drm/i915: Reduce the pointer dance of i915_is_ggtt()
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: Global GTT views
37 *
38 * Background and previous state
39 *
40 * Historically objects could exists (be bound) in global GTT space only as
41 * singular instances with a view representing all of the object's backing pages
42 * in a linear fashion. This view will be called a normal view.
43 *
44 * To support multiple views of the same object, where the number of mapped
45 * pages is not equal to the backing store, or where the layout of the pages
46 * is not linear, concept of a GGTT view was added.
47 *
48 * One example of an alternative view is a stereo display driven by a single
49 * image. In this case we would have a framebuffer looking like this
50 * (2x2 pages):
51 *
52 * 12
53 * 34
54 *
55 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56 * rendering. In contrast, fed to the display engine would be an alternative
57 * view which could look something like this:
58 *
59 * 1212
60 * 3434
61 *
62 * In this example both the size and layout of pages in the alternative view is
63 * different from the normal view.
64 *
65 * Implementation and usage
66 *
67 * GGTT views are implemented using VMAs and are distinguished via enum
68 * i915_ggtt_view_type and struct i915_ggtt_view.
69 *
70 * A new flavour of core GEM functions which work with GGTT bound objects were
71 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72 * renaming in large amounts of code. They take the struct i915_ggtt_view
73 * parameter encapsulating all metadata required to implement a view.
74 *
75 * As a helper for callers which are only interested in the normal view,
76 * globally const i915_ggtt_view_normal singleton instance exists. All old core
77 * GEM API functions, the ones not taking the view parameter, are operating on,
78 * or with the normal GGTT view.
79 *
80 * Code wanting to add or use a new GGTT view needs to:
81 *
82 * 1. Add a new enum with a suitable name.
83 * 2. Extend the metadata in the i915_ggtt_view structure if required.
84 * 3. Add support to i915_get_vma_pages().
85 *
86 * New views are required to build a scatter-gather table from within the
87 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88 * exists for the lifetime of an VMA.
89 *
90 * Core API is designed to have copy semantics which means that passed in
91 * struct i915_ggtt_view does not need to be persistent (left around after
92 * calling the core API functions).
93 *
94 */
95
96 static int
97 i915_get_ggtt_vma_pages(struct i915_vma *vma);
98
99 const struct i915_ggtt_view i915_ggtt_view_normal = {
100 .type = I915_GGTT_VIEW_NORMAL,
101 };
102 const struct i915_ggtt_view i915_ggtt_view_rotated = {
103 .type = I915_GGTT_VIEW_ROTATED,
104 };
105
106 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
107 {
108 bool has_aliasing_ppgtt;
109 bool has_full_ppgtt;
110 bool has_full_48bit_ppgtt;
111
112 has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
113 has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
114 has_full_48bit_ppgtt = IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9;
115
116 if (intel_vgpu_active(dev))
117 has_full_ppgtt = false; /* emulation is too hard */
118
119 /*
120 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
121 * execlists, the sole mechanism available to submit work.
122 */
123 if (INTEL_INFO(dev)->gen < 9 &&
124 (enable_ppgtt == 0 || !has_aliasing_ppgtt))
125 return 0;
126
127 if (enable_ppgtt == 1)
128 return 1;
129
130 if (enable_ppgtt == 2 && has_full_ppgtt)
131 return 2;
132
133 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
134 return 3;
135
136 #ifdef CONFIG_INTEL_IOMMU
137 /* Disable ppgtt on SNB if VT-d is on. */
138 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
139 DRM_INFO("Disabling PPGTT because VT-d is on\n");
140 return 0;
141 }
142 #endif
143
144 /* Early VLV doesn't have this */
145 if (IS_VALLEYVIEW(dev) && dev->pdev->revision < 0xb) {
146 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
147 return 0;
148 }
149
150 if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
151 return has_full_48bit_ppgtt ? 3 : 2;
152 else
153 return has_aliasing_ppgtt ? 1 : 0;
154 }
155
156 static int ppgtt_bind_vma(struct i915_vma *vma,
157 enum i915_cache_level cache_level,
158 u32 unused)
159 {
160 u32 pte_flags = 0;
161
162 /* Currently applicable only to VLV */
163 if (vma->obj->gt_ro)
164 pte_flags |= PTE_READ_ONLY;
165
166 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
167 cache_level, pte_flags);
168
169 return 0;
170 }
171
172 static void ppgtt_unbind_vma(struct i915_vma *vma)
173 {
174 vma->vm->clear_range(vma->vm,
175 vma->node.start,
176 vma->obj->base.size,
177 true);
178 }
179
180 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
181 enum i915_cache_level level,
182 bool valid)
183 {
184 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
185 pte |= addr;
186
187 switch (level) {
188 case I915_CACHE_NONE:
189 pte |= PPAT_UNCACHED_INDEX;
190 break;
191 case I915_CACHE_WT:
192 pte |= PPAT_DISPLAY_ELLC_INDEX;
193 break;
194 default:
195 pte |= PPAT_CACHED_INDEX;
196 break;
197 }
198
199 return pte;
200 }
201
202 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
203 const enum i915_cache_level level)
204 {
205 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
206 pde |= addr;
207 if (level != I915_CACHE_NONE)
208 pde |= PPAT_CACHED_PDE_INDEX;
209 else
210 pde |= PPAT_UNCACHED_INDEX;
211 return pde;
212 }
213
214 #define gen8_pdpe_encode gen8_pde_encode
215 #define gen8_pml4e_encode gen8_pde_encode
216
217 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
218 enum i915_cache_level level,
219 bool valid, u32 unused)
220 {
221 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
222 pte |= GEN6_PTE_ADDR_ENCODE(addr);
223
224 switch (level) {
225 case I915_CACHE_L3_LLC:
226 case I915_CACHE_LLC:
227 pte |= GEN6_PTE_CACHE_LLC;
228 break;
229 case I915_CACHE_NONE:
230 pte |= GEN6_PTE_UNCACHED;
231 break;
232 default:
233 MISSING_CASE(level);
234 }
235
236 return pte;
237 }
238
239 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
240 enum i915_cache_level level,
241 bool valid, u32 unused)
242 {
243 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
244 pte |= GEN6_PTE_ADDR_ENCODE(addr);
245
246 switch (level) {
247 case I915_CACHE_L3_LLC:
248 pte |= GEN7_PTE_CACHE_L3_LLC;
249 break;
250 case I915_CACHE_LLC:
251 pte |= GEN6_PTE_CACHE_LLC;
252 break;
253 case I915_CACHE_NONE:
254 pte |= GEN6_PTE_UNCACHED;
255 break;
256 default:
257 MISSING_CASE(level);
258 }
259
260 return pte;
261 }
262
263 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
264 enum i915_cache_level level,
265 bool valid, u32 flags)
266 {
267 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
268 pte |= GEN6_PTE_ADDR_ENCODE(addr);
269
270 if (!(flags & PTE_READ_ONLY))
271 pte |= BYT_PTE_WRITEABLE;
272
273 if (level != I915_CACHE_NONE)
274 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
275
276 return pte;
277 }
278
279 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
280 enum i915_cache_level level,
281 bool valid, u32 unused)
282 {
283 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
284 pte |= HSW_PTE_ADDR_ENCODE(addr);
285
286 if (level != I915_CACHE_NONE)
287 pte |= HSW_WB_LLC_AGE3;
288
289 return pte;
290 }
291
292 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
293 enum i915_cache_level level,
294 bool valid, u32 unused)
295 {
296 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
297 pte |= HSW_PTE_ADDR_ENCODE(addr);
298
299 switch (level) {
300 case I915_CACHE_NONE:
301 break;
302 case I915_CACHE_WT:
303 pte |= HSW_WT_ELLC_LLC_AGE3;
304 break;
305 default:
306 pte |= HSW_WB_ELLC_LLC_AGE3;
307 break;
308 }
309
310 return pte;
311 }
312
313 static int __setup_page_dma(struct drm_device *dev,
314 struct i915_page_dma *p, gfp_t flags)
315 {
316 struct device *device = &dev->pdev->dev;
317
318 p->page = alloc_page(flags);
319 if (!p->page)
320 return -ENOMEM;
321
322 p->daddr = dma_map_page(device,
323 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
324
325 if (dma_mapping_error(device, p->daddr)) {
326 __free_page(p->page);
327 return -EINVAL;
328 }
329
330 return 0;
331 }
332
333 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
334 {
335 return __setup_page_dma(dev, p, GFP_KERNEL);
336 }
337
338 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
339 {
340 if (WARN_ON(!p->page))
341 return;
342
343 dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
344 __free_page(p->page);
345 memset(p, 0, sizeof(*p));
346 }
347
348 static void *kmap_page_dma(struct i915_page_dma *p)
349 {
350 return kmap_atomic(p->page);
351 }
352
353 /* We use the flushing unmap only with ppgtt structures:
354 * page directories, page tables and scratch pages.
355 */
356 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
357 {
358 /* There are only few exceptions for gen >=6. chv and bxt.
359 * And we are not sure about the latter so play safe for now.
360 */
361 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
362 drm_clflush_virt_range(vaddr, PAGE_SIZE);
363
364 kunmap_atomic(vaddr);
365 }
366
367 #define kmap_px(px) kmap_page_dma(px_base(px))
368 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
369
370 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
371 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
372 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
373 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
374
375 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
376 const uint64_t val)
377 {
378 int i;
379 uint64_t * const vaddr = kmap_page_dma(p);
380
381 for (i = 0; i < 512; i++)
382 vaddr[i] = val;
383
384 kunmap_page_dma(dev, vaddr);
385 }
386
387 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
388 const uint32_t val32)
389 {
390 uint64_t v = val32;
391
392 v = v << 32 | val32;
393
394 fill_page_dma(dev, p, v);
395 }
396
397 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
398 {
399 struct i915_page_scratch *sp;
400 int ret;
401
402 sp = kzalloc(sizeof(*sp), GFP_KERNEL);
403 if (sp == NULL)
404 return ERR_PTR(-ENOMEM);
405
406 ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
407 if (ret) {
408 kfree(sp);
409 return ERR_PTR(ret);
410 }
411
412 set_pages_uc(px_page(sp), 1);
413
414 return sp;
415 }
416
417 static void free_scratch_page(struct drm_device *dev,
418 struct i915_page_scratch *sp)
419 {
420 set_pages_wb(px_page(sp), 1);
421
422 cleanup_px(dev, sp);
423 kfree(sp);
424 }
425
426 static struct i915_page_table *alloc_pt(struct drm_device *dev)
427 {
428 struct i915_page_table *pt;
429 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
430 GEN8_PTES : GEN6_PTES;
431 int ret = -ENOMEM;
432
433 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
434 if (!pt)
435 return ERR_PTR(-ENOMEM);
436
437 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
438 GFP_KERNEL);
439
440 if (!pt->used_ptes)
441 goto fail_bitmap;
442
443 ret = setup_px(dev, pt);
444 if (ret)
445 goto fail_page_m;
446
447 return pt;
448
449 fail_page_m:
450 kfree(pt->used_ptes);
451 fail_bitmap:
452 kfree(pt);
453
454 return ERR_PTR(ret);
455 }
456
457 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
458 {
459 cleanup_px(dev, pt);
460 kfree(pt->used_ptes);
461 kfree(pt);
462 }
463
464 static void gen8_initialize_pt(struct i915_address_space *vm,
465 struct i915_page_table *pt)
466 {
467 gen8_pte_t scratch_pte;
468
469 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
470 I915_CACHE_LLC, true);
471
472 fill_px(vm->dev, pt, scratch_pte);
473 }
474
475 static void gen6_initialize_pt(struct i915_address_space *vm,
476 struct i915_page_table *pt)
477 {
478 gen6_pte_t scratch_pte;
479
480 WARN_ON(px_dma(vm->scratch_page) == 0);
481
482 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
483 I915_CACHE_LLC, true, 0);
484
485 fill32_px(vm->dev, pt, scratch_pte);
486 }
487
488 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
489 {
490 struct i915_page_directory *pd;
491 int ret = -ENOMEM;
492
493 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
494 if (!pd)
495 return ERR_PTR(-ENOMEM);
496
497 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
498 sizeof(*pd->used_pdes), GFP_KERNEL);
499 if (!pd->used_pdes)
500 goto fail_bitmap;
501
502 ret = setup_px(dev, pd);
503 if (ret)
504 goto fail_page_m;
505
506 return pd;
507
508 fail_page_m:
509 kfree(pd->used_pdes);
510 fail_bitmap:
511 kfree(pd);
512
513 return ERR_PTR(ret);
514 }
515
516 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
517 {
518 if (px_page(pd)) {
519 cleanup_px(dev, pd);
520 kfree(pd->used_pdes);
521 kfree(pd);
522 }
523 }
524
525 static void gen8_initialize_pd(struct i915_address_space *vm,
526 struct i915_page_directory *pd)
527 {
528 gen8_pde_t scratch_pde;
529
530 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
531
532 fill_px(vm->dev, pd, scratch_pde);
533 }
534
535 static int __pdp_init(struct drm_device *dev,
536 struct i915_page_directory_pointer *pdp)
537 {
538 size_t pdpes = I915_PDPES_PER_PDP(dev);
539
540 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
541 sizeof(unsigned long),
542 GFP_KERNEL);
543 if (!pdp->used_pdpes)
544 return -ENOMEM;
545
546 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
547 GFP_KERNEL);
548 if (!pdp->page_directory) {
549 kfree(pdp->used_pdpes);
550 /* the PDP might be the statically allocated top level. Keep it
551 * as clean as possible */
552 pdp->used_pdpes = NULL;
553 return -ENOMEM;
554 }
555
556 return 0;
557 }
558
559 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
560 {
561 kfree(pdp->used_pdpes);
562 kfree(pdp->page_directory);
563 pdp->page_directory = NULL;
564 }
565
566 static struct
567 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
568 {
569 struct i915_page_directory_pointer *pdp;
570 int ret = -ENOMEM;
571
572 WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
573
574 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
575 if (!pdp)
576 return ERR_PTR(-ENOMEM);
577
578 ret = __pdp_init(dev, pdp);
579 if (ret)
580 goto fail_bitmap;
581
582 ret = setup_px(dev, pdp);
583 if (ret)
584 goto fail_page_m;
585
586 return pdp;
587
588 fail_page_m:
589 __pdp_fini(pdp);
590 fail_bitmap:
591 kfree(pdp);
592
593 return ERR_PTR(ret);
594 }
595
596 static void free_pdp(struct drm_device *dev,
597 struct i915_page_directory_pointer *pdp)
598 {
599 __pdp_fini(pdp);
600 if (USES_FULL_48BIT_PPGTT(dev)) {
601 cleanup_px(dev, pdp);
602 kfree(pdp);
603 }
604 }
605
606 static void gen8_initialize_pdp(struct i915_address_space *vm,
607 struct i915_page_directory_pointer *pdp)
608 {
609 gen8_ppgtt_pdpe_t scratch_pdpe;
610
611 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
612
613 fill_px(vm->dev, pdp, scratch_pdpe);
614 }
615
616 static void gen8_initialize_pml4(struct i915_address_space *vm,
617 struct i915_pml4 *pml4)
618 {
619 gen8_ppgtt_pml4e_t scratch_pml4e;
620
621 scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
622 I915_CACHE_LLC);
623
624 fill_px(vm->dev, pml4, scratch_pml4e);
625 }
626
627 static void
628 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
629 struct i915_page_directory_pointer *pdp,
630 struct i915_page_directory *pd,
631 int index)
632 {
633 gen8_ppgtt_pdpe_t *page_directorypo;
634
635 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
636 return;
637
638 page_directorypo = kmap_px(pdp);
639 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
640 kunmap_px(ppgtt, page_directorypo);
641 }
642
643 static void
644 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
645 struct i915_pml4 *pml4,
646 struct i915_page_directory_pointer *pdp,
647 int index)
648 {
649 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
650
651 WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
652 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
653 kunmap_px(ppgtt, pagemap);
654 }
655
656 /* Broadwell Page Directory Pointer Descriptors */
657 static int gen8_write_pdp(struct drm_i915_gem_request *req,
658 unsigned entry,
659 dma_addr_t addr)
660 {
661 struct intel_engine_cs *ring = req->ring;
662 int ret;
663
664 BUG_ON(entry >= 4);
665
666 ret = intel_ring_begin(req, 6);
667 if (ret)
668 return ret;
669
670 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
671 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(ring, entry));
672 intel_ring_emit(ring, upper_32_bits(addr));
673 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
674 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(ring, entry));
675 intel_ring_emit(ring, lower_32_bits(addr));
676 intel_ring_advance(ring);
677
678 return 0;
679 }
680
681 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
682 struct drm_i915_gem_request *req)
683 {
684 int i, ret;
685
686 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
687 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
688
689 ret = gen8_write_pdp(req, i, pd_daddr);
690 if (ret)
691 return ret;
692 }
693
694 return 0;
695 }
696
697 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
698 struct drm_i915_gem_request *req)
699 {
700 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
701 }
702
703 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
704 struct i915_page_directory_pointer *pdp,
705 uint64_t start,
706 uint64_t length,
707 gen8_pte_t scratch_pte)
708 {
709 struct i915_hw_ppgtt *ppgtt =
710 container_of(vm, struct i915_hw_ppgtt, base);
711 gen8_pte_t *pt_vaddr;
712 unsigned pdpe = gen8_pdpe_index(start);
713 unsigned pde = gen8_pde_index(start);
714 unsigned pte = gen8_pte_index(start);
715 unsigned num_entries = length >> PAGE_SHIFT;
716 unsigned last_pte, i;
717
718 if (WARN_ON(!pdp))
719 return;
720
721 while (num_entries) {
722 struct i915_page_directory *pd;
723 struct i915_page_table *pt;
724
725 if (WARN_ON(!pdp->page_directory[pdpe]))
726 break;
727
728 pd = pdp->page_directory[pdpe];
729
730 if (WARN_ON(!pd->page_table[pde]))
731 break;
732
733 pt = pd->page_table[pde];
734
735 if (WARN_ON(!px_page(pt)))
736 break;
737
738 last_pte = pte + num_entries;
739 if (last_pte > GEN8_PTES)
740 last_pte = GEN8_PTES;
741
742 pt_vaddr = kmap_px(pt);
743
744 for (i = pte; i < last_pte; i++) {
745 pt_vaddr[i] = scratch_pte;
746 num_entries--;
747 }
748
749 kunmap_px(ppgtt, pt);
750
751 pte = 0;
752 if (++pde == I915_PDES) {
753 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
754 break;
755 pde = 0;
756 }
757 }
758 }
759
760 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
761 uint64_t start,
762 uint64_t length,
763 bool use_scratch)
764 {
765 struct i915_hw_ppgtt *ppgtt =
766 container_of(vm, struct i915_hw_ppgtt, base);
767 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
768 I915_CACHE_LLC, use_scratch);
769
770 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
771 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
772 scratch_pte);
773 } else {
774 uint64_t pml4e;
775 struct i915_page_directory_pointer *pdp;
776
777 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
778 gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
779 scratch_pte);
780 }
781 }
782 }
783
784 static void
785 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
786 struct i915_page_directory_pointer *pdp,
787 struct sg_page_iter *sg_iter,
788 uint64_t start,
789 enum i915_cache_level cache_level)
790 {
791 struct i915_hw_ppgtt *ppgtt =
792 container_of(vm, struct i915_hw_ppgtt, base);
793 gen8_pte_t *pt_vaddr;
794 unsigned pdpe = gen8_pdpe_index(start);
795 unsigned pde = gen8_pde_index(start);
796 unsigned pte = gen8_pte_index(start);
797
798 pt_vaddr = NULL;
799
800 while (__sg_page_iter_next(sg_iter)) {
801 if (pt_vaddr == NULL) {
802 struct i915_page_directory *pd = pdp->page_directory[pdpe];
803 struct i915_page_table *pt = pd->page_table[pde];
804 pt_vaddr = kmap_px(pt);
805 }
806
807 pt_vaddr[pte] =
808 gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
809 cache_level, true);
810 if (++pte == GEN8_PTES) {
811 kunmap_px(ppgtt, pt_vaddr);
812 pt_vaddr = NULL;
813 if (++pde == I915_PDES) {
814 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
815 break;
816 pde = 0;
817 }
818 pte = 0;
819 }
820 }
821
822 if (pt_vaddr)
823 kunmap_px(ppgtt, pt_vaddr);
824 }
825
826 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
827 struct sg_table *pages,
828 uint64_t start,
829 enum i915_cache_level cache_level,
830 u32 unused)
831 {
832 struct i915_hw_ppgtt *ppgtt =
833 container_of(vm, struct i915_hw_ppgtt, base);
834 struct sg_page_iter sg_iter;
835
836 __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
837
838 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
839 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
840 cache_level);
841 } else {
842 struct i915_page_directory_pointer *pdp;
843 uint64_t pml4e;
844 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
845
846 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
847 gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
848 start, cache_level);
849 }
850 }
851 }
852
853 static void gen8_free_page_tables(struct drm_device *dev,
854 struct i915_page_directory *pd)
855 {
856 int i;
857
858 if (!px_page(pd))
859 return;
860
861 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
862 if (WARN_ON(!pd->page_table[i]))
863 continue;
864
865 free_pt(dev, pd->page_table[i]);
866 pd->page_table[i] = NULL;
867 }
868 }
869
870 static int gen8_init_scratch(struct i915_address_space *vm)
871 {
872 struct drm_device *dev = vm->dev;
873
874 vm->scratch_page = alloc_scratch_page(dev);
875 if (IS_ERR(vm->scratch_page))
876 return PTR_ERR(vm->scratch_page);
877
878 vm->scratch_pt = alloc_pt(dev);
879 if (IS_ERR(vm->scratch_pt)) {
880 free_scratch_page(dev, vm->scratch_page);
881 return PTR_ERR(vm->scratch_pt);
882 }
883
884 vm->scratch_pd = alloc_pd(dev);
885 if (IS_ERR(vm->scratch_pd)) {
886 free_pt(dev, vm->scratch_pt);
887 free_scratch_page(dev, vm->scratch_page);
888 return PTR_ERR(vm->scratch_pd);
889 }
890
891 if (USES_FULL_48BIT_PPGTT(dev)) {
892 vm->scratch_pdp = alloc_pdp(dev);
893 if (IS_ERR(vm->scratch_pdp)) {
894 free_pd(dev, vm->scratch_pd);
895 free_pt(dev, vm->scratch_pt);
896 free_scratch_page(dev, vm->scratch_page);
897 return PTR_ERR(vm->scratch_pdp);
898 }
899 }
900
901 gen8_initialize_pt(vm, vm->scratch_pt);
902 gen8_initialize_pd(vm, vm->scratch_pd);
903 if (USES_FULL_48BIT_PPGTT(dev))
904 gen8_initialize_pdp(vm, vm->scratch_pdp);
905
906 return 0;
907 }
908
909 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
910 {
911 enum vgt_g2v_type msg;
912 struct drm_device *dev = ppgtt->base.dev;
913 struct drm_i915_private *dev_priv = dev->dev_private;
914 int i;
915
916 if (USES_FULL_48BIT_PPGTT(dev)) {
917 u64 daddr = px_dma(&ppgtt->pml4);
918
919 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
920 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
921
922 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
923 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
924 } else {
925 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
926 u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
927
928 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
929 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
930 }
931
932 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
933 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
934 }
935
936 I915_WRITE(vgtif_reg(g2v_notify), msg);
937
938 return 0;
939 }
940
941 static void gen8_free_scratch(struct i915_address_space *vm)
942 {
943 struct drm_device *dev = vm->dev;
944
945 if (USES_FULL_48BIT_PPGTT(dev))
946 free_pdp(dev, vm->scratch_pdp);
947 free_pd(dev, vm->scratch_pd);
948 free_pt(dev, vm->scratch_pt);
949 free_scratch_page(dev, vm->scratch_page);
950 }
951
952 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
953 struct i915_page_directory_pointer *pdp)
954 {
955 int i;
956
957 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
958 if (WARN_ON(!pdp->page_directory[i]))
959 continue;
960
961 gen8_free_page_tables(dev, pdp->page_directory[i]);
962 free_pd(dev, pdp->page_directory[i]);
963 }
964
965 free_pdp(dev, pdp);
966 }
967
968 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
969 {
970 int i;
971
972 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
973 if (WARN_ON(!ppgtt->pml4.pdps[i]))
974 continue;
975
976 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
977 }
978
979 cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
980 }
981
982 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
983 {
984 struct i915_hw_ppgtt *ppgtt =
985 container_of(vm, struct i915_hw_ppgtt, base);
986
987 if (intel_vgpu_active(vm->dev))
988 gen8_ppgtt_notify_vgt(ppgtt, false);
989
990 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
991 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
992 else
993 gen8_ppgtt_cleanup_4lvl(ppgtt);
994
995 gen8_free_scratch(vm);
996 }
997
998 /**
999 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1000 * @vm: Master vm structure.
1001 * @pd: Page directory for this address range.
1002 * @start: Starting virtual address to begin allocations.
1003 * @length: Size of the allocations.
1004 * @new_pts: Bitmap set by function with new allocations. Likely used by the
1005 * caller to free on error.
1006 *
1007 * Allocate the required number of page tables. Extremely similar to
1008 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1009 * the page directory boundary (instead of the page directory pointer). That
1010 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1011 * possible, and likely that the caller will need to use multiple calls of this
1012 * function to achieve the appropriate allocation.
1013 *
1014 * Return: 0 if success; negative error code otherwise.
1015 */
1016 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1017 struct i915_page_directory *pd,
1018 uint64_t start,
1019 uint64_t length,
1020 unsigned long *new_pts)
1021 {
1022 struct drm_device *dev = vm->dev;
1023 struct i915_page_table *pt;
1024 uint32_t pde;
1025
1026 gen8_for_each_pde(pt, pd, start, length, pde) {
1027 /* Don't reallocate page tables */
1028 if (test_bit(pde, pd->used_pdes)) {
1029 /* Scratch is never allocated this way */
1030 WARN_ON(pt == vm->scratch_pt);
1031 continue;
1032 }
1033
1034 pt = alloc_pt(dev);
1035 if (IS_ERR(pt))
1036 goto unwind_out;
1037
1038 gen8_initialize_pt(vm, pt);
1039 pd->page_table[pde] = pt;
1040 __set_bit(pde, new_pts);
1041 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1042 }
1043
1044 return 0;
1045
1046 unwind_out:
1047 for_each_set_bit(pde, new_pts, I915_PDES)
1048 free_pt(dev, pd->page_table[pde]);
1049
1050 return -ENOMEM;
1051 }
1052
1053 /**
1054 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1055 * @vm: Master vm structure.
1056 * @pdp: Page directory pointer for this address range.
1057 * @start: Starting virtual address to begin allocations.
1058 * @length: Size of the allocations.
1059 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1060 * caller to free on error.
1061 *
1062 * Allocate the required number of page directories starting at the pde index of
1063 * @start, and ending at the pde index @start + @length. This function will skip
1064 * over already allocated page directories within the range, and only allocate
1065 * new ones, setting the appropriate pointer within the pdp as well as the
1066 * correct position in the bitmap @new_pds.
1067 *
1068 * The function will only allocate the pages within the range for a give page
1069 * directory pointer. In other words, if @start + @length straddles a virtually
1070 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1071 * required by the caller, This is not currently possible, and the BUG in the
1072 * code will prevent it.
1073 *
1074 * Return: 0 if success; negative error code otherwise.
1075 */
1076 static int
1077 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1078 struct i915_page_directory_pointer *pdp,
1079 uint64_t start,
1080 uint64_t length,
1081 unsigned long *new_pds)
1082 {
1083 struct drm_device *dev = vm->dev;
1084 struct i915_page_directory *pd;
1085 uint32_t pdpe;
1086 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1087
1088 WARN_ON(!bitmap_empty(new_pds, pdpes));
1089
1090 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1091 if (test_bit(pdpe, pdp->used_pdpes))
1092 continue;
1093
1094 pd = alloc_pd(dev);
1095 if (IS_ERR(pd))
1096 goto unwind_out;
1097
1098 gen8_initialize_pd(vm, pd);
1099 pdp->page_directory[pdpe] = pd;
1100 __set_bit(pdpe, new_pds);
1101 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1102 }
1103
1104 return 0;
1105
1106 unwind_out:
1107 for_each_set_bit(pdpe, new_pds, pdpes)
1108 free_pd(dev, pdp->page_directory[pdpe]);
1109
1110 return -ENOMEM;
1111 }
1112
1113 /**
1114 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1115 * @vm: Master vm structure.
1116 * @pml4: Page map level 4 for this address range.
1117 * @start: Starting virtual address to begin allocations.
1118 * @length: Size of the allocations.
1119 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1120 * caller to free on error.
1121 *
1122 * Allocate the required number of page directory pointers. Extremely similar to
1123 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1124 * The main difference is here we are limited by the pml4 boundary (instead of
1125 * the page directory pointer).
1126 *
1127 * Return: 0 if success; negative error code otherwise.
1128 */
1129 static int
1130 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1131 struct i915_pml4 *pml4,
1132 uint64_t start,
1133 uint64_t length,
1134 unsigned long *new_pdps)
1135 {
1136 struct drm_device *dev = vm->dev;
1137 struct i915_page_directory_pointer *pdp;
1138 uint32_t pml4e;
1139
1140 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1141
1142 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1143 if (!test_bit(pml4e, pml4->used_pml4es)) {
1144 pdp = alloc_pdp(dev);
1145 if (IS_ERR(pdp))
1146 goto unwind_out;
1147
1148 gen8_initialize_pdp(vm, pdp);
1149 pml4->pdps[pml4e] = pdp;
1150 __set_bit(pml4e, new_pdps);
1151 trace_i915_page_directory_pointer_entry_alloc(vm,
1152 pml4e,
1153 start,
1154 GEN8_PML4E_SHIFT);
1155 }
1156 }
1157
1158 return 0;
1159
1160 unwind_out:
1161 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1162 free_pdp(dev, pml4->pdps[pml4e]);
1163
1164 return -ENOMEM;
1165 }
1166
1167 static void
1168 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1169 {
1170 kfree(new_pts);
1171 kfree(new_pds);
1172 }
1173
1174 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1175 * of these are based on the number of PDPEs in the system.
1176 */
1177 static
1178 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1179 unsigned long **new_pts,
1180 uint32_t pdpes)
1181 {
1182 unsigned long *pds;
1183 unsigned long *pts;
1184
1185 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1186 if (!pds)
1187 return -ENOMEM;
1188
1189 pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1190 GFP_TEMPORARY);
1191 if (!pts)
1192 goto err_out;
1193
1194 *new_pds = pds;
1195 *new_pts = pts;
1196
1197 return 0;
1198
1199 err_out:
1200 free_gen8_temp_bitmaps(pds, pts);
1201 return -ENOMEM;
1202 }
1203
1204 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1205 * the page table structures, we mark them dirty so that
1206 * context switching/execlist queuing code takes extra steps
1207 * to ensure that tlbs are flushed.
1208 */
1209 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1210 {
1211 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1212 }
1213
1214 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1215 struct i915_page_directory_pointer *pdp,
1216 uint64_t start,
1217 uint64_t length)
1218 {
1219 struct i915_hw_ppgtt *ppgtt =
1220 container_of(vm, struct i915_hw_ppgtt, base);
1221 unsigned long *new_page_dirs, *new_page_tables;
1222 struct drm_device *dev = vm->dev;
1223 struct i915_page_directory *pd;
1224 const uint64_t orig_start = start;
1225 const uint64_t orig_length = length;
1226 uint32_t pdpe;
1227 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1228 int ret;
1229
1230 /* Wrap is never okay since we can only represent 48b, and we don't
1231 * actually use the other side of the canonical address space.
1232 */
1233 if (WARN_ON(start + length < start))
1234 return -ENODEV;
1235
1236 if (WARN_ON(start + length > vm->total))
1237 return -ENODEV;
1238
1239 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1240 if (ret)
1241 return ret;
1242
1243 /* Do the allocations first so we can easily bail out */
1244 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1245 new_page_dirs);
1246 if (ret) {
1247 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1248 return ret;
1249 }
1250
1251 /* For every page directory referenced, allocate page tables */
1252 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1253 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1254 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1255 if (ret)
1256 goto err_out;
1257 }
1258
1259 start = orig_start;
1260 length = orig_length;
1261
1262 /* Allocations have completed successfully, so set the bitmaps, and do
1263 * the mappings. */
1264 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1265 gen8_pde_t *const page_directory = kmap_px(pd);
1266 struct i915_page_table *pt;
1267 uint64_t pd_len = length;
1268 uint64_t pd_start = start;
1269 uint32_t pde;
1270
1271 /* Every pd should be allocated, we just did that above. */
1272 WARN_ON(!pd);
1273
1274 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1275 /* Same reasoning as pd */
1276 WARN_ON(!pt);
1277 WARN_ON(!pd_len);
1278 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1279
1280 /* Set our used ptes within the page table */
1281 bitmap_set(pt->used_ptes,
1282 gen8_pte_index(pd_start),
1283 gen8_pte_count(pd_start, pd_len));
1284
1285 /* Our pde is now pointing to the pagetable, pt */
1286 __set_bit(pde, pd->used_pdes);
1287
1288 /* Map the PDE to the page table */
1289 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1290 I915_CACHE_LLC);
1291 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1292 gen8_pte_index(start),
1293 gen8_pte_count(start, length),
1294 GEN8_PTES);
1295
1296 /* NB: We haven't yet mapped ptes to pages. At this
1297 * point we're still relying on insert_entries() */
1298 }
1299
1300 kunmap_px(ppgtt, page_directory);
1301 __set_bit(pdpe, pdp->used_pdpes);
1302 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1303 }
1304
1305 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1306 mark_tlbs_dirty(ppgtt);
1307 return 0;
1308
1309 err_out:
1310 while (pdpe--) {
1311 unsigned long temp;
1312
1313 for_each_set_bit(temp, new_page_tables + pdpe *
1314 BITS_TO_LONGS(I915_PDES), I915_PDES)
1315 free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1316 }
1317
1318 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1319 free_pd(dev, pdp->page_directory[pdpe]);
1320
1321 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1322 mark_tlbs_dirty(ppgtt);
1323 return ret;
1324 }
1325
1326 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1327 struct i915_pml4 *pml4,
1328 uint64_t start,
1329 uint64_t length)
1330 {
1331 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1332 struct i915_hw_ppgtt *ppgtt =
1333 container_of(vm, struct i915_hw_ppgtt, base);
1334 struct i915_page_directory_pointer *pdp;
1335 uint64_t pml4e;
1336 int ret = 0;
1337
1338 /* Do the pml4 allocations first, so we don't need to track the newly
1339 * allocated tables below the pdp */
1340 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1341
1342 /* The pagedirectory and pagetable allocations are done in the shared 3
1343 * and 4 level code. Just allocate the pdps.
1344 */
1345 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1346 new_pdps);
1347 if (ret)
1348 return ret;
1349
1350 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1351 "The allocation has spanned more than 512GB. "
1352 "It is highly likely this is incorrect.");
1353
1354 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1355 WARN_ON(!pdp);
1356
1357 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1358 if (ret)
1359 goto err_out;
1360
1361 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1362 }
1363
1364 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1365 GEN8_PML4ES_PER_PML4);
1366
1367 return 0;
1368
1369 err_out:
1370 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1371 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1372
1373 return ret;
1374 }
1375
1376 static int gen8_alloc_va_range(struct i915_address_space *vm,
1377 uint64_t start, uint64_t length)
1378 {
1379 struct i915_hw_ppgtt *ppgtt =
1380 container_of(vm, struct i915_hw_ppgtt, base);
1381
1382 if (USES_FULL_48BIT_PPGTT(vm->dev))
1383 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1384 else
1385 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1386 }
1387
1388 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1389 uint64_t start, uint64_t length,
1390 gen8_pte_t scratch_pte,
1391 struct seq_file *m)
1392 {
1393 struct i915_page_directory *pd;
1394 uint32_t pdpe;
1395
1396 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1397 struct i915_page_table *pt;
1398 uint64_t pd_len = length;
1399 uint64_t pd_start = start;
1400 uint32_t pde;
1401
1402 if (!test_bit(pdpe, pdp->used_pdpes))
1403 continue;
1404
1405 seq_printf(m, "\tPDPE #%d\n", pdpe);
1406 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1407 uint32_t pte;
1408 gen8_pte_t *pt_vaddr;
1409
1410 if (!test_bit(pde, pd->used_pdes))
1411 continue;
1412
1413 pt_vaddr = kmap_px(pt);
1414 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1415 uint64_t va =
1416 (pdpe << GEN8_PDPE_SHIFT) |
1417 (pde << GEN8_PDE_SHIFT) |
1418 (pte << GEN8_PTE_SHIFT);
1419 int i;
1420 bool found = false;
1421
1422 for (i = 0; i < 4; i++)
1423 if (pt_vaddr[pte + i] != scratch_pte)
1424 found = true;
1425 if (!found)
1426 continue;
1427
1428 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1429 for (i = 0; i < 4; i++) {
1430 if (pt_vaddr[pte + i] != scratch_pte)
1431 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1432 else
1433 seq_puts(m, " SCRATCH ");
1434 }
1435 seq_puts(m, "\n");
1436 }
1437 /* don't use kunmap_px, it could trigger
1438 * an unnecessary flush.
1439 */
1440 kunmap_atomic(pt_vaddr);
1441 }
1442 }
1443 }
1444
1445 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1446 {
1447 struct i915_address_space *vm = &ppgtt->base;
1448 uint64_t start = ppgtt->base.start;
1449 uint64_t length = ppgtt->base.total;
1450 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1451 I915_CACHE_LLC, true);
1452
1453 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1454 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1455 } else {
1456 uint64_t pml4e;
1457 struct i915_pml4 *pml4 = &ppgtt->pml4;
1458 struct i915_page_directory_pointer *pdp;
1459
1460 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1461 if (!test_bit(pml4e, pml4->used_pml4es))
1462 continue;
1463
1464 seq_printf(m, " PML4E #%llu\n", pml4e);
1465 gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1466 }
1467 }
1468 }
1469
1470 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1471 {
1472 unsigned long *new_page_dirs, *new_page_tables;
1473 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1474 int ret;
1475
1476 /* We allocate temp bitmap for page tables for no gain
1477 * but as this is for init only, lets keep the things simple
1478 */
1479 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1480 if (ret)
1481 return ret;
1482
1483 /* Allocate for all pdps regardless of how the ppgtt
1484 * was defined.
1485 */
1486 ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1487 0, 1ULL << 32,
1488 new_page_dirs);
1489 if (!ret)
1490 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1491
1492 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1493
1494 return ret;
1495 }
1496
1497 /*
1498 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1499 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1500 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1501 * space.
1502 *
1503 */
1504 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1505 {
1506 int ret;
1507
1508 ret = gen8_init_scratch(&ppgtt->base);
1509 if (ret)
1510 return ret;
1511
1512 ppgtt->base.start = 0;
1513 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1514 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1515 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1516 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1517 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1518 ppgtt->base.bind_vma = ppgtt_bind_vma;
1519 ppgtt->debug_dump = gen8_dump_ppgtt;
1520
1521 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1522 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1523 if (ret)
1524 goto free_scratch;
1525
1526 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1527
1528 ppgtt->base.total = 1ULL << 48;
1529 ppgtt->switch_mm = gen8_48b_mm_switch;
1530 } else {
1531 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1532 if (ret)
1533 goto free_scratch;
1534
1535 ppgtt->base.total = 1ULL << 32;
1536 ppgtt->switch_mm = gen8_legacy_mm_switch;
1537 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1538 0, 0,
1539 GEN8_PML4E_SHIFT);
1540
1541 if (intel_vgpu_active(ppgtt->base.dev)) {
1542 ret = gen8_preallocate_top_level_pdps(ppgtt);
1543 if (ret)
1544 goto free_scratch;
1545 }
1546 }
1547
1548 if (intel_vgpu_active(ppgtt->base.dev))
1549 gen8_ppgtt_notify_vgt(ppgtt, true);
1550
1551 return 0;
1552
1553 free_scratch:
1554 gen8_free_scratch(&ppgtt->base);
1555 return ret;
1556 }
1557
1558 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1559 {
1560 struct i915_address_space *vm = &ppgtt->base;
1561 struct i915_page_table *unused;
1562 gen6_pte_t scratch_pte;
1563 uint32_t pd_entry;
1564 uint32_t pte, pde, temp;
1565 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1566
1567 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1568 I915_CACHE_LLC, true, 0);
1569
1570 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1571 u32 expected;
1572 gen6_pte_t *pt_vaddr;
1573 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1574 pd_entry = readl(ppgtt->pd_addr + pde);
1575 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1576
1577 if (pd_entry != expected)
1578 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1579 pde,
1580 pd_entry,
1581 expected);
1582 seq_printf(m, "\tPDE: %x\n", pd_entry);
1583
1584 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1585
1586 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1587 unsigned long va =
1588 (pde * PAGE_SIZE * GEN6_PTES) +
1589 (pte * PAGE_SIZE);
1590 int i;
1591 bool found = false;
1592 for (i = 0; i < 4; i++)
1593 if (pt_vaddr[pte + i] != scratch_pte)
1594 found = true;
1595 if (!found)
1596 continue;
1597
1598 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1599 for (i = 0; i < 4; i++) {
1600 if (pt_vaddr[pte + i] != scratch_pte)
1601 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1602 else
1603 seq_puts(m, " SCRATCH ");
1604 }
1605 seq_puts(m, "\n");
1606 }
1607 kunmap_px(ppgtt, pt_vaddr);
1608 }
1609 }
1610
1611 /* Write pde (index) from the page directory @pd to the page table @pt */
1612 static void gen6_write_pde(struct i915_page_directory *pd,
1613 const int pde, struct i915_page_table *pt)
1614 {
1615 /* Caller needs to make sure the write completes if necessary */
1616 struct i915_hw_ppgtt *ppgtt =
1617 container_of(pd, struct i915_hw_ppgtt, pd);
1618 u32 pd_entry;
1619
1620 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1621 pd_entry |= GEN6_PDE_VALID;
1622
1623 writel(pd_entry, ppgtt->pd_addr + pde);
1624 }
1625
1626 /* Write all the page tables found in the ppgtt structure to incrementing page
1627 * directories. */
1628 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1629 struct i915_page_directory *pd,
1630 uint32_t start, uint32_t length)
1631 {
1632 struct i915_page_table *pt;
1633 uint32_t pde, temp;
1634
1635 gen6_for_each_pde(pt, pd, start, length, temp, pde)
1636 gen6_write_pde(pd, pde, pt);
1637
1638 /* Make sure write is complete before other code can use this page
1639 * table. Also require for WC mapped PTEs */
1640 readl(dev_priv->gtt.gsm);
1641 }
1642
1643 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1644 {
1645 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1646
1647 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1648 }
1649
1650 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1651 struct drm_i915_gem_request *req)
1652 {
1653 struct intel_engine_cs *ring = req->ring;
1654 int ret;
1655
1656 /* NB: TLBs must be flushed and invalidated before a switch */
1657 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1658 if (ret)
1659 return ret;
1660
1661 ret = intel_ring_begin(req, 6);
1662 if (ret)
1663 return ret;
1664
1665 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1666 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
1667 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1668 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
1669 intel_ring_emit(ring, get_pd_offset(ppgtt));
1670 intel_ring_emit(ring, MI_NOOP);
1671 intel_ring_advance(ring);
1672
1673 return 0;
1674 }
1675
1676 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1677 struct drm_i915_gem_request *req)
1678 {
1679 struct intel_engine_cs *ring = req->ring;
1680 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1681
1682 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1683 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1684 return 0;
1685 }
1686
1687 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1688 struct drm_i915_gem_request *req)
1689 {
1690 struct intel_engine_cs *ring = req->ring;
1691 int ret;
1692
1693 /* NB: TLBs must be flushed and invalidated before a switch */
1694 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1695 if (ret)
1696 return ret;
1697
1698 ret = intel_ring_begin(req, 6);
1699 if (ret)
1700 return ret;
1701
1702 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1703 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
1704 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1705 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
1706 intel_ring_emit(ring, get_pd_offset(ppgtt));
1707 intel_ring_emit(ring, MI_NOOP);
1708 intel_ring_advance(ring);
1709
1710 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1711 if (ring->id != RCS) {
1712 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1713 if (ret)
1714 return ret;
1715 }
1716
1717 return 0;
1718 }
1719
1720 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1721 struct drm_i915_gem_request *req)
1722 {
1723 struct intel_engine_cs *ring = req->ring;
1724 struct drm_device *dev = ppgtt->base.dev;
1725 struct drm_i915_private *dev_priv = dev->dev_private;
1726
1727
1728 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1729 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1730
1731 POSTING_READ(RING_PP_DIR_DCLV(ring));
1732
1733 return 0;
1734 }
1735
1736 static void gen8_ppgtt_enable(struct drm_device *dev)
1737 {
1738 struct drm_i915_private *dev_priv = dev->dev_private;
1739 struct intel_engine_cs *ring;
1740 int j;
1741
1742 for_each_ring(ring, dev_priv, j) {
1743 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1744 I915_WRITE(RING_MODE_GEN7(ring),
1745 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1746 }
1747 }
1748
1749 static void gen7_ppgtt_enable(struct drm_device *dev)
1750 {
1751 struct drm_i915_private *dev_priv = dev->dev_private;
1752 struct intel_engine_cs *ring;
1753 uint32_t ecochk, ecobits;
1754 int i;
1755
1756 ecobits = I915_READ(GAC_ECO_BITS);
1757 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1758
1759 ecochk = I915_READ(GAM_ECOCHK);
1760 if (IS_HASWELL(dev)) {
1761 ecochk |= ECOCHK_PPGTT_WB_HSW;
1762 } else {
1763 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1764 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1765 }
1766 I915_WRITE(GAM_ECOCHK, ecochk);
1767
1768 for_each_ring(ring, dev_priv, i) {
1769 /* GFX_MODE is per-ring on gen7+ */
1770 I915_WRITE(RING_MODE_GEN7(ring),
1771 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1772 }
1773 }
1774
1775 static void gen6_ppgtt_enable(struct drm_device *dev)
1776 {
1777 struct drm_i915_private *dev_priv = dev->dev_private;
1778 uint32_t ecochk, gab_ctl, ecobits;
1779
1780 ecobits = I915_READ(GAC_ECO_BITS);
1781 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1782 ECOBITS_PPGTT_CACHE64B);
1783
1784 gab_ctl = I915_READ(GAB_CTL);
1785 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1786
1787 ecochk = I915_READ(GAM_ECOCHK);
1788 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1789
1790 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1791 }
1792
1793 /* PPGTT support for Sandybdrige/Gen6 and later */
1794 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1795 uint64_t start,
1796 uint64_t length,
1797 bool use_scratch)
1798 {
1799 struct i915_hw_ppgtt *ppgtt =
1800 container_of(vm, struct i915_hw_ppgtt, base);
1801 gen6_pte_t *pt_vaddr, scratch_pte;
1802 unsigned first_entry = start >> PAGE_SHIFT;
1803 unsigned num_entries = length >> PAGE_SHIFT;
1804 unsigned act_pt = first_entry / GEN6_PTES;
1805 unsigned first_pte = first_entry % GEN6_PTES;
1806 unsigned last_pte, i;
1807
1808 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1809 I915_CACHE_LLC, true, 0);
1810
1811 while (num_entries) {
1812 last_pte = first_pte + num_entries;
1813 if (last_pte > GEN6_PTES)
1814 last_pte = GEN6_PTES;
1815
1816 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1817
1818 for (i = first_pte; i < last_pte; i++)
1819 pt_vaddr[i] = scratch_pte;
1820
1821 kunmap_px(ppgtt, pt_vaddr);
1822
1823 num_entries -= last_pte - first_pte;
1824 first_pte = 0;
1825 act_pt++;
1826 }
1827 }
1828
1829 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1830 struct sg_table *pages,
1831 uint64_t start,
1832 enum i915_cache_level cache_level, u32 flags)
1833 {
1834 struct i915_hw_ppgtt *ppgtt =
1835 container_of(vm, struct i915_hw_ppgtt, base);
1836 gen6_pte_t *pt_vaddr;
1837 unsigned first_entry = start >> PAGE_SHIFT;
1838 unsigned act_pt = first_entry / GEN6_PTES;
1839 unsigned act_pte = first_entry % GEN6_PTES;
1840 struct sg_page_iter sg_iter;
1841
1842 pt_vaddr = NULL;
1843 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1844 if (pt_vaddr == NULL)
1845 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1846
1847 pt_vaddr[act_pte] =
1848 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1849 cache_level, true, flags);
1850
1851 if (++act_pte == GEN6_PTES) {
1852 kunmap_px(ppgtt, pt_vaddr);
1853 pt_vaddr = NULL;
1854 act_pt++;
1855 act_pte = 0;
1856 }
1857 }
1858 if (pt_vaddr)
1859 kunmap_px(ppgtt, pt_vaddr);
1860 }
1861
1862 static int gen6_alloc_va_range(struct i915_address_space *vm,
1863 uint64_t start_in, uint64_t length_in)
1864 {
1865 DECLARE_BITMAP(new_page_tables, I915_PDES);
1866 struct drm_device *dev = vm->dev;
1867 struct drm_i915_private *dev_priv = dev->dev_private;
1868 struct i915_hw_ppgtt *ppgtt =
1869 container_of(vm, struct i915_hw_ppgtt, base);
1870 struct i915_page_table *pt;
1871 uint32_t start, length, start_save, length_save;
1872 uint32_t pde, temp;
1873 int ret;
1874
1875 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1876 return -ENODEV;
1877
1878 start = start_save = start_in;
1879 length = length_save = length_in;
1880
1881 bitmap_zero(new_page_tables, I915_PDES);
1882
1883 /* The allocation is done in two stages so that we can bail out with
1884 * minimal amount of pain. The first stage finds new page tables that
1885 * need allocation. The second stage marks use ptes within the page
1886 * tables.
1887 */
1888 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1889 if (pt != vm->scratch_pt) {
1890 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1891 continue;
1892 }
1893
1894 /* We've already allocated a page table */
1895 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1896
1897 pt = alloc_pt(dev);
1898 if (IS_ERR(pt)) {
1899 ret = PTR_ERR(pt);
1900 goto unwind_out;
1901 }
1902
1903 gen6_initialize_pt(vm, pt);
1904
1905 ppgtt->pd.page_table[pde] = pt;
1906 __set_bit(pde, new_page_tables);
1907 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1908 }
1909
1910 start = start_save;
1911 length = length_save;
1912
1913 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1914 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1915
1916 bitmap_zero(tmp_bitmap, GEN6_PTES);
1917 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1918 gen6_pte_count(start, length));
1919
1920 if (__test_and_clear_bit(pde, new_page_tables))
1921 gen6_write_pde(&ppgtt->pd, pde, pt);
1922
1923 trace_i915_page_table_entry_map(vm, pde, pt,
1924 gen6_pte_index(start),
1925 gen6_pte_count(start, length),
1926 GEN6_PTES);
1927 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1928 GEN6_PTES);
1929 }
1930
1931 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1932
1933 /* Make sure write is complete before other code can use this page
1934 * table. Also require for WC mapped PTEs */
1935 readl(dev_priv->gtt.gsm);
1936
1937 mark_tlbs_dirty(ppgtt);
1938 return 0;
1939
1940 unwind_out:
1941 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1942 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1943
1944 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1945 free_pt(vm->dev, pt);
1946 }
1947
1948 mark_tlbs_dirty(ppgtt);
1949 return ret;
1950 }
1951
1952 static int gen6_init_scratch(struct i915_address_space *vm)
1953 {
1954 struct drm_device *dev = vm->dev;
1955
1956 vm->scratch_page = alloc_scratch_page(dev);
1957 if (IS_ERR(vm->scratch_page))
1958 return PTR_ERR(vm->scratch_page);
1959
1960 vm->scratch_pt = alloc_pt(dev);
1961 if (IS_ERR(vm->scratch_pt)) {
1962 free_scratch_page(dev, vm->scratch_page);
1963 return PTR_ERR(vm->scratch_pt);
1964 }
1965
1966 gen6_initialize_pt(vm, vm->scratch_pt);
1967
1968 return 0;
1969 }
1970
1971 static void gen6_free_scratch(struct i915_address_space *vm)
1972 {
1973 struct drm_device *dev = vm->dev;
1974
1975 free_pt(dev, vm->scratch_pt);
1976 free_scratch_page(dev, vm->scratch_page);
1977 }
1978
1979 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1980 {
1981 struct i915_hw_ppgtt *ppgtt =
1982 container_of(vm, struct i915_hw_ppgtt, base);
1983 struct i915_page_table *pt;
1984 uint32_t pde;
1985
1986 drm_mm_remove_node(&ppgtt->node);
1987
1988 gen6_for_all_pdes(pt, ppgtt, pde) {
1989 if (pt != vm->scratch_pt)
1990 free_pt(ppgtt->base.dev, pt);
1991 }
1992
1993 gen6_free_scratch(vm);
1994 }
1995
1996 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1997 {
1998 struct i915_address_space *vm = &ppgtt->base;
1999 struct drm_device *dev = ppgtt->base.dev;
2000 struct drm_i915_private *dev_priv = dev->dev_private;
2001 bool retried = false;
2002 int ret;
2003
2004 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2005 * allocator works in address space sizes, so it's multiplied by page
2006 * size. We allocate at the top of the GTT to avoid fragmentation.
2007 */
2008 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
2009
2010 ret = gen6_init_scratch(vm);
2011 if (ret)
2012 return ret;
2013
2014 alloc:
2015 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2016 &ppgtt->node, GEN6_PD_SIZE,
2017 GEN6_PD_ALIGN, 0,
2018 0, dev_priv->gtt.base.total,
2019 DRM_MM_TOPDOWN);
2020 if (ret == -ENOSPC && !retried) {
2021 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2022 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2023 I915_CACHE_NONE,
2024 0, dev_priv->gtt.base.total,
2025 0);
2026 if (ret)
2027 goto err_out;
2028
2029 retried = true;
2030 goto alloc;
2031 }
2032
2033 if (ret)
2034 goto err_out;
2035
2036
2037 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2038 DRM_DEBUG("Forced to use aperture for PDEs\n");
2039
2040 return 0;
2041
2042 err_out:
2043 gen6_free_scratch(vm);
2044 return ret;
2045 }
2046
2047 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2048 {
2049 return gen6_ppgtt_allocate_page_directories(ppgtt);
2050 }
2051
2052 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2053 uint64_t start, uint64_t length)
2054 {
2055 struct i915_page_table *unused;
2056 uint32_t pde, temp;
2057
2058 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2059 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2060 }
2061
2062 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2063 {
2064 struct drm_device *dev = ppgtt->base.dev;
2065 struct drm_i915_private *dev_priv = dev->dev_private;
2066 int ret;
2067
2068 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2069 if (IS_GEN6(dev)) {
2070 ppgtt->switch_mm = gen6_mm_switch;
2071 } else if (IS_HASWELL(dev)) {
2072 ppgtt->switch_mm = hsw_mm_switch;
2073 } else if (IS_GEN7(dev)) {
2074 ppgtt->switch_mm = gen7_mm_switch;
2075 } else
2076 BUG();
2077
2078 if (intel_vgpu_active(dev))
2079 ppgtt->switch_mm = vgpu_mm_switch;
2080
2081 ret = gen6_ppgtt_alloc(ppgtt);
2082 if (ret)
2083 return ret;
2084
2085 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2086 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2087 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2088 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2089 ppgtt->base.bind_vma = ppgtt_bind_vma;
2090 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2091 ppgtt->base.start = 0;
2092 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2093 ppgtt->debug_dump = gen6_dump_ppgtt;
2094
2095 ppgtt->pd.base.ggtt_offset =
2096 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2097
2098 ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2099 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2100
2101 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2102
2103 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2104
2105 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2106 ppgtt->node.size >> 20,
2107 ppgtt->node.start / PAGE_SIZE);
2108
2109 DRM_DEBUG("Adding PPGTT at offset %x\n",
2110 ppgtt->pd.base.ggtt_offset << 10);
2111
2112 return 0;
2113 }
2114
2115 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2116 {
2117 ppgtt->base.dev = dev;
2118
2119 if (INTEL_INFO(dev)->gen < 8)
2120 return gen6_ppgtt_init(ppgtt);
2121 else
2122 return gen8_ppgtt_init(ppgtt);
2123 }
2124
2125 static void i915_address_space_init(struct i915_address_space *vm,
2126 struct drm_i915_private *dev_priv)
2127 {
2128 drm_mm_init(&vm->mm, vm->start, vm->total);
2129 vm->dev = dev_priv->dev;
2130 INIT_LIST_HEAD(&vm->active_list);
2131 INIT_LIST_HEAD(&vm->inactive_list);
2132 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2133 }
2134
2135 static void gtt_write_workarounds(struct drm_device *dev)
2136 {
2137 struct drm_i915_private *dev_priv = dev->dev_private;
2138
2139 /* This function is for gtt related workarounds. This function is
2140 * called on driver load and after a GPU reset, so you can place
2141 * workarounds here even if they get overwritten by GPU reset.
2142 */
2143 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2144 if (IS_BROADWELL(dev))
2145 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2146 else if (IS_CHERRYVIEW(dev))
2147 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2148 else if (IS_SKYLAKE(dev))
2149 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2150 else if (IS_BROXTON(dev))
2151 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2152 }
2153
2154 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2155 {
2156 struct drm_i915_private *dev_priv = dev->dev_private;
2157 int ret = 0;
2158
2159 ret = __hw_ppgtt_init(dev, ppgtt);
2160 if (ret == 0) {
2161 kref_init(&ppgtt->ref);
2162 i915_address_space_init(&ppgtt->base, dev_priv);
2163 }
2164
2165 return ret;
2166 }
2167
2168 int i915_ppgtt_init_hw(struct drm_device *dev)
2169 {
2170 gtt_write_workarounds(dev);
2171
2172 /* In the case of execlists, PPGTT is enabled by the context descriptor
2173 * and the PDPs are contained within the context itself. We don't
2174 * need to do anything here. */
2175 if (i915.enable_execlists)
2176 return 0;
2177
2178 if (!USES_PPGTT(dev))
2179 return 0;
2180
2181 if (IS_GEN6(dev))
2182 gen6_ppgtt_enable(dev);
2183 else if (IS_GEN7(dev))
2184 gen7_ppgtt_enable(dev);
2185 else if (INTEL_INFO(dev)->gen >= 8)
2186 gen8_ppgtt_enable(dev);
2187 else
2188 MISSING_CASE(INTEL_INFO(dev)->gen);
2189
2190 return 0;
2191 }
2192
2193 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2194 {
2195 struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2196 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2197
2198 if (i915.enable_execlists)
2199 return 0;
2200
2201 if (!ppgtt)
2202 return 0;
2203
2204 return ppgtt->switch_mm(ppgtt, req);
2205 }
2206
2207 struct i915_hw_ppgtt *
2208 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2209 {
2210 struct i915_hw_ppgtt *ppgtt;
2211 int ret;
2212
2213 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2214 if (!ppgtt)
2215 return ERR_PTR(-ENOMEM);
2216
2217 ret = i915_ppgtt_init(dev, ppgtt);
2218 if (ret) {
2219 kfree(ppgtt);
2220 return ERR_PTR(ret);
2221 }
2222
2223 ppgtt->file_priv = fpriv;
2224
2225 trace_i915_ppgtt_create(&ppgtt->base);
2226
2227 return ppgtt;
2228 }
2229
2230 void i915_ppgtt_release(struct kref *kref)
2231 {
2232 struct i915_hw_ppgtt *ppgtt =
2233 container_of(kref, struct i915_hw_ppgtt, ref);
2234
2235 trace_i915_ppgtt_release(&ppgtt->base);
2236
2237 /* vmas should already be unbound */
2238 WARN_ON(!list_empty(&ppgtt->base.active_list));
2239 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2240
2241 list_del(&ppgtt->base.global_link);
2242 drm_mm_takedown(&ppgtt->base.mm);
2243
2244 ppgtt->base.cleanup(&ppgtt->base);
2245 kfree(ppgtt);
2246 }
2247
2248 extern int intel_iommu_gfx_mapped;
2249 /* Certain Gen5 chipsets require require idling the GPU before
2250 * unmapping anything from the GTT when VT-d is enabled.
2251 */
2252 static bool needs_idle_maps(struct drm_device *dev)
2253 {
2254 #ifdef CONFIG_INTEL_IOMMU
2255 /* Query intel_iommu to see if we need the workaround. Presumably that
2256 * was loaded first.
2257 */
2258 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2259 return true;
2260 #endif
2261 return false;
2262 }
2263
2264 static bool do_idling(struct drm_i915_private *dev_priv)
2265 {
2266 bool ret = dev_priv->mm.interruptible;
2267
2268 if (unlikely(dev_priv->gtt.do_idle_maps)) {
2269 dev_priv->mm.interruptible = false;
2270 if (i915_gpu_idle(dev_priv->dev)) {
2271 DRM_ERROR("Couldn't idle GPU\n");
2272 /* Wait a bit, in hopes it avoids the hang */
2273 udelay(10);
2274 }
2275 }
2276
2277 return ret;
2278 }
2279
2280 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2281 {
2282 if (unlikely(dev_priv->gtt.do_idle_maps))
2283 dev_priv->mm.interruptible = interruptible;
2284 }
2285
2286 void i915_check_and_clear_faults(struct drm_device *dev)
2287 {
2288 struct drm_i915_private *dev_priv = dev->dev_private;
2289 struct intel_engine_cs *ring;
2290 int i;
2291
2292 if (INTEL_INFO(dev)->gen < 6)
2293 return;
2294
2295 for_each_ring(ring, dev_priv, i) {
2296 u32 fault_reg;
2297 fault_reg = I915_READ(RING_FAULT_REG(ring));
2298 if (fault_reg & RING_FAULT_VALID) {
2299 DRM_DEBUG_DRIVER("Unexpected fault\n"
2300 "\tAddr: 0x%08lx\n"
2301 "\tAddress space: %s\n"
2302 "\tSource ID: %d\n"
2303 "\tType: %d\n",
2304 fault_reg & PAGE_MASK,
2305 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2306 RING_FAULT_SRCID(fault_reg),
2307 RING_FAULT_FAULT_TYPE(fault_reg));
2308 I915_WRITE(RING_FAULT_REG(ring),
2309 fault_reg & ~RING_FAULT_VALID);
2310 }
2311 }
2312 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2313 }
2314
2315 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2316 {
2317 if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2318 intel_gtt_chipset_flush();
2319 } else {
2320 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2321 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2322 }
2323 }
2324
2325 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2326 {
2327 struct drm_i915_private *dev_priv = dev->dev_private;
2328
2329 /* Don't bother messing with faults pre GEN6 as we have little
2330 * documentation supporting that it's a good idea.
2331 */
2332 if (INTEL_INFO(dev)->gen < 6)
2333 return;
2334
2335 i915_check_and_clear_faults(dev);
2336
2337 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2338 dev_priv->gtt.base.start,
2339 dev_priv->gtt.base.total,
2340 true);
2341
2342 i915_ggtt_flush(dev_priv);
2343 }
2344
2345 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2346 {
2347 if (!dma_map_sg(&obj->base.dev->pdev->dev,
2348 obj->pages->sgl, obj->pages->nents,
2349 PCI_DMA_BIDIRECTIONAL))
2350 return -ENOSPC;
2351
2352 return 0;
2353 }
2354
2355 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2356 {
2357 #ifdef writeq
2358 writeq(pte, addr);
2359 #else
2360 iowrite32((u32)pte, addr);
2361 iowrite32(pte >> 32, addr + 4);
2362 #endif
2363 }
2364
2365 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2366 struct sg_table *st,
2367 uint64_t start,
2368 enum i915_cache_level level, u32 unused)
2369 {
2370 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2371 unsigned first_entry = start >> PAGE_SHIFT;
2372 gen8_pte_t __iomem *gtt_entries =
2373 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2374 int i = 0;
2375 struct sg_page_iter sg_iter;
2376 dma_addr_t addr = 0; /* shut up gcc */
2377 int rpm_atomic_seq;
2378
2379 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2380
2381 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2382 addr = sg_dma_address(sg_iter.sg) +
2383 (sg_iter.sg_pgoffset << PAGE_SHIFT);
2384 gen8_set_pte(&gtt_entries[i],
2385 gen8_pte_encode(addr, level, true));
2386 i++;
2387 }
2388
2389 /*
2390 * XXX: This serves as a posting read to make sure that the PTE has
2391 * actually been updated. There is some concern that even though
2392 * registers and PTEs are within the same BAR that they are potentially
2393 * of NUMA access patterns. Therefore, even with the way we assume
2394 * hardware should work, we must keep this posting read for paranoia.
2395 */
2396 if (i != 0)
2397 WARN_ON(readq(&gtt_entries[i-1])
2398 != gen8_pte_encode(addr, level, true));
2399
2400 /* This next bit makes the above posting read even more important. We
2401 * want to flush the TLBs only after we're certain all the PTE updates
2402 * have finished.
2403 */
2404 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2405 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2406
2407 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2408 }
2409
2410 struct insert_entries {
2411 struct i915_address_space *vm;
2412 struct sg_table *st;
2413 uint64_t start;
2414 enum i915_cache_level level;
2415 u32 flags;
2416 };
2417
2418 static int gen8_ggtt_insert_entries__cb(void *_arg)
2419 {
2420 struct insert_entries *arg = _arg;
2421 gen8_ggtt_insert_entries(arg->vm, arg->st,
2422 arg->start, arg->level, arg->flags);
2423 return 0;
2424 }
2425
2426 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2427 struct sg_table *st,
2428 uint64_t start,
2429 enum i915_cache_level level,
2430 u32 flags)
2431 {
2432 struct insert_entries arg = { vm, st, start, level, flags };
2433 stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2434 }
2435
2436 /*
2437 * Binds an object into the global gtt with the specified cache level. The object
2438 * will be accessible to the GPU via commands whose operands reference offsets
2439 * within the global GTT as well as accessible by the GPU through the GMADR
2440 * mapped BAR (dev_priv->mm.gtt->gtt).
2441 */
2442 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2443 struct sg_table *st,
2444 uint64_t start,
2445 enum i915_cache_level level, u32 flags)
2446 {
2447 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2448 unsigned first_entry = start >> PAGE_SHIFT;
2449 gen6_pte_t __iomem *gtt_entries =
2450 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2451 int i = 0;
2452 struct sg_page_iter sg_iter;
2453 dma_addr_t addr = 0;
2454 int rpm_atomic_seq;
2455
2456 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2457
2458 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2459 addr = sg_page_iter_dma_address(&sg_iter);
2460 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2461 i++;
2462 }
2463
2464 /* XXX: This serves as a posting read to make sure that the PTE has
2465 * actually been updated. There is some concern that even though
2466 * registers and PTEs are within the same BAR that they are potentially
2467 * of NUMA access patterns. Therefore, even with the way we assume
2468 * hardware should work, we must keep this posting read for paranoia.
2469 */
2470 if (i != 0) {
2471 unsigned long gtt = readl(&gtt_entries[i-1]);
2472 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2473 }
2474
2475 /* This next bit makes the above posting read even more important. We
2476 * want to flush the TLBs only after we're certain all the PTE updates
2477 * have finished.
2478 */
2479 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2480 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2481
2482 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2483 }
2484
2485 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2486 uint64_t start,
2487 uint64_t length,
2488 bool use_scratch)
2489 {
2490 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2491 unsigned first_entry = start >> PAGE_SHIFT;
2492 unsigned num_entries = length >> PAGE_SHIFT;
2493 gen8_pte_t scratch_pte, __iomem *gtt_base =
2494 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2495 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2496 int i;
2497 int rpm_atomic_seq;
2498
2499 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2500
2501 if (WARN(num_entries > max_entries,
2502 "First entry = %d; Num entries = %d (max=%d)\n",
2503 first_entry, num_entries, max_entries))
2504 num_entries = max_entries;
2505
2506 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2507 I915_CACHE_LLC,
2508 use_scratch);
2509 for (i = 0; i < num_entries; i++)
2510 gen8_set_pte(&gtt_base[i], scratch_pte);
2511 readl(gtt_base);
2512
2513 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2514 }
2515
2516 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2517 uint64_t start,
2518 uint64_t length,
2519 bool use_scratch)
2520 {
2521 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2522 unsigned first_entry = start >> PAGE_SHIFT;
2523 unsigned num_entries = length >> PAGE_SHIFT;
2524 gen6_pte_t scratch_pte, __iomem *gtt_base =
2525 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2526 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2527 int i;
2528 int rpm_atomic_seq;
2529
2530 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2531
2532 if (WARN(num_entries > max_entries,
2533 "First entry = %d; Num entries = %d (max=%d)\n",
2534 first_entry, num_entries, max_entries))
2535 num_entries = max_entries;
2536
2537 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2538 I915_CACHE_LLC, use_scratch, 0);
2539
2540 for (i = 0; i < num_entries; i++)
2541 iowrite32(scratch_pte, &gtt_base[i]);
2542 readl(gtt_base);
2543
2544 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2545 }
2546
2547 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2548 struct sg_table *pages,
2549 uint64_t start,
2550 enum i915_cache_level cache_level, u32 unused)
2551 {
2552 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2553 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2554 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2555 int rpm_atomic_seq;
2556
2557 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2558
2559 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2560
2561 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2562
2563 }
2564
2565 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2566 uint64_t start,
2567 uint64_t length,
2568 bool unused)
2569 {
2570 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2571 unsigned first_entry = start >> PAGE_SHIFT;
2572 unsigned num_entries = length >> PAGE_SHIFT;
2573 int rpm_atomic_seq;
2574
2575 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2576
2577 intel_gtt_clear_range(first_entry, num_entries);
2578
2579 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2580 }
2581
2582 static int ggtt_bind_vma(struct i915_vma *vma,
2583 enum i915_cache_level cache_level,
2584 u32 flags)
2585 {
2586 struct drm_i915_gem_object *obj = vma->obj;
2587 u32 pte_flags = 0;
2588 int ret;
2589
2590 ret = i915_get_ggtt_vma_pages(vma);
2591 if (ret)
2592 return ret;
2593
2594 /* Currently applicable only to VLV */
2595 if (obj->gt_ro)
2596 pte_flags |= PTE_READ_ONLY;
2597
2598 vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2599 vma->node.start,
2600 cache_level, pte_flags);
2601
2602 /*
2603 * Without aliasing PPGTT there's no difference between
2604 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2605 * upgrade to both bound if we bind either to avoid double-binding.
2606 */
2607 vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2608
2609 return 0;
2610 }
2611
2612 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2613 enum i915_cache_level cache_level,
2614 u32 flags)
2615 {
2616 struct drm_device *dev = vma->vm->dev;
2617 struct drm_i915_private *dev_priv = dev->dev_private;
2618 struct drm_i915_gem_object *obj = vma->obj;
2619 struct sg_table *pages = obj->pages;
2620 u32 pte_flags = 0;
2621 int ret;
2622
2623 ret = i915_get_ggtt_vma_pages(vma);
2624 if (ret)
2625 return ret;
2626 pages = vma->ggtt_view.pages;
2627
2628 /* Currently applicable only to VLV */
2629 if (obj->gt_ro)
2630 pte_flags |= PTE_READ_ONLY;
2631
2632
2633 if (flags & GLOBAL_BIND) {
2634 vma->vm->insert_entries(vma->vm, pages,
2635 vma->node.start,
2636 cache_level, pte_flags);
2637 }
2638
2639 if (flags & LOCAL_BIND) {
2640 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2641 appgtt->base.insert_entries(&appgtt->base, pages,
2642 vma->node.start,
2643 cache_level, pte_flags);
2644 }
2645
2646 return 0;
2647 }
2648
2649 static void ggtt_unbind_vma(struct i915_vma *vma)
2650 {
2651 struct drm_device *dev = vma->vm->dev;
2652 struct drm_i915_private *dev_priv = dev->dev_private;
2653 struct drm_i915_gem_object *obj = vma->obj;
2654 const uint64_t size = min_t(uint64_t,
2655 obj->base.size,
2656 vma->node.size);
2657
2658 if (vma->bound & GLOBAL_BIND) {
2659 vma->vm->clear_range(vma->vm,
2660 vma->node.start,
2661 size,
2662 true);
2663 }
2664
2665 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2666 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2667
2668 appgtt->base.clear_range(&appgtt->base,
2669 vma->node.start,
2670 size,
2671 true);
2672 }
2673 }
2674
2675 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2676 {
2677 struct drm_device *dev = obj->base.dev;
2678 struct drm_i915_private *dev_priv = dev->dev_private;
2679 bool interruptible;
2680
2681 interruptible = do_idling(dev_priv);
2682
2683 dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2684 PCI_DMA_BIDIRECTIONAL);
2685
2686 undo_idling(dev_priv, interruptible);
2687 }
2688
2689 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2690 unsigned long color,
2691 u64 *start,
2692 u64 *end)
2693 {
2694 if (node->color != color)
2695 *start += 4096;
2696
2697 if (!list_empty(&node->node_list)) {
2698 node = list_entry(node->node_list.next,
2699 struct drm_mm_node,
2700 node_list);
2701 if (node->allocated && node->color != color)
2702 *end -= 4096;
2703 }
2704 }
2705
2706 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2707 u64 start,
2708 u64 mappable_end,
2709 u64 end)
2710 {
2711 /* Let GEM Manage all of the aperture.
2712 *
2713 * However, leave one page at the end still bound to the scratch page.
2714 * There are a number of places where the hardware apparently prefetches
2715 * past the end of the object, and we've seen multiple hangs with the
2716 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2717 * aperture. One page should be enough to keep any prefetching inside
2718 * of the aperture.
2719 */
2720 struct drm_i915_private *dev_priv = dev->dev_private;
2721 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2722 struct drm_mm_node *entry;
2723 struct drm_i915_gem_object *obj;
2724 unsigned long hole_start, hole_end;
2725 int ret;
2726
2727 BUG_ON(mappable_end > end);
2728
2729 ggtt_vm->start = start;
2730
2731 /* Subtract the guard page before address space initialization to
2732 * shrink the range used by drm_mm */
2733 ggtt_vm->total = end - start - PAGE_SIZE;
2734 i915_address_space_init(ggtt_vm, dev_priv);
2735 ggtt_vm->total += PAGE_SIZE;
2736
2737 if (intel_vgpu_active(dev)) {
2738 ret = intel_vgt_balloon(dev);
2739 if (ret)
2740 return ret;
2741 }
2742
2743 if (!HAS_LLC(dev))
2744 ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2745
2746 /* Mark any preallocated objects as occupied */
2747 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2748 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2749
2750 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2751 i915_gem_obj_ggtt_offset(obj), obj->base.size);
2752
2753 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2754 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2755 if (ret) {
2756 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2757 return ret;
2758 }
2759 vma->bound |= GLOBAL_BIND;
2760 __i915_vma_set_map_and_fenceable(vma);
2761 list_add_tail(&vma->vm_link, &ggtt_vm->inactive_list);
2762 }
2763
2764 /* Clear any non-preallocated blocks */
2765 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2766 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2767 hole_start, hole_end);
2768 ggtt_vm->clear_range(ggtt_vm, hole_start,
2769 hole_end - hole_start, true);
2770 }
2771
2772 /* And finally clear the reserved guard page */
2773 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2774
2775 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2776 struct i915_hw_ppgtt *ppgtt;
2777
2778 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2779 if (!ppgtt)
2780 return -ENOMEM;
2781
2782 ret = __hw_ppgtt_init(dev, ppgtt);
2783 if (ret) {
2784 ppgtt->base.cleanup(&ppgtt->base);
2785 kfree(ppgtt);
2786 return ret;
2787 }
2788
2789 if (ppgtt->base.allocate_va_range)
2790 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2791 ppgtt->base.total);
2792 if (ret) {
2793 ppgtt->base.cleanup(&ppgtt->base);
2794 kfree(ppgtt);
2795 return ret;
2796 }
2797
2798 ppgtt->base.clear_range(&ppgtt->base,
2799 ppgtt->base.start,
2800 ppgtt->base.total,
2801 true);
2802
2803 dev_priv->mm.aliasing_ppgtt = ppgtt;
2804 WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2805 dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
2806 }
2807
2808 return 0;
2809 }
2810
2811 void i915_gem_init_global_gtt(struct drm_device *dev)
2812 {
2813 struct drm_i915_private *dev_priv = dev->dev_private;
2814 u64 gtt_size, mappable_size;
2815
2816 gtt_size = dev_priv->gtt.base.total;
2817 mappable_size = dev_priv->gtt.mappable_end;
2818
2819 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2820 }
2821
2822 void i915_global_gtt_cleanup(struct drm_device *dev)
2823 {
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 struct i915_address_space *vm = &dev_priv->gtt.base;
2826
2827 if (dev_priv->mm.aliasing_ppgtt) {
2828 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2829
2830 ppgtt->base.cleanup(&ppgtt->base);
2831 }
2832
2833 i915_gem_cleanup_stolen(dev);
2834
2835 if (drm_mm_initialized(&vm->mm)) {
2836 if (intel_vgpu_active(dev))
2837 intel_vgt_deballoon();
2838
2839 drm_mm_takedown(&vm->mm);
2840 list_del(&vm->global_link);
2841 }
2842
2843 vm->cleanup(vm);
2844 }
2845
2846 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2847 {
2848 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2849 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2850 return snb_gmch_ctl << 20;
2851 }
2852
2853 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2854 {
2855 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2856 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2857 if (bdw_gmch_ctl)
2858 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2859
2860 #ifdef CONFIG_X86_32
2861 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2862 if (bdw_gmch_ctl > 4)
2863 bdw_gmch_ctl = 4;
2864 #endif
2865
2866 return bdw_gmch_ctl << 20;
2867 }
2868
2869 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2870 {
2871 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2872 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2873
2874 if (gmch_ctrl)
2875 return 1 << (20 + gmch_ctrl);
2876
2877 return 0;
2878 }
2879
2880 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2881 {
2882 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2883 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2884 return snb_gmch_ctl << 25; /* 32 MB units */
2885 }
2886
2887 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2888 {
2889 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2890 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2891 return bdw_gmch_ctl << 25; /* 32 MB units */
2892 }
2893
2894 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2895 {
2896 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2897 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2898
2899 /*
2900 * 0x0 to 0x10: 32MB increments starting at 0MB
2901 * 0x11 to 0x16: 4MB increments starting at 8MB
2902 * 0x17 to 0x1d: 4MB increments start at 36MB
2903 */
2904 if (gmch_ctrl < 0x11)
2905 return gmch_ctrl << 25;
2906 else if (gmch_ctrl < 0x17)
2907 return (gmch_ctrl - 0x11 + 2) << 22;
2908 else
2909 return (gmch_ctrl - 0x17 + 9) << 22;
2910 }
2911
2912 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2913 {
2914 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2915 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2916
2917 if (gen9_gmch_ctl < 0xf0)
2918 return gen9_gmch_ctl << 25; /* 32 MB units */
2919 else
2920 /* 4MB increments starting at 0xf0 for 4MB */
2921 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2922 }
2923
2924 static int ggtt_probe_common(struct drm_device *dev,
2925 size_t gtt_size)
2926 {
2927 struct drm_i915_private *dev_priv = dev->dev_private;
2928 struct i915_page_scratch *scratch_page;
2929 phys_addr_t gtt_phys_addr;
2930
2931 /* For Modern GENs the PTEs and register space are split in the BAR */
2932 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2933 (pci_resource_len(dev->pdev, 0) / 2);
2934
2935 /*
2936 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2937 * dropped. For WC mappings in general we have 64 byte burst writes
2938 * when the WC buffer is flushed, so we can't use it, but have to
2939 * resort to an uncached mapping. The WC issue is easily caught by the
2940 * readback check when writing GTT PTE entries.
2941 */
2942 if (IS_BROXTON(dev))
2943 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2944 else
2945 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2946 if (!dev_priv->gtt.gsm) {
2947 DRM_ERROR("Failed to map the gtt page table\n");
2948 return -ENOMEM;
2949 }
2950
2951 scratch_page = alloc_scratch_page(dev);
2952 if (IS_ERR(scratch_page)) {
2953 DRM_ERROR("Scratch setup failed\n");
2954 /* iounmap will also get called at remove, but meh */
2955 iounmap(dev_priv->gtt.gsm);
2956 return PTR_ERR(scratch_page);
2957 }
2958
2959 dev_priv->gtt.base.scratch_page = scratch_page;
2960
2961 return 0;
2962 }
2963
2964 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2965 * bits. When using advanced contexts each context stores its own PAT, but
2966 * writing this data shouldn't be harmful even in those cases. */
2967 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2968 {
2969 uint64_t pat;
2970
2971 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2972 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2973 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2974 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2975 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2976 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2977 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2978 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2979
2980 if (!USES_PPGTT(dev_priv->dev))
2981 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2982 * so RTL will always use the value corresponding to
2983 * pat_sel = 000".
2984 * So let's disable cache for GGTT to avoid screen corruptions.
2985 * MOCS still can be used though.
2986 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2987 * before this patch, i.e. the same uncached + snooping access
2988 * like on gen6/7 seems to be in effect.
2989 * - So this just fixes blitter/render access. Again it looks
2990 * like it's not just uncached access, but uncached + snooping.
2991 * So we can still hold onto all our assumptions wrt cpu
2992 * clflushing on LLC machines.
2993 */
2994 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2995
2996 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2997 * write would work. */
2998 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2999 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3000 }
3001
3002 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3003 {
3004 uint64_t pat;
3005
3006 /*
3007 * Map WB on BDW to snooped on CHV.
3008 *
3009 * Only the snoop bit has meaning for CHV, the rest is
3010 * ignored.
3011 *
3012 * The hardware will never snoop for certain types of accesses:
3013 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3014 * - PPGTT page tables
3015 * - some other special cycles
3016 *
3017 * As with BDW, we also need to consider the following for GT accesses:
3018 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3019 * so RTL will always use the value corresponding to
3020 * pat_sel = 000".
3021 * Which means we must set the snoop bit in PAT entry 0
3022 * in order to keep the global status page working.
3023 */
3024 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3025 GEN8_PPAT(1, 0) |
3026 GEN8_PPAT(2, 0) |
3027 GEN8_PPAT(3, 0) |
3028 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3029 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3030 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3031 GEN8_PPAT(7, CHV_PPAT_SNOOP);
3032
3033 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3034 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3035 }
3036
3037 static int gen8_gmch_probe(struct drm_device *dev,
3038 u64 *gtt_total,
3039 size_t *stolen,
3040 phys_addr_t *mappable_base,
3041 u64 *mappable_end)
3042 {
3043 struct drm_i915_private *dev_priv = dev->dev_private;
3044 u64 gtt_size;
3045 u16 snb_gmch_ctl;
3046 int ret;
3047
3048 /* TODO: We're not aware of mappable constraints on gen8 yet */
3049 *mappable_base = pci_resource_start(dev->pdev, 2);
3050 *mappable_end = pci_resource_len(dev->pdev, 2);
3051
3052 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3053 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3054
3055 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3056
3057 if (INTEL_INFO(dev)->gen >= 9) {
3058 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
3059 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3060 } else if (IS_CHERRYVIEW(dev)) {
3061 *stolen = chv_get_stolen_size(snb_gmch_ctl);
3062 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
3063 } else {
3064 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
3065 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3066 }
3067
3068 *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3069
3070 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3071 chv_setup_private_ppat(dev_priv);
3072 else
3073 bdw_setup_private_ppat(dev_priv);
3074
3075 ret = ggtt_probe_common(dev, gtt_size);
3076
3077 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
3078 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
3079 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3080 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3081
3082 if (IS_CHERRYVIEW(dev_priv))
3083 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries__BKL;
3084
3085 return ret;
3086 }
3087
3088 static int gen6_gmch_probe(struct drm_device *dev,
3089 u64 *gtt_total,
3090 size_t *stolen,
3091 phys_addr_t *mappable_base,
3092 u64 *mappable_end)
3093 {
3094 struct drm_i915_private *dev_priv = dev->dev_private;
3095 unsigned int gtt_size;
3096 u16 snb_gmch_ctl;
3097 int ret;
3098
3099 *mappable_base = pci_resource_start(dev->pdev, 2);
3100 *mappable_end = pci_resource_len(dev->pdev, 2);
3101
3102 /* 64/512MB is the current min/max we actually know of, but this is just
3103 * a coarse sanity check.
3104 */
3105 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
3106 DRM_ERROR("Unknown GMADR size (%llx)\n",
3107 dev_priv->gtt.mappable_end);
3108 return -ENXIO;
3109 }
3110
3111 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3112 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3113 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3114
3115 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
3116
3117 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3118 *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3119
3120 ret = ggtt_probe_common(dev, gtt_size);
3121
3122 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3123 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3124 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3125 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3126
3127 return ret;
3128 }
3129
3130 static void gen6_gmch_remove(struct i915_address_space *vm)
3131 {
3132
3133 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
3134
3135 iounmap(gtt->gsm);
3136 free_scratch_page(vm->dev, vm->scratch_page);
3137 }
3138
3139 static int i915_gmch_probe(struct drm_device *dev,
3140 u64 *gtt_total,
3141 size_t *stolen,
3142 phys_addr_t *mappable_base,
3143 u64 *mappable_end)
3144 {
3145 struct drm_i915_private *dev_priv = dev->dev_private;
3146 int ret;
3147
3148 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3149 if (!ret) {
3150 DRM_ERROR("failed to set up gmch\n");
3151 return -EIO;
3152 }
3153
3154 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3155
3156 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
3157 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
3158 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3159 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3160 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3161
3162 if (unlikely(dev_priv->gtt.do_idle_maps))
3163 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3164
3165 return 0;
3166 }
3167
3168 static void i915_gmch_remove(struct i915_address_space *vm)
3169 {
3170 intel_gmch_remove();
3171 }
3172
3173 int i915_gem_gtt_init(struct drm_device *dev)
3174 {
3175 struct drm_i915_private *dev_priv = dev->dev_private;
3176 struct i915_gtt *gtt = &dev_priv->gtt;
3177 int ret;
3178
3179 if (INTEL_INFO(dev)->gen <= 5) {
3180 gtt->gtt_probe = i915_gmch_probe;
3181 gtt->base.cleanup = i915_gmch_remove;
3182 } else if (INTEL_INFO(dev)->gen < 8) {
3183 gtt->gtt_probe = gen6_gmch_probe;
3184 gtt->base.cleanup = gen6_gmch_remove;
3185 if (IS_HASWELL(dev) && dev_priv->ellc_size)
3186 gtt->base.pte_encode = iris_pte_encode;
3187 else if (IS_HASWELL(dev))
3188 gtt->base.pte_encode = hsw_pte_encode;
3189 else if (IS_VALLEYVIEW(dev))
3190 gtt->base.pte_encode = byt_pte_encode;
3191 else if (INTEL_INFO(dev)->gen >= 7)
3192 gtt->base.pte_encode = ivb_pte_encode;
3193 else
3194 gtt->base.pte_encode = snb_pte_encode;
3195 } else {
3196 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3197 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3198 }
3199
3200 gtt->base.dev = dev;
3201 gtt->base.is_ggtt = true;
3202
3203 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
3204 &gtt->mappable_base, &gtt->mappable_end);
3205 if (ret)
3206 return ret;
3207
3208 /*
3209 * Initialise stolen early so that we may reserve preallocated
3210 * objects for the BIOS to KMS transition.
3211 */
3212 ret = i915_gem_init_stolen(dev);
3213 if (ret)
3214 goto out_gtt_cleanup;
3215
3216 /* GMADR is the PCI mmio aperture into the global GTT. */
3217 DRM_INFO("Memory usable by graphics device = %lluM\n",
3218 gtt->base.total >> 20);
3219 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
3220 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3221 #ifdef CONFIG_INTEL_IOMMU
3222 if (intel_iommu_gfx_mapped)
3223 DRM_INFO("VT-d active for gfx access\n");
3224 #endif
3225 /*
3226 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3227 * user's requested state against the hardware/driver capabilities. We
3228 * do this now so that we can print out any log messages once rather
3229 * than every time we check intel_enable_ppgtt().
3230 */
3231 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3232 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3233
3234 return 0;
3235
3236 out_gtt_cleanup:
3237 gtt->base.cleanup(&dev_priv->gtt.base);
3238
3239 return ret;
3240 }
3241
3242 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3243 {
3244 struct drm_i915_private *dev_priv = dev->dev_private;
3245 struct drm_i915_gem_object *obj;
3246 struct i915_address_space *vm;
3247 struct i915_vma *vma;
3248 bool flush;
3249
3250 i915_check_and_clear_faults(dev);
3251
3252 /* First fill our portion of the GTT with scratch pages */
3253 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3254 dev_priv->gtt.base.start,
3255 dev_priv->gtt.base.total,
3256 true);
3257
3258 /* Cache flush objects bound into GGTT and rebind them. */
3259 vm = &dev_priv->gtt.base;
3260 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3261 flush = false;
3262 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3263 if (vma->vm != vm)
3264 continue;
3265
3266 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3267 PIN_UPDATE));
3268
3269 flush = true;
3270 }
3271
3272 if (flush)
3273 i915_gem_clflush_object(obj, obj->pin_display);
3274 }
3275
3276 if (INTEL_INFO(dev)->gen >= 8) {
3277 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3278 chv_setup_private_ppat(dev_priv);
3279 else
3280 bdw_setup_private_ppat(dev_priv);
3281
3282 return;
3283 }
3284
3285 if (USES_PPGTT(dev)) {
3286 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3287 /* TODO: Perhaps it shouldn't be gen6 specific */
3288
3289 struct i915_hw_ppgtt *ppgtt =
3290 container_of(vm, struct i915_hw_ppgtt,
3291 base);
3292
3293 if (i915_is_ggtt(vm))
3294 ppgtt = dev_priv->mm.aliasing_ppgtt;
3295
3296 gen6_write_page_range(dev_priv, &ppgtt->pd,
3297 0, ppgtt->base.total);
3298 }
3299 }
3300
3301 i915_ggtt_flush(dev_priv);
3302 }
3303
3304 static struct i915_vma *
3305 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3306 struct i915_address_space *vm,
3307 const struct i915_ggtt_view *ggtt_view)
3308 {
3309 struct i915_vma *vma;
3310
3311 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3312 return ERR_PTR(-EINVAL);
3313
3314 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3315 if (vma == NULL)
3316 return ERR_PTR(-ENOMEM);
3317
3318 INIT_LIST_HEAD(&vma->vm_link);
3319 INIT_LIST_HEAD(&vma->obj_link);
3320 INIT_LIST_HEAD(&vma->exec_list);
3321 vma->vm = vm;
3322 vma->obj = obj;
3323 vma->is_ggtt = i915_is_ggtt(vm);
3324
3325 if (i915_is_ggtt(vm))
3326 vma->ggtt_view = *ggtt_view;
3327 else
3328 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3329
3330 list_add_tail(&vma->obj_link, &obj->vma_list);
3331
3332 return vma;
3333 }
3334
3335 struct i915_vma *
3336 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3337 struct i915_address_space *vm)
3338 {
3339 struct i915_vma *vma;
3340
3341 vma = i915_gem_obj_to_vma(obj, vm);
3342 if (!vma)
3343 vma = __i915_gem_vma_create(obj, vm,
3344 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3345
3346 return vma;
3347 }
3348
3349 struct i915_vma *
3350 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3351 const struct i915_ggtt_view *view)
3352 {
3353 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3354 struct i915_vma *vma;
3355
3356 if (WARN_ON(!view))
3357 return ERR_PTR(-EINVAL);
3358
3359 vma = i915_gem_obj_to_ggtt_view(obj, view);
3360
3361 if (IS_ERR(vma))
3362 return vma;
3363
3364 if (!vma)
3365 vma = __i915_gem_vma_create(obj, ggtt, view);
3366
3367 return vma;
3368
3369 }
3370
3371 static struct scatterlist *
3372 rotate_pages(const dma_addr_t *in, unsigned int offset,
3373 unsigned int width, unsigned int height,
3374 unsigned int stride,
3375 struct sg_table *st, struct scatterlist *sg)
3376 {
3377 unsigned int column, row;
3378 unsigned int src_idx;
3379
3380 if (!sg) {
3381 st->nents = 0;
3382 sg = st->sgl;
3383 }
3384
3385 for (column = 0; column < width; column++) {
3386 src_idx = stride * (height - 1) + column;
3387 for (row = 0; row < height; row++) {
3388 st->nents++;
3389 /* We don't need the pages, but need to initialize
3390 * the entries so the sg list can be happily traversed.
3391 * The only thing we need are DMA addresses.
3392 */
3393 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3394 sg_dma_address(sg) = in[offset + src_idx];
3395 sg_dma_len(sg) = PAGE_SIZE;
3396 sg = sg_next(sg);
3397 src_idx -= stride;
3398 }
3399 }
3400
3401 return sg;
3402 }
3403
3404 static struct sg_table *
3405 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3406 struct drm_i915_gem_object *obj)
3407 {
3408 unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3409 unsigned int size_pages_uv;
3410 struct sg_page_iter sg_iter;
3411 unsigned long i;
3412 dma_addr_t *page_addr_list;
3413 struct sg_table *st;
3414 unsigned int uv_start_page;
3415 struct scatterlist *sg;
3416 int ret = -ENOMEM;
3417
3418 /* Allocate a temporary list of source pages for random access. */
3419 page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3420 sizeof(dma_addr_t));
3421 if (!page_addr_list)
3422 return ERR_PTR(ret);
3423
3424 /* Account for UV plane with NV12. */
3425 if (rot_info->pixel_format == DRM_FORMAT_NV12)
3426 size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3427 else
3428 size_pages_uv = 0;
3429
3430 /* Allocate target SG list. */
3431 st = kmalloc(sizeof(*st), GFP_KERNEL);
3432 if (!st)
3433 goto err_st_alloc;
3434
3435 ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3436 if (ret)
3437 goto err_sg_alloc;
3438
3439 /* Populate source page list from the object. */
3440 i = 0;
3441 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3442 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3443 i++;
3444 }
3445
3446 /* Rotate the pages. */
3447 sg = rotate_pages(page_addr_list, 0,
3448 rot_info->width_pages, rot_info->height_pages,
3449 rot_info->width_pages,
3450 st, NULL);
3451
3452 /* Append the UV plane if NV12. */
3453 if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3454 uv_start_page = size_pages;
3455
3456 /* Check for tile-row un-alignment. */
3457 if (offset_in_page(rot_info->uv_offset))
3458 uv_start_page--;
3459
3460 rot_info->uv_start_page = uv_start_page;
3461
3462 rotate_pages(page_addr_list, uv_start_page,
3463 rot_info->width_pages_uv,
3464 rot_info->height_pages_uv,
3465 rot_info->width_pages_uv,
3466 st, sg);
3467 }
3468
3469 DRM_DEBUG_KMS(
3470 "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3471 obj->base.size, rot_info->pitch, rot_info->height,
3472 rot_info->pixel_format, rot_info->width_pages,
3473 rot_info->height_pages, size_pages + size_pages_uv,
3474 size_pages);
3475
3476 drm_free_large(page_addr_list);
3477
3478 return st;
3479
3480 err_sg_alloc:
3481 kfree(st);
3482 err_st_alloc:
3483 drm_free_large(page_addr_list);
3484
3485 DRM_DEBUG_KMS(
3486 "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3487 obj->base.size, ret, rot_info->pitch, rot_info->height,
3488 rot_info->pixel_format, rot_info->width_pages,
3489 rot_info->height_pages, size_pages + size_pages_uv,
3490 size_pages);
3491 return ERR_PTR(ret);
3492 }
3493
3494 static struct sg_table *
3495 intel_partial_pages(const struct i915_ggtt_view *view,
3496 struct drm_i915_gem_object *obj)
3497 {
3498 struct sg_table *st;
3499 struct scatterlist *sg;
3500 struct sg_page_iter obj_sg_iter;
3501 int ret = -ENOMEM;
3502
3503 st = kmalloc(sizeof(*st), GFP_KERNEL);
3504 if (!st)
3505 goto err_st_alloc;
3506
3507 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3508 if (ret)
3509 goto err_sg_alloc;
3510
3511 sg = st->sgl;
3512 st->nents = 0;
3513 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3514 view->params.partial.offset)
3515 {
3516 if (st->nents >= view->params.partial.size)
3517 break;
3518
3519 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3520 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3521 sg_dma_len(sg) = PAGE_SIZE;
3522
3523 sg = sg_next(sg);
3524 st->nents++;
3525 }
3526
3527 return st;
3528
3529 err_sg_alloc:
3530 kfree(st);
3531 err_st_alloc:
3532 return ERR_PTR(ret);
3533 }
3534
3535 static int
3536 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3537 {
3538 int ret = 0;
3539
3540 if (vma->ggtt_view.pages)
3541 return 0;
3542
3543 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3544 vma->ggtt_view.pages = vma->obj->pages;
3545 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3546 vma->ggtt_view.pages =
3547 intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3548 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3549 vma->ggtt_view.pages =
3550 intel_partial_pages(&vma->ggtt_view, vma->obj);
3551 else
3552 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3553 vma->ggtt_view.type);
3554
3555 if (!vma->ggtt_view.pages) {
3556 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3557 vma->ggtt_view.type);
3558 ret = -EINVAL;
3559 } else if (IS_ERR(vma->ggtt_view.pages)) {
3560 ret = PTR_ERR(vma->ggtt_view.pages);
3561 vma->ggtt_view.pages = NULL;
3562 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3563 vma->ggtt_view.type, ret);
3564 }
3565
3566 return ret;
3567 }
3568
3569 /**
3570 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3571 * @vma: VMA to map
3572 * @cache_level: mapping cache level
3573 * @flags: flags like global or local mapping
3574 *
3575 * DMA addresses are taken from the scatter-gather table of this object (or of
3576 * this VMA in case of non-default GGTT views) and PTE entries set up.
3577 * Note that DMA addresses are also the only part of the SG table we care about.
3578 */
3579 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3580 u32 flags)
3581 {
3582 int ret;
3583 u32 bind_flags;
3584
3585 if (WARN_ON(flags == 0))
3586 return -EINVAL;
3587
3588 bind_flags = 0;
3589 if (flags & PIN_GLOBAL)
3590 bind_flags |= GLOBAL_BIND;
3591 if (flags & PIN_USER)
3592 bind_flags |= LOCAL_BIND;
3593
3594 if (flags & PIN_UPDATE)
3595 bind_flags |= vma->bound;
3596 else
3597 bind_flags &= ~vma->bound;
3598
3599 if (bind_flags == 0)
3600 return 0;
3601
3602 if (vma->bound == 0 && vma->vm->allocate_va_range) {
3603 /* XXX: i915_vma_pin() will fix this +- hack */
3604 vma->pin_count++;
3605 trace_i915_va_alloc(vma);
3606 ret = vma->vm->allocate_va_range(vma->vm,
3607 vma->node.start,
3608 vma->node.size);
3609 vma->pin_count--;
3610 if (ret)
3611 return ret;
3612 }
3613
3614 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3615 if (ret)
3616 return ret;
3617
3618 vma->bound |= bind_flags;
3619
3620 return 0;
3621 }
3622
3623 /**
3624 * i915_ggtt_view_size - Get the size of a GGTT view.
3625 * @obj: Object the view is of.
3626 * @view: The view in question.
3627 *
3628 * @return The size of the GGTT view in bytes.
3629 */
3630 size_t
3631 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3632 const struct i915_ggtt_view *view)
3633 {
3634 if (view->type == I915_GGTT_VIEW_NORMAL) {
3635 return obj->base.size;
3636 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3637 return view->params.rotated.size;
3638 } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3639 return view->params.partial.size << PAGE_SHIFT;
3640 } else {
3641 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3642 return obj->base.size;
3643 }
3644 }
This page took 0.205643 seconds and 5 git commands to generate.