCODE(dev)) {
4772 ret = intel_guc_ucode_load(dev);
4773 if (ret) {
4774 /*
4775 * If we got an error and GuC submission is enabled, map
4776 * the error to -EIO so the GPU will be declared wedged.
4777 * OTOH, if we didn't intend to use the GuC anyway, just
4778 * discard the error and carry on.
4779 */
4780 DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4781 i915.enable_guc_submission ? "" :
4782 " (ignored)");
4783 ret = i915.enable_guc_submission ? -EIO : 0;
4784 if (ret)
4785 goto out;
4786 }
4787 }
4788
4789 /*
4790 * Increment the next seqno by 0x100 so we have a visible break
4791 * on re-initialisation
4792 */
4793 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4794 if (ret)
4795 goto out;
4796
4797 /* Now it is safe to go back round and do everything else: */
4798 for_each_ring(ring, dev_priv, i) {
4799 struct drm_i915_gem_request *req;
4800
4801 WARN_ON(!ring->default_context);
4802
4803 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4804 if (ret) {
4805 i915_gem_cleanup_ringbuffer(dev);
4806 goto out;
4807 }
4808
4809 if (ring->id == RCS) {
4810 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4811 i915_gem_l3_remap(req, j);
4812 }
4813
4814 ret = i915_ppgtt_init_ring(req);
4815 if (ret && ret != -EIO) {
4816 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4817 i915_gem_request_cancel(req);
4818 i915_gem_cleanup_ringbuffer(dev);
4819 goto out;
4820 }
4821
4822 ret = i915_gem_context_enable(req);
4823 if (ret && ret != -EIO) {
4824 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4825 i915_gem_request_cancel(req);
4826 i915_gem_cleanup_ringbuffer(dev);
4827 goto out;
4828 }
4829
4830 i915_add_request_no_flush(req);
4831 }
4832
4833 out:
4834 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4835 return ret;
4836 }
4837
4838 int i915_gem_init(struct drm_device *dev)
4839 {
4840 struct drm_i915_private *dev_priv = dev->dev_private;
4841 int ret;
4842
4843 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4844 i915.enable_execlists);
4845
4846 mutex_lock(&dev->struct_mutex);
4847
4848 if (IS_VALLEYVIEW(dev)) {
4849 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4850 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4851 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4852 VLV_GTLC_ALLOWWAKEACK), 10))
4853 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4854 }
4855
4856 if (!i915.enable_execlists) {
4857 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4858 dev_priv->gt.init_rings = i915_gem_init_rings;
4859 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4860 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4861 } else {
4862 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4863 dev_priv->gt.init_rings = intel_logical_rings_init;
4864 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4865 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4866 }
4867
4868 /* This is just a security blanket to placate dragons.
4869 * On some systems, we very sporadically observe that the first TLBs
4870 * used by the CS may be stale, despite us poking the TLB reset. If
4871 * we hold the forcewake during initialisation these problems
4872 * just magically go away.
4873 */
4874 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4875
4876 ret = i915_gem_init_userptr(dev);
4877 if (ret)
4878 goto out_unlock;
4879
4880 i915_gem_init_global_gtt(dev);
4881
4882 ret = i915_gem_context_init(dev);
4883 if (ret)
4884 goto out_unlock;
4885
4886 ret = dev_priv->gt.init_rings(dev);
4887 if (ret)
4888 goto out_unlock;
4889
4890 ret = i915_gem_init_hw(dev);
4891 if (ret == -EIO) {
4892 /* Allow ring initialisation to fail by marking the GPU as
4893 * wedged. But we only want to do this where the GPU is angry,
4894 * for all other failure, such as an allocation failure, bail.
4895 */
4896 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4897 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4898 ret = 0;
4899 }
4900
4901 out_unlock:
4902 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4903 mutex_unlock(&dev->struct_mutex);
4904
4905 return ret;
4906 }
4907
4908 void
4909 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4910 {
4911 struct drm_i915_private *dev_priv = dev->dev_private;
4912 struct intel_engine_cs *ring;
4913 int i;
4914
4915 for_each_ring(ring, dev_priv, i)
4916 dev_priv->gt.cleanup_ring(ring);
4917
4918 if (i915.enable_execlists)
4919 /*
4920 * Neither the BIOS, ourselves or any other kernel
4921 * expects the system to be in execlists mode on startup,
4922 * so we need to reset the GPU back to legacy mode.
4923 */
4924 intel_gpu_reset(dev);
4925 }
4926
4927 static void
4928 init_ring_lists(struct intel_engine_cs *ring)
4929 {
4930 INIT_LIST_HEAD(&ring->active_list);
4931 INIT_LIST_HEAD(&ring->request_list);
4932 }
4933
4934 void
4935 i915_gem_load(struct drm_device *dev)
4936 {
4937 struct drm_i915_private *dev_priv = dev->dev_private;
4938 int i;
4939
4940 dev_priv->objects =
4941 kmem_cache_create("i915_gem_object",
4942 sizeof(struct drm_i915_gem_object), 0,
4943 SLAB_HWCACHE_ALIGN,
4944 NULL);
4945 dev_priv->vmas =
4946 kmem_cache_create("i915_gem_vma",
4947 sizeof(struct i915_vma), 0,
4948 SLAB_HWCACHE_ALIGN,
4949 NULL);
4950 dev_priv->requests =
4951 kmem_cache_create("i915_gem_request",
4952 sizeof(struct drm_i915_gem_request), 0,
4953 SLAB_HWCACHE_ALIGN,
4954 NULL);
4955
4956 INIT_LIST_HEAD(&dev_priv->vm_list);
4957 INIT_LIST_HEAD(&dev_priv->context_list);
4958 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4959 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4960 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4961 for (i = 0; i < I915_NUM_RINGS; i++)
4962 init_ring_lists(&dev_priv->ring[i]);
4963 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4964 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4965 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4966 i915_gem_retire_work_handler);
4967 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4968 i915_gem_idle_work_handler);
4969 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4970
4971 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4972
4973 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4974 dev_priv->num_fence_regs = 32;
4975 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4976 dev_priv->num_fence_regs = 16;
4977 else
4978 dev_priv->num_fence_regs = 8;
4979
4980 if (intel_vgpu_active(dev))
4981 dev_priv->num_fence_regs =
4982 I915_READ(vgtif_reg(avail_rs.fence_num));
4983
4984 /*
4985 * Set initial sequence number for requests.
4986 * Using this number allows the wraparound to happen early,
4987 * catching any obvious problems.
4988 */
4989 dev_priv->next_seqno = ((u32)~0 - 0x1100);
4990 dev_priv->last_seqno = ((u32)~0 - 0x1101);
4991
4992 /* Initialize fence registers to zero */
4993 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4994 i915_gem_restore_fences(dev);
4995
4996 i915_gem_detect_bit_6_swizzle(dev);
4997 init_waitqueue_head(&dev_priv->pending_flip_queue);
4998
4999 dev_priv->mm.interruptible = true;
5000
5001 i915_gem_shrinker_init(dev_priv);
5002
5003 mutex_init(&dev_priv->fb_tracking.lock);
5004 }
5005
5006 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5007 {
5008 struct drm_i915_file_private *file_priv = file->driver_priv;
5009
5010 /* Clean up our request list when the client is going away, so that
5011 * later retire_requests won't dereference our soon-to-be-gone
5012 * file_priv.
5013 */
5014 spin_lock(&file_priv->mm.lock);
5015 while (!list_empty(&file_priv->mm.request_list)) {
5016 struct drm_i915_gem_request *request;
5017
5018 request = list_first_entry(&file_priv->mm.request_list,
5019 struct drm_i915_gem_request,
5020 client_list);
5021 list_del(&request->client_list);
5022 request->file_priv = NULL;
5023 }
5024 spin_unlock(&file_priv->mm.lock);
5025
5026 if (!list_empty(&file_priv->rps.link)) {
5027 spin_lock(&to_i915(dev)->rps.client_lock);
5028 list_del(&file_priv->rps.link);
5029 spin_unlock(&to_i915(dev)->rps.client_lock);
5030 }
5031 }
5032
5033 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5034 {
5035 struct drm_i915_file_private *file_priv;
5036 int ret;
5037
5038 DRM_DEBUG_DRIVER("\n");
5039
5040 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5041 if (!file_priv)
5042 return -ENOMEM;
5043
5044 file->driver_priv = file_priv;
5045 file_priv->dev_priv = dev->dev_private;
5046 file_priv->file = file;
5047 INIT_LIST_HEAD(&file_priv->rps.link);
5048
5049 spin_lock_init(&file_priv->mm.lock);
5050 INIT_LIST_HEAD(&file_priv->mm.request_list);
5051
5052 ret = i915_gem_context_open(dev, file);
5053 if (ret)
5054 kfree(file_priv);
5055
5056 return ret;
5057 }
5058
5059 /**
5060 * i915_gem_track_fb - update frontbuffer tracking
5061 * @old: current GEM buffer for the frontbuffer slots
5062 * @new: new GEM buffer for the frontbuffer slots
5063 * @frontbuffer_bits: bitmask of frontbuffer slots
5064 *
5065 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5066 * from @old and setting them in @new. Both @old and @new can be NULL.
5067 */
5068 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5069 struct drm_i915_gem_object *new,
5070 unsigned frontbuffer_bits)
5071 {
5072 if (old) {
5073 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5074 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5075 old->frontbuffer_bits &= ~frontbuffer_bits;
5076 }
5077
5078 if (new) {
5079 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5080 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5081 new->frontbuffer_bits |= frontbuffer_bits;
5082 }
5083 }
5084
5085 /* All the new VM stuff */
5086 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5087 struct i915_address_space *vm)
5088 {
5089 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5090 struct i915_vma *vma;
5091
5092 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5093
5094 list_for_each_entry(vma, &o->vma_list, vma_link) {
5095 if (i915_is_ggtt(vma->vm) &&
5096 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5097 continue;
5098 if (vma->vm == vm)
5099 return vma->node.start;
5100 }
5101
5102 WARN(1, "%s vma for this object not found.\n",
5103 i915_is_ggtt(vm) ? "global" : "ppgtt");
5104 return -1;
5105 }
5106
5107 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5108 const struct i915_ggtt_view *view)
5109 {
5110 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5111 struct i915_vma *vma;
5112
5113 list_for_each_entry(vma, &o->vma_list, vma_link)
5114 if (vma->vm == ggtt &&
5115 i915_ggtt_view_equal(&vma->ggtt_view, view))
5116 return vma->node.start;
5117
5118 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5119 return -1;
5120 }
5121
5122 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5123 struct i915_address_space *vm)
5124 {
5125 struct i915_vma *vma;
5126
5127 list_for_each_entry(vma, &o->vma_list, vma_link) {
5128 if (i915_is_ggtt(vma->vm) &&
5129 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5130 continue;
5131 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5132 return true;
5133 }
5134
5135 return false;
5136 }
5137
5138 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5139 const struct i915_ggtt_view *view)
5140 {
5141 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5142 struct i915_vma *vma;
5143
5144 list_for_each_entry(vma, &o->vma_list, vma_link)
5145 if (vma->vm == ggtt &&
5146 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5147 drm_mm_node_allocated(&vma->node))
5148 return true;
5149
5150 return false;
5151 }
5152
5153 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5154 {
5155 struct i915_vma *vma;
5156
5157 list_for_each_entry(vma, &o->vma_list, vma_link)
5158 if (drm_mm_node_allocated(&vma->node))
5159 return true;
5160
5161 return false;
5162 }
5163
5164 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5165 struct i915_address_space *vm)
5166 {
5167 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5168 struct i915_vma *vma;
5169
5170 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5171
5172 BUG_ON(list_empty(&o->vma_list));
5173
5174 list_for_each_entry(vma, &o->vma_list, vma_link) {
5175 if (i915_is_ggtt(vma->vm) &&
5176 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5177 continue;
5178 if (vma->vm == vm)
5179 return vma->node.size;
5180 }
5181 return 0;
5182 }
5183
5184 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5185 {
5186 struct i915_vma *vma;
5187 list_for_each_entry(vma, &obj->vma_list, vma_link)
5188 if (vma->pin_count > 0)
5189 return true;
5190
5191 return false;
5192 }
5193
5194 /* Allocate a new GEM object and fill it with the supplied data */
5195 struct drm_i915_gem_object *
5196 i915_gem_object_create_from_data(struct drm_device *dev,
5197 const void *data, size_t size)
5198 {
5199 struct drm_i915_gem_object *obj;
5200 struct sg_table *sg;
5201 size_t bytes;
5202 int ret;
5203
5204 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5205 if (IS_ERR_OR_NULL(obj))
5206 return obj;
5207
5208 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5209 if (ret)
5210 goto fail;
5211
5212 ret = i915_gem_object_get_pages(obj);
5213 if (ret)
5214 goto fail;
5215
5216 i915_gem_object_pin_pages(obj);
5217 sg = obj->pages;
5218 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5219 i915_gem_object_unpin_pages(obj);
5220
5221 if (WARN_ON(bytes != size)) {
5222 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5223 ret = -EFAULT;
5224 goto fail;
5225 }
5226
5227 return obj;
5228
5229 fail:
5230 drm_gem_object_unreference(&obj->base);
5231 return ERR_PTR(ret);
5232 }
This page took 0.445084 seconds and 6 git commands to generate.