2c8201e06e27ed78e2ee42c35c6b662a431cbee1
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35 * DOC: Global GTT views
36 *
37 * Background and previous state
38 *
39 * Historically objects could exists (be bound) in global GTT space only as
40 * singular instances with a view representing all of the object's backing pages
41 * in a linear fashion. This view will be called a normal view.
42 *
43 * To support multiple views of the same object, where the number of mapped
44 * pages is not equal to the backing store, or where the layout of the pages
45 * is not linear, concept of a GGTT view was added.
46 *
47 * One example of an alternative view is a stereo display driven by a single
48 * image. In this case we would have a framebuffer looking like this
49 * (2x2 pages):
50 *
51 * 12
52 * 34
53 *
54 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55 * rendering. In contrast, fed to the display engine would be an alternative
56 * view which could look something like this:
57 *
58 * 1212
59 * 3434
60 *
61 * In this example both the size and layout of pages in the alternative view is
62 * different from the normal view.
63 *
64 * Implementation and usage
65 *
66 * GGTT views are implemented using VMAs and are distinguished via enum
67 * i915_ggtt_view_type and struct i915_ggtt_view.
68 *
69 * A new flavour of core GEM functions which work with GGTT bound objects were
70 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71 * renaming in large amounts of code. They take the struct i915_ggtt_view
72 * parameter encapsulating all metadata required to implement a view.
73 *
74 * As a helper for callers which are only interested in the normal view,
75 * globally const i915_ggtt_view_normal singleton instance exists. All old core
76 * GEM API functions, the ones not taking the view parameter, are operating on,
77 * or with the normal GGTT view.
78 *
79 * Code wanting to add or use a new GGTT view needs to:
80 *
81 * 1. Add a new enum with a suitable name.
82 * 2. Extend the metadata in the i915_ggtt_view structure if required.
83 * 3. Add support to i915_get_vma_pages().
84 *
85 * New views are required to build a scatter-gather table from within the
86 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87 * exists for the lifetime of an VMA.
88 *
89 * Core API is designed to have copy semantics which means that passed in
90 * struct i915_ggtt_view does not need to be persistent (left around after
91 * calling the core API functions).
92 *
93 */
94
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100 .type = I915_GGTT_VIEW_ROTATED
101 };
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105 bool has_aliasing_ppgtt;
106 bool has_full_ppgtt;
107
108 has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109 has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111 if (intel_vgpu_active(dev))
112 has_full_ppgtt = false; /* emulation is too hard */
113
114 /*
115 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116 * execlists, the sole mechanism available to submit work.
117 */
118 if (INTEL_INFO(dev)->gen < 9 &&
119 (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120 return 0;
121
122 if (enable_ppgtt == 1)
123 return 1;
124
125 if (enable_ppgtt == 2 && has_full_ppgtt)
126 return 2;
127
128 #ifdef CONFIG_INTEL_IOMMU
129 /* Disable ppgtt on SNB if VT-d is on. */
130 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132 return 0;
133 }
134 #endif
135
136 /* Early VLV doesn't have this */
137 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138 dev->pdev->revision < 0xb) {
139 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140 return 0;
141 }
142
143 if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144 return 2;
145 else
146 return has_aliasing_ppgtt ? 1 : 0;
147 }
148
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150 enum i915_cache_level cache_level,
151 u32 unused)
152 {
153 u32 pte_flags = 0;
154
155 /* Currently applicable only to VLV */
156 if (vma->obj->gt_ro)
157 pte_flags |= PTE_READ_ONLY;
158
159 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160 cache_level, pte_flags);
161
162 return 0;
163 }
164
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167 vma->vm->clear_range(vma->vm,
168 vma->node.start,
169 vma->obj->base.size,
170 true);
171 }
172
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174 enum i915_cache_level level,
175 bool valid)
176 {
177 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178 pte |= addr;
179
180 switch (level) {
181 case I915_CACHE_NONE:
182 pte |= PPAT_UNCACHED_INDEX;
183 break;
184 case I915_CACHE_WT:
185 pte |= PPAT_DISPLAY_ELLC_INDEX;
186 break;
187 default:
188 pte |= PPAT_CACHED_INDEX;
189 break;
190 }
191
192 return pte;
193 }
194
195 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
196 const enum i915_cache_level level)
197 {
198 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
199 pde |= addr;
200 if (level != I915_CACHE_NONE)
201 pde |= PPAT_CACHED_PDE_INDEX;
202 else
203 pde |= PPAT_UNCACHED_INDEX;
204 return pde;
205 }
206
207 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
208 enum i915_cache_level level,
209 bool valid, u32 unused)
210 {
211 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
212 pte |= GEN6_PTE_ADDR_ENCODE(addr);
213
214 switch (level) {
215 case I915_CACHE_L3_LLC:
216 case I915_CACHE_LLC:
217 pte |= GEN6_PTE_CACHE_LLC;
218 break;
219 case I915_CACHE_NONE:
220 pte |= GEN6_PTE_UNCACHED;
221 break;
222 default:
223 MISSING_CASE(level);
224 }
225
226 return pte;
227 }
228
229 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
230 enum i915_cache_level level,
231 bool valid, u32 unused)
232 {
233 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
234 pte |= GEN6_PTE_ADDR_ENCODE(addr);
235
236 switch (level) {
237 case I915_CACHE_L3_LLC:
238 pte |= GEN7_PTE_CACHE_L3_LLC;
239 break;
240 case I915_CACHE_LLC:
241 pte |= GEN6_PTE_CACHE_LLC;
242 break;
243 case I915_CACHE_NONE:
244 pte |= GEN6_PTE_UNCACHED;
245 break;
246 default:
247 MISSING_CASE(level);
248 }
249
250 return pte;
251 }
252
253 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
254 enum i915_cache_level level,
255 bool valid, u32 flags)
256 {
257 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
258 pte |= GEN6_PTE_ADDR_ENCODE(addr);
259
260 if (!(flags & PTE_READ_ONLY))
261 pte |= BYT_PTE_WRITEABLE;
262
263 if (level != I915_CACHE_NONE)
264 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
265
266 return pte;
267 }
268
269 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
270 enum i915_cache_level level,
271 bool valid, u32 unused)
272 {
273 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
274 pte |= HSW_PTE_ADDR_ENCODE(addr);
275
276 if (level != I915_CACHE_NONE)
277 pte |= HSW_WB_LLC_AGE3;
278
279 return pte;
280 }
281
282 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
283 enum i915_cache_level level,
284 bool valid, u32 unused)
285 {
286 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
287 pte |= HSW_PTE_ADDR_ENCODE(addr);
288
289 switch (level) {
290 case I915_CACHE_NONE:
291 break;
292 case I915_CACHE_WT:
293 pte |= HSW_WT_ELLC_LLC_AGE3;
294 break;
295 default:
296 pte |= HSW_WB_ELLC_LLC_AGE3;
297 break;
298 }
299
300 return pte;
301 }
302
303 static int __setup_page_dma(struct drm_device *dev,
304 struct i915_page_dma *p, gfp_t flags)
305 {
306 struct device *device = &dev->pdev->dev;
307
308 p->page = alloc_page(flags);
309 if (!p->page)
310 return -ENOMEM;
311
312 p->daddr = dma_map_page(device,
313 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
314
315 if (dma_mapping_error(device, p->daddr)) {
316 __free_page(p->page);
317 return -EINVAL;
318 }
319
320 return 0;
321 }
322
323 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
324 {
325 return __setup_page_dma(dev, p, GFP_KERNEL);
326 }
327
328 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
329 {
330 if (WARN_ON(!p->page))
331 return;
332
333 dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
334 __free_page(p->page);
335 memset(p, 0, sizeof(*p));
336 }
337
338 static void *kmap_page_dma(struct i915_page_dma *p)
339 {
340 return kmap_atomic(p->page);
341 }
342
343 /* We use the flushing unmap only with ppgtt structures:
344 * page directories, page tables and scratch pages.
345 */
346 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
347 {
348 /* There are only few exceptions for gen >=6. chv and bxt.
349 * And we are not sure about the latter so play safe for now.
350 */
351 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
352 drm_clflush_virt_range(vaddr, PAGE_SIZE);
353
354 kunmap_atomic(vaddr);
355 }
356
357 #define kmap_px(px) kmap_page_dma(px_base(px))
358 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
359
360 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
361 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
362 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
363 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
364
365 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
366 const uint64_t val)
367 {
368 int i;
369 uint64_t * const vaddr = kmap_page_dma(p);
370
371 for (i = 0; i < 512; i++)
372 vaddr[i] = val;
373
374 kunmap_page_dma(dev, vaddr);
375 }
376
377 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
378 const uint32_t val32)
379 {
380 uint64_t v = val32;
381
382 v = v << 32 | val32;
383
384 fill_page_dma(dev, p, v);
385 }
386
387 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
388 {
389 cleanup_px(dev, pt);
390 kfree(pt->used_ptes);
391 kfree(pt);
392 }
393
394 static void gen8_initialize_pt(struct i915_address_space *vm,
395 struct i915_page_table *pt)
396 {
397 gen8_pte_t scratch_pte;
398
399 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
400 I915_CACHE_LLC, true);
401
402 fill_px(vm->dev, pt, scratch_pte);
403 }
404
405 static struct i915_page_table *alloc_pt(struct drm_device *dev)
406 {
407 struct i915_page_table *pt;
408 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
409 GEN8_PTES : GEN6_PTES;
410 int ret = -ENOMEM;
411
412 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
413 if (!pt)
414 return ERR_PTR(-ENOMEM);
415
416 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
417 GFP_KERNEL);
418
419 if (!pt->used_ptes)
420 goto fail_bitmap;
421
422 ret = setup_px(dev, pt);
423 if (ret)
424 goto fail_page_m;
425
426 return pt;
427
428 fail_page_m:
429 kfree(pt->used_ptes);
430 fail_bitmap:
431 kfree(pt);
432
433 return ERR_PTR(ret);
434 }
435
436 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
437 {
438 if (px_page(pd)) {
439 cleanup_px(dev, pd);
440 kfree(pd->used_pdes);
441 kfree(pd);
442 }
443 }
444
445 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
446 {
447 struct i915_page_directory *pd;
448 int ret = -ENOMEM;
449
450 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
451 if (!pd)
452 return ERR_PTR(-ENOMEM);
453
454 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
455 sizeof(*pd->used_pdes), GFP_KERNEL);
456 if (!pd->used_pdes)
457 goto fail_bitmap;
458
459 ret = setup_px(dev, pd);
460 if (ret)
461 goto fail_page_m;
462
463 return pd;
464
465 fail_page_m:
466 kfree(pd->used_pdes);
467 fail_bitmap:
468 kfree(pd);
469
470 return ERR_PTR(ret);
471 }
472
473 /* Broadwell Page Directory Pointer Descriptors */
474 static int gen8_write_pdp(struct drm_i915_gem_request *req,
475 unsigned entry,
476 dma_addr_t addr)
477 {
478 struct intel_engine_cs *ring = req->ring;
479 int ret;
480
481 BUG_ON(entry >= 4);
482
483 ret = intel_ring_begin(req, 6);
484 if (ret)
485 return ret;
486
487 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
488 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
489 intel_ring_emit(ring, upper_32_bits(addr));
490 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
491 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
492 intel_ring_emit(ring, lower_32_bits(addr));
493 intel_ring_advance(ring);
494
495 return 0;
496 }
497
498 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
499 struct drm_i915_gem_request *req)
500 {
501 int i, ret;
502
503 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
504 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
505
506 ret = gen8_write_pdp(req, i, pd_daddr);
507 if (ret)
508 return ret;
509 }
510
511 return 0;
512 }
513
514 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
515 uint64_t start,
516 uint64_t length,
517 bool use_scratch)
518 {
519 struct i915_hw_ppgtt *ppgtt =
520 container_of(vm, struct i915_hw_ppgtt, base);
521 gen8_pte_t *pt_vaddr, scratch_pte;
522 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
523 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
524 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
525 unsigned num_entries = length >> PAGE_SHIFT;
526 unsigned last_pte, i;
527
528 scratch_pte = gen8_pte_encode(px_dma(ppgtt->base.scratch_page),
529 I915_CACHE_LLC, use_scratch);
530
531 while (num_entries) {
532 struct i915_page_directory *pd;
533 struct i915_page_table *pt;
534
535 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
536 continue;
537
538 pd = ppgtt->pdp.page_directory[pdpe];
539
540 if (WARN_ON(!pd->page_table[pde]))
541 continue;
542
543 pt = pd->page_table[pde];
544
545 if (WARN_ON(!px_page(pt)))
546 continue;
547
548 last_pte = pte + num_entries;
549 if (last_pte > GEN8_PTES)
550 last_pte = GEN8_PTES;
551
552 pt_vaddr = kmap_px(pt);
553
554 for (i = pte; i < last_pte; i++) {
555 pt_vaddr[i] = scratch_pte;
556 num_entries--;
557 }
558
559 kunmap_px(ppgtt, pt);
560
561 pte = 0;
562 if (++pde == I915_PDES) {
563 pdpe++;
564 pde = 0;
565 }
566 }
567 }
568
569 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
570 struct sg_table *pages,
571 uint64_t start,
572 enum i915_cache_level cache_level, u32 unused)
573 {
574 struct i915_hw_ppgtt *ppgtt =
575 container_of(vm, struct i915_hw_ppgtt, base);
576 gen8_pte_t *pt_vaddr;
577 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
578 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
579 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
580 struct sg_page_iter sg_iter;
581
582 pt_vaddr = NULL;
583
584 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
585 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
586 break;
587
588 if (pt_vaddr == NULL) {
589 struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
590 struct i915_page_table *pt = pd->page_table[pde];
591 pt_vaddr = kmap_px(pt);
592 }
593
594 pt_vaddr[pte] =
595 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
596 cache_level, true);
597 if (++pte == GEN8_PTES) {
598 kunmap_px(ppgtt, pt_vaddr);
599 pt_vaddr = NULL;
600 if (++pde == I915_PDES) {
601 pdpe++;
602 pde = 0;
603 }
604 pte = 0;
605 }
606 }
607
608 if (pt_vaddr)
609 kunmap_px(ppgtt, pt_vaddr);
610 }
611
612 static void gen8_initialize_pd(struct i915_address_space *vm,
613 struct i915_page_directory *pd)
614 {
615 gen8_pde_t scratch_pde;
616
617 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
618
619 fill_px(vm->dev, pd, scratch_pde);
620 }
621
622 static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev)
623 {
624 int i;
625
626 if (!px_page(pd))
627 return;
628
629 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
630 if (WARN_ON(!pd->page_table[i]))
631 continue;
632
633 free_pt(dev, pd->page_table[i]);
634 pd->page_table[i] = NULL;
635 }
636 }
637
638 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
639 {
640 struct i915_hw_ppgtt *ppgtt =
641 container_of(vm, struct i915_hw_ppgtt, base);
642 int i;
643
644 for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) {
645 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
646 continue;
647
648 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
649 free_pd(ppgtt->base.dev, ppgtt->pdp.page_directory[i]);
650 }
651
652 free_pd(vm->dev, vm->scratch_pd);
653 free_pt(vm->dev, vm->scratch_pt);
654 }
655
656 /**
657 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
658 * @ppgtt: Master ppgtt structure.
659 * @pd: Page directory for this address range.
660 * @start: Starting virtual address to begin allocations.
661 * @length Size of the allocations.
662 * @new_pts: Bitmap set by function with new allocations. Likely used by the
663 * caller to free on error.
664 *
665 * Allocate the required number of page tables. Extremely similar to
666 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
667 * the page directory boundary (instead of the page directory pointer). That
668 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
669 * possible, and likely that the caller will need to use multiple calls of this
670 * function to achieve the appropriate allocation.
671 *
672 * Return: 0 if success; negative error code otherwise.
673 */
674 static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt,
675 struct i915_page_directory *pd,
676 uint64_t start,
677 uint64_t length,
678 unsigned long *new_pts)
679 {
680 struct drm_device *dev = ppgtt->base.dev;
681 struct i915_page_table *pt;
682 uint64_t temp;
683 uint32_t pde;
684
685 gen8_for_each_pde(pt, pd, start, length, temp, pde) {
686 /* Don't reallocate page tables */
687 if (pt) {
688 /* Scratch is never allocated this way */
689 WARN_ON(pt == ppgtt->base.scratch_pt);
690 continue;
691 }
692
693 pt = alloc_pt(dev);
694 if (IS_ERR(pt))
695 goto unwind_out;
696
697 gen8_initialize_pt(&ppgtt->base, pt);
698 pd->page_table[pde] = pt;
699 set_bit(pde, new_pts);
700 }
701
702 return 0;
703
704 unwind_out:
705 for_each_set_bit(pde, new_pts, I915_PDES)
706 free_pt(dev, pd->page_table[pde]);
707
708 return -ENOMEM;
709 }
710
711 /**
712 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
713 * @ppgtt: Master ppgtt structure.
714 * @pdp: Page directory pointer for this address range.
715 * @start: Starting virtual address to begin allocations.
716 * @length Size of the allocations.
717 * @new_pds Bitmap set by function with new allocations. Likely used by the
718 * caller to free on error.
719 *
720 * Allocate the required number of page directories starting at the pde index of
721 * @start, and ending at the pde index @start + @length. This function will skip
722 * over already allocated page directories within the range, and only allocate
723 * new ones, setting the appropriate pointer within the pdp as well as the
724 * correct position in the bitmap @new_pds.
725 *
726 * The function will only allocate the pages within the range for a give page
727 * directory pointer. In other words, if @start + @length straddles a virtually
728 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
729 * required by the caller, This is not currently possible, and the BUG in the
730 * code will prevent it.
731 *
732 * Return: 0 if success; negative error code otherwise.
733 */
734 static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt,
735 struct i915_page_directory_pointer *pdp,
736 uint64_t start,
737 uint64_t length,
738 unsigned long *new_pds)
739 {
740 struct drm_device *dev = ppgtt->base.dev;
741 struct i915_page_directory *pd;
742 uint64_t temp;
743 uint32_t pdpe;
744
745 WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES));
746
747 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
748 if (pd)
749 continue;
750
751 pd = alloc_pd(dev);
752 if (IS_ERR(pd))
753 goto unwind_out;
754
755 gen8_initialize_pd(&ppgtt->base, pd);
756 pdp->page_directory[pdpe] = pd;
757 set_bit(pdpe, new_pds);
758 }
759
760 return 0;
761
762 unwind_out:
763 for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES)
764 free_pd(dev, pdp->page_directory[pdpe]);
765
766 return -ENOMEM;
767 }
768
769 static void
770 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts)
771 {
772 int i;
773
774 for (i = 0; i < GEN8_LEGACY_PDPES; i++)
775 kfree(new_pts[i]);
776 kfree(new_pts);
777 kfree(new_pds);
778 }
779
780 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
781 * of these are based on the number of PDPEs in the system.
782 */
783 static
784 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
785 unsigned long ***new_pts)
786 {
787 int i;
788 unsigned long *pds;
789 unsigned long **pts;
790
791 pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL);
792 if (!pds)
793 return -ENOMEM;
794
795 pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL);
796 if (!pts) {
797 kfree(pds);
798 return -ENOMEM;
799 }
800
801 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
802 pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
803 sizeof(unsigned long), GFP_KERNEL);
804 if (!pts[i])
805 goto err_out;
806 }
807
808 *new_pds = pds;
809 *new_pts = pts;
810
811 return 0;
812
813 err_out:
814 free_gen8_temp_bitmaps(pds, pts);
815 return -ENOMEM;
816 }
817
818 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
819 * the page table structures, we mark them dirty so that
820 * context switching/execlist queuing code takes extra steps
821 * to ensure that tlbs are flushed.
822 */
823 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
824 {
825 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
826 }
827
828 static int gen8_alloc_va_range(struct i915_address_space *vm,
829 uint64_t start,
830 uint64_t length)
831 {
832 struct i915_hw_ppgtt *ppgtt =
833 container_of(vm, struct i915_hw_ppgtt, base);
834 unsigned long *new_page_dirs, **new_page_tables;
835 struct i915_page_directory *pd;
836 const uint64_t orig_start = start;
837 const uint64_t orig_length = length;
838 uint64_t temp;
839 uint32_t pdpe;
840 int ret;
841
842 /* Wrap is never okay since we can only represent 48b, and we don't
843 * actually use the other side of the canonical address space.
844 */
845 if (WARN_ON(start + length < start))
846 return -ENODEV;
847
848 if (WARN_ON(start + length > ppgtt->base.total))
849 return -ENODEV;
850
851 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables);
852 if (ret)
853 return ret;
854
855 /* Do the allocations first so we can easily bail out */
856 ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length,
857 new_page_dirs);
858 if (ret) {
859 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
860 return ret;
861 }
862
863 /* For every page directory referenced, allocate page tables */
864 gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
865 ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length,
866 new_page_tables[pdpe]);
867 if (ret)
868 goto err_out;
869 }
870
871 start = orig_start;
872 length = orig_length;
873
874 /* Allocations have completed successfully, so set the bitmaps, and do
875 * the mappings. */
876 gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
877 gen8_pde_t *const page_directory = kmap_px(pd);
878 struct i915_page_table *pt;
879 uint64_t pd_len = gen8_clamp_pd(start, length);
880 uint64_t pd_start = start;
881 uint32_t pde;
882
883 /* Every pd should be allocated, we just did that above. */
884 WARN_ON(!pd);
885
886 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
887 /* Same reasoning as pd */
888 WARN_ON(!pt);
889 WARN_ON(!pd_len);
890 WARN_ON(!gen8_pte_count(pd_start, pd_len));
891
892 /* Set our used ptes within the page table */
893 bitmap_set(pt->used_ptes,
894 gen8_pte_index(pd_start),
895 gen8_pte_count(pd_start, pd_len));
896
897 /* Our pde is now pointing to the pagetable, pt */
898 set_bit(pde, pd->used_pdes);
899
900 /* Map the PDE to the page table */
901 page_directory[pde] = gen8_pde_encode(px_dma(pt),
902 I915_CACHE_LLC);
903
904 /* NB: We haven't yet mapped ptes to pages. At this
905 * point we're still relying on insert_entries() */
906 }
907
908 kunmap_px(ppgtt, page_directory);
909
910 set_bit(pdpe, ppgtt->pdp.used_pdpes);
911 }
912
913 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
914 mark_tlbs_dirty(ppgtt);
915 return 0;
916
917 err_out:
918 while (pdpe--) {
919 for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
920 free_pt(vm->dev, ppgtt->pdp.page_directory[pdpe]->page_table[temp]);
921 }
922
923 for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES)
924 free_pd(vm->dev, ppgtt->pdp.page_directory[pdpe]);
925
926 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
927 mark_tlbs_dirty(ppgtt);
928 return ret;
929 }
930
931 /*
932 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
933 * with a net effect resembling a 2-level page table in normal x86 terms. Each
934 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
935 * space.
936 *
937 */
938 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
939 {
940 ppgtt->base.scratch_pt = alloc_pt(ppgtt->base.dev);
941 if (IS_ERR(ppgtt->base.scratch_pt))
942 return PTR_ERR(ppgtt->base.scratch_pt);
943
944 ppgtt->base.scratch_pd = alloc_pd(ppgtt->base.dev);
945 if (IS_ERR(ppgtt->base.scratch_pd))
946 return PTR_ERR(ppgtt->base.scratch_pd);
947
948 gen8_initialize_pt(&ppgtt->base, ppgtt->base.scratch_pt);
949 gen8_initialize_pd(&ppgtt->base, ppgtt->base.scratch_pd);
950
951 ppgtt->base.start = 0;
952 ppgtt->base.total = 1ULL << 32;
953 if (IS_ENABLED(CONFIG_X86_32))
954 /* While we have a proliferation of size_t variables
955 * we cannot represent the full ppgtt size on 32bit,
956 * so limit it to the same size as the GGTT (currently
957 * 2GiB).
958 */
959 ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
960 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
961 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
962 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
963 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
964 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
965 ppgtt->base.bind_vma = ppgtt_bind_vma;
966
967 ppgtt->switch_mm = gen8_mm_switch;
968
969 return 0;
970 }
971
972 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
973 {
974 struct i915_address_space *vm = &ppgtt->base;
975 struct i915_page_table *unused;
976 gen6_pte_t scratch_pte;
977 uint32_t pd_entry;
978 uint32_t pte, pde, temp;
979 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
980
981 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
982 I915_CACHE_LLC, true, 0);
983
984 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
985 u32 expected;
986 gen6_pte_t *pt_vaddr;
987 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
988 pd_entry = readl(ppgtt->pd_addr + pde);
989 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
990
991 if (pd_entry != expected)
992 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
993 pde,
994 pd_entry,
995 expected);
996 seq_printf(m, "\tPDE: %x\n", pd_entry);
997
998 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
999
1000 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1001 unsigned long va =
1002 (pde * PAGE_SIZE * GEN6_PTES) +
1003 (pte * PAGE_SIZE);
1004 int i;
1005 bool found = false;
1006 for (i = 0; i < 4; i++)
1007 if (pt_vaddr[pte + i] != scratch_pte)
1008 found = true;
1009 if (!found)
1010 continue;
1011
1012 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1013 for (i = 0; i < 4; i++) {
1014 if (pt_vaddr[pte + i] != scratch_pte)
1015 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1016 else
1017 seq_puts(m, " SCRATCH ");
1018 }
1019 seq_puts(m, "\n");
1020 }
1021 kunmap_px(ppgtt, pt_vaddr);
1022 }
1023 }
1024
1025 /* Write pde (index) from the page directory @pd to the page table @pt */
1026 static void gen6_write_pde(struct i915_page_directory *pd,
1027 const int pde, struct i915_page_table *pt)
1028 {
1029 /* Caller needs to make sure the write completes if necessary */
1030 struct i915_hw_ppgtt *ppgtt =
1031 container_of(pd, struct i915_hw_ppgtt, pd);
1032 u32 pd_entry;
1033
1034 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1035 pd_entry |= GEN6_PDE_VALID;
1036
1037 writel(pd_entry, ppgtt->pd_addr + pde);
1038 }
1039
1040 /* Write all the page tables found in the ppgtt structure to incrementing page
1041 * directories. */
1042 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1043 struct i915_page_directory *pd,
1044 uint32_t start, uint32_t length)
1045 {
1046 struct i915_page_table *pt;
1047 uint32_t pde, temp;
1048
1049 gen6_for_each_pde(pt, pd, start, length, temp, pde)
1050 gen6_write_pde(pd, pde, pt);
1051
1052 /* Make sure write is complete before other code can use this page
1053 * table. Also require for WC mapped PTEs */
1054 readl(dev_priv->gtt.gsm);
1055 }
1056
1057 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1058 {
1059 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1060
1061 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1062 }
1063
1064 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1065 struct drm_i915_gem_request *req)
1066 {
1067 struct intel_engine_cs *ring = req->ring;
1068 int ret;
1069
1070 /* NB: TLBs must be flushed and invalidated before a switch */
1071 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1072 if (ret)
1073 return ret;
1074
1075 ret = intel_ring_begin(req, 6);
1076 if (ret)
1077 return ret;
1078
1079 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1080 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1081 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1082 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1083 intel_ring_emit(ring, get_pd_offset(ppgtt));
1084 intel_ring_emit(ring, MI_NOOP);
1085 intel_ring_advance(ring);
1086
1087 return 0;
1088 }
1089
1090 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1091 struct drm_i915_gem_request *req)
1092 {
1093 struct intel_engine_cs *ring = req->ring;
1094 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1095
1096 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1097 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1098 return 0;
1099 }
1100
1101 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1102 struct drm_i915_gem_request *req)
1103 {
1104 struct intel_engine_cs *ring = req->ring;
1105 int ret;
1106
1107 /* NB: TLBs must be flushed and invalidated before a switch */
1108 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1109 if (ret)
1110 return ret;
1111
1112 ret = intel_ring_begin(req, 6);
1113 if (ret)
1114 return ret;
1115
1116 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1117 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1118 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1119 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1120 intel_ring_emit(ring, get_pd_offset(ppgtt));
1121 intel_ring_emit(ring, MI_NOOP);
1122 intel_ring_advance(ring);
1123
1124 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1125 if (ring->id != RCS) {
1126 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1127 if (ret)
1128 return ret;
1129 }
1130
1131 return 0;
1132 }
1133
1134 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1135 struct drm_i915_gem_request *req)
1136 {
1137 struct intel_engine_cs *ring = req->ring;
1138 struct drm_device *dev = ppgtt->base.dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140
1141
1142 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1143 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1144
1145 POSTING_READ(RING_PP_DIR_DCLV(ring));
1146
1147 return 0;
1148 }
1149
1150 static void gen8_ppgtt_enable(struct drm_device *dev)
1151 {
1152 struct drm_i915_private *dev_priv = dev->dev_private;
1153 struct intel_engine_cs *ring;
1154 int j;
1155
1156 for_each_ring(ring, dev_priv, j) {
1157 I915_WRITE(RING_MODE_GEN7(ring),
1158 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1159 }
1160 }
1161
1162 static void gen7_ppgtt_enable(struct drm_device *dev)
1163 {
1164 struct drm_i915_private *dev_priv = dev->dev_private;
1165 struct intel_engine_cs *ring;
1166 uint32_t ecochk, ecobits;
1167 int i;
1168
1169 ecobits = I915_READ(GAC_ECO_BITS);
1170 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1171
1172 ecochk = I915_READ(GAM_ECOCHK);
1173 if (IS_HASWELL(dev)) {
1174 ecochk |= ECOCHK_PPGTT_WB_HSW;
1175 } else {
1176 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1177 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1178 }
1179 I915_WRITE(GAM_ECOCHK, ecochk);
1180
1181 for_each_ring(ring, dev_priv, i) {
1182 /* GFX_MODE is per-ring on gen7+ */
1183 I915_WRITE(RING_MODE_GEN7(ring),
1184 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1185 }
1186 }
1187
1188 static void gen6_ppgtt_enable(struct drm_device *dev)
1189 {
1190 struct drm_i915_private *dev_priv = dev->dev_private;
1191 uint32_t ecochk, gab_ctl, ecobits;
1192
1193 ecobits = I915_READ(GAC_ECO_BITS);
1194 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1195 ECOBITS_PPGTT_CACHE64B);
1196
1197 gab_ctl = I915_READ(GAB_CTL);
1198 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1199
1200 ecochk = I915_READ(GAM_ECOCHK);
1201 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1202
1203 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1204 }
1205
1206 /* PPGTT support for Sandybdrige/Gen6 and later */
1207 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1208 uint64_t start,
1209 uint64_t length,
1210 bool use_scratch)
1211 {
1212 struct i915_hw_ppgtt *ppgtt =
1213 container_of(vm, struct i915_hw_ppgtt, base);
1214 gen6_pte_t *pt_vaddr, scratch_pte;
1215 unsigned first_entry = start >> PAGE_SHIFT;
1216 unsigned num_entries = length >> PAGE_SHIFT;
1217 unsigned act_pt = first_entry / GEN6_PTES;
1218 unsigned first_pte = first_entry % GEN6_PTES;
1219 unsigned last_pte, i;
1220
1221 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1222 I915_CACHE_LLC, true, 0);
1223
1224 while (num_entries) {
1225 last_pte = first_pte + num_entries;
1226 if (last_pte > GEN6_PTES)
1227 last_pte = GEN6_PTES;
1228
1229 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1230
1231 for (i = first_pte; i < last_pte; i++)
1232 pt_vaddr[i] = scratch_pte;
1233
1234 kunmap_px(ppgtt, pt_vaddr);
1235
1236 num_entries -= last_pte - first_pte;
1237 first_pte = 0;
1238 act_pt++;
1239 }
1240 }
1241
1242 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1243 struct sg_table *pages,
1244 uint64_t start,
1245 enum i915_cache_level cache_level, u32 flags)
1246 {
1247 struct i915_hw_ppgtt *ppgtt =
1248 container_of(vm, struct i915_hw_ppgtt, base);
1249 gen6_pte_t *pt_vaddr;
1250 unsigned first_entry = start >> PAGE_SHIFT;
1251 unsigned act_pt = first_entry / GEN6_PTES;
1252 unsigned act_pte = first_entry % GEN6_PTES;
1253 struct sg_page_iter sg_iter;
1254
1255 pt_vaddr = NULL;
1256 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1257 if (pt_vaddr == NULL)
1258 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1259
1260 pt_vaddr[act_pte] =
1261 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1262 cache_level, true, flags);
1263
1264 if (++act_pte == GEN6_PTES) {
1265 kunmap_px(ppgtt, pt_vaddr);
1266 pt_vaddr = NULL;
1267 act_pt++;
1268 act_pte = 0;
1269 }
1270 }
1271 if (pt_vaddr)
1272 kunmap_px(ppgtt, pt_vaddr);
1273 }
1274
1275 static void gen6_initialize_pt(struct i915_address_space *vm,
1276 struct i915_page_table *pt)
1277 {
1278 gen6_pte_t scratch_pte;
1279
1280 WARN_ON(px_dma(vm->scratch_page) == 0);
1281
1282 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1283 I915_CACHE_LLC, true, 0);
1284
1285 fill32_px(vm->dev, pt, scratch_pte);
1286 }
1287
1288 static int gen6_alloc_va_range(struct i915_address_space *vm,
1289 uint64_t start_in, uint64_t length_in)
1290 {
1291 DECLARE_BITMAP(new_page_tables, I915_PDES);
1292 struct drm_device *dev = vm->dev;
1293 struct drm_i915_private *dev_priv = dev->dev_private;
1294 struct i915_hw_ppgtt *ppgtt =
1295 container_of(vm, struct i915_hw_ppgtt, base);
1296 struct i915_page_table *pt;
1297 uint32_t start, length, start_save, length_save;
1298 uint32_t pde, temp;
1299 int ret;
1300
1301 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1302 return -ENODEV;
1303
1304 start = start_save = start_in;
1305 length = length_save = length_in;
1306
1307 bitmap_zero(new_page_tables, I915_PDES);
1308
1309 /* The allocation is done in two stages so that we can bail out with
1310 * minimal amount of pain. The first stage finds new page tables that
1311 * need allocation. The second stage marks use ptes within the page
1312 * tables.
1313 */
1314 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1315 if (pt != vm->scratch_pt) {
1316 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1317 continue;
1318 }
1319
1320 /* We've already allocated a page table */
1321 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1322
1323 pt = alloc_pt(dev);
1324 if (IS_ERR(pt)) {
1325 ret = PTR_ERR(pt);
1326 goto unwind_out;
1327 }
1328
1329 gen6_initialize_pt(vm, pt);
1330
1331 ppgtt->pd.page_table[pde] = pt;
1332 set_bit(pde, new_page_tables);
1333 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1334 }
1335
1336 start = start_save;
1337 length = length_save;
1338
1339 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1340 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1341
1342 bitmap_zero(tmp_bitmap, GEN6_PTES);
1343 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1344 gen6_pte_count(start, length));
1345
1346 if (test_and_clear_bit(pde, new_page_tables))
1347 gen6_write_pde(&ppgtt->pd, pde, pt);
1348
1349 trace_i915_page_table_entry_map(vm, pde, pt,
1350 gen6_pte_index(start),
1351 gen6_pte_count(start, length),
1352 GEN6_PTES);
1353 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1354 GEN6_PTES);
1355 }
1356
1357 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1358
1359 /* Make sure write is complete before other code can use this page
1360 * table. Also require for WC mapped PTEs */
1361 readl(dev_priv->gtt.gsm);
1362
1363 mark_tlbs_dirty(ppgtt);
1364 return 0;
1365
1366 unwind_out:
1367 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1368 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1369
1370 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1371 free_pt(vm->dev, pt);
1372 }
1373
1374 mark_tlbs_dirty(ppgtt);
1375 return ret;
1376 }
1377
1378 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1379 {
1380 struct i915_hw_ppgtt *ppgtt =
1381 container_of(vm, struct i915_hw_ppgtt, base);
1382 struct i915_page_table *pt;
1383 uint32_t pde;
1384
1385 drm_mm_remove_node(&ppgtt->node);
1386
1387 gen6_for_all_pdes(pt, ppgtt, pde) {
1388 if (pt != vm->scratch_pt)
1389 free_pt(ppgtt->base.dev, pt);
1390 }
1391
1392 free_pt(vm->dev, vm->scratch_pt);
1393 }
1394
1395 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1396 {
1397 struct drm_device *dev = ppgtt->base.dev;
1398 struct drm_i915_private *dev_priv = dev->dev_private;
1399 bool retried = false;
1400 int ret;
1401
1402 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1403 * allocator works in address space sizes, so it's multiplied by page
1404 * size. We allocate at the top of the GTT to avoid fragmentation.
1405 */
1406 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1407 ppgtt->base.scratch_pt = alloc_pt(ppgtt->base.dev);
1408 if (IS_ERR(ppgtt->base.scratch_pt))
1409 return PTR_ERR(ppgtt->base.scratch_pt);
1410
1411 gen6_initialize_pt(&ppgtt->base, ppgtt->base.scratch_pt);
1412
1413 alloc:
1414 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1415 &ppgtt->node, GEN6_PD_SIZE,
1416 GEN6_PD_ALIGN, 0,
1417 0, dev_priv->gtt.base.total,
1418 DRM_MM_TOPDOWN);
1419 if (ret == -ENOSPC && !retried) {
1420 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1421 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1422 I915_CACHE_NONE,
1423 0, dev_priv->gtt.base.total,
1424 0);
1425 if (ret)
1426 goto err_out;
1427
1428 retried = true;
1429 goto alloc;
1430 }
1431
1432 if (ret)
1433 goto err_out;
1434
1435
1436 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1437 DRM_DEBUG("Forced to use aperture for PDEs\n");
1438
1439 return 0;
1440
1441 err_out:
1442 free_pt(ppgtt->base.dev, ppgtt->base.scratch_pt);
1443 return ret;
1444 }
1445
1446 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1447 {
1448 return gen6_ppgtt_allocate_page_directories(ppgtt);
1449 }
1450
1451 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1452 uint64_t start, uint64_t length)
1453 {
1454 struct i915_page_table *unused;
1455 uint32_t pde, temp;
1456
1457 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1458 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1459 }
1460
1461 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1462 {
1463 struct drm_device *dev = ppgtt->base.dev;
1464 struct drm_i915_private *dev_priv = dev->dev_private;
1465 int ret;
1466
1467 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1468 if (IS_GEN6(dev)) {
1469 ppgtt->switch_mm = gen6_mm_switch;
1470 } else if (IS_HASWELL(dev)) {
1471 ppgtt->switch_mm = hsw_mm_switch;
1472 } else if (IS_GEN7(dev)) {
1473 ppgtt->switch_mm = gen7_mm_switch;
1474 } else
1475 BUG();
1476
1477 if (intel_vgpu_active(dev))
1478 ppgtt->switch_mm = vgpu_mm_switch;
1479
1480 ret = gen6_ppgtt_alloc(ppgtt);
1481 if (ret)
1482 return ret;
1483
1484 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1485 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1486 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1487 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1488 ppgtt->base.bind_vma = ppgtt_bind_vma;
1489 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1490 ppgtt->base.start = 0;
1491 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1492 ppgtt->debug_dump = gen6_dump_ppgtt;
1493
1494 ppgtt->pd.base.ggtt_offset =
1495 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1496
1497 ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1498 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1499
1500 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1501
1502 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1503
1504 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1505 ppgtt->node.size >> 20,
1506 ppgtt->node.start / PAGE_SIZE);
1507
1508 DRM_DEBUG("Adding PPGTT at offset %x\n",
1509 ppgtt->pd.base.ggtt_offset << 10);
1510
1511 return 0;
1512 }
1513
1514 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1515 {
1516 struct drm_i915_private *dev_priv = dev->dev_private;
1517
1518 ppgtt->base.dev = dev;
1519 ppgtt->base.scratch_page = dev_priv->gtt.base.scratch_page;
1520
1521 if (INTEL_INFO(dev)->gen < 8)
1522 return gen6_ppgtt_init(ppgtt);
1523 else
1524 return gen8_ppgtt_init(ppgtt);
1525 }
1526
1527 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1528 {
1529 struct drm_i915_private *dev_priv = dev->dev_private;
1530 int ret = 0;
1531
1532 ret = __hw_ppgtt_init(dev, ppgtt);
1533 if (ret == 0) {
1534 kref_init(&ppgtt->ref);
1535 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1536 ppgtt->base.total);
1537 i915_init_vm(dev_priv, &ppgtt->base);
1538 }
1539
1540 return ret;
1541 }
1542
1543 int i915_ppgtt_init_hw(struct drm_device *dev)
1544 {
1545 /* In the case of execlists, PPGTT is enabled by the context descriptor
1546 * and the PDPs are contained within the context itself. We don't
1547 * need to do anything here. */
1548 if (i915.enable_execlists)
1549 return 0;
1550
1551 if (!USES_PPGTT(dev))
1552 return 0;
1553
1554 if (IS_GEN6(dev))
1555 gen6_ppgtt_enable(dev);
1556 else if (IS_GEN7(dev))
1557 gen7_ppgtt_enable(dev);
1558 else if (INTEL_INFO(dev)->gen >= 8)
1559 gen8_ppgtt_enable(dev);
1560 else
1561 MISSING_CASE(INTEL_INFO(dev)->gen);
1562
1563 return 0;
1564 }
1565
1566 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
1567 {
1568 struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
1569 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1570
1571 if (i915.enable_execlists)
1572 return 0;
1573
1574 if (!ppgtt)
1575 return 0;
1576
1577 return ppgtt->switch_mm(ppgtt, req);
1578 }
1579
1580 struct i915_hw_ppgtt *
1581 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1582 {
1583 struct i915_hw_ppgtt *ppgtt;
1584 int ret;
1585
1586 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1587 if (!ppgtt)
1588 return ERR_PTR(-ENOMEM);
1589
1590 ret = i915_ppgtt_init(dev, ppgtt);
1591 if (ret) {
1592 kfree(ppgtt);
1593 return ERR_PTR(ret);
1594 }
1595
1596 ppgtt->file_priv = fpriv;
1597
1598 trace_i915_ppgtt_create(&ppgtt->base);
1599
1600 return ppgtt;
1601 }
1602
1603 void i915_ppgtt_release(struct kref *kref)
1604 {
1605 struct i915_hw_ppgtt *ppgtt =
1606 container_of(kref, struct i915_hw_ppgtt, ref);
1607
1608 trace_i915_ppgtt_release(&ppgtt->base);
1609
1610 /* vmas should already be unbound */
1611 WARN_ON(!list_empty(&ppgtt->base.active_list));
1612 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1613
1614 list_del(&ppgtt->base.global_link);
1615 drm_mm_takedown(&ppgtt->base.mm);
1616
1617 ppgtt->base.cleanup(&ppgtt->base);
1618 kfree(ppgtt);
1619 }
1620
1621 extern int intel_iommu_gfx_mapped;
1622 /* Certain Gen5 chipsets require require idling the GPU before
1623 * unmapping anything from the GTT when VT-d is enabled.
1624 */
1625 static bool needs_idle_maps(struct drm_device *dev)
1626 {
1627 #ifdef CONFIG_INTEL_IOMMU
1628 /* Query intel_iommu to see if we need the workaround. Presumably that
1629 * was loaded first.
1630 */
1631 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1632 return true;
1633 #endif
1634 return false;
1635 }
1636
1637 static bool do_idling(struct drm_i915_private *dev_priv)
1638 {
1639 bool ret = dev_priv->mm.interruptible;
1640
1641 if (unlikely(dev_priv->gtt.do_idle_maps)) {
1642 dev_priv->mm.interruptible = false;
1643 if (i915_gpu_idle(dev_priv->dev)) {
1644 DRM_ERROR("Couldn't idle GPU\n");
1645 /* Wait a bit, in hopes it avoids the hang */
1646 udelay(10);
1647 }
1648 }
1649
1650 return ret;
1651 }
1652
1653 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1654 {
1655 if (unlikely(dev_priv->gtt.do_idle_maps))
1656 dev_priv->mm.interruptible = interruptible;
1657 }
1658
1659 void i915_check_and_clear_faults(struct drm_device *dev)
1660 {
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 struct intel_engine_cs *ring;
1663 int i;
1664
1665 if (INTEL_INFO(dev)->gen < 6)
1666 return;
1667
1668 for_each_ring(ring, dev_priv, i) {
1669 u32 fault_reg;
1670 fault_reg = I915_READ(RING_FAULT_REG(ring));
1671 if (fault_reg & RING_FAULT_VALID) {
1672 DRM_DEBUG_DRIVER("Unexpected fault\n"
1673 "\tAddr: 0x%08lx\n"
1674 "\tAddress space: %s\n"
1675 "\tSource ID: %d\n"
1676 "\tType: %d\n",
1677 fault_reg & PAGE_MASK,
1678 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1679 RING_FAULT_SRCID(fault_reg),
1680 RING_FAULT_FAULT_TYPE(fault_reg));
1681 I915_WRITE(RING_FAULT_REG(ring),
1682 fault_reg & ~RING_FAULT_VALID);
1683 }
1684 }
1685 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1686 }
1687
1688 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1689 {
1690 if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1691 intel_gtt_chipset_flush();
1692 } else {
1693 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1694 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1695 }
1696 }
1697
1698 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1699 {
1700 struct drm_i915_private *dev_priv = dev->dev_private;
1701
1702 /* Don't bother messing with faults pre GEN6 as we have little
1703 * documentation supporting that it's a good idea.
1704 */
1705 if (INTEL_INFO(dev)->gen < 6)
1706 return;
1707
1708 i915_check_and_clear_faults(dev);
1709
1710 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1711 dev_priv->gtt.base.start,
1712 dev_priv->gtt.base.total,
1713 true);
1714
1715 i915_ggtt_flush(dev_priv);
1716 }
1717
1718 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1719 {
1720 if (obj->has_dma_mapping)
1721 return 0;
1722
1723 if (!dma_map_sg(&obj->base.dev->pdev->dev,
1724 obj->pages->sgl, obj->pages->nents,
1725 PCI_DMA_BIDIRECTIONAL))
1726 return -ENOSPC;
1727
1728 return 0;
1729 }
1730
1731 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1732 {
1733 #ifdef writeq
1734 writeq(pte, addr);
1735 #else
1736 iowrite32((u32)pte, addr);
1737 iowrite32(pte >> 32, addr + 4);
1738 #endif
1739 }
1740
1741 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1742 struct sg_table *st,
1743 uint64_t start,
1744 enum i915_cache_level level, u32 unused)
1745 {
1746 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1747 unsigned first_entry = start >> PAGE_SHIFT;
1748 gen8_pte_t __iomem *gtt_entries =
1749 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1750 int i = 0;
1751 struct sg_page_iter sg_iter;
1752 dma_addr_t addr = 0; /* shut up gcc */
1753
1754 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1755 addr = sg_dma_address(sg_iter.sg) +
1756 (sg_iter.sg_pgoffset << PAGE_SHIFT);
1757 gen8_set_pte(&gtt_entries[i],
1758 gen8_pte_encode(addr, level, true));
1759 i++;
1760 }
1761
1762 /*
1763 * XXX: This serves as a posting read to make sure that the PTE has
1764 * actually been updated. There is some concern that even though
1765 * registers and PTEs are within the same BAR that they are potentially
1766 * of NUMA access patterns. Therefore, even with the way we assume
1767 * hardware should work, we must keep this posting read for paranoia.
1768 */
1769 if (i != 0)
1770 WARN_ON(readq(&gtt_entries[i-1])
1771 != gen8_pte_encode(addr, level, true));
1772
1773 /* This next bit makes the above posting read even more important. We
1774 * want to flush the TLBs only after we're certain all the PTE updates
1775 * have finished.
1776 */
1777 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1778 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1779 }
1780
1781 /*
1782 * Binds an object into the global gtt with the specified cache level. The object
1783 * will be accessible to the GPU via commands whose operands reference offsets
1784 * within the global GTT as well as accessible by the GPU through the GMADR
1785 * mapped BAR (dev_priv->mm.gtt->gtt).
1786 */
1787 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1788 struct sg_table *st,
1789 uint64_t start,
1790 enum i915_cache_level level, u32 flags)
1791 {
1792 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1793 unsigned first_entry = start >> PAGE_SHIFT;
1794 gen6_pte_t __iomem *gtt_entries =
1795 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1796 int i = 0;
1797 struct sg_page_iter sg_iter;
1798 dma_addr_t addr = 0;
1799
1800 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1801 addr = sg_page_iter_dma_address(&sg_iter);
1802 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1803 i++;
1804 }
1805
1806 /* XXX: This serves as a posting read to make sure that the PTE has
1807 * actually been updated. There is some concern that even though
1808 * registers and PTEs are within the same BAR that they are potentially
1809 * of NUMA access patterns. Therefore, even with the way we assume
1810 * hardware should work, we must keep this posting read for paranoia.
1811 */
1812 if (i != 0) {
1813 unsigned long gtt = readl(&gtt_entries[i-1]);
1814 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1815 }
1816
1817 /* This next bit makes the above posting read even more important. We
1818 * want to flush the TLBs only after we're certain all the PTE updates
1819 * have finished.
1820 */
1821 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1822 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1823 }
1824
1825 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1826 uint64_t start,
1827 uint64_t length,
1828 bool use_scratch)
1829 {
1830 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1831 unsigned first_entry = start >> PAGE_SHIFT;
1832 unsigned num_entries = length >> PAGE_SHIFT;
1833 gen8_pte_t scratch_pte, __iomem *gtt_base =
1834 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1835 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1836 int i;
1837
1838 if (WARN(num_entries > max_entries,
1839 "First entry = %d; Num entries = %d (max=%d)\n",
1840 first_entry, num_entries, max_entries))
1841 num_entries = max_entries;
1842
1843 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1844 I915_CACHE_LLC,
1845 use_scratch);
1846 for (i = 0; i < num_entries; i++)
1847 gen8_set_pte(&gtt_base[i], scratch_pte);
1848 readl(gtt_base);
1849 }
1850
1851 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1852 uint64_t start,
1853 uint64_t length,
1854 bool use_scratch)
1855 {
1856 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1857 unsigned first_entry = start >> PAGE_SHIFT;
1858 unsigned num_entries = length >> PAGE_SHIFT;
1859 gen6_pte_t scratch_pte, __iomem *gtt_base =
1860 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1861 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1862 int i;
1863
1864 if (WARN(num_entries > max_entries,
1865 "First entry = %d; Num entries = %d (max=%d)\n",
1866 first_entry, num_entries, max_entries))
1867 num_entries = max_entries;
1868
1869 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1870 I915_CACHE_LLC, use_scratch, 0);
1871
1872 for (i = 0; i < num_entries; i++)
1873 iowrite32(scratch_pte, &gtt_base[i]);
1874 readl(gtt_base);
1875 }
1876
1877 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1878 struct sg_table *pages,
1879 uint64_t start,
1880 enum i915_cache_level cache_level, u32 unused)
1881 {
1882 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1883 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1884
1885 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
1886
1887 }
1888
1889 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1890 uint64_t start,
1891 uint64_t length,
1892 bool unused)
1893 {
1894 unsigned first_entry = start >> PAGE_SHIFT;
1895 unsigned num_entries = length >> PAGE_SHIFT;
1896 intel_gtt_clear_range(first_entry, num_entries);
1897 }
1898
1899 static int ggtt_bind_vma(struct i915_vma *vma,
1900 enum i915_cache_level cache_level,
1901 u32 flags)
1902 {
1903 struct drm_device *dev = vma->vm->dev;
1904 struct drm_i915_private *dev_priv = dev->dev_private;
1905 struct drm_i915_gem_object *obj = vma->obj;
1906 struct sg_table *pages = obj->pages;
1907 u32 pte_flags = 0;
1908 int ret;
1909
1910 ret = i915_get_ggtt_vma_pages(vma);
1911 if (ret)
1912 return ret;
1913 pages = vma->ggtt_view.pages;
1914
1915 /* Currently applicable only to VLV */
1916 if (obj->gt_ro)
1917 pte_flags |= PTE_READ_ONLY;
1918
1919
1920 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1921 vma->vm->insert_entries(vma->vm, pages,
1922 vma->node.start,
1923 cache_level, pte_flags);
1924 }
1925
1926 if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
1927 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1928 appgtt->base.insert_entries(&appgtt->base, pages,
1929 vma->node.start,
1930 cache_level, pte_flags);
1931 }
1932
1933 return 0;
1934 }
1935
1936 static void ggtt_unbind_vma(struct i915_vma *vma)
1937 {
1938 struct drm_device *dev = vma->vm->dev;
1939 struct drm_i915_private *dev_priv = dev->dev_private;
1940 struct drm_i915_gem_object *obj = vma->obj;
1941 const uint64_t size = min_t(uint64_t,
1942 obj->base.size,
1943 vma->node.size);
1944
1945 if (vma->bound & GLOBAL_BIND) {
1946 vma->vm->clear_range(vma->vm,
1947 vma->node.start,
1948 size,
1949 true);
1950 }
1951
1952 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
1953 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1954
1955 appgtt->base.clear_range(&appgtt->base,
1956 vma->node.start,
1957 size,
1958 true);
1959 }
1960 }
1961
1962 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1963 {
1964 struct drm_device *dev = obj->base.dev;
1965 struct drm_i915_private *dev_priv = dev->dev_private;
1966 bool interruptible;
1967
1968 interruptible = do_idling(dev_priv);
1969
1970 if (!obj->has_dma_mapping)
1971 dma_unmap_sg(&dev->pdev->dev,
1972 obj->pages->sgl, obj->pages->nents,
1973 PCI_DMA_BIDIRECTIONAL);
1974
1975 undo_idling(dev_priv, interruptible);
1976 }
1977
1978 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1979 unsigned long color,
1980 u64 *start,
1981 u64 *end)
1982 {
1983 if (node->color != color)
1984 *start += 4096;
1985
1986 if (!list_empty(&node->node_list)) {
1987 node = list_entry(node->node_list.next,
1988 struct drm_mm_node,
1989 node_list);
1990 if (node->allocated && node->color != color)
1991 *end -= 4096;
1992 }
1993 }
1994
1995 static int i915_gem_setup_global_gtt(struct drm_device *dev,
1996 unsigned long start,
1997 unsigned long mappable_end,
1998 unsigned long end)
1999 {
2000 /* Let GEM Manage all of the aperture.
2001 *
2002 * However, leave one page at the end still bound to the scratch page.
2003 * There are a number of places where the hardware apparently prefetches
2004 * past the end of the object, and we've seen multiple hangs with the
2005 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2006 * aperture. One page should be enough to keep any prefetching inside
2007 * of the aperture.
2008 */
2009 struct drm_i915_private *dev_priv = dev->dev_private;
2010 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2011 struct drm_mm_node *entry;
2012 struct drm_i915_gem_object *obj;
2013 unsigned long hole_start, hole_end;
2014 int ret;
2015
2016 BUG_ON(mappable_end > end);
2017
2018 /* Subtract the guard page ... */
2019 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2020
2021 dev_priv->gtt.base.start = start;
2022 dev_priv->gtt.base.total = end - start;
2023
2024 if (intel_vgpu_active(dev)) {
2025 ret = intel_vgt_balloon(dev);
2026 if (ret)
2027 return ret;
2028 }
2029
2030 if (!HAS_LLC(dev))
2031 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2032
2033 /* Mark any preallocated objects as occupied */
2034 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2035 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2036
2037 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2038 i915_gem_obj_ggtt_offset(obj), obj->base.size);
2039
2040 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2041 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2042 if (ret) {
2043 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2044 return ret;
2045 }
2046 vma->bound |= GLOBAL_BIND;
2047 }
2048
2049 /* Clear any non-preallocated blocks */
2050 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2051 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2052 hole_start, hole_end);
2053 ggtt_vm->clear_range(ggtt_vm, hole_start,
2054 hole_end - hole_start, true);
2055 }
2056
2057 /* And finally clear the reserved guard page */
2058 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2059
2060 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2061 struct i915_hw_ppgtt *ppgtt;
2062
2063 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2064 if (!ppgtt)
2065 return -ENOMEM;
2066
2067 ret = __hw_ppgtt_init(dev, ppgtt);
2068 if (ret) {
2069 ppgtt->base.cleanup(&ppgtt->base);
2070 kfree(ppgtt);
2071 return ret;
2072 }
2073
2074 if (ppgtt->base.allocate_va_range)
2075 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2076 ppgtt->base.total);
2077 if (ret) {
2078 ppgtt->base.cleanup(&ppgtt->base);
2079 kfree(ppgtt);
2080 return ret;
2081 }
2082
2083 ppgtt->base.clear_range(&ppgtt->base,
2084 ppgtt->base.start,
2085 ppgtt->base.total,
2086 true);
2087
2088 dev_priv->mm.aliasing_ppgtt = ppgtt;
2089 }
2090
2091 return 0;
2092 }
2093
2094 void i915_gem_init_global_gtt(struct drm_device *dev)
2095 {
2096 struct drm_i915_private *dev_priv = dev->dev_private;
2097 u64 gtt_size, mappable_size;
2098
2099 gtt_size = dev_priv->gtt.base.total;
2100 mappable_size = dev_priv->gtt.mappable_end;
2101
2102 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2103 }
2104
2105 void i915_global_gtt_cleanup(struct drm_device *dev)
2106 {
2107 struct drm_i915_private *dev_priv = dev->dev_private;
2108 struct i915_address_space *vm = &dev_priv->gtt.base;
2109
2110 if (dev_priv->mm.aliasing_ppgtt) {
2111 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2112
2113 ppgtt->base.cleanup(&ppgtt->base);
2114 }
2115
2116 if (drm_mm_initialized(&vm->mm)) {
2117 if (intel_vgpu_active(dev))
2118 intel_vgt_deballoon();
2119
2120 drm_mm_takedown(&vm->mm);
2121 list_del(&vm->global_link);
2122 }
2123
2124 vm->cleanup(vm);
2125 }
2126
2127 static int alloc_scratch_page(struct i915_address_space *vm)
2128 {
2129 struct i915_page_scratch *sp;
2130 int ret;
2131
2132 WARN_ON(vm->scratch_page);
2133
2134 sp = kzalloc(sizeof(*sp), GFP_KERNEL);
2135 if (sp == NULL)
2136 return -ENOMEM;
2137
2138 ret = __setup_page_dma(vm->dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
2139 if (ret) {
2140 kfree(sp);
2141 return ret;
2142 }
2143
2144 set_pages_uc(px_page(sp), 1);
2145
2146 vm->scratch_page = sp;
2147
2148 return 0;
2149 }
2150
2151 static void free_scratch_page(struct i915_address_space *vm)
2152 {
2153 struct i915_page_scratch *sp = vm->scratch_page;
2154
2155 set_pages_wb(px_page(sp), 1);
2156
2157 cleanup_px(vm->dev, sp);
2158 kfree(sp);
2159
2160 vm->scratch_page = NULL;
2161 }
2162
2163 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2164 {
2165 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2166 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2167 return snb_gmch_ctl << 20;
2168 }
2169
2170 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2171 {
2172 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2173 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2174 if (bdw_gmch_ctl)
2175 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2176
2177 #ifdef CONFIG_X86_32
2178 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2179 if (bdw_gmch_ctl > 4)
2180 bdw_gmch_ctl = 4;
2181 #endif
2182
2183 return bdw_gmch_ctl << 20;
2184 }
2185
2186 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2187 {
2188 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2189 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2190
2191 if (gmch_ctrl)
2192 return 1 << (20 + gmch_ctrl);
2193
2194 return 0;
2195 }
2196
2197 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2198 {
2199 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2200 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2201 return snb_gmch_ctl << 25; /* 32 MB units */
2202 }
2203
2204 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2205 {
2206 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2207 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2208 return bdw_gmch_ctl << 25; /* 32 MB units */
2209 }
2210
2211 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2212 {
2213 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2214 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2215
2216 /*
2217 * 0x0 to 0x10: 32MB increments starting at 0MB
2218 * 0x11 to 0x16: 4MB increments starting at 8MB
2219 * 0x17 to 0x1d: 4MB increments start at 36MB
2220 */
2221 if (gmch_ctrl < 0x11)
2222 return gmch_ctrl << 25;
2223 else if (gmch_ctrl < 0x17)
2224 return (gmch_ctrl - 0x11 + 2) << 22;
2225 else
2226 return (gmch_ctrl - 0x17 + 9) << 22;
2227 }
2228
2229 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2230 {
2231 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2232 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2233
2234 if (gen9_gmch_ctl < 0xf0)
2235 return gen9_gmch_ctl << 25; /* 32 MB units */
2236 else
2237 /* 4MB increments starting at 0xf0 for 4MB */
2238 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2239 }
2240
2241 static int ggtt_probe_common(struct drm_device *dev,
2242 size_t gtt_size)
2243 {
2244 struct drm_i915_private *dev_priv = dev->dev_private;
2245 phys_addr_t gtt_phys_addr;
2246 int ret;
2247
2248 /* For Modern GENs the PTEs and register space are split in the BAR */
2249 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2250 (pci_resource_len(dev->pdev, 0) / 2);
2251
2252 /*
2253 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2254 * dropped. For WC mappings in general we have 64 byte burst writes
2255 * when the WC buffer is flushed, so we can't use it, but have to
2256 * resort to an uncached mapping. The WC issue is easily caught by the
2257 * readback check when writing GTT PTE entries.
2258 */
2259 if (IS_BROXTON(dev))
2260 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2261 else
2262 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2263 if (!dev_priv->gtt.gsm) {
2264 DRM_ERROR("Failed to map the gtt page table\n");
2265 return -ENOMEM;
2266 }
2267
2268 ret = alloc_scratch_page(&dev_priv->gtt.base);
2269 if (ret) {
2270 DRM_ERROR("Scratch setup failed\n");
2271 /* iounmap will also get called at remove, but meh */
2272 iounmap(dev_priv->gtt.gsm);
2273 }
2274
2275 return ret;
2276 }
2277
2278 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2279 * bits. When using advanced contexts each context stores its own PAT, but
2280 * writing this data shouldn't be harmful even in those cases. */
2281 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2282 {
2283 uint64_t pat;
2284
2285 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2286 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2287 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2288 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2289 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2290 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2291 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2292 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2293
2294 if (!USES_PPGTT(dev_priv->dev))
2295 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2296 * so RTL will always use the value corresponding to
2297 * pat_sel = 000".
2298 * So let's disable cache for GGTT to avoid screen corruptions.
2299 * MOCS still can be used though.
2300 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2301 * before this patch, i.e. the same uncached + snooping access
2302 * like on gen6/7 seems to be in effect.
2303 * - So this just fixes blitter/render access. Again it looks
2304 * like it's not just uncached access, but uncached + snooping.
2305 * So we can still hold onto all our assumptions wrt cpu
2306 * clflushing on LLC machines.
2307 */
2308 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2309
2310 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2311 * write would work. */
2312 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2313 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2314 }
2315
2316 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2317 {
2318 uint64_t pat;
2319
2320 /*
2321 * Map WB on BDW to snooped on CHV.
2322 *
2323 * Only the snoop bit has meaning for CHV, the rest is
2324 * ignored.
2325 *
2326 * The hardware will never snoop for certain types of accesses:
2327 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2328 * - PPGTT page tables
2329 * - some other special cycles
2330 *
2331 * As with BDW, we also need to consider the following for GT accesses:
2332 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2333 * so RTL will always use the value corresponding to
2334 * pat_sel = 000".
2335 * Which means we must set the snoop bit in PAT entry 0
2336 * in order to keep the global status page working.
2337 */
2338 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2339 GEN8_PPAT(1, 0) |
2340 GEN8_PPAT(2, 0) |
2341 GEN8_PPAT(3, 0) |
2342 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2343 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2344 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2345 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2346
2347 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2348 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2349 }
2350
2351 static int gen8_gmch_probe(struct drm_device *dev,
2352 u64 *gtt_total,
2353 size_t *stolen,
2354 phys_addr_t *mappable_base,
2355 u64 *mappable_end)
2356 {
2357 struct drm_i915_private *dev_priv = dev->dev_private;
2358 u64 gtt_size;
2359 u16 snb_gmch_ctl;
2360 int ret;
2361
2362 /* TODO: We're not aware of mappable constraints on gen8 yet */
2363 *mappable_base = pci_resource_start(dev->pdev, 2);
2364 *mappable_end = pci_resource_len(dev->pdev, 2);
2365
2366 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2367 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2368
2369 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2370
2371 if (INTEL_INFO(dev)->gen >= 9) {
2372 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2373 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2374 } else if (IS_CHERRYVIEW(dev)) {
2375 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2376 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2377 } else {
2378 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2379 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2380 }
2381
2382 *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2383
2384 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2385 chv_setup_private_ppat(dev_priv);
2386 else
2387 bdw_setup_private_ppat(dev_priv);
2388
2389 ret = ggtt_probe_common(dev, gtt_size);
2390
2391 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2392 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2393 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2394 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2395
2396 return ret;
2397 }
2398
2399 static int gen6_gmch_probe(struct drm_device *dev,
2400 u64 *gtt_total,
2401 size_t *stolen,
2402 phys_addr_t *mappable_base,
2403 u64 *mappable_end)
2404 {
2405 struct drm_i915_private *dev_priv = dev->dev_private;
2406 unsigned int gtt_size;
2407 u16 snb_gmch_ctl;
2408 int ret;
2409
2410 *mappable_base = pci_resource_start(dev->pdev, 2);
2411 *mappable_end = pci_resource_len(dev->pdev, 2);
2412
2413 /* 64/512MB is the current min/max we actually know of, but this is just
2414 * a coarse sanity check.
2415 */
2416 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2417 DRM_ERROR("Unknown GMADR size (%llx)\n",
2418 dev_priv->gtt.mappable_end);
2419 return -ENXIO;
2420 }
2421
2422 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2423 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2424 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2425
2426 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2427
2428 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2429 *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2430
2431 ret = ggtt_probe_common(dev, gtt_size);
2432
2433 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2434 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2435 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2436 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2437
2438 return ret;
2439 }
2440
2441 static void gen6_gmch_remove(struct i915_address_space *vm)
2442 {
2443
2444 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2445
2446 iounmap(gtt->gsm);
2447 free_scratch_page(vm);
2448 }
2449
2450 static int i915_gmch_probe(struct drm_device *dev,
2451 u64 *gtt_total,
2452 size_t *stolen,
2453 phys_addr_t *mappable_base,
2454 u64 *mappable_end)
2455 {
2456 struct drm_i915_private *dev_priv = dev->dev_private;
2457 int ret;
2458
2459 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2460 if (!ret) {
2461 DRM_ERROR("failed to set up gmch\n");
2462 return -EIO;
2463 }
2464
2465 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2466
2467 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2468 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
2469 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2470 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2471 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2472
2473 if (unlikely(dev_priv->gtt.do_idle_maps))
2474 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2475
2476 return 0;
2477 }
2478
2479 static void i915_gmch_remove(struct i915_address_space *vm)
2480 {
2481 intel_gmch_remove();
2482 }
2483
2484 int i915_gem_gtt_init(struct drm_device *dev)
2485 {
2486 struct drm_i915_private *dev_priv = dev->dev_private;
2487 struct i915_gtt *gtt = &dev_priv->gtt;
2488 int ret;
2489
2490 if (INTEL_INFO(dev)->gen <= 5) {
2491 gtt->gtt_probe = i915_gmch_probe;
2492 gtt->base.cleanup = i915_gmch_remove;
2493 } else if (INTEL_INFO(dev)->gen < 8) {
2494 gtt->gtt_probe = gen6_gmch_probe;
2495 gtt->base.cleanup = gen6_gmch_remove;
2496 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2497 gtt->base.pte_encode = iris_pte_encode;
2498 else if (IS_HASWELL(dev))
2499 gtt->base.pte_encode = hsw_pte_encode;
2500 else if (IS_VALLEYVIEW(dev))
2501 gtt->base.pte_encode = byt_pte_encode;
2502 else if (INTEL_INFO(dev)->gen >= 7)
2503 gtt->base.pte_encode = ivb_pte_encode;
2504 else
2505 gtt->base.pte_encode = snb_pte_encode;
2506 } else {
2507 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2508 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2509 }
2510
2511 gtt->base.dev = dev;
2512
2513 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2514 &gtt->mappable_base, &gtt->mappable_end);
2515 if (ret)
2516 return ret;
2517
2518 /* GMADR is the PCI mmio aperture into the global GTT. */
2519 DRM_INFO("Memory usable by graphics device = %lluM\n",
2520 gtt->base.total >> 20);
2521 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
2522 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2523 #ifdef CONFIG_INTEL_IOMMU
2524 if (intel_iommu_gfx_mapped)
2525 DRM_INFO("VT-d active for gfx access\n");
2526 #endif
2527 /*
2528 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2529 * user's requested state against the hardware/driver capabilities. We
2530 * do this now so that we can print out any log messages once rather
2531 * than every time we check intel_enable_ppgtt().
2532 */
2533 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2534 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2535
2536 return 0;
2537 }
2538
2539 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
2540 {
2541 struct drm_i915_private *dev_priv = dev->dev_private;
2542 struct drm_i915_gem_object *obj;
2543 struct i915_address_space *vm;
2544
2545 i915_check_and_clear_faults(dev);
2546
2547 /* First fill our portion of the GTT with scratch pages */
2548 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2549 dev_priv->gtt.base.start,
2550 dev_priv->gtt.base.total,
2551 true);
2552
2553 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2554 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
2555 &dev_priv->gtt.base);
2556 if (!vma)
2557 continue;
2558
2559 i915_gem_clflush_object(obj, obj->pin_display);
2560 WARN_ON(i915_vma_bind(vma, obj->cache_level, PIN_UPDATE));
2561 }
2562
2563
2564 if (INTEL_INFO(dev)->gen >= 8) {
2565 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2566 chv_setup_private_ppat(dev_priv);
2567 else
2568 bdw_setup_private_ppat(dev_priv);
2569
2570 return;
2571 }
2572
2573 if (USES_PPGTT(dev)) {
2574 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2575 /* TODO: Perhaps it shouldn't be gen6 specific */
2576
2577 struct i915_hw_ppgtt *ppgtt =
2578 container_of(vm, struct i915_hw_ppgtt,
2579 base);
2580
2581 if (i915_is_ggtt(vm))
2582 ppgtt = dev_priv->mm.aliasing_ppgtt;
2583
2584 gen6_write_page_range(dev_priv, &ppgtt->pd,
2585 0, ppgtt->base.total);
2586 }
2587 }
2588
2589 i915_ggtt_flush(dev_priv);
2590 }
2591
2592 static struct i915_vma *
2593 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2594 struct i915_address_space *vm,
2595 const struct i915_ggtt_view *ggtt_view)
2596 {
2597 struct i915_vma *vma;
2598
2599 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2600 return ERR_PTR(-EINVAL);
2601
2602 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
2603 if (vma == NULL)
2604 return ERR_PTR(-ENOMEM);
2605
2606 INIT_LIST_HEAD(&vma->vma_link);
2607 INIT_LIST_HEAD(&vma->mm_list);
2608 INIT_LIST_HEAD(&vma->exec_list);
2609 vma->vm = vm;
2610 vma->obj = obj;
2611
2612 if (i915_is_ggtt(vm))
2613 vma->ggtt_view = *ggtt_view;
2614
2615 list_add_tail(&vma->vma_link, &obj->vma_list);
2616 if (!i915_is_ggtt(vm))
2617 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2618
2619 return vma;
2620 }
2621
2622 struct i915_vma *
2623 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2624 struct i915_address_space *vm)
2625 {
2626 struct i915_vma *vma;
2627
2628 vma = i915_gem_obj_to_vma(obj, vm);
2629 if (!vma)
2630 vma = __i915_gem_vma_create(obj, vm,
2631 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2632
2633 return vma;
2634 }
2635
2636 struct i915_vma *
2637 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2638 const struct i915_ggtt_view *view)
2639 {
2640 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2641 struct i915_vma *vma;
2642
2643 if (WARN_ON(!view))
2644 return ERR_PTR(-EINVAL);
2645
2646 vma = i915_gem_obj_to_ggtt_view(obj, view);
2647
2648 if (IS_ERR(vma))
2649 return vma;
2650
2651 if (!vma)
2652 vma = __i915_gem_vma_create(obj, ggtt, view);
2653
2654 return vma;
2655
2656 }
2657
2658 static void
2659 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2660 struct sg_table *st)
2661 {
2662 unsigned int column, row;
2663 unsigned int src_idx;
2664 struct scatterlist *sg = st->sgl;
2665
2666 st->nents = 0;
2667
2668 for (column = 0; column < width; column++) {
2669 src_idx = width * (height - 1) + column;
2670 for (row = 0; row < height; row++) {
2671 st->nents++;
2672 /* We don't need the pages, but need to initialize
2673 * the entries so the sg list can be happily traversed.
2674 * The only thing we need are DMA addresses.
2675 */
2676 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2677 sg_dma_address(sg) = in[src_idx];
2678 sg_dma_len(sg) = PAGE_SIZE;
2679 sg = sg_next(sg);
2680 src_idx -= width;
2681 }
2682 }
2683 }
2684
2685 static struct sg_table *
2686 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2687 struct drm_i915_gem_object *obj)
2688 {
2689 struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2690 unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
2691 struct sg_page_iter sg_iter;
2692 unsigned long i;
2693 dma_addr_t *page_addr_list;
2694 struct sg_table *st;
2695 int ret = -ENOMEM;
2696
2697 /* Allocate a temporary list of source pages for random access. */
2698 page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
2699 sizeof(dma_addr_t));
2700 if (!page_addr_list)
2701 return ERR_PTR(ret);
2702
2703 /* Allocate target SG list. */
2704 st = kmalloc(sizeof(*st), GFP_KERNEL);
2705 if (!st)
2706 goto err_st_alloc;
2707
2708 ret = sg_alloc_table(st, size_pages, GFP_KERNEL);
2709 if (ret)
2710 goto err_sg_alloc;
2711
2712 /* Populate source page list from the object. */
2713 i = 0;
2714 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2715 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2716 i++;
2717 }
2718
2719 /* Rotate the pages. */
2720 rotate_pages(page_addr_list,
2721 rot_info->width_pages, rot_info->height_pages,
2722 st);
2723
2724 DRM_DEBUG_KMS(
2725 "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages).\n",
2726 obj->base.size, rot_info->pitch, rot_info->height,
2727 rot_info->pixel_format, rot_info->width_pages,
2728 rot_info->height_pages, size_pages);
2729
2730 drm_free_large(page_addr_list);
2731
2732 return st;
2733
2734 err_sg_alloc:
2735 kfree(st);
2736 err_st_alloc:
2737 drm_free_large(page_addr_list);
2738
2739 DRM_DEBUG_KMS(
2740 "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages)\n",
2741 obj->base.size, ret, rot_info->pitch, rot_info->height,
2742 rot_info->pixel_format, rot_info->width_pages,
2743 rot_info->height_pages, size_pages);
2744 return ERR_PTR(ret);
2745 }
2746
2747 static struct sg_table *
2748 intel_partial_pages(const struct i915_ggtt_view *view,
2749 struct drm_i915_gem_object *obj)
2750 {
2751 struct sg_table *st;
2752 struct scatterlist *sg;
2753 struct sg_page_iter obj_sg_iter;
2754 int ret = -ENOMEM;
2755
2756 st = kmalloc(sizeof(*st), GFP_KERNEL);
2757 if (!st)
2758 goto err_st_alloc;
2759
2760 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
2761 if (ret)
2762 goto err_sg_alloc;
2763
2764 sg = st->sgl;
2765 st->nents = 0;
2766 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
2767 view->params.partial.offset)
2768 {
2769 if (st->nents >= view->params.partial.size)
2770 break;
2771
2772 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2773 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
2774 sg_dma_len(sg) = PAGE_SIZE;
2775
2776 sg = sg_next(sg);
2777 st->nents++;
2778 }
2779
2780 return st;
2781
2782 err_sg_alloc:
2783 kfree(st);
2784 err_st_alloc:
2785 return ERR_PTR(ret);
2786 }
2787
2788 static int
2789 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2790 {
2791 int ret = 0;
2792
2793 if (vma->ggtt_view.pages)
2794 return 0;
2795
2796 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2797 vma->ggtt_view.pages = vma->obj->pages;
2798 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2799 vma->ggtt_view.pages =
2800 intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2801 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
2802 vma->ggtt_view.pages =
2803 intel_partial_pages(&vma->ggtt_view, vma->obj);
2804 else
2805 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2806 vma->ggtt_view.type);
2807
2808 if (!vma->ggtt_view.pages) {
2809 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2810 vma->ggtt_view.type);
2811 ret = -EINVAL;
2812 } else if (IS_ERR(vma->ggtt_view.pages)) {
2813 ret = PTR_ERR(vma->ggtt_view.pages);
2814 vma->ggtt_view.pages = NULL;
2815 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2816 vma->ggtt_view.type, ret);
2817 }
2818
2819 return ret;
2820 }
2821
2822 /**
2823 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2824 * @vma: VMA to map
2825 * @cache_level: mapping cache level
2826 * @flags: flags like global or local mapping
2827 *
2828 * DMA addresses are taken from the scatter-gather table of this object (or of
2829 * this VMA in case of non-default GGTT views) and PTE entries set up.
2830 * Note that DMA addresses are also the only part of the SG table we care about.
2831 */
2832 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2833 u32 flags)
2834 {
2835 int ret;
2836 u32 bind_flags;
2837
2838 if (WARN_ON(flags == 0))
2839 return -EINVAL;
2840
2841 bind_flags = 0;
2842 if (flags & PIN_GLOBAL)
2843 bind_flags |= GLOBAL_BIND;
2844 if (flags & PIN_USER)
2845 bind_flags |= LOCAL_BIND;
2846
2847 if (flags & PIN_UPDATE)
2848 bind_flags |= vma->bound;
2849 else
2850 bind_flags &= ~vma->bound;
2851
2852 if (bind_flags == 0)
2853 return 0;
2854
2855 if (vma->bound == 0 && vma->vm->allocate_va_range) {
2856 trace_i915_va_alloc(vma->vm,
2857 vma->node.start,
2858 vma->node.size,
2859 VM_TO_TRACE_NAME(vma->vm));
2860
2861 /* XXX: i915_vma_pin() will fix this +- hack */
2862 vma->pin_count++;
2863 ret = vma->vm->allocate_va_range(vma->vm,
2864 vma->node.start,
2865 vma->node.size);
2866 vma->pin_count--;
2867 if (ret)
2868 return ret;
2869 }
2870
2871 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
2872 if (ret)
2873 return ret;
2874
2875 vma->bound |= bind_flags;
2876
2877 return 0;
2878 }
2879
2880 /**
2881 * i915_ggtt_view_size - Get the size of a GGTT view.
2882 * @obj: Object the view is of.
2883 * @view: The view in question.
2884 *
2885 * @return The size of the GGTT view in bytes.
2886 */
2887 size_t
2888 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
2889 const struct i915_ggtt_view *view)
2890 {
2891 if (view->type == I915_GGTT_VIEW_NORMAL) {
2892 return obj->base.size;
2893 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
2894 return view->rotation_info.size;
2895 } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
2896 return view->params.partial.size << PAGE_SHIFT;
2897 } else {
2898 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
2899 return obj->base.size;
2900 }
2901 }
This page took 0.221116 seconds and 4 git commands to generate.