Merge branch 'pci/resource' into next
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33 typedef uint64_t gen8_gtt_pte_t;
34 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
35
36 /* PPGTT stuff */
37 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
38 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
39
40 #define GEN6_PDE_VALID (1 << 0)
41 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
42 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
43
44 #define GEN6_PTE_VALID (1 << 0)
45 #define GEN6_PTE_UNCACHED (1 << 1)
46 #define HSW_PTE_UNCACHED (0)
47 #define GEN6_PTE_CACHE_LLC (2 << 1)
48 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
49 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
51
52 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
53 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
54 */
55 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
56 (((bits) & 0x8) << (11 - 3)))
57 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
58 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
59 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
60 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
61 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
62 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
63
64 #define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
65 #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
66 #define GEN8_LEGACY_PDPS 4
67
68 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
69 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
70 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
71 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
72
73 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
74 enum i915_cache_level level,
75 bool valid)
76 {
77 gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
78 pte |= addr;
79 if (level != I915_CACHE_NONE)
80 pte |= PPAT_CACHED_INDEX;
81 else
82 pte |= PPAT_UNCACHED_INDEX;
83 return pte;
84 }
85
86 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
87 dma_addr_t addr,
88 enum i915_cache_level level)
89 {
90 gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
91 pde |= addr;
92 if (level != I915_CACHE_NONE)
93 pde |= PPAT_CACHED_PDE_INDEX;
94 else
95 pde |= PPAT_UNCACHED_INDEX;
96 return pde;
97 }
98
99 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
100 enum i915_cache_level level,
101 bool valid)
102 {
103 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
104 pte |= GEN6_PTE_ADDR_ENCODE(addr);
105
106 switch (level) {
107 case I915_CACHE_L3_LLC:
108 case I915_CACHE_LLC:
109 pte |= GEN6_PTE_CACHE_LLC;
110 break;
111 case I915_CACHE_NONE:
112 pte |= GEN6_PTE_UNCACHED;
113 break;
114 default:
115 WARN_ON(1);
116 }
117
118 return pte;
119 }
120
121 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
122 enum i915_cache_level level,
123 bool valid)
124 {
125 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
126 pte |= GEN6_PTE_ADDR_ENCODE(addr);
127
128 switch (level) {
129 case I915_CACHE_L3_LLC:
130 pte |= GEN7_PTE_CACHE_L3_LLC;
131 break;
132 case I915_CACHE_LLC:
133 pte |= GEN6_PTE_CACHE_LLC;
134 break;
135 case I915_CACHE_NONE:
136 pte |= GEN6_PTE_UNCACHED;
137 break;
138 default:
139 WARN_ON(1);
140 }
141
142 return pte;
143 }
144
145 #define BYT_PTE_WRITEABLE (1 << 1)
146 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
147
148 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
149 enum i915_cache_level level,
150 bool valid)
151 {
152 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
153 pte |= GEN6_PTE_ADDR_ENCODE(addr);
154
155 /* Mark the page as writeable. Other platforms don't have a
156 * setting for read-only/writable, so this matches that behavior.
157 */
158 pte |= BYT_PTE_WRITEABLE;
159
160 if (level != I915_CACHE_NONE)
161 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
162
163 return pte;
164 }
165
166 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
167 enum i915_cache_level level,
168 bool valid)
169 {
170 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
171 pte |= HSW_PTE_ADDR_ENCODE(addr);
172
173 if (level != I915_CACHE_NONE)
174 pte |= HSW_WB_LLC_AGE3;
175
176 return pte;
177 }
178
179 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
180 enum i915_cache_level level,
181 bool valid)
182 {
183 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
184 pte |= HSW_PTE_ADDR_ENCODE(addr);
185
186 switch (level) {
187 case I915_CACHE_NONE:
188 break;
189 case I915_CACHE_WT:
190 pte |= HSW_WT_ELLC_LLC_AGE3;
191 break;
192 default:
193 pte |= HSW_WB_ELLC_LLC_AGE3;
194 break;
195 }
196
197 return pte;
198 }
199
200 /* Broadwell Page Directory Pointer Descriptors */
201 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
202 uint64_t val)
203 {
204 int ret;
205
206 BUG_ON(entry >= 4);
207
208 ret = intel_ring_begin(ring, 6);
209 if (ret)
210 return ret;
211
212 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
213 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
214 intel_ring_emit(ring, (u32)(val >> 32));
215 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
216 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
217 intel_ring_emit(ring, (u32)(val));
218 intel_ring_advance(ring);
219
220 return 0;
221 }
222
223 static int gen8_ppgtt_enable(struct drm_device *dev)
224 {
225 struct drm_i915_private *dev_priv = dev->dev_private;
226 struct intel_ring_buffer *ring;
227 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
228 int i, j, ret;
229
230 /* bit of a hack to find the actual last used pd */
231 int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
232
233 for_each_ring(ring, dev_priv, j) {
234 I915_WRITE(RING_MODE_GEN7(ring),
235 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
236 }
237
238 for (i = used_pd - 1; i >= 0; i--) {
239 dma_addr_t addr = ppgtt->pd_dma_addr[i];
240 for_each_ring(ring, dev_priv, j) {
241 ret = gen8_write_pdp(ring, i, addr);
242 if (ret)
243 goto err_out;
244 }
245 }
246 return 0;
247
248 err_out:
249 for_each_ring(ring, dev_priv, j)
250 I915_WRITE(RING_MODE_GEN7(ring),
251 _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
252 return ret;
253 }
254
255 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
256 unsigned first_entry,
257 unsigned num_entries,
258 bool use_scratch)
259 {
260 struct i915_hw_ppgtt *ppgtt =
261 container_of(vm, struct i915_hw_ppgtt, base);
262 gen8_gtt_pte_t *pt_vaddr, scratch_pte;
263 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
264 unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
265 unsigned last_pte, i;
266
267 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
268 I915_CACHE_LLC, use_scratch);
269
270 while (num_entries) {
271 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
272
273 last_pte = first_pte + num_entries;
274 if (last_pte > GEN8_PTES_PER_PAGE)
275 last_pte = GEN8_PTES_PER_PAGE;
276
277 pt_vaddr = kmap_atomic(page_table);
278
279 for (i = first_pte; i < last_pte; i++)
280 pt_vaddr[i] = scratch_pte;
281
282 kunmap_atomic(pt_vaddr);
283
284 num_entries -= last_pte - first_pte;
285 first_pte = 0;
286 act_pt++;
287 }
288 }
289
290 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
291 struct sg_table *pages,
292 unsigned first_entry,
293 enum i915_cache_level cache_level)
294 {
295 struct i915_hw_ppgtt *ppgtt =
296 container_of(vm, struct i915_hw_ppgtt, base);
297 gen8_gtt_pte_t *pt_vaddr;
298 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
299 unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
300 struct sg_page_iter sg_iter;
301
302 pt_vaddr = NULL;
303 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
304 if (pt_vaddr == NULL)
305 pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
306
307 pt_vaddr[act_pte] =
308 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
309 cache_level, true);
310 if (++act_pte == GEN8_PTES_PER_PAGE) {
311 kunmap_atomic(pt_vaddr);
312 pt_vaddr = NULL;
313 act_pt++;
314 act_pte = 0;
315 }
316 }
317 if (pt_vaddr)
318 kunmap_atomic(pt_vaddr);
319 }
320
321 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
322 {
323 struct i915_hw_ppgtt *ppgtt =
324 container_of(vm, struct i915_hw_ppgtt, base);
325 int i, j;
326
327 drm_mm_takedown(&vm->mm);
328
329 for (i = 0; i < ppgtt->num_pd_pages ; i++) {
330 if (ppgtt->pd_dma_addr[i]) {
331 pci_unmap_page(ppgtt->base.dev->pdev,
332 ppgtt->pd_dma_addr[i],
333 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
334
335 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
336 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
337 if (addr)
338 pci_unmap_page(ppgtt->base.dev->pdev,
339 addr,
340 PAGE_SIZE,
341 PCI_DMA_BIDIRECTIONAL);
342
343 }
344 }
345 kfree(ppgtt->gen8_pt_dma_addr[i]);
346 }
347
348 __free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
349 __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
350 }
351
352 /**
353 * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
354 * net effect resembling a 2-level page table in normal x86 terms. Each PDP
355 * represents 1GB of memory
356 * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
357 *
358 * TODO: Do something with the size parameter
359 **/
360 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
361 {
362 struct page *pt_pages;
363 int i, j, ret = -ENOMEM;
364 const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
365 const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
366
367 if (size % (1<<30))
368 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
369
370 /* FIXME: split allocation into smaller pieces. For now we only ever do
371 * this once, but with full PPGTT, the multiple contiguous allocations
372 * will be bad.
373 */
374 ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
375 if (!ppgtt->pd_pages)
376 return -ENOMEM;
377
378 pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
379 if (!pt_pages) {
380 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
381 return -ENOMEM;
382 }
383
384 ppgtt->gen8_pt_pages = pt_pages;
385 ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
386 ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
387 ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
388 ppgtt->enable = gen8_ppgtt_enable;
389 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
390 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
391 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
392 ppgtt->base.start = 0;
393 ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
394
395 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
396
397 /*
398 * - Create a mapping for the page directories.
399 * - For each page directory:
400 * allocate space for page table mappings.
401 * map each page table
402 */
403 for (i = 0; i < max_pdp; i++) {
404 dma_addr_t temp;
405 temp = pci_map_page(ppgtt->base.dev->pdev,
406 &ppgtt->pd_pages[i], 0,
407 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
408 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
409 goto err_out;
410
411 ppgtt->pd_dma_addr[i] = temp;
412
413 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
414 if (!ppgtt->gen8_pt_dma_addr[i])
415 goto err_out;
416
417 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
418 struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
419 temp = pci_map_page(ppgtt->base.dev->pdev,
420 p, 0, PAGE_SIZE,
421 PCI_DMA_BIDIRECTIONAL);
422
423 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
424 goto err_out;
425
426 ppgtt->gen8_pt_dma_addr[i][j] = temp;
427 }
428 }
429
430 /* For now, the PPGTT helper functions all require that the PDEs are
431 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
432 * will never need to touch the PDEs again */
433 for (i = 0; i < max_pdp; i++) {
434 gen8_ppgtt_pde_t *pd_vaddr;
435 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
436 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
437 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
438 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
439 I915_CACHE_LLC);
440 }
441 kunmap_atomic(pd_vaddr);
442 }
443
444 ppgtt->base.clear_range(&ppgtt->base, 0,
445 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
446 true);
447
448 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
449 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
450 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
451 ppgtt->num_pt_pages,
452 (ppgtt->num_pt_pages - num_pt_pages) +
453 size % (1<<30));
454 return 0;
455
456 err_out:
457 ppgtt->base.cleanup(&ppgtt->base);
458 return ret;
459 }
460
461 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
462 {
463 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
464 gen6_gtt_pte_t __iomem *pd_addr;
465 uint32_t pd_entry;
466 int i;
467
468 WARN_ON(ppgtt->pd_offset & 0x3f);
469 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
470 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
471 for (i = 0; i < ppgtt->num_pd_entries; i++) {
472 dma_addr_t pt_addr;
473
474 pt_addr = ppgtt->pt_dma_addr[i];
475 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
476 pd_entry |= GEN6_PDE_VALID;
477
478 writel(pd_entry, pd_addr + i);
479 }
480 readl(pd_addr);
481 }
482
483 static int gen6_ppgtt_enable(struct drm_device *dev)
484 {
485 drm_i915_private_t *dev_priv = dev->dev_private;
486 uint32_t pd_offset;
487 struct intel_ring_buffer *ring;
488 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
489 int i;
490
491 BUG_ON(ppgtt->pd_offset & 0x3f);
492
493 gen6_write_pdes(ppgtt);
494
495 pd_offset = ppgtt->pd_offset;
496 pd_offset /= 64; /* in cachelines, */
497 pd_offset <<= 16;
498
499 if (INTEL_INFO(dev)->gen == 6) {
500 uint32_t ecochk, gab_ctl, ecobits;
501
502 ecobits = I915_READ(GAC_ECO_BITS);
503 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
504 ECOBITS_PPGTT_CACHE64B);
505
506 gab_ctl = I915_READ(GAB_CTL);
507 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
508
509 ecochk = I915_READ(GAM_ECOCHK);
510 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
511 ECOCHK_PPGTT_CACHE64B);
512 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
513 } else if (INTEL_INFO(dev)->gen >= 7) {
514 uint32_t ecochk, ecobits;
515
516 ecobits = I915_READ(GAC_ECO_BITS);
517 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
518
519 ecochk = I915_READ(GAM_ECOCHK);
520 if (IS_HASWELL(dev)) {
521 ecochk |= ECOCHK_PPGTT_WB_HSW;
522 } else {
523 ecochk |= ECOCHK_PPGTT_LLC_IVB;
524 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
525 }
526 I915_WRITE(GAM_ECOCHK, ecochk);
527 /* GFX_MODE is per-ring on gen7+ */
528 }
529
530 for_each_ring(ring, dev_priv, i) {
531 if (INTEL_INFO(dev)->gen >= 7)
532 I915_WRITE(RING_MODE_GEN7(ring),
533 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
534
535 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
536 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
537 }
538 return 0;
539 }
540
541 /* PPGTT support for Sandybdrige/Gen6 and later */
542 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
543 unsigned first_entry,
544 unsigned num_entries,
545 bool use_scratch)
546 {
547 struct i915_hw_ppgtt *ppgtt =
548 container_of(vm, struct i915_hw_ppgtt, base);
549 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
550 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
551 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
552 unsigned last_pte, i;
553
554 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
555
556 while (num_entries) {
557 last_pte = first_pte + num_entries;
558 if (last_pte > I915_PPGTT_PT_ENTRIES)
559 last_pte = I915_PPGTT_PT_ENTRIES;
560
561 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
562
563 for (i = first_pte; i < last_pte; i++)
564 pt_vaddr[i] = scratch_pte;
565
566 kunmap_atomic(pt_vaddr);
567
568 num_entries -= last_pte - first_pte;
569 first_pte = 0;
570 act_pt++;
571 }
572 }
573
574 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
575 struct sg_table *pages,
576 unsigned first_entry,
577 enum i915_cache_level cache_level)
578 {
579 struct i915_hw_ppgtt *ppgtt =
580 container_of(vm, struct i915_hw_ppgtt, base);
581 gen6_gtt_pte_t *pt_vaddr;
582 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
583 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
584 struct sg_page_iter sg_iter;
585
586 pt_vaddr = NULL;
587 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
588 if (pt_vaddr == NULL)
589 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
590
591 pt_vaddr[act_pte] =
592 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
593 cache_level, true);
594 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
595 kunmap_atomic(pt_vaddr);
596 pt_vaddr = NULL;
597 act_pt++;
598 act_pte = 0;
599 }
600 }
601 if (pt_vaddr)
602 kunmap_atomic(pt_vaddr);
603 }
604
605 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
606 {
607 struct i915_hw_ppgtt *ppgtt =
608 container_of(vm, struct i915_hw_ppgtt, base);
609 int i;
610
611 drm_mm_takedown(&ppgtt->base.mm);
612
613 if (ppgtt->pt_dma_addr) {
614 for (i = 0; i < ppgtt->num_pd_entries; i++)
615 pci_unmap_page(ppgtt->base.dev->pdev,
616 ppgtt->pt_dma_addr[i],
617 4096, PCI_DMA_BIDIRECTIONAL);
618 }
619
620 kfree(ppgtt->pt_dma_addr);
621 for (i = 0; i < ppgtt->num_pd_entries; i++)
622 __free_page(ppgtt->pt_pages[i]);
623 kfree(ppgtt->pt_pages);
624 kfree(ppgtt);
625 }
626
627 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
628 {
629 struct drm_device *dev = ppgtt->base.dev;
630 struct drm_i915_private *dev_priv = dev->dev_private;
631 unsigned first_pd_entry_in_global_pt;
632 int i;
633 int ret = -ENOMEM;
634
635 /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
636 * entries. For aliasing ppgtt support we just steal them at the end for
637 * now. */
638 first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
639
640 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
641 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
642 ppgtt->enable = gen6_ppgtt_enable;
643 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
644 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
645 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
646 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
647 ppgtt->base.start = 0;
648 ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
649 ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
650 GFP_KERNEL);
651 if (!ppgtt->pt_pages)
652 return -ENOMEM;
653
654 for (i = 0; i < ppgtt->num_pd_entries; i++) {
655 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
656 if (!ppgtt->pt_pages[i])
657 goto err_pt_alloc;
658 }
659
660 ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
661 GFP_KERNEL);
662 if (!ppgtt->pt_dma_addr)
663 goto err_pt_alloc;
664
665 for (i = 0; i < ppgtt->num_pd_entries; i++) {
666 dma_addr_t pt_addr;
667
668 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
669 PCI_DMA_BIDIRECTIONAL);
670
671 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
672 ret = -EIO;
673 goto err_pd_pin;
674
675 }
676 ppgtt->pt_dma_addr[i] = pt_addr;
677 }
678
679 ppgtt->base.clear_range(&ppgtt->base, 0,
680 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
681
682 ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
683
684 return 0;
685
686 err_pd_pin:
687 if (ppgtt->pt_dma_addr) {
688 for (i--; i >= 0; i--)
689 pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
690 4096, PCI_DMA_BIDIRECTIONAL);
691 }
692 err_pt_alloc:
693 kfree(ppgtt->pt_dma_addr);
694 for (i = 0; i < ppgtt->num_pd_entries; i++) {
695 if (ppgtt->pt_pages[i])
696 __free_page(ppgtt->pt_pages[i]);
697 }
698 kfree(ppgtt->pt_pages);
699
700 return ret;
701 }
702
703 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
704 {
705 struct drm_i915_private *dev_priv = dev->dev_private;
706 struct i915_hw_ppgtt *ppgtt;
707 int ret;
708
709 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
710 if (!ppgtt)
711 return -ENOMEM;
712
713 ppgtt->base.dev = dev;
714
715 if (INTEL_INFO(dev)->gen < 8)
716 ret = gen6_ppgtt_init(ppgtt);
717 else if (IS_GEN8(dev))
718 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
719 else
720 BUG();
721
722 if (ret)
723 kfree(ppgtt);
724 else {
725 dev_priv->mm.aliasing_ppgtt = ppgtt;
726 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
727 ppgtt->base.total);
728 }
729
730 return ret;
731 }
732
733 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
734 {
735 struct drm_i915_private *dev_priv = dev->dev_private;
736 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
737
738 if (!ppgtt)
739 return;
740
741 ppgtt->base.cleanup(&ppgtt->base);
742 dev_priv->mm.aliasing_ppgtt = NULL;
743 }
744
745 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
746 struct drm_i915_gem_object *obj,
747 enum i915_cache_level cache_level)
748 {
749 ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
750 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
751 cache_level);
752 }
753
754 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
755 struct drm_i915_gem_object *obj)
756 {
757 ppgtt->base.clear_range(&ppgtt->base,
758 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
759 obj->base.size >> PAGE_SHIFT,
760 true);
761 }
762
763 extern int intel_iommu_gfx_mapped;
764 /* Certain Gen5 chipsets require require idling the GPU before
765 * unmapping anything from the GTT when VT-d is enabled.
766 */
767 static inline bool needs_idle_maps(struct drm_device *dev)
768 {
769 #ifdef CONFIG_INTEL_IOMMU
770 /* Query intel_iommu to see if we need the workaround. Presumably that
771 * was loaded first.
772 */
773 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
774 return true;
775 #endif
776 return false;
777 }
778
779 static bool do_idling(struct drm_i915_private *dev_priv)
780 {
781 bool ret = dev_priv->mm.interruptible;
782
783 if (unlikely(dev_priv->gtt.do_idle_maps)) {
784 dev_priv->mm.interruptible = false;
785 if (i915_gpu_idle(dev_priv->dev)) {
786 DRM_ERROR("Couldn't idle GPU\n");
787 /* Wait a bit, in hopes it avoids the hang */
788 udelay(10);
789 }
790 }
791
792 return ret;
793 }
794
795 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
796 {
797 if (unlikely(dev_priv->gtt.do_idle_maps))
798 dev_priv->mm.interruptible = interruptible;
799 }
800
801 void i915_check_and_clear_faults(struct drm_device *dev)
802 {
803 struct drm_i915_private *dev_priv = dev->dev_private;
804 struct intel_ring_buffer *ring;
805 int i;
806
807 if (INTEL_INFO(dev)->gen < 6)
808 return;
809
810 for_each_ring(ring, dev_priv, i) {
811 u32 fault_reg;
812 fault_reg = I915_READ(RING_FAULT_REG(ring));
813 if (fault_reg & RING_FAULT_VALID) {
814 DRM_DEBUG_DRIVER("Unexpected fault\n"
815 "\tAddr: 0x%08lx\\n"
816 "\tAddress space: %s\n"
817 "\tSource ID: %d\n"
818 "\tType: %d\n",
819 fault_reg & PAGE_MASK,
820 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
821 RING_FAULT_SRCID(fault_reg),
822 RING_FAULT_FAULT_TYPE(fault_reg));
823 I915_WRITE(RING_FAULT_REG(ring),
824 fault_reg & ~RING_FAULT_VALID);
825 }
826 }
827 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
828 }
829
830 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
831 {
832 struct drm_i915_private *dev_priv = dev->dev_private;
833
834 /* Don't bother messing with faults pre GEN6 as we have little
835 * documentation supporting that it's a good idea.
836 */
837 if (INTEL_INFO(dev)->gen < 6)
838 return;
839
840 i915_check_and_clear_faults(dev);
841
842 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
843 dev_priv->gtt.base.start / PAGE_SIZE,
844 dev_priv->gtt.base.total / PAGE_SIZE,
845 false);
846 }
847
848 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
849 {
850 struct drm_i915_private *dev_priv = dev->dev_private;
851 struct drm_i915_gem_object *obj;
852
853 i915_check_and_clear_faults(dev);
854
855 /* First fill our portion of the GTT with scratch pages */
856 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
857 dev_priv->gtt.base.start / PAGE_SIZE,
858 dev_priv->gtt.base.total / PAGE_SIZE,
859 true);
860
861 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
862 i915_gem_clflush_object(obj, obj->pin_display);
863 i915_gem_gtt_bind_object(obj, obj->cache_level);
864 }
865
866 i915_gem_chipset_flush(dev);
867 }
868
869 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
870 {
871 if (obj->has_dma_mapping)
872 return 0;
873
874 if (!dma_map_sg(&obj->base.dev->pdev->dev,
875 obj->pages->sgl, obj->pages->nents,
876 PCI_DMA_BIDIRECTIONAL))
877 return -ENOSPC;
878
879 return 0;
880 }
881
882 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
883 {
884 #ifdef writeq
885 writeq(pte, addr);
886 #else
887 iowrite32((u32)pte, addr);
888 iowrite32(pte >> 32, addr + 4);
889 #endif
890 }
891
892 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
893 struct sg_table *st,
894 unsigned int first_entry,
895 enum i915_cache_level level)
896 {
897 struct drm_i915_private *dev_priv = vm->dev->dev_private;
898 gen8_gtt_pte_t __iomem *gtt_entries =
899 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
900 int i = 0;
901 struct sg_page_iter sg_iter;
902 dma_addr_t addr;
903
904 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
905 addr = sg_dma_address(sg_iter.sg) +
906 (sg_iter.sg_pgoffset << PAGE_SHIFT);
907 gen8_set_pte(&gtt_entries[i],
908 gen8_pte_encode(addr, level, true));
909 i++;
910 }
911
912 /*
913 * XXX: This serves as a posting read to make sure that the PTE has
914 * actually been updated. There is some concern that even though
915 * registers and PTEs are within the same BAR that they are potentially
916 * of NUMA access patterns. Therefore, even with the way we assume
917 * hardware should work, we must keep this posting read for paranoia.
918 */
919 if (i != 0)
920 WARN_ON(readq(&gtt_entries[i-1])
921 != gen8_pte_encode(addr, level, true));
922
923 /* This next bit makes the above posting read even more important. We
924 * want to flush the TLBs only after we're certain all the PTE updates
925 * have finished.
926 */
927 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
928 POSTING_READ(GFX_FLSH_CNTL_GEN6);
929 }
930
931 /*
932 * Binds an object into the global gtt with the specified cache level. The object
933 * will be accessible to the GPU via commands whose operands reference offsets
934 * within the global GTT as well as accessible by the GPU through the GMADR
935 * mapped BAR (dev_priv->mm.gtt->gtt).
936 */
937 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
938 struct sg_table *st,
939 unsigned int first_entry,
940 enum i915_cache_level level)
941 {
942 struct drm_i915_private *dev_priv = vm->dev->dev_private;
943 gen6_gtt_pte_t __iomem *gtt_entries =
944 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
945 int i = 0;
946 struct sg_page_iter sg_iter;
947 dma_addr_t addr;
948
949 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
950 addr = sg_page_iter_dma_address(&sg_iter);
951 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
952 i++;
953 }
954
955 /* XXX: This serves as a posting read to make sure that the PTE has
956 * actually been updated. There is some concern that even though
957 * registers and PTEs are within the same BAR that they are potentially
958 * of NUMA access patterns. Therefore, even with the way we assume
959 * hardware should work, we must keep this posting read for paranoia.
960 */
961 if (i != 0)
962 WARN_ON(readl(&gtt_entries[i-1]) !=
963 vm->pte_encode(addr, level, true));
964
965 /* This next bit makes the above posting read even more important. We
966 * want to flush the TLBs only after we're certain all the PTE updates
967 * have finished.
968 */
969 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
970 POSTING_READ(GFX_FLSH_CNTL_GEN6);
971 }
972
973 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
974 unsigned int first_entry,
975 unsigned int num_entries,
976 bool use_scratch)
977 {
978 struct drm_i915_private *dev_priv = vm->dev->dev_private;
979 gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
980 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
981 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
982 int i;
983
984 if (WARN(num_entries > max_entries,
985 "First entry = %d; Num entries = %d (max=%d)\n",
986 first_entry, num_entries, max_entries))
987 num_entries = max_entries;
988
989 scratch_pte = gen8_pte_encode(vm->scratch.addr,
990 I915_CACHE_LLC,
991 use_scratch);
992 for (i = 0; i < num_entries; i++)
993 gen8_set_pte(&gtt_base[i], scratch_pte);
994 readl(gtt_base);
995 }
996
997 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
998 unsigned int first_entry,
999 unsigned int num_entries,
1000 bool use_scratch)
1001 {
1002 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1003 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1004 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1005 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1006 int i;
1007
1008 if (WARN(num_entries > max_entries,
1009 "First entry = %d; Num entries = %d (max=%d)\n",
1010 first_entry, num_entries, max_entries))
1011 num_entries = max_entries;
1012
1013 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1014
1015 for (i = 0; i < num_entries; i++)
1016 iowrite32(scratch_pte, &gtt_base[i]);
1017 readl(gtt_base);
1018 }
1019
1020 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1021 struct sg_table *st,
1022 unsigned int pg_start,
1023 enum i915_cache_level cache_level)
1024 {
1025 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1026 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1027
1028 intel_gtt_insert_sg_entries(st, pg_start, flags);
1029
1030 }
1031
1032 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1033 unsigned int first_entry,
1034 unsigned int num_entries,
1035 bool unused)
1036 {
1037 intel_gtt_clear_range(first_entry, num_entries);
1038 }
1039
1040
1041 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
1042 enum i915_cache_level cache_level)
1043 {
1044 struct drm_device *dev = obj->base.dev;
1045 struct drm_i915_private *dev_priv = dev->dev_private;
1046 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1047
1048 dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
1049 entry,
1050 cache_level);
1051
1052 obj->has_global_gtt_mapping = 1;
1053 }
1054
1055 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
1056 {
1057 struct drm_device *dev = obj->base.dev;
1058 struct drm_i915_private *dev_priv = dev->dev_private;
1059 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1060
1061 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1062 entry,
1063 obj->base.size >> PAGE_SHIFT,
1064 true);
1065
1066 obj->has_global_gtt_mapping = 0;
1067 }
1068
1069 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1070 {
1071 struct drm_device *dev = obj->base.dev;
1072 struct drm_i915_private *dev_priv = dev->dev_private;
1073 bool interruptible;
1074
1075 interruptible = do_idling(dev_priv);
1076
1077 if (!obj->has_dma_mapping)
1078 dma_unmap_sg(&dev->pdev->dev,
1079 obj->pages->sgl, obj->pages->nents,
1080 PCI_DMA_BIDIRECTIONAL);
1081
1082 undo_idling(dev_priv, interruptible);
1083 }
1084
1085 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1086 unsigned long color,
1087 unsigned long *start,
1088 unsigned long *end)
1089 {
1090 if (node->color != color)
1091 *start += 4096;
1092
1093 if (!list_empty(&node->node_list)) {
1094 node = list_entry(node->node_list.next,
1095 struct drm_mm_node,
1096 node_list);
1097 if (node->allocated && node->color != color)
1098 *end -= 4096;
1099 }
1100 }
1101
1102 void i915_gem_setup_global_gtt(struct drm_device *dev,
1103 unsigned long start,
1104 unsigned long mappable_end,
1105 unsigned long end)
1106 {
1107 /* Let GEM Manage all of the aperture.
1108 *
1109 * However, leave one page at the end still bound to the scratch page.
1110 * There are a number of places where the hardware apparently prefetches
1111 * past the end of the object, and we've seen multiple hangs with the
1112 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1113 * aperture. One page should be enough to keep any prefetching inside
1114 * of the aperture.
1115 */
1116 struct drm_i915_private *dev_priv = dev->dev_private;
1117 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1118 struct drm_mm_node *entry;
1119 struct drm_i915_gem_object *obj;
1120 unsigned long hole_start, hole_end;
1121
1122 BUG_ON(mappable_end > end);
1123
1124 /* Subtract the guard page ... */
1125 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1126 if (!HAS_LLC(dev))
1127 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1128
1129 /* Mark any preallocated objects as occupied */
1130 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1131 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1132 int ret;
1133 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1134 i915_gem_obj_ggtt_offset(obj), obj->base.size);
1135
1136 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1137 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1138 if (ret)
1139 DRM_DEBUG_KMS("Reservation failed\n");
1140 obj->has_global_gtt_mapping = 1;
1141 }
1142
1143 dev_priv->gtt.base.start = start;
1144 dev_priv->gtt.base.total = end - start;
1145
1146 /* Clear any non-preallocated blocks */
1147 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1148 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1149 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1150 hole_start, hole_end);
1151 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1152 }
1153
1154 /* And finally clear the reserved guard page */
1155 ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1156 }
1157
1158 static bool
1159 intel_enable_ppgtt(struct drm_device *dev)
1160 {
1161 if (i915_enable_ppgtt >= 0)
1162 return i915_enable_ppgtt;
1163
1164 #ifdef CONFIG_INTEL_IOMMU
1165 /* Disable ppgtt on SNB if VT-d is on. */
1166 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
1167 return false;
1168 #endif
1169
1170 return true;
1171 }
1172
1173 void i915_gem_init_global_gtt(struct drm_device *dev)
1174 {
1175 struct drm_i915_private *dev_priv = dev->dev_private;
1176 unsigned long gtt_size, mappable_size;
1177
1178 gtt_size = dev_priv->gtt.base.total;
1179 mappable_size = dev_priv->gtt.mappable_end;
1180
1181 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
1182 int ret;
1183
1184 if (INTEL_INFO(dev)->gen <= 7) {
1185 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
1186 * aperture accordingly when using aliasing ppgtt. */
1187 gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
1188 }
1189
1190 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1191
1192 ret = i915_gem_init_aliasing_ppgtt(dev);
1193 if (!ret)
1194 return;
1195
1196 DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
1197 drm_mm_takedown(&dev_priv->gtt.base.mm);
1198 if (INTEL_INFO(dev)->gen < 8)
1199 gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
1200 }
1201 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1202 }
1203
1204 static int setup_scratch_page(struct drm_device *dev)
1205 {
1206 struct drm_i915_private *dev_priv = dev->dev_private;
1207 struct page *page;
1208 dma_addr_t dma_addr;
1209
1210 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1211 if (page == NULL)
1212 return -ENOMEM;
1213 get_page(page);
1214 set_pages_uc(page, 1);
1215
1216 #ifdef CONFIG_INTEL_IOMMU
1217 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1218 PCI_DMA_BIDIRECTIONAL);
1219 if (pci_dma_mapping_error(dev->pdev, dma_addr))
1220 return -EINVAL;
1221 #else
1222 dma_addr = page_to_phys(page);
1223 #endif
1224 dev_priv->gtt.base.scratch.page = page;
1225 dev_priv->gtt.base.scratch.addr = dma_addr;
1226
1227 return 0;
1228 }
1229
1230 static void teardown_scratch_page(struct drm_device *dev)
1231 {
1232 struct drm_i915_private *dev_priv = dev->dev_private;
1233 struct page *page = dev_priv->gtt.base.scratch.page;
1234
1235 set_pages_wb(page, 1);
1236 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1237 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1238 put_page(page);
1239 __free_page(page);
1240 }
1241
1242 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1243 {
1244 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1245 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1246 return snb_gmch_ctl << 20;
1247 }
1248
1249 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1250 {
1251 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1252 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1253 if (bdw_gmch_ctl)
1254 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1255 if (bdw_gmch_ctl > 4) {
1256 WARN_ON(!i915_preliminary_hw_support);
1257 return 4<<20;
1258 }
1259
1260 return bdw_gmch_ctl << 20;
1261 }
1262
1263 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1264 {
1265 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1266 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1267 return snb_gmch_ctl << 25; /* 32 MB units */
1268 }
1269
1270 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1271 {
1272 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1273 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1274 return bdw_gmch_ctl << 25; /* 32 MB units */
1275 }
1276
1277 static int ggtt_probe_common(struct drm_device *dev,
1278 size_t gtt_size)
1279 {
1280 struct drm_i915_private *dev_priv = dev->dev_private;
1281 phys_addr_t gtt_phys_addr;
1282 int ret;
1283
1284 /* For Modern GENs the PTEs and register space are split in the BAR */
1285 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1286 (pci_resource_len(dev->pdev, 0) / 2);
1287
1288 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1289 if (!dev_priv->gtt.gsm) {
1290 DRM_ERROR("Failed to map the gtt page table\n");
1291 return -ENOMEM;
1292 }
1293
1294 ret = setup_scratch_page(dev);
1295 if (ret) {
1296 DRM_ERROR("Scratch setup failed\n");
1297 /* iounmap will also get called at remove, but meh */
1298 iounmap(dev_priv->gtt.gsm);
1299 }
1300
1301 return ret;
1302 }
1303
1304 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1305 * bits. When using advanced contexts each context stores its own PAT, but
1306 * writing this data shouldn't be harmful even in those cases. */
1307 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1308 {
1309 #define GEN8_PPAT_UC (0<<0)
1310 #define GEN8_PPAT_WC (1<<0)
1311 #define GEN8_PPAT_WT (2<<0)
1312 #define GEN8_PPAT_WB (3<<0)
1313 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1314 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1315 #define GEN8_PPAT_LLC (1<<2)
1316 #define GEN8_PPAT_LLCELLC (2<<2)
1317 #define GEN8_PPAT_LLCeLLC (3<<2)
1318 #define GEN8_PPAT_AGE(x) (x<<4)
1319 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1320 uint64_t pat;
1321
1322 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
1323 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1324 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1325 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
1326 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1327 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1328 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1329 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1330
1331 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1332 * write would work. */
1333 I915_WRITE(GEN8_PRIVATE_PAT, pat);
1334 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1335 }
1336
1337 static int gen8_gmch_probe(struct drm_device *dev,
1338 size_t *gtt_total,
1339 size_t *stolen,
1340 phys_addr_t *mappable_base,
1341 unsigned long *mappable_end)
1342 {
1343 struct drm_i915_private *dev_priv = dev->dev_private;
1344 unsigned int gtt_size;
1345 u16 snb_gmch_ctl;
1346 int ret;
1347
1348 /* TODO: We're not aware of mappable constraints on gen8 yet */
1349 *mappable_base = pci_resource_start(dev->pdev, 2);
1350 *mappable_end = pci_resource_len(dev->pdev, 2);
1351
1352 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1353 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1354
1355 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1356
1357 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1358
1359 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1360 *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1361
1362 gen8_setup_private_ppat(dev_priv);
1363
1364 ret = ggtt_probe_common(dev, gtt_size);
1365
1366 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1367 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1368
1369 return ret;
1370 }
1371
1372 static int gen6_gmch_probe(struct drm_device *dev,
1373 size_t *gtt_total,
1374 size_t *stolen,
1375 phys_addr_t *mappable_base,
1376 unsigned long *mappable_end)
1377 {
1378 struct drm_i915_private *dev_priv = dev->dev_private;
1379 unsigned int gtt_size;
1380 u16 snb_gmch_ctl;
1381 int ret;
1382
1383 *mappable_base = pci_resource_start(dev->pdev, 2);
1384 *mappable_end = pci_resource_len(dev->pdev, 2);
1385
1386 /* 64/512MB is the current min/max we actually know of, but this is just
1387 * a coarse sanity check.
1388 */
1389 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1390 DRM_ERROR("Unknown GMADR size (%lx)\n",
1391 dev_priv->gtt.mappable_end);
1392 return -ENXIO;
1393 }
1394
1395 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1396 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1397 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1398
1399 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1400
1401 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1402 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1403
1404 ret = ggtt_probe_common(dev, gtt_size);
1405
1406 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1407 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1408
1409 return ret;
1410 }
1411
1412 static void gen6_gmch_remove(struct i915_address_space *vm)
1413 {
1414
1415 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1416
1417 drm_mm_takedown(&vm->mm);
1418 iounmap(gtt->gsm);
1419 teardown_scratch_page(vm->dev);
1420 }
1421
1422 static int i915_gmch_probe(struct drm_device *dev,
1423 size_t *gtt_total,
1424 size_t *stolen,
1425 phys_addr_t *mappable_base,
1426 unsigned long *mappable_end)
1427 {
1428 struct drm_i915_private *dev_priv = dev->dev_private;
1429 int ret;
1430
1431 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1432 if (!ret) {
1433 DRM_ERROR("failed to set up gmch\n");
1434 return -EIO;
1435 }
1436
1437 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1438
1439 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1440 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1441 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
1442
1443 if (unlikely(dev_priv->gtt.do_idle_maps))
1444 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
1445
1446 return 0;
1447 }
1448
1449 static void i915_gmch_remove(struct i915_address_space *vm)
1450 {
1451 intel_gmch_remove();
1452 }
1453
1454 int i915_gem_gtt_init(struct drm_device *dev)
1455 {
1456 struct drm_i915_private *dev_priv = dev->dev_private;
1457 struct i915_gtt *gtt = &dev_priv->gtt;
1458 int ret;
1459
1460 if (INTEL_INFO(dev)->gen <= 5) {
1461 gtt->gtt_probe = i915_gmch_probe;
1462 gtt->base.cleanup = i915_gmch_remove;
1463 } else if (INTEL_INFO(dev)->gen < 8) {
1464 gtt->gtt_probe = gen6_gmch_probe;
1465 gtt->base.cleanup = gen6_gmch_remove;
1466 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1467 gtt->base.pte_encode = iris_pte_encode;
1468 else if (IS_HASWELL(dev))
1469 gtt->base.pte_encode = hsw_pte_encode;
1470 else if (IS_VALLEYVIEW(dev))
1471 gtt->base.pte_encode = byt_pte_encode;
1472 else if (INTEL_INFO(dev)->gen >= 7)
1473 gtt->base.pte_encode = ivb_pte_encode;
1474 else
1475 gtt->base.pte_encode = snb_pte_encode;
1476 } else {
1477 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1478 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1479 }
1480
1481 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1482 &gtt->mappable_base, &gtt->mappable_end);
1483 if (ret)
1484 return ret;
1485
1486 gtt->base.dev = dev;
1487
1488 /* GMADR is the PCI mmio aperture into the global GTT. */
1489 DRM_INFO("Memory usable by graphics device = %zdM\n",
1490 gtt->base.total >> 20);
1491 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1492 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1493
1494 return 0;
1495 }
This page took 0.064551 seconds and 5 git commands to generate.