drm/i915: Only mark as map-and-fenceable when bound into the GGTT
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67 {
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
87 obj->fence_dirty = false;
88 obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103 {
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134 #undef EXIT_COND
135
136 return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 int ret;
143
144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
152 WARN_ON(i915_verify_lists(dev));
153 return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159 return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_init *args = data;
168
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
175
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
180 mutex_lock(&dev->struct_mutex);
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
183 dev_priv->gtt.mappable_end = args->gtt_end;
184 mutex_unlock(&dev->struct_mutex);
185
186 return 0;
187 }
188
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191 struct drm_file *file)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 struct drm_i915_gem_get_aperture *args = data;
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
197
198 pinned = 0;
199 mutex_lock(&dev->struct_mutex);
200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201 if (i915_gem_obj_is_pinned(obj))
202 pinned += i915_gem_obj_ggtt_size(obj);
203 mutex_unlock(&dev->struct_mutex);
204
205 args->aper_size = dev_priv->gtt.base.total;
206 args->aper_available_size = args->aper_size - pinned;
207
208 return 0;
209 }
210
211 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
212 {
213 drm_dma_handle_t *phys = obj->phys_handle;
214
215 if (!phys)
216 return;
217
218 if (obj->madv == I915_MADV_WILLNEED) {
219 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
220 char *vaddr = phys->vaddr;
221 int i;
222
223 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224 struct page *page = shmem_read_mapping_page(mapping, i);
225 if (!IS_ERR(page)) {
226 char *dst = kmap_atomic(page);
227 memcpy(dst, vaddr, PAGE_SIZE);
228 drm_clflush_virt_range(dst, PAGE_SIZE);
229 kunmap_atomic(dst);
230
231 set_page_dirty(page);
232 mark_page_accessed(page);
233 page_cache_release(page);
234 }
235 vaddr += PAGE_SIZE;
236 }
237 i915_gem_chipset_flush(obj->base.dev);
238 }
239
240 #ifdef CONFIG_X86
241 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
242 #endif
243 drm_pci_free(obj->base.dev, phys);
244 obj->phys_handle = NULL;
245 }
246
247 int
248 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
249 int align)
250 {
251 drm_dma_handle_t *phys;
252 struct address_space *mapping;
253 char *vaddr;
254 int i;
255
256 if (obj->phys_handle) {
257 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
258 return -EBUSY;
259
260 return 0;
261 }
262
263 if (obj->madv != I915_MADV_WILLNEED)
264 return -EFAULT;
265
266 if (obj->base.filp == NULL)
267 return -EINVAL;
268
269 /* create a new object */
270 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
271 if (!phys)
272 return -ENOMEM;
273
274 vaddr = phys->vaddr;
275 #ifdef CONFIG_X86
276 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
277 #endif
278 mapping = file_inode(obj->base.filp)->i_mapping;
279 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280 struct page *page;
281 char *src;
282
283 page = shmem_read_mapping_page(mapping, i);
284 if (IS_ERR(page)) {
285 #ifdef CONFIG_X86
286 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
287 #endif
288 drm_pci_free(obj->base.dev, phys);
289 return PTR_ERR(page);
290 }
291
292 src = kmap_atomic(page);
293 memcpy(vaddr, src, PAGE_SIZE);
294 kunmap_atomic(src);
295
296 mark_page_accessed(page);
297 page_cache_release(page);
298
299 vaddr += PAGE_SIZE;
300 }
301
302 obj->phys_handle = phys;
303 return 0;
304 }
305
306 static int
307 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
308 struct drm_i915_gem_pwrite *args,
309 struct drm_file *file_priv)
310 {
311 struct drm_device *dev = obj->base.dev;
312 void *vaddr = obj->phys_handle->vaddr + args->offset;
313 char __user *user_data = to_user_ptr(args->data_ptr);
314
315 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
316 unsigned long unwritten;
317
318 /* The physical object once assigned is fixed for the lifetime
319 * of the obj, so we can safely drop the lock and continue
320 * to access vaddr.
321 */
322 mutex_unlock(&dev->struct_mutex);
323 unwritten = copy_from_user(vaddr, user_data, args->size);
324 mutex_lock(&dev->struct_mutex);
325 if (unwritten)
326 return -EFAULT;
327 }
328
329 i915_gem_chipset_flush(dev);
330 return 0;
331 }
332
333 void *i915_gem_object_alloc(struct drm_device *dev)
334 {
335 struct drm_i915_private *dev_priv = dev->dev_private;
336 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
337 }
338
339 void i915_gem_object_free(struct drm_i915_gem_object *obj)
340 {
341 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
342 kmem_cache_free(dev_priv->slab, obj);
343 }
344
345 static int
346 i915_gem_create(struct drm_file *file,
347 struct drm_device *dev,
348 uint64_t size,
349 uint32_t *handle_p)
350 {
351 struct drm_i915_gem_object *obj;
352 int ret;
353 u32 handle;
354
355 size = roundup(size, PAGE_SIZE);
356 if (size == 0)
357 return -EINVAL;
358
359 /* Allocate the new object */
360 obj = i915_gem_alloc_object(dev, size);
361 if (obj == NULL)
362 return -ENOMEM;
363
364 ret = drm_gem_handle_create(file, &obj->base, &handle);
365 /* drop reference from allocate - handle holds it now */
366 drm_gem_object_unreference_unlocked(&obj->base);
367 if (ret)
368 return ret;
369
370 *handle_p = handle;
371 return 0;
372 }
373
374 int
375 i915_gem_dumb_create(struct drm_file *file,
376 struct drm_device *dev,
377 struct drm_mode_create_dumb *args)
378 {
379 /* have to work out size/pitch and return them */
380 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
381 args->size = args->pitch * args->height;
382 return i915_gem_create(file, dev,
383 args->size, &args->handle);
384 }
385
386 /**
387 * Creates a new mm object and returns a handle to it.
388 */
389 int
390 i915_gem_create_ioctl(struct drm_device *dev, void *data,
391 struct drm_file *file)
392 {
393 struct drm_i915_gem_create *args = data;
394
395 return i915_gem_create(file, dev,
396 args->size, &args->handle);
397 }
398
399 static inline int
400 __copy_to_user_swizzled(char __user *cpu_vaddr,
401 const char *gpu_vaddr, int gpu_offset,
402 int length)
403 {
404 int ret, cpu_offset = 0;
405
406 while (length > 0) {
407 int cacheline_end = ALIGN(gpu_offset + 1, 64);
408 int this_length = min(cacheline_end - gpu_offset, length);
409 int swizzled_gpu_offset = gpu_offset ^ 64;
410
411 ret = __copy_to_user(cpu_vaddr + cpu_offset,
412 gpu_vaddr + swizzled_gpu_offset,
413 this_length);
414 if (ret)
415 return ret + length;
416
417 cpu_offset += this_length;
418 gpu_offset += this_length;
419 length -= this_length;
420 }
421
422 return 0;
423 }
424
425 static inline int
426 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
427 const char __user *cpu_vaddr,
428 int length)
429 {
430 int ret, cpu_offset = 0;
431
432 while (length > 0) {
433 int cacheline_end = ALIGN(gpu_offset + 1, 64);
434 int this_length = min(cacheline_end - gpu_offset, length);
435 int swizzled_gpu_offset = gpu_offset ^ 64;
436
437 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
438 cpu_vaddr + cpu_offset,
439 this_length);
440 if (ret)
441 return ret + length;
442
443 cpu_offset += this_length;
444 gpu_offset += this_length;
445 length -= this_length;
446 }
447
448 return 0;
449 }
450
451 /*
452 * Pins the specified object's pages and synchronizes the object with
453 * GPU accesses. Sets needs_clflush to non-zero if the caller should
454 * flush the object from the CPU cache.
455 */
456 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
457 int *needs_clflush)
458 {
459 int ret;
460
461 *needs_clflush = 0;
462
463 if (!obj->base.filp)
464 return -EINVAL;
465
466 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
467 /* If we're not in the cpu read domain, set ourself into the gtt
468 * read domain and manually flush cachelines (if required). This
469 * optimizes for the case when the gpu will dirty the data
470 * anyway again before the next pread happens. */
471 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
472 obj->cache_level);
473 ret = i915_gem_object_wait_rendering(obj, true);
474 if (ret)
475 return ret;
476
477 i915_gem_object_retire(obj);
478 }
479
480 ret = i915_gem_object_get_pages(obj);
481 if (ret)
482 return ret;
483
484 i915_gem_object_pin_pages(obj);
485
486 return ret;
487 }
488
489 /* Per-page copy function for the shmem pread fastpath.
490 * Flushes invalid cachelines before reading the target if
491 * needs_clflush is set. */
492 static int
493 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
494 char __user *user_data,
495 bool page_do_bit17_swizzling, bool needs_clflush)
496 {
497 char *vaddr;
498 int ret;
499
500 if (unlikely(page_do_bit17_swizzling))
501 return -EINVAL;
502
503 vaddr = kmap_atomic(page);
504 if (needs_clflush)
505 drm_clflush_virt_range(vaddr + shmem_page_offset,
506 page_length);
507 ret = __copy_to_user_inatomic(user_data,
508 vaddr + shmem_page_offset,
509 page_length);
510 kunmap_atomic(vaddr);
511
512 return ret ? -EFAULT : 0;
513 }
514
515 static void
516 shmem_clflush_swizzled_range(char *addr, unsigned long length,
517 bool swizzled)
518 {
519 if (unlikely(swizzled)) {
520 unsigned long start = (unsigned long) addr;
521 unsigned long end = (unsigned long) addr + length;
522
523 /* For swizzling simply ensure that we always flush both
524 * channels. Lame, but simple and it works. Swizzled
525 * pwrite/pread is far from a hotpath - current userspace
526 * doesn't use it at all. */
527 start = round_down(start, 128);
528 end = round_up(end, 128);
529
530 drm_clflush_virt_range((void *)start, end - start);
531 } else {
532 drm_clflush_virt_range(addr, length);
533 }
534
535 }
536
537 /* Only difference to the fast-path function is that this can handle bit17
538 * and uses non-atomic copy and kmap functions. */
539 static int
540 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
541 char __user *user_data,
542 bool page_do_bit17_swizzling, bool needs_clflush)
543 {
544 char *vaddr;
545 int ret;
546
547 vaddr = kmap(page);
548 if (needs_clflush)
549 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
550 page_length,
551 page_do_bit17_swizzling);
552
553 if (page_do_bit17_swizzling)
554 ret = __copy_to_user_swizzled(user_data,
555 vaddr, shmem_page_offset,
556 page_length);
557 else
558 ret = __copy_to_user(user_data,
559 vaddr + shmem_page_offset,
560 page_length);
561 kunmap(page);
562
563 return ret ? - EFAULT : 0;
564 }
565
566 static int
567 i915_gem_shmem_pread(struct drm_device *dev,
568 struct drm_i915_gem_object *obj,
569 struct drm_i915_gem_pread *args,
570 struct drm_file *file)
571 {
572 char __user *user_data;
573 ssize_t remain;
574 loff_t offset;
575 int shmem_page_offset, page_length, ret = 0;
576 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
577 int prefaulted = 0;
578 int needs_clflush = 0;
579 struct sg_page_iter sg_iter;
580
581 user_data = to_user_ptr(args->data_ptr);
582 remain = args->size;
583
584 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
585
586 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
587 if (ret)
588 return ret;
589
590 offset = args->offset;
591
592 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
593 offset >> PAGE_SHIFT) {
594 struct page *page = sg_page_iter_page(&sg_iter);
595
596 if (remain <= 0)
597 break;
598
599 /* Operation in this page
600 *
601 * shmem_page_offset = offset within page in shmem file
602 * page_length = bytes to copy for this page
603 */
604 shmem_page_offset = offset_in_page(offset);
605 page_length = remain;
606 if ((shmem_page_offset + page_length) > PAGE_SIZE)
607 page_length = PAGE_SIZE - shmem_page_offset;
608
609 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
610 (page_to_phys(page) & (1 << 17)) != 0;
611
612 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
613 user_data, page_do_bit17_swizzling,
614 needs_clflush);
615 if (ret == 0)
616 goto next_page;
617
618 mutex_unlock(&dev->struct_mutex);
619
620 if (likely(!i915.prefault_disable) && !prefaulted) {
621 ret = fault_in_multipages_writeable(user_data, remain);
622 /* Userspace is tricking us, but we've already clobbered
623 * its pages with the prefault and promised to write the
624 * data up to the first fault. Hence ignore any errors
625 * and just continue. */
626 (void)ret;
627 prefaulted = 1;
628 }
629
630 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
631 user_data, page_do_bit17_swizzling,
632 needs_clflush);
633
634 mutex_lock(&dev->struct_mutex);
635
636 if (ret)
637 goto out;
638
639 next_page:
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
643 }
644
645 out:
646 i915_gem_object_unpin_pages(obj);
647
648 return ret;
649 }
650
651 /**
652 * Reads data from the object referenced by handle.
653 *
654 * On error, the contents of *data are undefined.
655 */
656 int
657 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
658 struct drm_file *file)
659 {
660 struct drm_i915_gem_pread *args = data;
661 struct drm_i915_gem_object *obj;
662 int ret = 0;
663
664 if (args->size == 0)
665 return 0;
666
667 if (!access_ok(VERIFY_WRITE,
668 to_user_ptr(args->data_ptr),
669 args->size))
670 return -EFAULT;
671
672 ret = i915_mutex_lock_interruptible(dev);
673 if (ret)
674 return ret;
675
676 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
677 if (&obj->base == NULL) {
678 ret = -ENOENT;
679 goto unlock;
680 }
681
682 /* Bounds check source. */
683 if (args->offset > obj->base.size ||
684 args->size > obj->base.size - args->offset) {
685 ret = -EINVAL;
686 goto out;
687 }
688
689 /* prime objects have no backing filp to GEM pread/pwrite
690 * pages from.
691 */
692 if (!obj->base.filp) {
693 ret = -EINVAL;
694 goto out;
695 }
696
697 trace_i915_gem_object_pread(obj, args->offset, args->size);
698
699 ret = i915_gem_shmem_pread(dev, obj, args, file);
700
701 out:
702 drm_gem_object_unreference(&obj->base);
703 unlock:
704 mutex_unlock(&dev->struct_mutex);
705 return ret;
706 }
707
708 /* This is the fast write path which cannot handle
709 * page faults in the source data
710 */
711
712 static inline int
713 fast_user_write(struct io_mapping *mapping,
714 loff_t page_base, int page_offset,
715 char __user *user_data,
716 int length)
717 {
718 void __iomem *vaddr_atomic;
719 void *vaddr;
720 unsigned long unwritten;
721
722 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
723 /* We can use the cpu mem copy function because this is X86. */
724 vaddr = (void __force*)vaddr_atomic + page_offset;
725 unwritten = __copy_from_user_inatomic_nocache(vaddr,
726 user_data, length);
727 io_mapping_unmap_atomic(vaddr_atomic);
728 return unwritten;
729 }
730
731 /**
732 * This is the fast pwrite path, where we copy the data directly from the
733 * user into the GTT, uncached.
734 */
735 static int
736 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
737 struct drm_i915_gem_object *obj,
738 struct drm_i915_gem_pwrite *args,
739 struct drm_file *file)
740 {
741 struct drm_i915_private *dev_priv = dev->dev_private;
742 ssize_t remain;
743 loff_t offset, page_base;
744 char __user *user_data;
745 int page_offset, page_length, ret;
746
747 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
748 if (ret)
749 goto out;
750
751 ret = i915_gem_object_set_to_gtt_domain(obj, true);
752 if (ret)
753 goto out_unpin;
754
755 ret = i915_gem_object_put_fence(obj);
756 if (ret)
757 goto out_unpin;
758
759 user_data = to_user_ptr(args->data_ptr);
760 remain = args->size;
761
762 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
763
764 while (remain > 0) {
765 /* Operation in this page
766 *
767 * page_base = page offset within aperture
768 * page_offset = offset within page
769 * page_length = bytes to copy for this page
770 */
771 page_base = offset & PAGE_MASK;
772 page_offset = offset_in_page(offset);
773 page_length = remain;
774 if ((page_offset + remain) > PAGE_SIZE)
775 page_length = PAGE_SIZE - page_offset;
776
777 /* If we get a fault while copying data, then (presumably) our
778 * source page isn't available. Return the error and we'll
779 * retry in the slow path.
780 */
781 if (fast_user_write(dev_priv->gtt.mappable, page_base,
782 page_offset, user_data, page_length)) {
783 ret = -EFAULT;
784 goto out_unpin;
785 }
786
787 remain -= page_length;
788 user_data += page_length;
789 offset += page_length;
790 }
791
792 out_unpin:
793 i915_gem_object_ggtt_unpin(obj);
794 out:
795 return ret;
796 }
797
798 /* Per-page copy function for the shmem pwrite fastpath.
799 * Flushes invalid cachelines before writing to the target if
800 * needs_clflush_before is set and flushes out any written cachelines after
801 * writing if needs_clflush is set. */
802 static int
803 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
804 char __user *user_data,
805 bool page_do_bit17_swizzling,
806 bool needs_clflush_before,
807 bool needs_clflush_after)
808 {
809 char *vaddr;
810 int ret;
811
812 if (unlikely(page_do_bit17_swizzling))
813 return -EINVAL;
814
815 vaddr = kmap_atomic(page);
816 if (needs_clflush_before)
817 drm_clflush_virt_range(vaddr + shmem_page_offset,
818 page_length);
819 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
820 user_data, page_length);
821 if (needs_clflush_after)
822 drm_clflush_virt_range(vaddr + shmem_page_offset,
823 page_length);
824 kunmap_atomic(vaddr);
825
826 return ret ? -EFAULT : 0;
827 }
828
829 /* Only difference to the fast-path function is that this can handle bit17
830 * and uses non-atomic copy and kmap functions. */
831 static int
832 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
833 char __user *user_data,
834 bool page_do_bit17_swizzling,
835 bool needs_clflush_before,
836 bool needs_clflush_after)
837 {
838 char *vaddr;
839 int ret;
840
841 vaddr = kmap(page);
842 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
843 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
844 page_length,
845 page_do_bit17_swizzling);
846 if (page_do_bit17_swizzling)
847 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
848 user_data,
849 page_length);
850 else
851 ret = __copy_from_user(vaddr + shmem_page_offset,
852 user_data,
853 page_length);
854 if (needs_clflush_after)
855 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
856 page_length,
857 page_do_bit17_swizzling);
858 kunmap(page);
859
860 return ret ? -EFAULT : 0;
861 }
862
863 static int
864 i915_gem_shmem_pwrite(struct drm_device *dev,
865 struct drm_i915_gem_object *obj,
866 struct drm_i915_gem_pwrite *args,
867 struct drm_file *file)
868 {
869 ssize_t remain;
870 loff_t offset;
871 char __user *user_data;
872 int shmem_page_offset, page_length, ret = 0;
873 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
874 int hit_slowpath = 0;
875 int needs_clflush_after = 0;
876 int needs_clflush_before = 0;
877 struct sg_page_iter sg_iter;
878
879 user_data = to_user_ptr(args->data_ptr);
880 remain = args->size;
881
882 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
883
884 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
885 /* If we're not in the cpu write domain, set ourself into the gtt
886 * write domain and manually flush cachelines (if required). This
887 * optimizes for the case when the gpu will use the data
888 * right away and we therefore have to clflush anyway. */
889 needs_clflush_after = cpu_write_needs_clflush(obj);
890 ret = i915_gem_object_wait_rendering(obj, false);
891 if (ret)
892 return ret;
893
894 i915_gem_object_retire(obj);
895 }
896 /* Same trick applies to invalidate partially written cachelines read
897 * before writing. */
898 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
899 needs_clflush_before =
900 !cpu_cache_is_coherent(dev, obj->cache_level);
901
902 ret = i915_gem_object_get_pages(obj);
903 if (ret)
904 return ret;
905
906 i915_gem_object_pin_pages(obj);
907
908 offset = args->offset;
909 obj->dirty = 1;
910
911 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
912 offset >> PAGE_SHIFT) {
913 struct page *page = sg_page_iter_page(&sg_iter);
914 int partial_cacheline_write;
915
916 if (remain <= 0)
917 break;
918
919 /* Operation in this page
920 *
921 * shmem_page_offset = offset within page in shmem file
922 * page_length = bytes to copy for this page
923 */
924 shmem_page_offset = offset_in_page(offset);
925
926 page_length = remain;
927 if ((shmem_page_offset + page_length) > PAGE_SIZE)
928 page_length = PAGE_SIZE - shmem_page_offset;
929
930 /* If we don't overwrite a cacheline completely we need to be
931 * careful to have up-to-date data by first clflushing. Don't
932 * overcomplicate things and flush the entire patch. */
933 partial_cacheline_write = needs_clflush_before &&
934 ((shmem_page_offset | page_length)
935 & (boot_cpu_data.x86_clflush_size - 1));
936
937 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
938 (page_to_phys(page) & (1 << 17)) != 0;
939
940 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
941 user_data, page_do_bit17_swizzling,
942 partial_cacheline_write,
943 needs_clflush_after);
944 if (ret == 0)
945 goto next_page;
946
947 hit_slowpath = 1;
948 mutex_unlock(&dev->struct_mutex);
949 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
950 user_data, page_do_bit17_swizzling,
951 partial_cacheline_write,
952 needs_clflush_after);
953
954 mutex_lock(&dev->struct_mutex);
955
956 if (ret)
957 goto out;
958
959 next_page:
960 remain -= page_length;
961 user_data += page_length;
962 offset += page_length;
963 }
964
965 out:
966 i915_gem_object_unpin_pages(obj);
967
968 if (hit_slowpath) {
969 /*
970 * Fixup: Flush cpu caches in case we didn't flush the dirty
971 * cachelines in-line while writing and the object moved
972 * out of the cpu write domain while we've dropped the lock.
973 */
974 if (!needs_clflush_after &&
975 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
976 if (i915_gem_clflush_object(obj, obj->pin_display))
977 i915_gem_chipset_flush(dev);
978 }
979 }
980
981 if (needs_clflush_after)
982 i915_gem_chipset_flush(dev);
983
984 return ret;
985 }
986
987 /**
988 * Writes data to the object referenced by handle.
989 *
990 * On error, the contents of the buffer that were to be modified are undefined.
991 */
992 int
993 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
994 struct drm_file *file)
995 {
996 struct drm_i915_gem_pwrite *args = data;
997 struct drm_i915_gem_object *obj;
998 int ret;
999
1000 if (args->size == 0)
1001 return 0;
1002
1003 if (!access_ok(VERIFY_READ,
1004 to_user_ptr(args->data_ptr),
1005 args->size))
1006 return -EFAULT;
1007
1008 if (likely(!i915.prefault_disable)) {
1009 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1010 args->size);
1011 if (ret)
1012 return -EFAULT;
1013 }
1014
1015 ret = i915_mutex_lock_interruptible(dev);
1016 if (ret)
1017 return ret;
1018
1019 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1020 if (&obj->base == NULL) {
1021 ret = -ENOENT;
1022 goto unlock;
1023 }
1024
1025 /* Bounds check destination. */
1026 if (args->offset > obj->base.size ||
1027 args->size > obj->base.size - args->offset) {
1028 ret = -EINVAL;
1029 goto out;
1030 }
1031
1032 /* prime objects have no backing filp to GEM pread/pwrite
1033 * pages from.
1034 */
1035 if (!obj->base.filp) {
1036 ret = -EINVAL;
1037 goto out;
1038 }
1039
1040 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1041
1042 ret = -EFAULT;
1043 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1044 * it would end up going through the fenced access, and we'll get
1045 * different detiling behavior between reading and writing.
1046 * pread/pwrite currently are reading and writing from the CPU
1047 * perspective, requiring manual detiling by the client.
1048 */
1049 if (obj->phys_handle) {
1050 ret = i915_gem_phys_pwrite(obj, args, file);
1051 goto out;
1052 }
1053
1054 if (obj->tiling_mode == I915_TILING_NONE &&
1055 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1056 cpu_write_needs_clflush(obj)) {
1057 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1058 /* Note that the gtt paths might fail with non-page-backed user
1059 * pointers (e.g. gtt mappings when moving data between
1060 * textures). Fallback to the shmem path in that case. */
1061 }
1062
1063 if (ret == -EFAULT || ret == -ENOSPC)
1064 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1065
1066 out:
1067 drm_gem_object_unreference(&obj->base);
1068 unlock:
1069 mutex_unlock(&dev->struct_mutex);
1070 return ret;
1071 }
1072
1073 int
1074 i915_gem_check_wedge(struct i915_gpu_error *error,
1075 bool interruptible)
1076 {
1077 if (i915_reset_in_progress(error)) {
1078 /* Non-interruptible callers can't handle -EAGAIN, hence return
1079 * -EIO unconditionally for these. */
1080 if (!interruptible)
1081 return -EIO;
1082
1083 /* Recovery complete, but the reset failed ... */
1084 if (i915_terminally_wedged(error))
1085 return -EIO;
1086
1087 /*
1088 * Check if GPU Reset is in progress - we need intel_ring_begin
1089 * to work properly to reinit the hw state while the gpu is
1090 * still marked as reset-in-progress. Handle this with a flag.
1091 */
1092 if (!error->reload_in_reset)
1093 return -EAGAIN;
1094 }
1095
1096 return 0;
1097 }
1098
1099 /*
1100 * Compare seqno against outstanding lazy request. Emit a request if they are
1101 * equal.
1102 */
1103 int
1104 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1105 {
1106 int ret;
1107
1108 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1109
1110 ret = 0;
1111 if (seqno == ring->outstanding_lazy_seqno)
1112 ret = i915_add_request(ring, NULL);
1113
1114 return ret;
1115 }
1116
1117 static void fake_irq(unsigned long data)
1118 {
1119 wake_up_process((struct task_struct *)data);
1120 }
1121
1122 static bool missed_irq(struct drm_i915_private *dev_priv,
1123 struct intel_engine_cs *ring)
1124 {
1125 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1126 }
1127
1128 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1129 {
1130 if (file_priv == NULL)
1131 return true;
1132
1133 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1134 }
1135
1136 /**
1137 * __wait_seqno - wait until execution of seqno has finished
1138 * @ring: the ring expected to report seqno
1139 * @seqno: duh!
1140 * @reset_counter: reset sequence associated with the given seqno
1141 * @interruptible: do an interruptible wait (normally yes)
1142 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1143 *
1144 * Note: It is of utmost importance that the passed in seqno and reset_counter
1145 * values have been read by the caller in an smp safe manner. Where read-side
1146 * locks are involved, it is sufficient to read the reset_counter before
1147 * unlocking the lock that protects the seqno. For lockless tricks, the
1148 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1149 * inserted.
1150 *
1151 * Returns 0 if the seqno was found within the alloted time. Else returns the
1152 * errno with remaining time filled in timeout argument.
1153 */
1154 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1155 unsigned reset_counter,
1156 bool interruptible,
1157 s64 *timeout,
1158 struct drm_i915_file_private *file_priv)
1159 {
1160 struct drm_device *dev = ring->dev;
1161 struct drm_i915_private *dev_priv = dev->dev_private;
1162 const bool irq_test_in_progress =
1163 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1164 DEFINE_WAIT(wait);
1165 unsigned long timeout_expire;
1166 s64 before, now;
1167 int ret;
1168
1169 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1170
1171 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1172 return 0;
1173
1174 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1175
1176 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1177 gen6_rps_boost(dev_priv);
1178 if (file_priv)
1179 mod_delayed_work(dev_priv->wq,
1180 &file_priv->mm.idle_work,
1181 msecs_to_jiffies(100));
1182 }
1183
1184 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1185 return -ENODEV;
1186
1187 /* Record current time in case interrupted by signal, or wedged */
1188 trace_i915_gem_request_wait_begin(ring, seqno);
1189 before = ktime_get_raw_ns();
1190 for (;;) {
1191 struct timer_list timer;
1192
1193 prepare_to_wait(&ring->irq_queue, &wait,
1194 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1195
1196 /* We need to check whether any gpu reset happened in between
1197 * the caller grabbing the seqno and now ... */
1198 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1199 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1200 * is truely gone. */
1201 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1202 if (ret == 0)
1203 ret = -EAGAIN;
1204 break;
1205 }
1206
1207 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1208 ret = 0;
1209 break;
1210 }
1211
1212 if (interruptible && signal_pending(current)) {
1213 ret = -ERESTARTSYS;
1214 break;
1215 }
1216
1217 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1218 ret = -ETIME;
1219 break;
1220 }
1221
1222 timer.function = NULL;
1223 if (timeout || missed_irq(dev_priv, ring)) {
1224 unsigned long expire;
1225
1226 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1227 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1228 mod_timer(&timer, expire);
1229 }
1230
1231 io_schedule();
1232
1233 if (timer.function) {
1234 del_singleshot_timer_sync(&timer);
1235 destroy_timer_on_stack(&timer);
1236 }
1237 }
1238 now = ktime_get_raw_ns();
1239 trace_i915_gem_request_wait_end(ring, seqno);
1240
1241 if (!irq_test_in_progress)
1242 ring->irq_put(ring);
1243
1244 finish_wait(&ring->irq_queue, &wait);
1245
1246 if (timeout) {
1247 s64 tres = *timeout - (now - before);
1248
1249 *timeout = tres < 0 ? 0 : tres;
1250 }
1251
1252 return ret;
1253 }
1254
1255 /**
1256 * Waits for a sequence number to be signaled, and cleans up the
1257 * request and object lists appropriately for that event.
1258 */
1259 int
1260 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1261 {
1262 struct drm_device *dev = ring->dev;
1263 struct drm_i915_private *dev_priv = dev->dev_private;
1264 bool interruptible = dev_priv->mm.interruptible;
1265 int ret;
1266
1267 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1268 BUG_ON(seqno == 0);
1269
1270 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1271 if (ret)
1272 return ret;
1273
1274 ret = i915_gem_check_olr(ring, seqno);
1275 if (ret)
1276 return ret;
1277
1278 return __wait_seqno(ring, seqno,
1279 atomic_read(&dev_priv->gpu_error.reset_counter),
1280 interruptible, NULL, NULL);
1281 }
1282
1283 static int
1284 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1285 {
1286 if (!obj->active)
1287 return 0;
1288
1289 /* Manually manage the write flush as we may have not yet
1290 * retired the buffer.
1291 *
1292 * Note that the last_write_seqno is always the earlier of
1293 * the two (read/write) seqno, so if we haved successfully waited,
1294 * we know we have passed the last write.
1295 */
1296 obj->last_write_seqno = 0;
1297
1298 return 0;
1299 }
1300
1301 /**
1302 * Ensures that all rendering to the object has completed and the object is
1303 * safe to unbind from the GTT or access from the CPU.
1304 */
1305 static __must_check int
1306 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1307 bool readonly)
1308 {
1309 struct intel_engine_cs *ring = obj->ring;
1310 u32 seqno;
1311 int ret;
1312
1313 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1314 if (seqno == 0)
1315 return 0;
1316
1317 ret = i915_wait_seqno(ring, seqno);
1318 if (ret)
1319 return ret;
1320
1321 return i915_gem_object_wait_rendering__tail(obj);
1322 }
1323
1324 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1325 * as the object state may change during this call.
1326 */
1327 static __must_check int
1328 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1329 struct drm_i915_file_private *file_priv,
1330 bool readonly)
1331 {
1332 struct drm_device *dev = obj->base.dev;
1333 struct drm_i915_private *dev_priv = dev->dev_private;
1334 struct intel_engine_cs *ring = obj->ring;
1335 unsigned reset_counter;
1336 u32 seqno;
1337 int ret;
1338
1339 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1340 BUG_ON(!dev_priv->mm.interruptible);
1341
1342 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1343 if (seqno == 0)
1344 return 0;
1345
1346 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1347 if (ret)
1348 return ret;
1349
1350 ret = i915_gem_check_olr(ring, seqno);
1351 if (ret)
1352 return ret;
1353
1354 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1355 mutex_unlock(&dev->struct_mutex);
1356 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1357 mutex_lock(&dev->struct_mutex);
1358 if (ret)
1359 return ret;
1360
1361 return i915_gem_object_wait_rendering__tail(obj);
1362 }
1363
1364 /**
1365 * Called when user space prepares to use an object with the CPU, either
1366 * through the mmap ioctl's mapping or a GTT mapping.
1367 */
1368 int
1369 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1370 struct drm_file *file)
1371 {
1372 struct drm_i915_gem_set_domain *args = data;
1373 struct drm_i915_gem_object *obj;
1374 uint32_t read_domains = args->read_domains;
1375 uint32_t write_domain = args->write_domain;
1376 int ret;
1377
1378 /* Only handle setting domains to types used by the CPU. */
1379 if (write_domain & I915_GEM_GPU_DOMAINS)
1380 return -EINVAL;
1381
1382 if (read_domains & I915_GEM_GPU_DOMAINS)
1383 return -EINVAL;
1384
1385 /* Having something in the write domain implies it's in the read
1386 * domain, and only that read domain. Enforce that in the request.
1387 */
1388 if (write_domain != 0 && read_domains != write_domain)
1389 return -EINVAL;
1390
1391 ret = i915_mutex_lock_interruptible(dev);
1392 if (ret)
1393 return ret;
1394
1395 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1396 if (&obj->base == NULL) {
1397 ret = -ENOENT;
1398 goto unlock;
1399 }
1400
1401 /* Try to flush the object off the GPU without holding the lock.
1402 * We will repeat the flush holding the lock in the normal manner
1403 * to catch cases where we are gazumped.
1404 */
1405 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1406 file->driver_priv,
1407 !write_domain);
1408 if (ret)
1409 goto unref;
1410
1411 if (read_domains & I915_GEM_DOMAIN_GTT) {
1412 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1413
1414 /* Silently promote "you're not bound, there was nothing to do"
1415 * to success, since the client was just asking us to
1416 * make sure everything was done.
1417 */
1418 if (ret == -EINVAL)
1419 ret = 0;
1420 } else {
1421 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1422 }
1423
1424 unref:
1425 drm_gem_object_unreference(&obj->base);
1426 unlock:
1427 mutex_unlock(&dev->struct_mutex);
1428 return ret;
1429 }
1430
1431 /**
1432 * Called when user space has done writes to this buffer
1433 */
1434 int
1435 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1436 struct drm_file *file)
1437 {
1438 struct drm_i915_gem_sw_finish *args = data;
1439 struct drm_i915_gem_object *obj;
1440 int ret = 0;
1441
1442 ret = i915_mutex_lock_interruptible(dev);
1443 if (ret)
1444 return ret;
1445
1446 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1447 if (&obj->base == NULL) {
1448 ret = -ENOENT;
1449 goto unlock;
1450 }
1451
1452 /* Pinned buffers may be scanout, so flush the cache */
1453 if (obj->pin_display)
1454 i915_gem_object_flush_cpu_write_domain(obj, true);
1455
1456 drm_gem_object_unreference(&obj->base);
1457 unlock:
1458 mutex_unlock(&dev->struct_mutex);
1459 return ret;
1460 }
1461
1462 /**
1463 * Maps the contents of an object, returning the address it is mapped
1464 * into.
1465 *
1466 * While the mapping holds a reference on the contents of the object, it doesn't
1467 * imply a ref on the object itself.
1468 *
1469 * IMPORTANT:
1470 *
1471 * DRM driver writers who look a this function as an example for how to do GEM
1472 * mmap support, please don't implement mmap support like here. The modern way
1473 * to implement DRM mmap support is with an mmap offset ioctl (like
1474 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1475 * That way debug tooling like valgrind will understand what's going on, hiding
1476 * the mmap call in a driver private ioctl will break that. The i915 driver only
1477 * does cpu mmaps this way because we didn't know better.
1478 */
1479 int
1480 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1481 struct drm_file *file)
1482 {
1483 struct drm_i915_gem_mmap *args = data;
1484 struct drm_gem_object *obj;
1485 unsigned long addr;
1486
1487 obj = drm_gem_object_lookup(dev, file, args->handle);
1488 if (obj == NULL)
1489 return -ENOENT;
1490
1491 /* prime objects have no backing filp to GEM mmap
1492 * pages from.
1493 */
1494 if (!obj->filp) {
1495 drm_gem_object_unreference_unlocked(obj);
1496 return -EINVAL;
1497 }
1498
1499 addr = vm_mmap(obj->filp, 0, args->size,
1500 PROT_READ | PROT_WRITE, MAP_SHARED,
1501 args->offset);
1502 drm_gem_object_unreference_unlocked(obj);
1503 if (IS_ERR((void *)addr))
1504 return addr;
1505
1506 args->addr_ptr = (uint64_t) addr;
1507
1508 return 0;
1509 }
1510
1511 /**
1512 * i915_gem_fault - fault a page into the GTT
1513 * vma: VMA in question
1514 * vmf: fault info
1515 *
1516 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1517 * from userspace. The fault handler takes care of binding the object to
1518 * the GTT (if needed), allocating and programming a fence register (again,
1519 * only if needed based on whether the old reg is still valid or the object
1520 * is tiled) and inserting a new PTE into the faulting process.
1521 *
1522 * Note that the faulting process may involve evicting existing objects
1523 * from the GTT and/or fence registers to make room. So performance may
1524 * suffer if the GTT working set is large or there are few fence registers
1525 * left.
1526 */
1527 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1528 {
1529 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1530 struct drm_device *dev = obj->base.dev;
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 pgoff_t page_offset;
1533 unsigned long pfn;
1534 int ret = 0;
1535 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1536
1537 intel_runtime_pm_get(dev_priv);
1538
1539 /* We don't use vmf->pgoff since that has the fake offset */
1540 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1541 PAGE_SHIFT;
1542
1543 ret = i915_mutex_lock_interruptible(dev);
1544 if (ret)
1545 goto out;
1546
1547 trace_i915_gem_object_fault(obj, page_offset, true, write);
1548
1549 /* Try to flush the object off the GPU first without holding the lock.
1550 * Upon reacquiring the lock, we will perform our sanity checks and then
1551 * repeat the flush holding the lock in the normal manner to catch cases
1552 * where we are gazumped.
1553 */
1554 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1555 if (ret)
1556 goto unlock;
1557
1558 /* Access to snoopable pages through the GTT is incoherent. */
1559 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1560 ret = -EFAULT;
1561 goto unlock;
1562 }
1563
1564 /* Now bind it into the GTT if needed */
1565 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1566 if (ret)
1567 goto unlock;
1568
1569 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1570 if (ret)
1571 goto unpin;
1572
1573 ret = i915_gem_object_get_fence(obj);
1574 if (ret)
1575 goto unpin;
1576
1577 /* Finally, remap it using the new GTT offset */
1578 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1579 pfn >>= PAGE_SHIFT;
1580
1581 if (!obj->fault_mappable) {
1582 unsigned long size = min_t(unsigned long,
1583 vma->vm_end - vma->vm_start,
1584 obj->base.size);
1585 int i;
1586
1587 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1588 ret = vm_insert_pfn(vma,
1589 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1590 pfn + i);
1591 if (ret)
1592 break;
1593 }
1594
1595 obj->fault_mappable = true;
1596 } else
1597 ret = vm_insert_pfn(vma,
1598 (unsigned long)vmf->virtual_address,
1599 pfn + page_offset);
1600 unpin:
1601 i915_gem_object_ggtt_unpin(obj);
1602 unlock:
1603 mutex_unlock(&dev->struct_mutex);
1604 out:
1605 switch (ret) {
1606 case -EIO:
1607 /*
1608 * We eat errors when the gpu is terminally wedged to avoid
1609 * userspace unduly crashing (gl has no provisions for mmaps to
1610 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1611 * and so needs to be reported.
1612 */
1613 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1614 ret = VM_FAULT_SIGBUS;
1615 break;
1616 }
1617 case -EAGAIN:
1618 /*
1619 * EAGAIN means the gpu is hung and we'll wait for the error
1620 * handler to reset everything when re-faulting in
1621 * i915_mutex_lock_interruptible.
1622 */
1623 case 0:
1624 case -ERESTARTSYS:
1625 case -EINTR:
1626 case -EBUSY:
1627 /*
1628 * EBUSY is ok: this just means that another thread
1629 * already did the job.
1630 */
1631 ret = VM_FAULT_NOPAGE;
1632 break;
1633 case -ENOMEM:
1634 ret = VM_FAULT_OOM;
1635 break;
1636 case -ENOSPC:
1637 case -EFAULT:
1638 ret = VM_FAULT_SIGBUS;
1639 break;
1640 default:
1641 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1642 ret = VM_FAULT_SIGBUS;
1643 break;
1644 }
1645
1646 intel_runtime_pm_put(dev_priv);
1647 return ret;
1648 }
1649
1650 /**
1651 * i915_gem_release_mmap - remove physical page mappings
1652 * @obj: obj in question
1653 *
1654 * Preserve the reservation of the mmapping with the DRM core code, but
1655 * relinquish ownership of the pages back to the system.
1656 *
1657 * It is vital that we remove the page mapping if we have mapped a tiled
1658 * object through the GTT and then lose the fence register due to
1659 * resource pressure. Similarly if the object has been moved out of the
1660 * aperture, than pages mapped into userspace must be revoked. Removing the
1661 * mapping will then trigger a page fault on the next user access, allowing
1662 * fixup by i915_gem_fault().
1663 */
1664 void
1665 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1666 {
1667 if (!obj->fault_mappable)
1668 return;
1669
1670 drm_vma_node_unmap(&obj->base.vma_node,
1671 obj->base.dev->anon_inode->i_mapping);
1672 obj->fault_mappable = false;
1673 }
1674
1675 void
1676 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1677 {
1678 struct drm_i915_gem_object *obj;
1679
1680 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1681 i915_gem_release_mmap(obj);
1682 }
1683
1684 uint32_t
1685 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1686 {
1687 uint32_t gtt_size;
1688
1689 if (INTEL_INFO(dev)->gen >= 4 ||
1690 tiling_mode == I915_TILING_NONE)
1691 return size;
1692
1693 /* Previous chips need a power-of-two fence region when tiling */
1694 if (INTEL_INFO(dev)->gen == 3)
1695 gtt_size = 1024*1024;
1696 else
1697 gtt_size = 512*1024;
1698
1699 while (gtt_size < size)
1700 gtt_size <<= 1;
1701
1702 return gtt_size;
1703 }
1704
1705 /**
1706 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1707 * @obj: object to check
1708 *
1709 * Return the required GTT alignment for an object, taking into account
1710 * potential fence register mapping.
1711 */
1712 uint32_t
1713 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1714 int tiling_mode, bool fenced)
1715 {
1716 /*
1717 * Minimum alignment is 4k (GTT page size), but might be greater
1718 * if a fence register is needed for the object.
1719 */
1720 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1721 tiling_mode == I915_TILING_NONE)
1722 return 4096;
1723
1724 /*
1725 * Previous chips need to be aligned to the size of the smallest
1726 * fence register that can contain the object.
1727 */
1728 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1729 }
1730
1731 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1732 {
1733 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1734 int ret;
1735
1736 if (drm_vma_node_has_offset(&obj->base.vma_node))
1737 return 0;
1738
1739 dev_priv->mm.shrinker_no_lock_stealing = true;
1740
1741 ret = drm_gem_create_mmap_offset(&obj->base);
1742 if (ret != -ENOSPC)
1743 goto out;
1744
1745 /* Badly fragmented mmap space? The only way we can recover
1746 * space is by destroying unwanted objects. We can't randomly release
1747 * mmap_offsets as userspace expects them to be persistent for the
1748 * lifetime of the objects. The closest we can is to release the
1749 * offsets on purgeable objects by truncating it and marking it purged,
1750 * which prevents userspace from ever using that object again.
1751 */
1752 i915_gem_shrink(dev_priv,
1753 obj->base.size >> PAGE_SHIFT,
1754 I915_SHRINK_BOUND |
1755 I915_SHRINK_UNBOUND |
1756 I915_SHRINK_PURGEABLE);
1757 ret = drm_gem_create_mmap_offset(&obj->base);
1758 if (ret != -ENOSPC)
1759 goto out;
1760
1761 i915_gem_shrink_all(dev_priv);
1762 ret = drm_gem_create_mmap_offset(&obj->base);
1763 out:
1764 dev_priv->mm.shrinker_no_lock_stealing = false;
1765
1766 return ret;
1767 }
1768
1769 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1770 {
1771 drm_gem_free_mmap_offset(&obj->base);
1772 }
1773
1774 int
1775 i915_gem_mmap_gtt(struct drm_file *file,
1776 struct drm_device *dev,
1777 uint32_t handle,
1778 uint64_t *offset)
1779 {
1780 struct drm_i915_private *dev_priv = dev->dev_private;
1781 struct drm_i915_gem_object *obj;
1782 int ret;
1783
1784 ret = i915_mutex_lock_interruptible(dev);
1785 if (ret)
1786 return ret;
1787
1788 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1789 if (&obj->base == NULL) {
1790 ret = -ENOENT;
1791 goto unlock;
1792 }
1793
1794 if (obj->base.size > dev_priv->gtt.mappable_end) {
1795 ret = -E2BIG;
1796 goto out;
1797 }
1798
1799 if (obj->madv != I915_MADV_WILLNEED) {
1800 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1801 ret = -EFAULT;
1802 goto out;
1803 }
1804
1805 ret = i915_gem_object_create_mmap_offset(obj);
1806 if (ret)
1807 goto out;
1808
1809 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1810
1811 out:
1812 drm_gem_object_unreference(&obj->base);
1813 unlock:
1814 mutex_unlock(&dev->struct_mutex);
1815 return ret;
1816 }
1817
1818 /**
1819 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1820 * @dev: DRM device
1821 * @data: GTT mapping ioctl data
1822 * @file: GEM object info
1823 *
1824 * Simply returns the fake offset to userspace so it can mmap it.
1825 * The mmap call will end up in drm_gem_mmap(), which will set things
1826 * up so we can get faults in the handler above.
1827 *
1828 * The fault handler will take care of binding the object into the GTT
1829 * (since it may have been evicted to make room for something), allocating
1830 * a fence register, and mapping the appropriate aperture address into
1831 * userspace.
1832 */
1833 int
1834 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1835 struct drm_file *file)
1836 {
1837 struct drm_i915_gem_mmap_gtt *args = data;
1838
1839 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1840 }
1841
1842 static inline int
1843 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1844 {
1845 return obj->madv == I915_MADV_DONTNEED;
1846 }
1847
1848 /* Immediately discard the backing storage */
1849 static void
1850 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1851 {
1852 i915_gem_object_free_mmap_offset(obj);
1853
1854 if (obj->base.filp == NULL)
1855 return;
1856
1857 /* Our goal here is to return as much of the memory as
1858 * is possible back to the system as we are called from OOM.
1859 * To do this we must instruct the shmfs to drop all of its
1860 * backing pages, *now*.
1861 */
1862 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1863 obj->madv = __I915_MADV_PURGED;
1864 }
1865
1866 /* Try to discard unwanted pages */
1867 static void
1868 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1869 {
1870 struct address_space *mapping;
1871
1872 switch (obj->madv) {
1873 case I915_MADV_DONTNEED:
1874 i915_gem_object_truncate(obj);
1875 case __I915_MADV_PURGED:
1876 return;
1877 }
1878
1879 if (obj->base.filp == NULL)
1880 return;
1881
1882 mapping = file_inode(obj->base.filp)->i_mapping,
1883 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1884 }
1885
1886 static void
1887 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1888 {
1889 struct sg_page_iter sg_iter;
1890 int ret;
1891
1892 BUG_ON(obj->madv == __I915_MADV_PURGED);
1893
1894 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1895 if (ret) {
1896 /* In the event of a disaster, abandon all caches and
1897 * hope for the best.
1898 */
1899 WARN_ON(ret != -EIO);
1900 i915_gem_clflush_object(obj, true);
1901 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1902 }
1903
1904 if (i915_gem_object_needs_bit17_swizzle(obj))
1905 i915_gem_object_save_bit_17_swizzle(obj);
1906
1907 if (obj->madv == I915_MADV_DONTNEED)
1908 obj->dirty = 0;
1909
1910 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1911 struct page *page = sg_page_iter_page(&sg_iter);
1912
1913 if (obj->dirty)
1914 set_page_dirty(page);
1915
1916 if (obj->madv == I915_MADV_WILLNEED)
1917 mark_page_accessed(page);
1918
1919 page_cache_release(page);
1920 }
1921 obj->dirty = 0;
1922
1923 sg_free_table(obj->pages);
1924 kfree(obj->pages);
1925 }
1926
1927 int
1928 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1929 {
1930 const struct drm_i915_gem_object_ops *ops = obj->ops;
1931
1932 if (obj->pages == NULL)
1933 return 0;
1934
1935 if (obj->pages_pin_count)
1936 return -EBUSY;
1937
1938 BUG_ON(i915_gem_obj_bound_any(obj));
1939
1940 /* ->put_pages might need to allocate memory for the bit17 swizzle
1941 * array, hence protect them from being reaped by removing them from gtt
1942 * lists early. */
1943 list_del(&obj->global_list);
1944
1945 ops->put_pages(obj);
1946 obj->pages = NULL;
1947
1948 i915_gem_object_invalidate(obj);
1949
1950 return 0;
1951 }
1952
1953 unsigned long
1954 i915_gem_shrink(struct drm_i915_private *dev_priv,
1955 long target, unsigned flags)
1956 {
1957 const struct {
1958 struct list_head *list;
1959 unsigned int bit;
1960 } phases[] = {
1961 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
1962 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
1963 { NULL, 0 },
1964 }, *phase;
1965 unsigned long count = 0;
1966
1967 /*
1968 * As we may completely rewrite the (un)bound list whilst unbinding
1969 * (due to retiring requests) we have to strictly process only
1970 * one element of the list at the time, and recheck the list
1971 * on every iteration.
1972 *
1973 * In particular, we must hold a reference whilst removing the
1974 * object as we may end up waiting for and/or retiring the objects.
1975 * This might release the final reference (held by the active list)
1976 * and result in the object being freed from under us. This is
1977 * similar to the precautions the eviction code must take whilst
1978 * removing objects.
1979 *
1980 * Also note that although these lists do not hold a reference to
1981 * the object we can safely grab one here: The final object
1982 * unreferencing and the bound_list are both protected by the
1983 * dev->struct_mutex and so we won't ever be able to observe an
1984 * object on the bound_list with a reference count equals 0.
1985 */
1986 for (phase = phases; phase->list; phase++) {
1987 struct list_head still_in_list;
1988
1989 if ((flags & phase->bit) == 0)
1990 continue;
1991
1992 INIT_LIST_HEAD(&still_in_list);
1993 while (count < target && !list_empty(phase->list)) {
1994 struct drm_i915_gem_object *obj;
1995 struct i915_vma *vma, *v;
1996
1997 obj = list_first_entry(phase->list,
1998 typeof(*obj), global_list);
1999 list_move_tail(&obj->global_list, &still_in_list);
2000
2001 if (flags & I915_SHRINK_PURGEABLE &&
2002 !i915_gem_object_is_purgeable(obj))
2003 continue;
2004
2005 drm_gem_object_reference(&obj->base);
2006
2007 /* For the unbound phase, this should be a no-op! */
2008 list_for_each_entry_safe(vma, v,
2009 &obj->vma_list, vma_link)
2010 if (i915_vma_unbind(vma))
2011 break;
2012
2013 if (i915_gem_object_put_pages(obj) == 0)
2014 count += obj->base.size >> PAGE_SHIFT;
2015
2016 drm_gem_object_unreference(&obj->base);
2017 }
2018 list_splice(&still_in_list, phase->list);
2019 }
2020
2021 return count;
2022 }
2023
2024 static unsigned long
2025 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2026 {
2027 i915_gem_evict_everything(dev_priv->dev);
2028 return i915_gem_shrink(dev_priv, LONG_MAX,
2029 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2030 }
2031
2032 static int
2033 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2034 {
2035 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2036 int page_count, i;
2037 struct address_space *mapping;
2038 struct sg_table *st;
2039 struct scatterlist *sg;
2040 struct sg_page_iter sg_iter;
2041 struct page *page;
2042 unsigned long last_pfn = 0; /* suppress gcc warning */
2043 gfp_t gfp;
2044
2045 /* Assert that the object is not currently in any GPU domain. As it
2046 * wasn't in the GTT, there shouldn't be any way it could have been in
2047 * a GPU cache
2048 */
2049 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2050 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2051
2052 st = kmalloc(sizeof(*st), GFP_KERNEL);
2053 if (st == NULL)
2054 return -ENOMEM;
2055
2056 page_count = obj->base.size / PAGE_SIZE;
2057 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2058 kfree(st);
2059 return -ENOMEM;
2060 }
2061
2062 /* Get the list of pages out of our struct file. They'll be pinned
2063 * at this point until we release them.
2064 *
2065 * Fail silently without starting the shrinker
2066 */
2067 mapping = file_inode(obj->base.filp)->i_mapping;
2068 gfp = mapping_gfp_mask(mapping);
2069 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2070 gfp &= ~(__GFP_IO | __GFP_WAIT);
2071 sg = st->sgl;
2072 st->nents = 0;
2073 for (i = 0; i < page_count; i++) {
2074 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2075 if (IS_ERR(page)) {
2076 i915_gem_shrink(dev_priv,
2077 page_count,
2078 I915_SHRINK_BOUND |
2079 I915_SHRINK_UNBOUND |
2080 I915_SHRINK_PURGEABLE);
2081 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2082 }
2083 if (IS_ERR(page)) {
2084 /* We've tried hard to allocate the memory by reaping
2085 * our own buffer, now let the real VM do its job and
2086 * go down in flames if truly OOM.
2087 */
2088 i915_gem_shrink_all(dev_priv);
2089 page = shmem_read_mapping_page(mapping, i);
2090 if (IS_ERR(page))
2091 goto err_pages;
2092 }
2093 #ifdef CONFIG_SWIOTLB
2094 if (swiotlb_nr_tbl()) {
2095 st->nents++;
2096 sg_set_page(sg, page, PAGE_SIZE, 0);
2097 sg = sg_next(sg);
2098 continue;
2099 }
2100 #endif
2101 if (!i || page_to_pfn(page) != last_pfn + 1) {
2102 if (i)
2103 sg = sg_next(sg);
2104 st->nents++;
2105 sg_set_page(sg, page, PAGE_SIZE, 0);
2106 } else {
2107 sg->length += PAGE_SIZE;
2108 }
2109 last_pfn = page_to_pfn(page);
2110
2111 /* Check that the i965g/gm workaround works. */
2112 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2113 }
2114 #ifdef CONFIG_SWIOTLB
2115 if (!swiotlb_nr_tbl())
2116 #endif
2117 sg_mark_end(sg);
2118 obj->pages = st;
2119
2120 if (i915_gem_object_needs_bit17_swizzle(obj))
2121 i915_gem_object_do_bit_17_swizzle(obj);
2122
2123 return 0;
2124
2125 err_pages:
2126 sg_mark_end(sg);
2127 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2128 page_cache_release(sg_page_iter_page(&sg_iter));
2129 sg_free_table(st);
2130 kfree(st);
2131
2132 /* shmemfs first checks if there is enough memory to allocate the page
2133 * and reports ENOSPC should there be insufficient, along with the usual
2134 * ENOMEM for a genuine allocation failure.
2135 *
2136 * We use ENOSPC in our driver to mean that we have run out of aperture
2137 * space and so want to translate the error from shmemfs back to our
2138 * usual understanding of ENOMEM.
2139 */
2140 if (PTR_ERR(page) == -ENOSPC)
2141 return -ENOMEM;
2142 else
2143 return PTR_ERR(page);
2144 }
2145
2146 /* Ensure that the associated pages are gathered from the backing storage
2147 * and pinned into our object. i915_gem_object_get_pages() may be called
2148 * multiple times before they are released by a single call to
2149 * i915_gem_object_put_pages() - once the pages are no longer referenced
2150 * either as a result of memory pressure (reaping pages under the shrinker)
2151 * or as the object is itself released.
2152 */
2153 int
2154 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2155 {
2156 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2157 const struct drm_i915_gem_object_ops *ops = obj->ops;
2158 int ret;
2159
2160 if (obj->pages)
2161 return 0;
2162
2163 if (obj->madv != I915_MADV_WILLNEED) {
2164 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2165 return -EFAULT;
2166 }
2167
2168 BUG_ON(obj->pages_pin_count);
2169
2170 ret = ops->get_pages(obj);
2171 if (ret)
2172 return ret;
2173
2174 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2175 return 0;
2176 }
2177
2178 static void
2179 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2180 struct intel_engine_cs *ring)
2181 {
2182 u32 seqno = intel_ring_get_seqno(ring);
2183
2184 BUG_ON(ring == NULL);
2185 if (obj->ring != ring && obj->last_write_seqno) {
2186 /* Keep the seqno relative to the current ring */
2187 obj->last_write_seqno = seqno;
2188 }
2189 obj->ring = ring;
2190
2191 /* Add a reference if we're newly entering the active list. */
2192 if (!obj->active) {
2193 drm_gem_object_reference(&obj->base);
2194 obj->active = 1;
2195 }
2196
2197 list_move_tail(&obj->ring_list, &ring->active_list);
2198
2199 obj->last_read_seqno = seqno;
2200 }
2201
2202 void i915_vma_move_to_active(struct i915_vma *vma,
2203 struct intel_engine_cs *ring)
2204 {
2205 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2206 return i915_gem_object_move_to_active(vma->obj, ring);
2207 }
2208
2209 static void
2210 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2211 {
2212 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2213 struct i915_address_space *vm;
2214 struct i915_vma *vma;
2215
2216 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2217 BUG_ON(!obj->active);
2218
2219 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2220 vma = i915_gem_obj_to_vma(obj, vm);
2221 if (vma && !list_empty(&vma->mm_list))
2222 list_move_tail(&vma->mm_list, &vm->inactive_list);
2223 }
2224
2225 intel_fb_obj_flush(obj, true);
2226
2227 list_del_init(&obj->ring_list);
2228 obj->ring = NULL;
2229
2230 obj->last_read_seqno = 0;
2231 obj->last_write_seqno = 0;
2232 obj->base.write_domain = 0;
2233
2234 obj->last_fenced_seqno = 0;
2235
2236 obj->active = 0;
2237 drm_gem_object_unreference(&obj->base);
2238
2239 WARN_ON(i915_verify_lists(dev));
2240 }
2241
2242 static void
2243 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2244 {
2245 struct intel_engine_cs *ring = obj->ring;
2246
2247 if (ring == NULL)
2248 return;
2249
2250 if (i915_seqno_passed(ring->get_seqno(ring, true),
2251 obj->last_read_seqno))
2252 i915_gem_object_move_to_inactive(obj);
2253 }
2254
2255 static int
2256 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2257 {
2258 struct drm_i915_private *dev_priv = dev->dev_private;
2259 struct intel_engine_cs *ring;
2260 int ret, i, j;
2261
2262 /* Carefully retire all requests without writing to the rings */
2263 for_each_ring(ring, dev_priv, i) {
2264 ret = intel_ring_idle(ring);
2265 if (ret)
2266 return ret;
2267 }
2268 i915_gem_retire_requests(dev);
2269
2270 /* Finally reset hw state */
2271 for_each_ring(ring, dev_priv, i) {
2272 intel_ring_init_seqno(ring, seqno);
2273
2274 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2275 ring->semaphore.sync_seqno[j] = 0;
2276 }
2277
2278 return 0;
2279 }
2280
2281 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2282 {
2283 struct drm_i915_private *dev_priv = dev->dev_private;
2284 int ret;
2285
2286 if (seqno == 0)
2287 return -EINVAL;
2288
2289 /* HWS page needs to be set less than what we
2290 * will inject to ring
2291 */
2292 ret = i915_gem_init_seqno(dev, seqno - 1);
2293 if (ret)
2294 return ret;
2295
2296 /* Carefully set the last_seqno value so that wrap
2297 * detection still works
2298 */
2299 dev_priv->next_seqno = seqno;
2300 dev_priv->last_seqno = seqno - 1;
2301 if (dev_priv->last_seqno == 0)
2302 dev_priv->last_seqno--;
2303
2304 return 0;
2305 }
2306
2307 int
2308 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2309 {
2310 struct drm_i915_private *dev_priv = dev->dev_private;
2311
2312 /* reserve 0 for non-seqno */
2313 if (dev_priv->next_seqno == 0) {
2314 int ret = i915_gem_init_seqno(dev, 0);
2315 if (ret)
2316 return ret;
2317
2318 dev_priv->next_seqno = 1;
2319 }
2320
2321 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2322 return 0;
2323 }
2324
2325 int __i915_add_request(struct intel_engine_cs *ring,
2326 struct drm_file *file,
2327 struct drm_i915_gem_object *obj,
2328 u32 *out_seqno)
2329 {
2330 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2331 struct drm_i915_gem_request *request;
2332 struct intel_ringbuffer *ringbuf;
2333 u32 request_ring_position, request_start;
2334 int ret;
2335
2336 request = ring->preallocated_lazy_request;
2337 if (WARN_ON(request == NULL))
2338 return -ENOMEM;
2339
2340 if (i915.enable_execlists) {
2341 struct intel_context *ctx = request->ctx;
2342 ringbuf = ctx->engine[ring->id].ringbuf;
2343 } else
2344 ringbuf = ring->buffer;
2345
2346 request_start = intel_ring_get_tail(ringbuf);
2347 /*
2348 * Emit any outstanding flushes - execbuf can fail to emit the flush
2349 * after having emitted the batchbuffer command. Hence we need to fix
2350 * things up similar to emitting the lazy request. The difference here
2351 * is that the flush _must_ happen before the next request, no matter
2352 * what.
2353 */
2354 if (i915.enable_execlists) {
2355 ret = logical_ring_flush_all_caches(ringbuf);
2356 if (ret)
2357 return ret;
2358 } else {
2359 ret = intel_ring_flush_all_caches(ring);
2360 if (ret)
2361 return ret;
2362 }
2363
2364 /* Record the position of the start of the request so that
2365 * should we detect the updated seqno part-way through the
2366 * GPU processing the request, we never over-estimate the
2367 * position of the head.
2368 */
2369 request_ring_position = intel_ring_get_tail(ringbuf);
2370
2371 if (i915.enable_execlists) {
2372 ret = ring->emit_request(ringbuf);
2373 if (ret)
2374 return ret;
2375 } else {
2376 ret = ring->add_request(ring);
2377 if (ret)
2378 return ret;
2379 }
2380
2381 request->seqno = intel_ring_get_seqno(ring);
2382 request->ring = ring;
2383 request->head = request_start;
2384 request->tail = request_ring_position;
2385
2386 /* Whilst this request exists, batch_obj will be on the
2387 * active_list, and so will hold the active reference. Only when this
2388 * request is retired will the the batch_obj be moved onto the
2389 * inactive_list and lose its active reference. Hence we do not need
2390 * to explicitly hold another reference here.
2391 */
2392 request->batch_obj = obj;
2393
2394 if (!i915.enable_execlists) {
2395 /* Hold a reference to the current context so that we can inspect
2396 * it later in case a hangcheck error event fires.
2397 */
2398 request->ctx = ring->last_context;
2399 if (request->ctx)
2400 i915_gem_context_reference(request->ctx);
2401 }
2402
2403 request->emitted_jiffies = jiffies;
2404 list_add_tail(&request->list, &ring->request_list);
2405 request->file_priv = NULL;
2406
2407 if (file) {
2408 struct drm_i915_file_private *file_priv = file->driver_priv;
2409
2410 spin_lock(&file_priv->mm.lock);
2411 request->file_priv = file_priv;
2412 list_add_tail(&request->client_list,
2413 &file_priv->mm.request_list);
2414 spin_unlock(&file_priv->mm.lock);
2415 }
2416
2417 trace_i915_gem_request_add(ring, request->seqno);
2418 ring->outstanding_lazy_seqno = 0;
2419 ring->preallocated_lazy_request = NULL;
2420
2421 if (!dev_priv->ums.mm_suspended) {
2422 i915_queue_hangcheck(ring->dev);
2423
2424 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2425 queue_delayed_work(dev_priv->wq,
2426 &dev_priv->mm.retire_work,
2427 round_jiffies_up_relative(HZ));
2428 intel_mark_busy(dev_priv->dev);
2429 }
2430
2431 if (out_seqno)
2432 *out_seqno = request->seqno;
2433 return 0;
2434 }
2435
2436 static inline void
2437 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2438 {
2439 struct drm_i915_file_private *file_priv = request->file_priv;
2440
2441 if (!file_priv)
2442 return;
2443
2444 spin_lock(&file_priv->mm.lock);
2445 list_del(&request->client_list);
2446 request->file_priv = NULL;
2447 spin_unlock(&file_priv->mm.lock);
2448 }
2449
2450 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2451 const struct intel_context *ctx)
2452 {
2453 unsigned long elapsed;
2454
2455 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2456
2457 if (ctx->hang_stats.banned)
2458 return true;
2459
2460 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2461 if (!i915_gem_context_is_default(ctx)) {
2462 DRM_DEBUG("context hanging too fast, banning!\n");
2463 return true;
2464 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2465 if (i915_stop_ring_allow_warn(dev_priv))
2466 DRM_ERROR("gpu hanging too fast, banning!\n");
2467 return true;
2468 }
2469 }
2470
2471 return false;
2472 }
2473
2474 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2475 struct intel_context *ctx,
2476 const bool guilty)
2477 {
2478 struct i915_ctx_hang_stats *hs;
2479
2480 if (WARN_ON(!ctx))
2481 return;
2482
2483 hs = &ctx->hang_stats;
2484
2485 if (guilty) {
2486 hs->banned = i915_context_is_banned(dev_priv, ctx);
2487 hs->batch_active++;
2488 hs->guilty_ts = get_seconds();
2489 } else {
2490 hs->batch_pending++;
2491 }
2492 }
2493
2494 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2495 {
2496 list_del(&request->list);
2497 i915_gem_request_remove_from_client(request);
2498
2499 if (request->ctx)
2500 i915_gem_context_unreference(request->ctx);
2501
2502 kfree(request);
2503 }
2504
2505 struct drm_i915_gem_request *
2506 i915_gem_find_active_request(struct intel_engine_cs *ring)
2507 {
2508 struct drm_i915_gem_request *request;
2509 u32 completed_seqno;
2510
2511 completed_seqno = ring->get_seqno(ring, false);
2512
2513 list_for_each_entry(request, &ring->request_list, list) {
2514 if (i915_seqno_passed(completed_seqno, request->seqno))
2515 continue;
2516
2517 return request;
2518 }
2519
2520 return NULL;
2521 }
2522
2523 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2524 struct intel_engine_cs *ring)
2525 {
2526 struct drm_i915_gem_request *request;
2527 bool ring_hung;
2528
2529 request = i915_gem_find_active_request(ring);
2530
2531 if (request == NULL)
2532 return;
2533
2534 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2535
2536 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2537
2538 list_for_each_entry_continue(request, &ring->request_list, list)
2539 i915_set_reset_status(dev_priv, request->ctx, false);
2540 }
2541
2542 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2543 struct intel_engine_cs *ring)
2544 {
2545 while (!list_empty(&ring->active_list)) {
2546 struct drm_i915_gem_object *obj;
2547
2548 obj = list_first_entry(&ring->active_list,
2549 struct drm_i915_gem_object,
2550 ring_list);
2551
2552 i915_gem_object_move_to_inactive(obj);
2553 }
2554
2555 /*
2556 * We must free the requests after all the corresponding objects have
2557 * been moved off active lists. Which is the same order as the normal
2558 * retire_requests function does. This is important if object hold
2559 * implicit references on things like e.g. ppgtt address spaces through
2560 * the request.
2561 */
2562 while (!list_empty(&ring->request_list)) {
2563 struct drm_i915_gem_request *request;
2564
2565 request = list_first_entry(&ring->request_list,
2566 struct drm_i915_gem_request,
2567 list);
2568
2569 i915_gem_free_request(request);
2570 }
2571
2572 while (!list_empty(&ring->execlist_queue)) {
2573 struct intel_ctx_submit_request *submit_req;
2574
2575 submit_req = list_first_entry(&ring->execlist_queue,
2576 struct intel_ctx_submit_request,
2577 execlist_link);
2578 list_del(&submit_req->execlist_link);
2579 intel_runtime_pm_put(dev_priv);
2580 i915_gem_context_unreference(submit_req->ctx);
2581 kfree(submit_req);
2582 }
2583
2584 /* These may not have been flush before the reset, do so now */
2585 kfree(ring->preallocated_lazy_request);
2586 ring->preallocated_lazy_request = NULL;
2587 ring->outstanding_lazy_seqno = 0;
2588 }
2589
2590 void i915_gem_restore_fences(struct drm_device *dev)
2591 {
2592 struct drm_i915_private *dev_priv = dev->dev_private;
2593 int i;
2594
2595 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2596 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2597
2598 /*
2599 * Commit delayed tiling changes if we have an object still
2600 * attached to the fence, otherwise just clear the fence.
2601 */
2602 if (reg->obj) {
2603 i915_gem_object_update_fence(reg->obj, reg,
2604 reg->obj->tiling_mode);
2605 } else {
2606 i915_gem_write_fence(dev, i, NULL);
2607 }
2608 }
2609 }
2610
2611 void i915_gem_reset(struct drm_device *dev)
2612 {
2613 struct drm_i915_private *dev_priv = dev->dev_private;
2614 struct intel_engine_cs *ring;
2615 int i;
2616
2617 /*
2618 * Before we free the objects from the requests, we need to inspect
2619 * them for finding the guilty party. As the requests only borrow
2620 * their reference to the objects, the inspection must be done first.
2621 */
2622 for_each_ring(ring, dev_priv, i)
2623 i915_gem_reset_ring_status(dev_priv, ring);
2624
2625 for_each_ring(ring, dev_priv, i)
2626 i915_gem_reset_ring_cleanup(dev_priv, ring);
2627
2628 i915_gem_context_reset(dev);
2629
2630 i915_gem_restore_fences(dev);
2631 }
2632
2633 /**
2634 * This function clears the request list as sequence numbers are passed.
2635 */
2636 void
2637 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2638 {
2639 uint32_t seqno;
2640
2641 if (list_empty(&ring->request_list))
2642 return;
2643
2644 WARN_ON(i915_verify_lists(ring->dev));
2645
2646 seqno = ring->get_seqno(ring, true);
2647
2648 /* Move any buffers on the active list that are no longer referenced
2649 * by the ringbuffer to the flushing/inactive lists as appropriate,
2650 * before we free the context associated with the requests.
2651 */
2652 while (!list_empty(&ring->active_list)) {
2653 struct drm_i915_gem_object *obj;
2654
2655 obj = list_first_entry(&ring->active_list,
2656 struct drm_i915_gem_object,
2657 ring_list);
2658
2659 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2660 break;
2661
2662 i915_gem_object_move_to_inactive(obj);
2663 }
2664
2665
2666 while (!list_empty(&ring->request_list)) {
2667 struct drm_i915_gem_request *request;
2668 struct intel_ringbuffer *ringbuf;
2669
2670 request = list_first_entry(&ring->request_list,
2671 struct drm_i915_gem_request,
2672 list);
2673
2674 if (!i915_seqno_passed(seqno, request->seqno))
2675 break;
2676
2677 trace_i915_gem_request_retire(ring, request->seqno);
2678
2679 /* This is one of the few common intersection points
2680 * between legacy ringbuffer submission and execlists:
2681 * we need to tell them apart in order to find the correct
2682 * ringbuffer to which the request belongs to.
2683 */
2684 if (i915.enable_execlists) {
2685 struct intel_context *ctx = request->ctx;
2686 ringbuf = ctx->engine[ring->id].ringbuf;
2687 } else
2688 ringbuf = ring->buffer;
2689
2690 /* We know the GPU must have read the request to have
2691 * sent us the seqno + interrupt, so use the position
2692 * of tail of the request to update the last known position
2693 * of the GPU head.
2694 */
2695 ringbuf->last_retired_head = request->tail;
2696
2697 i915_gem_free_request(request);
2698 }
2699
2700 if (unlikely(ring->trace_irq_seqno &&
2701 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2702 ring->irq_put(ring);
2703 ring->trace_irq_seqno = 0;
2704 }
2705
2706 WARN_ON(i915_verify_lists(ring->dev));
2707 }
2708
2709 bool
2710 i915_gem_retire_requests(struct drm_device *dev)
2711 {
2712 struct drm_i915_private *dev_priv = dev->dev_private;
2713 struct intel_engine_cs *ring;
2714 bool idle = true;
2715 int i;
2716
2717 for_each_ring(ring, dev_priv, i) {
2718 i915_gem_retire_requests_ring(ring);
2719 idle &= list_empty(&ring->request_list);
2720 }
2721
2722 if (idle)
2723 mod_delayed_work(dev_priv->wq,
2724 &dev_priv->mm.idle_work,
2725 msecs_to_jiffies(100));
2726
2727 return idle;
2728 }
2729
2730 static void
2731 i915_gem_retire_work_handler(struct work_struct *work)
2732 {
2733 struct drm_i915_private *dev_priv =
2734 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2735 struct drm_device *dev = dev_priv->dev;
2736 bool idle;
2737
2738 /* Come back later if the device is busy... */
2739 idle = false;
2740 if (mutex_trylock(&dev->struct_mutex)) {
2741 idle = i915_gem_retire_requests(dev);
2742 mutex_unlock(&dev->struct_mutex);
2743 }
2744 if (!idle)
2745 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2746 round_jiffies_up_relative(HZ));
2747 }
2748
2749 static void
2750 i915_gem_idle_work_handler(struct work_struct *work)
2751 {
2752 struct drm_i915_private *dev_priv =
2753 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2754
2755 intel_mark_idle(dev_priv->dev);
2756 }
2757
2758 /**
2759 * Ensures that an object will eventually get non-busy by flushing any required
2760 * write domains, emitting any outstanding lazy request and retiring and
2761 * completed requests.
2762 */
2763 static int
2764 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2765 {
2766 int ret;
2767
2768 if (obj->active) {
2769 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2770 if (ret)
2771 return ret;
2772
2773 i915_gem_retire_requests_ring(obj->ring);
2774 }
2775
2776 return 0;
2777 }
2778
2779 /**
2780 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2781 * @DRM_IOCTL_ARGS: standard ioctl arguments
2782 *
2783 * Returns 0 if successful, else an error is returned with the remaining time in
2784 * the timeout parameter.
2785 * -ETIME: object is still busy after timeout
2786 * -ERESTARTSYS: signal interrupted the wait
2787 * -ENONENT: object doesn't exist
2788 * Also possible, but rare:
2789 * -EAGAIN: GPU wedged
2790 * -ENOMEM: damn
2791 * -ENODEV: Internal IRQ fail
2792 * -E?: The add request failed
2793 *
2794 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2795 * non-zero timeout parameter the wait ioctl will wait for the given number of
2796 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2797 * without holding struct_mutex the object may become re-busied before this
2798 * function completes. A similar but shorter * race condition exists in the busy
2799 * ioctl
2800 */
2801 int
2802 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2803 {
2804 struct drm_i915_private *dev_priv = dev->dev_private;
2805 struct drm_i915_gem_wait *args = data;
2806 struct drm_i915_gem_object *obj;
2807 struct intel_engine_cs *ring = NULL;
2808 unsigned reset_counter;
2809 u32 seqno = 0;
2810 int ret = 0;
2811
2812 if (args->flags != 0)
2813 return -EINVAL;
2814
2815 ret = i915_mutex_lock_interruptible(dev);
2816 if (ret)
2817 return ret;
2818
2819 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2820 if (&obj->base == NULL) {
2821 mutex_unlock(&dev->struct_mutex);
2822 return -ENOENT;
2823 }
2824
2825 /* Need to make sure the object gets inactive eventually. */
2826 ret = i915_gem_object_flush_active(obj);
2827 if (ret)
2828 goto out;
2829
2830 if (obj->active) {
2831 seqno = obj->last_read_seqno;
2832 ring = obj->ring;
2833 }
2834
2835 if (seqno == 0)
2836 goto out;
2837
2838 /* Do this after OLR check to make sure we make forward progress polling
2839 * on this IOCTL with a timeout <=0 (like busy ioctl)
2840 */
2841 if (args->timeout_ns <= 0) {
2842 ret = -ETIME;
2843 goto out;
2844 }
2845
2846 drm_gem_object_unreference(&obj->base);
2847 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2848 mutex_unlock(&dev->struct_mutex);
2849
2850 return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2851 file->driver_priv);
2852
2853 out:
2854 drm_gem_object_unreference(&obj->base);
2855 mutex_unlock(&dev->struct_mutex);
2856 return ret;
2857 }
2858
2859 /**
2860 * i915_gem_object_sync - sync an object to a ring.
2861 *
2862 * @obj: object which may be in use on another ring.
2863 * @to: ring we wish to use the object on. May be NULL.
2864 *
2865 * This code is meant to abstract object synchronization with the GPU.
2866 * Calling with NULL implies synchronizing the object with the CPU
2867 * rather than a particular GPU ring.
2868 *
2869 * Returns 0 if successful, else propagates up the lower layer error.
2870 */
2871 int
2872 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2873 struct intel_engine_cs *to)
2874 {
2875 struct intel_engine_cs *from = obj->ring;
2876 u32 seqno;
2877 int ret, idx;
2878
2879 if (from == NULL || to == from)
2880 return 0;
2881
2882 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2883 return i915_gem_object_wait_rendering(obj, false);
2884
2885 idx = intel_ring_sync_index(from, to);
2886
2887 seqno = obj->last_read_seqno;
2888 /* Optimization: Avoid semaphore sync when we are sure we already
2889 * waited for an object with higher seqno */
2890 if (seqno <= from->semaphore.sync_seqno[idx])
2891 return 0;
2892
2893 ret = i915_gem_check_olr(obj->ring, seqno);
2894 if (ret)
2895 return ret;
2896
2897 trace_i915_gem_ring_sync_to(from, to, seqno);
2898 ret = to->semaphore.sync_to(to, from, seqno);
2899 if (!ret)
2900 /* We use last_read_seqno because sync_to()
2901 * might have just caused seqno wrap under
2902 * the radar.
2903 */
2904 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2905
2906 return ret;
2907 }
2908
2909 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2910 {
2911 u32 old_write_domain, old_read_domains;
2912
2913 /* Force a pagefault for domain tracking on next user access */
2914 i915_gem_release_mmap(obj);
2915
2916 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2917 return;
2918
2919 /* Wait for any direct GTT access to complete */
2920 mb();
2921
2922 old_read_domains = obj->base.read_domains;
2923 old_write_domain = obj->base.write_domain;
2924
2925 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2926 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2927
2928 trace_i915_gem_object_change_domain(obj,
2929 old_read_domains,
2930 old_write_domain);
2931 }
2932
2933 int i915_vma_unbind(struct i915_vma *vma)
2934 {
2935 struct drm_i915_gem_object *obj = vma->obj;
2936 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2937 int ret;
2938
2939 if (list_empty(&vma->vma_link))
2940 return 0;
2941
2942 if (!drm_mm_node_allocated(&vma->node)) {
2943 i915_gem_vma_destroy(vma);
2944 return 0;
2945 }
2946
2947 if (vma->pin_count)
2948 return -EBUSY;
2949
2950 BUG_ON(obj->pages == NULL);
2951
2952 ret = i915_gem_object_finish_gpu(obj);
2953 if (ret)
2954 return ret;
2955 /* Continue on if we fail due to EIO, the GPU is hung so we
2956 * should be safe and we need to cleanup or else we might
2957 * cause memory corruption through use-after-free.
2958 */
2959
2960 /* Throw away the active reference before moving to the unbound list */
2961 i915_gem_object_retire(obj);
2962
2963 if (i915_is_ggtt(vma->vm)) {
2964 i915_gem_object_finish_gtt(obj);
2965
2966 /* release the fence reg _after_ flushing */
2967 ret = i915_gem_object_put_fence(obj);
2968 if (ret)
2969 return ret;
2970 }
2971
2972 trace_i915_vma_unbind(vma);
2973
2974 vma->unbind_vma(vma);
2975
2976 list_del_init(&vma->mm_list);
2977 if (i915_is_ggtt(vma->vm))
2978 obj->map_and_fenceable = false;
2979
2980 drm_mm_remove_node(&vma->node);
2981 i915_gem_vma_destroy(vma);
2982
2983 /* Since the unbound list is global, only move to that list if
2984 * no more VMAs exist. */
2985 if (list_empty(&obj->vma_list)) {
2986 i915_gem_gtt_finish_object(obj);
2987 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2988 }
2989
2990 /* And finally now the object is completely decoupled from this vma,
2991 * we can drop its hold on the backing storage and allow it to be
2992 * reaped by the shrinker.
2993 */
2994 i915_gem_object_unpin_pages(obj);
2995
2996 return 0;
2997 }
2998
2999 int i915_gpu_idle(struct drm_device *dev)
3000 {
3001 struct drm_i915_private *dev_priv = dev->dev_private;
3002 struct intel_engine_cs *ring;
3003 int ret, i;
3004
3005 /* Flush everything onto the inactive list. */
3006 for_each_ring(ring, dev_priv, i) {
3007 if (!i915.enable_execlists) {
3008 ret = i915_switch_context(ring, ring->default_context);
3009 if (ret)
3010 return ret;
3011 }
3012
3013 ret = intel_ring_idle(ring);
3014 if (ret)
3015 return ret;
3016 }
3017
3018 return 0;
3019 }
3020
3021 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3022 struct drm_i915_gem_object *obj)
3023 {
3024 struct drm_i915_private *dev_priv = dev->dev_private;
3025 int fence_reg;
3026 int fence_pitch_shift;
3027
3028 if (INTEL_INFO(dev)->gen >= 6) {
3029 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3030 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3031 } else {
3032 fence_reg = FENCE_REG_965_0;
3033 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3034 }
3035
3036 fence_reg += reg * 8;
3037
3038 /* To w/a incoherency with non-atomic 64-bit register updates,
3039 * we split the 64-bit update into two 32-bit writes. In order
3040 * for a partial fence not to be evaluated between writes, we
3041 * precede the update with write to turn off the fence register,
3042 * and only enable the fence as the last step.
3043 *
3044 * For extra levels of paranoia, we make sure each step lands
3045 * before applying the next step.
3046 */
3047 I915_WRITE(fence_reg, 0);
3048 POSTING_READ(fence_reg);
3049
3050 if (obj) {
3051 u32 size = i915_gem_obj_ggtt_size(obj);
3052 uint64_t val;
3053
3054 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3055 0xfffff000) << 32;
3056 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3057 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3058 if (obj->tiling_mode == I915_TILING_Y)
3059 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3060 val |= I965_FENCE_REG_VALID;
3061
3062 I915_WRITE(fence_reg + 4, val >> 32);
3063 POSTING_READ(fence_reg + 4);
3064
3065 I915_WRITE(fence_reg + 0, val);
3066 POSTING_READ(fence_reg);
3067 } else {
3068 I915_WRITE(fence_reg + 4, 0);
3069 POSTING_READ(fence_reg + 4);
3070 }
3071 }
3072
3073 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3074 struct drm_i915_gem_object *obj)
3075 {
3076 struct drm_i915_private *dev_priv = dev->dev_private;
3077 u32 val;
3078
3079 if (obj) {
3080 u32 size = i915_gem_obj_ggtt_size(obj);
3081 int pitch_val;
3082 int tile_width;
3083
3084 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3085 (size & -size) != size ||
3086 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3087 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3088 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3089
3090 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3091 tile_width = 128;
3092 else
3093 tile_width = 512;
3094
3095 /* Note: pitch better be a power of two tile widths */
3096 pitch_val = obj->stride / tile_width;
3097 pitch_val = ffs(pitch_val) - 1;
3098
3099 val = i915_gem_obj_ggtt_offset(obj);
3100 if (obj->tiling_mode == I915_TILING_Y)
3101 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3102 val |= I915_FENCE_SIZE_BITS(size);
3103 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3104 val |= I830_FENCE_REG_VALID;
3105 } else
3106 val = 0;
3107
3108 if (reg < 8)
3109 reg = FENCE_REG_830_0 + reg * 4;
3110 else
3111 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3112
3113 I915_WRITE(reg, val);
3114 POSTING_READ(reg);
3115 }
3116
3117 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3118 struct drm_i915_gem_object *obj)
3119 {
3120 struct drm_i915_private *dev_priv = dev->dev_private;
3121 uint32_t val;
3122
3123 if (obj) {
3124 u32 size = i915_gem_obj_ggtt_size(obj);
3125 uint32_t pitch_val;
3126
3127 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3128 (size & -size) != size ||
3129 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3130 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3131 i915_gem_obj_ggtt_offset(obj), size);
3132
3133 pitch_val = obj->stride / 128;
3134 pitch_val = ffs(pitch_val) - 1;
3135
3136 val = i915_gem_obj_ggtt_offset(obj);
3137 if (obj->tiling_mode == I915_TILING_Y)
3138 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3139 val |= I830_FENCE_SIZE_BITS(size);
3140 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3141 val |= I830_FENCE_REG_VALID;
3142 } else
3143 val = 0;
3144
3145 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3146 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3147 }
3148
3149 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3150 {
3151 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3152 }
3153
3154 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3155 struct drm_i915_gem_object *obj)
3156 {
3157 struct drm_i915_private *dev_priv = dev->dev_private;
3158
3159 /* Ensure that all CPU reads are completed before installing a fence
3160 * and all writes before removing the fence.
3161 */
3162 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3163 mb();
3164
3165 WARN(obj && (!obj->stride || !obj->tiling_mode),
3166 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3167 obj->stride, obj->tiling_mode);
3168
3169 switch (INTEL_INFO(dev)->gen) {
3170 case 9:
3171 case 8:
3172 case 7:
3173 case 6:
3174 case 5:
3175 case 4: i965_write_fence_reg(dev, reg, obj); break;
3176 case 3: i915_write_fence_reg(dev, reg, obj); break;
3177 case 2: i830_write_fence_reg(dev, reg, obj); break;
3178 default: BUG();
3179 }
3180
3181 /* And similarly be paranoid that no direct access to this region
3182 * is reordered to before the fence is installed.
3183 */
3184 if (i915_gem_object_needs_mb(obj))
3185 mb();
3186 }
3187
3188 static inline int fence_number(struct drm_i915_private *dev_priv,
3189 struct drm_i915_fence_reg *fence)
3190 {
3191 return fence - dev_priv->fence_regs;
3192 }
3193
3194 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3195 struct drm_i915_fence_reg *fence,
3196 bool enable)
3197 {
3198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3199 int reg = fence_number(dev_priv, fence);
3200
3201 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3202
3203 if (enable) {
3204 obj->fence_reg = reg;
3205 fence->obj = obj;
3206 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3207 } else {
3208 obj->fence_reg = I915_FENCE_REG_NONE;
3209 fence->obj = NULL;
3210 list_del_init(&fence->lru_list);
3211 }
3212 obj->fence_dirty = false;
3213 }
3214
3215 static int
3216 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3217 {
3218 if (obj->last_fenced_seqno) {
3219 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3220 if (ret)
3221 return ret;
3222
3223 obj->last_fenced_seqno = 0;
3224 }
3225
3226 return 0;
3227 }
3228
3229 int
3230 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3231 {
3232 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3233 struct drm_i915_fence_reg *fence;
3234 int ret;
3235
3236 ret = i915_gem_object_wait_fence(obj);
3237 if (ret)
3238 return ret;
3239
3240 if (obj->fence_reg == I915_FENCE_REG_NONE)
3241 return 0;
3242
3243 fence = &dev_priv->fence_regs[obj->fence_reg];
3244
3245 if (WARN_ON(fence->pin_count))
3246 return -EBUSY;
3247
3248 i915_gem_object_fence_lost(obj);
3249 i915_gem_object_update_fence(obj, fence, false);
3250
3251 return 0;
3252 }
3253
3254 static struct drm_i915_fence_reg *
3255 i915_find_fence_reg(struct drm_device *dev)
3256 {
3257 struct drm_i915_private *dev_priv = dev->dev_private;
3258 struct drm_i915_fence_reg *reg, *avail;
3259 int i;
3260
3261 /* First try to find a free reg */
3262 avail = NULL;
3263 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3264 reg = &dev_priv->fence_regs[i];
3265 if (!reg->obj)
3266 return reg;
3267
3268 if (!reg->pin_count)
3269 avail = reg;
3270 }
3271
3272 if (avail == NULL)
3273 goto deadlock;
3274
3275 /* None available, try to steal one or wait for a user to finish */
3276 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3277 if (reg->pin_count)
3278 continue;
3279
3280 return reg;
3281 }
3282
3283 deadlock:
3284 /* Wait for completion of pending flips which consume fences */
3285 if (intel_has_pending_fb_unpin(dev))
3286 return ERR_PTR(-EAGAIN);
3287
3288 return ERR_PTR(-EDEADLK);
3289 }
3290
3291 /**
3292 * i915_gem_object_get_fence - set up fencing for an object
3293 * @obj: object to map through a fence reg
3294 *
3295 * When mapping objects through the GTT, userspace wants to be able to write
3296 * to them without having to worry about swizzling if the object is tiled.
3297 * This function walks the fence regs looking for a free one for @obj,
3298 * stealing one if it can't find any.
3299 *
3300 * It then sets up the reg based on the object's properties: address, pitch
3301 * and tiling format.
3302 *
3303 * For an untiled surface, this removes any existing fence.
3304 */
3305 int
3306 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3307 {
3308 struct drm_device *dev = obj->base.dev;
3309 struct drm_i915_private *dev_priv = dev->dev_private;
3310 bool enable = obj->tiling_mode != I915_TILING_NONE;
3311 struct drm_i915_fence_reg *reg;
3312 int ret;
3313
3314 /* Have we updated the tiling parameters upon the object and so
3315 * will need to serialise the write to the associated fence register?
3316 */
3317 if (obj->fence_dirty) {
3318 ret = i915_gem_object_wait_fence(obj);
3319 if (ret)
3320 return ret;
3321 }
3322
3323 /* Just update our place in the LRU if our fence is getting reused. */
3324 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3325 reg = &dev_priv->fence_regs[obj->fence_reg];
3326 if (!obj->fence_dirty) {
3327 list_move_tail(&reg->lru_list,
3328 &dev_priv->mm.fence_list);
3329 return 0;
3330 }
3331 } else if (enable) {
3332 if (WARN_ON(!obj->map_and_fenceable))
3333 return -EINVAL;
3334
3335 reg = i915_find_fence_reg(dev);
3336 if (IS_ERR(reg))
3337 return PTR_ERR(reg);
3338
3339 if (reg->obj) {
3340 struct drm_i915_gem_object *old = reg->obj;
3341
3342 ret = i915_gem_object_wait_fence(old);
3343 if (ret)
3344 return ret;
3345
3346 i915_gem_object_fence_lost(old);
3347 }
3348 } else
3349 return 0;
3350
3351 i915_gem_object_update_fence(obj, reg, enable);
3352
3353 return 0;
3354 }
3355
3356 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3357 unsigned long cache_level)
3358 {
3359 struct drm_mm_node *gtt_space = &vma->node;
3360 struct drm_mm_node *other;
3361
3362 /*
3363 * On some machines we have to be careful when putting differing types
3364 * of snoopable memory together to avoid the prefetcher crossing memory
3365 * domains and dying. During vm initialisation, we decide whether or not
3366 * these constraints apply and set the drm_mm.color_adjust
3367 * appropriately.
3368 */
3369 if (vma->vm->mm.color_adjust == NULL)
3370 return true;
3371
3372 if (!drm_mm_node_allocated(gtt_space))
3373 return true;
3374
3375 if (list_empty(&gtt_space->node_list))
3376 return true;
3377
3378 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3379 if (other->allocated && !other->hole_follows && other->color != cache_level)
3380 return false;
3381
3382 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3383 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3384 return false;
3385
3386 return true;
3387 }
3388
3389 /**
3390 * Finds free space in the GTT aperture and binds the object there.
3391 */
3392 static struct i915_vma *
3393 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3394 struct i915_address_space *vm,
3395 unsigned alignment,
3396 uint64_t flags)
3397 {
3398 struct drm_device *dev = obj->base.dev;
3399 struct drm_i915_private *dev_priv = dev->dev_private;
3400 u32 size, fence_size, fence_alignment, unfenced_alignment;
3401 unsigned long start =
3402 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3403 unsigned long end =
3404 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3405 struct i915_vma *vma;
3406 int ret;
3407
3408 fence_size = i915_gem_get_gtt_size(dev,
3409 obj->base.size,
3410 obj->tiling_mode);
3411 fence_alignment = i915_gem_get_gtt_alignment(dev,
3412 obj->base.size,
3413 obj->tiling_mode, true);
3414 unfenced_alignment =
3415 i915_gem_get_gtt_alignment(dev,
3416 obj->base.size,
3417 obj->tiling_mode, false);
3418
3419 if (alignment == 0)
3420 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3421 unfenced_alignment;
3422 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3423 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3424 return ERR_PTR(-EINVAL);
3425 }
3426
3427 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3428
3429 /* If the object is bigger than the entire aperture, reject it early
3430 * before evicting everything in a vain attempt to find space.
3431 */
3432 if (obj->base.size > end) {
3433 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3434 obj->base.size,
3435 flags & PIN_MAPPABLE ? "mappable" : "total",
3436 end);
3437 return ERR_PTR(-E2BIG);
3438 }
3439
3440 ret = i915_gem_object_get_pages(obj);
3441 if (ret)
3442 return ERR_PTR(ret);
3443
3444 i915_gem_object_pin_pages(obj);
3445
3446 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3447 if (IS_ERR(vma))
3448 goto err_unpin;
3449
3450 search_free:
3451 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3452 size, alignment,
3453 obj->cache_level,
3454 start, end,
3455 DRM_MM_SEARCH_DEFAULT,
3456 DRM_MM_CREATE_DEFAULT);
3457 if (ret) {
3458 ret = i915_gem_evict_something(dev, vm, size, alignment,
3459 obj->cache_level,
3460 start, end,
3461 flags);
3462 if (ret == 0)
3463 goto search_free;
3464
3465 goto err_free_vma;
3466 }
3467 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3468 ret = -EINVAL;
3469 goto err_remove_node;
3470 }
3471
3472 ret = i915_gem_gtt_prepare_object(obj);
3473 if (ret)
3474 goto err_remove_node;
3475
3476 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3477 list_add_tail(&vma->mm_list, &vm->inactive_list);
3478
3479 trace_i915_vma_bind(vma, flags);
3480 vma->bind_vma(vma, obj->cache_level,
3481 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3482
3483 return vma;
3484
3485 err_remove_node:
3486 drm_mm_remove_node(&vma->node);
3487 err_free_vma:
3488 i915_gem_vma_destroy(vma);
3489 vma = ERR_PTR(ret);
3490 err_unpin:
3491 i915_gem_object_unpin_pages(obj);
3492 return vma;
3493 }
3494
3495 bool
3496 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3497 bool force)
3498 {
3499 /* If we don't have a page list set up, then we're not pinned
3500 * to GPU, and we can ignore the cache flush because it'll happen
3501 * again at bind time.
3502 */
3503 if (obj->pages == NULL)
3504 return false;
3505
3506 /*
3507 * Stolen memory is always coherent with the GPU as it is explicitly
3508 * marked as wc by the system, or the system is cache-coherent.
3509 */
3510 if (obj->stolen)
3511 return false;
3512
3513 /* If the GPU is snooping the contents of the CPU cache,
3514 * we do not need to manually clear the CPU cache lines. However,
3515 * the caches are only snooped when the render cache is
3516 * flushed/invalidated. As we always have to emit invalidations
3517 * and flushes when moving into and out of the RENDER domain, correct
3518 * snooping behaviour occurs naturally as the result of our domain
3519 * tracking.
3520 */
3521 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3522 return false;
3523
3524 trace_i915_gem_object_clflush(obj);
3525 drm_clflush_sg(obj->pages);
3526
3527 return true;
3528 }
3529
3530 /** Flushes the GTT write domain for the object if it's dirty. */
3531 static void
3532 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3533 {
3534 uint32_t old_write_domain;
3535
3536 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3537 return;
3538
3539 /* No actual flushing is required for the GTT write domain. Writes
3540 * to it immediately go to main memory as far as we know, so there's
3541 * no chipset flush. It also doesn't land in render cache.
3542 *
3543 * However, we do have to enforce the order so that all writes through
3544 * the GTT land before any writes to the device, such as updates to
3545 * the GATT itself.
3546 */
3547 wmb();
3548
3549 old_write_domain = obj->base.write_domain;
3550 obj->base.write_domain = 0;
3551
3552 intel_fb_obj_flush(obj, false);
3553
3554 trace_i915_gem_object_change_domain(obj,
3555 obj->base.read_domains,
3556 old_write_domain);
3557 }
3558
3559 /** Flushes the CPU write domain for the object if it's dirty. */
3560 static void
3561 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3562 bool force)
3563 {
3564 uint32_t old_write_domain;
3565
3566 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3567 return;
3568
3569 if (i915_gem_clflush_object(obj, force))
3570 i915_gem_chipset_flush(obj->base.dev);
3571
3572 old_write_domain = obj->base.write_domain;
3573 obj->base.write_domain = 0;
3574
3575 intel_fb_obj_flush(obj, false);
3576
3577 trace_i915_gem_object_change_domain(obj,
3578 obj->base.read_domains,
3579 old_write_domain);
3580 }
3581
3582 /**
3583 * Moves a single object to the GTT read, and possibly write domain.
3584 *
3585 * This function returns when the move is complete, including waiting on
3586 * flushes to occur.
3587 */
3588 int
3589 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3590 {
3591 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3592 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3593 uint32_t old_write_domain, old_read_domains;
3594 int ret;
3595
3596 /* Not valid to be called on unbound objects. */
3597 if (vma == NULL)
3598 return -EINVAL;
3599
3600 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3601 return 0;
3602
3603 ret = i915_gem_object_wait_rendering(obj, !write);
3604 if (ret)
3605 return ret;
3606
3607 i915_gem_object_retire(obj);
3608 i915_gem_object_flush_cpu_write_domain(obj, false);
3609
3610 /* Serialise direct access to this object with the barriers for
3611 * coherent writes from the GPU, by effectively invalidating the
3612 * GTT domain upon first access.
3613 */
3614 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3615 mb();
3616
3617 old_write_domain = obj->base.write_domain;
3618 old_read_domains = obj->base.read_domains;
3619
3620 /* It should now be out of any other write domains, and we can update
3621 * the domain values for our changes.
3622 */
3623 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3624 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3625 if (write) {
3626 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3627 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3628 obj->dirty = 1;
3629 }
3630
3631 if (write)
3632 intel_fb_obj_invalidate(obj, NULL);
3633
3634 trace_i915_gem_object_change_domain(obj,
3635 old_read_domains,
3636 old_write_domain);
3637
3638 /* And bump the LRU for this access */
3639 if (i915_gem_object_is_inactive(obj))
3640 list_move_tail(&vma->mm_list,
3641 &dev_priv->gtt.base.inactive_list);
3642
3643 return 0;
3644 }
3645
3646 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3647 enum i915_cache_level cache_level)
3648 {
3649 struct drm_device *dev = obj->base.dev;
3650 struct i915_vma *vma, *next;
3651 int ret;
3652
3653 if (obj->cache_level == cache_level)
3654 return 0;
3655
3656 if (i915_gem_obj_is_pinned(obj)) {
3657 DRM_DEBUG("can not change the cache level of pinned objects\n");
3658 return -EBUSY;
3659 }
3660
3661 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3662 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3663 ret = i915_vma_unbind(vma);
3664 if (ret)
3665 return ret;
3666 }
3667 }
3668
3669 if (i915_gem_obj_bound_any(obj)) {
3670 ret = i915_gem_object_finish_gpu(obj);
3671 if (ret)
3672 return ret;
3673
3674 i915_gem_object_finish_gtt(obj);
3675
3676 /* Before SandyBridge, you could not use tiling or fence
3677 * registers with snooped memory, so relinquish any fences
3678 * currently pointing to our region in the aperture.
3679 */
3680 if (INTEL_INFO(dev)->gen < 6) {
3681 ret = i915_gem_object_put_fence(obj);
3682 if (ret)
3683 return ret;
3684 }
3685
3686 list_for_each_entry(vma, &obj->vma_list, vma_link)
3687 if (drm_mm_node_allocated(&vma->node))
3688 vma->bind_vma(vma, cache_level,
3689 vma->bound & GLOBAL_BIND);
3690 }
3691
3692 list_for_each_entry(vma, &obj->vma_list, vma_link)
3693 vma->node.color = cache_level;
3694 obj->cache_level = cache_level;
3695
3696 if (cpu_write_needs_clflush(obj)) {
3697 u32 old_read_domains, old_write_domain;
3698
3699 /* If we're coming from LLC cached, then we haven't
3700 * actually been tracking whether the data is in the
3701 * CPU cache or not, since we only allow one bit set
3702 * in obj->write_domain and have been skipping the clflushes.
3703 * Just set it to the CPU cache for now.
3704 */
3705 i915_gem_object_retire(obj);
3706 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3707
3708 old_read_domains = obj->base.read_domains;
3709 old_write_domain = obj->base.write_domain;
3710
3711 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3712 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3713
3714 trace_i915_gem_object_change_domain(obj,
3715 old_read_domains,
3716 old_write_domain);
3717 }
3718
3719 return 0;
3720 }
3721
3722 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3723 struct drm_file *file)
3724 {
3725 struct drm_i915_gem_caching *args = data;
3726 struct drm_i915_gem_object *obj;
3727 int ret;
3728
3729 ret = i915_mutex_lock_interruptible(dev);
3730 if (ret)
3731 return ret;
3732
3733 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3734 if (&obj->base == NULL) {
3735 ret = -ENOENT;
3736 goto unlock;
3737 }
3738
3739 switch (obj->cache_level) {
3740 case I915_CACHE_LLC:
3741 case I915_CACHE_L3_LLC:
3742 args->caching = I915_CACHING_CACHED;
3743 break;
3744
3745 case I915_CACHE_WT:
3746 args->caching = I915_CACHING_DISPLAY;
3747 break;
3748
3749 default:
3750 args->caching = I915_CACHING_NONE;
3751 break;
3752 }
3753
3754 drm_gem_object_unreference(&obj->base);
3755 unlock:
3756 mutex_unlock(&dev->struct_mutex);
3757 return ret;
3758 }
3759
3760 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3761 struct drm_file *file)
3762 {
3763 struct drm_i915_gem_caching *args = data;
3764 struct drm_i915_gem_object *obj;
3765 enum i915_cache_level level;
3766 int ret;
3767
3768 switch (args->caching) {
3769 case I915_CACHING_NONE:
3770 level = I915_CACHE_NONE;
3771 break;
3772 case I915_CACHING_CACHED:
3773 level = I915_CACHE_LLC;
3774 break;
3775 case I915_CACHING_DISPLAY:
3776 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3777 break;
3778 default:
3779 return -EINVAL;
3780 }
3781
3782 ret = i915_mutex_lock_interruptible(dev);
3783 if (ret)
3784 return ret;
3785
3786 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3787 if (&obj->base == NULL) {
3788 ret = -ENOENT;
3789 goto unlock;
3790 }
3791
3792 ret = i915_gem_object_set_cache_level(obj, level);
3793
3794 drm_gem_object_unreference(&obj->base);
3795 unlock:
3796 mutex_unlock(&dev->struct_mutex);
3797 return ret;
3798 }
3799
3800 static bool is_pin_display(struct drm_i915_gem_object *obj)
3801 {
3802 struct i915_vma *vma;
3803
3804 vma = i915_gem_obj_to_ggtt(obj);
3805 if (!vma)
3806 return false;
3807
3808 /* There are 3 sources that pin objects:
3809 * 1. The display engine (scanouts, sprites, cursors);
3810 * 2. Reservations for execbuffer;
3811 * 3. The user.
3812 *
3813 * We can ignore reservations as we hold the struct_mutex and
3814 * are only called outside of the reservation path. The user
3815 * can only increment pin_count once, and so if after
3816 * subtracting the potential reference by the user, any pin_count
3817 * remains, it must be due to another use by the display engine.
3818 */
3819 return vma->pin_count - !!obj->user_pin_count;
3820 }
3821
3822 /*
3823 * Prepare buffer for display plane (scanout, cursors, etc).
3824 * Can be called from an uninterruptible phase (modesetting) and allows
3825 * any flushes to be pipelined (for pageflips).
3826 */
3827 int
3828 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3829 u32 alignment,
3830 struct intel_engine_cs *pipelined)
3831 {
3832 u32 old_read_domains, old_write_domain;
3833 bool was_pin_display;
3834 int ret;
3835
3836 if (pipelined != obj->ring) {
3837 ret = i915_gem_object_sync(obj, pipelined);
3838 if (ret)
3839 return ret;
3840 }
3841
3842 /* Mark the pin_display early so that we account for the
3843 * display coherency whilst setting up the cache domains.
3844 */
3845 was_pin_display = obj->pin_display;
3846 obj->pin_display = true;
3847
3848 /* The display engine is not coherent with the LLC cache on gen6. As
3849 * a result, we make sure that the pinning that is about to occur is
3850 * done with uncached PTEs. This is lowest common denominator for all
3851 * chipsets.
3852 *
3853 * However for gen6+, we could do better by using the GFDT bit instead
3854 * of uncaching, which would allow us to flush all the LLC-cached data
3855 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3856 */
3857 ret = i915_gem_object_set_cache_level(obj,
3858 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3859 if (ret)
3860 goto err_unpin_display;
3861
3862 /* As the user may map the buffer once pinned in the display plane
3863 * (e.g. libkms for the bootup splash), we have to ensure that we
3864 * always use map_and_fenceable for all scanout buffers.
3865 */
3866 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3867 if (ret)
3868 goto err_unpin_display;
3869
3870 i915_gem_object_flush_cpu_write_domain(obj, true);
3871
3872 old_write_domain = obj->base.write_domain;
3873 old_read_domains = obj->base.read_domains;
3874
3875 /* It should now be out of any other write domains, and we can update
3876 * the domain values for our changes.
3877 */
3878 obj->base.write_domain = 0;
3879 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3880
3881 trace_i915_gem_object_change_domain(obj,
3882 old_read_domains,
3883 old_write_domain);
3884
3885 return 0;
3886
3887 err_unpin_display:
3888 WARN_ON(was_pin_display != is_pin_display(obj));
3889 obj->pin_display = was_pin_display;
3890 return ret;
3891 }
3892
3893 void
3894 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3895 {
3896 i915_gem_object_ggtt_unpin(obj);
3897 obj->pin_display = is_pin_display(obj);
3898 }
3899
3900 int
3901 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3902 {
3903 int ret;
3904
3905 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3906 return 0;
3907
3908 ret = i915_gem_object_wait_rendering(obj, false);
3909 if (ret)
3910 return ret;
3911
3912 /* Ensure that we invalidate the GPU's caches and TLBs. */
3913 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3914 return 0;
3915 }
3916
3917 /**
3918 * Moves a single object to the CPU read, and possibly write domain.
3919 *
3920 * This function returns when the move is complete, including waiting on
3921 * flushes to occur.
3922 */
3923 int
3924 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3925 {
3926 uint32_t old_write_domain, old_read_domains;
3927 int ret;
3928
3929 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3930 return 0;
3931
3932 ret = i915_gem_object_wait_rendering(obj, !write);
3933 if (ret)
3934 return ret;
3935
3936 i915_gem_object_retire(obj);
3937 i915_gem_object_flush_gtt_write_domain(obj);
3938
3939 old_write_domain = obj->base.write_domain;
3940 old_read_domains = obj->base.read_domains;
3941
3942 /* Flush the CPU cache if it's still invalid. */
3943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3944 i915_gem_clflush_object(obj, false);
3945
3946 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3947 }
3948
3949 /* It should now be out of any other write domains, and we can update
3950 * the domain values for our changes.
3951 */
3952 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3953
3954 /* If we're writing through the CPU, then the GPU read domains will
3955 * need to be invalidated at next use.
3956 */
3957 if (write) {
3958 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3959 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3960 }
3961
3962 if (write)
3963 intel_fb_obj_invalidate(obj, NULL);
3964
3965 trace_i915_gem_object_change_domain(obj,
3966 old_read_domains,
3967 old_write_domain);
3968
3969 return 0;
3970 }
3971
3972 /* Throttle our rendering by waiting until the ring has completed our requests
3973 * emitted over 20 msec ago.
3974 *
3975 * Note that if we were to use the current jiffies each time around the loop,
3976 * we wouldn't escape the function with any frames outstanding if the time to
3977 * render a frame was over 20ms.
3978 *
3979 * This should get us reasonable parallelism between CPU and GPU but also
3980 * relatively low latency when blocking on a particular request to finish.
3981 */
3982 static int
3983 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3984 {
3985 struct drm_i915_private *dev_priv = dev->dev_private;
3986 struct drm_i915_file_private *file_priv = file->driver_priv;
3987 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3988 struct drm_i915_gem_request *request;
3989 struct intel_engine_cs *ring = NULL;
3990 unsigned reset_counter;
3991 u32 seqno = 0;
3992 int ret;
3993
3994 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3995 if (ret)
3996 return ret;
3997
3998 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3999 if (ret)
4000 return ret;
4001
4002 spin_lock(&file_priv->mm.lock);
4003 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4004 if (time_after_eq(request->emitted_jiffies, recent_enough))
4005 break;
4006
4007 ring = request->ring;
4008 seqno = request->seqno;
4009 }
4010 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4011 spin_unlock(&file_priv->mm.lock);
4012
4013 if (seqno == 0)
4014 return 0;
4015
4016 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4017 if (ret == 0)
4018 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4019
4020 return ret;
4021 }
4022
4023 static bool
4024 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4025 {
4026 struct drm_i915_gem_object *obj = vma->obj;
4027
4028 if (alignment &&
4029 vma->node.start & (alignment - 1))
4030 return true;
4031
4032 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4033 return true;
4034
4035 if (flags & PIN_OFFSET_BIAS &&
4036 vma->node.start < (flags & PIN_OFFSET_MASK))
4037 return true;
4038
4039 return false;
4040 }
4041
4042 int
4043 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4044 struct i915_address_space *vm,
4045 uint32_t alignment,
4046 uint64_t flags)
4047 {
4048 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4049 struct i915_vma *vma;
4050 unsigned bound;
4051 int ret;
4052
4053 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4054 return -ENODEV;
4055
4056 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4057 return -EINVAL;
4058
4059 vma = i915_gem_obj_to_vma(obj, vm);
4060 if (vma) {
4061 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4062 return -EBUSY;
4063
4064 if (i915_vma_misplaced(vma, alignment, flags)) {
4065 WARN(vma->pin_count,
4066 "bo is already pinned with incorrect alignment:"
4067 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4068 " obj->map_and_fenceable=%d\n",
4069 i915_gem_obj_offset(obj, vm), alignment,
4070 !!(flags & PIN_MAPPABLE),
4071 obj->map_and_fenceable);
4072 ret = i915_vma_unbind(vma);
4073 if (ret)
4074 return ret;
4075
4076 vma = NULL;
4077 }
4078 }
4079
4080 bound = vma ? vma->bound : 0;
4081 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4082 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4083 if (IS_ERR(vma))
4084 return PTR_ERR(vma);
4085 }
4086
4087 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4088 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4089
4090 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4091 bool mappable, fenceable;
4092 u32 fence_size, fence_alignment;
4093
4094 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4095 obj->base.size,
4096 obj->tiling_mode);
4097 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4098 obj->base.size,
4099 obj->tiling_mode,
4100 true);
4101
4102 fenceable = (vma->node.size == fence_size &&
4103 (vma->node.start & (fence_alignment - 1)) == 0);
4104
4105 mappable = (vma->node.start + obj->base.size <=
4106 dev_priv->gtt.mappable_end);
4107
4108 obj->map_and_fenceable = mappable && fenceable;
4109 }
4110
4111 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4112
4113 vma->pin_count++;
4114 if (flags & PIN_MAPPABLE)
4115 obj->pin_mappable |= true;
4116
4117 return 0;
4118 }
4119
4120 void
4121 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4122 {
4123 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4124
4125 BUG_ON(!vma);
4126 BUG_ON(vma->pin_count == 0);
4127 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4128
4129 if (--vma->pin_count == 0)
4130 obj->pin_mappable = false;
4131 }
4132
4133 bool
4134 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4135 {
4136 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4137 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4138 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4139
4140 WARN_ON(!ggtt_vma ||
4141 dev_priv->fence_regs[obj->fence_reg].pin_count >
4142 ggtt_vma->pin_count);
4143 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4144 return true;
4145 } else
4146 return false;
4147 }
4148
4149 void
4150 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4151 {
4152 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4153 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4154 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4155 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4156 }
4157 }
4158
4159 int
4160 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4161 struct drm_file *file)
4162 {
4163 struct drm_i915_gem_pin *args = data;
4164 struct drm_i915_gem_object *obj;
4165 int ret;
4166
4167 if (INTEL_INFO(dev)->gen >= 6)
4168 return -ENODEV;
4169
4170 ret = i915_mutex_lock_interruptible(dev);
4171 if (ret)
4172 return ret;
4173
4174 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4175 if (&obj->base == NULL) {
4176 ret = -ENOENT;
4177 goto unlock;
4178 }
4179
4180 if (obj->madv != I915_MADV_WILLNEED) {
4181 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4182 ret = -EFAULT;
4183 goto out;
4184 }
4185
4186 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4187 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4188 args->handle);
4189 ret = -EINVAL;
4190 goto out;
4191 }
4192
4193 if (obj->user_pin_count == ULONG_MAX) {
4194 ret = -EBUSY;
4195 goto out;
4196 }
4197
4198 if (obj->user_pin_count == 0) {
4199 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4200 if (ret)
4201 goto out;
4202 }
4203
4204 obj->user_pin_count++;
4205 obj->pin_filp = file;
4206
4207 args->offset = i915_gem_obj_ggtt_offset(obj);
4208 out:
4209 drm_gem_object_unreference(&obj->base);
4210 unlock:
4211 mutex_unlock(&dev->struct_mutex);
4212 return ret;
4213 }
4214
4215 int
4216 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4217 struct drm_file *file)
4218 {
4219 struct drm_i915_gem_pin *args = data;
4220 struct drm_i915_gem_object *obj;
4221 int ret;
4222
4223 ret = i915_mutex_lock_interruptible(dev);
4224 if (ret)
4225 return ret;
4226
4227 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4228 if (&obj->base == NULL) {
4229 ret = -ENOENT;
4230 goto unlock;
4231 }
4232
4233 if (obj->pin_filp != file) {
4234 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4235 args->handle);
4236 ret = -EINVAL;
4237 goto out;
4238 }
4239 obj->user_pin_count--;
4240 if (obj->user_pin_count == 0) {
4241 obj->pin_filp = NULL;
4242 i915_gem_object_ggtt_unpin(obj);
4243 }
4244
4245 out:
4246 drm_gem_object_unreference(&obj->base);
4247 unlock:
4248 mutex_unlock(&dev->struct_mutex);
4249 return ret;
4250 }
4251
4252 int
4253 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4254 struct drm_file *file)
4255 {
4256 struct drm_i915_gem_busy *args = data;
4257 struct drm_i915_gem_object *obj;
4258 int ret;
4259
4260 ret = i915_mutex_lock_interruptible(dev);
4261 if (ret)
4262 return ret;
4263
4264 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4265 if (&obj->base == NULL) {
4266 ret = -ENOENT;
4267 goto unlock;
4268 }
4269
4270 /* Count all active objects as busy, even if they are currently not used
4271 * by the gpu. Users of this interface expect objects to eventually
4272 * become non-busy without any further actions, therefore emit any
4273 * necessary flushes here.
4274 */
4275 ret = i915_gem_object_flush_active(obj);
4276
4277 args->busy = obj->active;
4278 if (obj->ring) {
4279 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4280 args->busy |= intel_ring_flag(obj->ring) << 16;
4281 }
4282
4283 drm_gem_object_unreference(&obj->base);
4284 unlock:
4285 mutex_unlock(&dev->struct_mutex);
4286 return ret;
4287 }
4288
4289 int
4290 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4291 struct drm_file *file_priv)
4292 {
4293 return i915_gem_ring_throttle(dev, file_priv);
4294 }
4295
4296 int
4297 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4298 struct drm_file *file_priv)
4299 {
4300 struct drm_i915_gem_madvise *args = data;
4301 struct drm_i915_gem_object *obj;
4302 int ret;
4303
4304 switch (args->madv) {
4305 case I915_MADV_DONTNEED:
4306 case I915_MADV_WILLNEED:
4307 break;
4308 default:
4309 return -EINVAL;
4310 }
4311
4312 ret = i915_mutex_lock_interruptible(dev);
4313 if (ret)
4314 return ret;
4315
4316 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4317 if (&obj->base == NULL) {
4318 ret = -ENOENT;
4319 goto unlock;
4320 }
4321
4322 if (i915_gem_obj_is_pinned(obj)) {
4323 ret = -EINVAL;
4324 goto out;
4325 }
4326
4327 if (obj->madv != __I915_MADV_PURGED)
4328 obj->madv = args->madv;
4329
4330 /* if the object is no longer attached, discard its backing storage */
4331 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4332 i915_gem_object_truncate(obj);
4333
4334 args->retained = obj->madv != __I915_MADV_PURGED;
4335
4336 out:
4337 drm_gem_object_unreference(&obj->base);
4338 unlock:
4339 mutex_unlock(&dev->struct_mutex);
4340 return ret;
4341 }
4342
4343 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4344 const struct drm_i915_gem_object_ops *ops)
4345 {
4346 INIT_LIST_HEAD(&obj->global_list);
4347 INIT_LIST_HEAD(&obj->ring_list);
4348 INIT_LIST_HEAD(&obj->obj_exec_link);
4349 INIT_LIST_HEAD(&obj->vma_list);
4350
4351 obj->ops = ops;
4352
4353 obj->fence_reg = I915_FENCE_REG_NONE;
4354 obj->madv = I915_MADV_WILLNEED;
4355
4356 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4357 }
4358
4359 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4360 .get_pages = i915_gem_object_get_pages_gtt,
4361 .put_pages = i915_gem_object_put_pages_gtt,
4362 };
4363
4364 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4365 size_t size)
4366 {
4367 struct drm_i915_gem_object *obj;
4368 struct address_space *mapping;
4369 gfp_t mask;
4370
4371 obj = i915_gem_object_alloc(dev);
4372 if (obj == NULL)
4373 return NULL;
4374
4375 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4376 i915_gem_object_free(obj);
4377 return NULL;
4378 }
4379
4380 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4381 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4382 /* 965gm cannot relocate objects above 4GiB. */
4383 mask &= ~__GFP_HIGHMEM;
4384 mask |= __GFP_DMA32;
4385 }
4386
4387 mapping = file_inode(obj->base.filp)->i_mapping;
4388 mapping_set_gfp_mask(mapping, mask);
4389
4390 i915_gem_object_init(obj, &i915_gem_object_ops);
4391
4392 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4393 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4394
4395 if (HAS_LLC(dev)) {
4396 /* On some devices, we can have the GPU use the LLC (the CPU
4397 * cache) for about a 10% performance improvement
4398 * compared to uncached. Graphics requests other than
4399 * display scanout are coherent with the CPU in
4400 * accessing this cache. This means in this mode we
4401 * don't need to clflush on the CPU side, and on the
4402 * GPU side we only need to flush internal caches to
4403 * get data visible to the CPU.
4404 *
4405 * However, we maintain the display planes as UC, and so
4406 * need to rebind when first used as such.
4407 */
4408 obj->cache_level = I915_CACHE_LLC;
4409 } else
4410 obj->cache_level = I915_CACHE_NONE;
4411
4412 trace_i915_gem_object_create(obj);
4413
4414 return obj;
4415 }
4416
4417 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4418 {
4419 /* If we are the last user of the backing storage (be it shmemfs
4420 * pages or stolen etc), we know that the pages are going to be
4421 * immediately released. In this case, we can then skip copying
4422 * back the contents from the GPU.
4423 */
4424
4425 if (obj->madv != I915_MADV_WILLNEED)
4426 return false;
4427
4428 if (obj->base.filp == NULL)
4429 return true;
4430
4431 /* At first glance, this looks racy, but then again so would be
4432 * userspace racing mmap against close. However, the first external
4433 * reference to the filp can only be obtained through the
4434 * i915_gem_mmap_ioctl() which safeguards us against the user
4435 * acquiring such a reference whilst we are in the middle of
4436 * freeing the object.
4437 */
4438 return atomic_long_read(&obj->base.filp->f_count) == 1;
4439 }
4440
4441 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4442 {
4443 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4444 struct drm_device *dev = obj->base.dev;
4445 struct drm_i915_private *dev_priv = dev->dev_private;
4446 struct i915_vma *vma, *next;
4447
4448 intel_runtime_pm_get(dev_priv);
4449
4450 trace_i915_gem_object_destroy(obj);
4451
4452 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4453 int ret;
4454
4455 vma->pin_count = 0;
4456 ret = i915_vma_unbind(vma);
4457 if (WARN_ON(ret == -ERESTARTSYS)) {
4458 bool was_interruptible;
4459
4460 was_interruptible = dev_priv->mm.interruptible;
4461 dev_priv->mm.interruptible = false;
4462
4463 WARN_ON(i915_vma_unbind(vma));
4464
4465 dev_priv->mm.interruptible = was_interruptible;
4466 }
4467 }
4468
4469 i915_gem_object_detach_phys(obj);
4470
4471 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4472 * before progressing. */
4473 if (obj->stolen)
4474 i915_gem_object_unpin_pages(obj);
4475
4476 WARN_ON(obj->frontbuffer_bits);
4477
4478 if (WARN_ON(obj->pages_pin_count))
4479 obj->pages_pin_count = 0;
4480 if (discard_backing_storage(obj))
4481 obj->madv = I915_MADV_DONTNEED;
4482 i915_gem_object_put_pages(obj);
4483 i915_gem_object_free_mmap_offset(obj);
4484
4485 BUG_ON(obj->pages);
4486
4487 if (obj->base.import_attach)
4488 drm_prime_gem_destroy(&obj->base, NULL);
4489
4490 if (obj->ops->release)
4491 obj->ops->release(obj);
4492
4493 drm_gem_object_release(&obj->base);
4494 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4495
4496 kfree(obj->bit_17);
4497 i915_gem_object_free(obj);
4498
4499 intel_runtime_pm_put(dev_priv);
4500 }
4501
4502 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4503 struct i915_address_space *vm)
4504 {
4505 struct i915_vma *vma;
4506 list_for_each_entry(vma, &obj->vma_list, vma_link)
4507 if (vma->vm == vm)
4508 return vma;
4509
4510 return NULL;
4511 }
4512
4513 void i915_gem_vma_destroy(struct i915_vma *vma)
4514 {
4515 struct i915_address_space *vm = NULL;
4516 WARN_ON(vma->node.allocated);
4517
4518 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4519 if (!list_empty(&vma->exec_list))
4520 return;
4521
4522 vm = vma->vm;
4523
4524 if (!i915_is_ggtt(vm))
4525 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4526
4527 list_del(&vma->vma_link);
4528
4529 kfree(vma);
4530 }
4531
4532 static void
4533 i915_gem_stop_ringbuffers(struct drm_device *dev)
4534 {
4535 struct drm_i915_private *dev_priv = dev->dev_private;
4536 struct intel_engine_cs *ring;
4537 int i;
4538
4539 for_each_ring(ring, dev_priv, i)
4540 dev_priv->gt.stop_ring(ring);
4541 }
4542
4543 int
4544 i915_gem_suspend(struct drm_device *dev)
4545 {
4546 struct drm_i915_private *dev_priv = dev->dev_private;
4547 int ret = 0;
4548
4549 mutex_lock(&dev->struct_mutex);
4550 if (dev_priv->ums.mm_suspended)
4551 goto err;
4552
4553 ret = i915_gpu_idle(dev);
4554 if (ret)
4555 goto err;
4556
4557 i915_gem_retire_requests(dev);
4558
4559 /* Under UMS, be paranoid and evict. */
4560 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4561 i915_gem_evict_everything(dev);
4562
4563 i915_kernel_lost_context(dev);
4564 i915_gem_stop_ringbuffers(dev);
4565
4566 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4567 * We need to replace this with a semaphore, or something.
4568 * And not confound ums.mm_suspended!
4569 */
4570 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4571 DRIVER_MODESET);
4572 mutex_unlock(&dev->struct_mutex);
4573
4574 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4575 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4576 flush_delayed_work(&dev_priv->mm.idle_work);
4577
4578 return 0;
4579
4580 err:
4581 mutex_unlock(&dev->struct_mutex);
4582 return ret;
4583 }
4584
4585 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4586 {
4587 struct drm_device *dev = ring->dev;
4588 struct drm_i915_private *dev_priv = dev->dev_private;
4589 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4590 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4591 int i, ret;
4592
4593 if (!HAS_L3_DPF(dev) || !remap_info)
4594 return 0;
4595
4596 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4597 if (ret)
4598 return ret;
4599
4600 /*
4601 * Note: We do not worry about the concurrent register cacheline hang
4602 * here because no other code should access these registers other than
4603 * at initialization time.
4604 */
4605 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4606 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4607 intel_ring_emit(ring, reg_base + i);
4608 intel_ring_emit(ring, remap_info[i/4]);
4609 }
4610
4611 intel_ring_advance(ring);
4612
4613 return ret;
4614 }
4615
4616 void i915_gem_init_swizzling(struct drm_device *dev)
4617 {
4618 struct drm_i915_private *dev_priv = dev->dev_private;
4619
4620 if (INTEL_INFO(dev)->gen < 5 ||
4621 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4622 return;
4623
4624 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4625 DISP_TILE_SURFACE_SWIZZLING);
4626
4627 if (IS_GEN5(dev))
4628 return;
4629
4630 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4631 if (IS_GEN6(dev))
4632 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4633 else if (IS_GEN7(dev))
4634 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4635 else if (IS_GEN8(dev))
4636 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4637 else
4638 BUG();
4639 }
4640
4641 static bool
4642 intel_enable_blt(struct drm_device *dev)
4643 {
4644 if (!HAS_BLT(dev))
4645 return false;
4646
4647 /* The blitter was dysfunctional on early prototypes */
4648 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4649 DRM_INFO("BLT not supported on this pre-production hardware;"
4650 " graphics performance will be degraded.\n");
4651 return false;
4652 }
4653
4654 return true;
4655 }
4656
4657 static void init_unused_ring(struct drm_device *dev, u32 base)
4658 {
4659 struct drm_i915_private *dev_priv = dev->dev_private;
4660
4661 I915_WRITE(RING_CTL(base), 0);
4662 I915_WRITE(RING_HEAD(base), 0);
4663 I915_WRITE(RING_TAIL(base), 0);
4664 I915_WRITE(RING_START(base), 0);
4665 }
4666
4667 static void init_unused_rings(struct drm_device *dev)
4668 {
4669 if (IS_I830(dev)) {
4670 init_unused_ring(dev, PRB1_BASE);
4671 init_unused_ring(dev, SRB0_BASE);
4672 init_unused_ring(dev, SRB1_BASE);
4673 init_unused_ring(dev, SRB2_BASE);
4674 init_unused_ring(dev, SRB3_BASE);
4675 } else if (IS_GEN2(dev)) {
4676 init_unused_ring(dev, SRB0_BASE);
4677 init_unused_ring(dev, SRB1_BASE);
4678 } else if (IS_GEN3(dev)) {
4679 init_unused_ring(dev, PRB1_BASE);
4680 init_unused_ring(dev, PRB2_BASE);
4681 }
4682 }
4683
4684 int i915_gem_init_rings(struct drm_device *dev)
4685 {
4686 struct drm_i915_private *dev_priv = dev->dev_private;
4687 int ret;
4688
4689 /*
4690 * At least 830 can leave some of the unused rings
4691 * "active" (ie. head != tail) after resume which
4692 * will prevent c3 entry. Makes sure all unused rings
4693 * are totally idle.
4694 */
4695 init_unused_rings(dev);
4696
4697 ret = intel_init_render_ring_buffer(dev);
4698 if (ret)
4699 return ret;
4700
4701 if (HAS_BSD(dev)) {
4702 ret = intel_init_bsd_ring_buffer(dev);
4703 if (ret)
4704 goto cleanup_render_ring;
4705 }
4706
4707 if (intel_enable_blt(dev)) {
4708 ret = intel_init_blt_ring_buffer(dev);
4709 if (ret)
4710 goto cleanup_bsd_ring;
4711 }
4712
4713 if (HAS_VEBOX(dev)) {
4714 ret = intel_init_vebox_ring_buffer(dev);
4715 if (ret)
4716 goto cleanup_blt_ring;
4717 }
4718
4719 if (HAS_BSD2(dev)) {
4720 ret = intel_init_bsd2_ring_buffer(dev);
4721 if (ret)
4722 goto cleanup_vebox_ring;
4723 }
4724
4725 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4726 if (ret)
4727 goto cleanup_bsd2_ring;
4728
4729 return 0;
4730
4731 cleanup_bsd2_ring:
4732 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4733 cleanup_vebox_ring:
4734 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4735 cleanup_blt_ring:
4736 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4737 cleanup_bsd_ring:
4738 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4739 cleanup_render_ring:
4740 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4741
4742 return ret;
4743 }
4744
4745 int
4746 i915_gem_init_hw(struct drm_device *dev)
4747 {
4748 struct drm_i915_private *dev_priv = dev->dev_private;
4749 int ret, i;
4750
4751 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4752 return -EIO;
4753
4754 if (dev_priv->ellc_size)
4755 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4756
4757 if (IS_HASWELL(dev))
4758 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4759 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4760
4761 if (HAS_PCH_NOP(dev)) {
4762 if (IS_IVYBRIDGE(dev)) {
4763 u32 temp = I915_READ(GEN7_MSG_CTL);
4764 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4765 I915_WRITE(GEN7_MSG_CTL, temp);
4766 } else if (INTEL_INFO(dev)->gen >= 7) {
4767 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4768 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4769 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4770 }
4771 }
4772
4773 i915_gem_init_swizzling(dev);
4774
4775 ret = dev_priv->gt.init_rings(dev);
4776 if (ret)
4777 return ret;
4778
4779 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4780 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4781
4782 /*
4783 * XXX: Contexts should only be initialized once. Doing a switch to the
4784 * default context switch however is something we'd like to do after
4785 * reset or thaw (the latter may not actually be necessary for HW, but
4786 * goes with our code better). Context switching requires rings (for
4787 * the do_switch), but before enabling PPGTT. So don't move this.
4788 */
4789 ret = i915_gem_context_enable(dev_priv);
4790 if (ret && ret != -EIO) {
4791 DRM_ERROR("Context enable failed %d\n", ret);
4792 i915_gem_cleanup_ringbuffer(dev);
4793
4794 return ret;
4795 }
4796
4797 ret = i915_ppgtt_init_hw(dev);
4798 if (ret && ret != -EIO) {
4799 DRM_ERROR("PPGTT enable failed %d\n", ret);
4800 i915_gem_cleanup_ringbuffer(dev);
4801 }
4802
4803 return ret;
4804 }
4805
4806 int i915_gem_init(struct drm_device *dev)
4807 {
4808 struct drm_i915_private *dev_priv = dev->dev_private;
4809 int ret;
4810
4811 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4812 i915.enable_execlists);
4813
4814 mutex_lock(&dev->struct_mutex);
4815
4816 if (IS_VALLEYVIEW(dev)) {
4817 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4818 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4819 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4820 VLV_GTLC_ALLOWWAKEACK), 10))
4821 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4822 }
4823
4824 if (!i915.enable_execlists) {
4825 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4826 dev_priv->gt.init_rings = i915_gem_init_rings;
4827 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4828 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4829 } else {
4830 dev_priv->gt.do_execbuf = intel_execlists_submission;
4831 dev_priv->gt.init_rings = intel_logical_rings_init;
4832 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4833 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4834 }
4835
4836 ret = i915_gem_init_userptr(dev);
4837 if (ret) {
4838 mutex_unlock(&dev->struct_mutex);
4839 return ret;
4840 }
4841
4842 i915_gem_init_global_gtt(dev);
4843
4844 ret = i915_gem_context_init(dev);
4845 if (ret) {
4846 mutex_unlock(&dev->struct_mutex);
4847 return ret;
4848 }
4849
4850 ret = i915_gem_init_hw(dev);
4851 if (ret == -EIO) {
4852 /* Allow ring initialisation to fail by marking the GPU as
4853 * wedged. But we only want to do this where the GPU is angry,
4854 * for all other failure, such as an allocation failure, bail.
4855 */
4856 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4857 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4858 ret = 0;
4859 }
4860 mutex_unlock(&dev->struct_mutex);
4861
4862 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4863 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4864 dev_priv->dri1.allow_batchbuffer = 1;
4865 return ret;
4866 }
4867
4868 void
4869 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4870 {
4871 struct drm_i915_private *dev_priv = dev->dev_private;
4872 struct intel_engine_cs *ring;
4873 int i;
4874
4875 for_each_ring(ring, dev_priv, i)
4876 dev_priv->gt.cleanup_ring(ring);
4877 }
4878
4879 int
4880 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4881 struct drm_file *file_priv)
4882 {
4883 struct drm_i915_private *dev_priv = dev->dev_private;
4884 int ret;
4885
4886 if (drm_core_check_feature(dev, DRIVER_MODESET))
4887 return 0;
4888
4889 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4890 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4891 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4892 }
4893
4894 mutex_lock(&dev->struct_mutex);
4895 dev_priv->ums.mm_suspended = 0;
4896
4897 ret = i915_gem_init_hw(dev);
4898 if (ret != 0) {
4899 mutex_unlock(&dev->struct_mutex);
4900 return ret;
4901 }
4902
4903 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4904
4905 ret = drm_irq_install(dev, dev->pdev->irq);
4906 if (ret)
4907 goto cleanup_ringbuffer;
4908 mutex_unlock(&dev->struct_mutex);
4909
4910 return 0;
4911
4912 cleanup_ringbuffer:
4913 i915_gem_cleanup_ringbuffer(dev);
4914 dev_priv->ums.mm_suspended = 1;
4915 mutex_unlock(&dev->struct_mutex);
4916
4917 return ret;
4918 }
4919
4920 int
4921 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4922 struct drm_file *file_priv)
4923 {
4924 if (drm_core_check_feature(dev, DRIVER_MODESET))
4925 return 0;
4926
4927 mutex_lock(&dev->struct_mutex);
4928 drm_irq_uninstall(dev);
4929 mutex_unlock(&dev->struct_mutex);
4930
4931 return i915_gem_suspend(dev);
4932 }
4933
4934 void
4935 i915_gem_lastclose(struct drm_device *dev)
4936 {
4937 int ret;
4938
4939 if (drm_core_check_feature(dev, DRIVER_MODESET))
4940 return;
4941
4942 ret = i915_gem_suspend(dev);
4943 if (ret)
4944 DRM_ERROR("failed to idle hardware: %d\n", ret);
4945 }
4946
4947 static void
4948 init_ring_lists(struct intel_engine_cs *ring)
4949 {
4950 INIT_LIST_HEAD(&ring->active_list);
4951 INIT_LIST_HEAD(&ring->request_list);
4952 }
4953
4954 void i915_init_vm(struct drm_i915_private *dev_priv,
4955 struct i915_address_space *vm)
4956 {
4957 if (!i915_is_ggtt(vm))
4958 drm_mm_init(&vm->mm, vm->start, vm->total);
4959 vm->dev = dev_priv->dev;
4960 INIT_LIST_HEAD(&vm->active_list);
4961 INIT_LIST_HEAD(&vm->inactive_list);
4962 INIT_LIST_HEAD(&vm->global_link);
4963 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4964 }
4965
4966 void
4967 i915_gem_load(struct drm_device *dev)
4968 {
4969 struct drm_i915_private *dev_priv = dev->dev_private;
4970 int i;
4971
4972 dev_priv->slab =
4973 kmem_cache_create("i915_gem_object",
4974 sizeof(struct drm_i915_gem_object), 0,
4975 SLAB_HWCACHE_ALIGN,
4976 NULL);
4977
4978 INIT_LIST_HEAD(&dev_priv->vm_list);
4979 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4980
4981 INIT_LIST_HEAD(&dev_priv->context_list);
4982 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4983 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4984 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4985 for (i = 0; i < I915_NUM_RINGS; i++)
4986 init_ring_lists(&dev_priv->ring[i]);
4987 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4988 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4989 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4990 i915_gem_retire_work_handler);
4991 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4992 i915_gem_idle_work_handler);
4993 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4994
4995 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4996 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4997 I915_WRITE(MI_ARB_STATE,
4998 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4999 }
5000
5001 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5002
5003 /* Old X drivers will take 0-2 for front, back, depth buffers */
5004 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5005 dev_priv->fence_reg_start = 3;
5006
5007 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5008 dev_priv->num_fence_regs = 32;
5009 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5010 dev_priv->num_fence_regs = 16;
5011 else
5012 dev_priv->num_fence_regs = 8;
5013
5014 /* Initialize fence registers to zero */
5015 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5016 i915_gem_restore_fences(dev);
5017
5018 i915_gem_detect_bit_6_swizzle(dev);
5019 init_waitqueue_head(&dev_priv->pending_flip_queue);
5020
5021 dev_priv->mm.interruptible = true;
5022
5023 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5024 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5025 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5026 register_shrinker(&dev_priv->mm.shrinker);
5027
5028 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5029 register_oom_notifier(&dev_priv->mm.oom_notifier);
5030
5031 mutex_init(&dev_priv->fb_tracking.lock);
5032 }
5033
5034 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5035 {
5036 struct drm_i915_file_private *file_priv = file->driver_priv;
5037
5038 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5039
5040 /* Clean up our request list when the client is going away, so that
5041 * later retire_requests won't dereference our soon-to-be-gone
5042 * file_priv.
5043 */
5044 spin_lock(&file_priv->mm.lock);
5045 while (!list_empty(&file_priv->mm.request_list)) {
5046 struct drm_i915_gem_request *request;
5047
5048 request = list_first_entry(&file_priv->mm.request_list,
5049 struct drm_i915_gem_request,
5050 client_list);
5051 list_del(&request->client_list);
5052 request->file_priv = NULL;
5053 }
5054 spin_unlock(&file_priv->mm.lock);
5055 }
5056
5057 static void
5058 i915_gem_file_idle_work_handler(struct work_struct *work)
5059 {
5060 struct drm_i915_file_private *file_priv =
5061 container_of(work, typeof(*file_priv), mm.idle_work.work);
5062
5063 atomic_set(&file_priv->rps_wait_boost, false);
5064 }
5065
5066 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5067 {
5068 struct drm_i915_file_private *file_priv;
5069 int ret;
5070
5071 DRM_DEBUG_DRIVER("\n");
5072
5073 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5074 if (!file_priv)
5075 return -ENOMEM;
5076
5077 file->driver_priv = file_priv;
5078 file_priv->dev_priv = dev->dev_private;
5079 file_priv->file = file;
5080
5081 spin_lock_init(&file_priv->mm.lock);
5082 INIT_LIST_HEAD(&file_priv->mm.request_list);
5083 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5084 i915_gem_file_idle_work_handler);
5085
5086 ret = i915_gem_context_open(dev, file);
5087 if (ret)
5088 kfree(file_priv);
5089
5090 return ret;
5091 }
5092
5093 /**
5094 * i915_gem_track_fb - update frontbuffer tracking
5095 * old: current GEM buffer for the frontbuffer slots
5096 * new: new GEM buffer for the frontbuffer slots
5097 * frontbuffer_bits: bitmask of frontbuffer slots
5098 *
5099 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5100 * from @old and setting them in @new. Both @old and @new can be NULL.
5101 */
5102 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5103 struct drm_i915_gem_object *new,
5104 unsigned frontbuffer_bits)
5105 {
5106 if (old) {
5107 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5108 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5109 old->frontbuffer_bits &= ~frontbuffer_bits;
5110 }
5111
5112 if (new) {
5113 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5114 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5115 new->frontbuffer_bits |= frontbuffer_bits;
5116 }
5117 }
5118
5119 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5120 {
5121 if (!mutex_is_locked(mutex))
5122 return false;
5123
5124 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5125 return mutex->owner == task;
5126 #else
5127 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5128 return false;
5129 #endif
5130 }
5131
5132 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5133 {
5134 if (!mutex_trylock(&dev->struct_mutex)) {
5135 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5136 return false;
5137
5138 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5139 return false;
5140
5141 *unlock = false;
5142 } else
5143 *unlock = true;
5144
5145 return true;
5146 }
5147
5148 static int num_vma_bound(struct drm_i915_gem_object *obj)
5149 {
5150 struct i915_vma *vma;
5151 int count = 0;
5152
5153 list_for_each_entry(vma, &obj->vma_list, vma_link)
5154 if (drm_mm_node_allocated(&vma->node))
5155 count++;
5156
5157 return count;
5158 }
5159
5160 static unsigned long
5161 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5162 {
5163 struct drm_i915_private *dev_priv =
5164 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5165 struct drm_device *dev = dev_priv->dev;
5166 struct drm_i915_gem_object *obj;
5167 unsigned long count;
5168 bool unlock;
5169
5170 if (!i915_gem_shrinker_lock(dev, &unlock))
5171 return 0;
5172
5173 count = 0;
5174 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5175 if (obj->pages_pin_count == 0)
5176 count += obj->base.size >> PAGE_SHIFT;
5177
5178 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5179 if (!i915_gem_obj_is_pinned(obj) &&
5180 obj->pages_pin_count == num_vma_bound(obj))
5181 count += obj->base.size >> PAGE_SHIFT;
5182 }
5183
5184 if (unlock)
5185 mutex_unlock(&dev->struct_mutex);
5186
5187 return count;
5188 }
5189
5190 /* All the new VM stuff */
5191 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5192 struct i915_address_space *vm)
5193 {
5194 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5195 struct i915_vma *vma;
5196
5197 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5198
5199 list_for_each_entry(vma, &o->vma_list, vma_link) {
5200 if (vma->vm == vm)
5201 return vma->node.start;
5202
5203 }
5204 WARN(1, "%s vma for this object not found.\n",
5205 i915_is_ggtt(vm) ? "global" : "ppgtt");
5206 return -1;
5207 }
5208
5209 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5210 struct i915_address_space *vm)
5211 {
5212 struct i915_vma *vma;
5213
5214 list_for_each_entry(vma, &o->vma_list, vma_link)
5215 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5216 return true;
5217
5218 return false;
5219 }
5220
5221 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5222 {
5223 struct i915_vma *vma;
5224
5225 list_for_each_entry(vma, &o->vma_list, vma_link)
5226 if (drm_mm_node_allocated(&vma->node))
5227 return true;
5228
5229 return false;
5230 }
5231
5232 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5233 struct i915_address_space *vm)
5234 {
5235 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5236 struct i915_vma *vma;
5237
5238 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5239
5240 BUG_ON(list_empty(&o->vma_list));
5241
5242 list_for_each_entry(vma, &o->vma_list, vma_link)
5243 if (vma->vm == vm)
5244 return vma->node.size;
5245
5246 return 0;
5247 }
5248
5249 static unsigned long
5250 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5251 {
5252 struct drm_i915_private *dev_priv =
5253 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5254 struct drm_device *dev = dev_priv->dev;
5255 unsigned long freed;
5256 bool unlock;
5257
5258 if (!i915_gem_shrinker_lock(dev, &unlock))
5259 return SHRINK_STOP;
5260
5261 freed = i915_gem_shrink(dev_priv,
5262 sc->nr_to_scan,
5263 I915_SHRINK_BOUND |
5264 I915_SHRINK_UNBOUND |
5265 I915_SHRINK_PURGEABLE);
5266 if (freed < sc->nr_to_scan)
5267 freed += i915_gem_shrink(dev_priv,
5268 sc->nr_to_scan - freed,
5269 I915_SHRINK_BOUND |
5270 I915_SHRINK_UNBOUND);
5271 if (unlock)
5272 mutex_unlock(&dev->struct_mutex);
5273
5274 return freed;
5275 }
5276
5277 static int
5278 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5279 {
5280 struct drm_i915_private *dev_priv =
5281 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5282 struct drm_device *dev = dev_priv->dev;
5283 struct drm_i915_gem_object *obj;
5284 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5285 unsigned long pinned, bound, unbound, freed_pages;
5286 bool was_interruptible;
5287 bool unlock;
5288
5289 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5290 schedule_timeout_killable(1);
5291 if (fatal_signal_pending(current))
5292 return NOTIFY_DONE;
5293 }
5294 if (timeout == 0) {
5295 pr_err("Unable to purge GPU memory due lock contention.\n");
5296 return NOTIFY_DONE;
5297 }
5298
5299 was_interruptible = dev_priv->mm.interruptible;
5300 dev_priv->mm.interruptible = false;
5301
5302 freed_pages = i915_gem_shrink_all(dev_priv);
5303
5304 dev_priv->mm.interruptible = was_interruptible;
5305
5306 /* Because we may be allocating inside our own driver, we cannot
5307 * assert that there are no objects with pinned pages that are not
5308 * being pointed to by hardware.
5309 */
5310 unbound = bound = pinned = 0;
5311 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5312 if (!obj->base.filp) /* not backed by a freeable object */
5313 continue;
5314
5315 if (obj->pages_pin_count)
5316 pinned += obj->base.size;
5317 else
5318 unbound += obj->base.size;
5319 }
5320 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5321 if (!obj->base.filp)
5322 continue;
5323
5324 if (obj->pages_pin_count)
5325 pinned += obj->base.size;
5326 else
5327 bound += obj->base.size;
5328 }
5329
5330 if (unlock)
5331 mutex_unlock(&dev->struct_mutex);
5332
5333 if (freed_pages || unbound || bound)
5334 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5335 freed_pages << PAGE_SHIFT, pinned);
5336 if (unbound || bound)
5337 pr_err("%lu and %lu bytes still available in the "
5338 "bound and unbound GPU page lists.\n",
5339 bound, unbound);
5340
5341 *(unsigned long *)ptr += freed_pages;
5342 return NOTIFY_DONE;
5343 }
5344
5345 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5346 {
5347 struct i915_vma *vma;
5348
5349 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5350 if (vma->vm != i915_obj_to_ggtt(obj))
5351 return NULL;
5352
5353 return vma;
5354 }
This page took 0.138978 seconds and 6 git commands to generate.