0dce6fc9b1cc9d8ba9b573c353cc4da4c04e9201
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_trace.h"
31 #include "intel_drv.h"
32
33 bool intel_enable_ppgtt(struct drm_device *dev, bool full)
34 {
35 if (i915.enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
36 return false;
37
38 if (i915.enable_ppgtt == 1 && full)
39 return false;
40
41 #ifdef CONFIG_INTEL_IOMMU
42 /* Disable ppgtt on SNB if VT-d is on. */
43 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
44 DRM_INFO("Disabling PPGTT because VT-d is on\n");
45 return false;
46 }
47 #endif
48
49 /* Full ppgtt disabled by default for now due to issues. */
50 if (full)
51 return false; /* HAS_PPGTT(dev) */
52 else
53 return HAS_ALIASING_PPGTT(dev);
54 }
55
56 #define GEN6_PPGTT_PD_ENTRIES 512
57 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
58 typedef uint64_t gen8_gtt_pte_t;
59 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
60
61 /* PPGTT stuff */
62 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
63 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
64
65 #define GEN6_PDE_VALID (1 << 0)
66 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
67 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
68
69 #define GEN6_PTE_VALID (1 << 0)
70 #define GEN6_PTE_UNCACHED (1 << 1)
71 #define HSW_PTE_UNCACHED (0)
72 #define GEN6_PTE_CACHE_LLC (2 << 1)
73 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
74 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
75 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
76
77 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
78 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
79 */
80 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
81 (((bits) & 0x8) << (11 - 3)))
82 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
83 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
84 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
85 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
86 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
87 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
88
89 #define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
90 #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
91
92 /* GEN8 legacy style addressis defined as a 3 level page table:
93 * 31:30 | 29:21 | 20:12 | 11:0
94 * PDPE | PDE | PTE | offset
95 * The difference as compared to normal x86 3 level page table is the PDPEs are
96 * programmed via register.
97 */
98 #define GEN8_PDPE_SHIFT 30
99 #define GEN8_PDPE_MASK 0x3
100 #define GEN8_PDE_SHIFT 21
101 #define GEN8_PDE_MASK 0x1ff
102 #define GEN8_PTE_SHIFT 12
103 #define GEN8_PTE_MASK 0x1ff
104
105 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
106 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
107 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
108 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
109
110 static void ppgtt_bind_vma(struct i915_vma *vma,
111 enum i915_cache_level cache_level,
112 u32 flags);
113 static void ppgtt_unbind_vma(struct i915_vma *vma);
114 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
115
116 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
117 enum i915_cache_level level,
118 bool valid)
119 {
120 gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
121 pte |= addr;
122 if (level != I915_CACHE_NONE)
123 pte |= PPAT_CACHED_INDEX;
124 else
125 pte |= PPAT_UNCACHED_INDEX;
126 return pte;
127 }
128
129 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
130 dma_addr_t addr,
131 enum i915_cache_level level)
132 {
133 gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
134 pde |= addr;
135 if (level != I915_CACHE_NONE)
136 pde |= PPAT_CACHED_PDE_INDEX;
137 else
138 pde |= PPAT_UNCACHED_INDEX;
139 return pde;
140 }
141
142 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
143 enum i915_cache_level level,
144 bool valid)
145 {
146 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
147 pte |= GEN6_PTE_ADDR_ENCODE(addr);
148
149 switch (level) {
150 case I915_CACHE_L3_LLC:
151 case I915_CACHE_LLC:
152 pte |= GEN6_PTE_CACHE_LLC;
153 break;
154 case I915_CACHE_NONE:
155 pte |= GEN6_PTE_UNCACHED;
156 break;
157 default:
158 WARN_ON(1);
159 }
160
161 return pte;
162 }
163
164 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
165 enum i915_cache_level level,
166 bool valid)
167 {
168 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
169 pte |= GEN6_PTE_ADDR_ENCODE(addr);
170
171 switch (level) {
172 case I915_CACHE_L3_LLC:
173 pte |= GEN7_PTE_CACHE_L3_LLC;
174 break;
175 case I915_CACHE_LLC:
176 pte |= GEN6_PTE_CACHE_LLC;
177 break;
178 case I915_CACHE_NONE:
179 pte |= GEN6_PTE_UNCACHED;
180 break;
181 default:
182 WARN_ON(1);
183 }
184
185 return pte;
186 }
187
188 #define BYT_PTE_WRITEABLE (1 << 1)
189 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
190
191 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
192 enum i915_cache_level level,
193 bool valid)
194 {
195 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
196 pte |= GEN6_PTE_ADDR_ENCODE(addr);
197
198 /* Mark the page as writeable. Other platforms don't have a
199 * setting for read-only/writable, so this matches that behavior.
200 */
201 pte |= BYT_PTE_WRITEABLE;
202
203 if (level != I915_CACHE_NONE)
204 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
205
206 return pte;
207 }
208
209 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
210 enum i915_cache_level level,
211 bool valid)
212 {
213 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
214 pte |= HSW_PTE_ADDR_ENCODE(addr);
215
216 if (level != I915_CACHE_NONE)
217 pte |= HSW_WB_LLC_AGE3;
218
219 return pte;
220 }
221
222 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
223 enum i915_cache_level level,
224 bool valid)
225 {
226 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
227 pte |= HSW_PTE_ADDR_ENCODE(addr);
228
229 switch (level) {
230 case I915_CACHE_NONE:
231 break;
232 case I915_CACHE_WT:
233 pte |= HSW_WT_ELLC_LLC_AGE3;
234 break;
235 default:
236 pte |= HSW_WB_ELLC_LLC_AGE3;
237 break;
238 }
239
240 return pte;
241 }
242
243 /* Broadwell Page Directory Pointer Descriptors */
244 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
245 uint64_t val, bool synchronous)
246 {
247 struct drm_i915_private *dev_priv = ring->dev->dev_private;
248 int ret;
249
250 BUG_ON(entry >= 4);
251
252 if (synchronous) {
253 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
254 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
255 return 0;
256 }
257
258 ret = intel_ring_begin(ring, 6);
259 if (ret)
260 return ret;
261
262 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
263 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
264 intel_ring_emit(ring, (u32)(val >> 32));
265 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
266 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
267 intel_ring_emit(ring, (u32)(val));
268 intel_ring_advance(ring);
269
270 return 0;
271 }
272
273 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
274 struct intel_ring_buffer *ring,
275 bool synchronous)
276 {
277 int i, ret;
278
279 /* bit of a hack to find the actual last used pd */
280 int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
281
282 for (i = used_pd - 1; i >= 0; i--) {
283 dma_addr_t addr = ppgtt->pd_dma_addr[i];
284 ret = gen8_write_pdp(ring, i, addr, synchronous);
285 if (ret)
286 return ret;
287 }
288
289 return 0;
290 }
291
292 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
293 uint64_t start,
294 uint64_t length,
295 bool use_scratch)
296 {
297 struct i915_hw_ppgtt *ppgtt =
298 container_of(vm, struct i915_hw_ppgtt, base);
299 gen8_gtt_pte_t *pt_vaddr, scratch_pte;
300 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
301 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
302 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
303 unsigned num_entries = length >> PAGE_SHIFT;
304 unsigned last_pte, i;
305
306 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
307 I915_CACHE_LLC, use_scratch);
308
309 while (num_entries) {
310 struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
311
312 last_pte = pte + num_entries;
313 if (last_pte > GEN8_PTES_PER_PAGE)
314 last_pte = GEN8_PTES_PER_PAGE;
315
316 pt_vaddr = kmap_atomic(page_table);
317
318 for (i = pte; i < last_pte; i++) {
319 pt_vaddr[i] = scratch_pte;
320 num_entries--;
321 }
322
323 kunmap_atomic(pt_vaddr);
324
325 pte = 0;
326 if (++pde == GEN8_PDES_PER_PAGE) {
327 pdpe++;
328 pde = 0;
329 }
330 }
331 }
332
333 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
334 struct sg_table *pages,
335 uint64_t start,
336 enum i915_cache_level cache_level)
337 {
338 struct i915_hw_ppgtt *ppgtt =
339 container_of(vm, struct i915_hw_ppgtt, base);
340 gen8_gtt_pte_t *pt_vaddr;
341 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
342 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
343 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
344 struct sg_page_iter sg_iter;
345
346 pt_vaddr = NULL;
347
348 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
349 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
350 break;
351
352 if (pt_vaddr == NULL)
353 pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
354
355 pt_vaddr[pte] =
356 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
357 cache_level, true);
358 if (++pte == GEN8_PTES_PER_PAGE) {
359 kunmap_atomic(pt_vaddr);
360 pt_vaddr = NULL;
361 if (++pde == GEN8_PDES_PER_PAGE) {
362 pdpe++;
363 pde = 0;
364 }
365 pte = 0;
366 }
367 }
368 if (pt_vaddr)
369 kunmap_atomic(pt_vaddr);
370 }
371
372 static void gen8_free_page_tables(struct page **pt_pages)
373 {
374 int i;
375
376 if (pt_pages == NULL)
377 return;
378
379 for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
380 if (pt_pages[i])
381 __free_pages(pt_pages[i], 0);
382 }
383
384 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
385 {
386 int i;
387
388 for (i = 0; i < ppgtt->num_pd_pages; i++) {
389 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
390 kfree(ppgtt->gen8_pt_pages[i]);
391 kfree(ppgtt->gen8_pt_dma_addr[i]);
392 }
393
394 __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
395 }
396
397 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
398 {
399 struct pci_dev *hwdev = ppgtt->base.dev->pdev;
400 int i, j;
401
402 for (i = 0; i < ppgtt->num_pd_pages; i++) {
403 /* TODO: In the future we'll support sparse mappings, so this
404 * will have to change. */
405 if (!ppgtt->pd_dma_addr[i])
406 continue;
407
408 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
409 PCI_DMA_BIDIRECTIONAL);
410
411 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
412 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
413 if (addr)
414 pci_unmap_page(hwdev, addr, PAGE_SIZE,
415 PCI_DMA_BIDIRECTIONAL);
416 }
417 }
418 }
419
420 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
421 {
422 struct i915_hw_ppgtt *ppgtt =
423 container_of(vm, struct i915_hw_ppgtt, base);
424
425 list_del(&vm->global_link);
426 drm_mm_takedown(&vm->mm);
427
428 gen8_ppgtt_unmap_pages(ppgtt);
429 gen8_ppgtt_free(ppgtt);
430 }
431
432 static struct page **__gen8_alloc_page_tables(void)
433 {
434 struct page **pt_pages;
435 int i;
436
437 pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
438 if (!pt_pages)
439 return ERR_PTR(-ENOMEM);
440
441 for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
442 pt_pages[i] = alloc_page(GFP_KERNEL);
443 if (!pt_pages[i])
444 goto bail;
445 }
446
447 return pt_pages;
448
449 bail:
450 gen8_free_page_tables(pt_pages);
451 kfree(pt_pages);
452 return ERR_PTR(-ENOMEM);
453 }
454
455 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
456 const int max_pdp)
457 {
458 struct page **pt_pages[GEN8_LEGACY_PDPS];
459 int i, ret;
460
461 for (i = 0; i < max_pdp; i++) {
462 pt_pages[i] = __gen8_alloc_page_tables();
463 if (IS_ERR(pt_pages[i])) {
464 ret = PTR_ERR(pt_pages[i]);
465 goto unwind_out;
466 }
467 }
468
469 /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
470 * "atomic" - for cleanup purposes.
471 */
472 for (i = 0; i < max_pdp; i++)
473 ppgtt->gen8_pt_pages[i] = pt_pages[i];
474
475 return 0;
476
477 unwind_out:
478 while (i--) {
479 gen8_free_page_tables(pt_pages[i]);
480 kfree(pt_pages[i]);
481 }
482
483 return ret;
484 }
485
486 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
487 {
488 int i;
489
490 for (i = 0; i < ppgtt->num_pd_pages; i++) {
491 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
492 sizeof(dma_addr_t),
493 GFP_KERNEL);
494 if (!ppgtt->gen8_pt_dma_addr[i])
495 return -ENOMEM;
496 }
497
498 return 0;
499 }
500
501 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
502 const int max_pdp)
503 {
504 ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
505 if (!ppgtt->pd_pages)
506 return -ENOMEM;
507
508 ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
509 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
510
511 return 0;
512 }
513
514 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
515 const int max_pdp)
516 {
517 int ret;
518
519 ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
520 if (ret)
521 return ret;
522
523 ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
524 if (ret) {
525 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
526 return ret;
527 }
528
529 ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
530
531 ret = gen8_ppgtt_allocate_dma(ppgtt);
532 if (ret)
533 gen8_ppgtt_free(ppgtt);
534
535 return ret;
536 }
537
538 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
539 const int pd)
540 {
541 dma_addr_t pd_addr;
542 int ret;
543
544 pd_addr = pci_map_page(ppgtt->base.dev->pdev,
545 &ppgtt->pd_pages[pd], 0,
546 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
547
548 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
549 if (ret)
550 return ret;
551
552 ppgtt->pd_dma_addr[pd] = pd_addr;
553
554 return 0;
555 }
556
557 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
558 const int pd,
559 const int pt)
560 {
561 dma_addr_t pt_addr;
562 struct page *p;
563 int ret;
564
565 p = ppgtt->gen8_pt_pages[pd][pt];
566 pt_addr = pci_map_page(ppgtt->base.dev->pdev,
567 p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
568 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
569 if (ret)
570 return ret;
571
572 ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
573
574 return 0;
575 }
576
577 /**
578 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
579 * with a net effect resembling a 2-level page table in normal x86 terms. Each
580 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
581 * space.
582 *
583 * FIXME: split allocation into smaller pieces. For now we only ever do this
584 * once, but with full PPGTT, the multiple contiguous allocations will be bad.
585 * TODO: Do something with the size parameter
586 */
587 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
588 {
589 const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
590 const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
591 int i, j, ret;
592
593 if (size % (1<<30))
594 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
595
596 /* 1. Do all our allocations for page directories and page tables. */
597 ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
598 if (ret)
599 return ret;
600
601 /*
602 * 2. Create DMA mappings for the page directories and page tables.
603 */
604 for (i = 0; i < max_pdp; i++) {
605 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
606 if (ret)
607 goto bail;
608
609 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
610 ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
611 if (ret)
612 goto bail;
613 }
614 }
615
616 /*
617 * 3. Map all the page directory entires to point to the page tables
618 * we've allocated.
619 *
620 * For now, the PPGTT helper functions all require that the PDEs are
621 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
622 * will never need to touch the PDEs again.
623 */
624 for (i = 0; i < max_pdp; i++) {
625 gen8_ppgtt_pde_t *pd_vaddr;
626 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
627 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
628 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
629 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
630 I915_CACHE_LLC);
631 }
632 kunmap_atomic(pd_vaddr);
633 }
634
635 ppgtt->enable = gen8_ppgtt_enable;
636 ppgtt->switch_mm = gen8_mm_switch;
637 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
638 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
639 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
640 ppgtt->base.start = 0;
641 ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
642
643 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
644
645 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
646 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
647 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
648 ppgtt->num_pd_entries,
649 (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
650 return 0;
651
652 bail:
653 gen8_ppgtt_unmap_pages(ppgtt);
654 gen8_ppgtt_free(ppgtt);
655 return ret;
656 }
657
658 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
659 {
660 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
661 struct i915_address_space *vm = &ppgtt->base;
662 gen6_gtt_pte_t __iomem *pd_addr;
663 gen6_gtt_pte_t scratch_pte;
664 uint32_t pd_entry;
665 int pte, pde;
666
667 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
668
669 pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
670 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
671
672 seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm,
673 ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
674 for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
675 u32 expected;
676 gen6_gtt_pte_t *pt_vaddr;
677 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
678 pd_entry = readl(pd_addr + pde);
679 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
680
681 if (pd_entry != expected)
682 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
683 pde,
684 pd_entry,
685 expected);
686 seq_printf(m, "\tPDE: %x\n", pd_entry);
687
688 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
689 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
690 unsigned long va =
691 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
692 (pte * PAGE_SIZE);
693 int i;
694 bool found = false;
695 for (i = 0; i < 4; i++)
696 if (pt_vaddr[pte + i] != scratch_pte)
697 found = true;
698 if (!found)
699 continue;
700
701 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
702 for (i = 0; i < 4; i++) {
703 if (pt_vaddr[pte + i] != scratch_pte)
704 seq_printf(m, " %08x", pt_vaddr[pte + i]);
705 else
706 seq_puts(m, " SCRATCH ");
707 }
708 seq_puts(m, "\n");
709 }
710 kunmap_atomic(pt_vaddr);
711 }
712 }
713
714 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
715 {
716 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
717 gen6_gtt_pte_t __iomem *pd_addr;
718 uint32_t pd_entry;
719 int i;
720
721 WARN_ON(ppgtt->pd_offset & 0x3f);
722 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
723 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
724 for (i = 0; i < ppgtt->num_pd_entries; i++) {
725 dma_addr_t pt_addr;
726
727 pt_addr = ppgtt->pt_dma_addr[i];
728 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
729 pd_entry |= GEN6_PDE_VALID;
730
731 writel(pd_entry, pd_addr + i);
732 }
733 readl(pd_addr);
734 }
735
736 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
737 {
738 BUG_ON(ppgtt->pd_offset & 0x3f);
739
740 return (ppgtt->pd_offset / 64) << 16;
741 }
742
743 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
744 struct intel_ring_buffer *ring,
745 bool synchronous)
746 {
747 struct drm_device *dev = ppgtt->base.dev;
748 struct drm_i915_private *dev_priv = dev->dev_private;
749 int ret;
750
751 /* If we're in reset, we can assume the GPU is sufficiently idle to
752 * manually frob these bits. Ideally we could use the ring functions,
753 * except our error handling makes it quite difficult (can't use
754 * intel_ring_begin, ring->flush, or intel_ring_advance)
755 *
756 * FIXME: We should try not to special case reset
757 */
758 if (synchronous ||
759 i915_reset_in_progress(&dev_priv->gpu_error)) {
760 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
761 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
762 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
763 POSTING_READ(RING_PP_DIR_BASE(ring));
764 return 0;
765 }
766
767 /* NB: TLBs must be flushed and invalidated before a switch */
768 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
769 if (ret)
770 return ret;
771
772 ret = intel_ring_begin(ring, 6);
773 if (ret)
774 return ret;
775
776 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
777 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
778 intel_ring_emit(ring, PP_DIR_DCLV_2G);
779 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
780 intel_ring_emit(ring, get_pd_offset(ppgtt));
781 intel_ring_emit(ring, MI_NOOP);
782 intel_ring_advance(ring);
783
784 return 0;
785 }
786
787 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
788 struct intel_ring_buffer *ring,
789 bool synchronous)
790 {
791 struct drm_device *dev = ppgtt->base.dev;
792 struct drm_i915_private *dev_priv = dev->dev_private;
793 int ret;
794
795 /* If we're in reset, we can assume the GPU is sufficiently idle to
796 * manually frob these bits. Ideally we could use the ring functions,
797 * except our error handling makes it quite difficult (can't use
798 * intel_ring_begin, ring->flush, or intel_ring_advance)
799 *
800 * FIXME: We should try not to special case reset
801 */
802 if (synchronous ||
803 i915_reset_in_progress(&dev_priv->gpu_error)) {
804 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
805 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
806 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
807 POSTING_READ(RING_PP_DIR_BASE(ring));
808 return 0;
809 }
810
811 /* NB: TLBs must be flushed and invalidated before a switch */
812 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
813 if (ret)
814 return ret;
815
816 ret = intel_ring_begin(ring, 6);
817 if (ret)
818 return ret;
819
820 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
821 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
822 intel_ring_emit(ring, PP_DIR_DCLV_2G);
823 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
824 intel_ring_emit(ring, get_pd_offset(ppgtt));
825 intel_ring_emit(ring, MI_NOOP);
826 intel_ring_advance(ring);
827
828 /* XXX: RCS is the only one to auto invalidate the TLBs? */
829 if (ring->id != RCS) {
830 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
831 if (ret)
832 return ret;
833 }
834
835 return 0;
836 }
837
838 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
839 struct intel_ring_buffer *ring,
840 bool synchronous)
841 {
842 struct drm_device *dev = ppgtt->base.dev;
843 struct drm_i915_private *dev_priv = dev->dev_private;
844
845 if (!synchronous)
846 return 0;
847
848 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
849 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
850
851 POSTING_READ(RING_PP_DIR_DCLV(ring));
852
853 return 0;
854 }
855
856 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
857 {
858 struct drm_device *dev = ppgtt->base.dev;
859 struct drm_i915_private *dev_priv = dev->dev_private;
860 struct intel_ring_buffer *ring;
861 int j, ret;
862
863 for_each_ring(ring, dev_priv, j) {
864 I915_WRITE(RING_MODE_GEN7(ring),
865 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
866
867 /* We promise to do a switch later with FULL PPGTT. If this is
868 * aliasing, this is the one and only switch we'll do */
869 if (USES_FULL_PPGTT(dev))
870 continue;
871
872 ret = ppgtt->switch_mm(ppgtt, ring, true);
873 if (ret)
874 goto err_out;
875 }
876
877 return 0;
878
879 err_out:
880 for_each_ring(ring, dev_priv, j)
881 I915_WRITE(RING_MODE_GEN7(ring),
882 _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
883 return ret;
884 }
885
886 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
887 {
888 struct drm_device *dev = ppgtt->base.dev;
889 drm_i915_private_t *dev_priv = dev->dev_private;
890 struct intel_ring_buffer *ring;
891 uint32_t ecochk, ecobits;
892 int i;
893
894 ecobits = I915_READ(GAC_ECO_BITS);
895 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
896
897 ecochk = I915_READ(GAM_ECOCHK);
898 if (IS_HASWELL(dev)) {
899 ecochk |= ECOCHK_PPGTT_WB_HSW;
900 } else {
901 ecochk |= ECOCHK_PPGTT_LLC_IVB;
902 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
903 }
904 I915_WRITE(GAM_ECOCHK, ecochk);
905
906 for_each_ring(ring, dev_priv, i) {
907 int ret;
908 /* GFX_MODE is per-ring on gen7+ */
909 I915_WRITE(RING_MODE_GEN7(ring),
910 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
911
912 /* We promise to do a switch later with FULL PPGTT. If this is
913 * aliasing, this is the one and only switch we'll do */
914 if (USES_FULL_PPGTT(dev))
915 continue;
916
917 ret = ppgtt->switch_mm(ppgtt, ring, true);
918 if (ret)
919 return ret;
920 }
921
922 return 0;
923 }
924
925 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
926 {
927 struct drm_device *dev = ppgtt->base.dev;
928 drm_i915_private_t *dev_priv = dev->dev_private;
929 struct intel_ring_buffer *ring;
930 uint32_t ecochk, gab_ctl, ecobits;
931 int i;
932
933 ecobits = I915_READ(GAC_ECO_BITS);
934 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
935 ECOBITS_PPGTT_CACHE64B);
936
937 gab_ctl = I915_READ(GAB_CTL);
938 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
939
940 ecochk = I915_READ(GAM_ECOCHK);
941 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
942
943 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
944
945 for_each_ring(ring, dev_priv, i) {
946 int ret = ppgtt->switch_mm(ppgtt, ring, true);
947 if (ret)
948 return ret;
949 }
950
951 return 0;
952 }
953
954 /* PPGTT support for Sandybdrige/Gen6 and later */
955 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
956 uint64_t start,
957 uint64_t length,
958 bool use_scratch)
959 {
960 struct i915_hw_ppgtt *ppgtt =
961 container_of(vm, struct i915_hw_ppgtt, base);
962 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
963 unsigned first_entry = start >> PAGE_SHIFT;
964 unsigned num_entries = length >> PAGE_SHIFT;
965 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
966 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
967 unsigned last_pte, i;
968
969 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
970
971 while (num_entries) {
972 last_pte = first_pte + num_entries;
973 if (last_pte > I915_PPGTT_PT_ENTRIES)
974 last_pte = I915_PPGTT_PT_ENTRIES;
975
976 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
977
978 for (i = first_pte; i < last_pte; i++)
979 pt_vaddr[i] = scratch_pte;
980
981 kunmap_atomic(pt_vaddr);
982
983 num_entries -= last_pte - first_pte;
984 first_pte = 0;
985 act_pt++;
986 }
987 }
988
989 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
990 struct sg_table *pages,
991 uint64_t start,
992 enum i915_cache_level cache_level)
993 {
994 struct i915_hw_ppgtt *ppgtt =
995 container_of(vm, struct i915_hw_ppgtt, base);
996 gen6_gtt_pte_t *pt_vaddr;
997 unsigned first_entry = start >> PAGE_SHIFT;
998 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
999 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
1000 struct sg_page_iter sg_iter;
1001
1002 pt_vaddr = NULL;
1003 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1004 if (pt_vaddr == NULL)
1005 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
1006
1007 pt_vaddr[act_pte] =
1008 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1009 cache_level, true);
1010 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
1011 kunmap_atomic(pt_vaddr);
1012 pt_vaddr = NULL;
1013 act_pt++;
1014 act_pte = 0;
1015 }
1016 }
1017 if (pt_vaddr)
1018 kunmap_atomic(pt_vaddr);
1019 }
1020
1021 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
1022 {
1023 int i;
1024
1025 if (ppgtt->pt_dma_addr) {
1026 for (i = 0; i < ppgtt->num_pd_entries; i++)
1027 pci_unmap_page(ppgtt->base.dev->pdev,
1028 ppgtt->pt_dma_addr[i],
1029 4096, PCI_DMA_BIDIRECTIONAL);
1030 }
1031 }
1032
1033 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1034 {
1035 int i;
1036
1037 kfree(ppgtt->pt_dma_addr);
1038 for (i = 0; i < ppgtt->num_pd_entries; i++)
1039 __free_page(ppgtt->pt_pages[i]);
1040 kfree(ppgtt->pt_pages);
1041 }
1042
1043 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1044 {
1045 struct i915_hw_ppgtt *ppgtt =
1046 container_of(vm, struct i915_hw_ppgtt, base);
1047
1048 list_del(&vm->global_link);
1049 drm_mm_takedown(&ppgtt->base.mm);
1050 drm_mm_remove_node(&ppgtt->node);
1051
1052 gen6_ppgtt_unmap_pages(ppgtt);
1053 gen6_ppgtt_free(ppgtt);
1054 }
1055
1056 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1057 {
1058 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
1059 #define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
1060 struct drm_device *dev = ppgtt->base.dev;
1061 struct drm_i915_private *dev_priv = dev->dev_private;
1062 bool retried = false;
1063 int ret;
1064
1065 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1066 * allocator works in address space sizes, so it's multiplied by page
1067 * size. We allocate at the top of the GTT to avoid fragmentation.
1068 */
1069 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1070 alloc:
1071 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1072 &ppgtt->node, GEN6_PD_SIZE,
1073 GEN6_PD_ALIGN, 0,
1074 0, dev_priv->gtt.base.total,
1075 DRM_MM_SEARCH_DEFAULT);
1076 if (ret == -ENOSPC && !retried) {
1077 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1078 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1079 I915_CACHE_NONE, 0);
1080 if (ret)
1081 return ret;
1082
1083 retried = true;
1084 goto alloc;
1085 }
1086
1087 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1088 DRM_DEBUG("Forced to use aperture for PDEs\n");
1089
1090 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1091 return ret;
1092 }
1093
1094 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1095 {
1096 int i;
1097
1098 ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1099 GFP_KERNEL);
1100
1101 if (!ppgtt->pt_pages)
1102 return -ENOMEM;
1103
1104 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1105 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1106 if (!ppgtt->pt_pages[i]) {
1107 gen6_ppgtt_free(ppgtt);
1108 return -ENOMEM;
1109 }
1110 }
1111
1112 return 0;
1113 }
1114
1115 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1116 {
1117 int ret;
1118
1119 ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1120 if (ret)
1121 return ret;
1122
1123 ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1124 if (ret) {
1125 drm_mm_remove_node(&ppgtt->node);
1126 return ret;
1127 }
1128
1129 ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1130 GFP_KERNEL);
1131 if (!ppgtt->pt_dma_addr) {
1132 drm_mm_remove_node(&ppgtt->node);
1133 gen6_ppgtt_free(ppgtt);
1134 return -ENOMEM;
1135 }
1136
1137 return 0;
1138 }
1139
1140 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1141 {
1142 struct drm_device *dev = ppgtt->base.dev;
1143 int i;
1144
1145 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1146 dma_addr_t pt_addr;
1147
1148 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1149 PCI_DMA_BIDIRECTIONAL);
1150
1151 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1152 gen6_ppgtt_unmap_pages(ppgtt);
1153 return -EIO;
1154 }
1155
1156 ppgtt->pt_dma_addr[i] = pt_addr;
1157 }
1158
1159 return 0;
1160 }
1161
1162 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1163 {
1164 struct drm_device *dev = ppgtt->base.dev;
1165 struct drm_i915_private *dev_priv = dev->dev_private;
1166 int ret;
1167
1168 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1169 if (IS_GEN6(dev)) {
1170 ppgtt->enable = gen6_ppgtt_enable;
1171 ppgtt->switch_mm = gen6_mm_switch;
1172 } else if (IS_HASWELL(dev)) {
1173 ppgtt->enable = gen7_ppgtt_enable;
1174 ppgtt->switch_mm = hsw_mm_switch;
1175 } else if (IS_GEN7(dev)) {
1176 ppgtt->enable = gen7_ppgtt_enable;
1177 ppgtt->switch_mm = gen7_mm_switch;
1178 } else
1179 BUG();
1180
1181 ret = gen6_ppgtt_alloc(ppgtt);
1182 if (ret)
1183 return ret;
1184
1185 ret = gen6_ppgtt_setup_page_tables(ppgtt);
1186 if (ret) {
1187 gen6_ppgtt_free(ppgtt);
1188 return ret;
1189 }
1190
1191 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1192 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1193 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1194 ppgtt->base.start = 0;
1195 ppgtt->base.total = ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1196 ppgtt->debug_dump = gen6_dump_ppgtt;
1197
1198 ppgtt->pd_offset =
1199 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1200
1201 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1202
1203 DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1204 ppgtt->node.size >> 20,
1205 ppgtt->node.start / PAGE_SIZE);
1206
1207 return 0;
1208 }
1209
1210 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1211 {
1212 struct drm_i915_private *dev_priv = dev->dev_private;
1213 int ret = 0;
1214
1215 ppgtt->base.dev = dev;
1216 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1217
1218 if (INTEL_INFO(dev)->gen < 8)
1219 ret = gen6_ppgtt_init(ppgtt);
1220 else if (IS_GEN8(dev))
1221 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1222 else
1223 BUG();
1224
1225 if (!ret) {
1226 struct drm_i915_private *dev_priv = dev->dev_private;
1227 kref_init(&ppgtt->ref);
1228 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1229 ppgtt->base.total);
1230 i915_init_vm(dev_priv, &ppgtt->base);
1231 if (INTEL_INFO(dev)->gen < 8) {
1232 gen6_write_pdes(ppgtt);
1233 DRM_DEBUG("Adding PPGTT at offset %x\n",
1234 ppgtt->pd_offset << 10);
1235 }
1236 }
1237
1238 return ret;
1239 }
1240
1241 static void
1242 ppgtt_bind_vma(struct i915_vma *vma,
1243 enum i915_cache_level cache_level,
1244 u32 flags)
1245 {
1246 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1247 cache_level);
1248 }
1249
1250 static void ppgtt_unbind_vma(struct i915_vma *vma)
1251 {
1252 vma->vm->clear_range(vma->vm,
1253 vma->node.start,
1254 vma->obj->base.size,
1255 true);
1256 }
1257
1258 extern int intel_iommu_gfx_mapped;
1259 /* Certain Gen5 chipsets require require idling the GPU before
1260 * unmapping anything from the GTT when VT-d is enabled.
1261 */
1262 static inline bool needs_idle_maps(struct drm_device *dev)
1263 {
1264 #ifdef CONFIG_INTEL_IOMMU
1265 /* Query intel_iommu to see if we need the workaround. Presumably that
1266 * was loaded first.
1267 */
1268 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1269 return true;
1270 #endif
1271 return false;
1272 }
1273
1274 static bool do_idling(struct drm_i915_private *dev_priv)
1275 {
1276 bool ret = dev_priv->mm.interruptible;
1277
1278 if (unlikely(dev_priv->gtt.do_idle_maps)) {
1279 dev_priv->mm.interruptible = false;
1280 if (i915_gpu_idle(dev_priv->dev)) {
1281 DRM_ERROR("Couldn't idle GPU\n");
1282 /* Wait a bit, in hopes it avoids the hang */
1283 udelay(10);
1284 }
1285 }
1286
1287 return ret;
1288 }
1289
1290 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1291 {
1292 if (unlikely(dev_priv->gtt.do_idle_maps))
1293 dev_priv->mm.interruptible = interruptible;
1294 }
1295
1296 void i915_check_and_clear_faults(struct drm_device *dev)
1297 {
1298 struct drm_i915_private *dev_priv = dev->dev_private;
1299 struct intel_ring_buffer *ring;
1300 int i;
1301
1302 if (INTEL_INFO(dev)->gen < 6)
1303 return;
1304
1305 for_each_ring(ring, dev_priv, i) {
1306 u32 fault_reg;
1307 fault_reg = I915_READ(RING_FAULT_REG(ring));
1308 if (fault_reg & RING_FAULT_VALID) {
1309 DRM_DEBUG_DRIVER("Unexpected fault\n"
1310 "\tAddr: 0x%08lx\\n"
1311 "\tAddress space: %s\n"
1312 "\tSource ID: %d\n"
1313 "\tType: %d\n",
1314 fault_reg & PAGE_MASK,
1315 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1316 RING_FAULT_SRCID(fault_reg),
1317 RING_FAULT_FAULT_TYPE(fault_reg));
1318 I915_WRITE(RING_FAULT_REG(ring),
1319 fault_reg & ~RING_FAULT_VALID);
1320 }
1321 }
1322 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1323 }
1324
1325 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1326 {
1327 struct drm_i915_private *dev_priv = dev->dev_private;
1328
1329 /* Don't bother messing with faults pre GEN6 as we have little
1330 * documentation supporting that it's a good idea.
1331 */
1332 if (INTEL_INFO(dev)->gen < 6)
1333 return;
1334
1335 i915_check_and_clear_faults(dev);
1336
1337 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1338 dev_priv->gtt.base.start,
1339 dev_priv->gtt.base.total,
1340 false);
1341 }
1342
1343 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1344 {
1345 struct drm_i915_private *dev_priv = dev->dev_private;
1346 struct drm_i915_gem_object *obj;
1347 struct i915_address_space *vm;
1348
1349 i915_check_and_clear_faults(dev);
1350
1351 /* First fill our portion of the GTT with scratch pages */
1352 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1353 dev_priv->gtt.base.start,
1354 dev_priv->gtt.base.total,
1355 true);
1356
1357 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1358 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1359 &dev_priv->gtt.base);
1360 if (!vma)
1361 continue;
1362
1363 i915_gem_clflush_object(obj, obj->pin_display);
1364 /* The bind_vma code tries to be smart about tracking mappings.
1365 * Unfortunately above, we've just wiped out the mappings
1366 * without telling our object about it. So we need to fake it.
1367 */
1368 obj->has_global_gtt_mapping = 0;
1369 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1370 }
1371
1372
1373 if (INTEL_INFO(dev)->gen >= 8)
1374 return;
1375
1376 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1377 /* TODO: Perhaps it shouldn't be gen6 specific */
1378 if (i915_is_ggtt(vm)) {
1379 if (dev_priv->mm.aliasing_ppgtt)
1380 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1381 continue;
1382 }
1383
1384 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1385 }
1386
1387 i915_gem_chipset_flush(dev);
1388 }
1389
1390 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1391 {
1392 if (obj->has_dma_mapping)
1393 return 0;
1394
1395 if (!dma_map_sg(&obj->base.dev->pdev->dev,
1396 obj->pages->sgl, obj->pages->nents,
1397 PCI_DMA_BIDIRECTIONAL))
1398 return -ENOSPC;
1399
1400 return 0;
1401 }
1402
1403 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1404 {
1405 #ifdef writeq
1406 writeq(pte, addr);
1407 #else
1408 iowrite32((u32)pte, addr);
1409 iowrite32(pte >> 32, addr + 4);
1410 #endif
1411 }
1412
1413 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1414 struct sg_table *st,
1415 uint64_t start,
1416 enum i915_cache_level level)
1417 {
1418 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1419 unsigned first_entry = start >> PAGE_SHIFT;
1420 gen8_gtt_pte_t __iomem *gtt_entries =
1421 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1422 int i = 0;
1423 struct sg_page_iter sg_iter;
1424 dma_addr_t addr;
1425
1426 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1427 addr = sg_dma_address(sg_iter.sg) +
1428 (sg_iter.sg_pgoffset << PAGE_SHIFT);
1429 gen8_set_pte(&gtt_entries[i],
1430 gen8_pte_encode(addr, level, true));
1431 i++;
1432 }
1433
1434 /*
1435 * XXX: This serves as a posting read to make sure that the PTE has
1436 * actually been updated. There is some concern that even though
1437 * registers and PTEs are within the same BAR that they are potentially
1438 * of NUMA access patterns. Therefore, even with the way we assume
1439 * hardware should work, we must keep this posting read for paranoia.
1440 */
1441 if (i != 0)
1442 WARN_ON(readq(&gtt_entries[i-1])
1443 != gen8_pte_encode(addr, level, true));
1444
1445 /* This next bit makes the above posting read even more important. We
1446 * want to flush the TLBs only after we're certain all the PTE updates
1447 * have finished.
1448 */
1449 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1450 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1451 }
1452
1453 /*
1454 * Binds an object into the global gtt with the specified cache level. The object
1455 * will be accessible to the GPU via commands whose operands reference offsets
1456 * within the global GTT as well as accessible by the GPU through the GMADR
1457 * mapped BAR (dev_priv->mm.gtt->gtt).
1458 */
1459 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1460 struct sg_table *st,
1461 uint64_t start,
1462 enum i915_cache_level level)
1463 {
1464 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1465 unsigned first_entry = start >> PAGE_SHIFT;
1466 gen6_gtt_pte_t __iomem *gtt_entries =
1467 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1468 int i = 0;
1469 struct sg_page_iter sg_iter;
1470 dma_addr_t addr;
1471
1472 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1473 addr = sg_page_iter_dma_address(&sg_iter);
1474 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1475 i++;
1476 }
1477
1478 /* XXX: This serves as a posting read to make sure that the PTE has
1479 * actually been updated. There is some concern that even though
1480 * registers and PTEs are within the same BAR that they are potentially
1481 * of NUMA access patterns. Therefore, even with the way we assume
1482 * hardware should work, we must keep this posting read for paranoia.
1483 */
1484 if (i != 0)
1485 WARN_ON(readl(&gtt_entries[i-1]) !=
1486 vm->pte_encode(addr, level, true));
1487
1488 /* This next bit makes the above posting read even more important. We
1489 * want to flush the TLBs only after we're certain all the PTE updates
1490 * have finished.
1491 */
1492 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1493 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1494 }
1495
1496 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1497 uint64_t start,
1498 uint64_t length,
1499 bool use_scratch)
1500 {
1501 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1502 unsigned first_entry = start >> PAGE_SHIFT;
1503 unsigned num_entries = length >> PAGE_SHIFT;
1504 gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1505 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1506 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1507 int i;
1508
1509 if (WARN(num_entries > max_entries,
1510 "First entry = %d; Num entries = %d (max=%d)\n",
1511 first_entry, num_entries, max_entries))
1512 num_entries = max_entries;
1513
1514 scratch_pte = gen8_pte_encode(vm->scratch.addr,
1515 I915_CACHE_LLC,
1516 use_scratch);
1517 for (i = 0; i < num_entries; i++)
1518 gen8_set_pte(&gtt_base[i], scratch_pte);
1519 readl(gtt_base);
1520 }
1521
1522 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1523 uint64_t start,
1524 uint64_t length,
1525 bool use_scratch)
1526 {
1527 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1528 unsigned first_entry = start >> PAGE_SHIFT;
1529 unsigned num_entries = length >> PAGE_SHIFT;
1530 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1531 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1532 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1533 int i;
1534
1535 if (WARN(num_entries > max_entries,
1536 "First entry = %d; Num entries = %d (max=%d)\n",
1537 first_entry, num_entries, max_entries))
1538 num_entries = max_entries;
1539
1540 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1541
1542 for (i = 0; i < num_entries; i++)
1543 iowrite32(scratch_pte, &gtt_base[i]);
1544 readl(gtt_base);
1545 }
1546
1547
1548 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1549 enum i915_cache_level cache_level,
1550 u32 unused)
1551 {
1552 const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1553 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1554 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1555
1556 BUG_ON(!i915_is_ggtt(vma->vm));
1557 intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1558 vma->obj->has_global_gtt_mapping = 1;
1559 }
1560
1561 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1562 uint64_t start,
1563 uint64_t length,
1564 bool unused)
1565 {
1566 unsigned first_entry = start >> PAGE_SHIFT;
1567 unsigned num_entries = length >> PAGE_SHIFT;
1568 intel_gtt_clear_range(first_entry, num_entries);
1569 }
1570
1571 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1572 {
1573 const unsigned int first = vma->node.start >> PAGE_SHIFT;
1574 const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1575
1576 BUG_ON(!i915_is_ggtt(vma->vm));
1577 vma->obj->has_global_gtt_mapping = 0;
1578 intel_gtt_clear_range(first, size);
1579 }
1580
1581 static void ggtt_bind_vma(struct i915_vma *vma,
1582 enum i915_cache_level cache_level,
1583 u32 flags)
1584 {
1585 struct drm_device *dev = vma->vm->dev;
1586 struct drm_i915_private *dev_priv = dev->dev_private;
1587 struct drm_i915_gem_object *obj = vma->obj;
1588
1589 /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1590 * or we have a global mapping already but the cacheability flags have
1591 * changed, set the global PTEs.
1592 *
1593 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1594 * instead if none of the above hold true.
1595 *
1596 * NB: A global mapping should only be needed for special regions like
1597 * "gtt mappable", SNB errata, or if specified via special execbuf
1598 * flags. At all other times, the GPU will use the aliasing PPGTT.
1599 */
1600 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1601 if (!obj->has_global_gtt_mapping ||
1602 (cache_level != obj->cache_level)) {
1603 vma->vm->insert_entries(vma->vm, obj->pages,
1604 vma->node.start,
1605 cache_level);
1606 obj->has_global_gtt_mapping = 1;
1607 }
1608 }
1609
1610 if (dev_priv->mm.aliasing_ppgtt &&
1611 (!obj->has_aliasing_ppgtt_mapping ||
1612 (cache_level != obj->cache_level))) {
1613 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1614 appgtt->base.insert_entries(&appgtt->base,
1615 vma->obj->pages,
1616 vma->node.start,
1617 cache_level);
1618 vma->obj->has_aliasing_ppgtt_mapping = 1;
1619 }
1620 }
1621
1622 static void ggtt_unbind_vma(struct i915_vma *vma)
1623 {
1624 struct drm_device *dev = vma->vm->dev;
1625 struct drm_i915_private *dev_priv = dev->dev_private;
1626 struct drm_i915_gem_object *obj = vma->obj;
1627
1628 if (obj->has_global_gtt_mapping) {
1629 vma->vm->clear_range(vma->vm,
1630 vma->node.start,
1631 obj->base.size,
1632 true);
1633 obj->has_global_gtt_mapping = 0;
1634 }
1635
1636 if (obj->has_aliasing_ppgtt_mapping) {
1637 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1638 appgtt->base.clear_range(&appgtt->base,
1639 vma->node.start,
1640 obj->base.size,
1641 true);
1642 obj->has_aliasing_ppgtt_mapping = 0;
1643 }
1644 }
1645
1646 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1647 {
1648 struct drm_device *dev = obj->base.dev;
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 bool interruptible;
1651
1652 interruptible = do_idling(dev_priv);
1653
1654 if (!obj->has_dma_mapping)
1655 dma_unmap_sg(&dev->pdev->dev,
1656 obj->pages->sgl, obj->pages->nents,
1657 PCI_DMA_BIDIRECTIONAL);
1658
1659 undo_idling(dev_priv, interruptible);
1660 }
1661
1662 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1663 unsigned long color,
1664 unsigned long *start,
1665 unsigned long *end)
1666 {
1667 if (node->color != color)
1668 *start += 4096;
1669
1670 if (!list_empty(&node->node_list)) {
1671 node = list_entry(node->node_list.next,
1672 struct drm_mm_node,
1673 node_list);
1674 if (node->allocated && node->color != color)
1675 *end -= 4096;
1676 }
1677 }
1678
1679 void i915_gem_setup_global_gtt(struct drm_device *dev,
1680 unsigned long start,
1681 unsigned long mappable_end,
1682 unsigned long end)
1683 {
1684 /* Let GEM Manage all of the aperture.
1685 *
1686 * However, leave one page at the end still bound to the scratch page.
1687 * There are a number of places where the hardware apparently prefetches
1688 * past the end of the object, and we've seen multiple hangs with the
1689 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1690 * aperture. One page should be enough to keep any prefetching inside
1691 * of the aperture.
1692 */
1693 struct drm_i915_private *dev_priv = dev->dev_private;
1694 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1695 struct drm_mm_node *entry;
1696 struct drm_i915_gem_object *obj;
1697 unsigned long hole_start, hole_end;
1698
1699 BUG_ON(mappable_end > end);
1700
1701 /* Subtract the guard page ... */
1702 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1703 if (!HAS_LLC(dev))
1704 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1705
1706 /* Mark any preallocated objects as occupied */
1707 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1708 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1709 int ret;
1710 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1711 i915_gem_obj_ggtt_offset(obj), obj->base.size);
1712
1713 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1714 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1715 if (ret)
1716 DRM_DEBUG_KMS("Reservation failed\n");
1717 obj->has_global_gtt_mapping = 1;
1718 }
1719
1720 dev_priv->gtt.base.start = start;
1721 dev_priv->gtt.base.total = end - start;
1722
1723 /* Clear any non-preallocated blocks */
1724 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1725 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1726 hole_start, hole_end);
1727 ggtt_vm->clear_range(ggtt_vm, hole_start,
1728 hole_end - hole_start, true);
1729 }
1730
1731 /* And finally clear the reserved guard page */
1732 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1733 }
1734
1735 void i915_gem_init_global_gtt(struct drm_device *dev)
1736 {
1737 struct drm_i915_private *dev_priv = dev->dev_private;
1738 unsigned long gtt_size, mappable_size;
1739
1740 gtt_size = dev_priv->gtt.base.total;
1741 mappable_size = dev_priv->gtt.mappable_end;
1742
1743 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1744 }
1745
1746 static int setup_scratch_page(struct drm_device *dev)
1747 {
1748 struct drm_i915_private *dev_priv = dev->dev_private;
1749 struct page *page;
1750 dma_addr_t dma_addr;
1751
1752 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1753 if (page == NULL)
1754 return -ENOMEM;
1755 get_page(page);
1756 set_pages_uc(page, 1);
1757
1758 #ifdef CONFIG_INTEL_IOMMU
1759 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1760 PCI_DMA_BIDIRECTIONAL);
1761 if (pci_dma_mapping_error(dev->pdev, dma_addr))
1762 return -EINVAL;
1763 #else
1764 dma_addr = page_to_phys(page);
1765 #endif
1766 dev_priv->gtt.base.scratch.page = page;
1767 dev_priv->gtt.base.scratch.addr = dma_addr;
1768
1769 return 0;
1770 }
1771
1772 static void teardown_scratch_page(struct drm_device *dev)
1773 {
1774 struct drm_i915_private *dev_priv = dev->dev_private;
1775 struct page *page = dev_priv->gtt.base.scratch.page;
1776
1777 set_pages_wb(page, 1);
1778 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1779 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1780 put_page(page);
1781 __free_page(page);
1782 }
1783
1784 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1785 {
1786 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1787 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1788 return snb_gmch_ctl << 20;
1789 }
1790
1791 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1792 {
1793 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1794 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1795 if (bdw_gmch_ctl)
1796 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1797 return bdw_gmch_ctl << 20;
1798 }
1799
1800 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1801 {
1802 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1803 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1804 return snb_gmch_ctl << 25; /* 32 MB units */
1805 }
1806
1807 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1808 {
1809 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1810 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1811 return bdw_gmch_ctl << 25; /* 32 MB units */
1812 }
1813
1814 static int ggtt_probe_common(struct drm_device *dev,
1815 size_t gtt_size)
1816 {
1817 struct drm_i915_private *dev_priv = dev->dev_private;
1818 phys_addr_t gtt_phys_addr;
1819 int ret;
1820
1821 /* For Modern GENs the PTEs and register space are split in the BAR */
1822 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1823 (pci_resource_len(dev->pdev, 0) / 2);
1824
1825 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1826 if (!dev_priv->gtt.gsm) {
1827 DRM_ERROR("Failed to map the gtt page table\n");
1828 return -ENOMEM;
1829 }
1830
1831 ret = setup_scratch_page(dev);
1832 if (ret) {
1833 DRM_ERROR("Scratch setup failed\n");
1834 /* iounmap will also get called at remove, but meh */
1835 iounmap(dev_priv->gtt.gsm);
1836 }
1837
1838 return ret;
1839 }
1840
1841 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1842 * bits. When using advanced contexts each context stores its own PAT, but
1843 * writing this data shouldn't be harmful even in those cases. */
1844 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1845 {
1846 #define GEN8_PPAT_UC (0<<0)
1847 #define GEN8_PPAT_WC (1<<0)
1848 #define GEN8_PPAT_WT (2<<0)
1849 #define GEN8_PPAT_WB (3<<0)
1850 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1851 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1852 #define GEN8_PPAT_LLC (1<<2)
1853 #define GEN8_PPAT_LLCELLC (2<<2)
1854 #define GEN8_PPAT_LLCeLLC (3<<2)
1855 #define GEN8_PPAT_AGE(x) (x<<4)
1856 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1857 uint64_t pat;
1858
1859 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
1860 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1861 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1862 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
1863 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1864 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1865 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1866 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1867
1868 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1869 * write would work. */
1870 I915_WRITE(GEN8_PRIVATE_PAT, pat);
1871 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1872 }
1873
1874 static int gen8_gmch_probe(struct drm_device *dev,
1875 size_t *gtt_total,
1876 size_t *stolen,
1877 phys_addr_t *mappable_base,
1878 unsigned long *mappable_end)
1879 {
1880 struct drm_i915_private *dev_priv = dev->dev_private;
1881 unsigned int gtt_size;
1882 u16 snb_gmch_ctl;
1883 int ret;
1884
1885 /* TODO: We're not aware of mappable constraints on gen8 yet */
1886 *mappable_base = pci_resource_start(dev->pdev, 2);
1887 *mappable_end = pci_resource_len(dev->pdev, 2);
1888
1889 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1890 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1891
1892 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1893
1894 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1895
1896 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1897 *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1898
1899 gen8_setup_private_ppat(dev_priv);
1900
1901 ret = ggtt_probe_common(dev, gtt_size);
1902
1903 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1904 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1905
1906 return ret;
1907 }
1908
1909 static int gen6_gmch_probe(struct drm_device *dev,
1910 size_t *gtt_total,
1911 size_t *stolen,
1912 phys_addr_t *mappable_base,
1913 unsigned long *mappable_end)
1914 {
1915 struct drm_i915_private *dev_priv = dev->dev_private;
1916 unsigned int gtt_size;
1917 u16 snb_gmch_ctl;
1918 int ret;
1919
1920 *mappable_base = pci_resource_start(dev->pdev, 2);
1921 *mappable_end = pci_resource_len(dev->pdev, 2);
1922
1923 /* 64/512MB is the current min/max we actually know of, but this is just
1924 * a coarse sanity check.
1925 */
1926 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1927 DRM_ERROR("Unknown GMADR size (%lx)\n",
1928 dev_priv->gtt.mappable_end);
1929 return -ENXIO;
1930 }
1931
1932 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1933 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1934 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1935
1936 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1937
1938 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1939 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1940
1941 ret = ggtt_probe_common(dev, gtt_size);
1942
1943 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1944 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1945
1946 return ret;
1947 }
1948
1949 static void gen6_gmch_remove(struct i915_address_space *vm)
1950 {
1951
1952 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1953
1954 drm_mm_takedown(&vm->mm);
1955 iounmap(gtt->gsm);
1956 teardown_scratch_page(vm->dev);
1957 }
1958
1959 static int i915_gmch_probe(struct drm_device *dev,
1960 size_t *gtt_total,
1961 size_t *stolen,
1962 phys_addr_t *mappable_base,
1963 unsigned long *mappable_end)
1964 {
1965 struct drm_i915_private *dev_priv = dev->dev_private;
1966 int ret;
1967
1968 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1969 if (!ret) {
1970 DRM_ERROR("failed to set up gmch\n");
1971 return -EIO;
1972 }
1973
1974 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1975
1976 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1977 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1978
1979 if (unlikely(dev_priv->gtt.do_idle_maps))
1980 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
1981
1982 return 0;
1983 }
1984
1985 static void i915_gmch_remove(struct i915_address_space *vm)
1986 {
1987 intel_gmch_remove();
1988 }
1989
1990 int i915_gem_gtt_init(struct drm_device *dev)
1991 {
1992 struct drm_i915_private *dev_priv = dev->dev_private;
1993 struct i915_gtt *gtt = &dev_priv->gtt;
1994 int ret;
1995
1996 if (INTEL_INFO(dev)->gen <= 5) {
1997 gtt->gtt_probe = i915_gmch_probe;
1998 gtt->base.cleanup = i915_gmch_remove;
1999 } else if (INTEL_INFO(dev)->gen < 8) {
2000 gtt->gtt_probe = gen6_gmch_probe;
2001 gtt->base.cleanup = gen6_gmch_remove;
2002 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2003 gtt->base.pte_encode = iris_pte_encode;
2004 else if (IS_HASWELL(dev))
2005 gtt->base.pte_encode = hsw_pte_encode;
2006 else if (IS_VALLEYVIEW(dev))
2007 gtt->base.pte_encode = byt_pte_encode;
2008 else if (INTEL_INFO(dev)->gen >= 7)
2009 gtt->base.pte_encode = ivb_pte_encode;
2010 else
2011 gtt->base.pte_encode = snb_pte_encode;
2012 } else {
2013 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2014 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2015 }
2016
2017 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2018 &gtt->mappable_base, &gtt->mappable_end);
2019 if (ret)
2020 return ret;
2021
2022 gtt->base.dev = dev;
2023
2024 /* GMADR is the PCI mmio aperture into the global GTT. */
2025 DRM_INFO("Memory usable by graphics device = %zdM\n",
2026 gtt->base.total >> 20);
2027 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2028 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2029
2030 return 0;
2031 }
2032
2033 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2034 struct i915_address_space *vm)
2035 {
2036 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2037 if (vma == NULL)
2038 return ERR_PTR(-ENOMEM);
2039
2040 INIT_LIST_HEAD(&vma->vma_link);
2041 INIT_LIST_HEAD(&vma->mm_list);
2042 INIT_LIST_HEAD(&vma->exec_list);
2043 vma->vm = vm;
2044 vma->obj = obj;
2045
2046 switch (INTEL_INFO(vm->dev)->gen) {
2047 case 8:
2048 case 7:
2049 case 6:
2050 if (i915_is_ggtt(vm)) {
2051 vma->unbind_vma = ggtt_unbind_vma;
2052 vma->bind_vma = ggtt_bind_vma;
2053 } else {
2054 vma->unbind_vma = ppgtt_unbind_vma;
2055 vma->bind_vma = ppgtt_bind_vma;
2056 }
2057 break;
2058 case 5:
2059 case 4:
2060 case 3:
2061 case 2:
2062 BUG_ON(!i915_is_ggtt(vm));
2063 vma->unbind_vma = i915_ggtt_unbind_vma;
2064 vma->bind_vma = i915_ggtt_bind_vma;
2065 break;
2066 default:
2067 BUG();
2068 }
2069
2070 /* Keep GGTT vmas first to make debug easier */
2071 if (i915_is_ggtt(vm))
2072 list_add(&vma->vma_link, &obj->vma_list);
2073 else
2074 list_add_tail(&vma->vma_link, &obj->vma_list);
2075
2076 return vma;
2077 }
2078
2079 struct i915_vma *
2080 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2081 struct i915_address_space *vm)
2082 {
2083 struct i915_vma *vma;
2084
2085 vma = i915_gem_obj_to_vma(obj, vm);
2086 if (!vma)
2087 vma = __i915_gem_vma_create(obj, vm);
2088
2089 return vma;
2090 }
This page took 0.074724 seconds and 4 git commands to generate.