drm/i915: Reorganise rules for get_fence/put_fence
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/dma_remapping.h>
36
37 struct change_domains {
38 uint32_t invalidate_domains;
39 uint32_t flush_domains;
40 uint32_t flush_rings;
41 uint32_t flips;
42 };
43
44 /*
45 * Set the next domain for the specified object. This
46 * may not actually perform the necessary flushing/invaliding though,
47 * as that may want to be batched with other set_domain operations
48 *
49 * This is (we hope) the only really tricky part of gem. The goal
50 * is fairly simple -- track which caches hold bits of the object
51 * and make sure they remain coherent. A few concrete examples may
52 * help to explain how it works. For shorthand, we use the notation
53 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
54 * a pair of read and write domain masks.
55 *
56 * Case 1: the batch buffer
57 *
58 * 1. Allocated
59 * 2. Written by CPU
60 * 3. Mapped to GTT
61 * 4. Read by GPU
62 * 5. Unmapped from GTT
63 * 6. Freed
64 *
65 * Let's take these a step at a time
66 *
67 * 1. Allocated
68 * Pages allocated from the kernel may still have
69 * cache contents, so we set them to (CPU, CPU) always.
70 * 2. Written by CPU (using pwrite)
71 * The pwrite function calls set_domain (CPU, CPU) and
72 * this function does nothing (as nothing changes)
73 * 3. Mapped by GTT
74 * This function asserts that the object is not
75 * currently in any GPU-based read or write domains
76 * 4. Read by GPU
77 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
78 * As write_domain is zero, this function adds in the
79 * current read domains (CPU+COMMAND, 0).
80 * flush_domains is set to CPU.
81 * invalidate_domains is set to COMMAND
82 * clflush is run to get data out of the CPU caches
83 * then i915_dev_set_domain calls i915_gem_flush to
84 * emit an MI_FLUSH and drm_agp_chipset_flush
85 * 5. Unmapped from GTT
86 * i915_gem_object_unbind calls set_domain (CPU, CPU)
87 * flush_domains and invalidate_domains end up both zero
88 * so no flushing/invalidating happens
89 * 6. Freed
90 * yay, done
91 *
92 * Case 2: The shared render buffer
93 *
94 * 1. Allocated
95 * 2. Mapped to GTT
96 * 3. Read/written by GPU
97 * 4. set_domain to (CPU,CPU)
98 * 5. Read/written by CPU
99 * 6. Read/written by GPU
100 *
101 * 1. Allocated
102 * Same as last example, (CPU, CPU)
103 * 2. Mapped to GTT
104 * Nothing changes (assertions find that it is not in the GPU)
105 * 3. Read/written by GPU
106 * execbuffer calls set_domain (RENDER, RENDER)
107 * flush_domains gets CPU
108 * invalidate_domains gets GPU
109 * clflush (obj)
110 * MI_FLUSH and drm_agp_chipset_flush
111 * 4. set_domain (CPU, CPU)
112 * flush_domains gets GPU
113 * invalidate_domains gets CPU
114 * wait_rendering (obj) to make sure all drawing is complete.
115 * This will include an MI_FLUSH to get the data from GPU
116 * to memory
117 * clflush (obj) to invalidate the CPU cache
118 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
119 * 5. Read/written by CPU
120 * cache lines are loaded and dirtied
121 * 6. Read written by GPU
122 * Same as last GPU access
123 *
124 * Case 3: The constant buffer
125 *
126 * 1. Allocated
127 * 2. Written by CPU
128 * 3. Read by GPU
129 * 4. Updated (written) by CPU again
130 * 5. Read by GPU
131 *
132 * 1. Allocated
133 * (CPU, CPU)
134 * 2. Written by CPU
135 * (CPU, CPU)
136 * 3. Read by GPU
137 * (CPU+RENDER, 0)
138 * flush_domains = CPU
139 * invalidate_domains = RENDER
140 * clflush (obj)
141 * MI_FLUSH
142 * drm_agp_chipset_flush
143 * 4. Updated (written) by CPU again
144 * (CPU, CPU)
145 * flush_domains = 0 (no previous write domain)
146 * invalidate_domains = 0 (no new read domains)
147 * 5. Read by GPU
148 * (CPU+RENDER, 0)
149 * flush_domains = CPU
150 * invalidate_domains = RENDER
151 * clflush (obj)
152 * MI_FLUSH
153 * drm_agp_chipset_flush
154 */
155 static void
156 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
157 struct intel_ring_buffer *ring,
158 struct change_domains *cd)
159 {
160 uint32_t invalidate_domains = 0, flush_domains = 0;
161
162 /*
163 * If the object isn't moving to a new write domain,
164 * let the object stay in multiple read domains
165 */
166 if (obj->base.pending_write_domain == 0)
167 obj->base.pending_read_domains |= obj->base.read_domains;
168
169 /*
170 * Flush the current write domain if
171 * the new read domains don't match. Invalidate
172 * any read domains which differ from the old
173 * write domain
174 */
175 if (obj->base.write_domain &&
176 (((obj->base.write_domain != obj->base.pending_read_domains ||
177 obj->ring != ring)) ||
178 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
179 flush_domains |= obj->base.write_domain;
180 invalidate_domains |=
181 obj->base.pending_read_domains & ~obj->base.write_domain;
182 }
183 /*
184 * Invalidate any read caches which may have
185 * stale data. That is, any new read domains.
186 */
187 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
188 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
189 i915_gem_clflush_object(obj);
190
191 if (obj->base.pending_write_domain)
192 cd->flips |= atomic_read(&obj->pending_flip);
193
194 /* The actual obj->write_domain will be updated with
195 * pending_write_domain after we emit the accumulated flush for all
196 * of our domain changes in execbuffers (which clears objects'
197 * write_domains). So if we have a current write domain that we
198 * aren't changing, set pending_write_domain to that.
199 */
200 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
201 obj->base.pending_write_domain = obj->base.write_domain;
202
203 cd->invalidate_domains |= invalidate_domains;
204 cd->flush_domains |= flush_domains;
205 if (flush_domains & I915_GEM_GPU_DOMAINS)
206 cd->flush_rings |= intel_ring_flag(obj->ring);
207 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208 cd->flush_rings |= intel_ring_flag(ring);
209 }
210
211 struct eb_objects {
212 int and;
213 struct hlist_head buckets[0];
214 };
215
216 static struct eb_objects *
217 eb_create(int size)
218 {
219 struct eb_objects *eb;
220 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
221 while (count > size)
222 count >>= 1;
223 eb = kzalloc(count*sizeof(struct hlist_head) +
224 sizeof(struct eb_objects),
225 GFP_KERNEL);
226 if (eb == NULL)
227 return eb;
228
229 eb->and = count - 1;
230 return eb;
231 }
232
233 static void
234 eb_reset(struct eb_objects *eb)
235 {
236 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
237 }
238
239 static void
240 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
241 {
242 hlist_add_head(&obj->exec_node,
243 &eb->buckets[obj->exec_handle & eb->and]);
244 }
245
246 static struct drm_i915_gem_object *
247 eb_get_object(struct eb_objects *eb, unsigned long handle)
248 {
249 struct hlist_head *head;
250 struct hlist_node *node;
251 struct drm_i915_gem_object *obj;
252
253 head = &eb->buckets[handle & eb->and];
254 hlist_for_each(node, head) {
255 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
256 if (obj->exec_handle == handle)
257 return obj;
258 }
259
260 return NULL;
261 }
262
263 static void
264 eb_destroy(struct eb_objects *eb)
265 {
266 kfree(eb);
267 }
268
269 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
270 {
271 return (obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
272 obj->cache_level != I915_CACHE_NONE);
273 }
274
275 static int
276 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
277 struct eb_objects *eb,
278 struct drm_i915_gem_relocation_entry *reloc)
279 {
280 struct drm_device *dev = obj->base.dev;
281 struct drm_gem_object *target_obj;
282 struct drm_i915_gem_object *target_i915_obj;
283 uint32_t target_offset;
284 int ret = -EINVAL;
285
286 /* we've already hold a reference to all valid objects */
287 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
288 if (unlikely(target_obj == NULL))
289 return -ENOENT;
290
291 target_i915_obj = to_intel_bo(target_obj);
292 target_offset = target_i915_obj->gtt_offset;
293
294 /* The target buffer should have appeared before us in the
295 * exec_object list, so it should have a GTT space bound by now.
296 */
297 if (unlikely(target_offset == 0)) {
298 DRM_DEBUG("No GTT space found for object %d\n",
299 reloc->target_handle);
300 return ret;
301 }
302
303 /* Validate that the target is in a valid r/w GPU domain */
304 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
305 DRM_DEBUG("reloc with multiple write domains: "
306 "obj %p target %d offset %d "
307 "read %08x write %08x",
308 obj, reloc->target_handle,
309 (int) reloc->offset,
310 reloc->read_domains,
311 reloc->write_domain);
312 return ret;
313 }
314 if (unlikely((reloc->write_domain | reloc->read_domains)
315 & ~I915_GEM_GPU_DOMAINS)) {
316 DRM_DEBUG("reloc with read/write non-GPU domains: "
317 "obj %p target %d offset %d "
318 "read %08x write %08x",
319 obj, reloc->target_handle,
320 (int) reloc->offset,
321 reloc->read_domains,
322 reloc->write_domain);
323 return ret;
324 }
325 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
326 reloc->write_domain != target_obj->pending_write_domain)) {
327 DRM_DEBUG("Write domain conflict: "
328 "obj %p target %d offset %d "
329 "new %08x old %08x\n",
330 obj, reloc->target_handle,
331 (int) reloc->offset,
332 reloc->write_domain,
333 target_obj->pending_write_domain);
334 return ret;
335 }
336
337 target_obj->pending_read_domains |= reloc->read_domains;
338 target_obj->pending_write_domain |= reloc->write_domain;
339
340 /* If the relocation already has the right value in it, no
341 * more work needs to be done.
342 */
343 if (target_offset == reloc->presumed_offset)
344 return 0;
345
346 /* Check that the relocation address is valid... */
347 if (unlikely(reloc->offset > obj->base.size - 4)) {
348 DRM_DEBUG("Relocation beyond object bounds: "
349 "obj %p target %d offset %d size %d.\n",
350 obj, reloc->target_handle,
351 (int) reloc->offset,
352 (int) obj->base.size);
353 return ret;
354 }
355 if (unlikely(reloc->offset & 3)) {
356 DRM_DEBUG("Relocation not 4-byte aligned: "
357 "obj %p target %d offset %d.\n",
358 obj, reloc->target_handle,
359 (int) reloc->offset);
360 return ret;
361 }
362
363 /* We can't wait for rendering with pagefaults disabled */
364 if (obj->active && in_atomic())
365 return -EFAULT;
366
367 reloc->delta += target_offset;
368 if (use_cpu_reloc(obj)) {
369 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
370 char *vaddr;
371
372 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
373 if (ret)
374 return ret;
375
376 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
377 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
378 kunmap_atomic(vaddr);
379 } else {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 uint32_t __iomem *reloc_entry;
382 void __iomem *reloc_page;
383
384 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
385 if (ret)
386 return ret;
387
388 /* Map the page containing the relocation we're going to perform. */
389 reloc->offset += obj->gtt_offset;
390 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
391 reloc->offset & PAGE_MASK);
392 reloc_entry = (uint32_t __iomem *)
393 (reloc_page + (reloc->offset & ~PAGE_MASK));
394 iowrite32(reloc->delta, reloc_entry);
395 io_mapping_unmap_atomic(reloc_page);
396 }
397
398 /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
399 * pipe_control writes because the gpu doesn't properly redirect them
400 * through the ppgtt for non_secure batchbuffers. */
401 if (unlikely(IS_GEN6(dev) &&
402 reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
403 !target_i915_obj->has_global_gtt_mapping)) {
404 i915_gem_gtt_bind_object(target_i915_obj,
405 target_i915_obj->cache_level);
406 }
407
408 /* and update the user's relocation entry */
409 reloc->presumed_offset = target_offset;
410
411 return 0;
412 }
413
414 static int
415 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
416 struct eb_objects *eb)
417 {
418 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
419 struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
420 struct drm_i915_gem_relocation_entry __user *user_relocs;
421 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
422 int remain, ret;
423
424 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
425
426 remain = entry->relocation_count;
427 while (remain) {
428 struct drm_i915_gem_relocation_entry *r = stack_reloc;
429 int count = remain;
430 if (count > ARRAY_SIZE(stack_reloc))
431 count = ARRAY_SIZE(stack_reloc);
432 remain -= count;
433
434 if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
435 return -EFAULT;
436
437 do {
438 u64 offset = r->presumed_offset;
439
440 ret = i915_gem_execbuffer_relocate_entry(obj, eb, r);
441 if (ret)
442 return ret;
443
444 if (r->presumed_offset != offset &&
445 __copy_to_user_inatomic(&user_relocs->presumed_offset,
446 &r->presumed_offset,
447 sizeof(r->presumed_offset))) {
448 return -EFAULT;
449 }
450
451 user_relocs++;
452 r++;
453 } while (--count);
454 }
455
456 return 0;
457 #undef N_RELOC
458 }
459
460 static int
461 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
462 struct eb_objects *eb,
463 struct drm_i915_gem_relocation_entry *relocs)
464 {
465 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
466 int i, ret;
467
468 for (i = 0; i < entry->relocation_count; i++) {
469 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
470 if (ret)
471 return ret;
472 }
473
474 return 0;
475 }
476
477 static int
478 i915_gem_execbuffer_relocate(struct drm_device *dev,
479 struct eb_objects *eb,
480 struct list_head *objects)
481 {
482 struct drm_i915_gem_object *obj;
483 int ret = 0;
484
485 /* This is the fast path and we cannot handle a pagefault whilst
486 * holding the struct mutex lest the user pass in the relocations
487 * contained within a mmaped bo. For in such a case we, the page
488 * fault handler would call i915_gem_fault() and we would try to
489 * acquire the struct mutex again. Obviously this is bad and so
490 * lockdep complains vehemently.
491 */
492 pagefault_disable();
493 list_for_each_entry(obj, objects, exec_list) {
494 ret = i915_gem_execbuffer_relocate_object(obj, eb);
495 if (ret)
496 break;
497 }
498 pagefault_enable();
499
500 return ret;
501 }
502
503 #define __EXEC_OBJECT_HAS_FENCE (1<<31)
504
505 static int
506 need_reloc_mappable(struct drm_i915_gem_object *obj)
507 {
508 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
509 return entry->relocation_count && !use_cpu_reloc(obj);
510 }
511
512 static int
513 pin_and_fence_object(struct drm_i915_gem_object *obj,
514 struct intel_ring_buffer *ring)
515 {
516 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
517 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
518 bool need_fence, need_mappable;
519 int ret;
520
521 need_fence =
522 has_fenced_gpu_access &&
523 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
524 obj->tiling_mode != I915_TILING_NONE;
525 need_mappable = need_fence || need_reloc_mappable(obj);
526
527 ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
528 if (ret)
529 return ret;
530
531 if (has_fenced_gpu_access) {
532 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
533 ret = i915_gem_object_get_fence(obj, ring);
534 if (ret)
535 goto err_unpin;
536
537 if (i915_gem_object_pin_fence(obj))
538 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
539
540 obj->pending_fenced_gpu_access = true;
541 }
542 }
543
544 entry->offset = obj->gtt_offset;
545 return 0;
546
547 err_unpin:
548 i915_gem_object_unpin(obj);
549 return ret;
550 }
551
552 static int
553 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
554 struct drm_file *file,
555 struct list_head *objects)
556 {
557 drm_i915_private_t *dev_priv = ring->dev->dev_private;
558 struct drm_i915_gem_object *obj;
559 int ret, retry;
560 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
561 struct list_head ordered_objects;
562
563 INIT_LIST_HEAD(&ordered_objects);
564 while (!list_empty(objects)) {
565 struct drm_i915_gem_exec_object2 *entry;
566 bool need_fence, need_mappable;
567
568 obj = list_first_entry(objects,
569 struct drm_i915_gem_object,
570 exec_list);
571 entry = obj->exec_entry;
572
573 need_fence =
574 has_fenced_gpu_access &&
575 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
576 obj->tiling_mode != I915_TILING_NONE;
577 need_mappable = need_fence || need_reloc_mappable(obj);
578
579 if (need_mappable)
580 list_move(&obj->exec_list, &ordered_objects);
581 else
582 list_move_tail(&obj->exec_list, &ordered_objects);
583
584 obj->base.pending_read_domains = 0;
585 obj->base.pending_write_domain = 0;
586 }
587 list_splice(&ordered_objects, objects);
588
589 /* Attempt to pin all of the buffers into the GTT.
590 * This is done in 3 phases:
591 *
592 * 1a. Unbind all objects that do not match the GTT constraints for
593 * the execbuffer (fenceable, mappable, alignment etc).
594 * 1b. Increment pin count for already bound objects.
595 * 2. Bind new objects.
596 * 3. Decrement pin count.
597 *
598 * This avoid unnecessary unbinding of later objects in order to makr
599 * room for the earlier objects *unless* we need to defragment.
600 */
601 retry = 0;
602 do {
603 ret = 0;
604
605 /* Unbind any ill-fitting objects or pin. */
606 list_for_each_entry(obj, objects, exec_list) {
607 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
608 bool need_fence, need_mappable;
609
610 if (!obj->gtt_space)
611 continue;
612
613 need_fence =
614 has_fenced_gpu_access &&
615 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
616 obj->tiling_mode != I915_TILING_NONE;
617 need_mappable = need_fence || need_reloc_mappable(obj);
618
619 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
620 (need_mappable && !obj->map_and_fenceable))
621 ret = i915_gem_object_unbind(obj);
622 else
623 ret = pin_and_fence_object(obj, ring);
624 if (ret)
625 goto err;
626 }
627
628 /* Bind fresh objects */
629 list_for_each_entry(obj, objects, exec_list) {
630 if (obj->gtt_space)
631 continue;
632
633 ret = pin_and_fence_object(obj, ring);
634 if (ret) {
635 int ret_ignore;
636
637 /* This can potentially raise a harmless
638 * -EINVAL if we failed to bind in the above
639 * call. It cannot raise -EINTR since we know
640 * that the bo is freshly bound and so will
641 * not need to be flushed or waited upon.
642 */
643 ret_ignore = i915_gem_object_unbind(obj);
644 (void)ret_ignore;
645 WARN_ON(obj->gtt_space);
646 break;
647 }
648 }
649
650 /* Decrement pin count for bound objects */
651 list_for_each_entry(obj, objects, exec_list) {
652 struct drm_i915_gem_exec_object2 *entry;
653
654 if (!obj->gtt_space)
655 continue;
656
657 entry = obj->exec_entry;
658 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
659 i915_gem_object_unpin_fence(obj);
660 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
661 }
662
663 i915_gem_object_unpin(obj);
664
665 /* ... and ensure ppgtt mapping exist if needed. */
666 if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
667 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
668 obj, obj->cache_level);
669
670 obj->has_aliasing_ppgtt_mapping = 1;
671 }
672 }
673
674 if (ret != -ENOSPC || retry > 1)
675 return ret;
676
677 /* First attempt, just clear anything that is purgeable.
678 * Second attempt, clear the entire GTT.
679 */
680 ret = i915_gem_evict_everything(ring->dev, retry == 0);
681 if (ret)
682 return ret;
683
684 retry++;
685 } while (1);
686
687 err:
688 list_for_each_entry_continue_reverse(obj, objects, exec_list) {
689 struct drm_i915_gem_exec_object2 *entry;
690
691 if (!obj->gtt_space)
692 continue;
693
694 entry = obj->exec_entry;
695 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
696 i915_gem_object_unpin_fence(obj);
697 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
698 }
699
700 i915_gem_object_unpin(obj);
701 }
702
703 return ret;
704 }
705
706 static int
707 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
708 struct drm_file *file,
709 struct intel_ring_buffer *ring,
710 struct list_head *objects,
711 struct eb_objects *eb,
712 struct drm_i915_gem_exec_object2 *exec,
713 int count)
714 {
715 struct drm_i915_gem_relocation_entry *reloc;
716 struct drm_i915_gem_object *obj;
717 int *reloc_offset;
718 int i, total, ret;
719
720 /* We may process another execbuffer during the unlock... */
721 while (!list_empty(objects)) {
722 obj = list_first_entry(objects,
723 struct drm_i915_gem_object,
724 exec_list);
725 list_del_init(&obj->exec_list);
726 drm_gem_object_unreference(&obj->base);
727 }
728
729 mutex_unlock(&dev->struct_mutex);
730
731 total = 0;
732 for (i = 0; i < count; i++)
733 total += exec[i].relocation_count;
734
735 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
736 reloc = drm_malloc_ab(total, sizeof(*reloc));
737 if (reloc == NULL || reloc_offset == NULL) {
738 drm_free_large(reloc);
739 drm_free_large(reloc_offset);
740 mutex_lock(&dev->struct_mutex);
741 return -ENOMEM;
742 }
743
744 total = 0;
745 for (i = 0; i < count; i++) {
746 struct drm_i915_gem_relocation_entry __user *user_relocs;
747
748 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
749
750 if (copy_from_user(reloc+total, user_relocs,
751 exec[i].relocation_count * sizeof(*reloc))) {
752 ret = -EFAULT;
753 mutex_lock(&dev->struct_mutex);
754 goto err;
755 }
756
757 reloc_offset[i] = total;
758 total += exec[i].relocation_count;
759 }
760
761 ret = i915_mutex_lock_interruptible(dev);
762 if (ret) {
763 mutex_lock(&dev->struct_mutex);
764 goto err;
765 }
766
767 /* reacquire the objects */
768 eb_reset(eb);
769 for (i = 0; i < count; i++) {
770 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
771 exec[i].handle));
772 if (&obj->base == NULL) {
773 DRM_DEBUG("Invalid object handle %d at index %d\n",
774 exec[i].handle, i);
775 ret = -ENOENT;
776 goto err;
777 }
778
779 list_add_tail(&obj->exec_list, objects);
780 obj->exec_handle = exec[i].handle;
781 obj->exec_entry = &exec[i];
782 eb_add_object(eb, obj);
783 }
784
785 ret = i915_gem_execbuffer_reserve(ring, file, objects);
786 if (ret)
787 goto err;
788
789 list_for_each_entry(obj, objects, exec_list) {
790 int offset = obj->exec_entry - exec;
791 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
792 reloc + reloc_offset[offset]);
793 if (ret)
794 goto err;
795 }
796
797 /* Leave the user relocations as are, this is the painfully slow path,
798 * and we want to avoid the complication of dropping the lock whilst
799 * having buffers reserved in the aperture and so causing spurious
800 * ENOSPC for random operations.
801 */
802
803 err:
804 drm_free_large(reloc);
805 drm_free_large(reloc_offset);
806 return ret;
807 }
808
809 static int
810 i915_gem_execbuffer_flush(struct drm_device *dev,
811 uint32_t invalidate_domains,
812 uint32_t flush_domains,
813 uint32_t flush_rings)
814 {
815 drm_i915_private_t *dev_priv = dev->dev_private;
816 int i, ret;
817
818 if (flush_domains & I915_GEM_DOMAIN_CPU)
819 intel_gtt_chipset_flush();
820
821 if (flush_domains & I915_GEM_DOMAIN_GTT)
822 wmb();
823
824 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
825 for (i = 0; i < I915_NUM_RINGS; i++)
826 if (flush_rings & (1 << i)) {
827 ret = i915_gem_flush_ring(&dev_priv->ring[i],
828 invalidate_domains,
829 flush_domains);
830 if (ret)
831 return ret;
832 }
833 }
834
835 return 0;
836 }
837
838 static bool
839 intel_enable_semaphores(struct drm_device *dev)
840 {
841 if (INTEL_INFO(dev)->gen < 6)
842 return 0;
843
844 if (i915_semaphores >= 0)
845 return i915_semaphores;
846
847 /* Disable semaphores on SNB */
848 if (INTEL_INFO(dev)->gen == 6)
849 return 0;
850
851 return 1;
852 }
853
854 static int
855 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
856 struct intel_ring_buffer *to)
857 {
858 struct intel_ring_buffer *from = obj->ring;
859 u32 seqno;
860 int ret, idx;
861
862 if (from == NULL || to == from)
863 return 0;
864
865 /* XXX gpu semaphores are implicated in various hard hangs on SNB */
866 if (!intel_enable_semaphores(obj->base.dev))
867 return i915_gem_object_wait_rendering(obj);
868
869 idx = intel_ring_sync_index(from, to);
870
871 seqno = obj->last_rendering_seqno;
872 if (seqno <= from->sync_seqno[idx])
873 return 0;
874
875 if (seqno == from->outstanding_lazy_request) {
876 struct drm_i915_gem_request *request;
877
878 request = kzalloc(sizeof(*request), GFP_KERNEL);
879 if (request == NULL)
880 return -ENOMEM;
881
882 ret = i915_add_request(from, NULL, request);
883 if (ret) {
884 kfree(request);
885 return ret;
886 }
887
888 seqno = request->seqno;
889 }
890
891 from->sync_seqno[idx] = seqno;
892
893 return to->sync_to(to, from, seqno - 1);
894 }
895
896 static int
897 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
898 {
899 u32 plane, flip_mask;
900 int ret;
901
902 /* Check for any pending flips. As we only maintain a flip queue depth
903 * of 1, we can simply insert a WAIT for the next display flip prior
904 * to executing the batch and avoid stalling the CPU.
905 */
906
907 for (plane = 0; flips >> plane; plane++) {
908 if (((flips >> plane) & 1) == 0)
909 continue;
910
911 if (plane)
912 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
913 else
914 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
915
916 ret = intel_ring_begin(ring, 2);
917 if (ret)
918 return ret;
919
920 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
921 intel_ring_emit(ring, MI_NOOP);
922 intel_ring_advance(ring);
923 }
924
925 return 0;
926 }
927
928
929 static int
930 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
931 struct list_head *objects)
932 {
933 struct drm_i915_gem_object *obj;
934 struct change_domains cd;
935 int ret;
936
937 memset(&cd, 0, sizeof(cd));
938 list_for_each_entry(obj, objects, exec_list)
939 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
940
941 if (cd.invalidate_domains | cd.flush_domains) {
942 ret = i915_gem_execbuffer_flush(ring->dev,
943 cd.invalidate_domains,
944 cd.flush_domains,
945 cd.flush_rings);
946 if (ret)
947 return ret;
948 }
949
950 if (cd.flips) {
951 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
952 if (ret)
953 return ret;
954 }
955
956 list_for_each_entry(obj, objects, exec_list) {
957 ret = i915_gem_execbuffer_sync_rings(obj, ring);
958 if (ret)
959 return ret;
960 }
961
962 return 0;
963 }
964
965 static bool
966 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
967 {
968 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
969 }
970
971 static int
972 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
973 int count)
974 {
975 int i;
976
977 for (i = 0; i < count; i++) {
978 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
979 int length; /* limited by fault_in_pages_readable() */
980
981 /* First check for malicious input causing overflow */
982 if (exec[i].relocation_count >
983 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
984 return -EINVAL;
985
986 length = exec[i].relocation_count *
987 sizeof(struct drm_i915_gem_relocation_entry);
988 if (!access_ok(VERIFY_READ, ptr, length))
989 return -EFAULT;
990
991 /* we may also need to update the presumed offsets */
992 if (!access_ok(VERIFY_WRITE, ptr, length))
993 return -EFAULT;
994
995 if (fault_in_multipages_readable(ptr, length))
996 return -EFAULT;
997 }
998
999 return 0;
1000 }
1001
1002 static void
1003 i915_gem_execbuffer_move_to_active(struct list_head *objects,
1004 struct intel_ring_buffer *ring,
1005 u32 seqno)
1006 {
1007 struct drm_i915_gem_object *obj;
1008
1009 list_for_each_entry(obj, objects, exec_list) {
1010 u32 old_read = obj->base.read_domains;
1011 u32 old_write = obj->base.write_domain;
1012
1013
1014 obj->base.read_domains = obj->base.pending_read_domains;
1015 obj->base.write_domain = obj->base.pending_write_domain;
1016 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
1017
1018 i915_gem_object_move_to_active(obj, ring, seqno);
1019 if (obj->base.write_domain) {
1020 obj->dirty = 1;
1021 obj->pending_gpu_write = true;
1022 list_move_tail(&obj->gpu_write_list,
1023 &ring->gpu_write_list);
1024 intel_mark_busy(ring->dev, obj);
1025 }
1026
1027 trace_i915_gem_object_change_domain(obj, old_read, old_write);
1028 }
1029 }
1030
1031 static void
1032 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
1033 struct drm_file *file,
1034 struct intel_ring_buffer *ring)
1035 {
1036 struct drm_i915_gem_request *request;
1037 u32 invalidate;
1038
1039 /*
1040 * Ensure that the commands in the batch buffer are
1041 * finished before the interrupt fires.
1042 *
1043 * The sampler always gets flushed on i965 (sigh).
1044 */
1045 invalidate = I915_GEM_DOMAIN_COMMAND;
1046 if (INTEL_INFO(dev)->gen >= 4)
1047 invalidate |= I915_GEM_DOMAIN_SAMPLER;
1048 if (ring->flush(ring, invalidate, 0)) {
1049 i915_gem_next_request_seqno(ring);
1050 return;
1051 }
1052
1053 /* Add a breadcrumb for the completion of the batch buffer */
1054 request = kzalloc(sizeof(*request), GFP_KERNEL);
1055 if (request == NULL || i915_add_request(ring, file, request)) {
1056 i915_gem_next_request_seqno(ring);
1057 kfree(request);
1058 }
1059 }
1060
1061 static int
1062 i915_reset_gen7_sol_offsets(struct drm_device *dev,
1063 struct intel_ring_buffer *ring)
1064 {
1065 drm_i915_private_t *dev_priv = dev->dev_private;
1066 int ret, i;
1067
1068 if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
1069 return 0;
1070
1071 ret = intel_ring_begin(ring, 4 * 3);
1072 if (ret)
1073 return ret;
1074
1075 for (i = 0; i < 4; i++) {
1076 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1077 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1078 intel_ring_emit(ring, 0);
1079 }
1080
1081 intel_ring_advance(ring);
1082
1083 return 0;
1084 }
1085
1086 static int
1087 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1088 struct drm_file *file,
1089 struct drm_i915_gem_execbuffer2 *args,
1090 struct drm_i915_gem_exec_object2 *exec)
1091 {
1092 drm_i915_private_t *dev_priv = dev->dev_private;
1093 struct list_head objects;
1094 struct eb_objects *eb;
1095 struct drm_i915_gem_object *batch_obj;
1096 struct drm_clip_rect *cliprects = NULL;
1097 struct intel_ring_buffer *ring;
1098 u32 exec_start, exec_len;
1099 u32 seqno;
1100 u32 mask;
1101 int ret, mode, i;
1102
1103 if (!i915_gem_check_execbuffer(args)) {
1104 DRM_DEBUG("execbuf with invalid offset/length\n");
1105 return -EINVAL;
1106 }
1107
1108 ret = validate_exec_list(exec, args->buffer_count);
1109 if (ret)
1110 return ret;
1111
1112 switch (args->flags & I915_EXEC_RING_MASK) {
1113 case I915_EXEC_DEFAULT:
1114 case I915_EXEC_RENDER:
1115 ring = &dev_priv->ring[RCS];
1116 break;
1117 case I915_EXEC_BSD:
1118 if (!HAS_BSD(dev)) {
1119 DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1120 return -EINVAL;
1121 }
1122 ring = &dev_priv->ring[VCS];
1123 break;
1124 case I915_EXEC_BLT:
1125 if (!HAS_BLT(dev)) {
1126 DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1127 return -EINVAL;
1128 }
1129 ring = &dev_priv->ring[BCS];
1130 break;
1131 default:
1132 DRM_DEBUG("execbuf with unknown ring: %d\n",
1133 (int)(args->flags & I915_EXEC_RING_MASK));
1134 return -EINVAL;
1135 }
1136
1137 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1138 mask = I915_EXEC_CONSTANTS_MASK;
1139 switch (mode) {
1140 case I915_EXEC_CONSTANTS_REL_GENERAL:
1141 case I915_EXEC_CONSTANTS_ABSOLUTE:
1142 case I915_EXEC_CONSTANTS_REL_SURFACE:
1143 if (ring == &dev_priv->ring[RCS] &&
1144 mode != dev_priv->relative_constants_mode) {
1145 if (INTEL_INFO(dev)->gen < 4)
1146 return -EINVAL;
1147
1148 if (INTEL_INFO(dev)->gen > 5 &&
1149 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1150 return -EINVAL;
1151
1152 /* The HW changed the meaning on this bit on gen6 */
1153 if (INTEL_INFO(dev)->gen >= 6)
1154 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1155 }
1156 break;
1157 default:
1158 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1159 return -EINVAL;
1160 }
1161
1162 if (args->buffer_count < 1) {
1163 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1164 return -EINVAL;
1165 }
1166
1167 if (args->num_cliprects != 0) {
1168 if (ring != &dev_priv->ring[RCS]) {
1169 DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1170 return -EINVAL;
1171 }
1172
1173 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1174 GFP_KERNEL);
1175 if (cliprects == NULL) {
1176 ret = -ENOMEM;
1177 goto pre_mutex_err;
1178 }
1179
1180 if (copy_from_user(cliprects,
1181 (struct drm_clip_rect __user *)(uintptr_t)
1182 args->cliprects_ptr,
1183 sizeof(*cliprects)*args->num_cliprects)) {
1184 ret = -EFAULT;
1185 goto pre_mutex_err;
1186 }
1187 }
1188
1189 ret = i915_mutex_lock_interruptible(dev);
1190 if (ret)
1191 goto pre_mutex_err;
1192
1193 if (dev_priv->mm.suspended) {
1194 mutex_unlock(&dev->struct_mutex);
1195 ret = -EBUSY;
1196 goto pre_mutex_err;
1197 }
1198
1199 eb = eb_create(args->buffer_count);
1200 if (eb == NULL) {
1201 mutex_unlock(&dev->struct_mutex);
1202 ret = -ENOMEM;
1203 goto pre_mutex_err;
1204 }
1205
1206 /* Look up object handles */
1207 INIT_LIST_HEAD(&objects);
1208 for (i = 0; i < args->buffer_count; i++) {
1209 struct drm_i915_gem_object *obj;
1210
1211 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1212 exec[i].handle));
1213 if (&obj->base == NULL) {
1214 DRM_DEBUG("Invalid object handle %d at index %d\n",
1215 exec[i].handle, i);
1216 /* prevent error path from reading uninitialized data */
1217 ret = -ENOENT;
1218 goto err;
1219 }
1220
1221 if (!list_empty(&obj->exec_list)) {
1222 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1223 obj, exec[i].handle, i);
1224 ret = -EINVAL;
1225 goto err;
1226 }
1227
1228 list_add_tail(&obj->exec_list, &objects);
1229 obj->exec_handle = exec[i].handle;
1230 obj->exec_entry = &exec[i];
1231 eb_add_object(eb, obj);
1232 }
1233
1234 /* take note of the batch buffer before we might reorder the lists */
1235 batch_obj = list_entry(objects.prev,
1236 struct drm_i915_gem_object,
1237 exec_list);
1238
1239 /* Move the objects en-masse into the GTT, evicting if necessary. */
1240 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1241 if (ret)
1242 goto err;
1243
1244 /* The objects are in their final locations, apply the relocations. */
1245 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1246 if (ret) {
1247 if (ret == -EFAULT) {
1248 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1249 &objects, eb,
1250 exec,
1251 args->buffer_count);
1252 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1253 }
1254 if (ret)
1255 goto err;
1256 }
1257
1258 /* Set the pending read domains for the batch buffer to COMMAND */
1259 if (batch_obj->base.pending_write_domain) {
1260 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1261 ret = -EINVAL;
1262 goto err;
1263 }
1264 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1265
1266 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1267 if (ret)
1268 goto err;
1269
1270 seqno = i915_gem_next_request_seqno(ring);
1271 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1272 if (seqno < ring->sync_seqno[i]) {
1273 /* The GPU can not handle its semaphore value wrapping,
1274 * so every billion or so execbuffers, we need to stall
1275 * the GPU in order to reset the counters.
1276 */
1277 ret = i915_gpu_idle(dev, true);
1278 if (ret)
1279 goto err;
1280
1281 BUG_ON(ring->sync_seqno[i]);
1282 }
1283 }
1284
1285 if (ring == &dev_priv->ring[RCS] &&
1286 mode != dev_priv->relative_constants_mode) {
1287 ret = intel_ring_begin(ring, 4);
1288 if (ret)
1289 goto err;
1290
1291 intel_ring_emit(ring, MI_NOOP);
1292 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1293 intel_ring_emit(ring, INSTPM);
1294 intel_ring_emit(ring, mask << 16 | mode);
1295 intel_ring_advance(ring);
1296
1297 dev_priv->relative_constants_mode = mode;
1298 }
1299
1300 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1301 ret = i915_reset_gen7_sol_offsets(dev, ring);
1302 if (ret)
1303 goto err;
1304 }
1305
1306 trace_i915_gem_ring_dispatch(ring, seqno);
1307
1308 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1309 exec_len = args->batch_len;
1310 if (cliprects) {
1311 for (i = 0; i < args->num_cliprects; i++) {
1312 ret = i915_emit_box(dev, &cliprects[i],
1313 args->DR1, args->DR4);
1314 if (ret)
1315 goto err;
1316
1317 ret = ring->dispatch_execbuffer(ring,
1318 exec_start, exec_len);
1319 if (ret)
1320 goto err;
1321 }
1322 } else {
1323 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1324 if (ret)
1325 goto err;
1326 }
1327
1328 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1329 i915_gem_execbuffer_retire_commands(dev, file, ring);
1330
1331 err:
1332 eb_destroy(eb);
1333 while (!list_empty(&objects)) {
1334 struct drm_i915_gem_object *obj;
1335
1336 obj = list_first_entry(&objects,
1337 struct drm_i915_gem_object,
1338 exec_list);
1339 list_del_init(&obj->exec_list);
1340 drm_gem_object_unreference(&obj->base);
1341 }
1342
1343 mutex_unlock(&dev->struct_mutex);
1344
1345 pre_mutex_err:
1346 kfree(cliprects);
1347 return ret;
1348 }
1349
1350 /*
1351 * Legacy execbuffer just creates an exec2 list from the original exec object
1352 * list array and passes it to the real function.
1353 */
1354 int
1355 i915_gem_execbuffer(struct drm_device *dev, void *data,
1356 struct drm_file *file)
1357 {
1358 struct drm_i915_gem_execbuffer *args = data;
1359 struct drm_i915_gem_execbuffer2 exec2;
1360 struct drm_i915_gem_exec_object *exec_list = NULL;
1361 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1362 int ret, i;
1363
1364 if (args->buffer_count < 1) {
1365 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1366 return -EINVAL;
1367 }
1368
1369 /* Copy in the exec list from userland */
1370 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1371 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1372 if (exec_list == NULL || exec2_list == NULL) {
1373 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1374 args->buffer_count);
1375 drm_free_large(exec_list);
1376 drm_free_large(exec2_list);
1377 return -ENOMEM;
1378 }
1379 ret = copy_from_user(exec_list,
1380 (struct drm_i915_relocation_entry __user *)
1381 (uintptr_t) args->buffers_ptr,
1382 sizeof(*exec_list) * args->buffer_count);
1383 if (ret != 0) {
1384 DRM_DEBUG("copy %d exec entries failed %d\n",
1385 args->buffer_count, ret);
1386 drm_free_large(exec_list);
1387 drm_free_large(exec2_list);
1388 return -EFAULT;
1389 }
1390
1391 for (i = 0; i < args->buffer_count; i++) {
1392 exec2_list[i].handle = exec_list[i].handle;
1393 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1394 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1395 exec2_list[i].alignment = exec_list[i].alignment;
1396 exec2_list[i].offset = exec_list[i].offset;
1397 if (INTEL_INFO(dev)->gen < 4)
1398 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1399 else
1400 exec2_list[i].flags = 0;
1401 }
1402
1403 exec2.buffers_ptr = args->buffers_ptr;
1404 exec2.buffer_count = args->buffer_count;
1405 exec2.batch_start_offset = args->batch_start_offset;
1406 exec2.batch_len = args->batch_len;
1407 exec2.DR1 = args->DR1;
1408 exec2.DR4 = args->DR4;
1409 exec2.num_cliprects = args->num_cliprects;
1410 exec2.cliprects_ptr = args->cliprects_ptr;
1411 exec2.flags = I915_EXEC_RENDER;
1412
1413 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1414 if (!ret) {
1415 /* Copy the new buffer offsets back to the user's exec list. */
1416 for (i = 0; i < args->buffer_count; i++)
1417 exec_list[i].offset = exec2_list[i].offset;
1418 /* ... and back out to userspace */
1419 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1420 (uintptr_t) args->buffers_ptr,
1421 exec_list,
1422 sizeof(*exec_list) * args->buffer_count);
1423 if (ret) {
1424 ret = -EFAULT;
1425 DRM_DEBUG("failed to copy %d exec entries "
1426 "back to user (%d)\n",
1427 args->buffer_count, ret);
1428 }
1429 }
1430
1431 drm_free_large(exec_list);
1432 drm_free_large(exec2_list);
1433 return ret;
1434 }
1435
1436 int
1437 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1438 struct drm_file *file)
1439 {
1440 struct drm_i915_gem_execbuffer2 *args = data;
1441 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1442 int ret;
1443
1444 if (args->buffer_count < 1) {
1445 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1446 return -EINVAL;
1447 }
1448
1449 exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1450 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1451 if (exec2_list == NULL)
1452 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1453 args->buffer_count);
1454 if (exec2_list == NULL) {
1455 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1456 args->buffer_count);
1457 return -ENOMEM;
1458 }
1459 ret = copy_from_user(exec2_list,
1460 (struct drm_i915_relocation_entry __user *)
1461 (uintptr_t) args->buffers_ptr,
1462 sizeof(*exec2_list) * args->buffer_count);
1463 if (ret != 0) {
1464 DRM_DEBUG("copy %d exec entries failed %d\n",
1465 args->buffer_count, ret);
1466 drm_free_large(exec2_list);
1467 return -EFAULT;
1468 }
1469
1470 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1471 if (!ret) {
1472 /* Copy the new buffer offsets back to the user's exec list. */
1473 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1474 (uintptr_t) args->buffers_ptr,
1475 exec2_list,
1476 sizeof(*exec2_list) * args->buffer_count);
1477 if (ret) {
1478 ret = -EFAULT;
1479 DRM_DEBUG("failed to copy %d exec entries "
1480 "back to user (%d)\n",
1481 args->buffer_count, ret);
1482 }
1483 }
1484
1485 drm_free_large(exec2_list);
1486 return ret;
1487 }
This page took 0.062891 seconds and 6 git commands to generate.