drm/i915: Apply HWSTAM workaround for BSD ring on SandyBridge
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 struct change_domains {
37 uint32_t invalidate_domains;
38 uint32_t flush_domains;
39 uint32_t flush_rings;
40 uint32_t flips;
41 };
42
43 /*
44 * Set the next domain for the specified object. This
45 * may not actually perform the necessary flushing/invaliding though,
46 * as that may want to be batched with other set_domain operations
47 *
48 * This is (we hope) the only really tricky part of gem. The goal
49 * is fairly simple -- track which caches hold bits of the object
50 * and make sure they remain coherent. A few concrete examples may
51 * help to explain how it works. For shorthand, we use the notation
52 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
53 * a pair of read and write domain masks.
54 *
55 * Case 1: the batch buffer
56 *
57 * 1. Allocated
58 * 2. Written by CPU
59 * 3. Mapped to GTT
60 * 4. Read by GPU
61 * 5. Unmapped from GTT
62 * 6. Freed
63 *
64 * Let's take these a step at a time
65 *
66 * 1. Allocated
67 * Pages allocated from the kernel may still have
68 * cache contents, so we set them to (CPU, CPU) always.
69 * 2. Written by CPU (using pwrite)
70 * The pwrite function calls set_domain (CPU, CPU) and
71 * this function does nothing (as nothing changes)
72 * 3. Mapped by GTT
73 * This function asserts that the object is not
74 * currently in any GPU-based read or write domains
75 * 4. Read by GPU
76 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
77 * As write_domain is zero, this function adds in the
78 * current read domains (CPU+COMMAND, 0).
79 * flush_domains is set to CPU.
80 * invalidate_domains is set to COMMAND
81 * clflush is run to get data out of the CPU caches
82 * then i915_dev_set_domain calls i915_gem_flush to
83 * emit an MI_FLUSH and drm_agp_chipset_flush
84 * 5. Unmapped from GTT
85 * i915_gem_object_unbind calls set_domain (CPU, CPU)
86 * flush_domains and invalidate_domains end up both zero
87 * so no flushing/invalidating happens
88 * 6. Freed
89 * yay, done
90 *
91 * Case 2: The shared render buffer
92 *
93 * 1. Allocated
94 * 2. Mapped to GTT
95 * 3. Read/written by GPU
96 * 4. set_domain to (CPU,CPU)
97 * 5. Read/written by CPU
98 * 6. Read/written by GPU
99 *
100 * 1. Allocated
101 * Same as last example, (CPU, CPU)
102 * 2. Mapped to GTT
103 * Nothing changes (assertions find that it is not in the GPU)
104 * 3. Read/written by GPU
105 * execbuffer calls set_domain (RENDER, RENDER)
106 * flush_domains gets CPU
107 * invalidate_domains gets GPU
108 * clflush (obj)
109 * MI_FLUSH and drm_agp_chipset_flush
110 * 4. set_domain (CPU, CPU)
111 * flush_domains gets GPU
112 * invalidate_domains gets CPU
113 * wait_rendering (obj) to make sure all drawing is complete.
114 * This will include an MI_FLUSH to get the data from GPU
115 * to memory
116 * clflush (obj) to invalidate the CPU cache
117 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
118 * 5. Read/written by CPU
119 * cache lines are loaded and dirtied
120 * 6. Read written by GPU
121 * Same as last GPU access
122 *
123 * Case 3: The constant buffer
124 *
125 * 1. Allocated
126 * 2. Written by CPU
127 * 3. Read by GPU
128 * 4. Updated (written) by CPU again
129 * 5. Read by GPU
130 *
131 * 1. Allocated
132 * (CPU, CPU)
133 * 2. Written by CPU
134 * (CPU, CPU)
135 * 3. Read by GPU
136 * (CPU+RENDER, 0)
137 * flush_domains = CPU
138 * invalidate_domains = RENDER
139 * clflush (obj)
140 * MI_FLUSH
141 * drm_agp_chipset_flush
142 * 4. Updated (written) by CPU again
143 * (CPU, CPU)
144 * flush_domains = 0 (no previous write domain)
145 * invalidate_domains = 0 (no new read domains)
146 * 5. Read by GPU
147 * (CPU+RENDER, 0)
148 * flush_domains = CPU
149 * invalidate_domains = RENDER
150 * clflush (obj)
151 * MI_FLUSH
152 * drm_agp_chipset_flush
153 */
154 static void
155 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
156 struct intel_ring_buffer *ring,
157 struct change_domains *cd)
158 {
159 uint32_t invalidate_domains = 0, flush_domains = 0;
160
161 /*
162 * If the object isn't moving to a new write domain,
163 * let the object stay in multiple read domains
164 */
165 if (obj->base.pending_write_domain == 0)
166 obj->base.pending_read_domains |= obj->base.read_domains;
167
168 /*
169 * Flush the current write domain if
170 * the new read domains don't match. Invalidate
171 * any read domains which differ from the old
172 * write domain
173 */
174 if (obj->base.write_domain &&
175 (((obj->base.write_domain != obj->base.pending_read_domains ||
176 obj->ring != ring)) ||
177 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
178 flush_domains |= obj->base.write_domain;
179 invalidate_domains |=
180 obj->base.pending_read_domains & ~obj->base.write_domain;
181 }
182 /*
183 * Invalidate any read caches which may have
184 * stale data. That is, any new read domains.
185 */
186 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
187 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
188 i915_gem_clflush_object(obj);
189
190 /* blow away mappings if mapped through GTT */
191 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
192 i915_gem_release_mmap(obj);
193
194 if (obj->base.pending_write_domain)
195 cd->flips |= atomic_read(&obj->pending_flip);
196
197 /* The actual obj->write_domain will be updated with
198 * pending_write_domain after we emit the accumulated flush for all
199 * of our domain changes in execbuffers (which clears objects'
200 * write_domains). So if we have a current write domain that we
201 * aren't changing, set pending_write_domain to that.
202 */
203 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
204 obj->base.pending_write_domain = obj->base.write_domain;
205
206 cd->invalidate_domains |= invalidate_domains;
207 cd->flush_domains |= flush_domains;
208 if (flush_domains & I915_GEM_GPU_DOMAINS)
209 cd->flush_rings |= obj->ring->id;
210 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
211 cd->flush_rings |= ring->id;
212 }
213
214 struct eb_objects {
215 int and;
216 struct hlist_head buckets[0];
217 };
218
219 static struct eb_objects *
220 eb_create(int size)
221 {
222 struct eb_objects *eb;
223 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
224 while (count > size)
225 count >>= 1;
226 eb = kzalloc(count*sizeof(struct hlist_head) +
227 sizeof(struct eb_objects),
228 GFP_KERNEL);
229 if (eb == NULL)
230 return eb;
231
232 eb->and = count - 1;
233 return eb;
234 }
235
236 static void
237 eb_reset(struct eb_objects *eb)
238 {
239 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
240 }
241
242 static void
243 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
244 {
245 hlist_add_head(&obj->exec_node,
246 &eb->buckets[obj->exec_handle & eb->and]);
247 }
248
249 static struct drm_i915_gem_object *
250 eb_get_object(struct eb_objects *eb, unsigned long handle)
251 {
252 struct hlist_head *head;
253 struct hlist_node *node;
254 struct drm_i915_gem_object *obj;
255
256 head = &eb->buckets[handle & eb->and];
257 hlist_for_each(node, head) {
258 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
259 if (obj->exec_handle == handle)
260 return obj;
261 }
262
263 return NULL;
264 }
265
266 static void
267 eb_destroy(struct eb_objects *eb)
268 {
269 kfree(eb);
270 }
271
272 static int
273 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
274 struct eb_objects *eb,
275 struct drm_i915_gem_relocation_entry *reloc)
276 {
277 struct drm_device *dev = obj->base.dev;
278 struct drm_gem_object *target_obj;
279 uint32_t target_offset;
280 int ret = -EINVAL;
281
282 /* we've already hold a reference to all valid objects */
283 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
284 if (unlikely(target_obj == NULL))
285 return -ENOENT;
286
287 target_offset = to_intel_bo(target_obj)->gtt_offset;
288
289 /* The target buffer should have appeared before us in the
290 * exec_object list, so it should have a GTT space bound by now.
291 */
292 if (unlikely(target_offset == 0)) {
293 DRM_ERROR("No GTT space found for object %d\n",
294 reloc->target_handle);
295 return ret;
296 }
297
298 /* Validate that the target is in a valid r/w GPU domain */
299 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
300 DRM_ERROR("reloc with multiple write domains: "
301 "obj %p target %d offset %d "
302 "read %08x write %08x",
303 obj, reloc->target_handle,
304 (int) reloc->offset,
305 reloc->read_domains,
306 reloc->write_domain);
307 return ret;
308 }
309 if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
310 DRM_ERROR("reloc with read/write CPU domains: "
311 "obj %p target %d offset %d "
312 "read %08x write %08x",
313 obj, reloc->target_handle,
314 (int) reloc->offset,
315 reloc->read_domains,
316 reloc->write_domain);
317 return ret;
318 }
319 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
320 reloc->write_domain != target_obj->pending_write_domain)) {
321 DRM_ERROR("Write domain conflict: "
322 "obj %p target %d offset %d "
323 "new %08x old %08x\n",
324 obj, reloc->target_handle,
325 (int) reloc->offset,
326 reloc->write_domain,
327 target_obj->pending_write_domain);
328 return ret;
329 }
330
331 target_obj->pending_read_domains |= reloc->read_domains;
332 target_obj->pending_write_domain |= reloc->write_domain;
333
334 /* If the relocation already has the right value in it, no
335 * more work needs to be done.
336 */
337 if (target_offset == reloc->presumed_offset)
338 return 0;
339
340 /* Check that the relocation address is valid... */
341 if (unlikely(reloc->offset > obj->base.size - 4)) {
342 DRM_ERROR("Relocation beyond object bounds: "
343 "obj %p target %d offset %d size %d.\n",
344 obj, reloc->target_handle,
345 (int) reloc->offset,
346 (int) obj->base.size);
347 return ret;
348 }
349 if (unlikely(reloc->offset & 3)) {
350 DRM_ERROR("Relocation not 4-byte aligned: "
351 "obj %p target %d offset %d.\n",
352 obj, reloc->target_handle,
353 (int) reloc->offset);
354 return ret;
355 }
356
357 reloc->delta += target_offset;
358 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
359 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
360 char *vaddr;
361
362 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
363 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
364 kunmap_atomic(vaddr);
365 } else {
366 struct drm_i915_private *dev_priv = dev->dev_private;
367 uint32_t __iomem *reloc_entry;
368 void __iomem *reloc_page;
369
370 /* We can't wait for rendering with pagefaults disabled */
371 if (obj->active && in_atomic())
372 return -EFAULT;
373
374 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
375 if (ret)
376 return ret;
377
378 /* Map the page containing the relocation we're going to perform. */
379 reloc->offset += obj->gtt_offset;
380 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
381 reloc->offset & PAGE_MASK);
382 reloc_entry = (uint32_t __iomem *)
383 (reloc_page + (reloc->offset & ~PAGE_MASK));
384 iowrite32(reloc->delta, reloc_entry);
385 io_mapping_unmap_atomic(reloc_page);
386 }
387
388 /* and update the user's relocation entry */
389 reloc->presumed_offset = target_offset;
390
391 return 0;
392 }
393
394 static int
395 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
396 struct eb_objects *eb)
397 {
398 struct drm_i915_gem_relocation_entry __user *user_relocs;
399 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
400 int i, ret;
401
402 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
403 for (i = 0; i < entry->relocation_count; i++) {
404 struct drm_i915_gem_relocation_entry reloc;
405
406 if (__copy_from_user_inatomic(&reloc,
407 user_relocs+i,
408 sizeof(reloc)))
409 return -EFAULT;
410
411 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
412 if (ret)
413 return ret;
414
415 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
416 &reloc.presumed_offset,
417 sizeof(reloc.presumed_offset)))
418 return -EFAULT;
419 }
420
421 return 0;
422 }
423
424 static int
425 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
426 struct eb_objects *eb,
427 struct drm_i915_gem_relocation_entry *relocs)
428 {
429 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
430 int i, ret;
431
432 for (i = 0; i < entry->relocation_count; i++) {
433 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
434 if (ret)
435 return ret;
436 }
437
438 return 0;
439 }
440
441 static int
442 i915_gem_execbuffer_relocate(struct drm_device *dev,
443 struct eb_objects *eb,
444 struct list_head *objects)
445 {
446 struct drm_i915_gem_object *obj;
447 int ret = 0;
448
449 /* This is the fast path and we cannot handle a pagefault whilst
450 * holding the struct mutex lest the user pass in the relocations
451 * contained within a mmaped bo. For in such a case we, the page
452 * fault handler would call i915_gem_fault() and we would try to
453 * acquire the struct mutex again. Obviously this is bad and so
454 * lockdep complains vehemently.
455 */
456 pagefault_disable();
457 list_for_each_entry(obj, objects, exec_list) {
458 ret = i915_gem_execbuffer_relocate_object(obj, eb);
459 if (ret)
460 break;
461 }
462 pagefault_enable();
463
464 return ret;
465 }
466
467 static int
468 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
469 struct drm_file *file,
470 struct list_head *objects)
471 {
472 struct drm_i915_gem_object *obj;
473 int ret, retry;
474 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
475 struct list_head ordered_objects;
476
477 INIT_LIST_HEAD(&ordered_objects);
478 while (!list_empty(objects)) {
479 struct drm_i915_gem_exec_object2 *entry;
480 bool need_fence, need_mappable;
481
482 obj = list_first_entry(objects,
483 struct drm_i915_gem_object,
484 exec_list);
485 entry = obj->exec_entry;
486
487 need_fence =
488 has_fenced_gpu_access &&
489 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
490 obj->tiling_mode != I915_TILING_NONE;
491 need_mappable =
492 entry->relocation_count ? true : need_fence;
493
494 if (need_mappable)
495 list_move(&obj->exec_list, &ordered_objects);
496 else
497 list_move_tail(&obj->exec_list, &ordered_objects);
498
499 obj->base.pending_read_domains = 0;
500 obj->base.pending_write_domain = 0;
501 }
502 list_splice(&ordered_objects, objects);
503
504 /* Attempt to pin all of the buffers into the GTT.
505 * This is done in 3 phases:
506 *
507 * 1a. Unbind all objects that do not match the GTT constraints for
508 * the execbuffer (fenceable, mappable, alignment etc).
509 * 1b. Increment pin count for already bound objects.
510 * 2. Bind new objects.
511 * 3. Decrement pin count.
512 *
513 * This avoid unnecessary unbinding of later objects in order to makr
514 * room for the earlier objects *unless* we need to defragment.
515 */
516 retry = 0;
517 do {
518 ret = 0;
519
520 /* Unbind any ill-fitting objects or pin. */
521 list_for_each_entry(obj, objects, exec_list) {
522 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
523 bool need_fence, need_mappable;
524 if (!obj->gtt_space)
525 continue;
526
527 need_fence =
528 has_fenced_gpu_access &&
529 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
530 obj->tiling_mode != I915_TILING_NONE;
531 need_mappable =
532 entry->relocation_count ? true : need_fence;
533
534 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
535 (need_mappable && !obj->map_and_fenceable))
536 ret = i915_gem_object_unbind(obj);
537 else
538 ret = i915_gem_object_pin(obj,
539 entry->alignment,
540 need_mappable);
541 if (ret)
542 goto err;
543
544 entry++;
545 }
546
547 /* Bind fresh objects */
548 list_for_each_entry(obj, objects, exec_list) {
549 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
550 bool need_fence;
551
552 need_fence =
553 has_fenced_gpu_access &&
554 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
555 obj->tiling_mode != I915_TILING_NONE;
556
557 if (!obj->gtt_space) {
558 bool need_mappable =
559 entry->relocation_count ? true : need_fence;
560
561 ret = i915_gem_object_pin(obj,
562 entry->alignment,
563 need_mappable);
564 if (ret)
565 break;
566 }
567
568 if (has_fenced_gpu_access) {
569 if (need_fence) {
570 ret = i915_gem_object_get_fence(obj, ring);
571 if (ret)
572 break;
573 } else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
574 obj->tiling_mode == I915_TILING_NONE) {
575 /* XXX pipelined! */
576 ret = i915_gem_object_put_fence(obj);
577 if (ret)
578 break;
579 }
580 obj->pending_fenced_gpu_access = need_fence;
581 }
582
583 entry->offset = obj->gtt_offset;
584 }
585
586 /* Decrement pin count for bound objects */
587 list_for_each_entry(obj, objects, exec_list) {
588 if (obj->gtt_space)
589 i915_gem_object_unpin(obj);
590 }
591
592 if (ret != -ENOSPC || retry > 1)
593 return ret;
594
595 /* First attempt, just clear anything that is purgeable.
596 * Second attempt, clear the entire GTT.
597 */
598 ret = i915_gem_evict_everything(ring->dev, retry == 0);
599 if (ret)
600 return ret;
601
602 retry++;
603 } while (1);
604
605 err:
606 obj = list_entry(obj->exec_list.prev,
607 struct drm_i915_gem_object,
608 exec_list);
609 while (objects != &obj->exec_list) {
610 if (obj->gtt_space)
611 i915_gem_object_unpin(obj);
612
613 obj = list_entry(obj->exec_list.prev,
614 struct drm_i915_gem_object,
615 exec_list);
616 }
617
618 return ret;
619 }
620
621 static int
622 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
623 struct drm_file *file,
624 struct intel_ring_buffer *ring,
625 struct list_head *objects,
626 struct eb_objects *eb,
627 struct drm_i915_gem_exec_object2 *exec,
628 int count)
629 {
630 struct drm_i915_gem_relocation_entry *reloc;
631 struct drm_i915_gem_object *obj;
632 int *reloc_offset;
633 int i, total, ret;
634
635 /* We may process another execbuffer during the unlock... */
636 while (!list_empty(objects)) {
637 obj = list_first_entry(objects,
638 struct drm_i915_gem_object,
639 exec_list);
640 list_del_init(&obj->exec_list);
641 drm_gem_object_unreference(&obj->base);
642 }
643
644 mutex_unlock(&dev->struct_mutex);
645
646 total = 0;
647 for (i = 0; i < count; i++)
648 total += exec[i].relocation_count;
649
650 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
651 reloc = drm_malloc_ab(total, sizeof(*reloc));
652 if (reloc == NULL || reloc_offset == NULL) {
653 drm_free_large(reloc);
654 drm_free_large(reloc_offset);
655 mutex_lock(&dev->struct_mutex);
656 return -ENOMEM;
657 }
658
659 total = 0;
660 for (i = 0; i < count; i++) {
661 struct drm_i915_gem_relocation_entry __user *user_relocs;
662
663 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
664
665 if (copy_from_user(reloc+total, user_relocs,
666 exec[i].relocation_count * sizeof(*reloc))) {
667 ret = -EFAULT;
668 mutex_lock(&dev->struct_mutex);
669 goto err;
670 }
671
672 reloc_offset[i] = total;
673 total += exec[i].relocation_count;
674 }
675
676 ret = i915_mutex_lock_interruptible(dev);
677 if (ret) {
678 mutex_lock(&dev->struct_mutex);
679 goto err;
680 }
681
682 /* reacquire the objects */
683 eb_reset(eb);
684 for (i = 0; i < count; i++) {
685 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
686 exec[i].handle));
687 if (&obj->base == NULL) {
688 DRM_ERROR("Invalid object handle %d at index %d\n",
689 exec[i].handle, i);
690 ret = -ENOENT;
691 goto err;
692 }
693
694 list_add_tail(&obj->exec_list, objects);
695 obj->exec_handle = exec[i].handle;
696 obj->exec_entry = &exec[i];
697 eb_add_object(eb, obj);
698 }
699
700 ret = i915_gem_execbuffer_reserve(ring, file, objects);
701 if (ret)
702 goto err;
703
704 list_for_each_entry(obj, objects, exec_list) {
705 int offset = obj->exec_entry - exec;
706 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
707 reloc + reloc_offset[offset]);
708 if (ret)
709 goto err;
710 }
711
712 /* Leave the user relocations as are, this is the painfully slow path,
713 * and we want to avoid the complication of dropping the lock whilst
714 * having buffers reserved in the aperture and so causing spurious
715 * ENOSPC for random operations.
716 */
717
718 err:
719 drm_free_large(reloc);
720 drm_free_large(reloc_offset);
721 return ret;
722 }
723
724 static int
725 i915_gem_execbuffer_flush(struct drm_device *dev,
726 uint32_t invalidate_domains,
727 uint32_t flush_domains,
728 uint32_t flush_rings)
729 {
730 drm_i915_private_t *dev_priv = dev->dev_private;
731 int i, ret;
732
733 if (flush_domains & I915_GEM_DOMAIN_CPU)
734 intel_gtt_chipset_flush();
735
736 if (flush_domains & I915_GEM_DOMAIN_GTT)
737 wmb();
738
739 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
740 for (i = 0; i < I915_NUM_RINGS; i++)
741 if (flush_rings & (1 << i)) {
742 ret = i915_gem_flush_ring(&dev_priv->ring[i],
743 invalidate_domains,
744 flush_domains);
745 if (ret)
746 return ret;
747 }
748 }
749
750 return 0;
751 }
752
753 static int
754 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
755 struct intel_ring_buffer *to)
756 {
757 struct intel_ring_buffer *from = obj->ring;
758 u32 seqno;
759 int ret, idx;
760
761 if (from == NULL || to == from)
762 return 0;
763
764 /* XXX gpu semaphores are implicated in various hard hangs on SNB */
765 if (INTEL_INFO(obj->base.dev)->gen < 6 || !i915_semaphores)
766 return i915_gem_object_wait_rendering(obj);
767
768 idx = intel_ring_sync_index(from, to);
769
770 seqno = obj->last_rendering_seqno;
771 if (seqno <= from->sync_seqno[idx])
772 return 0;
773
774 if (seqno == from->outstanding_lazy_request) {
775 struct drm_i915_gem_request *request;
776
777 request = kzalloc(sizeof(*request), GFP_KERNEL);
778 if (request == NULL)
779 return -ENOMEM;
780
781 ret = i915_add_request(from, NULL, request);
782 if (ret) {
783 kfree(request);
784 return ret;
785 }
786
787 seqno = request->seqno;
788 }
789
790 from->sync_seqno[idx] = seqno;
791 return intel_ring_sync(to, from, seqno - 1);
792 }
793
794 static int
795 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
796 {
797 u32 plane, flip_mask;
798 int ret;
799
800 /* Check for any pending flips. As we only maintain a flip queue depth
801 * of 1, we can simply insert a WAIT for the next display flip prior
802 * to executing the batch and avoid stalling the CPU.
803 */
804
805 for (plane = 0; flips >> plane; plane++) {
806 if (((flips >> plane) & 1) == 0)
807 continue;
808
809 if (plane)
810 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
811 else
812 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
813
814 ret = intel_ring_begin(ring, 2);
815 if (ret)
816 return ret;
817
818 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
819 intel_ring_emit(ring, MI_NOOP);
820 intel_ring_advance(ring);
821 }
822
823 return 0;
824 }
825
826
827 static int
828 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
829 struct list_head *objects)
830 {
831 struct drm_i915_gem_object *obj;
832 struct change_domains cd;
833 int ret;
834
835 memset(&cd, 0, sizeof(cd));
836 list_for_each_entry(obj, objects, exec_list)
837 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
838
839 if (cd.invalidate_domains | cd.flush_domains) {
840 ret = i915_gem_execbuffer_flush(ring->dev,
841 cd.invalidate_domains,
842 cd.flush_domains,
843 cd.flush_rings);
844 if (ret)
845 return ret;
846 }
847
848 if (cd.flips) {
849 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
850 if (ret)
851 return ret;
852 }
853
854 list_for_each_entry(obj, objects, exec_list) {
855 ret = i915_gem_execbuffer_sync_rings(obj, ring);
856 if (ret)
857 return ret;
858 }
859
860 return 0;
861 }
862
863 static bool
864 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
865 {
866 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
867 }
868
869 static int
870 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
871 int count)
872 {
873 int i;
874
875 for (i = 0; i < count; i++) {
876 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
877 int length; /* limited by fault_in_pages_readable() */
878
879 /* First check for malicious input causing overflow */
880 if (exec[i].relocation_count >
881 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
882 return -EINVAL;
883
884 length = exec[i].relocation_count *
885 sizeof(struct drm_i915_gem_relocation_entry);
886 if (!access_ok(VERIFY_READ, ptr, length))
887 return -EFAULT;
888
889 /* we may also need to update the presumed offsets */
890 if (!access_ok(VERIFY_WRITE, ptr, length))
891 return -EFAULT;
892
893 if (fault_in_pages_readable(ptr, length))
894 return -EFAULT;
895 }
896
897 return 0;
898 }
899
900 static void
901 i915_gem_execbuffer_move_to_active(struct list_head *objects,
902 struct intel_ring_buffer *ring,
903 u32 seqno)
904 {
905 struct drm_i915_gem_object *obj;
906
907 list_for_each_entry(obj, objects, exec_list) {
908 u32 old_read = obj->base.read_domains;
909 u32 old_write = obj->base.write_domain;
910
911
912 obj->base.read_domains = obj->base.pending_read_domains;
913 obj->base.write_domain = obj->base.pending_write_domain;
914 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
915
916 i915_gem_object_move_to_active(obj, ring, seqno);
917 if (obj->base.write_domain) {
918 obj->dirty = 1;
919 obj->pending_gpu_write = true;
920 list_move_tail(&obj->gpu_write_list,
921 &ring->gpu_write_list);
922 intel_mark_busy(ring->dev, obj);
923 }
924
925 trace_i915_gem_object_change_domain(obj, old_read, old_write);
926 }
927 }
928
929 static void
930 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
931 struct drm_file *file,
932 struct intel_ring_buffer *ring)
933 {
934 struct drm_i915_gem_request *request;
935 u32 invalidate;
936
937 /*
938 * Ensure that the commands in the batch buffer are
939 * finished before the interrupt fires.
940 *
941 * The sampler always gets flushed on i965 (sigh).
942 */
943 invalidate = I915_GEM_DOMAIN_COMMAND;
944 if (INTEL_INFO(dev)->gen >= 4)
945 invalidate |= I915_GEM_DOMAIN_SAMPLER;
946 if (ring->flush(ring, invalidate, 0)) {
947 i915_gem_next_request_seqno(ring);
948 return;
949 }
950
951 /* Add a breadcrumb for the completion of the batch buffer */
952 request = kzalloc(sizeof(*request), GFP_KERNEL);
953 if (request == NULL || i915_add_request(ring, file, request)) {
954 i915_gem_next_request_seqno(ring);
955 kfree(request);
956 }
957 }
958
959 static int
960 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
961 struct drm_file *file,
962 struct drm_i915_gem_execbuffer2 *args,
963 struct drm_i915_gem_exec_object2 *exec)
964 {
965 drm_i915_private_t *dev_priv = dev->dev_private;
966 struct list_head objects;
967 struct eb_objects *eb;
968 struct drm_i915_gem_object *batch_obj;
969 struct drm_clip_rect *cliprects = NULL;
970 struct intel_ring_buffer *ring;
971 u32 exec_start, exec_len;
972 u32 seqno;
973 int ret, mode, i;
974
975 if (!i915_gem_check_execbuffer(args)) {
976 DRM_ERROR("execbuf with invalid offset/length\n");
977 return -EINVAL;
978 }
979
980 ret = validate_exec_list(exec, args->buffer_count);
981 if (ret)
982 return ret;
983
984 switch (args->flags & I915_EXEC_RING_MASK) {
985 case I915_EXEC_DEFAULT:
986 case I915_EXEC_RENDER:
987 ring = &dev_priv->ring[RCS];
988 break;
989 case I915_EXEC_BSD:
990 if (!HAS_BSD(dev)) {
991 DRM_ERROR("execbuf with invalid ring (BSD)\n");
992 return -EINVAL;
993 }
994 ring = &dev_priv->ring[VCS];
995 break;
996 case I915_EXEC_BLT:
997 if (!HAS_BLT(dev)) {
998 DRM_ERROR("execbuf with invalid ring (BLT)\n");
999 return -EINVAL;
1000 }
1001 ring = &dev_priv->ring[BCS];
1002 break;
1003 default:
1004 DRM_ERROR("execbuf with unknown ring: %d\n",
1005 (int)(args->flags & I915_EXEC_RING_MASK));
1006 return -EINVAL;
1007 }
1008
1009 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1010 switch (mode) {
1011 case I915_EXEC_CONSTANTS_REL_GENERAL:
1012 case I915_EXEC_CONSTANTS_ABSOLUTE:
1013 case I915_EXEC_CONSTANTS_REL_SURFACE:
1014 if (ring == &dev_priv->ring[RCS] &&
1015 mode != dev_priv->relative_constants_mode) {
1016 if (INTEL_INFO(dev)->gen < 4)
1017 return -EINVAL;
1018
1019 if (INTEL_INFO(dev)->gen > 5 &&
1020 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1021 return -EINVAL;
1022
1023 ret = intel_ring_begin(ring, 4);
1024 if (ret)
1025 return ret;
1026
1027 intel_ring_emit(ring, MI_NOOP);
1028 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1029 intel_ring_emit(ring, INSTPM);
1030 intel_ring_emit(ring,
1031 I915_EXEC_CONSTANTS_MASK << 16 | mode);
1032 intel_ring_advance(ring);
1033
1034 dev_priv->relative_constants_mode = mode;
1035 }
1036 break;
1037 default:
1038 DRM_ERROR("execbuf with unknown constants: %d\n", mode);
1039 return -EINVAL;
1040 }
1041
1042 if (args->buffer_count < 1) {
1043 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1044 return -EINVAL;
1045 }
1046
1047 if (args->num_cliprects != 0) {
1048 if (ring != &dev_priv->ring[RCS]) {
1049 DRM_ERROR("clip rectangles are only valid with the render ring\n");
1050 return -EINVAL;
1051 }
1052
1053 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1054 GFP_KERNEL);
1055 if (cliprects == NULL) {
1056 ret = -ENOMEM;
1057 goto pre_mutex_err;
1058 }
1059
1060 if (copy_from_user(cliprects,
1061 (struct drm_clip_rect __user *)(uintptr_t)
1062 args->cliprects_ptr,
1063 sizeof(*cliprects)*args->num_cliprects)) {
1064 ret = -EFAULT;
1065 goto pre_mutex_err;
1066 }
1067 }
1068
1069 ret = i915_mutex_lock_interruptible(dev);
1070 if (ret)
1071 goto pre_mutex_err;
1072
1073 if (dev_priv->mm.suspended) {
1074 mutex_unlock(&dev->struct_mutex);
1075 ret = -EBUSY;
1076 goto pre_mutex_err;
1077 }
1078
1079 eb = eb_create(args->buffer_count);
1080 if (eb == NULL) {
1081 mutex_unlock(&dev->struct_mutex);
1082 ret = -ENOMEM;
1083 goto pre_mutex_err;
1084 }
1085
1086 /* Look up object handles */
1087 INIT_LIST_HEAD(&objects);
1088 for (i = 0; i < args->buffer_count; i++) {
1089 struct drm_i915_gem_object *obj;
1090
1091 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1092 exec[i].handle));
1093 if (&obj->base == NULL) {
1094 DRM_ERROR("Invalid object handle %d at index %d\n",
1095 exec[i].handle, i);
1096 /* prevent error path from reading uninitialized data */
1097 ret = -ENOENT;
1098 goto err;
1099 }
1100
1101 if (!list_empty(&obj->exec_list)) {
1102 DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
1103 obj, exec[i].handle, i);
1104 ret = -EINVAL;
1105 goto err;
1106 }
1107
1108 list_add_tail(&obj->exec_list, &objects);
1109 obj->exec_handle = exec[i].handle;
1110 obj->exec_entry = &exec[i];
1111 eb_add_object(eb, obj);
1112 }
1113
1114 /* take note of the batch buffer before we might reorder the lists */
1115 batch_obj = list_entry(objects.prev,
1116 struct drm_i915_gem_object,
1117 exec_list);
1118
1119 /* Move the objects en-masse into the GTT, evicting if necessary. */
1120 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1121 if (ret)
1122 goto err;
1123
1124 /* The objects are in their final locations, apply the relocations. */
1125 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1126 if (ret) {
1127 if (ret == -EFAULT) {
1128 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1129 &objects, eb,
1130 exec,
1131 args->buffer_count);
1132 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1133 }
1134 if (ret)
1135 goto err;
1136 }
1137
1138 /* Set the pending read domains for the batch buffer to COMMAND */
1139 if (batch_obj->base.pending_write_domain) {
1140 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
1141 ret = -EINVAL;
1142 goto err;
1143 }
1144 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1145
1146 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1147 if (ret)
1148 goto err;
1149
1150 seqno = i915_gem_next_request_seqno(ring);
1151 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1152 if (seqno < ring->sync_seqno[i]) {
1153 /* The GPU can not handle its semaphore value wrapping,
1154 * so every billion or so execbuffers, we need to stall
1155 * the GPU in order to reset the counters.
1156 */
1157 ret = i915_gpu_idle(dev);
1158 if (ret)
1159 goto err;
1160
1161 BUG_ON(ring->sync_seqno[i]);
1162 }
1163 }
1164
1165 trace_i915_gem_ring_dispatch(ring, seqno);
1166
1167 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1168 exec_len = args->batch_len;
1169 if (cliprects) {
1170 for (i = 0; i < args->num_cliprects; i++) {
1171 ret = i915_emit_box(dev, &cliprects[i],
1172 args->DR1, args->DR4);
1173 if (ret)
1174 goto err;
1175
1176 ret = ring->dispatch_execbuffer(ring,
1177 exec_start, exec_len);
1178 if (ret)
1179 goto err;
1180 }
1181 } else {
1182 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1183 if (ret)
1184 goto err;
1185 }
1186
1187 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1188 i915_gem_execbuffer_retire_commands(dev, file, ring);
1189
1190 err:
1191 eb_destroy(eb);
1192 while (!list_empty(&objects)) {
1193 struct drm_i915_gem_object *obj;
1194
1195 obj = list_first_entry(&objects,
1196 struct drm_i915_gem_object,
1197 exec_list);
1198 list_del_init(&obj->exec_list);
1199 drm_gem_object_unreference(&obj->base);
1200 }
1201
1202 mutex_unlock(&dev->struct_mutex);
1203
1204 pre_mutex_err:
1205 kfree(cliprects);
1206 return ret;
1207 }
1208
1209 /*
1210 * Legacy execbuffer just creates an exec2 list from the original exec object
1211 * list array and passes it to the real function.
1212 */
1213 int
1214 i915_gem_execbuffer(struct drm_device *dev, void *data,
1215 struct drm_file *file)
1216 {
1217 struct drm_i915_gem_execbuffer *args = data;
1218 struct drm_i915_gem_execbuffer2 exec2;
1219 struct drm_i915_gem_exec_object *exec_list = NULL;
1220 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1221 int ret, i;
1222
1223 if (args->buffer_count < 1) {
1224 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1225 return -EINVAL;
1226 }
1227
1228 /* Copy in the exec list from userland */
1229 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1230 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1231 if (exec_list == NULL || exec2_list == NULL) {
1232 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1233 args->buffer_count);
1234 drm_free_large(exec_list);
1235 drm_free_large(exec2_list);
1236 return -ENOMEM;
1237 }
1238 ret = copy_from_user(exec_list,
1239 (struct drm_i915_relocation_entry __user *)
1240 (uintptr_t) args->buffers_ptr,
1241 sizeof(*exec_list) * args->buffer_count);
1242 if (ret != 0) {
1243 DRM_ERROR("copy %d exec entries failed %d\n",
1244 args->buffer_count, ret);
1245 drm_free_large(exec_list);
1246 drm_free_large(exec2_list);
1247 return -EFAULT;
1248 }
1249
1250 for (i = 0; i < args->buffer_count; i++) {
1251 exec2_list[i].handle = exec_list[i].handle;
1252 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1253 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1254 exec2_list[i].alignment = exec_list[i].alignment;
1255 exec2_list[i].offset = exec_list[i].offset;
1256 if (INTEL_INFO(dev)->gen < 4)
1257 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1258 else
1259 exec2_list[i].flags = 0;
1260 }
1261
1262 exec2.buffers_ptr = args->buffers_ptr;
1263 exec2.buffer_count = args->buffer_count;
1264 exec2.batch_start_offset = args->batch_start_offset;
1265 exec2.batch_len = args->batch_len;
1266 exec2.DR1 = args->DR1;
1267 exec2.DR4 = args->DR4;
1268 exec2.num_cliprects = args->num_cliprects;
1269 exec2.cliprects_ptr = args->cliprects_ptr;
1270 exec2.flags = I915_EXEC_RENDER;
1271
1272 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1273 if (!ret) {
1274 /* Copy the new buffer offsets back to the user's exec list. */
1275 for (i = 0; i < args->buffer_count; i++)
1276 exec_list[i].offset = exec2_list[i].offset;
1277 /* ... and back out to userspace */
1278 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1279 (uintptr_t) args->buffers_ptr,
1280 exec_list,
1281 sizeof(*exec_list) * args->buffer_count);
1282 if (ret) {
1283 ret = -EFAULT;
1284 DRM_ERROR("failed to copy %d exec entries "
1285 "back to user (%d)\n",
1286 args->buffer_count, ret);
1287 }
1288 }
1289
1290 drm_free_large(exec_list);
1291 drm_free_large(exec2_list);
1292 return ret;
1293 }
1294
1295 int
1296 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1297 struct drm_file *file)
1298 {
1299 struct drm_i915_gem_execbuffer2 *args = data;
1300 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1301 int ret;
1302
1303 if (args->buffer_count < 1) {
1304 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
1305 return -EINVAL;
1306 }
1307
1308 exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1309 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1310 if (exec2_list == NULL)
1311 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1312 args->buffer_count);
1313 if (exec2_list == NULL) {
1314 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1315 args->buffer_count);
1316 return -ENOMEM;
1317 }
1318 ret = copy_from_user(exec2_list,
1319 (struct drm_i915_relocation_entry __user *)
1320 (uintptr_t) args->buffers_ptr,
1321 sizeof(*exec2_list) * args->buffer_count);
1322 if (ret != 0) {
1323 DRM_ERROR("copy %d exec entries failed %d\n",
1324 args->buffer_count, ret);
1325 drm_free_large(exec2_list);
1326 return -EFAULT;
1327 }
1328
1329 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1330 if (!ret) {
1331 /* Copy the new buffer offsets back to the user's exec list. */
1332 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1333 (uintptr_t) args->buffers_ptr,
1334 exec2_list,
1335 sizeof(*exec2_list) * args->buffer_count);
1336 if (ret) {
1337 ret = -EFAULT;
1338 DRM_ERROR("failed to copy %d exec entries "
1339 "back to user (%d)\n",
1340 args->buffer_count, ret);
1341 }
1342 }
1343
1344 drm_free_large(exec2_list);
1345 return ret;
1346 }
This page took 0.059368 seconds and 5 git commands to generate.