Merge tag 'pm-for-3.4-part-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/dma_remapping.h>
36
37 struct change_domains {
38 uint32_t invalidate_domains;
39 uint32_t flush_domains;
40 uint32_t flush_rings;
41 uint32_t flips;
42 };
43
44 /*
45 * Set the next domain for the specified object. This
46 * may not actually perform the necessary flushing/invaliding though,
47 * as that may want to be batched with other set_domain operations
48 *
49 * This is (we hope) the only really tricky part of gem. The goal
50 * is fairly simple -- track which caches hold bits of the object
51 * and make sure they remain coherent. A few concrete examples may
52 * help to explain how it works. For shorthand, we use the notation
53 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
54 * a pair of read and write domain masks.
55 *
56 * Case 1: the batch buffer
57 *
58 * 1. Allocated
59 * 2. Written by CPU
60 * 3. Mapped to GTT
61 * 4. Read by GPU
62 * 5. Unmapped from GTT
63 * 6. Freed
64 *
65 * Let's take these a step at a time
66 *
67 * 1. Allocated
68 * Pages allocated from the kernel may still have
69 * cache contents, so we set them to (CPU, CPU) always.
70 * 2. Written by CPU (using pwrite)
71 * The pwrite function calls set_domain (CPU, CPU) and
72 * this function does nothing (as nothing changes)
73 * 3. Mapped by GTT
74 * This function asserts that the object is not
75 * currently in any GPU-based read or write domains
76 * 4. Read by GPU
77 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
78 * As write_domain is zero, this function adds in the
79 * current read domains (CPU+COMMAND, 0).
80 * flush_domains is set to CPU.
81 * invalidate_domains is set to COMMAND
82 * clflush is run to get data out of the CPU caches
83 * then i915_dev_set_domain calls i915_gem_flush to
84 * emit an MI_FLUSH and drm_agp_chipset_flush
85 * 5. Unmapped from GTT
86 * i915_gem_object_unbind calls set_domain (CPU, CPU)
87 * flush_domains and invalidate_domains end up both zero
88 * so no flushing/invalidating happens
89 * 6. Freed
90 * yay, done
91 *
92 * Case 2: The shared render buffer
93 *
94 * 1. Allocated
95 * 2. Mapped to GTT
96 * 3. Read/written by GPU
97 * 4. set_domain to (CPU,CPU)
98 * 5. Read/written by CPU
99 * 6. Read/written by GPU
100 *
101 * 1. Allocated
102 * Same as last example, (CPU, CPU)
103 * 2. Mapped to GTT
104 * Nothing changes (assertions find that it is not in the GPU)
105 * 3. Read/written by GPU
106 * execbuffer calls set_domain (RENDER, RENDER)
107 * flush_domains gets CPU
108 * invalidate_domains gets GPU
109 * clflush (obj)
110 * MI_FLUSH and drm_agp_chipset_flush
111 * 4. set_domain (CPU, CPU)
112 * flush_domains gets GPU
113 * invalidate_domains gets CPU
114 * wait_rendering (obj) to make sure all drawing is complete.
115 * This will include an MI_FLUSH to get the data from GPU
116 * to memory
117 * clflush (obj) to invalidate the CPU cache
118 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
119 * 5. Read/written by CPU
120 * cache lines are loaded and dirtied
121 * 6. Read written by GPU
122 * Same as last GPU access
123 *
124 * Case 3: The constant buffer
125 *
126 * 1. Allocated
127 * 2. Written by CPU
128 * 3. Read by GPU
129 * 4. Updated (written) by CPU again
130 * 5. Read by GPU
131 *
132 * 1. Allocated
133 * (CPU, CPU)
134 * 2. Written by CPU
135 * (CPU, CPU)
136 * 3. Read by GPU
137 * (CPU+RENDER, 0)
138 * flush_domains = CPU
139 * invalidate_domains = RENDER
140 * clflush (obj)
141 * MI_FLUSH
142 * drm_agp_chipset_flush
143 * 4. Updated (written) by CPU again
144 * (CPU, CPU)
145 * flush_domains = 0 (no previous write domain)
146 * invalidate_domains = 0 (no new read domains)
147 * 5. Read by GPU
148 * (CPU+RENDER, 0)
149 * flush_domains = CPU
150 * invalidate_domains = RENDER
151 * clflush (obj)
152 * MI_FLUSH
153 * drm_agp_chipset_flush
154 */
155 static void
156 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
157 struct intel_ring_buffer *ring,
158 struct change_domains *cd)
159 {
160 uint32_t invalidate_domains = 0, flush_domains = 0;
161
162 /*
163 * If the object isn't moving to a new write domain,
164 * let the object stay in multiple read domains
165 */
166 if (obj->base.pending_write_domain == 0)
167 obj->base.pending_read_domains |= obj->base.read_domains;
168
169 /*
170 * Flush the current write domain if
171 * the new read domains don't match. Invalidate
172 * any read domains which differ from the old
173 * write domain
174 */
175 if (obj->base.write_domain &&
176 (((obj->base.write_domain != obj->base.pending_read_domains ||
177 obj->ring != ring)) ||
178 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
179 flush_domains |= obj->base.write_domain;
180 invalidate_domains |=
181 obj->base.pending_read_domains & ~obj->base.write_domain;
182 }
183 /*
184 * Invalidate any read caches which may have
185 * stale data. That is, any new read domains.
186 */
187 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
188 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
189 i915_gem_clflush_object(obj);
190
191 if (obj->base.pending_write_domain)
192 cd->flips |= atomic_read(&obj->pending_flip);
193
194 /* The actual obj->write_domain will be updated with
195 * pending_write_domain after we emit the accumulated flush for all
196 * of our domain changes in execbuffers (which clears objects'
197 * write_domains). So if we have a current write domain that we
198 * aren't changing, set pending_write_domain to that.
199 */
200 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
201 obj->base.pending_write_domain = obj->base.write_domain;
202
203 cd->invalidate_domains |= invalidate_domains;
204 cd->flush_domains |= flush_domains;
205 if (flush_domains & I915_GEM_GPU_DOMAINS)
206 cd->flush_rings |= intel_ring_flag(obj->ring);
207 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208 cd->flush_rings |= intel_ring_flag(ring);
209 }
210
211 struct eb_objects {
212 int and;
213 struct hlist_head buckets[0];
214 };
215
216 static struct eb_objects *
217 eb_create(int size)
218 {
219 struct eb_objects *eb;
220 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
221 while (count > size)
222 count >>= 1;
223 eb = kzalloc(count*sizeof(struct hlist_head) +
224 sizeof(struct eb_objects),
225 GFP_KERNEL);
226 if (eb == NULL)
227 return eb;
228
229 eb->and = count - 1;
230 return eb;
231 }
232
233 static void
234 eb_reset(struct eb_objects *eb)
235 {
236 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
237 }
238
239 static void
240 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
241 {
242 hlist_add_head(&obj->exec_node,
243 &eb->buckets[obj->exec_handle & eb->and]);
244 }
245
246 static struct drm_i915_gem_object *
247 eb_get_object(struct eb_objects *eb, unsigned long handle)
248 {
249 struct hlist_head *head;
250 struct hlist_node *node;
251 struct drm_i915_gem_object *obj;
252
253 head = &eb->buckets[handle & eb->and];
254 hlist_for_each(node, head) {
255 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
256 if (obj->exec_handle == handle)
257 return obj;
258 }
259
260 return NULL;
261 }
262
263 static void
264 eb_destroy(struct eb_objects *eb)
265 {
266 kfree(eb);
267 }
268
269 static int
270 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
271 struct eb_objects *eb,
272 struct drm_i915_gem_relocation_entry *reloc)
273 {
274 struct drm_device *dev = obj->base.dev;
275 struct drm_gem_object *target_obj;
276 uint32_t target_offset;
277 int ret = -EINVAL;
278
279 /* we've already hold a reference to all valid objects */
280 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
281 if (unlikely(target_obj == NULL))
282 return -ENOENT;
283
284 target_offset = to_intel_bo(target_obj)->gtt_offset;
285
286 /* The target buffer should have appeared before us in the
287 * exec_object list, so it should have a GTT space bound by now.
288 */
289 if (unlikely(target_offset == 0)) {
290 DRM_DEBUG("No GTT space found for object %d\n",
291 reloc->target_handle);
292 return ret;
293 }
294
295 /* Validate that the target is in a valid r/w GPU domain */
296 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
297 DRM_DEBUG("reloc with multiple write domains: "
298 "obj %p target %d offset %d "
299 "read %08x write %08x",
300 obj, reloc->target_handle,
301 (int) reloc->offset,
302 reloc->read_domains,
303 reloc->write_domain);
304 return ret;
305 }
306 if (unlikely((reloc->write_domain | reloc->read_domains)
307 & ~I915_GEM_GPU_DOMAINS)) {
308 DRM_DEBUG("reloc with read/write non-GPU domains: "
309 "obj %p target %d offset %d "
310 "read %08x write %08x",
311 obj, reloc->target_handle,
312 (int) reloc->offset,
313 reloc->read_domains,
314 reloc->write_domain);
315 return ret;
316 }
317 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
318 reloc->write_domain != target_obj->pending_write_domain)) {
319 DRM_DEBUG("Write domain conflict: "
320 "obj %p target %d offset %d "
321 "new %08x old %08x\n",
322 obj, reloc->target_handle,
323 (int) reloc->offset,
324 reloc->write_domain,
325 target_obj->pending_write_domain);
326 return ret;
327 }
328
329 target_obj->pending_read_domains |= reloc->read_domains;
330 target_obj->pending_write_domain |= reloc->write_domain;
331
332 /* If the relocation already has the right value in it, no
333 * more work needs to be done.
334 */
335 if (target_offset == reloc->presumed_offset)
336 return 0;
337
338 /* Check that the relocation address is valid... */
339 if (unlikely(reloc->offset > obj->base.size - 4)) {
340 DRM_DEBUG("Relocation beyond object bounds: "
341 "obj %p target %d offset %d size %d.\n",
342 obj, reloc->target_handle,
343 (int) reloc->offset,
344 (int) obj->base.size);
345 return ret;
346 }
347 if (unlikely(reloc->offset & 3)) {
348 DRM_DEBUG("Relocation not 4-byte aligned: "
349 "obj %p target %d offset %d.\n",
350 obj, reloc->target_handle,
351 (int) reloc->offset);
352 return ret;
353 }
354
355 reloc->delta += target_offset;
356 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
357 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
358 char *vaddr;
359
360 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
361 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
362 kunmap_atomic(vaddr);
363 } else {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 uint32_t __iomem *reloc_entry;
366 void __iomem *reloc_page;
367
368 /* We can't wait for rendering with pagefaults disabled */
369 if (obj->active && in_atomic())
370 return -EFAULT;
371
372 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
373 if (ret)
374 return ret;
375
376 /* Map the page containing the relocation we're going to perform. */
377 reloc->offset += obj->gtt_offset;
378 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
379 reloc->offset & PAGE_MASK);
380 reloc_entry = (uint32_t __iomem *)
381 (reloc_page + (reloc->offset & ~PAGE_MASK));
382 iowrite32(reloc->delta, reloc_entry);
383 io_mapping_unmap_atomic(reloc_page);
384 }
385
386 /* and update the user's relocation entry */
387 reloc->presumed_offset = target_offset;
388
389 return 0;
390 }
391
392 static int
393 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
394 struct eb_objects *eb)
395 {
396 struct drm_i915_gem_relocation_entry __user *user_relocs;
397 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
398 int i, ret;
399
400 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
401 for (i = 0; i < entry->relocation_count; i++) {
402 struct drm_i915_gem_relocation_entry reloc;
403
404 if (__copy_from_user_inatomic(&reloc,
405 user_relocs+i,
406 sizeof(reloc)))
407 return -EFAULT;
408
409 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
410 if (ret)
411 return ret;
412
413 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
414 &reloc.presumed_offset,
415 sizeof(reloc.presumed_offset)))
416 return -EFAULT;
417 }
418
419 return 0;
420 }
421
422 static int
423 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
424 struct eb_objects *eb,
425 struct drm_i915_gem_relocation_entry *relocs)
426 {
427 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
428 int i, ret;
429
430 for (i = 0; i < entry->relocation_count; i++) {
431 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
432 if (ret)
433 return ret;
434 }
435
436 return 0;
437 }
438
439 static int
440 i915_gem_execbuffer_relocate(struct drm_device *dev,
441 struct eb_objects *eb,
442 struct list_head *objects)
443 {
444 struct drm_i915_gem_object *obj;
445 int ret = 0;
446
447 /* This is the fast path and we cannot handle a pagefault whilst
448 * holding the struct mutex lest the user pass in the relocations
449 * contained within a mmaped bo. For in such a case we, the page
450 * fault handler would call i915_gem_fault() and we would try to
451 * acquire the struct mutex again. Obviously this is bad and so
452 * lockdep complains vehemently.
453 */
454 pagefault_disable();
455 list_for_each_entry(obj, objects, exec_list) {
456 ret = i915_gem_execbuffer_relocate_object(obj, eb);
457 if (ret)
458 break;
459 }
460 pagefault_enable();
461
462 return ret;
463 }
464
465 #define __EXEC_OBJECT_HAS_FENCE (1<<31)
466
467 static int
468 pin_and_fence_object(struct drm_i915_gem_object *obj,
469 struct intel_ring_buffer *ring)
470 {
471 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
472 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
473 bool need_fence, need_mappable;
474 int ret;
475
476 need_fence =
477 has_fenced_gpu_access &&
478 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
479 obj->tiling_mode != I915_TILING_NONE;
480 need_mappable =
481 entry->relocation_count ? true : need_fence;
482
483 ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
484 if (ret)
485 return ret;
486
487 if (has_fenced_gpu_access) {
488 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
489 if (obj->tiling_mode) {
490 ret = i915_gem_object_get_fence(obj, ring);
491 if (ret)
492 goto err_unpin;
493
494 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
495 i915_gem_object_pin_fence(obj);
496 } else {
497 ret = i915_gem_object_put_fence(obj);
498 if (ret)
499 goto err_unpin;
500 }
501 obj->pending_fenced_gpu_access = true;
502 }
503 }
504
505 entry->offset = obj->gtt_offset;
506 return 0;
507
508 err_unpin:
509 i915_gem_object_unpin(obj);
510 return ret;
511 }
512
513 static int
514 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
515 struct drm_file *file,
516 struct list_head *objects)
517 {
518 drm_i915_private_t *dev_priv = ring->dev->dev_private;
519 struct drm_i915_gem_object *obj;
520 int ret, retry;
521 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
522 struct list_head ordered_objects;
523
524 INIT_LIST_HEAD(&ordered_objects);
525 while (!list_empty(objects)) {
526 struct drm_i915_gem_exec_object2 *entry;
527 bool need_fence, need_mappable;
528
529 obj = list_first_entry(objects,
530 struct drm_i915_gem_object,
531 exec_list);
532 entry = obj->exec_entry;
533
534 need_fence =
535 has_fenced_gpu_access &&
536 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
537 obj->tiling_mode != I915_TILING_NONE;
538 need_mappable =
539 entry->relocation_count ? true : need_fence;
540
541 if (need_mappable)
542 list_move(&obj->exec_list, &ordered_objects);
543 else
544 list_move_tail(&obj->exec_list, &ordered_objects);
545
546 obj->base.pending_read_domains = 0;
547 obj->base.pending_write_domain = 0;
548 }
549 list_splice(&ordered_objects, objects);
550
551 /* Attempt to pin all of the buffers into the GTT.
552 * This is done in 3 phases:
553 *
554 * 1a. Unbind all objects that do not match the GTT constraints for
555 * the execbuffer (fenceable, mappable, alignment etc).
556 * 1b. Increment pin count for already bound objects.
557 * 2. Bind new objects.
558 * 3. Decrement pin count.
559 *
560 * This avoid unnecessary unbinding of later objects in order to makr
561 * room for the earlier objects *unless* we need to defragment.
562 */
563 retry = 0;
564 do {
565 ret = 0;
566
567 /* Unbind any ill-fitting objects or pin. */
568 list_for_each_entry(obj, objects, exec_list) {
569 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
570 bool need_fence, need_mappable;
571
572 if (!obj->gtt_space)
573 continue;
574
575 need_fence =
576 has_fenced_gpu_access &&
577 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
578 obj->tiling_mode != I915_TILING_NONE;
579 need_mappable =
580 entry->relocation_count ? true : need_fence;
581
582 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
583 (need_mappable && !obj->map_and_fenceable))
584 ret = i915_gem_object_unbind(obj);
585 else
586 ret = pin_and_fence_object(obj, ring);
587 if (ret)
588 goto err;
589 }
590
591 /* Bind fresh objects */
592 list_for_each_entry(obj, objects, exec_list) {
593 if (obj->gtt_space)
594 continue;
595
596 ret = pin_and_fence_object(obj, ring);
597 if (ret) {
598 int ret_ignore;
599
600 /* This can potentially raise a harmless
601 * -EINVAL if we failed to bind in the above
602 * call. It cannot raise -EINTR since we know
603 * that the bo is freshly bound and so will
604 * not need to be flushed or waited upon.
605 */
606 ret_ignore = i915_gem_object_unbind(obj);
607 (void)ret_ignore;
608 WARN_ON(obj->gtt_space);
609 break;
610 }
611 }
612
613 /* Decrement pin count for bound objects */
614 list_for_each_entry(obj, objects, exec_list) {
615 struct drm_i915_gem_exec_object2 *entry;
616
617 if (!obj->gtt_space)
618 continue;
619
620 entry = obj->exec_entry;
621 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
622 i915_gem_object_unpin_fence(obj);
623 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
624 }
625
626 i915_gem_object_unpin(obj);
627
628 /* ... and ensure ppgtt mapping exist if needed. */
629 if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
630 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
631 obj, obj->cache_level);
632
633 obj->has_aliasing_ppgtt_mapping = 1;
634 }
635 }
636
637 if (ret != -ENOSPC || retry > 1)
638 return ret;
639
640 /* First attempt, just clear anything that is purgeable.
641 * Second attempt, clear the entire GTT.
642 */
643 ret = i915_gem_evict_everything(ring->dev, retry == 0);
644 if (ret)
645 return ret;
646
647 retry++;
648 } while (1);
649
650 err:
651 list_for_each_entry_continue_reverse(obj, objects, exec_list) {
652 struct drm_i915_gem_exec_object2 *entry;
653
654 if (!obj->gtt_space)
655 continue;
656
657 entry = obj->exec_entry;
658 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
659 i915_gem_object_unpin_fence(obj);
660 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
661 }
662
663 i915_gem_object_unpin(obj);
664 }
665
666 return ret;
667 }
668
669 static int
670 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
671 struct drm_file *file,
672 struct intel_ring_buffer *ring,
673 struct list_head *objects,
674 struct eb_objects *eb,
675 struct drm_i915_gem_exec_object2 *exec,
676 int count)
677 {
678 struct drm_i915_gem_relocation_entry *reloc;
679 struct drm_i915_gem_object *obj;
680 int *reloc_offset;
681 int i, total, ret;
682
683 /* We may process another execbuffer during the unlock... */
684 while (!list_empty(objects)) {
685 obj = list_first_entry(objects,
686 struct drm_i915_gem_object,
687 exec_list);
688 list_del_init(&obj->exec_list);
689 drm_gem_object_unreference(&obj->base);
690 }
691
692 mutex_unlock(&dev->struct_mutex);
693
694 total = 0;
695 for (i = 0; i < count; i++)
696 total += exec[i].relocation_count;
697
698 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
699 reloc = drm_malloc_ab(total, sizeof(*reloc));
700 if (reloc == NULL || reloc_offset == NULL) {
701 drm_free_large(reloc);
702 drm_free_large(reloc_offset);
703 mutex_lock(&dev->struct_mutex);
704 return -ENOMEM;
705 }
706
707 total = 0;
708 for (i = 0; i < count; i++) {
709 struct drm_i915_gem_relocation_entry __user *user_relocs;
710
711 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
712
713 if (copy_from_user(reloc+total, user_relocs,
714 exec[i].relocation_count * sizeof(*reloc))) {
715 ret = -EFAULT;
716 mutex_lock(&dev->struct_mutex);
717 goto err;
718 }
719
720 reloc_offset[i] = total;
721 total += exec[i].relocation_count;
722 }
723
724 ret = i915_mutex_lock_interruptible(dev);
725 if (ret) {
726 mutex_lock(&dev->struct_mutex);
727 goto err;
728 }
729
730 /* reacquire the objects */
731 eb_reset(eb);
732 for (i = 0; i < count; i++) {
733 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
734 exec[i].handle));
735 if (&obj->base == NULL) {
736 DRM_DEBUG("Invalid object handle %d at index %d\n",
737 exec[i].handle, i);
738 ret = -ENOENT;
739 goto err;
740 }
741
742 list_add_tail(&obj->exec_list, objects);
743 obj->exec_handle = exec[i].handle;
744 obj->exec_entry = &exec[i];
745 eb_add_object(eb, obj);
746 }
747
748 ret = i915_gem_execbuffer_reserve(ring, file, objects);
749 if (ret)
750 goto err;
751
752 list_for_each_entry(obj, objects, exec_list) {
753 int offset = obj->exec_entry - exec;
754 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
755 reloc + reloc_offset[offset]);
756 if (ret)
757 goto err;
758 }
759
760 /* Leave the user relocations as are, this is the painfully slow path,
761 * and we want to avoid the complication of dropping the lock whilst
762 * having buffers reserved in the aperture and so causing spurious
763 * ENOSPC for random operations.
764 */
765
766 err:
767 drm_free_large(reloc);
768 drm_free_large(reloc_offset);
769 return ret;
770 }
771
772 static int
773 i915_gem_execbuffer_flush(struct drm_device *dev,
774 uint32_t invalidate_domains,
775 uint32_t flush_domains,
776 uint32_t flush_rings)
777 {
778 drm_i915_private_t *dev_priv = dev->dev_private;
779 int i, ret;
780
781 if (flush_domains & I915_GEM_DOMAIN_CPU)
782 intel_gtt_chipset_flush();
783
784 if (flush_domains & I915_GEM_DOMAIN_GTT)
785 wmb();
786
787 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
788 for (i = 0; i < I915_NUM_RINGS; i++)
789 if (flush_rings & (1 << i)) {
790 ret = i915_gem_flush_ring(&dev_priv->ring[i],
791 invalidate_domains,
792 flush_domains);
793 if (ret)
794 return ret;
795 }
796 }
797
798 return 0;
799 }
800
801 static bool
802 intel_enable_semaphores(struct drm_device *dev)
803 {
804 if (INTEL_INFO(dev)->gen < 6)
805 return 0;
806
807 if (i915_semaphores >= 0)
808 return i915_semaphores;
809
810 /* Disable semaphores on SNB */
811 if (INTEL_INFO(dev)->gen == 6)
812 return 0;
813
814 return 1;
815 }
816
817 static int
818 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
819 struct intel_ring_buffer *to)
820 {
821 struct intel_ring_buffer *from = obj->ring;
822 u32 seqno;
823 int ret, idx;
824
825 if (from == NULL || to == from)
826 return 0;
827
828 /* XXX gpu semaphores are implicated in various hard hangs on SNB */
829 if (!intel_enable_semaphores(obj->base.dev))
830 return i915_gem_object_wait_rendering(obj);
831
832 idx = intel_ring_sync_index(from, to);
833
834 seqno = obj->last_rendering_seqno;
835 if (seqno <= from->sync_seqno[idx])
836 return 0;
837
838 if (seqno == from->outstanding_lazy_request) {
839 struct drm_i915_gem_request *request;
840
841 request = kzalloc(sizeof(*request), GFP_KERNEL);
842 if (request == NULL)
843 return -ENOMEM;
844
845 ret = i915_add_request(from, NULL, request);
846 if (ret) {
847 kfree(request);
848 return ret;
849 }
850
851 seqno = request->seqno;
852 }
853
854 from->sync_seqno[idx] = seqno;
855
856 return to->sync_to(to, from, seqno - 1);
857 }
858
859 static int
860 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
861 {
862 u32 plane, flip_mask;
863 int ret;
864
865 /* Check for any pending flips. As we only maintain a flip queue depth
866 * of 1, we can simply insert a WAIT for the next display flip prior
867 * to executing the batch and avoid stalling the CPU.
868 */
869
870 for (plane = 0; flips >> plane; plane++) {
871 if (((flips >> plane) & 1) == 0)
872 continue;
873
874 if (plane)
875 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
876 else
877 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
878
879 ret = intel_ring_begin(ring, 2);
880 if (ret)
881 return ret;
882
883 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
884 intel_ring_emit(ring, MI_NOOP);
885 intel_ring_advance(ring);
886 }
887
888 return 0;
889 }
890
891
892 static int
893 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
894 struct list_head *objects)
895 {
896 struct drm_i915_gem_object *obj;
897 struct change_domains cd;
898 int ret;
899
900 memset(&cd, 0, sizeof(cd));
901 list_for_each_entry(obj, objects, exec_list)
902 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
903
904 if (cd.invalidate_domains | cd.flush_domains) {
905 ret = i915_gem_execbuffer_flush(ring->dev,
906 cd.invalidate_domains,
907 cd.flush_domains,
908 cd.flush_rings);
909 if (ret)
910 return ret;
911 }
912
913 if (cd.flips) {
914 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
915 if (ret)
916 return ret;
917 }
918
919 list_for_each_entry(obj, objects, exec_list) {
920 ret = i915_gem_execbuffer_sync_rings(obj, ring);
921 if (ret)
922 return ret;
923 }
924
925 return 0;
926 }
927
928 static bool
929 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
930 {
931 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
932 }
933
934 static int
935 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
936 int count)
937 {
938 int i;
939
940 for (i = 0; i < count; i++) {
941 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
942 int length; /* limited by fault_in_pages_readable() */
943
944 /* First check for malicious input causing overflow */
945 if (exec[i].relocation_count >
946 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
947 return -EINVAL;
948
949 length = exec[i].relocation_count *
950 sizeof(struct drm_i915_gem_relocation_entry);
951 if (!access_ok(VERIFY_READ, ptr, length))
952 return -EFAULT;
953
954 /* we may also need to update the presumed offsets */
955 if (!access_ok(VERIFY_WRITE, ptr, length))
956 return -EFAULT;
957
958 if (fault_in_pages_readable(ptr, length))
959 return -EFAULT;
960 }
961
962 return 0;
963 }
964
965 static void
966 i915_gem_execbuffer_move_to_active(struct list_head *objects,
967 struct intel_ring_buffer *ring,
968 u32 seqno)
969 {
970 struct drm_i915_gem_object *obj;
971
972 list_for_each_entry(obj, objects, exec_list) {
973 u32 old_read = obj->base.read_domains;
974 u32 old_write = obj->base.write_domain;
975
976
977 obj->base.read_domains = obj->base.pending_read_domains;
978 obj->base.write_domain = obj->base.pending_write_domain;
979 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
980
981 i915_gem_object_move_to_active(obj, ring, seqno);
982 if (obj->base.write_domain) {
983 obj->dirty = 1;
984 obj->pending_gpu_write = true;
985 list_move_tail(&obj->gpu_write_list,
986 &ring->gpu_write_list);
987 intel_mark_busy(ring->dev, obj);
988 }
989
990 trace_i915_gem_object_change_domain(obj, old_read, old_write);
991 }
992 }
993
994 static void
995 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
996 struct drm_file *file,
997 struct intel_ring_buffer *ring)
998 {
999 struct drm_i915_gem_request *request;
1000 u32 invalidate;
1001
1002 /*
1003 * Ensure that the commands in the batch buffer are
1004 * finished before the interrupt fires.
1005 *
1006 * The sampler always gets flushed on i965 (sigh).
1007 */
1008 invalidate = I915_GEM_DOMAIN_COMMAND;
1009 if (INTEL_INFO(dev)->gen >= 4)
1010 invalidate |= I915_GEM_DOMAIN_SAMPLER;
1011 if (ring->flush(ring, invalidate, 0)) {
1012 i915_gem_next_request_seqno(ring);
1013 return;
1014 }
1015
1016 /* Add a breadcrumb for the completion of the batch buffer */
1017 request = kzalloc(sizeof(*request), GFP_KERNEL);
1018 if (request == NULL || i915_add_request(ring, file, request)) {
1019 i915_gem_next_request_seqno(ring);
1020 kfree(request);
1021 }
1022 }
1023
1024 static int
1025 i915_reset_gen7_sol_offsets(struct drm_device *dev,
1026 struct intel_ring_buffer *ring)
1027 {
1028 drm_i915_private_t *dev_priv = dev->dev_private;
1029 int ret, i;
1030
1031 if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
1032 return 0;
1033
1034 ret = intel_ring_begin(ring, 4 * 3);
1035 if (ret)
1036 return ret;
1037
1038 for (i = 0; i < 4; i++) {
1039 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1040 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1041 intel_ring_emit(ring, 0);
1042 }
1043
1044 intel_ring_advance(ring);
1045
1046 return 0;
1047 }
1048
1049 static int
1050 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1051 struct drm_file *file,
1052 struct drm_i915_gem_execbuffer2 *args,
1053 struct drm_i915_gem_exec_object2 *exec)
1054 {
1055 drm_i915_private_t *dev_priv = dev->dev_private;
1056 struct list_head objects;
1057 struct eb_objects *eb;
1058 struct drm_i915_gem_object *batch_obj;
1059 struct drm_clip_rect *cliprects = NULL;
1060 struct intel_ring_buffer *ring;
1061 u32 exec_start, exec_len;
1062 u32 seqno;
1063 u32 mask;
1064 int ret, mode, i;
1065
1066 if (!i915_gem_check_execbuffer(args)) {
1067 DRM_DEBUG("execbuf with invalid offset/length\n");
1068 return -EINVAL;
1069 }
1070
1071 ret = validate_exec_list(exec, args->buffer_count);
1072 if (ret)
1073 return ret;
1074
1075 switch (args->flags & I915_EXEC_RING_MASK) {
1076 case I915_EXEC_DEFAULT:
1077 case I915_EXEC_RENDER:
1078 ring = &dev_priv->ring[RCS];
1079 break;
1080 case I915_EXEC_BSD:
1081 if (!HAS_BSD(dev)) {
1082 DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1083 return -EINVAL;
1084 }
1085 ring = &dev_priv->ring[VCS];
1086 break;
1087 case I915_EXEC_BLT:
1088 if (!HAS_BLT(dev)) {
1089 DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1090 return -EINVAL;
1091 }
1092 ring = &dev_priv->ring[BCS];
1093 break;
1094 default:
1095 DRM_DEBUG("execbuf with unknown ring: %d\n",
1096 (int)(args->flags & I915_EXEC_RING_MASK));
1097 return -EINVAL;
1098 }
1099
1100 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1101 mask = I915_EXEC_CONSTANTS_MASK;
1102 switch (mode) {
1103 case I915_EXEC_CONSTANTS_REL_GENERAL:
1104 case I915_EXEC_CONSTANTS_ABSOLUTE:
1105 case I915_EXEC_CONSTANTS_REL_SURFACE:
1106 if (ring == &dev_priv->ring[RCS] &&
1107 mode != dev_priv->relative_constants_mode) {
1108 if (INTEL_INFO(dev)->gen < 4)
1109 return -EINVAL;
1110
1111 if (INTEL_INFO(dev)->gen > 5 &&
1112 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1113 return -EINVAL;
1114
1115 /* The HW changed the meaning on this bit on gen6 */
1116 if (INTEL_INFO(dev)->gen >= 6)
1117 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1118 }
1119 break;
1120 default:
1121 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1122 return -EINVAL;
1123 }
1124
1125 if (args->buffer_count < 1) {
1126 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1127 return -EINVAL;
1128 }
1129
1130 if (args->num_cliprects != 0) {
1131 if (ring != &dev_priv->ring[RCS]) {
1132 DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1133 return -EINVAL;
1134 }
1135
1136 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1137 GFP_KERNEL);
1138 if (cliprects == NULL) {
1139 ret = -ENOMEM;
1140 goto pre_mutex_err;
1141 }
1142
1143 if (copy_from_user(cliprects,
1144 (struct drm_clip_rect __user *)(uintptr_t)
1145 args->cliprects_ptr,
1146 sizeof(*cliprects)*args->num_cliprects)) {
1147 ret = -EFAULT;
1148 goto pre_mutex_err;
1149 }
1150 }
1151
1152 ret = i915_mutex_lock_interruptible(dev);
1153 if (ret)
1154 goto pre_mutex_err;
1155
1156 if (dev_priv->mm.suspended) {
1157 mutex_unlock(&dev->struct_mutex);
1158 ret = -EBUSY;
1159 goto pre_mutex_err;
1160 }
1161
1162 eb = eb_create(args->buffer_count);
1163 if (eb == NULL) {
1164 mutex_unlock(&dev->struct_mutex);
1165 ret = -ENOMEM;
1166 goto pre_mutex_err;
1167 }
1168
1169 /* Look up object handles */
1170 INIT_LIST_HEAD(&objects);
1171 for (i = 0; i < args->buffer_count; i++) {
1172 struct drm_i915_gem_object *obj;
1173
1174 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1175 exec[i].handle));
1176 if (&obj->base == NULL) {
1177 DRM_DEBUG("Invalid object handle %d at index %d\n",
1178 exec[i].handle, i);
1179 /* prevent error path from reading uninitialized data */
1180 ret = -ENOENT;
1181 goto err;
1182 }
1183
1184 if (!list_empty(&obj->exec_list)) {
1185 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1186 obj, exec[i].handle, i);
1187 ret = -EINVAL;
1188 goto err;
1189 }
1190
1191 list_add_tail(&obj->exec_list, &objects);
1192 obj->exec_handle = exec[i].handle;
1193 obj->exec_entry = &exec[i];
1194 eb_add_object(eb, obj);
1195 }
1196
1197 /* take note of the batch buffer before we might reorder the lists */
1198 batch_obj = list_entry(objects.prev,
1199 struct drm_i915_gem_object,
1200 exec_list);
1201
1202 /* Move the objects en-masse into the GTT, evicting if necessary. */
1203 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1204 if (ret)
1205 goto err;
1206
1207 /* The objects are in their final locations, apply the relocations. */
1208 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1209 if (ret) {
1210 if (ret == -EFAULT) {
1211 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1212 &objects, eb,
1213 exec,
1214 args->buffer_count);
1215 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1216 }
1217 if (ret)
1218 goto err;
1219 }
1220
1221 /* Set the pending read domains for the batch buffer to COMMAND */
1222 if (batch_obj->base.pending_write_domain) {
1223 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1224 ret = -EINVAL;
1225 goto err;
1226 }
1227 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1228
1229 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1230 if (ret)
1231 goto err;
1232
1233 seqno = i915_gem_next_request_seqno(ring);
1234 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1235 if (seqno < ring->sync_seqno[i]) {
1236 /* The GPU can not handle its semaphore value wrapping,
1237 * so every billion or so execbuffers, we need to stall
1238 * the GPU in order to reset the counters.
1239 */
1240 ret = i915_gpu_idle(dev, true);
1241 if (ret)
1242 goto err;
1243
1244 BUG_ON(ring->sync_seqno[i]);
1245 }
1246 }
1247
1248 if (ring == &dev_priv->ring[RCS] &&
1249 mode != dev_priv->relative_constants_mode) {
1250 ret = intel_ring_begin(ring, 4);
1251 if (ret)
1252 goto err;
1253
1254 intel_ring_emit(ring, MI_NOOP);
1255 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1256 intel_ring_emit(ring, INSTPM);
1257 intel_ring_emit(ring, mask << 16 | mode);
1258 intel_ring_advance(ring);
1259
1260 dev_priv->relative_constants_mode = mode;
1261 }
1262
1263 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1264 ret = i915_reset_gen7_sol_offsets(dev, ring);
1265 if (ret)
1266 goto err;
1267 }
1268
1269 trace_i915_gem_ring_dispatch(ring, seqno);
1270
1271 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1272 exec_len = args->batch_len;
1273 if (cliprects) {
1274 for (i = 0; i < args->num_cliprects; i++) {
1275 ret = i915_emit_box(dev, &cliprects[i],
1276 args->DR1, args->DR4);
1277 if (ret)
1278 goto err;
1279
1280 ret = ring->dispatch_execbuffer(ring,
1281 exec_start, exec_len);
1282 if (ret)
1283 goto err;
1284 }
1285 } else {
1286 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1287 if (ret)
1288 goto err;
1289 }
1290
1291 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1292 i915_gem_execbuffer_retire_commands(dev, file, ring);
1293
1294 err:
1295 eb_destroy(eb);
1296 while (!list_empty(&objects)) {
1297 struct drm_i915_gem_object *obj;
1298
1299 obj = list_first_entry(&objects,
1300 struct drm_i915_gem_object,
1301 exec_list);
1302 list_del_init(&obj->exec_list);
1303 drm_gem_object_unreference(&obj->base);
1304 }
1305
1306 mutex_unlock(&dev->struct_mutex);
1307
1308 pre_mutex_err:
1309 kfree(cliprects);
1310 return ret;
1311 }
1312
1313 /*
1314 * Legacy execbuffer just creates an exec2 list from the original exec object
1315 * list array and passes it to the real function.
1316 */
1317 int
1318 i915_gem_execbuffer(struct drm_device *dev, void *data,
1319 struct drm_file *file)
1320 {
1321 struct drm_i915_gem_execbuffer *args = data;
1322 struct drm_i915_gem_execbuffer2 exec2;
1323 struct drm_i915_gem_exec_object *exec_list = NULL;
1324 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1325 int ret, i;
1326
1327 if (args->buffer_count < 1) {
1328 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1329 return -EINVAL;
1330 }
1331
1332 /* Copy in the exec list from userland */
1333 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1334 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1335 if (exec_list == NULL || exec2_list == NULL) {
1336 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1337 args->buffer_count);
1338 drm_free_large(exec_list);
1339 drm_free_large(exec2_list);
1340 return -ENOMEM;
1341 }
1342 ret = copy_from_user(exec_list,
1343 (struct drm_i915_relocation_entry __user *)
1344 (uintptr_t) args->buffers_ptr,
1345 sizeof(*exec_list) * args->buffer_count);
1346 if (ret != 0) {
1347 DRM_DEBUG("copy %d exec entries failed %d\n",
1348 args->buffer_count, ret);
1349 drm_free_large(exec_list);
1350 drm_free_large(exec2_list);
1351 return -EFAULT;
1352 }
1353
1354 for (i = 0; i < args->buffer_count; i++) {
1355 exec2_list[i].handle = exec_list[i].handle;
1356 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1357 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1358 exec2_list[i].alignment = exec_list[i].alignment;
1359 exec2_list[i].offset = exec_list[i].offset;
1360 if (INTEL_INFO(dev)->gen < 4)
1361 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1362 else
1363 exec2_list[i].flags = 0;
1364 }
1365
1366 exec2.buffers_ptr = args->buffers_ptr;
1367 exec2.buffer_count = args->buffer_count;
1368 exec2.batch_start_offset = args->batch_start_offset;
1369 exec2.batch_len = args->batch_len;
1370 exec2.DR1 = args->DR1;
1371 exec2.DR4 = args->DR4;
1372 exec2.num_cliprects = args->num_cliprects;
1373 exec2.cliprects_ptr = args->cliprects_ptr;
1374 exec2.flags = I915_EXEC_RENDER;
1375
1376 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1377 if (!ret) {
1378 /* Copy the new buffer offsets back to the user's exec list. */
1379 for (i = 0; i < args->buffer_count; i++)
1380 exec_list[i].offset = exec2_list[i].offset;
1381 /* ... and back out to userspace */
1382 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1383 (uintptr_t) args->buffers_ptr,
1384 exec_list,
1385 sizeof(*exec_list) * args->buffer_count);
1386 if (ret) {
1387 ret = -EFAULT;
1388 DRM_DEBUG("failed to copy %d exec entries "
1389 "back to user (%d)\n",
1390 args->buffer_count, ret);
1391 }
1392 }
1393
1394 drm_free_large(exec_list);
1395 drm_free_large(exec2_list);
1396 return ret;
1397 }
1398
1399 int
1400 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1401 struct drm_file *file)
1402 {
1403 struct drm_i915_gem_execbuffer2 *args = data;
1404 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1405 int ret;
1406
1407 if (args->buffer_count < 1) {
1408 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1409 return -EINVAL;
1410 }
1411
1412 exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1413 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1414 if (exec2_list == NULL)
1415 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1416 args->buffer_count);
1417 if (exec2_list == NULL) {
1418 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1419 args->buffer_count);
1420 return -ENOMEM;
1421 }
1422 ret = copy_from_user(exec2_list,
1423 (struct drm_i915_relocation_entry __user *)
1424 (uintptr_t) args->buffers_ptr,
1425 sizeof(*exec2_list) * args->buffer_count);
1426 if (ret != 0) {
1427 DRM_DEBUG("copy %d exec entries failed %d\n",
1428 args->buffer_count, ret);
1429 drm_free_large(exec2_list);
1430 return -EFAULT;
1431 }
1432
1433 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1434 if (!ret) {
1435 /* Copy the new buffer offsets back to the user's exec list. */
1436 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1437 (uintptr_t) args->buffers_ptr,
1438 exec2_list,
1439 sizeof(*exec2_list) * args->buffer_count);
1440 if (ret) {
1441 ret = -EFAULT;
1442 DRM_DEBUG("failed to copy %d exec entries "
1443 "back to user (%d)\n",
1444 args->buffer_count, ret);
1445 }
1446 }
1447
1448 drm_free_large(exec2_list);
1449 return ret;
1450 }
This page took 0.069588 seconds and 6 git commands to generate.