drm/i915/gtt: Make scratch page i915_page_dma compatible
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35 * DOC: Global GTT views
36 *
37 * Background and previous state
38 *
39 * Historically objects could exists (be bound) in global GTT space only as
40 * singular instances with a view representing all of the object's backing pages
41 * in a linear fashion. This view will be called a normal view.
42 *
43 * To support multiple views of the same object, where the number of mapped
44 * pages is not equal to the backing store, or where the layout of the pages
45 * is not linear, concept of a GGTT view was added.
46 *
47 * One example of an alternative view is a stereo display driven by a single
48 * image. In this case we would have a framebuffer looking like this
49 * (2x2 pages):
50 *
51 * 12
52 * 34
53 *
54 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55 * rendering. In contrast, fed to the display engine would be an alternative
56 * view which could look something like this:
57 *
58 * 1212
59 * 3434
60 *
61 * In this example both the size and layout of pages in the alternative view is
62 * different from the normal view.
63 *
64 * Implementation and usage
65 *
66 * GGTT views are implemented using VMAs and are distinguished via enum
67 * i915_ggtt_view_type and struct i915_ggtt_view.
68 *
69 * A new flavour of core GEM functions which work with GGTT bound objects were
70 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71 * renaming in large amounts of code. They take the struct i915_ggtt_view
72 * parameter encapsulating all metadata required to implement a view.
73 *
74 * As a helper for callers which are only interested in the normal view,
75 * globally const i915_ggtt_view_normal singleton instance exists. All old core
76 * GEM API functions, the ones not taking the view parameter, are operating on,
77 * or with the normal GGTT view.
78 *
79 * Code wanting to add or use a new GGTT view needs to:
80 *
81 * 1. Add a new enum with a suitable name.
82 * 2. Extend the metadata in the i915_ggtt_view structure if required.
83 * 3. Add support to i915_get_vma_pages().
84 *
85 * New views are required to build a scatter-gather table from within the
86 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87 * exists for the lifetime of an VMA.
88 *
89 * Core API is designed to have copy semantics which means that passed in
90 * struct i915_ggtt_view does not need to be persistent (left around after
91 * calling the core API functions).
92 *
93 */
94
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100 .type = I915_GGTT_VIEW_ROTATED
101 };
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105 bool has_aliasing_ppgtt;
106 bool has_full_ppgtt;
107
108 has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109 has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111 if (intel_vgpu_active(dev))
112 has_full_ppgtt = false; /* emulation is too hard */
113
114 /*
115 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116 * execlists, the sole mechanism available to submit work.
117 */
118 if (INTEL_INFO(dev)->gen < 9 &&
119 (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120 return 0;
121
122 if (enable_ppgtt == 1)
123 return 1;
124
125 if (enable_ppgtt == 2 && has_full_ppgtt)
126 return 2;
127
128 #ifdef CONFIG_INTEL_IOMMU
129 /* Disable ppgtt on SNB if VT-d is on. */
130 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132 return 0;
133 }
134 #endif
135
136 /* Early VLV doesn't have this */
137 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138 dev->pdev->revision < 0xb) {
139 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140 return 0;
141 }
142
143 if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144 return 2;
145 else
146 return has_aliasing_ppgtt ? 1 : 0;
147 }
148
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150 enum i915_cache_level cache_level,
151 u32 unused)
152 {
153 u32 pte_flags = 0;
154
155 /* Currently applicable only to VLV */
156 if (vma->obj->gt_ro)
157 pte_flags |= PTE_READ_ONLY;
158
159 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160 cache_level, pte_flags);
161
162 return 0;
163 }
164
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167 vma->vm->clear_range(vma->vm,
168 vma->node.start,
169 vma->obj->base.size,
170 true);
171 }
172
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174 enum i915_cache_level level,
175 bool valid)
176 {
177 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178 pte |= addr;
179
180 switch (level) {
181 case I915_CACHE_NONE:
182 pte |= PPAT_UNCACHED_INDEX;
183 break;
184 case I915_CACHE_WT:
185 pte |= PPAT_DISPLAY_ELLC_INDEX;
186 break;
187 default:
188 pte |= PPAT_CACHED_INDEX;
189 break;
190 }
191
192 return pte;
193 }
194
195 static gen8_pde_t gen8_pde_encode(struct drm_device *dev,
196 dma_addr_t addr,
197 enum i915_cache_level level)
198 {
199 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
200 pde |= addr;
201 if (level != I915_CACHE_NONE)
202 pde |= PPAT_CACHED_PDE_INDEX;
203 else
204 pde |= PPAT_UNCACHED_INDEX;
205 return pde;
206 }
207
208 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
209 enum i915_cache_level level,
210 bool valid, u32 unused)
211 {
212 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
213 pte |= GEN6_PTE_ADDR_ENCODE(addr);
214
215 switch (level) {
216 case I915_CACHE_L3_LLC:
217 case I915_CACHE_LLC:
218 pte |= GEN6_PTE_CACHE_LLC;
219 break;
220 case I915_CACHE_NONE:
221 pte |= GEN6_PTE_UNCACHED;
222 break;
223 default:
224 MISSING_CASE(level);
225 }
226
227 return pte;
228 }
229
230 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
231 enum i915_cache_level level,
232 bool valid, u32 unused)
233 {
234 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
235 pte |= GEN6_PTE_ADDR_ENCODE(addr);
236
237 switch (level) {
238 case I915_CACHE_L3_LLC:
239 pte |= GEN7_PTE_CACHE_L3_LLC;
240 break;
241 case I915_CACHE_LLC:
242 pte |= GEN6_PTE_CACHE_LLC;
243 break;
244 case I915_CACHE_NONE:
245 pte |= GEN6_PTE_UNCACHED;
246 break;
247 default:
248 MISSING_CASE(level);
249 }
250
251 return pte;
252 }
253
254 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
255 enum i915_cache_level level,
256 bool valid, u32 flags)
257 {
258 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
259 pte |= GEN6_PTE_ADDR_ENCODE(addr);
260
261 if (!(flags & PTE_READ_ONLY))
262 pte |= BYT_PTE_WRITEABLE;
263
264 if (level != I915_CACHE_NONE)
265 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
266
267 return pte;
268 }
269
270 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
271 enum i915_cache_level level,
272 bool valid, u32 unused)
273 {
274 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
275 pte |= HSW_PTE_ADDR_ENCODE(addr);
276
277 if (level != I915_CACHE_NONE)
278 pte |= HSW_WB_LLC_AGE3;
279
280 return pte;
281 }
282
283 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
284 enum i915_cache_level level,
285 bool valid, u32 unused)
286 {
287 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
288 pte |= HSW_PTE_ADDR_ENCODE(addr);
289
290 switch (level) {
291 case I915_CACHE_NONE:
292 break;
293 case I915_CACHE_WT:
294 pte |= HSW_WT_ELLC_LLC_AGE3;
295 break;
296 default:
297 pte |= HSW_WB_ELLC_LLC_AGE3;
298 break;
299 }
300
301 return pte;
302 }
303
304 static int __setup_page_dma(struct drm_device *dev,
305 struct i915_page_dma *p, gfp_t flags)
306 {
307 struct device *device = &dev->pdev->dev;
308
309 p->page = alloc_page(flags);
310 if (!p->page)
311 return -ENOMEM;
312
313 p->daddr = dma_map_page(device,
314 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
315
316 if (dma_mapping_error(device, p->daddr)) {
317 __free_page(p->page);
318 return -EINVAL;
319 }
320
321 return 0;
322 }
323
324 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
325 {
326 return __setup_page_dma(dev, p, GFP_KERNEL);
327 }
328
329 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
330 {
331 if (WARN_ON(!p->page))
332 return;
333
334 dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
335 __free_page(p->page);
336 memset(p, 0, sizeof(*p));
337 }
338
339 static void *kmap_page_dma(struct i915_page_dma *p)
340 {
341 return kmap_atomic(p->page);
342 }
343
344 /* We use the flushing unmap only with ppgtt structures:
345 * page directories, page tables and scratch pages.
346 */
347 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
348 {
349 /* There are only few exceptions for gen >=6. chv and bxt.
350 * And we are not sure about the latter so play safe for now.
351 */
352 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
353 drm_clflush_virt_range(vaddr, PAGE_SIZE);
354
355 kunmap_atomic(vaddr);
356 }
357
358 #define kmap_px(px) kmap_page_dma(px_base(px))
359 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
360
361 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
362 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
363 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
364 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
365
366 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
367 const uint64_t val)
368 {
369 int i;
370 uint64_t * const vaddr = kmap_page_dma(p);
371
372 for (i = 0; i < 512; i++)
373 vaddr[i] = val;
374
375 kunmap_page_dma(dev, vaddr);
376 }
377
378 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
379 const uint32_t val32)
380 {
381 uint64_t v = val32;
382
383 v = v << 32 | val32;
384
385 fill_page_dma(dev, p, v);
386 }
387
388 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
389 {
390 cleanup_px(dev, pt);
391 kfree(pt->used_ptes);
392 kfree(pt);
393 }
394
395 static void gen8_initialize_pt(struct i915_address_space *vm,
396 struct i915_page_table *pt)
397 {
398 gen8_pte_t scratch_pte;
399
400 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
401 I915_CACHE_LLC, true);
402
403 fill_px(vm->dev, pt, scratch_pte);
404 }
405
406 static struct i915_page_table *alloc_pt(struct drm_device *dev)
407 {
408 struct i915_page_table *pt;
409 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
410 GEN8_PTES : GEN6_PTES;
411 int ret = -ENOMEM;
412
413 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
414 if (!pt)
415 return ERR_PTR(-ENOMEM);
416
417 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
418 GFP_KERNEL);
419
420 if (!pt->used_ptes)
421 goto fail_bitmap;
422
423 ret = setup_px(dev, pt);
424 if (ret)
425 goto fail_page_m;
426
427 return pt;
428
429 fail_page_m:
430 kfree(pt->used_ptes);
431 fail_bitmap:
432 kfree(pt);
433
434 return ERR_PTR(ret);
435 }
436
437 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
438 {
439 if (px_page(pd)) {
440 cleanup_px(dev, pd);
441 kfree(pd->used_pdes);
442 kfree(pd);
443 }
444 }
445
446 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
447 {
448 struct i915_page_directory *pd;
449 int ret = -ENOMEM;
450
451 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
452 if (!pd)
453 return ERR_PTR(-ENOMEM);
454
455 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
456 sizeof(*pd->used_pdes), GFP_KERNEL);
457 if (!pd->used_pdes)
458 goto fail_bitmap;
459
460 ret = setup_px(dev, pd);
461 if (ret)
462 goto fail_page_m;
463
464 return pd;
465
466 fail_page_m:
467 kfree(pd->used_pdes);
468 fail_bitmap:
469 kfree(pd);
470
471 return ERR_PTR(ret);
472 }
473
474 /* Broadwell Page Directory Pointer Descriptors */
475 static int gen8_write_pdp(struct drm_i915_gem_request *req,
476 unsigned entry,
477 dma_addr_t addr)
478 {
479 struct intel_engine_cs *ring = req->ring;
480 int ret;
481
482 BUG_ON(entry >= 4);
483
484 ret = intel_ring_begin(req, 6);
485 if (ret)
486 return ret;
487
488 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
489 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
490 intel_ring_emit(ring, upper_32_bits(addr));
491 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
492 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
493 intel_ring_emit(ring, lower_32_bits(addr));
494 intel_ring_advance(ring);
495
496 return 0;
497 }
498
499 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
500 struct drm_i915_gem_request *req)
501 {
502 int i, ret;
503
504 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
505 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
506
507 ret = gen8_write_pdp(req, i, pd_daddr);
508 if (ret)
509 return ret;
510 }
511
512 return 0;
513 }
514
515 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
516 uint64_t start,
517 uint64_t length,
518 bool use_scratch)
519 {
520 struct i915_hw_ppgtt *ppgtt =
521 container_of(vm, struct i915_hw_ppgtt, base);
522 gen8_pte_t *pt_vaddr, scratch_pte;
523 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
524 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
525 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
526 unsigned num_entries = length >> PAGE_SHIFT;
527 unsigned last_pte, i;
528
529 scratch_pte = gen8_pte_encode(px_dma(ppgtt->base.scratch_page),
530 I915_CACHE_LLC, use_scratch);
531
532 while (num_entries) {
533 struct i915_page_directory *pd;
534 struct i915_page_table *pt;
535
536 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
537 continue;
538
539 pd = ppgtt->pdp.page_directory[pdpe];
540
541 if (WARN_ON(!pd->page_table[pde]))
542 continue;
543
544 pt = pd->page_table[pde];
545
546 if (WARN_ON(!px_page(pt)))
547 continue;
548
549 last_pte = pte + num_entries;
550 if (last_pte > GEN8_PTES)
551 last_pte = GEN8_PTES;
552
553 pt_vaddr = kmap_px(pt);
554
555 for (i = pte; i < last_pte; i++) {
556 pt_vaddr[i] = scratch_pte;
557 num_entries--;
558 }
559
560 kunmap_px(ppgtt, pt);
561
562 pte = 0;
563 if (++pde == I915_PDES) {
564 pdpe++;
565 pde = 0;
566 }
567 }
568 }
569
570 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
571 struct sg_table *pages,
572 uint64_t start,
573 enum i915_cache_level cache_level, u32 unused)
574 {
575 struct i915_hw_ppgtt *ppgtt =
576 container_of(vm, struct i915_hw_ppgtt, base);
577 gen8_pte_t *pt_vaddr;
578 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
579 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
580 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
581 struct sg_page_iter sg_iter;
582
583 pt_vaddr = NULL;
584
585 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
586 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
587 break;
588
589 if (pt_vaddr == NULL) {
590 struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
591 struct i915_page_table *pt = pd->page_table[pde];
592 pt_vaddr = kmap_px(pt);
593 }
594
595 pt_vaddr[pte] =
596 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
597 cache_level, true);
598 if (++pte == GEN8_PTES) {
599 kunmap_px(ppgtt, pt_vaddr);
600 pt_vaddr = NULL;
601 if (++pde == I915_PDES) {
602 pdpe++;
603 pde = 0;
604 }
605 pte = 0;
606 }
607 }
608
609 if (pt_vaddr)
610 kunmap_px(ppgtt, pt_vaddr);
611 }
612
613 static void __gen8_do_map_pt(gen8_pde_t * const pde,
614 struct i915_page_table *pt,
615 struct drm_device *dev)
616 {
617 gen8_pde_t entry =
618 gen8_pde_encode(dev, px_dma(pt), I915_CACHE_LLC);
619 *pde = entry;
620 }
621
622 static void gen8_initialize_pd(struct i915_address_space *vm,
623 struct i915_page_directory *pd)
624 {
625 struct i915_hw_ppgtt *ppgtt =
626 container_of(vm, struct i915_hw_ppgtt, base);
627 gen8_pde_t scratch_pde;
628
629 scratch_pde = gen8_pde_encode(vm->dev, px_dma(ppgtt->scratch_pt),
630 I915_CACHE_LLC);
631
632 fill_px(vm->dev, pd, scratch_pde);
633 }
634
635 static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev)
636 {
637 int i;
638
639 if (!px_page(pd))
640 return;
641
642 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
643 if (WARN_ON(!pd->page_table[i]))
644 continue;
645
646 free_pt(dev, pd->page_table[i]);
647 pd->page_table[i] = NULL;
648 }
649 }
650
651 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
652 {
653 struct i915_hw_ppgtt *ppgtt =
654 container_of(vm, struct i915_hw_ppgtt, base);
655 int i;
656
657 for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) {
658 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
659 continue;
660
661 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
662 free_pd(ppgtt->base.dev, ppgtt->pdp.page_directory[i]);
663 }
664
665 free_pd(ppgtt->base.dev, ppgtt->scratch_pd);
666 free_pt(ppgtt->base.dev, ppgtt->scratch_pt);
667 }
668
669 /**
670 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
671 * @ppgtt: Master ppgtt structure.
672 * @pd: Page directory for this address range.
673 * @start: Starting virtual address to begin allocations.
674 * @length Size of the allocations.
675 * @new_pts: Bitmap set by function with new allocations. Likely used by the
676 * caller to free on error.
677 *
678 * Allocate the required number of page tables. Extremely similar to
679 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
680 * the page directory boundary (instead of the page directory pointer). That
681 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
682 * possible, and likely that the caller will need to use multiple calls of this
683 * function to achieve the appropriate allocation.
684 *
685 * Return: 0 if success; negative error code otherwise.
686 */
687 static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt,
688 struct i915_page_directory *pd,
689 uint64_t start,
690 uint64_t length,
691 unsigned long *new_pts)
692 {
693 struct drm_device *dev = ppgtt->base.dev;
694 struct i915_page_table *pt;
695 uint64_t temp;
696 uint32_t pde;
697
698 gen8_for_each_pde(pt, pd, start, length, temp, pde) {
699 /* Don't reallocate page tables */
700 if (pt) {
701 /* Scratch is never allocated this way */
702 WARN_ON(pt == ppgtt->scratch_pt);
703 continue;
704 }
705
706 pt = alloc_pt(dev);
707 if (IS_ERR(pt))
708 goto unwind_out;
709
710 gen8_initialize_pt(&ppgtt->base, pt);
711 pd->page_table[pde] = pt;
712 set_bit(pde, new_pts);
713 }
714
715 return 0;
716
717 unwind_out:
718 for_each_set_bit(pde, new_pts, I915_PDES)
719 free_pt(dev, pd->page_table[pde]);
720
721 return -ENOMEM;
722 }
723
724 /**
725 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
726 * @ppgtt: Master ppgtt structure.
727 * @pdp: Page directory pointer for this address range.
728 * @start: Starting virtual address to begin allocations.
729 * @length Size of the allocations.
730 * @new_pds Bitmap set by function with new allocations. Likely used by the
731 * caller to free on error.
732 *
733 * Allocate the required number of page directories starting at the pde index of
734 * @start, and ending at the pde index @start + @length. This function will skip
735 * over already allocated page directories within the range, and only allocate
736 * new ones, setting the appropriate pointer within the pdp as well as the
737 * correct position in the bitmap @new_pds.
738 *
739 * The function will only allocate the pages within the range for a give page
740 * directory pointer. In other words, if @start + @length straddles a virtually
741 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
742 * required by the caller, This is not currently possible, and the BUG in the
743 * code will prevent it.
744 *
745 * Return: 0 if success; negative error code otherwise.
746 */
747 static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt,
748 struct i915_page_directory_pointer *pdp,
749 uint64_t start,
750 uint64_t length,
751 unsigned long *new_pds)
752 {
753 struct drm_device *dev = ppgtt->base.dev;
754 struct i915_page_directory *pd;
755 uint64_t temp;
756 uint32_t pdpe;
757
758 WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES));
759
760 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
761 if (pd)
762 continue;
763
764 pd = alloc_pd(dev);
765 if (IS_ERR(pd))
766 goto unwind_out;
767
768 gen8_initialize_pd(&ppgtt->base, pd);
769 pdp->page_directory[pdpe] = pd;
770 set_bit(pdpe, new_pds);
771 }
772
773 return 0;
774
775 unwind_out:
776 for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES)
777 free_pd(dev, pdp->page_directory[pdpe]);
778
779 return -ENOMEM;
780 }
781
782 static void
783 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts)
784 {
785 int i;
786
787 for (i = 0; i < GEN8_LEGACY_PDPES; i++)
788 kfree(new_pts[i]);
789 kfree(new_pts);
790 kfree(new_pds);
791 }
792
793 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
794 * of these are based on the number of PDPEs in the system.
795 */
796 static
797 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
798 unsigned long ***new_pts)
799 {
800 int i;
801 unsigned long *pds;
802 unsigned long **pts;
803
804 pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL);
805 if (!pds)
806 return -ENOMEM;
807
808 pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL);
809 if (!pts) {
810 kfree(pds);
811 return -ENOMEM;
812 }
813
814 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
815 pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
816 sizeof(unsigned long), GFP_KERNEL);
817 if (!pts[i])
818 goto err_out;
819 }
820
821 *new_pds = pds;
822 *new_pts = pts;
823
824 return 0;
825
826 err_out:
827 free_gen8_temp_bitmaps(pds, pts);
828 return -ENOMEM;
829 }
830
831 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
832 * the page table structures, we mark them dirty so that
833 * context switching/execlist queuing code takes extra steps
834 * to ensure that tlbs are flushed.
835 */
836 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
837 {
838 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
839 }
840
841 static int gen8_alloc_va_range(struct i915_address_space *vm,
842 uint64_t start,
843 uint64_t length)
844 {
845 struct i915_hw_ppgtt *ppgtt =
846 container_of(vm, struct i915_hw_ppgtt, base);
847 unsigned long *new_page_dirs, **new_page_tables;
848 struct i915_page_directory *pd;
849 const uint64_t orig_start = start;
850 const uint64_t orig_length = length;
851 uint64_t temp;
852 uint32_t pdpe;
853 int ret;
854
855 /* Wrap is never okay since we can only represent 48b, and we don't
856 * actually use the other side of the canonical address space.
857 */
858 if (WARN_ON(start + length < start))
859 return -ENODEV;
860
861 if (WARN_ON(start + length > ppgtt->base.total))
862 return -ENODEV;
863
864 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables);
865 if (ret)
866 return ret;
867
868 /* Do the allocations first so we can easily bail out */
869 ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length,
870 new_page_dirs);
871 if (ret) {
872 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
873 return ret;
874 }
875
876 /* For every page directory referenced, allocate page tables */
877 gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
878 ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length,
879 new_page_tables[pdpe]);
880 if (ret)
881 goto err_out;
882 }
883
884 start = orig_start;
885 length = orig_length;
886
887 /* Allocations have completed successfully, so set the bitmaps, and do
888 * the mappings. */
889 gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
890 gen8_pde_t *const page_directory = kmap_px(pd);
891 struct i915_page_table *pt;
892 uint64_t pd_len = gen8_clamp_pd(start, length);
893 uint64_t pd_start = start;
894 uint32_t pde;
895
896 /* Every pd should be allocated, we just did that above. */
897 WARN_ON(!pd);
898
899 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
900 /* Same reasoning as pd */
901 WARN_ON(!pt);
902 WARN_ON(!pd_len);
903 WARN_ON(!gen8_pte_count(pd_start, pd_len));
904
905 /* Set our used ptes within the page table */
906 bitmap_set(pt->used_ptes,
907 gen8_pte_index(pd_start),
908 gen8_pte_count(pd_start, pd_len));
909
910 /* Our pde is now pointing to the pagetable, pt */
911 set_bit(pde, pd->used_pdes);
912
913 /* Map the PDE to the page table */
914 __gen8_do_map_pt(page_directory + pde, pt, vm->dev);
915
916 /* NB: We haven't yet mapped ptes to pages. At this
917 * point we're still relying on insert_entries() */
918 }
919
920 kunmap_px(ppgtt, page_directory);
921
922 set_bit(pdpe, ppgtt->pdp.used_pdpes);
923 }
924
925 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
926 mark_tlbs_dirty(ppgtt);
927 return 0;
928
929 err_out:
930 while (pdpe--) {
931 for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
932 free_pt(vm->dev, ppgtt->pdp.page_directory[pdpe]->page_table[temp]);
933 }
934
935 for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES)
936 free_pd(vm->dev, ppgtt->pdp.page_directory[pdpe]);
937
938 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
939 mark_tlbs_dirty(ppgtt);
940 return ret;
941 }
942
943 /*
944 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
945 * with a net effect resembling a 2-level page table in normal x86 terms. Each
946 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
947 * space.
948 *
949 */
950 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
951 {
952 ppgtt->scratch_pt = alloc_pt(ppgtt->base.dev);
953 if (IS_ERR(ppgtt->scratch_pt))
954 return PTR_ERR(ppgtt->scratch_pt);
955
956 ppgtt->scratch_pd = alloc_pd(ppgtt->base.dev);
957 if (IS_ERR(ppgtt->scratch_pd))
958 return PTR_ERR(ppgtt->scratch_pd);
959
960 gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
961 gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd);
962
963 ppgtt->base.start = 0;
964 ppgtt->base.total = 1ULL << 32;
965 if (IS_ENABLED(CONFIG_X86_32))
966 /* While we have a proliferation of size_t variables
967 * we cannot represent the full ppgtt size on 32bit,
968 * so limit it to the same size as the GGTT (currently
969 * 2GiB).
970 */
971 ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
972 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
973 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
974 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
975 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
976 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
977 ppgtt->base.bind_vma = ppgtt_bind_vma;
978
979 ppgtt->switch_mm = gen8_mm_switch;
980
981 return 0;
982 }
983
984 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
985 {
986 struct i915_address_space *vm = &ppgtt->base;
987 struct i915_page_table *unused;
988 gen6_pte_t scratch_pte;
989 uint32_t pd_entry;
990 uint32_t pte, pde, temp;
991 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
992
993 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page), I915_CACHE_LLC, true, 0);
994
995 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
996 u32 expected;
997 gen6_pte_t *pt_vaddr;
998 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
999 pd_entry = readl(ppgtt->pd_addr + pde);
1000 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1001
1002 if (pd_entry != expected)
1003 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1004 pde,
1005 pd_entry,
1006 expected);
1007 seq_printf(m, "\tPDE: %x\n", pd_entry);
1008
1009 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1010
1011 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1012 unsigned long va =
1013 (pde * PAGE_SIZE * GEN6_PTES) +
1014 (pte * PAGE_SIZE);
1015 int i;
1016 bool found = false;
1017 for (i = 0; i < 4; i++)
1018 if (pt_vaddr[pte + i] != scratch_pte)
1019 found = true;
1020 if (!found)
1021 continue;
1022
1023 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1024 for (i = 0; i < 4; i++) {
1025 if (pt_vaddr[pte + i] != scratch_pte)
1026 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1027 else
1028 seq_puts(m, " SCRATCH ");
1029 }
1030 seq_puts(m, "\n");
1031 }
1032 kunmap_px(ppgtt, pt_vaddr);
1033 }
1034 }
1035
1036 /* Write pde (index) from the page directory @pd to the page table @pt */
1037 static void gen6_write_pde(struct i915_page_directory *pd,
1038 const int pde, struct i915_page_table *pt)
1039 {
1040 /* Caller needs to make sure the write completes if necessary */
1041 struct i915_hw_ppgtt *ppgtt =
1042 container_of(pd, struct i915_hw_ppgtt, pd);
1043 u32 pd_entry;
1044
1045 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1046 pd_entry |= GEN6_PDE_VALID;
1047
1048 writel(pd_entry, ppgtt->pd_addr + pde);
1049 }
1050
1051 /* Write all the page tables found in the ppgtt structure to incrementing page
1052 * directories. */
1053 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1054 struct i915_page_directory *pd,
1055 uint32_t start, uint32_t length)
1056 {
1057 struct i915_page_table *pt;
1058 uint32_t pde, temp;
1059
1060 gen6_for_each_pde(pt, pd, start, length, temp, pde)
1061 gen6_write_pde(pd, pde, pt);
1062
1063 /* Make sure write is complete before other code can use this page
1064 * table. Also require for WC mapped PTEs */
1065 readl(dev_priv->gtt.gsm);
1066 }
1067
1068 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1069 {
1070 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1071
1072 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1073 }
1074
1075 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1076 struct drm_i915_gem_request *req)
1077 {
1078 struct intel_engine_cs *ring = req->ring;
1079 int ret;
1080
1081 /* NB: TLBs must be flushed and invalidated before a switch */
1082 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1083 if (ret)
1084 return ret;
1085
1086 ret = intel_ring_begin(req, 6);
1087 if (ret)
1088 return ret;
1089
1090 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1091 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1092 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1093 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1094 intel_ring_emit(ring, get_pd_offset(ppgtt));
1095 intel_ring_emit(ring, MI_NOOP);
1096 intel_ring_advance(ring);
1097
1098 return 0;
1099 }
1100
1101 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1102 struct drm_i915_gem_request *req)
1103 {
1104 struct intel_engine_cs *ring = req->ring;
1105 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1106
1107 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1108 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1109 return 0;
1110 }
1111
1112 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1113 struct drm_i915_gem_request *req)
1114 {
1115 struct intel_engine_cs *ring = req->ring;
1116 int ret;
1117
1118 /* NB: TLBs must be flushed and invalidated before a switch */
1119 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1120 if (ret)
1121 return ret;
1122
1123 ret = intel_ring_begin(req, 6);
1124 if (ret)
1125 return ret;
1126
1127 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1128 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1129 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1130 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1131 intel_ring_emit(ring, get_pd_offset(ppgtt));
1132 intel_ring_emit(ring, MI_NOOP);
1133 intel_ring_advance(ring);
1134
1135 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1136 if (ring->id != RCS) {
1137 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1138 if (ret)
1139 return ret;
1140 }
1141
1142 return 0;
1143 }
1144
1145 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1146 struct drm_i915_gem_request *req)
1147 {
1148 struct intel_engine_cs *ring = req->ring;
1149 struct drm_device *dev = ppgtt->base.dev;
1150 struct drm_i915_private *dev_priv = dev->dev_private;
1151
1152
1153 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1154 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1155
1156 POSTING_READ(RING_PP_DIR_DCLV(ring));
1157
1158 return 0;
1159 }
1160
1161 static void gen8_ppgtt_enable(struct drm_device *dev)
1162 {
1163 struct drm_i915_private *dev_priv = dev->dev_private;
1164 struct intel_engine_cs *ring;
1165 int j;
1166
1167 for_each_ring(ring, dev_priv, j) {
1168 I915_WRITE(RING_MODE_GEN7(ring),
1169 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1170 }
1171 }
1172
1173 static void gen7_ppgtt_enable(struct drm_device *dev)
1174 {
1175 struct drm_i915_private *dev_priv = dev->dev_private;
1176 struct intel_engine_cs *ring;
1177 uint32_t ecochk, ecobits;
1178 int i;
1179
1180 ecobits = I915_READ(GAC_ECO_BITS);
1181 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1182
1183 ecochk = I915_READ(GAM_ECOCHK);
1184 if (IS_HASWELL(dev)) {
1185 ecochk |= ECOCHK_PPGTT_WB_HSW;
1186 } else {
1187 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1188 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1189 }
1190 I915_WRITE(GAM_ECOCHK, ecochk);
1191
1192 for_each_ring(ring, dev_priv, i) {
1193 /* GFX_MODE is per-ring on gen7+ */
1194 I915_WRITE(RING_MODE_GEN7(ring),
1195 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1196 }
1197 }
1198
1199 static void gen6_ppgtt_enable(struct drm_device *dev)
1200 {
1201 struct drm_i915_private *dev_priv = dev->dev_private;
1202 uint32_t ecochk, gab_ctl, ecobits;
1203
1204 ecobits = I915_READ(GAC_ECO_BITS);
1205 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1206 ECOBITS_PPGTT_CACHE64B);
1207
1208 gab_ctl = I915_READ(GAB_CTL);
1209 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1210
1211 ecochk = I915_READ(GAM_ECOCHK);
1212 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1213
1214 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1215 }
1216
1217 /* PPGTT support for Sandybdrige/Gen6 and later */
1218 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1219 uint64_t start,
1220 uint64_t length,
1221 bool use_scratch)
1222 {
1223 struct i915_hw_ppgtt *ppgtt =
1224 container_of(vm, struct i915_hw_ppgtt, base);
1225 gen6_pte_t *pt_vaddr, scratch_pte;
1226 unsigned first_entry = start >> PAGE_SHIFT;
1227 unsigned num_entries = length >> PAGE_SHIFT;
1228 unsigned act_pt = first_entry / GEN6_PTES;
1229 unsigned first_pte = first_entry % GEN6_PTES;
1230 unsigned last_pte, i;
1231
1232 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1233 I915_CACHE_LLC, true, 0);
1234
1235 while (num_entries) {
1236 last_pte = first_pte + num_entries;
1237 if (last_pte > GEN6_PTES)
1238 last_pte = GEN6_PTES;
1239
1240 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1241
1242 for (i = first_pte; i < last_pte; i++)
1243 pt_vaddr[i] = scratch_pte;
1244
1245 kunmap_px(ppgtt, pt_vaddr);
1246
1247 num_entries -= last_pte - first_pte;
1248 first_pte = 0;
1249 act_pt++;
1250 }
1251 }
1252
1253 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1254 struct sg_table *pages,
1255 uint64_t start,
1256 enum i915_cache_level cache_level, u32 flags)
1257 {
1258 struct i915_hw_ppgtt *ppgtt =
1259 container_of(vm, struct i915_hw_ppgtt, base);
1260 gen6_pte_t *pt_vaddr;
1261 unsigned first_entry = start >> PAGE_SHIFT;
1262 unsigned act_pt = first_entry / GEN6_PTES;
1263 unsigned act_pte = first_entry % GEN6_PTES;
1264 struct sg_page_iter sg_iter;
1265
1266 pt_vaddr = NULL;
1267 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1268 if (pt_vaddr == NULL)
1269 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1270
1271 pt_vaddr[act_pte] =
1272 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1273 cache_level, true, flags);
1274
1275 if (++act_pte == GEN6_PTES) {
1276 kunmap_px(ppgtt, pt_vaddr);
1277 pt_vaddr = NULL;
1278 act_pt++;
1279 act_pte = 0;
1280 }
1281 }
1282 if (pt_vaddr)
1283 kunmap_px(ppgtt, pt_vaddr);
1284 }
1285
1286 static void gen6_initialize_pt(struct i915_address_space *vm,
1287 struct i915_page_table *pt)
1288 {
1289 gen6_pte_t scratch_pte;
1290
1291 WARN_ON(px_dma(vm->scratch_page) == 0);
1292
1293 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1294 I915_CACHE_LLC, true, 0);
1295
1296 fill32_px(vm->dev, pt, scratch_pte);
1297 }
1298
1299 static int gen6_alloc_va_range(struct i915_address_space *vm,
1300 uint64_t start_in, uint64_t length_in)
1301 {
1302 DECLARE_BITMAP(new_page_tables, I915_PDES);
1303 struct drm_device *dev = vm->dev;
1304 struct drm_i915_private *dev_priv = dev->dev_private;
1305 struct i915_hw_ppgtt *ppgtt =
1306 container_of(vm, struct i915_hw_ppgtt, base);
1307 struct i915_page_table *pt;
1308 uint32_t start, length, start_save, length_save;
1309 uint32_t pde, temp;
1310 int ret;
1311
1312 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1313 return -ENODEV;
1314
1315 start = start_save = start_in;
1316 length = length_save = length_in;
1317
1318 bitmap_zero(new_page_tables, I915_PDES);
1319
1320 /* The allocation is done in two stages so that we can bail out with
1321 * minimal amount of pain. The first stage finds new page tables that
1322 * need allocation. The second stage marks use ptes within the page
1323 * tables.
1324 */
1325 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1326 if (pt != ppgtt->scratch_pt) {
1327 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1328 continue;
1329 }
1330
1331 /* We've already allocated a page table */
1332 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1333
1334 pt = alloc_pt(dev);
1335 if (IS_ERR(pt)) {
1336 ret = PTR_ERR(pt);
1337 goto unwind_out;
1338 }
1339
1340 gen6_initialize_pt(vm, pt);
1341
1342 ppgtt->pd.page_table[pde] = pt;
1343 set_bit(pde, new_page_tables);
1344 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1345 }
1346
1347 start = start_save;
1348 length = length_save;
1349
1350 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1351 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1352
1353 bitmap_zero(tmp_bitmap, GEN6_PTES);
1354 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1355 gen6_pte_count(start, length));
1356
1357 if (test_and_clear_bit(pde, new_page_tables))
1358 gen6_write_pde(&ppgtt->pd, pde, pt);
1359
1360 trace_i915_page_table_entry_map(vm, pde, pt,
1361 gen6_pte_index(start),
1362 gen6_pte_count(start, length),
1363 GEN6_PTES);
1364 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1365 GEN6_PTES);
1366 }
1367
1368 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1369
1370 /* Make sure write is complete before other code can use this page
1371 * table. Also require for WC mapped PTEs */
1372 readl(dev_priv->gtt.gsm);
1373
1374 mark_tlbs_dirty(ppgtt);
1375 return 0;
1376
1377 unwind_out:
1378 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1379 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1380
1381 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1382 free_pt(vm->dev, pt);
1383 }
1384
1385 mark_tlbs_dirty(ppgtt);
1386 return ret;
1387 }
1388
1389 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1390 {
1391 struct i915_hw_ppgtt *ppgtt =
1392 container_of(vm, struct i915_hw_ppgtt, base);
1393 struct i915_page_table *pt;
1394 uint32_t pde;
1395
1396
1397 drm_mm_remove_node(&ppgtt->node);
1398
1399 gen6_for_all_pdes(pt, ppgtt, pde) {
1400 if (pt != ppgtt->scratch_pt)
1401 free_pt(ppgtt->base.dev, pt);
1402 }
1403
1404 free_pt(ppgtt->base.dev, ppgtt->scratch_pt);
1405 }
1406
1407 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1408 {
1409 struct drm_device *dev = ppgtt->base.dev;
1410 struct drm_i915_private *dev_priv = dev->dev_private;
1411 bool retried = false;
1412 int ret;
1413
1414 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1415 * allocator works in address space sizes, so it's multiplied by page
1416 * size. We allocate at the top of the GTT to avoid fragmentation.
1417 */
1418 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1419 ppgtt->scratch_pt = alloc_pt(ppgtt->base.dev);
1420 if (IS_ERR(ppgtt->scratch_pt))
1421 return PTR_ERR(ppgtt->scratch_pt);
1422
1423 gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1424
1425 alloc:
1426 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1427 &ppgtt->node, GEN6_PD_SIZE,
1428 GEN6_PD_ALIGN, 0,
1429 0, dev_priv->gtt.base.total,
1430 DRM_MM_TOPDOWN);
1431 if (ret == -ENOSPC && !retried) {
1432 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1433 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1434 I915_CACHE_NONE,
1435 0, dev_priv->gtt.base.total,
1436 0);
1437 if (ret)
1438 goto err_out;
1439
1440 retried = true;
1441 goto alloc;
1442 }
1443
1444 if (ret)
1445 goto err_out;
1446
1447
1448 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1449 DRM_DEBUG("Forced to use aperture for PDEs\n");
1450
1451 return 0;
1452
1453 err_out:
1454 free_pt(ppgtt->base.dev, ppgtt->scratch_pt);
1455 return ret;
1456 }
1457
1458 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1459 {
1460 return gen6_ppgtt_allocate_page_directories(ppgtt);
1461 }
1462
1463 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1464 uint64_t start, uint64_t length)
1465 {
1466 struct i915_page_table *unused;
1467 uint32_t pde, temp;
1468
1469 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1470 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1471 }
1472
1473 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1474 {
1475 struct drm_device *dev = ppgtt->base.dev;
1476 struct drm_i915_private *dev_priv = dev->dev_private;
1477 int ret;
1478
1479 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1480 if (IS_GEN6(dev)) {
1481 ppgtt->switch_mm = gen6_mm_switch;
1482 } else if (IS_HASWELL(dev)) {
1483 ppgtt->switch_mm = hsw_mm_switch;
1484 } else if (IS_GEN7(dev)) {
1485 ppgtt->switch_mm = gen7_mm_switch;
1486 } else
1487 BUG();
1488
1489 if (intel_vgpu_active(dev))
1490 ppgtt->switch_mm = vgpu_mm_switch;
1491
1492 ret = gen6_ppgtt_alloc(ppgtt);
1493 if (ret)
1494 return ret;
1495
1496 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1497 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1498 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1499 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1500 ppgtt->base.bind_vma = ppgtt_bind_vma;
1501 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1502 ppgtt->base.start = 0;
1503 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1504 ppgtt->debug_dump = gen6_dump_ppgtt;
1505
1506 ppgtt->pd.base.ggtt_offset =
1507 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1508
1509 ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1510 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1511
1512 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1513
1514 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1515
1516 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1517 ppgtt->node.size >> 20,
1518 ppgtt->node.start / PAGE_SIZE);
1519
1520 DRM_DEBUG("Adding PPGTT at offset %x\n",
1521 ppgtt->pd.base.ggtt_offset << 10);
1522
1523 return 0;
1524 }
1525
1526 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1527 {
1528 struct drm_i915_private *dev_priv = dev->dev_private;
1529
1530 ppgtt->base.dev = dev;
1531 ppgtt->base.scratch_page = dev_priv->gtt.base.scratch_page;
1532
1533 if (INTEL_INFO(dev)->gen < 8)
1534 return gen6_ppgtt_init(ppgtt);
1535 else
1536 return gen8_ppgtt_init(ppgtt);
1537 }
1538
1539 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1540 {
1541 struct drm_i915_private *dev_priv = dev->dev_private;
1542 int ret = 0;
1543
1544 ret = __hw_ppgtt_init(dev, ppgtt);
1545 if (ret == 0) {
1546 kref_init(&ppgtt->ref);
1547 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1548 ppgtt->base.total);
1549 i915_init_vm(dev_priv, &ppgtt->base);
1550 }
1551
1552 return ret;
1553 }
1554
1555 int i915_ppgtt_init_hw(struct drm_device *dev)
1556 {
1557 /* In the case of execlists, PPGTT is enabled by the context descriptor
1558 * and the PDPs are contained within the context itself. We don't
1559 * need to do anything here. */
1560 if (i915.enable_execlists)
1561 return 0;
1562
1563 if (!USES_PPGTT(dev))
1564 return 0;
1565
1566 if (IS_GEN6(dev))
1567 gen6_ppgtt_enable(dev);
1568 else if (IS_GEN7(dev))
1569 gen7_ppgtt_enable(dev);
1570 else if (INTEL_INFO(dev)->gen >= 8)
1571 gen8_ppgtt_enable(dev);
1572 else
1573 MISSING_CASE(INTEL_INFO(dev)->gen);
1574
1575 return 0;
1576 }
1577
1578 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
1579 {
1580 struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
1581 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1582
1583 if (i915.enable_execlists)
1584 return 0;
1585
1586 if (!ppgtt)
1587 return 0;
1588
1589 return ppgtt->switch_mm(ppgtt, req);
1590 }
1591
1592 struct i915_hw_ppgtt *
1593 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1594 {
1595 struct i915_hw_ppgtt *ppgtt;
1596 int ret;
1597
1598 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1599 if (!ppgtt)
1600 return ERR_PTR(-ENOMEM);
1601
1602 ret = i915_ppgtt_init(dev, ppgtt);
1603 if (ret) {
1604 kfree(ppgtt);
1605 return ERR_PTR(ret);
1606 }
1607
1608 ppgtt->file_priv = fpriv;
1609
1610 trace_i915_ppgtt_create(&ppgtt->base);
1611
1612 return ppgtt;
1613 }
1614
1615 void i915_ppgtt_release(struct kref *kref)
1616 {
1617 struct i915_hw_ppgtt *ppgtt =
1618 container_of(kref, struct i915_hw_ppgtt, ref);
1619
1620 trace_i915_ppgtt_release(&ppgtt->base);
1621
1622 /* vmas should already be unbound */
1623 WARN_ON(!list_empty(&ppgtt->base.active_list));
1624 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1625
1626 list_del(&ppgtt->base.global_link);
1627 drm_mm_takedown(&ppgtt->base.mm);
1628
1629 ppgtt->base.cleanup(&ppgtt->base);
1630 kfree(ppgtt);
1631 }
1632
1633 extern int intel_iommu_gfx_mapped;
1634 /* Certain Gen5 chipsets require require idling the GPU before
1635 * unmapping anything from the GTT when VT-d is enabled.
1636 */
1637 static bool needs_idle_maps(struct drm_device *dev)
1638 {
1639 #ifdef CONFIG_INTEL_IOMMU
1640 /* Query intel_iommu to see if we need the workaround. Presumably that
1641 * was loaded first.
1642 */
1643 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1644 return true;
1645 #endif
1646 return false;
1647 }
1648
1649 static bool do_idling(struct drm_i915_private *dev_priv)
1650 {
1651 bool ret = dev_priv->mm.interruptible;
1652
1653 if (unlikely(dev_priv->gtt.do_idle_maps)) {
1654 dev_priv->mm.interruptible = false;
1655 if (i915_gpu_idle(dev_priv->dev)) {
1656 DRM_ERROR("Couldn't idle GPU\n");
1657 /* Wait a bit, in hopes it avoids the hang */
1658 udelay(10);
1659 }
1660 }
1661
1662 return ret;
1663 }
1664
1665 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1666 {
1667 if (unlikely(dev_priv->gtt.do_idle_maps))
1668 dev_priv->mm.interruptible = interruptible;
1669 }
1670
1671 void i915_check_and_clear_faults(struct drm_device *dev)
1672 {
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674 struct intel_engine_cs *ring;
1675 int i;
1676
1677 if (INTEL_INFO(dev)->gen < 6)
1678 return;
1679
1680 for_each_ring(ring, dev_priv, i) {
1681 u32 fault_reg;
1682 fault_reg = I915_READ(RING_FAULT_REG(ring));
1683 if (fault_reg & RING_FAULT_VALID) {
1684 DRM_DEBUG_DRIVER("Unexpected fault\n"
1685 "\tAddr: 0x%08lx\n"
1686 "\tAddress space: %s\n"
1687 "\tSource ID: %d\n"
1688 "\tType: %d\n",
1689 fault_reg & PAGE_MASK,
1690 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1691 RING_FAULT_SRCID(fault_reg),
1692 RING_FAULT_FAULT_TYPE(fault_reg));
1693 I915_WRITE(RING_FAULT_REG(ring),
1694 fault_reg & ~RING_FAULT_VALID);
1695 }
1696 }
1697 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1698 }
1699
1700 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1701 {
1702 if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1703 intel_gtt_chipset_flush();
1704 } else {
1705 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1706 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1707 }
1708 }
1709
1710 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1711 {
1712 struct drm_i915_private *dev_priv = dev->dev_private;
1713
1714 /* Don't bother messing with faults pre GEN6 as we have little
1715 * documentation supporting that it's a good idea.
1716 */
1717 if (INTEL_INFO(dev)->gen < 6)
1718 return;
1719
1720 i915_check_and_clear_faults(dev);
1721
1722 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1723 dev_priv->gtt.base.start,
1724 dev_priv->gtt.base.total,
1725 true);
1726
1727 i915_ggtt_flush(dev_priv);
1728 }
1729
1730 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1731 {
1732 if (obj->has_dma_mapping)
1733 return 0;
1734
1735 if (!dma_map_sg(&obj->base.dev->pdev->dev,
1736 obj->pages->sgl, obj->pages->nents,
1737 PCI_DMA_BIDIRECTIONAL))
1738 return -ENOSPC;
1739
1740 return 0;
1741 }
1742
1743 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1744 {
1745 #ifdef writeq
1746 writeq(pte, addr);
1747 #else
1748 iowrite32((u32)pte, addr);
1749 iowrite32(pte >> 32, addr + 4);
1750 #endif
1751 }
1752
1753 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1754 struct sg_table *st,
1755 uint64_t start,
1756 enum i915_cache_level level, u32 unused)
1757 {
1758 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1759 unsigned first_entry = start >> PAGE_SHIFT;
1760 gen8_pte_t __iomem *gtt_entries =
1761 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1762 int i = 0;
1763 struct sg_page_iter sg_iter;
1764 dma_addr_t addr = 0; /* shut up gcc */
1765
1766 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1767 addr = sg_dma_address(sg_iter.sg) +
1768 (sg_iter.sg_pgoffset << PAGE_SHIFT);
1769 gen8_set_pte(&gtt_entries[i],
1770 gen8_pte_encode(addr, level, true));
1771 i++;
1772 }
1773
1774 /*
1775 * XXX: This serves as a posting read to make sure that the PTE has
1776 * actually been updated. There is some concern that even though
1777 * registers and PTEs are within the same BAR that they are potentially
1778 * of NUMA access patterns. Therefore, even with the way we assume
1779 * hardware should work, we must keep this posting read for paranoia.
1780 */
1781 if (i != 0)
1782 WARN_ON(readq(&gtt_entries[i-1])
1783 != gen8_pte_encode(addr, level, true));
1784
1785 /* This next bit makes the above posting read even more important. We
1786 * want to flush the TLBs only after we're certain all the PTE updates
1787 * have finished.
1788 */
1789 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1790 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1791 }
1792
1793 /*
1794 * Binds an object into the global gtt with the specified cache level. The object
1795 * will be accessible to the GPU via commands whose operands reference offsets
1796 * within the global GTT as well as accessible by the GPU through the GMADR
1797 * mapped BAR (dev_priv->mm.gtt->gtt).
1798 */
1799 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1800 struct sg_table *st,
1801 uint64_t start,
1802 enum i915_cache_level level, u32 flags)
1803 {
1804 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1805 unsigned first_entry = start >> PAGE_SHIFT;
1806 gen6_pte_t __iomem *gtt_entries =
1807 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1808 int i = 0;
1809 struct sg_page_iter sg_iter;
1810 dma_addr_t addr = 0;
1811
1812 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1813 addr = sg_page_iter_dma_address(&sg_iter);
1814 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1815 i++;
1816 }
1817
1818 /* XXX: This serves as a posting read to make sure that the PTE has
1819 * actually been updated. There is some concern that even though
1820 * registers and PTEs are within the same BAR that they are potentially
1821 * of NUMA access patterns. Therefore, even with the way we assume
1822 * hardware should work, we must keep this posting read for paranoia.
1823 */
1824 if (i != 0) {
1825 unsigned long gtt = readl(&gtt_entries[i-1]);
1826 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1827 }
1828
1829 /* This next bit makes the above posting read even more important. We
1830 * want to flush the TLBs only after we're certain all the PTE updates
1831 * have finished.
1832 */
1833 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1834 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1835 }
1836
1837 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1838 uint64_t start,
1839 uint64_t length,
1840 bool use_scratch)
1841 {
1842 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1843 unsigned first_entry = start >> PAGE_SHIFT;
1844 unsigned num_entries = length >> PAGE_SHIFT;
1845 gen8_pte_t scratch_pte, __iomem *gtt_base =
1846 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1847 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1848 int i;
1849
1850 if (WARN(num_entries > max_entries,
1851 "First entry = %d; Num entries = %d (max=%d)\n",
1852 first_entry, num_entries, max_entries))
1853 num_entries = max_entries;
1854
1855 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1856 I915_CACHE_LLC,
1857 use_scratch);
1858 for (i = 0; i < num_entries; i++)
1859 gen8_set_pte(&gtt_base[i], scratch_pte);
1860 readl(gtt_base);
1861 }
1862
1863 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1864 uint64_t start,
1865 uint64_t length,
1866 bool use_scratch)
1867 {
1868 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1869 unsigned first_entry = start >> PAGE_SHIFT;
1870 unsigned num_entries = length >> PAGE_SHIFT;
1871 gen6_pte_t scratch_pte, __iomem *gtt_base =
1872 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1873 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1874 int i;
1875
1876 if (WARN(num_entries > max_entries,
1877 "First entry = %d; Num entries = %d (max=%d)\n",
1878 first_entry, num_entries, max_entries))
1879 num_entries = max_entries;
1880
1881 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1882 I915_CACHE_LLC, use_scratch, 0);
1883
1884 for (i = 0; i < num_entries; i++)
1885 iowrite32(scratch_pte, &gtt_base[i]);
1886 readl(gtt_base);
1887 }
1888
1889 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1890 struct sg_table *pages,
1891 uint64_t start,
1892 enum i915_cache_level cache_level, u32 unused)
1893 {
1894 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1895 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1896
1897 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
1898
1899 }
1900
1901 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1902 uint64_t start,
1903 uint64_t length,
1904 bool unused)
1905 {
1906 unsigned first_entry = start >> PAGE_SHIFT;
1907 unsigned num_entries = length >> PAGE_SHIFT;
1908 intel_gtt_clear_range(first_entry, num_entries);
1909 }
1910
1911 static int ggtt_bind_vma(struct i915_vma *vma,
1912 enum i915_cache_level cache_level,
1913 u32 flags)
1914 {
1915 struct drm_device *dev = vma->vm->dev;
1916 struct drm_i915_private *dev_priv = dev->dev_private;
1917 struct drm_i915_gem_object *obj = vma->obj;
1918 struct sg_table *pages = obj->pages;
1919 u32 pte_flags = 0;
1920 int ret;
1921
1922 ret = i915_get_ggtt_vma_pages(vma);
1923 if (ret)
1924 return ret;
1925 pages = vma->ggtt_view.pages;
1926
1927 /* Currently applicable only to VLV */
1928 if (obj->gt_ro)
1929 pte_flags |= PTE_READ_ONLY;
1930
1931
1932 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1933 vma->vm->insert_entries(vma->vm, pages,
1934 vma->node.start,
1935 cache_level, pte_flags);
1936 }
1937
1938 if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
1939 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1940 appgtt->base.insert_entries(&appgtt->base, pages,
1941 vma->node.start,
1942 cache_level, pte_flags);
1943 }
1944
1945 return 0;
1946 }
1947
1948 static void ggtt_unbind_vma(struct i915_vma *vma)
1949 {
1950 struct drm_device *dev = vma->vm->dev;
1951 struct drm_i915_private *dev_priv = dev->dev_private;
1952 struct drm_i915_gem_object *obj = vma->obj;
1953 const uint64_t size = min_t(uint64_t,
1954 obj->base.size,
1955 vma->node.size);
1956
1957 if (vma->bound & GLOBAL_BIND) {
1958 vma->vm->clear_range(vma->vm,
1959 vma->node.start,
1960 size,
1961 true);
1962 }
1963
1964 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
1965 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1966
1967 appgtt->base.clear_range(&appgtt->base,
1968 vma->node.start,
1969 size,
1970 true);
1971 }
1972 }
1973
1974 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1975 {
1976 struct drm_device *dev = obj->base.dev;
1977 struct drm_i915_private *dev_priv = dev->dev_private;
1978 bool interruptible;
1979
1980 interruptible = do_idling(dev_priv);
1981
1982 if (!obj->has_dma_mapping)
1983 dma_unmap_sg(&dev->pdev->dev,
1984 obj->pages->sgl, obj->pages->nents,
1985 PCI_DMA_BIDIRECTIONAL);
1986
1987 undo_idling(dev_priv, interruptible);
1988 }
1989
1990 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1991 unsigned long color,
1992 u64 *start,
1993 u64 *end)
1994 {
1995 if (node->color != color)
1996 *start += 4096;
1997
1998 if (!list_empty(&node->node_list)) {
1999 node = list_entry(node->node_list.next,
2000 struct drm_mm_node,
2001 node_list);
2002 if (node->allocated && node->color != color)
2003 *end -= 4096;
2004 }
2005 }
2006
2007 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2008 unsigned long start,
2009 unsigned long mappable_end,
2010 unsigned long end)
2011 {
2012 /* Let GEM Manage all of the aperture.
2013 *
2014 * However, leave one page at the end still bound to the scratch page.
2015 * There are a number of places where the hardware apparently prefetches
2016 * past the end of the object, and we've seen multiple hangs with the
2017 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2018 * aperture. One page should be enough to keep any prefetching inside
2019 * of the aperture.
2020 */
2021 struct drm_i915_private *dev_priv = dev->dev_private;
2022 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2023 struct drm_mm_node *entry;
2024 struct drm_i915_gem_object *obj;
2025 unsigned long hole_start, hole_end;
2026 int ret;
2027
2028 BUG_ON(mappable_end > end);
2029
2030 /* Subtract the guard page ... */
2031 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2032
2033 dev_priv->gtt.base.start = start;
2034 dev_priv->gtt.base.total = end - start;
2035
2036 if (intel_vgpu_active(dev)) {
2037 ret = intel_vgt_balloon(dev);
2038 if (ret)
2039 return ret;
2040 }
2041
2042 if (!HAS_LLC(dev))
2043 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2044
2045 /* Mark any preallocated objects as occupied */
2046 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2047 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2048
2049 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2050 i915_gem_obj_ggtt_offset(obj), obj->base.size);
2051
2052 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2053 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2054 if (ret) {
2055 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2056 return ret;
2057 }
2058 vma->bound |= GLOBAL_BIND;
2059 }
2060
2061 /* Clear any non-preallocated blocks */
2062 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2063 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2064 hole_start, hole_end);
2065 ggtt_vm->clear_range(ggtt_vm, hole_start,
2066 hole_end - hole_start, true);
2067 }
2068
2069 /* And finally clear the reserved guard page */
2070 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2071
2072 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2073 struct i915_hw_ppgtt *ppgtt;
2074
2075 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2076 if (!ppgtt)
2077 return -ENOMEM;
2078
2079 ret = __hw_ppgtt_init(dev, ppgtt);
2080 if (ret) {
2081 ppgtt->base.cleanup(&ppgtt->base);
2082 kfree(ppgtt);
2083 return ret;
2084 }
2085
2086 if (ppgtt->base.allocate_va_range)
2087 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2088 ppgtt->base.total);
2089 if (ret) {
2090 ppgtt->base.cleanup(&ppgtt->base);
2091 kfree(ppgtt);
2092 return ret;
2093 }
2094
2095 ppgtt->base.clear_range(&ppgtt->base,
2096 ppgtt->base.start,
2097 ppgtt->base.total,
2098 true);
2099
2100 dev_priv->mm.aliasing_ppgtt = ppgtt;
2101 }
2102
2103 return 0;
2104 }
2105
2106 void i915_gem_init_global_gtt(struct drm_device *dev)
2107 {
2108 struct drm_i915_private *dev_priv = dev->dev_private;
2109 u64 gtt_size, mappable_size;
2110
2111 gtt_size = dev_priv->gtt.base.total;
2112 mappable_size = dev_priv->gtt.mappable_end;
2113
2114 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2115 }
2116
2117 void i915_global_gtt_cleanup(struct drm_device *dev)
2118 {
2119 struct drm_i915_private *dev_priv = dev->dev_private;
2120 struct i915_address_space *vm = &dev_priv->gtt.base;
2121
2122 if (dev_priv->mm.aliasing_ppgtt) {
2123 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2124
2125 ppgtt->base.cleanup(&ppgtt->base);
2126 }
2127
2128 if (drm_mm_initialized(&vm->mm)) {
2129 if (intel_vgpu_active(dev))
2130 intel_vgt_deballoon();
2131
2132 drm_mm_takedown(&vm->mm);
2133 list_del(&vm->global_link);
2134 }
2135
2136 vm->cleanup(vm);
2137 }
2138
2139 static int alloc_scratch_page(struct i915_address_space *vm)
2140 {
2141 struct i915_page_scratch *sp;
2142 int ret;
2143
2144 WARN_ON(vm->scratch_page);
2145
2146 sp = kzalloc(sizeof(*sp), GFP_KERNEL);
2147 if (sp == NULL)
2148 return -ENOMEM;
2149
2150 ret = __setup_page_dma(vm->dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
2151 if (ret) {
2152 kfree(sp);
2153 return ret;
2154 }
2155
2156 set_pages_uc(px_page(sp), 1);
2157
2158 vm->scratch_page = sp;
2159
2160 return 0;
2161 }
2162
2163 static void free_scratch_page(struct i915_address_space *vm)
2164 {
2165 struct i915_page_scratch *sp = vm->scratch_page;
2166
2167 set_pages_wb(px_page(sp), 1);
2168
2169 cleanup_px(vm->dev, sp);
2170 kfree(sp);
2171
2172 vm->scratch_page = NULL;
2173 }
2174
2175 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2176 {
2177 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2178 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2179 return snb_gmch_ctl << 20;
2180 }
2181
2182 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2183 {
2184 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2185 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2186 if (bdw_gmch_ctl)
2187 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2188
2189 #ifdef CONFIG_X86_32
2190 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2191 if (bdw_gmch_ctl > 4)
2192 bdw_gmch_ctl = 4;
2193 #endif
2194
2195 return bdw_gmch_ctl << 20;
2196 }
2197
2198 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2199 {
2200 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2201 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2202
2203 if (gmch_ctrl)
2204 return 1 << (20 + gmch_ctrl);
2205
2206 return 0;
2207 }
2208
2209 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2210 {
2211 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2212 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2213 return snb_gmch_ctl << 25; /* 32 MB units */
2214 }
2215
2216 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2217 {
2218 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2219 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2220 return bdw_gmch_ctl << 25; /* 32 MB units */
2221 }
2222
2223 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2224 {
2225 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2226 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2227
2228 /*
2229 * 0x0 to 0x10: 32MB increments starting at 0MB
2230 * 0x11 to 0x16: 4MB increments starting at 8MB
2231 * 0x17 to 0x1d: 4MB increments start at 36MB
2232 */
2233 if (gmch_ctrl < 0x11)
2234 return gmch_ctrl << 25;
2235 else if (gmch_ctrl < 0x17)
2236 return (gmch_ctrl - 0x11 + 2) << 22;
2237 else
2238 return (gmch_ctrl - 0x17 + 9) << 22;
2239 }
2240
2241 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2242 {
2243 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2244 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2245
2246 if (gen9_gmch_ctl < 0xf0)
2247 return gen9_gmch_ctl << 25; /* 32 MB units */
2248 else
2249 /* 4MB increments starting at 0xf0 for 4MB */
2250 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2251 }
2252
2253 static int ggtt_probe_common(struct drm_device *dev,
2254 size_t gtt_size)
2255 {
2256 struct drm_i915_private *dev_priv = dev->dev_private;
2257 phys_addr_t gtt_phys_addr;
2258 int ret;
2259
2260 /* For Modern GENs the PTEs and register space are split in the BAR */
2261 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2262 (pci_resource_len(dev->pdev, 0) / 2);
2263
2264 /*
2265 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2266 * dropped. For WC mappings in general we have 64 byte burst writes
2267 * when the WC buffer is flushed, so we can't use it, but have to
2268 * resort to an uncached mapping. The WC issue is easily caught by the
2269 * readback check when writing GTT PTE entries.
2270 */
2271 if (IS_BROXTON(dev))
2272 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2273 else
2274 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2275 if (!dev_priv->gtt.gsm) {
2276 DRM_ERROR("Failed to map the gtt page table\n");
2277 return -ENOMEM;
2278 }
2279
2280 ret = alloc_scratch_page(&dev_priv->gtt.base);
2281 if (ret) {
2282 DRM_ERROR("Scratch setup failed\n");
2283 /* iounmap will also get called at remove, but meh */
2284 iounmap(dev_priv->gtt.gsm);
2285 }
2286
2287 return ret;
2288 }
2289
2290 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2291 * bits. When using advanced contexts each context stores its own PAT, but
2292 * writing this data shouldn't be harmful even in those cases. */
2293 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2294 {
2295 uint64_t pat;
2296
2297 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2298 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2299 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2300 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2301 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2302 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2303 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2304 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2305
2306 if (!USES_PPGTT(dev_priv->dev))
2307 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2308 * so RTL will always use the value corresponding to
2309 * pat_sel = 000".
2310 * So let's disable cache for GGTT to avoid screen corruptions.
2311 * MOCS still can be used though.
2312 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2313 * before this patch, i.e. the same uncached + snooping access
2314 * like on gen6/7 seems to be in effect.
2315 * - So this just fixes blitter/render access. Again it looks
2316 * like it's not just uncached access, but uncached + snooping.
2317 * So we can still hold onto all our assumptions wrt cpu
2318 * clflushing on LLC machines.
2319 */
2320 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2321
2322 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2323 * write would work. */
2324 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2325 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2326 }
2327
2328 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2329 {
2330 uint64_t pat;
2331
2332 /*
2333 * Map WB on BDW to snooped on CHV.
2334 *
2335 * Only the snoop bit has meaning for CHV, the rest is
2336 * ignored.
2337 *
2338 * The hardware will never snoop for certain types of accesses:
2339 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2340 * - PPGTT page tables
2341 * - some other special cycles
2342 *
2343 * As with BDW, we also need to consider the following for GT accesses:
2344 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2345 * so RTL will always use the value corresponding to
2346 * pat_sel = 000".
2347 * Which means we must set the snoop bit in PAT entry 0
2348 * in order to keep the global status page working.
2349 */
2350 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2351 GEN8_PPAT(1, 0) |
2352 GEN8_PPAT(2, 0) |
2353 GEN8_PPAT(3, 0) |
2354 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2355 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2356 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2357 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2358
2359 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2360 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2361 }
2362
2363 static int gen8_gmch_probe(struct drm_device *dev,
2364 u64 *gtt_total,
2365 size_t *stolen,
2366 phys_addr_t *mappable_base,
2367 u64 *mappable_end)
2368 {
2369 struct drm_i915_private *dev_priv = dev->dev_private;
2370 u64 gtt_size;
2371 u16 snb_gmch_ctl;
2372 int ret;
2373
2374 /* TODO: We're not aware of mappable constraints on gen8 yet */
2375 *mappable_base = pci_resource_start(dev->pdev, 2);
2376 *mappable_end = pci_resource_len(dev->pdev, 2);
2377
2378 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2379 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2380
2381 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2382
2383 if (INTEL_INFO(dev)->gen >= 9) {
2384 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2385 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2386 } else if (IS_CHERRYVIEW(dev)) {
2387 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2388 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2389 } else {
2390 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2391 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2392 }
2393
2394 *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2395
2396 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2397 chv_setup_private_ppat(dev_priv);
2398 else
2399 bdw_setup_private_ppat(dev_priv);
2400
2401 ret = ggtt_probe_common(dev, gtt_size);
2402
2403 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2404 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2405 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2406 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2407
2408 return ret;
2409 }
2410
2411 static int gen6_gmch_probe(struct drm_device *dev,
2412 u64 *gtt_total,
2413 size_t *stolen,
2414 phys_addr_t *mappable_base,
2415 u64 *mappable_end)
2416 {
2417 struct drm_i915_private *dev_priv = dev->dev_private;
2418 unsigned int gtt_size;
2419 u16 snb_gmch_ctl;
2420 int ret;
2421
2422 *mappable_base = pci_resource_start(dev->pdev, 2);
2423 *mappable_end = pci_resource_len(dev->pdev, 2);
2424
2425 /* 64/512MB is the current min/max we actually know of, but this is just
2426 * a coarse sanity check.
2427 */
2428 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2429 DRM_ERROR("Unknown GMADR size (%llx)\n",
2430 dev_priv->gtt.mappable_end);
2431 return -ENXIO;
2432 }
2433
2434 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2435 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2436 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2437
2438 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2439
2440 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2441 *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2442
2443 ret = ggtt_probe_common(dev, gtt_size);
2444
2445 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2446 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2447 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2448 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2449
2450 return ret;
2451 }
2452
2453 static void gen6_gmch_remove(struct i915_address_space *vm)
2454 {
2455
2456 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2457
2458 iounmap(gtt->gsm);
2459 free_scratch_page(vm);
2460 }
2461
2462 static int i915_gmch_probe(struct drm_device *dev,
2463 u64 *gtt_total,
2464 size_t *stolen,
2465 phys_addr_t *mappable_base,
2466 u64 *mappable_end)
2467 {
2468 struct drm_i915_private *dev_priv = dev->dev_private;
2469 int ret;
2470
2471 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2472 if (!ret) {
2473 DRM_ERROR("failed to set up gmch\n");
2474 return -EIO;
2475 }
2476
2477 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2478
2479 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2480 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
2481 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2482 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2483 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2484
2485 if (unlikely(dev_priv->gtt.do_idle_maps))
2486 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2487
2488 return 0;
2489 }
2490
2491 static void i915_gmch_remove(struct i915_address_space *vm)
2492 {
2493 intel_gmch_remove();
2494 }
2495
2496 int i915_gem_gtt_init(struct drm_device *dev)
2497 {
2498 struct drm_i915_private *dev_priv = dev->dev_private;
2499 struct i915_gtt *gtt = &dev_priv->gtt;
2500 int ret;
2501
2502 if (INTEL_INFO(dev)->gen <= 5) {
2503 gtt->gtt_probe = i915_gmch_probe;
2504 gtt->base.cleanup = i915_gmch_remove;
2505 } else if (INTEL_INFO(dev)->gen < 8) {
2506 gtt->gtt_probe = gen6_gmch_probe;
2507 gtt->base.cleanup = gen6_gmch_remove;
2508 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2509 gtt->base.pte_encode = iris_pte_encode;
2510 else if (IS_HASWELL(dev))
2511 gtt->base.pte_encode = hsw_pte_encode;
2512 else if (IS_VALLEYVIEW(dev))
2513 gtt->base.pte_encode = byt_pte_encode;
2514 else if (INTEL_INFO(dev)->gen >= 7)
2515 gtt->base.pte_encode = ivb_pte_encode;
2516 else
2517 gtt->base.pte_encode = snb_pte_encode;
2518 } else {
2519 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2520 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2521 }
2522
2523 gtt->base.dev = dev;
2524
2525 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2526 &gtt->mappable_base, &gtt->mappable_end);
2527 if (ret)
2528 return ret;
2529
2530 /* GMADR is the PCI mmio aperture into the global GTT. */
2531 DRM_INFO("Memory usable by graphics device = %lluM\n",
2532 gtt->base.total >> 20);
2533 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
2534 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2535 #ifdef CONFIG_INTEL_IOMMU
2536 if (intel_iommu_gfx_mapped)
2537 DRM_INFO("VT-d active for gfx access\n");
2538 #endif
2539 /*
2540 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2541 * user's requested state against the hardware/driver capabilities. We
2542 * do this now so that we can print out any log messages once rather
2543 * than every time we check intel_enable_ppgtt().
2544 */
2545 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2546 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2547
2548 return 0;
2549 }
2550
2551 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
2552 {
2553 struct drm_i915_private *dev_priv = dev->dev_private;
2554 struct drm_i915_gem_object *obj;
2555 struct i915_address_space *vm;
2556
2557 i915_check_and_clear_faults(dev);
2558
2559 /* First fill our portion of the GTT with scratch pages */
2560 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2561 dev_priv->gtt.base.start,
2562 dev_priv->gtt.base.total,
2563 true);
2564
2565 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2566 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
2567 &dev_priv->gtt.base);
2568 if (!vma)
2569 continue;
2570
2571 i915_gem_clflush_object(obj, obj->pin_display);
2572 WARN_ON(i915_vma_bind(vma, obj->cache_level, PIN_UPDATE));
2573 }
2574
2575
2576 if (INTEL_INFO(dev)->gen >= 8) {
2577 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2578 chv_setup_private_ppat(dev_priv);
2579 else
2580 bdw_setup_private_ppat(dev_priv);
2581
2582 return;
2583 }
2584
2585 if (USES_PPGTT(dev)) {
2586 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2587 /* TODO: Perhaps it shouldn't be gen6 specific */
2588
2589 struct i915_hw_ppgtt *ppgtt =
2590 container_of(vm, struct i915_hw_ppgtt,
2591 base);
2592
2593 if (i915_is_ggtt(vm))
2594 ppgtt = dev_priv->mm.aliasing_ppgtt;
2595
2596 gen6_write_page_range(dev_priv, &ppgtt->pd,
2597 0, ppgtt->base.total);
2598 }
2599 }
2600
2601 i915_ggtt_flush(dev_priv);
2602 }
2603
2604 static struct i915_vma *
2605 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2606 struct i915_address_space *vm,
2607 const struct i915_ggtt_view *ggtt_view)
2608 {
2609 struct i915_vma *vma;
2610
2611 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2612 return ERR_PTR(-EINVAL);
2613
2614 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
2615 if (vma == NULL)
2616 return ERR_PTR(-ENOMEM);
2617
2618 INIT_LIST_HEAD(&vma->vma_link);
2619 INIT_LIST_HEAD(&vma->mm_list);
2620 INIT_LIST_HEAD(&vma->exec_list);
2621 vma->vm = vm;
2622 vma->obj = obj;
2623
2624 if (i915_is_ggtt(vm))
2625 vma->ggtt_view = *ggtt_view;
2626
2627 list_add_tail(&vma->vma_link, &obj->vma_list);
2628 if (!i915_is_ggtt(vm))
2629 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2630
2631 return vma;
2632 }
2633
2634 struct i915_vma *
2635 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2636 struct i915_address_space *vm)
2637 {
2638 struct i915_vma *vma;
2639
2640 vma = i915_gem_obj_to_vma(obj, vm);
2641 if (!vma)
2642 vma = __i915_gem_vma_create(obj, vm,
2643 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2644
2645 return vma;
2646 }
2647
2648 struct i915_vma *
2649 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2650 const struct i915_ggtt_view *view)
2651 {
2652 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2653 struct i915_vma *vma;
2654
2655 if (WARN_ON(!view))
2656 return ERR_PTR(-EINVAL);
2657
2658 vma = i915_gem_obj_to_ggtt_view(obj, view);
2659
2660 if (IS_ERR(vma))
2661 return vma;
2662
2663 if (!vma)
2664 vma = __i915_gem_vma_create(obj, ggtt, view);
2665
2666 return vma;
2667
2668 }
2669
2670 static void
2671 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2672 struct sg_table *st)
2673 {
2674 unsigned int column, row;
2675 unsigned int src_idx;
2676 struct scatterlist *sg = st->sgl;
2677
2678 st->nents = 0;
2679
2680 for (column = 0; column < width; column++) {
2681 src_idx = width * (height - 1) + column;
2682 for (row = 0; row < height; row++) {
2683 st->nents++;
2684 /* We don't need the pages, but need to initialize
2685 * the entries so the sg list can be happily traversed.
2686 * The only thing we need are DMA addresses.
2687 */
2688 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2689 sg_dma_address(sg) = in[src_idx];
2690 sg_dma_len(sg) = PAGE_SIZE;
2691 sg = sg_next(sg);
2692 src_idx -= width;
2693 }
2694 }
2695 }
2696
2697 static struct sg_table *
2698 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2699 struct drm_i915_gem_object *obj)
2700 {
2701 struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2702 unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
2703 struct sg_page_iter sg_iter;
2704 unsigned long i;
2705 dma_addr_t *page_addr_list;
2706 struct sg_table *st;
2707 int ret = -ENOMEM;
2708
2709 /* Allocate a temporary list of source pages for random access. */
2710 page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
2711 sizeof(dma_addr_t));
2712 if (!page_addr_list)
2713 return ERR_PTR(ret);
2714
2715 /* Allocate target SG list. */
2716 st = kmalloc(sizeof(*st), GFP_KERNEL);
2717 if (!st)
2718 goto err_st_alloc;
2719
2720 ret = sg_alloc_table(st, size_pages, GFP_KERNEL);
2721 if (ret)
2722 goto err_sg_alloc;
2723
2724 /* Populate source page list from the object. */
2725 i = 0;
2726 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2727 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2728 i++;
2729 }
2730
2731 /* Rotate the pages. */
2732 rotate_pages(page_addr_list,
2733 rot_info->width_pages, rot_info->height_pages,
2734 st);
2735
2736 DRM_DEBUG_KMS(
2737 "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages).\n",
2738 obj->base.size, rot_info->pitch, rot_info->height,
2739 rot_info->pixel_format, rot_info->width_pages,
2740 rot_info->height_pages, size_pages);
2741
2742 drm_free_large(page_addr_list);
2743
2744 return st;
2745
2746 err_sg_alloc:
2747 kfree(st);
2748 err_st_alloc:
2749 drm_free_large(page_addr_list);
2750
2751 DRM_DEBUG_KMS(
2752 "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages)\n",
2753 obj->base.size, ret, rot_info->pitch, rot_info->height,
2754 rot_info->pixel_format, rot_info->width_pages,
2755 rot_info->height_pages, size_pages);
2756 return ERR_PTR(ret);
2757 }
2758
2759 static struct sg_table *
2760 intel_partial_pages(const struct i915_ggtt_view *view,
2761 struct drm_i915_gem_object *obj)
2762 {
2763 struct sg_table *st;
2764 struct scatterlist *sg;
2765 struct sg_page_iter obj_sg_iter;
2766 int ret = -ENOMEM;
2767
2768 st = kmalloc(sizeof(*st), GFP_KERNEL);
2769 if (!st)
2770 goto err_st_alloc;
2771
2772 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
2773 if (ret)
2774 goto err_sg_alloc;
2775
2776 sg = st->sgl;
2777 st->nents = 0;
2778 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
2779 view->params.partial.offset)
2780 {
2781 if (st->nents >= view->params.partial.size)
2782 break;
2783
2784 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2785 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
2786 sg_dma_len(sg) = PAGE_SIZE;
2787
2788 sg = sg_next(sg);
2789 st->nents++;
2790 }
2791
2792 return st;
2793
2794 err_sg_alloc:
2795 kfree(st);
2796 err_st_alloc:
2797 return ERR_PTR(ret);
2798 }
2799
2800 static int
2801 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2802 {
2803 int ret = 0;
2804
2805 if (vma->ggtt_view.pages)
2806 return 0;
2807
2808 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2809 vma->ggtt_view.pages = vma->obj->pages;
2810 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2811 vma->ggtt_view.pages =
2812 intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2813 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
2814 vma->ggtt_view.pages =
2815 intel_partial_pages(&vma->ggtt_view, vma->obj);
2816 else
2817 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2818 vma->ggtt_view.type);
2819
2820 if (!vma->ggtt_view.pages) {
2821 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2822 vma->ggtt_view.type);
2823 ret = -EINVAL;
2824 } else if (IS_ERR(vma->ggtt_view.pages)) {
2825 ret = PTR_ERR(vma->ggtt_view.pages);
2826 vma->ggtt_view.pages = NULL;
2827 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2828 vma->ggtt_view.type, ret);
2829 }
2830
2831 return ret;
2832 }
2833
2834 /**
2835 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2836 * @vma: VMA to map
2837 * @cache_level: mapping cache level
2838 * @flags: flags like global or local mapping
2839 *
2840 * DMA addresses are taken from the scatter-gather table of this object (or of
2841 * this VMA in case of non-default GGTT views) and PTE entries set up.
2842 * Note that DMA addresses are also the only part of the SG table we care about.
2843 */
2844 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2845 u32 flags)
2846 {
2847 int ret;
2848 u32 bind_flags;
2849
2850 if (WARN_ON(flags == 0))
2851 return -EINVAL;
2852
2853 bind_flags = 0;
2854 if (flags & PIN_GLOBAL)
2855 bind_flags |= GLOBAL_BIND;
2856 if (flags & PIN_USER)
2857 bind_flags |= LOCAL_BIND;
2858
2859 if (flags & PIN_UPDATE)
2860 bind_flags |= vma->bound;
2861 else
2862 bind_flags &= ~vma->bound;
2863
2864 if (bind_flags == 0)
2865 return 0;
2866
2867 if (vma->bound == 0 && vma->vm->allocate_va_range) {
2868 trace_i915_va_alloc(vma->vm,
2869 vma->node.start,
2870 vma->node.size,
2871 VM_TO_TRACE_NAME(vma->vm));
2872
2873 ret = vma->vm->allocate_va_range(vma->vm,
2874 vma->node.start,
2875 vma->node.size);
2876 if (ret)
2877 return ret;
2878 }
2879
2880 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
2881 if (ret)
2882 return ret;
2883
2884 vma->bound |= bind_flags;
2885
2886 return 0;
2887 }
2888
2889 /**
2890 * i915_ggtt_view_size - Get the size of a GGTT view.
2891 * @obj: Object the view is of.
2892 * @view: The view in question.
2893 *
2894 * @return The size of the GGTT view in bytes.
2895 */
2896 size_t
2897 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
2898 const struct i915_ggtt_view *view)
2899 {
2900 if (view->type == I915_GGTT_VIEW_NORMAL) {
2901 return obj->base.size;
2902 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
2903 return view->rotation_info.size;
2904 } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
2905 return view->params.partial.size << PAGE_SHIFT;
2906 } else {
2907 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
2908 return obj->base.size;
2909 }
2910 }
This page took 0.097906 seconds and 5 git commands to generate.