Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33
34 /* PPGTT stuff */
35 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
36 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
37
38 #define GEN6_PDE_VALID (1 << 0)
39 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
40 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
41
42 #define GEN6_PTE_VALID (1 << 0)
43 #define GEN6_PTE_UNCACHED (1 << 1)
44 #define HSW_PTE_UNCACHED (0)
45 #define GEN6_PTE_CACHE_LLC (2 << 1)
46 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
47 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
48 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
49
50 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
51 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
52 */
53 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
54 (((bits) & 0x8) << (11 - 3)))
55 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
56 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
57 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
58 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
59
60 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
61 enum i915_cache_level level)
62 {
63 gen6_gtt_pte_t pte = GEN6_PTE_VALID;
64 pte |= GEN6_PTE_ADDR_ENCODE(addr);
65
66 switch (level) {
67 case I915_CACHE_L3_LLC:
68 case I915_CACHE_LLC:
69 pte |= GEN6_PTE_CACHE_LLC;
70 break;
71 case I915_CACHE_NONE:
72 pte |= GEN6_PTE_UNCACHED;
73 break;
74 default:
75 WARN_ON(1);
76 }
77
78 return pte;
79 }
80
81 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
82 enum i915_cache_level level)
83 {
84 gen6_gtt_pte_t pte = GEN6_PTE_VALID;
85 pte |= GEN6_PTE_ADDR_ENCODE(addr);
86
87 switch (level) {
88 case I915_CACHE_L3_LLC:
89 pte |= GEN7_PTE_CACHE_L3_LLC;
90 break;
91 case I915_CACHE_LLC:
92 pte |= GEN6_PTE_CACHE_LLC;
93 break;
94 case I915_CACHE_NONE:
95 pte |= GEN6_PTE_UNCACHED;
96 break;
97 default:
98 WARN_ON(1);
99 }
100
101 return pte;
102 }
103
104 #define BYT_PTE_WRITEABLE (1 << 1)
105 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
106
107 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
108 enum i915_cache_level level)
109 {
110 gen6_gtt_pte_t pte = GEN6_PTE_VALID;
111 pte |= GEN6_PTE_ADDR_ENCODE(addr);
112
113 /* Mark the page as writeable. Other platforms don't have a
114 * setting for read-only/writable, so this matches that behavior.
115 */
116 pte |= BYT_PTE_WRITEABLE;
117
118 if (level != I915_CACHE_NONE)
119 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
120
121 return pte;
122 }
123
124 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
125 enum i915_cache_level level)
126 {
127 gen6_gtt_pte_t pte = GEN6_PTE_VALID;
128 pte |= HSW_PTE_ADDR_ENCODE(addr);
129
130 if (level != I915_CACHE_NONE)
131 pte |= HSW_WB_LLC_AGE3;
132
133 return pte;
134 }
135
136 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
137 enum i915_cache_level level)
138 {
139 gen6_gtt_pte_t pte = GEN6_PTE_VALID;
140 pte |= HSW_PTE_ADDR_ENCODE(addr);
141
142 switch (level) {
143 case I915_CACHE_NONE:
144 break;
145 case I915_CACHE_WT:
146 pte |= HSW_WT_ELLC_LLC_AGE0;
147 break;
148 default:
149 pte |= HSW_WB_ELLC_LLC_AGE0;
150 break;
151 }
152
153 return pte;
154 }
155
156 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
157 {
158 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
159 gen6_gtt_pte_t __iomem *pd_addr;
160 uint32_t pd_entry;
161 int i;
162
163 WARN_ON(ppgtt->pd_offset & 0x3f);
164 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
165 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
166 for (i = 0; i < ppgtt->num_pd_entries; i++) {
167 dma_addr_t pt_addr;
168
169 pt_addr = ppgtt->pt_dma_addr[i];
170 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
171 pd_entry |= GEN6_PDE_VALID;
172
173 writel(pd_entry, pd_addr + i);
174 }
175 readl(pd_addr);
176 }
177
178 static int gen6_ppgtt_enable(struct drm_device *dev)
179 {
180 drm_i915_private_t *dev_priv = dev->dev_private;
181 uint32_t pd_offset;
182 struct intel_ring_buffer *ring;
183 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
184 int i;
185
186 BUG_ON(ppgtt->pd_offset & 0x3f);
187
188 gen6_write_pdes(ppgtt);
189
190 pd_offset = ppgtt->pd_offset;
191 pd_offset /= 64; /* in cachelines, */
192 pd_offset <<= 16;
193
194 if (INTEL_INFO(dev)->gen == 6) {
195 uint32_t ecochk, gab_ctl, ecobits;
196
197 ecobits = I915_READ(GAC_ECO_BITS);
198 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
199 ECOBITS_PPGTT_CACHE64B);
200
201 gab_ctl = I915_READ(GAB_CTL);
202 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
203
204 ecochk = I915_READ(GAM_ECOCHK);
205 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
206 ECOCHK_PPGTT_CACHE64B);
207 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
208 } else if (INTEL_INFO(dev)->gen >= 7) {
209 uint32_t ecochk, ecobits;
210
211 ecobits = I915_READ(GAC_ECO_BITS);
212 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
213
214 ecochk = I915_READ(GAM_ECOCHK);
215 if (IS_HASWELL(dev)) {
216 ecochk |= ECOCHK_PPGTT_WB_HSW;
217 } else {
218 ecochk |= ECOCHK_PPGTT_LLC_IVB;
219 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
220 }
221 I915_WRITE(GAM_ECOCHK, ecochk);
222 /* GFX_MODE is per-ring on gen7+ */
223 }
224
225 for_each_ring(ring, dev_priv, i) {
226 if (INTEL_INFO(dev)->gen >= 7)
227 I915_WRITE(RING_MODE_GEN7(ring),
228 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
229
230 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
231 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
232 }
233 return 0;
234 }
235
236 /* PPGTT support for Sandybdrige/Gen6 and later */
237 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
238 unsigned first_entry,
239 unsigned num_entries)
240 {
241 struct i915_hw_ppgtt *ppgtt =
242 container_of(vm, struct i915_hw_ppgtt, base);
243 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
244 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
245 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
246 unsigned last_pte, i;
247
248 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC);
249
250 while (num_entries) {
251 last_pte = first_pte + num_entries;
252 if (last_pte > I915_PPGTT_PT_ENTRIES)
253 last_pte = I915_PPGTT_PT_ENTRIES;
254
255 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
256
257 for (i = first_pte; i < last_pte; i++)
258 pt_vaddr[i] = scratch_pte;
259
260 kunmap_atomic(pt_vaddr);
261
262 num_entries -= last_pte - first_pte;
263 first_pte = 0;
264 act_pt++;
265 }
266 }
267
268 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
269 struct sg_table *pages,
270 unsigned first_entry,
271 enum i915_cache_level cache_level)
272 {
273 struct i915_hw_ppgtt *ppgtt =
274 container_of(vm, struct i915_hw_ppgtt, base);
275 gen6_gtt_pte_t *pt_vaddr;
276 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
277 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
278 struct sg_page_iter sg_iter;
279
280 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
281 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
282 dma_addr_t page_addr;
283
284 page_addr = sg_page_iter_dma_address(&sg_iter);
285 pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level);
286 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
287 kunmap_atomic(pt_vaddr);
288 act_pt++;
289 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
290 act_pte = 0;
291
292 }
293 }
294 kunmap_atomic(pt_vaddr);
295 }
296
297 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
298 {
299 struct i915_hw_ppgtt *ppgtt =
300 container_of(vm, struct i915_hw_ppgtt, base);
301 int i;
302
303 drm_mm_takedown(&ppgtt->base.mm);
304
305 if (ppgtt->pt_dma_addr) {
306 for (i = 0; i < ppgtt->num_pd_entries; i++)
307 pci_unmap_page(ppgtt->base.dev->pdev,
308 ppgtt->pt_dma_addr[i],
309 4096, PCI_DMA_BIDIRECTIONAL);
310 }
311
312 kfree(ppgtt->pt_dma_addr);
313 for (i = 0; i < ppgtt->num_pd_entries; i++)
314 __free_page(ppgtt->pt_pages[i]);
315 kfree(ppgtt->pt_pages);
316 kfree(ppgtt);
317 }
318
319 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
320 {
321 struct drm_device *dev = ppgtt->base.dev;
322 struct drm_i915_private *dev_priv = dev->dev_private;
323 unsigned first_pd_entry_in_global_pt;
324 int i;
325 int ret = -ENOMEM;
326
327 /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
328 * entries. For aliasing ppgtt support we just steal them at the end for
329 * now. */
330 first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
331
332 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
333 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
334 ppgtt->enable = gen6_ppgtt_enable;
335 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
336 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
337 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
338 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
339 ppgtt->pt_pages = kzalloc(sizeof(struct page *)*ppgtt->num_pd_entries,
340 GFP_KERNEL);
341 if (!ppgtt->pt_pages)
342 return -ENOMEM;
343
344 for (i = 0; i < ppgtt->num_pd_entries; i++) {
345 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
346 if (!ppgtt->pt_pages[i])
347 goto err_pt_alloc;
348 }
349
350 ppgtt->pt_dma_addr = kzalloc(sizeof(dma_addr_t) *ppgtt->num_pd_entries,
351 GFP_KERNEL);
352 if (!ppgtt->pt_dma_addr)
353 goto err_pt_alloc;
354
355 for (i = 0; i < ppgtt->num_pd_entries; i++) {
356 dma_addr_t pt_addr;
357
358 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
359 PCI_DMA_BIDIRECTIONAL);
360
361 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
362 ret = -EIO;
363 goto err_pd_pin;
364
365 }
366 ppgtt->pt_dma_addr[i] = pt_addr;
367 }
368
369 ppgtt->base.clear_range(&ppgtt->base, 0,
370 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES);
371
372 ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
373
374 return 0;
375
376 err_pd_pin:
377 if (ppgtt->pt_dma_addr) {
378 for (i--; i >= 0; i--)
379 pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
380 4096, PCI_DMA_BIDIRECTIONAL);
381 }
382 err_pt_alloc:
383 kfree(ppgtt->pt_dma_addr);
384 for (i = 0; i < ppgtt->num_pd_entries; i++) {
385 if (ppgtt->pt_pages[i])
386 __free_page(ppgtt->pt_pages[i]);
387 }
388 kfree(ppgtt->pt_pages);
389
390 return ret;
391 }
392
393 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
394 {
395 struct drm_i915_private *dev_priv = dev->dev_private;
396 struct i915_hw_ppgtt *ppgtt;
397 int ret;
398
399 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
400 if (!ppgtt)
401 return -ENOMEM;
402
403 ppgtt->base.dev = dev;
404
405 if (INTEL_INFO(dev)->gen < 8)
406 ret = gen6_ppgtt_init(ppgtt);
407 else
408 BUG();
409
410 if (ret)
411 kfree(ppgtt);
412 else {
413 dev_priv->mm.aliasing_ppgtt = ppgtt;
414 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
415 ppgtt->base.total);
416 }
417
418 return ret;
419 }
420
421 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
422 {
423 struct drm_i915_private *dev_priv = dev->dev_private;
424 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
425
426 if (!ppgtt)
427 return;
428
429 ppgtt->base.cleanup(&ppgtt->base);
430 dev_priv->mm.aliasing_ppgtt = NULL;
431 }
432
433 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
434 struct drm_i915_gem_object *obj,
435 enum i915_cache_level cache_level)
436 {
437 ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
438 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
439 cache_level);
440 }
441
442 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
443 struct drm_i915_gem_object *obj)
444 {
445 ppgtt->base.clear_range(&ppgtt->base,
446 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
447 obj->base.size >> PAGE_SHIFT);
448 }
449
450 extern int intel_iommu_gfx_mapped;
451 /* Certain Gen5 chipsets require require idling the GPU before
452 * unmapping anything from the GTT when VT-d is enabled.
453 */
454 static inline bool needs_idle_maps(struct drm_device *dev)
455 {
456 #ifdef CONFIG_INTEL_IOMMU
457 /* Query intel_iommu to see if we need the workaround. Presumably that
458 * was loaded first.
459 */
460 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
461 return true;
462 #endif
463 return false;
464 }
465
466 static bool do_idling(struct drm_i915_private *dev_priv)
467 {
468 bool ret = dev_priv->mm.interruptible;
469
470 if (unlikely(dev_priv->gtt.do_idle_maps)) {
471 dev_priv->mm.interruptible = false;
472 if (i915_gpu_idle(dev_priv->dev)) {
473 DRM_ERROR("Couldn't idle GPU\n");
474 /* Wait a bit, in hopes it avoids the hang */
475 udelay(10);
476 }
477 }
478
479 return ret;
480 }
481
482 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
483 {
484 if (unlikely(dev_priv->gtt.do_idle_maps))
485 dev_priv->mm.interruptible = interruptible;
486 }
487
488 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
489 {
490 struct drm_i915_private *dev_priv = dev->dev_private;
491 struct drm_i915_gem_object *obj;
492
493 /* First fill our portion of the GTT with scratch pages */
494 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
495 dev_priv->gtt.base.start / PAGE_SIZE,
496 dev_priv->gtt.base.total / PAGE_SIZE);
497
498 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
499 i915_gem_clflush_object(obj, obj->pin_display);
500 i915_gem_gtt_bind_object(obj, obj->cache_level);
501 }
502
503 i915_gem_chipset_flush(dev);
504 }
505
506 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
507 {
508 if (obj->has_dma_mapping)
509 return 0;
510
511 if (!dma_map_sg(&obj->base.dev->pdev->dev,
512 obj->pages->sgl, obj->pages->nents,
513 PCI_DMA_BIDIRECTIONAL))
514 return -ENOSPC;
515
516 return 0;
517 }
518
519 /*
520 * Binds an object into the global gtt with the specified cache level. The object
521 * will be accessible to the GPU via commands whose operands reference offsets
522 * within the global GTT as well as accessible by the GPU through the GMADR
523 * mapped BAR (dev_priv->mm.gtt->gtt).
524 */
525 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
526 struct sg_table *st,
527 unsigned int first_entry,
528 enum i915_cache_level level)
529 {
530 struct drm_i915_private *dev_priv = vm->dev->dev_private;
531 gen6_gtt_pte_t __iomem *gtt_entries =
532 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
533 int i = 0;
534 struct sg_page_iter sg_iter;
535 dma_addr_t addr;
536
537 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
538 addr = sg_page_iter_dma_address(&sg_iter);
539 iowrite32(vm->pte_encode(addr, level), &gtt_entries[i]);
540 i++;
541 }
542
543 /* XXX: This serves as a posting read to make sure that the PTE has
544 * actually been updated. There is some concern that even though
545 * registers and PTEs are within the same BAR that they are potentially
546 * of NUMA access patterns. Therefore, even with the way we assume
547 * hardware should work, we must keep this posting read for paranoia.
548 */
549 if (i != 0)
550 WARN_ON(readl(&gtt_entries[i-1]) !=
551 vm->pte_encode(addr, level));
552
553 /* This next bit makes the above posting read even more important. We
554 * want to flush the TLBs only after we're certain all the PTE updates
555 * have finished.
556 */
557 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
558 POSTING_READ(GFX_FLSH_CNTL_GEN6);
559 }
560
561 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
562 unsigned int first_entry,
563 unsigned int num_entries)
564 {
565 struct drm_i915_private *dev_priv = vm->dev->dev_private;
566 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
567 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
568 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
569 int i;
570
571 if (WARN(num_entries > max_entries,
572 "First entry = %d; Num entries = %d (max=%d)\n",
573 first_entry, num_entries, max_entries))
574 num_entries = max_entries;
575
576 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC);
577 for (i = 0; i < num_entries; i++)
578 iowrite32(scratch_pte, &gtt_base[i]);
579 readl(gtt_base);
580 }
581
582
583 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
584 struct sg_table *st,
585 unsigned int pg_start,
586 enum i915_cache_level cache_level)
587 {
588 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
589 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
590
591 intel_gtt_insert_sg_entries(st, pg_start, flags);
592
593 }
594
595 static void i915_ggtt_clear_range(struct i915_address_space *vm,
596 unsigned int first_entry,
597 unsigned int num_entries)
598 {
599 intel_gtt_clear_range(first_entry, num_entries);
600 }
601
602
603 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
604 enum i915_cache_level cache_level)
605 {
606 struct drm_device *dev = obj->base.dev;
607 struct drm_i915_private *dev_priv = dev->dev_private;
608 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
609
610 dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
611 entry,
612 cache_level);
613
614 obj->has_global_gtt_mapping = 1;
615 }
616
617 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
618 {
619 struct drm_device *dev = obj->base.dev;
620 struct drm_i915_private *dev_priv = dev->dev_private;
621 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
622
623 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
624 entry,
625 obj->base.size >> PAGE_SHIFT);
626
627 obj->has_global_gtt_mapping = 0;
628 }
629
630 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
631 {
632 struct drm_device *dev = obj->base.dev;
633 struct drm_i915_private *dev_priv = dev->dev_private;
634 bool interruptible;
635
636 interruptible = do_idling(dev_priv);
637
638 if (!obj->has_dma_mapping)
639 dma_unmap_sg(&dev->pdev->dev,
640 obj->pages->sgl, obj->pages->nents,
641 PCI_DMA_BIDIRECTIONAL);
642
643 undo_idling(dev_priv, interruptible);
644 }
645
646 static void i915_gtt_color_adjust(struct drm_mm_node *node,
647 unsigned long color,
648 unsigned long *start,
649 unsigned long *end)
650 {
651 if (node->color != color)
652 *start += 4096;
653
654 if (!list_empty(&node->node_list)) {
655 node = list_entry(node->node_list.next,
656 struct drm_mm_node,
657 node_list);
658 if (node->allocated && node->color != color)
659 *end -= 4096;
660 }
661 }
662 void i915_gem_setup_global_gtt(struct drm_device *dev,
663 unsigned long start,
664 unsigned long mappable_end,
665 unsigned long end)
666 {
667 /* Let GEM Manage all of the aperture.
668 *
669 * However, leave one page at the end still bound to the scratch page.
670 * There are a number of places where the hardware apparently prefetches
671 * past the end of the object, and we've seen multiple hangs with the
672 * GPU head pointer stuck in a batchbuffer bound at the last page of the
673 * aperture. One page should be enough to keep any prefetching inside
674 * of the aperture.
675 */
676 struct drm_i915_private *dev_priv = dev->dev_private;
677 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
678 struct drm_mm_node *entry;
679 struct drm_i915_gem_object *obj;
680 unsigned long hole_start, hole_end;
681
682 BUG_ON(mappable_end > end);
683
684 /* Subtract the guard page ... */
685 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
686 if (!HAS_LLC(dev))
687 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
688
689 /* Mark any preallocated objects as occupied */
690 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
691 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
692 int ret;
693 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
694 i915_gem_obj_ggtt_offset(obj), obj->base.size);
695
696 WARN_ON(i915_gem_obj_ggtt_bound(obj));
697 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
698 if (ret)
699 DRM_DEBUG_KMS("Reservation failed\n");
700 obj->has_global_gtt_mapping = 1;
701 list_add(&vma->vma_link, &obj->vma_list);
702 }
703
704 dev_priv->gtt.base.start = start;
705 dev_priv->gtt.base.total = end - start;
706
707 /* Clear any non-preallocated blocks */
708 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
709 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
710 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
711 hole_start, hole_end);
712 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count);
713 }
714
715 /* And finally clear the reserved guard page */
716 ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1);
717 }
718
719 static bool
720 intel_enable_ppgtt(struct drm_device *dev)
721 {
722 if (i915_enable_ppgtt >= 0)
723 return i915_enable_ppgtt;
724
725 #ifdef CONFIG_INTEL_IOMMU
726 /* Disable ppgtt on SNB if VT-d is on. */
727 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
728 return false;
729 #endif
730
731 return true;
732 }
733
734 void i915_gem_init_global_gtt(struct drm_device *dev)
735 {
736 struct drm_i915_private *dev_priv = dev->dev_private;
737 unsigned long gtt_size, mappable_size;
738
739 gtt_size = dev_priv->gtt.base.total;
740 mappable_size = dev_priv->gtt.mappable_end;
741
742 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
743 int ret;
744
745 if (INTEL_INFO(dev)->gen <= 7) {
746 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
747 * aperture accordingly when using aliasing ppgtt. */
748 gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
749 }
750
751 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
752
753 ret = i915_gem_init_aliasing_ppgtt(dev);
754 if (!ret)
755 return;
756
757 DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
758 drm_mm_takedown(&dev_priv->gtt.base.mm);
759 gtt_size += GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
760 }
761 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
762 }
763
764 static int setup_scratch_page(struct drm_device *dev)
765 {
766 struct drm_i915_private *dev_priv = dev->dev_private;
767 struct page *page;
768 dma_addr_t dma_addr;
769
770 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
771 if (page == NULL)
772 return -ENOMEM;
773 get_page(page);
774 set_pages_uc(page, 1);
775
776 #ifdef CONFIG_INTEL_IOMMU
777 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
778 PCI_DMA_BIDIRECTIONAL);
779 if (pci_dma_mapping_error(dev->pdev, dma_addr))
780 return -EINVAL;
781 #else
782 dma_addr = page_to_phys(page);
783 #endif
784 dev_priv->gtt.base.scratch.page = page;
785 dev_priv->gtt.base.scratch.addr = dma_addr;
786
787 return 0;
788 }
789
790 static void teardown_scratch_page(struct drm_device *dev)
791 {
792 struct drm_i915_private *dev_priv = dev->dev_private;
793 struct page *page = dev_priv->gtt.base.scratch.page;
794
795 set_pages_wb(page, 1);
796 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
797 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
798 put_page(page);
799 __free_page(page);
800 }
801
802 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
803 {
804 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
805 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
806 return snb_gmch_ctl << 20;
807 }
808
809 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
810 {
811 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
812 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
813 return snb_gmch_ctl << 25; /* 32 MB units */
814 }
815
816 static int gen6_gmch_probe(struct drm_device *dev,
817 size_t *gtt_total,
818 size_t *stolen,
819 phys_addr_t *mappable_base,
820 unsigned long *mappable_end)
821 {
822 struct drm_i915_private *dev_priv = dev->dev_private;
823 phys_addr_t gtt_bus_addr;
824 unsigned int gtt_size;
825 u16 snb_gmch_ctl;
826 int ret;
827
828 *mappable_base = pci_resource_start(dev->pdev, 2);
829 *mappable_end = pci_resource_len(dev->pdev, 2);
830
831 /* 64/512MB is the current min/max we actually know of, but this is just
832 * a coarse sanity check.
833 */
834 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
835 DRM_ERROR("Unknown GMADR size (%lx)\n",
836 dev_priv->gtt.mappable_end);
837 return -ENXIO;
838 }
839
840 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
841 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
842 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
843 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
844
845 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
846 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
847
848 /* For Modern GENs the PTEs and register space are split in the BAR */
849 gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
850 (pci_resource_len(dev->pdev, 0) / 2);
851
852 dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
853 if (!dev_priv->gtt.gsm) {
854 DRM_ERROR("Failed to map the gtt page table\n");
855 return -ENOMEM;
856 }
857
858 ret = setup_scratch_page(dev);
859 if (ret)
860 DRM_ERROR("Scratch setup failed\n");
861
862 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
863 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
864
865 return ret;
866 }
867
868 static void gen6_gmch_remove(struct i915_address_space *vm)
869 {
870
871 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
872 iounmap(gtt->gsm);
873 teardown_scratch_page(vm->dev);
874 }
875
876 static int i915_gmch_probe(struct drm_device *dev,
877 size_t *gtt_total,
878 size_t *stolen,
879 phys_addr_t *mappable_base,
880 unsigned long *mappable_end)
881 {
882 struct drm_i915_private *dev_priv = dev->dev_private;
883 int ret;
884
885 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
886 if (!ret) {
887 DRM_ERROR("failed to set up gmch\n");
888 return -EIO;
889 }
890
891 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
892
893 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
894 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
895 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
896
897 return 0;
898 }
899
900 static void i915_gmch_remove(struct i915_address_space *vm)
901 {
902 intel_gmch_remove();
903 }
904
905 int i915_gem_gtt_init(struct drm_device *dev)
906 {
907 struct drm_i915_private *dev_priv = dev->dev_private;
908 struct i915_gtt *gtt = &dev_priv->gtt;
909 int ret;
910
911 if (INTEL_INFO(dev)->gen <= 5) {
912 gtt->gtt_probe = i915_gmch_probe;
913 gtt->base.cleanup = i915_gmch_remove;
914 } else {
915 gtt->gtt_probe = gen6_gmch_probe;
916 gtt->base.cleanup = gen6_gmch_remove;
917 if (IS_HASWELL(dev) && dev_priv->ellc_size)
918 gtt->base.pte_encode = iris_pte_encode;
919 else if (IS_HASWELL(dev))
920 gtt->base.pte_encode = hsw_pte_encode;
921 else if (IS_VALLEYVIEW(dev))
922 gtt->base.pte_encode = byt_pte_encode;
923 else if (INTEL_INFO(dev)->gen >= 7)
924 gtt->base.pte_encode = ivb_pte_encode;
925 else
926 gtt->base.pte_encode = snb_pte_encode;
927 }
928
929 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
930 &gtt->mappable_base, &gtt->mappable_end);
931 if (ret)
932 return ret;
933
934 gtt->base.dev = dev;
935
936 /* GMADR is the PCI mmio aperture into the global GTT. */
937 DRM_INFO("Memory usable by graphics device = %zdM\n",
938 gtt->base.total >> 20);
939 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
940 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
941
942 return 0;
943 }
This page took 0.066761 seconds and 5 git commands to generate.