drm/i915: Allow DMA pagetables to use highmem
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34
35 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
36
37 /**
38 * DOC: Global GTT views
39 *
40 * Background and previous state
41 *
42 * Historically objects could exists (be bound) in global GTT space only as
43 * singular instances with a view representing all of the object's backing pages
44 * in a linear fashion. This view will be called a normal view.
45 *
46 * To support multiple views of the same object, where the number of mapped
47 * pages is not equal to the backing store, or where the layout of the pages
48 * is not linear, concept of a GGTT view was added.
49 *
50 * One example of an alternative view is a stereo display driven by a single
51 * image. In this case we would have a framebuffer looking like this
52 * (2x2 pages):
53 *
54 * 12
55 * 34
56 *
57 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
58 * rendering. In contrast, fed to the display engine would be an alternative
59 * view which could look something like this:
60 *
61 * 1212
62 * 3434
63 *
64 * In this example both the size and layout of pages in the alternative view is
65 * different from the normal view.
66 *
67 * Implementation and usage
68 *
69 * GGTT views are implemented using VMAs and are distinguished via enum
70 * i915_ggtt_view_type and struct i915_ggtt_view.
71 *
72 * A new flavour of core GEM functions which work with GGTT bound objects were
73 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
74 * renaming in large amounts of code. They take the struct i915_ggtt_view
75 * parameter encapsulating all metadata required to implement a view.
76 *
77 * As a helper for callers which are only interested in the normal view,
78 * globally const i915_ggtt_view_normal singleton instance exists. All old core
79 * GEM API functions, the ones not taking the view parameter, are operating on,
80 * or with the normal GGTT view.
81 *
82 * Code wanting to add or use a new GGTT view needs to:
83 *
84 * 1. Add a new enum with a suitable name.
85 * 2. Extend the metadata in the i915_ggtt_view structure if required.
86 * 3. Add support to i915_get_vma_pages().
87 *
88 * New views are required to build a scatter-gather table from within the
89 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
90 * exists for the lifetime of an VMA.
91 *
92 * Core API is designed to have copy semantics which means that passed in
93 * struct i915_ggtt_view does not need to be persistent (left around after
94 * calling the core API functions).
95 *
96 */
97
98 static inline struct i915_ggtt *
99 i915_vm_to_ggtt(struct i915_address_space *vm)
100 {
101 GEM_BUG_ON(!i915_is_ggtt(vm));
102 return container_of(vm, struct i915_ggtt, base);
103 }
104
105 static int
106 i915_get_ggtt_vma_pages(struct i915_vma *vma);
107
108 const struct i915_ggtt_view i915_ggtt_view_normal = {
109 .type = I915_GGTT_VIEW_NORMAL,
110 };
111 const struct i915_ggtt_view i915_ggtt_view_rotated = {
112 .type = I915_GGTT_VIEW_ROTATED,
113 };
114
115 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
116 int enable_ppgtt)
117 {
118 bool has_aliasing_ppgtt;
119 bool has_full_ppgtt;
120 bool has_full_48bit_ppgtt;
121
122 has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
123 has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
124 has_full_48bit_ppgtt =
125 IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
126
127 if (intel_vgpu_active(dev_priv))
128 has_full_ppgtt = false; /* emulation is too hard */
129
130 if (!has_aliasing_ppgtt)
131 return 0;
132
133 /*
134 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
135 * execlists, the sole mechanism available to submit work.
136 */
137 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
138 return 0;
139
140 if (enable_ppgtt == 1)
141 return 1;
142
143 if (enable_ppgtt == 2 && has_full_ppgtt)
144 return 2;
145
146 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
147 return 3;
148
149 #ifdef CONFIG_INTEL_IOMMU
150 /* Disable ppgtt on SNB if VT-d is on. */
151 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
152 DRM_INFO("Disabling PPGTT because VT-d is on\n");
153 return 0;
154 }
155 #endif
156
157 /* Early VLV doesn't have this */
158 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
159 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
160 return 0;
161 }
162
163 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists)
164 return has_full_48bit_ppgtt ? 3 : 2;
165 else
166 return has_aliasing_ppgtt ? 1 : 0;
167 }
168
169 static int ppgtt_bind_vma(struct i915_vma *vma,
170 enum i915_cache_level cache_level,
171 u32 unused)
172 {
173 u32 pte_flags = 0;
174
175 vma->pages = vma->obj->pages;
176
177 /* Currently applicable only to VLV */
178 if (vma->obj->gt_ro)
179 pte_flags |= PTE_READ_ONLY;
180
181 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
182 cache_level, pte_flags);
183
184 return 0;
185 }
186
187 static void ppgtt_unbind_vma(struct i915_vma *vma)
188 {
189 vma->vm->clear_range(vma->vm,
190 vma->node.start,
191 vma->size,
192 true);
193 }
194
195 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
196 enum i915_cache_level level,
197 bool valid)
198 {
199 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
200 pte |= addr;
201
202 switch (level) {
203 case I915_CACHE_NONE:
204 pte |= PPAT_UNCACHED_INDEX;
205 break;
206 case I915_CACHE_WT:
207 pte |= PPAT_DISPLAY_ELLC_INDEX;
208 break;
209 default:
210 pte |= PPAT_CACHED_INDEX;
211 break;
212 }
213
214 return pte;
215 }
216
217 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
218 const enum i915_cache_level level)
219 {
220 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
221 pde |= addr;
222 if (level != I915_CACHE_NONE)
223 pde |= PPAT_CACHED_PDE_INDEX;
224 else
225 pde |= PPAT_UNCACHED_INDEX;
226 return pde;
227 }
228
229 #define gen8_pdpe_encode gen8_pde_encode
230 #define gen8_pml4e_encode gen8_pde_encode
231
232 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
233 enum i915_cache_level level,
234 bool valid, u32 unused)
235 {
236 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
237 pte |= GEN6_PTE_ADDR_ENCODE(addr);
238
239 switch (level) {
240 case I915_CACHE_L3_LLC:
241 case I915_CACHE_LLC:
242 pte |= GEN6_PTE_CACHE_LLC;
243 break;
244 case I915_CACHE_NONE:
245 pte |= GEN6_PTE_UNCACHED;
246 break;
247 default:
248 MISSING_CASE(level);
249 }
250
251 return pte;
252 }
253
254 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
255 enum i915_cache_level level,
256 bool valid, u32 unused)
257 {
258 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
259 pte |= GEN6_PTE_ADDR_ENCODE(addr);
260
261 switch (level) {
262 case I915_CACHE_L3_LLC:
263 pte |= GEN7_PTE_CACHE_L3_LLC;
264 break;
265 case I915_CACHE_LLC:
266 pte |= GEN6_PTE_CACHE_LLC;
267 break;
268 case I915_CACHE_NONE:
269 pte |= GEN6_PTE_UNCACHED;
270 break;
271 default:
272 MISSING_CASE(level);
273 }
274
275 return pte;
276 }
277
278 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
279 enum i915_cache_level level,
280 bool valid, u32 flags)
281 {
282 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
283 pte |= GEN6_PTE_ADDR_ENCODE(addr);
284
285 if (!(flags & PTE_READ_ONLY))
286 pte |= BYT_PTE_WRITEABLE;
287
288 if (level != I915_CACHE_NONE)
289 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
290
291 return pte;
292 }
293
294 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
295 enum i915_cache_level level,
296 bool valid, u32 unused)
297 {
298 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
299 pte |= HSW_PTE_ADDR_ENCODE(addr);
300
301 if (level != I915_CACHE_NONE)
302 pte |= HSW_WB_LLC_AGE3;
303
304 return pte;
305 }
306
307 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
308 enum i915_cache_level level,
309 bool valid, u32 unused)
310 {
311 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
312 pte |= HSW_PTE_ADDR_ENCODE(addr);
313
314 switch (level) {
315 case I915_CACHE_NONE:
316 break;
317 case I915_CACHE_WT:
318 pte |= HSW_WT_ELLC_LLC_AGE3;
319 break;
320 default:
321 pte |= HSW_WB_ELLC_LLC_AGE3;
322 break;
323 }
324
325 return pte;
326 }
327
328 static int __setup_page_dma(struct drm_device *dev,
329 struct i915_page_dma *p, gfp_t flags)
330 {
331 struct device *kdev = &dev->pdev->dev;
332
333 p->page = alloc_page(flags);
334 if (!p->page)
335 return -ENOMEM;
336
337 p->daddr = dma_map_page(kdev,
338 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
339
340 if (dma_mapping_error(kdev, p->daddr)) {
341 __free_page(p->page);
342 return -EINVAL;
343 }
344
345 return 0;
346 }
347
348 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
349 {
350 return __setup_page_dma(dev, p, I915_GFP_DMA);
351 }
352
353 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
354 {
355 struct pci_dev *pdev = dev->pdev;
356
357 if (WARN_ON(!p->page))
358 return;
359
360 dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
361 __free_page(p->page);
362 memset(p, 0, sizeof(*p));
363 }
364
365 static void *kmap_page_dma(struct i915_page_dma *p)
366 {
367 return kmap_atomic(p->page);
368 }
369
370 /* We use the flushing unmap only with ppgtt structures:
371 * page directories, page tables and scratch pages.
372 */
373 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
374 {
375 /* There are only few exceptions for gen >=6. chv and bxt.
376 * And we are not sure about the latter so play safe for now.
377 */
378 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
379 drm_clflush_virt_range(vaddr, PAGE_SIZE);
380
381 kunmap_atomic(vaddr);
382 }
383
384 #define kmap_px(px) kmap_page_dma(px_base(px))
385 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
386
387 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
388 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
389 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
390 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
391
392 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
393 const uint64_t val)
394 {
395 int i;
396 uint64_t * const vaddr = kmap_page_dma(p);
397
398 for (i = 0; i < 512; i++)
399 vaddr[i] = val;
400
401 kunmap_page_dma(dev, vaddr);
402 }
403
404 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
405 const uint32_t val32)
406 {
407 uint64_t v = val32;
408
409 v = v << 32 | val32;
410
411 fill_page_dma(dev, p, v);
412 }
413
414 static int
415 setup_scratch_page(struct drm_device *dev,
416 struct i915_page_dma *scratch,
417 gfp_t gfp)
418 {
419 return __setup_page_dma(dev, scratch, gfp | __GFP_ZERO);
420 }
421
422 static void cleanup_scratch_page(struct drm_device *dev,
423 struct i915_page_dma *scratch)
424 {
425 cleanup_page_dma(dev, scratch);
426 }
427
428 static struct i915_page_table *alloc_pt(struct drm_device *dev)
429 {
430 struct i915_page_table *pt;
431 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
432 GEN8_PTES : GEN6_PTES;
433 int ret = -ENOMEM;
434
435 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
436 if (!pt)
437 return ERR_PTR(-ENOMEM);
438
439 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
440 GFP_KERNEL);
441
442 if (!pt->used_ptes)
443 goto fail_bitmap;
444
445 ret = setup_px(dev, pt);
446 if (ret)
447 goto fail_page_m;
448
449 return pt;
450
451 fail_page_m:
452 kfree(pt->used_ptes);
453 fail_bitmap:
454 kfree(pt);
455
456 return ERR_PTR(ret);
457 }
458
459 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
460 {
461 cleanup_px(dev, pt);
462 kfree(pt->used_ptes);
463 kfree(pt);
464 }
465
466 static void gen8_initialize_pt(struct i915_address_space *vm,
467 struct i915_page_table *pt)
468 {
469 gen8_pte_t scratch_pte;
470
471 scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
472 I915_CACHE_LLC, true);
473
474 fill_px(vm->dev, pt, scratch_pte);
475 }
476
477 static void gen6_initialize_pt(struct i915_address_space *vm,
478 struct i915_page_table *pt)
479 {
480 gen6_pte_t scratch_pte;
481
482 WARN_ON(vm->scratch_page.daddr == 0);
483
484 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
485 I915_CACHE_LLC, true, 0);
486
487 fill32_px(vm->dev, pt, scratch_pte);
488 }
489
490 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
491 {
492 struct i915_page_directory *pd;
493 int ret = -ENOMEM;
494
495 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
496 if (!pd)
497 return ERR_PTR(-ENOMEM);
498
499 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
500 sizeof(*pd->used_pdes), GFP_KERNEL);
501 if (!pd->used_pdes)
502 goto fail_bitmap;
503
504 ret = setup_px(dev, pd);
505 if (ret)
506 goto fail_page_m;
507
508 return pd;
509
510 fail_page_m:
511 kfree(pd->used_pdes);
512 fail_bitmap:
513 kfree(pd);
514
515 return ERR_PTR(ret);
516 }
517
518 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
519 {
520 if (px_page(pd)) {
521 cleanup_px(dev, pd);
522 kfree(pd->used_pdes);
523 kfree(pd);
524 }
525 }
526
527 static void gen8_initialize_pd(struct i915_address_space *vm,
528 struct i915_page_directory *pd)
529 {
530 gen8_pde_t scratch_pde;
531
532 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
533
534 fill_px(vm->dev, pd, scratch_pde);
535 }
536
537 static int __pdp_init(struct drm_device *dev,
538 struct i915_page_directory_pointer *pdp)
539 {
540 size_t pdpes = I915_PDPES_PER_PDP(dev);
541
542 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
543 sizeof(unsigned long),
544 GFP_KERNEL);
545 if (!pdp->used_pdpes)
546 return -ENOMEM;
547
548 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
549 GFP_KERNEL);
550 if (!pdp->page_directory) {
551 kfree(pdp->used_pdpes);
552 /* the PDP might be the statically allocated top level. Keep it
553 * as clean as possible */
554 pdp->used_pdpes = NULL;
555 return -ENOMEM;
556 }
557
558 return 0;
559 }
560
561 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
562 {
563 kfree(pdp->used_pdpes);
564 kfree(pdp->page_directory);
565 pdp->page_directory = NULL;
566 }
567
568 static struct
569 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
570 {
571 struct i915_page_directory_pointer *pdp;
572 int ret = -ENOMEM;
573
574 WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
575
576 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
577 if (!pdp)
578 return ERR_PTR(-ENOMEM);
579
580 ret = __pdp_init(dev, pdp);
581 if (ret)
582 goto fail_bitmap;
583
584 ret = setup_px(dev, pdp);
585 if (ret)
586 goto fail_page_m;
587
588 return pdp;
589
590 fail_page_m:
591 __pdp_fini(pdp);
592 fail_bitmap:
593 kfree(pdp);
594
595 return ERR_PTR(ret);
596 }
597
598 static void free_pdp(struct drm_device *dev,
599 struct i915_page_directory_pointer *pdp)
600 {
601 __pdp_fini(pdp);
602 if (USES_FULL_48BIT_PPGTT(dev)) {
603 cleanup_px(dev, pdp);
604 kfree(pdp);
605 }
606 }
607
608 static void gen8_initialize_pdp(struct i915_address_space *vm,
609 struct i915_page_directory_pointer *pdp)
610 {
611 gen8_ppgtt_pdpe_t scratch_pdpe;
612
613 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
614
615 fill_px(vm->dev, pdp, scratch_pdpe);
616 }
617
618 static void gen8_initialize_pml4(struct i915_address_space *vm,
619 struct i915_pml4 *pml4)
620 {
621 gen8_ppgtt_pml4e_t scratch_pml4e;
622
623 scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
624 I915_CACHE_LLC);
625
626 fill_px(vm->dev, pml4, scratch_pml4e);
627 }
628
629 static void
630 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
631 struct i915_page_directory_pointer *pdp,
632 struct i915_page_directory *pd,
633 int index)
634 {
635 gen8_ppgtt_pdpe_t *page_directorypo;
636
637 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
638 return;
639
640 page_directorypo = kmap_px(pdp);
641 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
642 kunmap_px(ppgtt, page_directorypo);
643 }
644
645 static void
646 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
647 struct i915_pml4 *pml4,
648 struct i915_page_directory_pointer *pdp,
649 int index)
650 {
651 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
652
653 WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
654 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
655 kunmap_px(ppgtt, pagemap);
656 }
657
658 /* Broadwell Page Directory Pointer Descriptors */
659 static int gen8_write_pdp(struct drm_i915_gem_request *req,
660 unsigned entry,
661 dma_addr_t addr)
662 {
663 struct intel_ring *ring = req->ring;
664 struct intel_engine_cs *engine = req->engine;
665 int ret;
666
667 BUG_ON(entry >= 4);
668
669 ret = intel_ring_begin(req, 6);
670 if (ret)
671 return ret;
672
673 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
674 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
675 intel_ring_emit(ring, upper_32_bits(addr));
676 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
677 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
678 intel_ring_emit(ring, lower_32_bits(addr));
679 intel_ring_advance(ring);
680
681 return 0;
682 }
683
684 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
685 struct drm_i915_gem_request *req)
686 {
687 int i, ret;
688
689 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
690 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
691
692 ret = gen8_write_pdp(req, i, pd_daddr);
693 if (ret)
694 return ret;
695 }
696
697 return 0;
698 }
699
700 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
701 struct drm_i915_gem_request *req)
702 {
703 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
704 }
705
706 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
707 struct i915_page_directory_pointer *pdp,
708 uint64_t start,
709 uint64_t length,
710 gen8_pte_t scratch_pte)
711 {
712 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
713 gen8_pte_t *pt_vaddr;
714 unsigned pdpe = gen8_pdpe_index(start);
715 unsigned pde = gen8_pde_index(start);
716 unsigned pte = gen8_pte_index(start);
717 unsigned num_entries = length >> PAGE_SHIFT;
718 unsigned last_pte, i;
719
720 if (WARN_ON(!pdp))
721 return;
722
723 while (num_entries) {
724 struct i915_page_directory *pd;
725 struct i915_page_table *pt;
726
727 if (WARN_ON(!pdp->page_directory[pdpe]))
728 break;
729
730 pd = pdp->page_directory[pdpe];
731
732 if (WARN_ON(!pd->page_table[pde]))
733 break;
734
735 pt = pd->page_table[pde];
736
737 if (WARN_ON(!px_page(pt)))
738 break;
739
740 last_pte = pte + num_entries;
741 if (last_pte > GEN8_PTES)
742 last_pte = GEN8_PTES;
743
744 pt_vaddr = kmap_px(pt);
745
746 for (i = pte; i < last_pte; i++) {
747 pt_vaddr[i] = scratch_pte;
748 num_entries--;
749 }
750
751 kunmap_px(ppgtt, pt_vaddr);
752
753 pte = 0;
754 if (++pde == I915_PDES) {
755 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
756 break;
757 pde = 0;
758 }
759 }
760 }
761
762 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
763 uint64_t start,
764 uint64_t length,
765 bool use_scratch)
766 {
767 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
768 gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
769 I915_CACHE_LLC, use_scratch);
770
771 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
772 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
773 scratch_pte);
774 } else {
775 uint64_t pml4e;
776 struct i915_page_directory_pointer *pdp;
777
778 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
779 gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
780 scratch_pte);
781 }
782 }
783 }
784
785 static void
786 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
787 struct i915_page_directory_pointer *pdp,
788 struct sg_page_iter *sg_iter,
789 uint64_t start,
790 enum i915_cache_level cache_level)
791 {
792 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
793 gen8_pte_t *pt_vaddr;
794 unsigned pdpe = gen8_pdpe_index(start);
795 unsigned pde = gen8_pde_index(start);
796 unsigned pte = gen8_pte_index(start);
797
798 pt_vaddr = NULL;
799
800 while (__sg_page_iter_next(sg_iter)) {
801 if (pt_vaddr == NULL) {
802 struct i915_page_directory *pd = pdp->page_directory[pdpe];
803 struct i915_page_table *pt = pd->page_table[pde];
804 pt_vaddr = kmap_px(pt);
805 }
806
807 pt_vaddr[pte] =
808 gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
809 cache_level, true);
810 if (++pte == GEN8_PTES) {
811 kunmap_px(ppgtt, pt_vaddr);
812 pt_vaddr = NULL;
813 if (++pde == I915_PDES) {
814 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
815 break;
816 pde = 0;
817 }
818 pte = 0;
819 }
820 }
821
822 if (pt_vaddr)
823 kunmap_px(ppgtt, pt_vaddr);
824 }
825
826 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
827 struct sg_table *pages,
828 uint64_t start,
829 enum i915_cache_level cache_level,
830 u32 unused)
831 {
832 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
833 struct sg_page_iter sg_iter;
834
835 __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
836
837 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
838 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
839 cache_level);
840 } else {
841 struct i915_page_directory_pointer *pdp;
842 uint64_t pml4e;
843 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
844
845 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
846 gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
847 start, cache_level);
848 }
849 }
850 }
851
852 static void gen8_free_page_tables(struct drm_device *dev,
853 struct i915_page_directory *pd)
854 {
855 int i;
856
857 if (!px_page(pd))
858 return;
859
860 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
861 if (WARN_ON(!pd->page_table[i]))
862 continue;
863
864 free_pt(dev, pd->page_table[i]);
865 pd->page_table[i] = NULL;
866 }
867 }
868
869 static int gen8_init_scratch(struct i915_address_space *vm)
870 {
871 struct drm_device *dev = vm->dev;
872 int ret;
873
874 ret = setup_scratch_page(dev, &vm->scratch_page, I915_GFP_DMA);
875 if (ret)
876 return ret;
877
878 vm->scratch_pt = alloc_pt(dev);
879 if (IS_ERR(vm->scratch_pt)) {
880 ret = PTR_ERR(vm->scratch_pt);
881 goto free_scratch_page;
882 }
883
884 vm->scratch_pd = alloc_pd(dev);
885 if (IS_ERR(vm->scratch_pd)) {
886 ret = PTR_ERR(vm->scratch_pd);
887 goto free_pt;
888 }
889
890 if (USES_FULL_48BIT_PPGTT(dev)) {
891 vm->scratch_pdp = alloc_pdp(dev);
892 if (IS_ERR(vm->scratch_pdp)) {
893 ret = PTR_ERR(vm->scratch_pdp);
894 goto free_pd;
895 }
896 }
897
898 gen8_initialize_pt(vm, vm->scratch_pt);
899 gen8_initialize_pd(vm, vm->scratch_pd);
900 if (USES_FULL_48BIT_PPGTT(dev))
901 gen8_initialize_pdp(vm, vm->scratch_pdp);
902
903 return 0;
904
905 free_pd:
906 free_pd(dev, vm->scratch_pd);
907 free_pt:
908 free_pt(dev, vm->scratch_pt);
909 free_scratch_page:
910 cleanup_scratch_page(dev, &vm->scratch_page);
911
912 return ret;
913 }
914
915 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
916 {
917 enum vgt_g2v_type msg;
918 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
919 int i;
920
921 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
922 u64 daddr = px_dma(&ppgtt->pml4);
923
924 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
925 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
926
927 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
928 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
929 } else {
930 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
931 u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
932
933 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
934 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
935 }
936
937 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
938 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
939 }
940
941 I915_WRITE(vgtif_reg(g2v_notify), msg);
942
943 return 0;
944 }
945
946 static void gen8_free_scratch(struct i915_address_space *vm)
947 {
948 struct drm_device *dev = vm->dev;
949
950 if (USES_FULL_48BIT_PPGTT(dev))
951 free_pdp(dev, vm->scratch_pdp);
952 free_pd(dev, vm->scratch_pd);
953 free_pt(dev, vm->scratch_pt);
954 cleanup_scratch_page(dev, &vm->scratch_page);
955 }
956
957 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
958 struct i915_page_directory_pointer *pdp)
959 {
960 int i;
961
962 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
963 if (WARN_ON(!pdp->page_directory[i]))
964 continue;
965
966 gen8_free_page_tables(dev, pdp->page_directory[i]);
967 free_pd(dev, pdp->page_directory[i]);
968 }
969
970 free_pdp(dev, pdp);
971 }
972
973 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
974 {
975 int i;
976
977 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
978 if (WARN_ON(!ppgtt->pml4.pdps[i]))
979 continue;
980
981 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
982 }
983
984 cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
985 }
986
987 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
988 {
989 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
990
991 if (intel_vgpu_active(to_i915(vm->dev)))
992 gen8_ppgtt_notify_vgt(ppgtt, false);
993
994 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
995 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
996 else
997 gen8_ppgtt_cleanup_4lvl(ppgtt);
998
999 gen8_free_scratch(vm);
1000 }
1001
1002 /**
1003 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1004 * @vm: Master vm structure.
1005 * @pd: Page directory for this address range.
1006 * @start: Starting virtual address to begin allocations.
1007 * @length: Size of the allocations.
1008 * @new_pts: Bitmap set by function with new allocations. Likely used by the
1009 * caller to free on error.
1010 *
1011 * Allocate the required number of page tables. Extremely similar to
1012 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1013 * the page directory boundary (instead of the page directory pointer). That
1014 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1015 * possible, and likely that the caller will need to use multiple calls of this
1016 * function to achieve the appropriate allocation.
1017 *
1018 * Return: 0 if success; negative error code otherwise.
1019 */
1020 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1021 struct i915_page_directory *pd,
1022 uint64_t start,
1023 uint64_t length,
1024 unsigned long *new_pts)
1025 {
1026 struct drm_device *dev = vm->dev;
1027 struct i915_page_table *pt;
1028 uint32_t pde;
1029
1030 gen8_for_each_pde(pt, pd, start, length, pde) {
1031 /* Don't reallocate page tables */
1032 if (test_bit(pde, pd->used_pdes)) {
1033 /* Scratch is never allocated this way */
1034 WARN_ON(pt == vm->scratch_pt);
1035 continue;
1036 }
1037
1038 pt = alloc_pt(dev);
1039 if (IS_ERR(pt))
1040 goto unwind_out;
1041
1042 gen8_initialize_pt(vm, pt);
1043 pd->page_table[pde] = pt;
1044 __set_bit(pde, new_pts);
1045 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1046 }
1047
1048 return 0;
1049
1050 unwind_out:
1051 for_each_set_bit(pde, new_pts, I915_PDES)
1052 free_pt(dev, pd->page_table[pde]);
1053
1054 return -ENOMEM;
1055 }
1056
1057 /**
1058 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1059 * @vm: Master vm structure.
1060 * @pdp: Page directory pointer for this address range.
1061 * @start: Starting virtual address to begin allocations.
1062 * @length: Size of the allocations.
1063 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1064 * caller to free on error.
1065 *
1066 * Allocate the required number of page directories starting at the pde index of
1067 * @start, and ending at the pde index @start + @length. This function will skip
1068 * over already allocated page directories within the range, and only allocate
1069 * new ones, setting the appropriate pointer within the pdp as well as the
1070 * correct position in the bitmap @new_pds.
1071 *
1072 * The function will only allocate the pages within the range for a give page
1073 * directory pointer. In other words, if @start + @length straddles a virtually
1074 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1075 * required by the caller, This is not currently possible, and the BUG in the
1076 * code will prevent it.
1077 *
1078 * Return: 0 if success; negative error code otherwise.
1079 */
1080 static int
1081 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1082 struct i915_page_directory_pointer *pdp,
1083 uint64_t start,
1084 uint64_t length,
1085 unsigned long *new_pds)
1086 {
1087 struct drm_device *dev = vm->dev;
1088 struct i915_page_directory *pd;
1089 uint32_t pdpe;
1090 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1091
1092 WARN_ON(!bitmap_empty(new_pds, pdpes));
1093
1094 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1095 if (test_bit(pdpe, pdp->used_pdpes))
1096 continue;
1097
1098 pd = alloc_pd(dev);
1099 if (IS_ERR(pd))
1100 goto unwind_out;
1101
1102 gen8_initialize_pd(vm, pd);
1103 pdp->page_directory[pdpe] = pd;
1104 __set_bit(pdpe, new_pds);
1105 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1106 }
1107
1108 return 0;
1109
1110 unwind_out:
1111 for_each_set_bit(pdpe, new_pds, pdpes)
1112 free_pd(dev, pdp->page_directory[pdpe]);
1113
1114 return -ENOMEM;
1115 }
1116
1117 /**
1118 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1119 * @vm: Master vm structure.
1120 * @pml4: Page map level 4 for this address range.
1121 * @start: Starting virtual address to begin allocations.
1122 * @length: Size of the allocations.
1123 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1124 * caller to free on error.
1125 *
1126 * Allocate the required number of page directory pointers. Extremely similar to
1127 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1128 * The main difference is here we are limited by the pml4 boundary (instead of
1129 * the page directory pointer).
1130 *
1131 * Return: 0 if success; negative error code otherwise.
1132 */
1133 static int
1134 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1135 struct i915_pml4 *pml4,
1136 uint64_t start,
1137 uint64_t length,
1138 unsigned long *new_pdps)
1139 {
1140 struct drm_device *dev = vm->dev;
1141 struct i915_page_directory_pointer *pdp;
1142 uint32_t pml4e;
1143
1144 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1145
1146 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1147 if (!test_bit(pml4e, pml4->used_pml4es)) {
1148 pdp = alloc_pdp(dev);
1149 if (IS_ERR(pdp))
1150 goto unwind_out;
1151
1152 gen8_initialize_pdp(vm, pdp);
1153 pml4->pdps[pml4e] = pdp;
1154 __set_bit(pml4e, new_pdps);
1155 trace_i915_page_directory_pointer_entry_alloc(vm,
1156 pml4e,
1157 start,
1158 GEN8_PML4E_SHIFT);
1159 }
1160 }
1161
1162 return 0;
1163
1164 unwind_out:
1165 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1166 free_pdp(dev, pml4->pdps[pml4e]);
1167
1168 return -ENOMEM;
1169 }
1170
1171 static void
1172 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1173 {
1174 kfree(new_pts);
1175 kfree(new_pds);
1176 }
1177
1178 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1179 * of these are based on the number of PDPEs in the system.
1180 */
1181 static
1182 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1183 unsigned long **new_pts,
1184 uint32_t pdpes)
1185 {
1186 unsigned long *pds;
1187 unsigned long *pts;
1188
1189 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1190 if (!pds)
1191 return -ENOMEM;
1192
1193 pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1194 GFP_TEMPORARY);
1195 if (!pts)
1196 goto err_out;
1197
1198 *new_pds = pds;
1199 *new_pts = pts;
1200
1201 return 0;
1202
1203 err_out:
1204 free_gen8_temp_bitmaps(pds, pts);
1205 return -ENOMEM;
1206 }
1207
1208 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1209 * the page table structures, we mark them dirty so that
1210 * context switching/execlist queuing code takes extra steps
1211 * to ensure that tlbs are flushed.
1212 */
1213 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1214 {
1215 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1216 }
1217
1218 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1219 struct i915_page_directory_pointer *pdp,
1220 uint64_t start,
1221 uint64_t length)
1222 {
1223 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1224 unsigned long *new_page_dirs, *new_page_tables;
1225 struct drm_device *dev = vm->dev;
1226 struct i915_page_directory *pd;
1227 const uint64_t orig_start = start;
1228 const uint64_t orig_length = length;
1229 uint32_t pdpe;
1230 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1231 int ret;
1232
1233 /* Wrap is never okay since we can only represent 48b, and we don't
1234 * actually use the other side of the canonical address space.
1235 */
1236 if (WARN_ON(start + length < start))
1237 return -ENODEV;
1238
1239 if (WARN_ON(start + length > vm->total))
1240 return -ENODEV;
1241
1242 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1243 if (ret)
1244 return ret;
1245
1246 /* Do the allocations first so we can easily bail out */
1247 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1248 new_page_dirs);
1249 if (ret) {
1250 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1251 return ret;
1252 }
1253
1254 /* For every page directory referenced, allocate page tables */
1255 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1256 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1257 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1258 if (ret)
1259 goto err_out;
1260 }
1261
1262 start = orig_start;
1263 length = orig_length;
1264
1265 /* Allocations have completed successfully, so set the bitmaps, and do
1266 * the mappings. */
1267 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1268 gen8_pde_t *const page_directory = kmap_px(pd);
1269 struct i915_page_table *pt;
1270 uint64_t pd_len = length;
1271 uint64_t pd_start = start;
1272 uint32_t pde;
1273
1274 /* Every pd should be allocated, we just did that above. */
1275 WARN_ON(!pd);
1276
1277 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1278 /* Same reasoning as pd */
1279 WARN_ON(!pt);
1280 WARN_ON(!pd_len);
1281 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1282
1283 /* Set our used ptes within the page table */
1284 bitmap_set(pt->used_ptes,
1285 gen8_pte_index(pd_start),
1286 gen8_pte_count(pd_start, pd_len));
1287
1288 /* Our pde is now pointing to the pagetable, pt */
1289 __set_bit(pde, pd->used_pdes);
1290
1291 /* Map the PDE to the page table */
1292 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1293 I915_CACHE_LLC);
1294 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1295 gen8_pte_index(start),
1296 gen8_pte_count(start, length),
1297 GEN8_PTES);
1298
1299 /* NB: We haven't yet mapped ptes to pages. At this
1300 * point we're still relying on insert_entries() */
1301 }
1302
1303 kunmap_px(ppgtt, page_directory);
1304 __set_bit(pdpe, pdp->used_pdpes);
1305 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1306 }
1307
1308 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1309 mark_tlbs_dirty(ppgtt);
1310 return 0;
1311
1312 err_out:
1313 while (pdpe--) {
1314 unsigned long temp;
1315
1316 for_each_set_bit(temp, new_page_tables + pdpe *
1317 BITS_TO_LONGS(I915_PDES), I915_PDES)
1318 free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1319 }
1320
1321 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1322 free_pd(dev, pdp->page_directory[pdpe]);
1323
1324 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1325 mark_tlbs_dirty(ppgtt);
1326 return ret;
1327 }
1328
1329 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1330 struct i915_pml4 *pml4,
1331 uint64_t start,
1332 uint64_t length)
1333 {
1334 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1335 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1336 struct i915_page_directory_pointer *pdp;
1337 uint64_t pml4e;
1338 int ret = 0;
1339
1340 /* Do the pml4 allocations first, so we don't need to track the newly
1341 * allocated tables below the pdp */
1342 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1343
1344 /* The pagedirectory and pagetable allocations are done in the shared 3
1345 * and 4 level code. Just allocate the pdps.
1346 */
1347 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1348 new_pdps);
1349 if (ret)
1350 return ret;
1351
1352 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1353 "The allocation has spanned more than 512GB. "
1354 "It is highly likely this is incorrect.");
1355
1356 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1357 WARN_ON(!pdp);
1358
1359 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1360 if (ret)
1361 goto err_out;
1362
1363 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1364 }
1365
1366 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1367 GEN8_PML4ES_PER_PML4);
1368
1369 return 0;
1370
1371 err_out:
1372 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1373 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1374
1375 return ret;
1376 }
1377
1378 static int gen8_alloc_va_range(struct i915_address_space *vm,
1379 uint64_t start, uint64_t length)
1380 {
1381 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1382
1383 if (USES_FULL_48BIT_PPGTT(vm->dev))
1384 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1385 else
1386 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1387 }
1388
1389 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1390 uint64_t start, uint64_t length,
1391 gen8_pte_t scratch_pte,
1392 struct seq_file *m)
1393 {
1394 struct i915_page_directory *pd;
1395 uint32_t pdpe;
1396
1397 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1398 struct i915_page_table *pt;
1399 uint64_t pd_len = length;
1400 uint64_t pd_start = start;
1401 uint32_t pde;
1402
1403 if (!test_bit(pdpe, pdp->used_pdpes))
1404 continue;
1405
1406 seq_printf(m, "\tPDPE #%d\n", pdpe);
1407 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1408 uint32_t pte;
1409 gen8_pte_t *pt_vaddr;
1410
1411 if (!test_bit(pde, pd->used_pdes))
1412 continue;
1413
1414 pt_vaddr = kmap_px(pt);
1415 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1416 uint64_t va =
1417 (pdpe << GEN8_PDPE_SHIFT) |
1418 (pde << GEN8_PDE_SHIFT) |
1419 (pte << GEN8_PTE_SHIFT);
1420 int i;
1421 bool found = false;
1422
1423 for (i = 0; i < 4; i++)
1424 if (pt_vaddr[pte + i] != scratch_pte)
1425 found = true;
1426 if (!found)
1427 continue;
1428
1429 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1430 for (i = 0; i < 4; i++) {
1431 if (pt_vaddr[pte + i] != scratch_pte)
1432 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1433 else
1434 seq_puts(m, " SCRATCH ");
1435 }
1436 seq_puts(m, "\n");
1437 }
1438 /* don't use kunmap_px, it could trigger
1439 * an unnecessary flush.
1440 */
1441 kunmap_atomic(pt_vaddr);
1442 }
1443 }
1444 }
1445
1446 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1447 {
1448 struct i915_address_space *vm = &ppgtt->base;
1449 uint64_t start = ppgtt->base.start;
1450 uint64_t length = ppgtt->base.total;
1451 gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
1452 I915_CACHE_LLC, true);
1453
1454 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1455 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1456 } else {
1457 uint64_t pml4e;
1458 struct i915_pml4 *pml4 = &ppgtt->pml4;
1459 struct i915_page_directory_pointer *pdp;
1460
1461 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1462 if (!test_bit(pml4e, pml4->used_pml4es))
1463 continue;
1464
1465 seq_printf(m, " PML4E #%llu\n", pml4e);
1466 gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1467 }
1468 }
1469 }
1470
1471 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1472 {
1473 unsigned long *new_page_dirs, *new_page_tables;
1474 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1475 int ret;
1476
1477 /* We allocate temp bitmap for page tables for no gain
1478 * but as this is for init only, lets keep the things simple
1479 */
1480 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1481 if (ret)
1482 return ret;
1483
1484 /* Allocate for all pdps regardless of how the ppgtt
1485 * was defined.
1486 */
1487 ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1488 0, 1ULL << 32,
1489 new_page_dirs);
1490 if (!ret)
1491 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1492
1493 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1494
1495 return ret;
1496 }
1497
1498 /*
1499 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1500 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1501 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1502 * space.
1503 *
1504 */
1505 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1506 {
1507 int ret;
1508
1509 ret = gen8_init_scratch(&ppgtt->base);
1510 if (ret)
1511 return ret;
1512
1513 ppgtt->base.start = 0;
1514 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1515 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1516 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1517 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1518 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1519 ppgtt->base.bind_vma = ppgtt_bind_vma;
1520 ppgtt->debug_dump = gen8_dump_ppgtt;
1521
1522 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1523 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1524 if (ret)
1525 goto free_scratch;
1526
1527 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1528
1529 ppgtt->base.total = 1ULL << 48;
1530 ppgtt->switch_mm = gen8_48b_mm_switch;
1531 } else {
1532 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1533 if (ret)
1534 goto free_scratch;
1535
1536 ppgtt->base.total = 1ULL << 32;
1537 ppgtt->switch_mm = gen8_legacy_mm_switch;
1538 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1539 0, 0,
1540 GEN8_PML4E_SHIFT);
1541
1542 if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1543 ret = gen8_preallocate_top_level_pdps(ppgtt);
1544 if (ret)
1545 goto free_scratch;
1546 }
1547 }
1548
1549 if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1550 gen8_ppgtt_notify_vgt(ppgtt, true);
1551
1552 return 0;
1553
1554 free_scratch:
1555 gen8_free_scratch(&ppgtt->base);
1556 return ret;
1557 }
1558
1559 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1560 {
1561 struct i915_address_space *vm = &ppgtt->base;
1562 struct i915_page_table *unused;
1563 gen6_pte_t scratch_pte;
1564 uint32_t pd_entry;
1565 uint32_t pte, pde;
1566 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1567
1568 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1569 I915_CACHE_LLC, true, 0);
1570
1571 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1572 u32 expected;
1573 gen6_pte_t *pt_vaddr;
1574 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1575 pd_entry = readl(ppgtt->pd_addr + pde);
1576 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1577
1578 if (pd_entry != expected)
1579 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1580 pde,
1581 pd_entry,
1582 expected);
1583 seq_printf(m, "\tPDE: %x\n", pd_entry);
1584
1585 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1586
1587 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1588 unsigned long va =
1589 (pde * PAGE_SIZE * GEN6_PTES) +
1590 (pte * PAGE_SIZE);
1591 int i;
1592 bool found = false;
1593 for (i = 0; i < 4; i++)
1594 if (pt_vaddr[pte + i] != scratch_pte)
1595 found = true;
1596 if (!found)
1597 continue;
1598
1599 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1600 for (i = 0; i < 4; i++) {
1601 if (pt_vaddr[pte + i] != scratch_pte)
1602 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1603 else
1604 seq_puts(m, " SCRATCH ");
1605 }
1606 seq_puts(m, "\n");
1607 }
1608 kunmap_px(ppgtt, pt_vaddr);
1609 }
1610 }
1611
1612 /* Write pde (index) from the page directory @pd to the page table @pt */
1613 static void gen6_write_pde(struct i915_page_directory *pd,
1614 const int pde, struct i915_page_table *pt)
1615 {
1616 /* Caller needs to make sure the write completes if necessary */
1617 struct i915_hw_ppgtt *ppgtt =
1618 container_of(pd, struct i915_hw_ppgtt, pd);
1619 u32 pd_entry;
1620
1621 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1622 pd_entry |= GEN6_PDE_VALID;
1623
1624 writel(pd_entry, ppgtt->pd_addr + pde);
1625 }
1626
1627 /* Write all the page tables found in the ppgtt structure to incrementing page
1628 * directories. */
1629 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1630 struct i915_page_directory *pd,
1631 uint32_t start, uint32_t length)
1632 {
1633 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1634 struct i915_page_table *pt;
1635 uint32_t pde;
1636
1637 gen6_for_each_pde(pt, pd, start, length, pde)
1638 gen6_write_pde(pd, pde, pt);
1639
1640 /* Make sure write is complete before other code can use this page
1641 * table. Also require for WC mapped PTEs */
1642 readl(ggtt->gsm);
1643 }
1644
1645 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1646 {
1647 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1648
1649 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1650 }
1651
1652 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1653 struct drm_i915_gem_request *req)
1654 {
1655 struct intel_ring *ring = req->ring;
1656 struct intel_engine_cs *engine = req->engine;
1657 int ret;
1658
1659 /* NB: TLBs must be flushed and invalidated before a switch */
1660 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1661 if (ret)
1662 return ret;
1663
1664 ret = intel_ring_begin(req, 6);
1665 if (ret)
1666 return ret;
1667
1668 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1669 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1670 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1671 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1672 intel_ring_emit(ring, get_pd_offset(ppgtt));
1673 intel_ring_emit(ring, MI_NOOP);
1674 intel_ring_advance(ring);
1675
1676 return 0;
1677 }
1678
1679 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1680 struct drm_i915_gem_request *req)
1681 {
1682 struct intel_ring *ring = req->ring;
1683 struct intel_engine_cs *engine = req->engine;
1684 int ret;
1685
1686 /* NB: TLBs must be flushed and invalidated before a switch */
1687 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1688 if (ret)
1689 return ret;
1690
1691 ret = intel_ring_begin(req, 6);
1692 if (ret)
1693 return ret;
1694
1695 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1696 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1697 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1698 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1699 intel_ring_emit(ring, get_pd_offset(ppgtt));
1700 intel_ring_emit(ring, MI_NOOP);
1701 intel_ring_advance(ring);
1702
1703 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1704 if (engine->id != RCS) {
1705 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1706 if (ret)
1707 return ret;
1708 }
1709
1710 return 0;
1711 }
1712
1713 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1714 struct drm_i915_gem_request *req)
1715 {
1716 struct intel_engine_cs *engine = req->engine;
1717 struct drm_i915_private *dev_priv = req->i915;
1718
1719 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1720 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1721 return 0;
1722 }
1723
1724 static void gen8_ppgtt_enable(struct drm_device *dev)
1725 {
1726 struct drm_i915_private *dev_priv = to_i915(dev);
1727 struct intel_engine_cs *engine;
1728
1729 for_each_engine(engine, dev_priv) {
1730 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1731 I915_WRITE(RING_MODE_GEN7(engine),
1732 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1733 }
1734 }
1735
1736 static void gen7_ppgtt_enable(struct drm_device *dev)
1737 {
1738 struct drm_i915_private *dev_priv = to_i915(dev);
1739 struct intel_engine_cs *engine;
1740 uint32_t ecochk, ecobits;
1741
1742 ecobits = I915_READ(GAC_ECO_BITS);
1743 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1744
1745 ecochk = I915_READ(GAM_ECOCHK);
1746 if (IS_HASWELL(dev)) {
1747 ecochk |= ECOCHK_PPGTT_WB_HSW;
1748 } else {
1749 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1750 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1751 }
1752 I915_WRITE(GAM_ECOCHK, ecochk);
1753
1754 for_each_engine(engine, dev_priv) {
1755 /* GFX_MODE is per-ring on gen7+ */
1756 I915_WRITE(RING_MODE_GEN7(engine),
1757 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1758 }
1759 }
1760
1761 static void gen6_ppgtt_enable(struct drm_device *dev)
1762 {
1763 struct drm_i915_private *dev_priv = to_i915(dev);
1764 uint32_t ecochk, gab_ctl, ecobits;
1765
1766 ecobits = I915_READ(GAC_ECO_BITS);
1767 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1768 ECOBITS_PPGTT_CACHE64B);
1769
1770 gab_ctl = I915_READ(GAB_CTL);
1771 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1772
1773 ecochk = I915_READ(GAM_ECOCHK);
1774 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1775
1776 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1777 }
1778
1779 /* PPGTT support for Sandybdrige/Gen6 and later */
1780 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1781 uint64_t start,
1782 uint64_t length,
1783 bool use_scratch)
1784 {
1785 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1786 gen6_pte_t *pt_vaddr, scratch_pte;
1787 unsigned first_entry = start >> PAGE_SHIFT;
1788 unsigned num_entries = length >> PAGE_SHIFT;
1789 unsigned act_pt = first_entry / GEN6_PTES;
1790 unsigned first_pte = first_entry % GEN6_PTES;
1791 unsigned last_pte, i;
1792
1793 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1794 I915_CACHE_LLC, true, 0);
1795
1796 while (num_entries) {
1797 last_pte = first_pte + num_entries;
1798 if (last_pte > GEN6_PTES)
1799 last_pte = GEN6_PTES;
1800
1801 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1802
1803 for (i = first_pte; i < last_pte; i++)
1804 pt_vaddr[i] = scratch_pte;
1805
1806 kunmap_px(ppgtt, pt_vaddr);
1807
1808 num_entries -= last_pte - first_pte;
1809 first_pte = 0;
1810 act_pt++;
1811 }
1812 }
1813
1814 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1815 struct sg_table *pages,
1816 uint64_t start,
1817 enum i915_cache_level cache_level, u32 flags)
1818 {
1819 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1820 unsigned first_entry = start >> PAGE_SHIFT;
1821 unsigned act_pt = first_entry / GEN6_PTES;
1822 unsigned act_pte = first_entry % GEN6_PTES;
1823 gen6_pte_t *pt_vaddr = NULL;
1824 struct sgt_iter sgt_iter;
1825 dma_addr_t addr;
1826
1827 for_each_sgt_dma(addr, sgt_iter, pages) {
1828 if (pt_vaddr == NULL)
1829 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1830
1831 pt_vaddr[act_pte] =
1832 vm->pte_encode(addr, cache_level, true, flags);
1833
1834 if (++act_pte == GEN6_PTES) {
1835 kunmap_px(ppgtt, pt_vaddr);
1836 pt_vaddr = NULL;
1837 act_pt++;
1838 act_pte = 0;
1839 }
1840 }
1841
1842 if (pt_vaddr)
1843 kunmap_px(ppgtt, pt_vaddr);
1844 }
1845
1846 static int gen6_alloc_va_range(struct i915_address_space *vm,
1847 uint64_t start_in, uint64_t length_in)
1848 {
1849 DECLARE_BITMAP(new_page_tables, I915_PDES);
1850 struct drm_device *dev = vm->dev;
1851 struct drm_i915_private *dev_priv = to_i915(dev);
1852 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1853 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1854 struct i915_page_table *pt;
1855 uint32_t start, length, start_save, length_save;
1856 uint32_t pde;
1857 int ret;
1858
1859 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1860 return -ENODEV;
1861
1862 start = start_save = start_in;
1863 length = length_save = length_in;
1864
1865 bitmap_zero(new_page_tables, I915_PDES);
1866
1867 /* The allocation is done in two stages so that we can bail out with
1868 * minimal amount of pain. The first stage finds new page tables that
1869 * need allocation. The second stage marks use ptes within the page
1870 * tables.
1871 */
1872 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1873 if (pt != vm->scratch_pt) {
1874 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1875 continue;
1876 }
1877
1878 /* We've already allocated a page table */
1879 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1880
1881 pt = alloc_pt(dev);
1882 if (IS_ERR(pt)) {
1883 ret = PTR_ERR(pt);
1884 goto unwind_out;
1885 }
1886
1887 gen6_initialize_pt(vm, pt);
1888
1889 ppgtt->pd.page_table[pde] = pt;
1890 __set_bit(pde, new_page_tables);
1891 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1892 }
1893
1894 start = start_save;
1895 length = length_save;
1896
1897 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1898 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1899
1900 bitmap_zero(tmp_bitmap, GEN6_PTES);
1901 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1902 gen6_pte_count(start, length));
1903
1904 if (__test_and_clear_bit(pde, new_page_tables))
1905 gen6_write_pde(&ppgtt->pd, pde, pt);
1906
1907 trace_i915_page_table_entry_map(vm, pde, pt,
1908 gen6_pte_index(start),
1909 gen6_pte_count(start, length),
1910 GEN6_PTES);
1911 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1912 GEN6_PTES);
1913 }
1914
1915 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1916
1917 /* Make sure write is complete before other code can use this page
1918 * table. Also require for WC mapped PTEs */
1919 readl(ggtt->gsm);
1920
1921 mark_tlbs_dirty(ppgtt);
1922 return 0;
1923
1924 unwind_out:
1925 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1926 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1927
1928 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1929 free_pt(vm->dev, pt);
1930 }
1931
1932 mark_tlbs_dirty(ppgtt);
1933 return ret;
1934 }
1935
1936 static int gen6_init_scratch(struct i915_address_space *vm)
1937 {
1938 struct drm_device *dev = vm->dev;
1939 int ret;
1940
1941 ret = setup_scratch_page(dev, &vm->scratch_page, I915_GFP_DMA);
1942 if (ret)
1943 return ret;
1944
1945 vm->scratch_pt = alloc_pt(dev);
1946 if (IS_ERR(vm->scratch_pt)) {
1947 cleanup_scratch_page(dev, &vm->scratch_page);
1948 return PTR_ERR(vm->scratch_pt);
1949 }
1950
1951 gen6_initialize_pt(vm, vm->scratch_pt);
1952
1953 return 0;
1954 }
1955
1956 static void gen6_free_scratch(struct i915_address_space *vm)
1957 {
1958 struct drm_device *dev = vm->dev;
1959
1960 free_pt(dev, vm->scratch_pt);
1961 cleanup_scratch_page(dev, &vm->scratch_page);
1962 }
1963
1964 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1965 {
1966 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1967 struct i915_page_directory *pd = &ppgtt->pd;
1968 struct drm_device *dev = vm->dev;
1969 struct i915_page_table *pt;
1970 uint32_t pde;
1971
1972 drm_mm_remove_node(&ppgtt->node);
1973
1974 gen6_for_all_pdes(pt, pd, pde)
1975 if (pt != vm->scratch_pt)
1976 free_pt(dev, pt);
1977
1978 gen6_free_scratch(vm);
1979 }
1980
1981 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1982 {
1983 struct i915_address_space *vm = &ppgtt->base;
1984 struct drm_device *dev = ppgtt->base.dev;
1985 struct drm_i915_private *dev_priv = to_i915(dev);
1986 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1987 bool retried = false;
1988 int ret;
1989
1990 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1991 * allocator works in address space sizes, so it's multiplied by page
1992 * size. We allocate at the top of the GTT to avoid fragmentation.
1993 */
1994 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1995
1996 ret = gen6_init_scratch(vm);
1997 if (ret)
1998 return ret;
1999
2000 alloc:
2001 ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2002 &ppgtt->node, GEN6_PD_SIZE,
2003 GEN6_PD_ALIGN, 0,
2004 0, ggtt->base.total,
2005 DRM_MM_TOPDOWN);
2006 if (ret == -ENOSPC && !retried) {
2007 ret = i915_gem_evict_something(&ggtt->base,
2008 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2009 I915_CACHE_NONE,
2010 0, ggtt->base.total,
2011 0);
2012 if (ret)
2013 goto err_out;
2014
2015 retried = true;
2016 goto alloc;
2017 }
2018
2019 if (ret)
2020 goto err_out;
2021
2022
2023 if (ppgtt->node.start < ggtt->mappable_end)
2024 DRM_DEBUG("Forced to use aperture for PDEs\n");
2025
2026 return 0;
2027
2028 err_out:
2029 gen6_free_scratch(vm);
2030 return ret;
2031 }
2032
2033 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2034 {
2035 return gen6_ppgtt_allocate_page_directories(ppgtt);
2036 }
2037
2038 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2039 uint64_t start, uint64_t length)
2040 {
2041 struct i915_page_table *unused;
2042 uint32_t pde;
2043
2044 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2045 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2046 }
2047
2048 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2049 {
2050 struct drm_device *dev = ppgtt->base.dev;
2051 struct drm_i915_private *dev_priv = to_i915(dev);
2052 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2053 int ret;
2054
2055 ppgtt->base.pte_encode = ggtt->base.pte_encode;
2056 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev))
2057 ppgtt->switch_mm = gen6_mm_switch;
2058 else if (IS_HASWELL(dev))
2059 ppgtt->switch_mm = hsw_mm_switch;
2060 else if (IS_GEN7(dev))
2061 ppgtt->switch_mm = gen7_mm_switch;
2062 else
2063 BUG();
2064
2065 ret = gen6_ppgtt_alloc(ppgtt);
2066 if (ret)
2067 return ret;
2068
2069 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2070 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2071 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2072 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2073 ppgtt->base.bind_vma = ppgtt_bind_vma;
2074 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2075 ppgtt->base.start = 0;
2076 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2077 ppgtt->debug_dump = gen6_dump_ppgtt;
2078
2079 ppgtt->pd.base.ggtt_offset =
2080 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2081
2082 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2083 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2084
2085 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2086
2087 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2088
2089 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2090 ppgtt->node.size >> 20,
2091 ppgtt->node.start / PAGE_SIZE);
2092
2093 DRM_DEBUG("Adding PPGTT at offset %x\n",
2094 ppgtt->pd.base.ggtt_offset << 10);
2095
2096 return 0;
2097 }
2098
2099 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2100 struct drm_i915_private *dev_priv)
2101 {
2102 ppgtt->base.dev = &dev_priv->drm;
2103
2104 if (INTEL_INFO(dev_priv)->gen < 8)
2105 return gen6_ppgtt_init(ppgtt);
2106 else
2107 return gen8_ppgtt_init(ppgtt);
2108 }
2109
2110 static void i915_address_space_init(struct i915_address_space *vm,
2111 struct drm_i915_private *dev_priv)
2112 {
2113 drm_mm_init(&vm->mm, vm->start, vm->total);
2114 INIT_LIST_HEAD(&vm->active_list);
2115 INIT_LIST_HEAD(&vm->inactive_list);
2116 INIT_LIST_HEAD(&vm->unbound_list);
2117 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2118 }
2119
2120 static void gtt_write_workarounds(struct drm_device *dev)
2121 {
2122 struct drm_i915_private *dev_priv = to_i915(dev);
2123
2124 /* This function is for gtt related workarounds. This function is
2125 * called on driver load and after a GPU reset, so you can place
2126 * workarounds here even if they get overwritten by GPU reset.
2127 */
2128 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2129 if (IS_BROADWELL(dev))
2130 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2131 else if (IS_CHERRYVIEW(dev))
2132 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2133 else if (IS_SKYLAKE(dev))
2134 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2135 else if (IS_BROXTON(dev))
2136 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2137 }
2138
2139 static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2140 struct drm_i915_private *dev_priv,
2141 struct drm_i915_file_private *file_priv)
2142 {
2143 int ret;
2144
2145 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2146 if (ret == 0) {
2147 kref_init(&ppgtt->ref);
2148 i915_address_space_init(&ppgtt->base, dev_priv);
2149 ppgtt->base.file = file_priv;
2150 }
2151
2152 return ret;
2153 }
2154
2155 int i915_ppgtt_init_hw(struct drm_device *dev)
2156 {
2157 gtt_write_workarounds(dev);
2158
2159 /* In the case of execlists, PPGTT is enabled by the context descriptor
2160 * and the PDPs are contained within the context itself. We don't
2161 * need to do anything here. */
2162 if (i915.enable_execlists)
2163 return 0;
2164
2165 if (!USES_PPGTT(dev))
2166 return 0;
2167
2168 if (IS_GEN6(dev))
2169 gen6_ppgtt_enable(dev);
2170 else if (IS_GEN7(dev))
2171 gen7_ppgtt_enable(dev);
2172 else if (INTEL_INFO(dev)->gen >= 8)
2173 gen8_ppgtt_enable(dev);
2174 else
2175 MISSING_CASE(INTEL_INFO(dev)->gen);
2176
2177 return 0;
2178 }
2179
2180 struct i915_hw_ppgtt *
2181 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2182 struct drm_i915_file_private *fpriv)
2183 {
2184 struct i915_hw_ppgtt *ppgtt;
2185 int ret;
2186
2187 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2188 if (!ppgtt)
2189 return ERR_PTR(-ENOMEM);
2190
2191 ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv);
2192 if (ret) {
2193 kfree(ppgtt);
2194 return ERR_PTR(ret);
2195 }
2196
2197 trace_i915_ppgtt_create(&ppgtt->base);
2198
2199 return ppgtt;
2200 }
2201
2202 void i915_ppgtt_release(struct kref *kref)
2203 {
2204 struct i915_hw_ppgtt *ppgtt =
2205 container_of(kref, struct i915_hw_ppgtt, ref);
2206
2207 trace_i915_ppgtt_release(&ppgtt->base);
2208
2209 /* vmas should already be unbound and destroyed */
2210 WARN_ON(!list_empty(&ppgtt->base.active_list));
2211 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2212 WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2213
2214 list_del(&ppgtt->base.global_link);
2215 drm_mm_takedown(&ppgtt->base.mm);
2216
2217 ppgtt->base.cleanup(&ppgtt->base);
2218 kfree(ppgtt);
2219 }
2220
2221 /* Certain Gen5 chipsets require require idling the GPU before
2222 * unmapping anything from the GTT when VT-d is enabled.
2223 */
2224 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2225 {
2226 #ifdef CONFIG_INTEL_IOMMU
2227 /* Query intel_iommu to see if we need the workaround. Presumably that
2228 * was loaded first.
2229 */
2230 if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2231 return true;
2232 #endif
2233 return false;
2234 }
2235
2236 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2237 {
2238 struct intel_engine_cs *engine;
2239
2240 if (INTEL_INFO(dev_priv)->gen < 6)
2241 return;
2242
2243 for_each_engine(engine, dev_priv) {
2244 u32 fault_reg;
2245 fault_reg = I915_READ(RING_FAULT_REG(engine));
2246 if (fault_reg & RING_FAULT_VALID) {
2247 DRM_DEBUG_DRIVER("Unexpected fault\n"
2248 "\tAddr: 0x%08lx\n"
2249 "\tAddress space: %s\n"
2250 "\tSource ID: %d\n"
2251 "\tType: %d\n",
2252 fault_reg & PAGE_MASK,
2253 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2254 RING_FAULT_SRCID(fault_reg),
2255 RING_FAULT_FAULT_TYPE(fault_reg));
2256 I915_WRITE(RING_FAULT_REG(engine),
2257 fault_reg & ~RING_FAULT_VALID);
2258 }
2259 }
2260 POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2261 }
2262
2263 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2264 {
2265 if (INTEL_INFO(dev_priv)->gen < 6) {
2266 intel_gtt_chipset_flush();
2267 } else {
2268 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2269 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2270 }
2271 }
2272
2273 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2274 {
2275 struct drm_i915_private *dev_priv = to_i915(dev);
2276 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2277
2278 /* Don't bother messing with faults pre GEN6 as we have little
2279 * documentation supporting that it's a good idea.
2280 */
2281 if (INTEL_INFO(dev)->gen < 6)
2282 return;
2283
2284 i915_check_and_clear_faults(dev_priv);
2285
2286 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2287 true);
2288
2289 i915_ggtt_flush(dev_priv);
2290 }
2291
2292 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2293 {
2294 if (!dma_map_sg(&obj->base.dev->pdev->dev,
2295 obj->pages->sgl, obj->pages->nents,
2296 PCI_DMA_BIDIRECTIONAL))
2297 return -ENOSPC;
2298
2299 return 0;
2300 }
2301
2302 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2303 {
2304 #ifdef writeq
2305 writeq(pte, addr);
2306 #else
2307 iowrite32((u32)pte, addr);
2308 iowrite32(pte >> 32, addr + 4);
2309 #endif
2310 }
2311
2312 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2313 dma_addr_t addr,
2314 uint64_t offset,
2315 enum i915_cache_level level,
2316 u32 unused)
2317 {
2318 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2319 gen8_pte_t __iomem *pte =
2320 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2321 (offset >> PAGE_SHIFT);
2322 int rpm_atomic_seq;
2323
2324 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2325
2326 gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2327
2328 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2329 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2330
2331 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2332 }
2333
2334 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2335 struct sg_table *st,
2336 uint64_t start,
2337 enum i915_cache_level level, u32 unused)
2338 {
2339 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2340 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2341 struct sgt_iter sgt_iter;
2342 gen8_pte_t __iomem *gtt_entries;
2343 gen8_pte_t gtt_entry;
2344 dma_addr_t addr;
2345 int rpm_atomic_seq;
2346 int i = 0;
2347
2348 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2349
2350 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2351
2352 for_each_sgt_dma(addr, sgt_iter, st) {
2353 gtt_entry = gen8_pte_encode(addr, level, true);
2354 gen8_set_pte(&gtt_entries[i++], gtt_entry);
2355 }
2356
2357 /*
2358 * XXX: This serves as a posting read to make sure that the PTE has
2359 * actually been updated. There is some concern that even though
2360 * registers and PTEs are within the same BAR that they are potentially
2361 * of NUMA access patterns. Therefore, even with the way we assume
2362 * hardware should work, we must keep this posting read for paranoia.
2363 */
2364 if (i != 0)
2365 WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2366
2367 /* This next bit makes the above posting read even more important. We
2368 * want to flush the TLBs only after we're certain all the PTE updates
2369 * have finished.
2370 */
2371 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2372 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2373
2374 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2375 }
2376
2377 struct insert_entries {
2378 struct i915_address_space *vm;
2379 struct sg_table *st;
2380 uint64_t start;
2381 enum i915_cache_level level;
2382 u32 flags;
2383 };
2384
2385 static int gen8_ggtt_insert_entries__cb(void *_arg)
2386 {
2387 struct insert_entries *arg = _arg;
2388 gen8_ggtt_insert_entries(arg->vm, arg->st,
2389 arg->start, arg->level, arg->flags);
2390 return 0;
2391 }
2392
2393 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2394 struct sg_table *st,
2395 uint64_t start,
2396 enum i915_cache_level level,
2397 u32 flags)
2398 {
2399 struct insert_entries arg = { vm, st, start, level, flags };
2400 stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2401 }
2402
2403 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2404 dma_addr_t addr,
2405 uint64_t offset,
2406 enum i915_cache_level level,
2407 u32 flags)
2408 {
2409 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2410 gen6_pte_t __iomem *pte =
2411 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2412 (offset >> PAGE_SHIFT);
2413 int rpm_atomic_seq;
2414
2415 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2416
2417 iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2418
2419 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2420 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2421
2422 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2423 }
2424
2425 /*
2426 * Binds an object into the global gtt with the specified cache level. The object
2427 * will be accessible to the GPU via commands whose operands reference offsets
2428 * within the global GTT as well as accessible by the GPU through the GMADR
2429 * mapped BAR (dev_priv->mm.gtt->gtt).
2430 */
2431 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2432 struct sg_table *st,
2433 uint64_t start,
2434 enum i915_cache_level level, u32 flags)
2435 {
2436 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2437 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2438 struct sgt_iter sgt_iter;
2439 gen6_pte_t __iomem *gtt_entries;
2440 gen6_pte_t gtt_entry;
2441 dma_addr_t addr;
2442 int rpm_atomic_seq;
2443 int i = 0;
2444
2445 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2446
2447 gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2448
2449 for_each_sgt_dma(addr, sgt_iter, st) {
2450 gtt_entry = vm->pte_encode(addr, level, true, flags);
2451 iowrite32(gtt_entry, &gtt_entries[i++]);
2452 }
2453
2454 /* XXX: This serves as a posting read to make sure that the PTE has
2455 * actually been updated. There is some concern that even though
2456 * registers and PTEs are within the same BAR that they are potentially
2457 * of NUMA access patterns. Therefore, even with the way we assume
2458 * hardware should work, we must keep this posting read for paranoia.
2459 */
2460 if (i != 0)
2461 WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2462
2463 /* This next bit makes the above posting read even more important. We
2464 * want to flush the TLBs only after we're certain all the PTE updates
2465 * have finished.
2466 */
2467 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2468 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2469
2470 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2471 }
2472
2473 static void nop_clear_range(struct i915_address_space *vm,
2474 uint64_t start,
2475 uint64_t length,
2476 bool use_scratch)
2477 {
2478 }
2479
2480 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2481 uint64_t start,
2482 uint64_t length,
2483 bool use_scratch)
2484 {
2485 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2486 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2487 unsigned first_entry = start >> PAGE_SHIFT;
2488 unsigned num_entries = length >> PAGE_SHIFT;
2489 gen8_pte_t scratch_pte, __iomem *gtt_base =
2490 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2491 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2492 int i;
2493 int rpm_atomic_seq;
2494
2495 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2496
2497 if (WARN(num_entries > max_entries,
2498 "First entry = %d; Num entries = %d (max=%d)\n",
2499 first_entry, num_entries, max_entries))
2500 num_entries = max_entries;
2501
2502 scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
2503 I915_CACHE_LLC,
2504 use_scratch);
2505 for (i = 0; i < num_entries; i++)
2506 gen8_set_pte(&gtt_base[i], scratch_pte);
2507 readl(gtt_base);
2508
2509 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2510 }
2511
2512 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2513 uint64_t start,
2514 uint64_t length,
2515 bool use_scratch)
2516 {
2517 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2518 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2519 unsigned first_entry = start >> PAGE_SHIFT;
2520 unsigned num_entries = length >> PAGE_SHIFT;
2521 gen6_pte_t scratch_pte, __iomem *gtt_base =
2522 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2523 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2524 int i;
2525 int rpm_atomic_seq;
2526
2527 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2528
2529 if (WARN(num_entries > max_entries,
2530 "First entry = %d; Num entries = %d (max=%d)\n",
2531 first_entry, num_entries, max_entries))
2532 num_entries = max_entries;
2533
2534 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2535 I915_CACHE_LLC, use_scratch, 0);
2536
2537 for (i = 0; i < num_entries; i++)
2538 iowrite32(scratch_pte, &gtt_base[i]);
2539 readl(gtt_base);
2540
2541 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2542 }
2543
2544 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2545 dma_addr_t addr,
2546 uint64_t offset,
2547 enum i915_cache_level cache_level,
2548 u32 unused)
2549 {
2550 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2551 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2552 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2553 int rpm_atomic_seq;
2554
2555 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2556
2557 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2558
2559 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2560 }
2561
2562 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2563 struct sg_table *pages,
2564 uint64_t start,
2565 enum i915_cache_level cache_level, u32 unused)
2566 {
2567 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2568 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2569 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2570 int rpm_atomic_seq;
2571
2572 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2573
2574 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2575
2576 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2577
2578 }
2579
2580 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2581 uint64_t start,
2582 uint64_t length,
2583 bool unused)
2584 {
2585 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2586 unsigned first_entry = start >> PAGE_SHIFT;
2587 unsigned num_entries = length >> PAGE_SHIFT;
2588 int rpm_atomic_seq;
2589
2590 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2591
2592 intel_gtt_clear_range(first_entry, num_entries);
2593
2594 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2595 }
2596
2597 static int ggtt_bind_vma(struct i915_vma *vma,
2598 enum i915_cache_level cache_level,
2599 u32 flags)
2600 {
2601 struct drm_i915_gem_object *obj = vma->obj;
2602 u32 pte_flags = 0;
2603 int ret;
2604
2605 ret = i915_get_ggtt_vma_pages(vma);
2606 if (ret)
2607 return ret;
2608
2609 /* Currently applicable only to VLV */
2610 if (obj->gt_ro)
2611 pte_flags |= PTE_READ_ONLY;
2612
2613 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2614 cache_level, pte_flags);
2615
2616 /*
2617 * Without aliasing PPGTT there's no difference between
2618 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2619 * upgrade to both bound if we bind either to avoid double-binding.
2620 */
2621 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2622
2623 return 0;
2624 }
2625
2626 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2627 enum i915_cache_level cache_level,
2628 u32 flags)
2629 {
2630 u32 pte_flags;
2631 int ret;
2632
2633 ret = i915_get_ggtt_vma_pages(vma);
2634 if (ret)
2635 return ret;
2636
2637 /* Currently applicable only to VLV */
2638 pte_flags = 0;
2639 if (vma->obj->gt_ro)
2640 pte_flags |= PTE_READ_ONLY;
2641
2642
2643 if (flags & I915_VMA_GLOBAL_BIND) {
2644 vma->vm->insert_entries(vma->vm,
2645 vma->pages, vma->node.start,
2646 cache_level, pte_flags);
2647 }
2648
2649 if (flags & I915_VMA_LOCAL_BIND) {
2650 struct i915_hw_ppgtt *appgtt =
2651 to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2652 appgtt->base.insert_entries(&appgtt->base,
2653 vma->pages, vma->node.start,
2654 cache_level, pte_flags);
2655 }
2656
2657 return 0;
2658 }
2659
2660 static void ggtt_unbind_vma(struct i915_vma *vma)
2661 {
2662 struct i915_hw_ppgtt *appgtt = to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2663 const u64 size = min(vma->size, vma->node.size);
2664
2665 if (vma->flags & I915_VMA_GLOBAL_BIND)
2666 vma->vm->clear_range(vma->vm,
2667 vma->node.start, size,
2668 true);
2669
2670 if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
2671 appgtt->base.clear_range(&appgtt->base,
2672 vma->node.start, size,
2673 true);
2674 }
2675
2676 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2677 {
2678 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2679 struct device *kdev = &dev_priv->drm.pdev->dev;
2680 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2681
2682 if (unlikely(ggtt->do_idle_maps)) {
2683 if (i915_gem_wait_for_idle(dev_priv, false)) {
2684 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2685 /* Wait a bit, in hopes it avoids the hang */
2686 udelay(10);
2687 }
2688 }
2689
2690 dma_unmap_sg(kdev, obj->pages->sgl, obj->pages->nents,
2691 PCI_DMA_BIDIRECTIONAL);
2692 }
2693
2694 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2695 unsigned long color,
2696 u64 *start,
2697 u64 *end)
2698 {
2699 if (node->color != color)
2700 *start += 4096;
2701
2702 node = list_first_entry_or_null(&node->node_list,
2703 struct drm_mm_node,
2704 node_list);
2705 if (node && node->allocated && node->color != color)
2706 *end -= 4096;
2707 }
2708
2709 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2710 {
2711 /* Let GEM Manage all of the aperture.
2712 *
2713 * However, leave one page at the end still bound to the scratch page.
2714 * There are a number of places where the hardware apparently prefetches
2715 * past the end of the object, and we've seen multiple hangs with the
2716 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2717 * aperture. One page should be enough to keep any prefetching inside
2718 * of the aperture.
2719 */
2720 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2721 unsigned long hole_start, hole_end;
2722 struct drm_mm_node *entry;
2723 int ret;
2724
2725 ret = intel_vgt_balloon(dev_priv);
2726 if (ret)
2727 return ret;
2728
2729 /* Clear any non-preallocated blocks */
2730 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2731 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2732 hole_start, hole_end);
2733 ggtt->base.clear_range(&ggtt->base, hole_start,
2734 hole_end - hole_start, true);
2735 }
2736
2737 /* And finally clear the reserved guard page */
2738 ggtt->base.clear_range(&ggtt->base,
2739 ggtt->base.total - PAGE_SIZE, PAGE_SIZE,
2740 true);
2741
2742 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2743 struct i915_hw_ppgtt *ppgtt;
2744
2745 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2746 if (!ppgtt)
2747 return -ENOMEM;
2748
2749 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2750 if (ret) {
2751 kfree(ppgtt);
2752 return ret;
2753 }
2754
2755 if (ppgtt->base.allocate_va_range)
2756 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2757 ppgtt->base.total);
2758 if (ret) {
2759 ppgtt->base.cleanup(&ppgtt->base);
2760 kfree(ppgtt);
2761 return ret;
2762 }
2763
2764 ppgtt->base.clear_range(&ppgtt->base,
2765 ppgtt->base.start,
2766 ppgtt->base.total,
2767 true);
2768
2769 dev_priv->mm.aliasing_ppgtt = ppgtt;
2770 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2771 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2772 }
2773
2774 return 0;
2775 }
2776
2777 /**
2778 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2779 * @dev_priv: i915 device
2780 */
2781 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2782 {
2783 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2784
2785 if (dev_priv->mm.aliasing_ppgtt) {
2786 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2787 ppgtt->base.cleanup(&ppgtt->base);
2788 kfree(ppgtt);
2789 }
2790
2791 i915_gem_cleanup_stolen(&dev_priv->drm);
2792
2793 if (drm_mm_initialized(&ggtt->base.mm)) {
2794 intel_vgt_deballoon(dev_priv);
2795
2796 drm_mm_takedown(&ggtt->base.mm);
2797 list_del(&ggtt->base.global_link);
2798 }
2799
2800 ggtt->base.cleanup(&ggtt->base);
2801
2802 arch_phys_wc_del(ggtt->mtrr);
2803 io_mapping_fini(&ggtt->mappable);
2804 }
2805
2806 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2807 {
2808 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2809 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2810 return snb_gmch_ctl << 20;
2811 }
2812
2813 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2814 {
2815 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2816 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2817 if (bdw_gmch_ctl)
2818 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2819
2820 #ifdef CONFIG_X86_32
2821 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2822 if (bdw_gmch_ctl > 4)
2823 bdw_gmch_ctl = 4;
2824 #endif
2825
2826 return bdw_gmch_ctl << 20;
2827 }
2828
2829 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2830 {
2831 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2832 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2833
2834 if (gmch_ctrl)
2835 return 1 << (20 + gmch_ctrl);
2836
2837 return 0;
2838 }
2839
2840 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2841 {
2842 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2843 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2844 return snb_gmch_ctl << 25; /* 32 MB units */
2845 }
2846
2847 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2848 {
2849 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2850 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2851 return bdw_gmch_ctl << 25; /* 32 MB units */
2852 }
2853
2854 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2855 {
2856 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2857 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2858
2859 /*
2860 * 0x0 to 0x10: 32MB increments starting at 0MB
2861 * 0x11 to 0x16: 4MB increments starting at 8MB
2862 * 0x17 to 0x1d: 4MB increments start at 36MB
2863 */
2864 if (gmch_ctrl < 0x11)
2865 return gmch_ctrl << 25;
2866 else if (gmch_ctrl < 0x17)
2867 return (gmch_ctrl - 0x11 + 2) << 22;
2868 else
2869 return (gmch_ctrl - 0x17 + 9) << 22;
2870 }
2871
2872 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2873 {
2874 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2875 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2876
2877 if (gen9_gmch_ctl < 0xf0)
2878 return gen9_gmch_ctl << 25; /* 32 MB units */
2879 else
2880 /* 4MB increments starting at 0xf0 for 4MB */
2881 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2882 }
2883
2884 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2885 {
2886 struct pci_dev *pdev = ggtt->base.dev->pdev;
2887 phys_addr_t phys_addr;
2888 int ret;
2889
2890 /* For Modern GENs the PTEs and register space are split in the BAR */
2891 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2892
2893 /*
2894 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2895 * dropped. For WC mappings in general we have 64 byte burst writes
2896 * when the WC buffer is flushed, so we can't use it, but have to
2897 * resort to an uncached mapping. The WC issue is easily caught by the
2898 * readback check when writing GTT PTE entries.
2899 */
2900 if (IS_BROXTON(ggtt->base.dev))
2901 ggtt->gsm = ioremap_nocache(phys_addr, size);
2902 else
2903 ggtt->gsm = ioremap_wc(phys_addr, size);
2904 if (!ggtt->gsm) {
2905 DRM_ERROR("Failed to map the ggtt page table\n");
2906 return -ENOMEM;
2907 }
2908
2909 ret = setup_scratch_page(ggtt->base.dev,
2910 &ggtt->base.scratch_page,
2911 GFP_DMA32);
2912 if (ret) {
2913 DRM_ERROR("Scratch setup failed\n");
2914 /* iounmap will also get called at remove, but meh */
2915 iounmap(ggtt->gsm);
2916 return ret;
2917 }
2918
2919 return 0;
2920 }
2921
2922 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2923 * bits. When using advanced contexts each context stores its own PAT, but
2924 * writing this data shouldn't be harmful even in those cases. */
2925 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2926 {
2927 uint64_t pat;
2928
2929 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2930 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2931 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2932 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2933 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2934 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2935 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2936 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2937
2938 if (!USES_PPGTT(dev_priv))
2939 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2940 * so RTL will always use the value corresponding to
2941 * pat_sel = 000".
2942 * So let's disable cache for GGTT to avoid screen corruptions.
2943 * MOCS still can be used though.
2944 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2945 * before this patch, i.e. the same uncached + snooping access
2946 * like on gen6/7 seems to be in effect.
2947 * - So this just fixes blitter/render access. Again it looks
2948 * like it's not just uncached access, but uncached + snooping.
2949 * So we can still hold onto all our assumptions wrt cpu
2950 * clflushing on LLC machines.
2951 */
2952 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2953
2954 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2955 * write would work. */
2956 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2957 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2958 }
2959
2960 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2961 {
2962 uint64_t pat;
2963
2964 /*
2965 * Map WB on BDW to snooped on CHV.
2966 *
2967 * Only the snoop bit has meaning for CHV, the rest is
2968 * ignored.
2969 *
2970 * The hardware will never snoop for certain types of accesses:
2971 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2972 * - PPGTT page tables
2973 * - some other special cycles
2974 *
2975 * As with BDW, we also need to consider the following for GT accesses:
2976 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2977 * so RTL will always use the value corresponding to
2978 * pat_sel = 000".
2979 * Which means we must set the snoop bit in PAT entry 0
2980 * in order to keep the global status page working.
2981 */
2982 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2983 GEN8_PPAT(1, 0) |
2984 GEN8_PPAT(2, 0) |
2985 GEN8_PPAT(3, 0) |
2986 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2987 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2988 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2989 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2990
2991 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2992 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2993 }
2994
2995 static void gen6_gmch_remove(struct i915_address_space *vm)
2996 {
2997 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2998
2999 iounmap(ggtt->gsm);
3000 cleanup_scratch_page(vm->dev, &vm->scratch_page);
3001 }
3002
3003 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3004 {
3005 struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3006 struct pci_dev *pdev = dev_priv->drm.pdev;
3007 unsigned int size;
3008 u16 snb_gmch_ctl;
3009
3010 /* TODO: We're not aware of mappable constraints on gen8 yet */
3011 ggtt->mappable_base = pci_resource_start(pdev, 2);
3012 ggtt->mappable_end = pci_resource_len(pdev, 2);
3013
3014 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3015 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3016
3017 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3018
3019 if (INTEL_GEN(dev_priv) >= 9) {
3020 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3021 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3022 } else if (IS_CHERRYVIEW(dev_priv)) {
3023 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3024 size = chv_get_total_gtt_size(snb_gmch_ctl);
3025 } else {
3026 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3027 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3028 }
3029
3030 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3031
3032 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3033 chv_setup_private_ppat(dev_priv);
3034 else
3035 bdw_setup_private_ppat(dev_priv);
3036
3037 ggtt->base.cleanup = gen6_gmch_remove;
3038 ggtt->base.bind_vma = ggtt_bind_vma;
3039 ggtt->base.unbind_vma = ggtt_unbind_vma;
3040 ggtt->base.insert_page = gen8_ggtt_insert_page;
3041 ggtt->base.clear_range = nop_clear_range;
3042 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3043 ggtt->base.clear_range = gen8_ggtt_clear_range;
3044
3045 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3046 if (IS_CHERRYVIEW(dev_priv))
3047 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3048
3049 return ggtt_probe_common(ggtt, size);
3050 }
3051
3052 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3053 {
3054 struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3055 struct pci_dev *pdev = dev_priv->drm.pdev;
3056 unsigned int size;
3057 u16 snb_gmch_ctl;
3058
3059 ggtt->mappable_base = pci_resource_start(pdev, 2);
3060 ggtt->mappable_end = pci_resource_len(pdev, 2);
3061
3062 /* 64/512MB is the current min/max we actually know of, but this is just
3063 * a coarse sanity check.
3064 */
3065 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3066 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3067 return -ENXIO;
3068 }
3069
3070 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3071 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3072 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3073
3074 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3075
3076 size = gen6_get_total_gtt_size(snb_gmch_ctl);
3077 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3078
3079 ggtt->base.clear_range = gen6_ggtt_clear_range;
3080 ggtt->base.insert_page = gen6_ggtt_insert_page;
3081 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3082 ggtt->base.bind_vma = ggtt_bind_vma;
3083 ggtt->base.unbind_vma = ggtt_unbind_vma;
3084 ggtt->base.cleanup = gen6_gmch_remove;
3085
3086 if (HAS_EDRAM(dev_priv))
3087 ggtt->base.pte_encode = iris_pte_encode;
3088 else if (IS_HASWELL(dev_priv))
3089 ggtt->base.pte_encode = hsw_pte_encode;
3090 else if (IS_VALLEYVIEW(dev_priv))
3091 ggtt->base.pte_encode = byt_pte_encode;
3092 else if (INTEL_GEN(dev_priv) >= 7)
3093 ggtt->base.pte_encode = ivb_pte_encode;
3094 else
3095 ggtt->base.pte_encode = snb_pte_encode;
3096
3097 return ggtt_probe_common(ggtt, size);
3098 }
3099
3100 static void i915_gmch_remove(struct i915_address_space *vm)
3101 {
3102 intel_gmch_remove();
3103 }
3104
3105 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3106 {
3107 struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3108 int ret;
3109
3110 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3111 if (!ret) {
3112 DRM_ERROR("failed to set up gmch\n");
3113 return -EIO;
3114 }
3115
3116 intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3117 &ggtt->mappable_base, &ggtt->mappable_end);
3118
3119 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3120 ggtt->base.insert_page = i915_ggtt_insert_page;
3121 ggtt->base.insert_entries = i915_ggtt_insert_entries;
3122 ggtt->base.clear_range = i915_ggtt_clear_range;
3123 ggtt->base.bind_vma = ggtt_bind_vma;
3124 ggtt->base.unbind_vma = ggtt_unbind_vma;
3125 ggtt->base.cleanup = i915_gmch_remove;
3126
3127 if (unlikely(ggtt->do_idle_maps))
3128 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3129
3130 return 0;
3131 }
3132
3133 /**
3134 * i915_ggtt_probe_hw - Probe GGTT hardware location
3135 * @dev_priv: i915 device
3136 */
3137 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3138 {
3139 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3140 int ret;
3141
3142 ggtt->base.dev = &dev_priv->drm;
3143
3144 if (INTEL_GEN(dev_priv) <= 5)
3145 ret = i915_gmch_probe(ggtt);
3146 else if (INTEL_GEN(dev_priv) < 8)
3147 ret = gen6_gmch_probe(ggtt);
3148 else
3149 ret = gen8_gmch_probe(ggtt);
3150 if (ret)
3151 return ret;
3152
3153 if ((ggtt->base.total - 1) >> 32) {
3154 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3155 " of address space! Found %lldM!\n",
3156 ggtt->base.total >> 20);
3157 ggtt->base.total = 1ULL << 32;
3158 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3159 }
3160
3161 if (ggtt->mappable_end > ggtt->base.total) {
3162 DRM_ERROR("mappable aperture extends past end of GGTT,"
3163 " aperture=%llx, total=%llx\n",
3164 ggtt->mappable_end, ggtt->base.total);
3165 ggtt->mappable_end = ggtt->base.total;
3166 }
3167
3168 /* GMADR is the PCI mmio aperture into the global GTT. */
3169 DRM_INFO("Memory usable by graphics device = %lluM\n",
3170 ggtt->base.total >> 20);
3171 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3172 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3173 #ifdef CONFIG_INTEL_IOMMU
3174 if (intel_iommu_gfx_mapped)
3175 DRM_INFO("VT-d active for gfx access\n");
3176 #endif
3177
3178 return 0;
3179 }
3180
3181 /**
3182 * i915_ggtt_init_hw - Initialize GGTT hardware
3183 * @dev_priv: i915 device
3184 */
3185 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3186 {
3187 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3188 int ret;
3189
3190 INIT_LIST_HEAD(&dev_priv->vm_list);
3191
3192 /* Subtract the guard page before address space initialization to
3193 * shrink the range used by drm_mm.
3194 */
3195 ggtt->base.total -= PAGE_SIZE;
3196 i915_address_space_init(&ggtt->base, dev_priv);
3197 ggtt->base.total += PAGE_SIZE;
3198 if (!HAS_LLC(dev_priv))
3199 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3200
3201 if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3202 dev_priv->ggtt.mappable_base,
3203 dev_priv->ggtt.mappable_end)) {
3204 ret = -EIO;
3205 goto out_gtt_cleanup;
3206 }
3207
3208 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3209
3210 /*
3211 * Initialise stolen early so that we may reserve preallocated
3212 * objects for the BIOS to KMS transition.
3213 */
3214 ret = i915_gem_init_stolen(&dev_priv->drm);
3215 if (ret)
3216 goto out_gtt_cleanup;
3217
3218 return 0;
3219
3220 out_gtt_cleanup:
3221 ggtt->base.cleanup(&ggtt->base);
3222 return ret;
3223 }
3224
3225 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3226 {
3227 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3228 return -EIO;
3229
3230 return 0;
3231 }
3232
3233 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3234 {
3235 struct drm_i915_private *dev_priv = to_i915(dev);
3236 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3237 struct drm_i915_gem_object *obj;
3238 struct i915_vma *vma;
3239
3240 i915_check_and_clear_faults(dev_priv);
3241
3242 /* First fill our portion of the GTT with scratch pages */
3243 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3244 true);
3245
3246 /* Cache flush objects bound into GGTT and rebind them. */
3247 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3248 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3249 if (vma->vm != &ggtt->base)
3250 continue;
3251
3252 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3253 PIN_UPDATE));
3254 }
3255
3256 if (obj->pin_display)
3257 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3258 }
3259
3260 if (INTEL_INFO(dev)->gen >= 8) {
3261 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3262 chv_setup_private_ppat(dev_priv);
3263 else
3264 bdw_setup_private_ppat(dev_priv);
3265
3266 return;
3267 }
3268
3269 if (USES_PPGTT(dev)) {
3270 struct i915_address_space *vm;
3271
3272 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3273 /* TODO: Perhaps it shouldn't be gen6 specific */
3274
3275 struct i915_hw_ppgtt *ppgtt;
3276
3277 if (i915_is_ggtt(vm))
3278 ppgtt = dev_priv->mm.aliasing_ppgtt;
3279 else
3280 ppgtt = i915_vm_to_ppgtt(vm);
3281
3282 gen6_write_page_range(dev_priv, &ppgtt->pd,
3283 0, ppgtt->base.total);
3284 }
3285 }
3286
3287 i915_ggtt_flush(dev_priv);
3288 }
3289
3290 static void
3291 i915_vma_retire(struct i915_gem_active *active,
3292 struct drm_i915_gem_request *rq)
3293 {
3294 const unsigned int idx = rq->engine->id;
3295 struct i915_vma *vma =
3296 container_of(active, struct i915_vma, last_read[idx]);
3297
3298 GEM_BUG_ON(!i915_vma_has_active_engine(vma, idx));
3299
3300 i915_vma_clear_active(vma, idx);
3301 if (i915_vma_is_active(vma))
3302 return;
3303
3304 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3305 if (unlikely(i915_vma_is_closed(vma) && !i915_vma_is_pinned(vma)))
3306 WARN_ON(i915_vma_unbind(vma));
3307 }
3308
3309 void i915_vma_destroy(struct i915_vma *vma)
3310 {
3311 GEM_BUG_ON(vma->node.allocated);
3312 GEM_BUG_ON(i915_vma_is_active(vma));
3313 GEM_BUG_ON(!i915_vma_is_closed(vma));
3314 GEM_BUG_ON(vma->fence);
3315
3316 list_del(&vma->vm_link);
3317 if (!i915_vma_is_ggtt(vma))
3318 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
3319
3320 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
3321 }
3322
3323 void i915_vma_close(struct i915_vma *vma)
3324 {
3325 GEM_BUG_ON(i915_vma_is_closed(vma));
3326 vma->flags |= I915_VMA_CLOSED;
3327
3328 list_del_init(&vma->obj_link);
3329 if (!i915_vma_is_active(vma) && !i915_vma_is_pinned(vma))
3330 WARN_ON(i915_vma_unbind(vma));
3331 }
3332
3333 static struct i915_vma *
3334 __i915_vma_create(struct drm_i915_gem_object *obj,
3335 struct i915_address_space *vm,
3336 const struct i915_ggtt_view *view)
3337 {
3338 struct i915_vma *vma;
3339 int i;
3340
3341 GEM_BUG_ON(vm->closed);
3342
3343 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3344 if (vma == NULL)
3345 return ERR_PTR(-ENOMEM);
3346
3347 INIT_LIST_HEAD(&vma->exec_list);
3348 for (i = 0; i < ARRAY_SIZE(vma->last_read); i++)
3349 init_request_active(&vma->last_read[i], i915_vma_retire);
3350 init_request_active(&vma->last_fence, NULL);
3351 list_add(&vma->vm_link, &vm->unbound_list);
3352 vma->vm = vm;
3353 vma->obj = obj;
3354 vma->size = obj->base.size;
3355
3356 if (view) {
3357 vma->ggtt_view = *view;
3358 if (view->type == I915_GGTT_VIEW_PARTIAL) {
3359 vma->size = view->params.partial.size;
3360 vma->size <<= PAGE_SHIFT;
3361 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3362 vma->size =
3363 intel_rotation_info_size(&view->params.rotated);
3364 vma->size <<= PAGE_SHIFT;
3365 }
3366 }
3367
3368 if (i915_is_ggtt(vm)) {
3369 vma->flags |= I915_VMA_GGTT;
3370 } else {
3371 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3372 }
3373
3374 list_add_tail(&vma->obj_link, &obj->vma_list);
3375 return vma;
3376 }
3377
3378 static inline bool vma_matches(struct i915_vma *vma,
3379 struct i915_address_space *vm,
3380 const struct i915_ggtt_view *view)
3381 {
3382 if (vma->vm != vm)
3383 return false;
3384
3385 if (!i915_vma_is_ggtt(vma))
3386 return true;
3387
3388 if (!view)
3389 return vma->ggtt_view.type == 0;
3390
3391 if (vma->ggtt_view.type != view->type)
3392 return false;
3393
3394 return memcmp(&vma->ggtt_view.params,
3395 &view->params,
3396 sizeof(view->params)) == 0;
3397 }
3398
3399 struct i915_vma *
3400 i915_vma_create(struct drm_i915_gem_object *obj,
3401 struct i915_address_space *vm,
3402 const struct i915_ggtt_view *view)
3403 {
3404 GEM_BUG_ON(view && !i915_is_ggtt(vm));
3405 GEM_BUG_ON(i915_gem_obj_to_vma(obj, vm, view));
3406
3407 return __i915_vma_create(obj, vm, view);
3408 }
3409
3410 struct i915_vma *
3411 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3412 struct i915_address_space *vm,
3413 const struct i915_ggtt_view *view)
3414 {
3415 struct i915_vma *vma;
3416
3417 list_for_each_entry_reverse(vma, &obj->vma_list, obj_link)
3418 if (vma_matches(vma, vm, view))
3419 return vma;
3420
3421 return NULL;
3422 }
3423
3424 struct i915_vma *
3425 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3426 struct i915_address_space *vm,
3427 const struct i915_ggtt_view *view)
3428 {
3429 struct i915_vma *vma;
3430
3431 GEM_BUG_ON(view && !i915_is_ggtt(vm));
3432
3433 vma = i915_gem_obj_to_vma(obj, vm, view);
3434 if (!vma)
3435 vma = __i915_vma_create(obj, vm, view);
3436
3437 GEM_BUG_ON(i915_vma_is_closed(vma));
3438 return vma;
3439 }
3440
3441 static struct scatterlist *
3442 rotate_pages(const dma_addr_t *in, unsigned int offset,
3443 unsigned int width, unsigned int height,
3444 unsigned int stride,
3445 struct sg_table *st, struct scatterlist *sg)
3446 {
3447 unsigned int column, row;
3448 unsigned int src_idx;
3449
3450 for (column = 0; column < width; column++) {
3451 src_idx = stride * (height - 1) + column;
3452 for (row = 0; row < height; row++) {
3453 st->nents++;
3454 /* We don't need the pages, but need to initialize
3455 * the entries so the sg list can be happily traversed.
3456 * The only thing we need are DMA addresses.
3457 */
3458 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3459 sg_dma_address(sg) = in[offset + src_idx];
3460 sg_dma_len(sg) = PAGE_SIZE;
3461 sg = sg_next(sg);
3462 src_idx -= stride;
3463 }
3464 }
3465
3466 return sg;
3467 }
3468
3469 static struct sg_table *
3470 intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
3471 struct drm_i915_gem_object *obj)
3472 {
3473 const size_t n_pages = obj->base.size / PAGE_SIZE;
3474 unsigned int size = intel_rotation_info_size(rot_info);
3475 struct sgt_iter sgt_iter;
3476 dma_addr_t dma_addr;
3477 unsigned long i;
3478 dma_addr_t *page_addr_list;
3479 struct sg_table *st;
3480 struct scatterlist *sg;
3481 int ret = -ENOMEM;
3482
3483 /* Allocate a temporary list of source pages for random access. */
3484 page_addr_list = drm_malloc_gfp(n_pages,
3485 sizeof(dma_addr_t),
3486 GFP_TEMPORARY);
3487 if (!page_addr_list)
3488 return ERR_PTR(ret);
3489
3490 /* Allocate target SG list. */
3491 st = kmalloc(sizeof(*st), GFP_KERNEL);
3492 if (!st)
3493 goto err_st_alloc;
3494
3495 ret = sg_alloc_table(st, size, GFP_KERNEL);
3496 if (ret)
3497 goto err_sg_alloc;
3498
3499 /* Populate source page list from the object. */
3500 i = 0;
3501 for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3502 page_addr_list[i++] = dma_addr;
3503
3504 GEM_BUG_ON(i != n_pages);
3505 st->nents = 0;
3506 sg = st->sgl;
3507
3508 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3509 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3510 rot_info->plane[i].width, rot_info->plane[i].height,
3511 rot_info->plane[i].stride, st, sg);
3512 }
3513
3514 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3515 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3516
3517 drm_free_large(page_addr_list);
3518
3519 return st;
3520
3521 err_sg_alloc:
3522 kfree(st);
3523 err_st_alloc:
3524 drm_free_large(page_addr_list);
3525
3526 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3527 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3528
3529 return ERR_PTR(ret);
3530 }
3531
3532 static struct sg_table *
3533 intel_partial_pages(const struct i915_ggtt_view *view,
3534 struct drm_i915_gem_object *obj)
3535 {
3536 struct sg_table *st;
3537 struct scatterlist *sg;
3538 struct sg_page_iter obj_sg_iter;
3539 int ret = -ENOMEM;
3540
3541 st = kmalloc(sizeof(*st), GFP_KERNEL);
3542 if (!st)
3543 goto err_st_alloc;
3544
3545 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3546 if (ret)
3547 goto err_sg_alloc;
3548
3549 sg = st->sgl;
3550 st->nents = 0;
3551 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3552 view->params.partial.offset)
3553 {
3554 if (st->nents >= view->params.partial.size)
3555 break;
3556
3557 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3558 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3559 sg_dma_len(sg) = PAGE_SIZE;
3560
3561 sg = sg_next(sg);
3562 st->nents++;
3563 }
3564
3565 return st;
3566
3567 err_sg_alloc:
3568 kfree(st);
3569 err_st_alloc:
3570 return ERR_PTR(ret);
3571 }
3572
3573 static int
3574 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3575 {
3576 int ret = 0;
3577
3578 if (vma->pages)
3579 return 0;
3580
3581 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3582 vma->pages = vma->obj->pages;
3583 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3584 vma->pages =
3585 intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3586 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3587 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3588 else
3589 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3590 vma->ggtt_view.type);
3591
3592 if (!vma->pages) {
3593 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3594 vma->ggtt_view.type);
3595 ret = -EINVAL;
3596 } else if (IS_ERR(vma->pages)) {
3597 ret = PTR_ERR(vma->pages);
3598 vma->pages = NULL;
3599 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3600 vma->ggtt_view.type, ret);
3601 }
3602
3603 return ret;
3604 }
3605
3606 /**
3607 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3608 * @vma: VMA to map
3609 * @cache_level: mapping cache level
3610 * @flags: flags like global or local mapping
3611 *
3612 * DMA addresses are taken from the scatter-gather table of this object (or of
3613 * this VMA in case of non-default GGTT views) and PTE entries set up.
3614 * Note that DMA addresses are also the only part of the SG table we care about.
3615 */
3616 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3617 u32 flags)
3618 {
3619 u32 bind_flags;
3620 u32 vma_flags;
3621 int ret;
3622
3623 if (WARN_ON(flags == 0))
3624 return -EINVAL;
3625
3626 bind_flags = 0;
3627 if (flags & PIN_GLOBAL)
3628 bind_flags |= I915_VMA_GLOBAL_BIND;
3629 if (flags & PIN_USER)
3630 bind_flags |= I915_VMA_LOCAL_BIND;
3631
3632 vma_flags = vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
3633 if (flags & PIN_UPDATE)
3634 bind_flags |= vma_flags;
3635 else
3636 bind_flags &= ~vma_flags;
3637 if (bind_flags == 0)
3638 return 0;
3639
3640 if (vma_flags == 0 && vma->vm->allocate_va_range) {
3641 trace_i915_va_alloc(vma);
3642 ret = vma->vm->allocate_va_range(vma->vm,
3643 vma->node.start,
3644 vma->node.size);
3645 if (ret)
3646 return ret;
3647 }
3648
3649 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3650 if (ret)
3651 return ret;
3652
3653 vma->flags |= bind_flags;
3654 return 0;
3655 }
3656
3657 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3658 {
3659 void __iomem *ptr;
3660
3661 /* Access through the GTT requires the device to be awake. */
3662 assert_rpm_wakelock_held(to_i915(vma->vm->dev));
3663
3664 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3665 if (WARN_ON(!i915_vma_is_map_and_fenceable(vma)))
3666 return IO_ERR_PTR(-ENODEV);
3667
3668 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
3669 GEM_BUG_ON((vma->flags & I915_VMA_GLOBAL_BIND) == 0);
3670
3671 ptr = vma->iomap;
3672 if (ptr == NULL) {
3673 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->mappable,
3674 vma->node.start,
3675 vma->node.size);
3676 if (ptr == NULL)
3677 return IO_ERR_PTR(-ENOMEM);
3678
3679 vma->iomap = ptr;
3680 }
3681
3682 __i915_vma_pin(vma);
3683 return ptr;
3684 }
3685
3686 void i915_vma_unpin_and_release(struct i915_vma **p_vma)
3687 {
3688 struct i915_vma *vma;
3689
3690 vma = fetch_and_zero(p_vma);
3691 if (!vma)
3692 return;
3693
3694 i915_vma_unpin(vma);
3695 i915_vma_put(vma);
3696 }
This page took 0.129767 seconds and 5 git commands to generate.