drm/i915: Split early global GTT initialisation
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: Global GTT views
37 *
38 * Background and previous state
39 *
40 * Historically objects could exists (be bound) in global GTT space only as
41 * singular instances with a view representing all of the object's backing pages
42 * in a linear fashion. This view will be called a normal view.
43 *
44 * To support multiple views of the same object, where the number of mapped
45 * pages is not equal to the backing store, or where the layout of the pages
46 * is not linear, concept of a GGTT view was added.
47 *
48 * One example of an alternative view is a stereo display driven by a single
49 * image. In this case we would have a framebuffer looking like this
50 * (2x2 pages):
51 *
52 * 12
53 * 34
54 *
55 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56 * rendering. In contrast, fed to the display engine would be an alternative
57 * view which could look something like this:
58 *
59 * 1212
60 * 3434
61 *
62 * In this example both the size and layout of pages in the alternative view is
63 * different from the normal view.
64 *
65 * Implementation and usage
66 *
67 * GGTT views are implemented using VMAs and are distinguished via enum
68 * i915_ggtt_view_type and struct i915_ggtt_view.
69 *
70 * A new flavour of core GEM functions which work with GGTT bound objects were
71 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72 * renaming in large amounts of code. They take the struct i915_ggtt_view
73 * parameter encapsulating all metadata required to implement a view.
74 *
75 * As a helper for callers which are only interested in the normal view,
76 * globally const i915_ggtt_view_normal singleton instance exists. All old core
77 * GEM API functions, the ones not taking the view parameter, are operating on,
78 * or with the normal GGTT view.
79 *
80 * Code wanting to add or use a new GGTT view needs to:
81 *
82 * 1. Add a new enum with a suitable name.
83 * 2. Extend the metadata in the i915_ggtt_view structure if required.
84 * 3. Add support to i915_get_vma_pages().
85 *
86 * New views are required to build a scatter-gather table from within the
87 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88 * exists for the lifetime of an VMA.
89 *
90 * Core API is designed to have copy semantics which means that passed in
91 * struct i915_ggtt_view does not need to be persistent (left around after
92 * calling the core API functions).
93 *
94 */
95
96 static inline struct i915_ggtt *
97 i915_vm_to_ggtt(struct i915_address_space *vm)
98 {
99 GEM_BUG_ON(!i915_is_ggtt(vm));
100 return container_of(vm, struct i915_ggtt, base);
101 }
102
103 static int
104 i915_get_ggtt_vma_pages(struct i915_vma *vma);
105
106 const struct i915_ggtt_view i915_ggtt_view_normal = {
107 .type = I915_GGTT_VIEW_NORMAL,
108 };
109 const struct i915_ggtt_view i915_ggtt_view_rotated = {
110 .type = I915_GGTT_VIEW_ROTATED,
111 };
112
113 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
114 int enable_ppgtt)
115 {
116 bool has_aliasing_ppgtt;
117 bool has_full_ppgtt;
118 bool has_full_48bit_ppgtt;
119
120 has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
121 has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
122 has_full_48bit_ppgtt =
123 IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
124
125 if (intel_vgpu_active(dev_priv))
126 has_full_ppgtt = false; /* emulation is too hard */
127
128 if (!has_aliasing_ppgtt)
129 return 0;
130
131 /*
132 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
133 * execlists, the sole mechanism available to submit work.
134 */
135 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
136 return 0;
137
138 if (enable_ppgtt == 1)
139 return 1;
140
141 if (enable_ppgtt == 2 && has_full_ppgtt)
142 return 2;
143
144 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
145 return 3;
146
147 #ifdef CONFIG_INTEL_IOMMU
148 /* Disable ppgtt on SNB if VT-d is on. */
149 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
150 DRM_INFO("Disabling PPGTT because VT-d is on\n");
151 return 0;
152 }
153 #endif
154
155 /* Early VLV doesn't have this */
156 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
157 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
158 return 0;
159 }
160
161 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists)
162 return has_full_48bit_ppgtt ? 3 : 2;
163 else
164 return has_aliasing_ppgtt ? 1 : 0;
165 }
166
167 static int ppgtt_bind_vma(struct i915_vma *vma,
168 enum i915_cache_level cache_level,
169 u32 unused)
170 {
171 u32 pte_flags = 0;
172
173 /* Currently applicable only to VLV */
174 if (vma->obj->gt_ro)
175 pte_flags |= PTE_READ_ONLY;
176
177 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
178 cache_level, pte_flags);
179
180 return 0;
181 }
182
183 static void ppgtt_unbind_vma(struct i915_vma *vma)
184 {
185 vma->vm->clear_range(vma->vm,
186 vma->node.start,
187 vma->obj->base.size,
188 true);
189 }
190
191 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
192 enum i915_cache_level level,
193 bool valid)
194 {
195 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
196 pte |= addr;
197
198 switch (level) {
199 case I915_CACHE_NONE:
200 pte |= PPAT_UNCACHED_INDEX;
201 break;
202 case I915_CACHE_WT:
203 pte |= PPAT_DISPLAY_ELLC_INDEX;
204 break;
205 default:
206 pte |= PPAT_CACHED_INDEX;
207 break;
208 }
209
210 return pte;
211 }
212
213 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
214 const enum i915_cache_level level)
215 {
216 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
217 pde |= addr;
218 if (level != I915_CACHE_NONE)
219 pde |= PPAT_CACHED_PDE_INDEX;
220 else
221 pde |= PPAT_UNCACHED_INDEX;
222 return pde;
223 }
224
225 #define gen8_pdpe_encode gen8_pde_encode
226 #define gen8_pml4e_encode gen8_pde_encode
227
228 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
229 enum i915_cache_level level,
230 bool valid, u32 unused)
231 {
232 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
233 pte |= GEN6_PTE_ADDR_ENCODE(addr);
234
235 switch (level) {
236 case I915_CACHE_L3_LLC:
237 case I915_CACHE_LLC:
238 pte |= GEN6_PTE_CACHE_LLC;
239 break;
240 case I915_CACHE_NONE:
241 pte |= GEN6_PTE_UNCACHED;
242 break;
243 default:
244 MISSING_CASE(level);
245 }
246
247 return pte;
248 }
249
250 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
251 enum i915_cache_level level,
252 bool valid, u32 unused)
253 {
254 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
255 pte |= GEN6_PTE_ADDR_ENCODE(addr);
256
257 switch (level) {
258 case I915_CACHE_L3_LLC:
259 pte |= GEN7_PTE_CACHE_L3_LLC;
260 break;
261 case I915_CACHE_LLC:
262 pte |= GEN6_PTE_CACHE_LLC;
263 break;
264 case I915_CACHE_NONE:
265 pte |= GEN6_PTE_UNCACHED;
266 break;
267 default:
268 MISSING_CASE(level);
269 }
270
271 return pte;
272 }
273
274 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
275 enum i915_cache_level level,
276 bool valid, u32 flags)
277 {
278 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
279 pte |= GEN6_PTE_ADDR_ENCODE(addr);
280
281 if (!(flags & PTE_READ_ONLY))
282 pte |= BYT_PTE_WRITEABLE;
283
284 if (level != I915_CACHE_NONE)
285 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
286
287 return pte;
288 }
289
290 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
291 enum i915_cache_level level,
292 bool valid, u32 unused)
293 {
294 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
295 pte |= HSW_PTE_ADDR_ENCODE(addr);
296
297 if (level != I915_CACHE_NONE)
298 pte |= HSW_WB_LLC_AGE3;
299
300 return pte;
301 }
302
303 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
304 enum i915_cache_level level,
305 bool valid, u32 unused)
306 {
307 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
308 pte |= HSW_PTE_ADDR_ENCODE(addr);
309
310 switch (level) {
311 case I915_CACHE_NONE:
312 break;
313 case I915_CACHE_WT:
314 pte |= HSW_WT_ELLC_LLC_AGE3;
315 break;
316 default:
317 pte |= HSW_WB_ELLC_LLC_AGE3;
318 break;
319 }
320
321 return pte;
322 }
323
324 static int __setup_page_dma(struct drm_device *dev,
325 struct i915_page_dma *p, gfp_t flags)
326 {
327 struct device *device = &dev->pdev->dev;
328
329 p->page = alloc_page(flags);
330 if (!p->page)
331 return -ENOMEM;
332
333 p->daddr = dma_map_page(device,
334 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
335
336 if (dma_mapping_error(device, p->daddr)) {
337 __free_page(p->page);
338 return -EINVAL;
339 }
340
341 return 0;
342 }
343
344 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
345 {
346 return __setup_page_dma(dev, p, GFP_KERNEL);
347 }
348
349 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
350 {
351 if (WARN_ON(!p->page))
352 return;
353
354 dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
355 __free_page(p->page);
356 memset(p, 0, sizeof(*p));
357 }
358
359 static void *kmap_page_dma(struct i915_page_dma *p)
360 {
361 return kmap_atomic(p->page);
362 }
363
364 /* We use the flushing unmap only with ppgtt structures:
365 * page directories, page tables and scratch pages.
366 */
367 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
368 {
369 /* There are only few exceptions for gen >=6. chv and bxt.
370 * And we are not sure about the latter so play safe for now.
371 */
372 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
373 drm_clflush_virt_range(vaddr, PAGE_SIZE);
374
375 kunmap_atomic(vaddr);
376 }
377
378 #define kmap_px(px) kmap_page_dma(px_base(px))
379 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
380
381 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
382 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
383 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
384 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
385
386 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
387 const uint64_t val)
388 {
389 int i;
390 uint64_t * const vaddr = kmap_page_dma(p);
391
392 for (i = 0; i < 512; i++)
393 vaddr[i] = val;
394
395 kunmap_page_dma(dev, vaddr);
396 }
397
398 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
399 const uint32_t val32)
400 {
401 uint64_t v = val32;
402
403 v = v << 32 | val32;
404
405 fill_page_dma(dev, p, v);
406 }
407
408 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
409 {
410 struct i915_page_scratch *sp;
411 int ret;
412
413 sp = kzalloc(sizeof(*sp), GFP_KERNEL);
414 if (sp == NULL)
415 return ERR_PTR(-ENOMEM);
416
417 ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
418 if (ret) {
419 kfree(sp);
420 return ERR_PTR(ret);
421 }
422
423 set_pages_uc(px_page(sp), 1);
424
425 return sp;
426 }
427
428 static void free_scratch_page(struct drm_device *dev,
429 struct i915_page_scratch *sp)
430 {
431 set_pages_wb(px_page(sp), 1);
432
433 cleanup_px(dev, sp);
434 kfree(sp);
435 }
436
437 static struct i915_page_table *alloc_pt(struct drm_device *dev)
438 {
439 struct i915_page_table *pt;
440 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
441 GEN8_PTES : GEN6_PTES;
442 int ret = -ENOMEM;
443
444 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
445 if (!pt)
446 return ERR_PTR(-ENOMEM);
447
448 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
449 GFP_KERNEL);
450
451 if (!pt->used_ptes)
452 goto fail_bitmap;
453
454 ret = setup_px(dev, pt);
455 if (ret)
456 goto fail_page_m;
457
458 return pt;
459
460 fail_page_m:
461 kfree(pt->used_ptes);
462 fail_bitmap:
463 kfree(pt);
464
465 return ERR_PTR(ret);
466 }
467
468 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
469 {
470 cleanup_px(dev, pt);
471 kfree(pt->used_ptes);
472 kfree(pt);
473 }
474
475 static void gen8_initialize_pt(struct i915_address_space *vm,
476 struct i915_page_table *pt)
477 {
478 gen8_pte_t scratch_pte;
479
480 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
481 I915_CACHE_LLC, true);
482
483 fill_px(vm->dev, pt, scratch_pte);
484 }
485
486 static void gen6_initialize_pt(struct i915_address_space *vm,
487 struct i915_page_table *pt)
488 {
489 gen6_pte_t scratch_pte;
490
491 WARN_ON(px_dma(vm->scratch_page) == 0);
492
493 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
494 I915_CACHE_LLC, true, 0);
495
496 fill32_px(vm->dev, pt, scratch_pte);
497 }
498
499 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
500 {
501 struct i915_page_directory *pd;
502 int ret = -ENOMEM;
503
504 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
505 if (!pd)
506 return ERR_PTR(-ENOMEM);
507
508 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
509 sizeof(*pd->used_pdes), GFP_KERNEL);
510 if (!pd->used_pdes)
511 goto fail_bitmap;
512
513 ret = setup_px(dev, pd);
514 if (ret)
515 goto fail_page_m;
516
517 return pd;
518
519 fail_page_m:
520 kfree(pd->used_pdes);
521 fail_bitmap:
522 kfree(pd);
523
524 return ERR_PTR(ret);
525 }
526
527 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
528 {
529 if (px_page(pd)) {
530 cleanup_px(dev, pd);
531 kfree(pd->used_pdes);
532 kfree(pd);
533 }
534 }
535
536 static void gen8_initialize_pd(struct i915_address_space *vm,
537 struct i915_page_directory *pd)
538 {
539 gen8_pde_t scratch_pde;
540
541 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
542
543 fill_px(vm->dev, pd, scratch_pde);
544 }
545
546 static int __pdp_init(struct drm_device *dev,
547 struct i915_page_directory_pointer *pdp)
548 {
549 size_t pdpes = I915_PDPES_PER_PDP(dev);
550
551 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
552 sizeof(unsigned long),
553 GFP_KERNEL);
554 if (!pdp->used_pdpes)
555 return -ENOMEM;
556
557 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
558 GFP_KERNEL);
559 if (!pdp->page_directory) {
560 kfree(pdp->used_pdpes);
561 /* the PDP might be the statically allocated top level. Keep it
562 * as clean as possible */
563 pdp->used_pdpes = NULL;
564 return -ENOMEM;
565 }
566
567 return 0;
568 }
569
570 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
571 {
572 kfree(pdp->used_pdpes);
573 kfree(pdp->page_directory);
574 pdp->page_directory = NULL;
575 }
576
577 static struct
578 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
579 {
580 struct i915_page_directory_pointer *pdp;
581 int ret = -ENOMEM;
582
583 WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
584
585 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
586 if (!pdp)
587 return ERR_PTR(-ENOMEM);
588
589 ret = __pdp_init(dev, pdp);
590 if (ret)
591 goto fail_bitmap;
592
593 ret = setup_px(dev, pdp);
594 if (ret)
595 goto fail_page_m;
596
597 return pdp;
598
599 fail_page_m:
600 __pdp_fini(pdp);
601 fail_bitmap:
602 kfree(pdp);
603
604 return ERR_PTR(ret);
605 }
606
607 static void free_pdp(struct drm_device *dev,
608 struct i915_page_directory_pointer *pdp)
609 {
610 __pdp_fini(pdp);
611 if (USES_FULL_48BIT_PPGTT(dev)) {
612 cleanup_px(dev, pdp);
613 kfree(pdp);
614 }
615 }
616
617 static void gen8_initialize_pdp(struct i915_address_space *vm,
618 struct i915_page_directory_pointer *pdp)
619 {
620 gen8_ppgtt_pdpe_t scratch_pdpe;
621
622 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
623
624 fill_px(vm->dev, pdp, scratch_pdpe);
625 }
626
627 static void gen8_initialize_pml4(struct i915_address_space *vm,
628 struct i915_pml4 *pml4)
629 {
630 gen8_ppgtt_pml4e_t scratch_pml4e;
631
632 scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
633 I915_CACHE_LLC);
634
635 fill_px(vm->dev, pml4, scratch_pml4e);
636 }
637
638 static void
639 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
640 struct i915_page_directory_pointer *pdp,
641 struct i915_page_directory *pd,
642 int index)
643 {
644 gen8_ppgtt_pdpe_t *page_directorypo;
645
646 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
647 return;
648
649 page_directorypo = kmap_px(pdp);
650 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
651 kunmap_px(ppgtt, page_directorypo);
652 }
653
654 static void
655 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
656 struct i915_pml4 *pml4,
657 struct i915_page_directory_pointer *pdp,
658 int index)
659 {
660 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
661
662 WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
663 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
664 kunmap_px(ppgtt, pagemap);
665 }
666
667 /* Broadwell Page Directory Pointer Descriptors */
668 static int gen8_write_pdp(struct drm_i915_gem_request *req,
669 unsigned entry,
670 dma_addr_t addr)
671 {
672 struct intel_ring *ring = req->ring;
673 struct intel_engine_cs *engine = req->engine;
674 int ret;
675
676 BUG_ON(entry >= 4);
677
678 ret = intel_ring_begin(req, 6);
679 if (ret)
680 return ret;
681
682 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
683 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
684 intel_ring_emit(ring, upper_32_bits(addr));
685 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
686 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
687 intel_ring_emit(ring, lower_32_bits(addr));
688 intel_ring_advance(ring);
689
690 return 0;
691 }
692
693 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
694 struct drm_i915_gem_request *req)
695 {
696 int i, ret;
697
698 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
699 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
700
701 ret = gen8_write_pdp(req, i, pd_daddr);
702 if (ret)
703 return ret;
704 }
705
706 return 0;
707 }
708
709 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
710 struct drm_i915_gem_request *req)
711 {
712 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
713 }
714
715 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
716 struct i915_page_directory_pointer *pdp,
717 uint64_t start,
718 uint64_t length,
719 gen8_pte_t scratch_pte)
720 {
721 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
722 gen8_pte_t *pt_vaddr;
723 unsigned pdpe = gen8_pdpe_index(start);
724 unsigned pde = gen8_pde_index(start);
725 unsigned pte = gen8_pte_index(start);
726 unsigned num_entries = length >> PAGE_SHIFT;
727 unsigned last_pte, i;
728
729 if (WARN_ON(!pdp))
730 return;
731
732 while (num_entries) {
733 struct i915_page_directory *pd;
734 struct i915_page_table *pt;
735
736 if (WARN_ON(!pdp->page_directory[pdpe]))
737 break;
738
739 pd = pdp->page_directory[pdpe];
740
741 if (WARN_ON(!pd->page_table[pde]))
742 break;
743
744 pt = pd->page_table[pde];
745
746 if (WARN_ON(!px_page(pt)))
747 break;
748
749 last_pte = pte + num_entries;
750 if (last_pte > GEN8_PTES)
751 last_pte = GEN8_PTES;
752
753 pt_vaddr = kmap_px(pt);
754
755 for (i = pte; i < last_pte; i++) {
756 pt_vaddr[i] = scratch_pte;
757 num_entries--;
758 }
759
760 kunmap_px(ppgtt, pt_vaddr);
761
762 pte = 0;
763 if (++pde == I915_PDES) {
764 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
765 break;
766 pde = 0;
767 }
768 }
769 }
770
771 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
772 uint64_t start,
773 uint64_t length,
774 bool use_scratch)
775 {
776 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
777 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
778 I915_CACHE_LLC, use_scratch);
779
780 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
781 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
782 scratch_pte);
783 } else {
784 uint64_t pml4e;
785 struct i915_page_directory_pointer *pdp;
786
787 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
788 gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
789 scratch_pte);
790 }
791 }
792 }
793
794 static void
795 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
796 struct i915_page_directory_pointer *pdp,
797 struct sg_page_iter *sg_iter,
798 uint64_t start,
799 enum i915_cache_level cache_level)
800 {
801 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
802 gen8_pte_t *pt_vaddr;
803 unsigned pdpe = gen8_pdpe_index(start);
804 unsigned pde = gen8_pde_index(start);
805 unsigned pte = gen8_pte_index(start);
806
807 pt_vaddr = NULL;
808
809 while (__sg_page_iter_next(sg_iter)) {
810 if (pt_vaddr == NULL) {
811 struct i915_page_directory *pd = pdp->page_directory[pdpe];
812 struct i915_page_table *pt = pd->page_table[pde];
813 pt_vaddr = kmap_px(pt);
814 }
815
816 pt_vaddr[pte] =
817 gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
818 cache_level, true);
819 if (++pte == GEN8_PTES) {
820 kunmap_px(ppgtt, pt_vaddr);
821 pt_vaddr = NULL;
822 if (++pde == I915_PDES) {
823 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
824 break;
825 pde = 0;
826 }
827 pte = 0;
828 }
829 }
830
831 if (pt_vaddr)
832 kunmap_px(ppgtt, pt_vaddr);
833 }
834
835 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
836 struct sg_table *pages,
837 uint64_t start,
838 enum i915_cache_level cache_level,
839 u32 unused)
840 {
841 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
842 struct sg_page_iter sg_iter;
843
844 __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
845
846 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
847 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
848 cache_level);
849 } else {
850 struct i915_page_directory_pointer *pdp;
851 uint64_t pml4e;
852 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
853
854 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
855 gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
856 start, cache_level);
857 }
858 }
859 }
860
861 static void gen8_free_page_tables(struct drm_device *dev,
862 struct i915_page_directory *pd)
863 {
864 int i;
865
866 if (!px_page(pd))
867 return;
868
869 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
870 if (WARN_ON(!pd->page_table[i]))
871 continue;
872
873 free_pt(dev, pd->page_table[i]);
874 pd->page_table[i] = NULL;
875 }
876 }
877
878 static int gen8_init_scratch(struct i915_address_space *vm)
879 {
880 struct drm_device *dev = vm->dev;
881 int ret;
882
883 vm->scratch_page = alloc_scratch_page(dev);
884 if (IS_ERR(vm->scratch_page))
885 return PTR_ERR(vm->scratch_page);
886
887 vm->scratch_pt = alloc_pt(dev);
888 if (IS_ERR(vm->scratch_pt)) {
889 ret = PTR_ERR(vm->scratch_pt);
890 goto free_scratch_page;
891 }
892
893 vm->scratch_pd = alloc_pd(dev);
894 if (IS_ERR(vm->scratch_pd)) {
895 ret = PTR_ERR(vm->scratch_pd);
896 goto free_pt;
897 }
898
899 if (USES_FULL_48BIT_PPGTT(dev)) {
900 vm->scratch_pdp = alloc_pdp(dev);
901 if (IS_ERR(vm->scratch_pdp)) {
902 ret = PTR_ERR(vm->scratch_pdp);
903 goto free_pd;
904 }
905 }
906
907 gen8_initialize_pt(vm, vm->scratch_pt);
908 gen8_initialize_pd(vm, vm->scratch_pd);
909 if (USES_FULL_48BIT_PPGTT(dev))
910 gen8_initialize_pdp(vm, vm->scratch_pdp);
911
912 return 0;
913
914 free_pd:
915 free_pd(dev, vm->scratch_pd);
916 free_pt:
917 free_pt(dev, vm->scratch_pt);
918 free_scratch_page:
919 free_scratch_page(dev, vm->scratch_page);
920
921 return ret;
922 }
923
924 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
925 {
926 enum vgt_g2v_type msg;
927 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
928 int i;
929
930 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
931 u64 daddr = px_dma(&ppgtt->pml4);
932
933 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
934 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
935
936 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
937 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
938 } else {
939 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
940 u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
941
942 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
943 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
944 }
945
946 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
947 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
948 }
949
950 I915_WRITE(vgtif_reg(g2v_notify), msg);
951
952 return 0;
953 }
954
955 static void gen8_free_scratch(struct i915_address_space *vm)
956 {
957 struct drm_device *dev = vm->dev;
958
959 if (USES_FULL_48BIT_PPGTT(dev))
960 free_pdp(dev, vm->scratch_pdp);
961 free_pd(dev, vm->scratch_pd);
962 free_pt(dev, vm->scratch_pt);
963 free_scratch_page(dev, vm->scratch_page);
964 }
965
966 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
967 struct i915_page_directory_pointer *pdp)
968 {
969 int i;
970
971 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
972 if (WARN_ON(!pdp->page_directory[i]))
973 continue;
974
975 gen8_free_page_tables(dev, pdp->page_directory[i]);
976 free_pd(dev, pdp->page_directory[i]);
977 }
978
979 free_pdp(dev, pdp);
980 }
981
982 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
983 {
984 int i;
985
986 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
987 if (WARN_ON(!ppgtt->pml4.pdps[i]))
988 continue;
989
990 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
991 }
992
993 cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
994 }
995
996 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
997 {
998 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
999
1000 if (intel_vgpu_active(to_i915(vm->dev)))
1001 gen8_ppgtt_notify_vgt(ppgtt, false);
1002
1003 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
1004 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
1005 else
1006 gen8_ppgtt_cleanup_4lvl(ppgtt);
1007
1008 gen8_free_scratch(vm);
1009 }
1010
1011 /**
1012 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1013 * @vm: Master vm structure.
1014 * @pd: Page directory for this address range.
1015 * @start: Starting virtual address to begin allocations.
1016 * @length: Size of the allocations.
1017 * @new_pts: Bitmap set by function with new allocations. Likely used by the
1018 * caller to free on error.
1019 *
1020 * Allocate the required number of page tables. Extremely similar to
1021 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1022 * the page directory boundary (instead of the page directory pointer). That
1023 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1024 * possible, and likely that the caller will need to use multiple calls of this
1025 * function to achieve the appropriate allocation.
1026 *
1027 * Return: 0 if success; negative error code otherwise.
1028 */
1029 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1030 struct i915_page_directory *pd,
1031 uint64_t start,
1032 uint64_t length,
1033 unsigned long *new_pts)
1034 {
1035 struct drm_device *dev = vm->dev;
1036 struct i915_page_table *pt;
1037 uint32_t pde;
1038
1039 gen8_for_each_pde(pt, pd, start, length, pde) {
1040 /* Don't reallocate page tables */
1041 if (test_bit(pde, pd->used_pdes)) {
1042 /* Scratch is never allocated this way */
1043 WARN_ON(pt == vm->scratch_pt);
1044 continue;
1045 }
1046
1047 pt = alloc_pt(dev);
1048 if (IS_ERR(pt))
1049 goto unwind_out;
1050
1051 gen8_initialize_pt(vm, pt);
1052 pd->page_table[pde] = pt;
1053 __set_bit(pde, new_pts);
1054 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1055 }
1056
1057 return 0;
1058
1059 unwind_out:
1060 for_each_set_bit(pde, new_pts, I915_PDES)
1061 free_pt(dev, pd->page_table[pde]);
1062
1063 return -ENOMEM;
1064 }
1065
1066 /**
1067 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1068 * @vm: Master vm structure.
1069 * @pdp: Page directory pointer for this address range.
1070 * @start: Starting virtual address to begin allocations.
1071 * @length: Size of the allocations.
1072 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1073 * caller to free on error.
1074 *
1075 * Allocate the required number of page directories starting at the pde index of
1076 * @start, and ending at the pde index @start + @length. This function will skip
1077 * over already allocated page directories within the range, and only allocate
1078 * new ones, setting the appropriate pointer within the pdp as well as the
1079 * correct position in the bitmap @new_pds.
1080 *
1081 * The function will only allocate the pages within the range for a give page
1082 * directory pointer. In other words, if @start + @length straddles a virtually
1083 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1084 * required by the caller, This is not currently possible, and the BUG in the
1085 * code will prevent it.
1086 *
1087 * Return: 0 if success; negative error code otherwise.
1088 */
1089 static int
1090 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1091 struct i915_page_directory_pointer *pdp,
1092 uint64_t start,
1093 uint64_t length,
1094 unsigned long *new_pds)
1095 {
1096 struct drm_device *dev = vm->dev;
1097 struct i915_page_directory *pd;
1098 uint32_t pdpe;
1099 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1100
1101 WARN_ON(!bitmap_empty(new_pds, pdpes));
1102
1103 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1104 if (test_bit(pdpe, pdp->used_pdpes))
1105 continue;
1106
1107 pd = alloc_pd(dev);
1108 if (IS_ERR(pd))
1109 goto unwind_out;
1110
1111 gen8_initialize_pd(vm, pd);
1112 pdp->page_directory[pdpe] = pd;
1113 __set_bit(pdpe, new_pds);
1114 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1115 }
1116
1117 return 0;
1118
1119 unwind_out:
1120 for_each_set_bit(pdpe, new_pds, pdpes)
1121 free_pd(dev, pdp->page_directory[pdpe]);
1122
1123 return -ENOMEM;
1124 }
1125
1126 /**
1127 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1128 * @vm: Master vm structure.
1129 * @pml4: Page map level 4 for this address range.
1130 * @start: Starting virtual address to begin allocations.
1131 * @length: Size of the allocations.
1132 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1133 * caller to free on error.
1134 *
1135 * Allocate the required number of page directory pointers. Extremely similar to
1136 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1137 * The main difference is here we are limited by the pml4 boundary (instead of
1138 * the page directory pointer).
1139 *
1140 * Return: 0 if success; negative error code otherwise.
1141 */
1142 static int
1143 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1144 struct i915_pml4 *pml4,
1145 uint64_t start,
1146 uint64_t length,
1147 unsigned long *new_pdps)
1148 {
1149 struct drm_device *dev = vm->dev;
1150 struct i915_page_directory_pointer *pdp;
1151 uint32_t pml4e;
1152
1153 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1154
1155 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1156 if (!test_bit(pml4e, pml4->used_pml4es)) {
1157 pdp = alloc_pdp(dev);
1158 if (IS_ERR(pdp))
1159 goto unwind_out;
1160
1161 gen8_initialize_pdp(vm, pdp);
1162 pml4->pdps[pml4e] = pdp;
1163 __set_bit(pml4e, new_pdps);
1164 trace_i915_page_directory_pointer_entry_alloc(vm,
1165 pml4e,
1166 start,
1167 GEN8_PML4E_SHIFT);
1168 }
1169 }
1170
1171 return 0;
1172
1173 unwind_out:
1174 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1175 free_pdp(dev, pml4->pdps[pml4e]);
1176
1177 return -ENOMEM;
1178 }
1179
1180 static void
1181 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1182 {
1183 kfree(new_pts);
1184 kfree(new_pds);
1185 }
1186
1187 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1188 * of these are based on the number of PDPEs in the system.
1189 */
1190 static
1191 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1192 unsigned long **new_pts,
1193 uint32_t pdpes)
1194 {
1195 unsigned long *pds;
1196 unsigned long *pts;
1197
1198 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1199 if (!pds)
1200 return -ENOMEM;
1201
1202 pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1203 GFP_TEMPORARY);
1204 if (!pts)
1205 goto err_out;
1206
1207 *new_pds = pds;
1208 *new_pts = pts;
1209
1210 return 0;
1211
1212 err_out:
1213 free_gen8_temp_bitmaps(pds, pts);
1214 return -ENOMEM;
1215 }
1216
1217 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1218 * the page table structures, we mark them dirty so that
1219 * context switching/execlist queuing code takes extra steps
1220 * to ensure that tlbs are flushed.
1221 */
1222 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1223 {
1224 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1225 }
1226
1227 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1228 struct i915_page_directory_pointer *pdp,
1229 uint64_t start,
1230 uint64_t length)
1231 {
1232 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1233 unsigned long *new_page_dirs, *new_page_tables;
1234 struct drm_device *dev = vm->dev;
1235 struct i915_page_directory *pd;
1236 const uint64_t orig_start = start;
1237 const uint64_t orig_length = length;
1238 uint32_t pdpe;
1239 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1240 int ret;
1241
1242 /* Wrap is never okay since we can only represent 48b, and we don't
1243 * actually use the other side of the canonical address space.
1244 */
1245 if (WARN_ON(start + length < start))
1246 return -ENODEV;
1247
1248 if (WARN_ON(start + length > vm->total))
1249 return -ENODEV;
1250
1251 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1252 if (ret)
1253 return ret;
1254
1255 /* Do the allocations first so we can easily bail out */
1256 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1257 new_page_dirs);
1258 if (ret) {
1259 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1260 return ret;
1261 }
1262
1263 /* For every page directory referenced, allocate page tables */
1264 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1265 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1266 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1267 if (ret)
1268 goto err_out;
1269 }
1270
1271 start = orig_start;
1272 length = orig_length;
1273
1274 /* Allocations have completed successfully, so set the bitmaps, and do
1275 * the mappings. */
1276 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1277 gen8_pde_t *const page_directory = kmap_px(pd);
1278 struct i915_page_table *pt;
1279 uint64_t pd_len = length;
1280 uint64_t pd_start = start;
1281 uint32_t pde;
1282
1283 /* Every pd should be allocated, we just did that above. */
1284 WARN_ON(!pd);
1285
1286 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1287 /* Same reasoning as pd */
1288 WARN_ON(!pt);
1289 WARN_ON(!pd_len);
1290 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1291
1292 /* Set our used ptes within the page table */
1293 bitmap_set(pt->used_ptes,
1294 gen8_pte_index(pd_start),
1295 gen8_pte_count(pd_start, pd_len));
1296
1297 /* Our pde is now pointing to the pagetable, pt */
1298 __set_bit(pde, pd->used_pdes);
1299
1300 /* Map the PDE to the page table */
1301 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1302 I915_CACHE_LLC);
1303 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1304 gen8_pte_index(start),
1305 gen8_pte_count(start, length),
1306 GEN8_PTES);
1307
1308 /* NB: We haven't yet mapped ptes to pages. At this
1309 * point we're still relying on insert_entries() */
1310 }
1311
1312 kunmap_px(ppgtt, page_directory);
1313 __set_bit(pdpe, pdp->used_pdpes);
1314 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1315 }
1316
1317 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1318 mark_tlbs_dirty(ppgtt);
1319 return 0;
1320
1321 err_out:
1322 while (pdpe--) {
1323 unsigned long temp;
1324
1325 for_each_set_bit(temp, new_page_tables + pdpe *
1326 BITS_TO_LONGS(I915_PDES), I915_PDES)
1327 free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1328 }
1329
1330 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1331 free_pd(dev, pdp->page_directory[pdpe]);
1332
1333 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1334 mark_tlbs_dirty(ppgtt);
1335 return ret;
1336 }
1337
1338 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1339 struct i915_pml4 *pml4,
1340 uint64_t start,
1341 uint64_t length)
1342 {
1343 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1344 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1345 struct i915_page_directory_pointer *pdp;
1346 uint64_t pml4e;
1347 int ret = 0;
1348
1349 /* Do the pml4 allocations first, so we don't need to track the newly
1350 * allocated tables below the pdp */
1351 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1352
1353 /* The pagedirectory and pagetable allocations are done in the shared 3
1354 * and 4 level code. Just allocate the pdps.
1355 */
1356 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1357 new_pdps);
1358 if (ret)
1359 return ret;
1360
1361 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1362 "The allocation has spanned more than 512GB. "
1363 "It is highly likely this is incorrect.");
1364
1365 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1366 WARN_ON(!pdp);
1367
1368 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1369 if (ret)
1370 goto err_out;
1371
1372 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1373 }
1374
1375 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1376 GEN8_PML4ES_PER_PML4);
1377
1378 return 0;
1379
1380 err_out:
1381 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1382 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1383
1384 return ret;
1385 }
1386
1387 static int gen8_alloc_va_range(struct i915_address_space *vm,
1388 uint64_t start, uint64_t length)
1389 {
1390 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1391
1392 if (USES_FULL_48BIT_PPGTT(vm->dev))
1393 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1394 else
1395 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1396 }
1397
1398 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1399 uint64_t start, uint64_t length,
1400 gen8_pte_t scratch_pte,
1401 struct seq_file *m)
1402 {
1403 struct i915_page_directory *pd;
1404 uint32_t pdpe;
1405
1406 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1407 struct i915_page_table *pt;
1408 uint64_t pd_len = length;
1409 uint64_t pd_start = start;
1410 uint32_t pde;
1411
1412 if (!test_bit(pdpe, pdp->used_pdpes))
1413 continue;
1414
1415 seq_printf(m, "\tPDPE #%d\n", pdpe);
1416 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1417 uint32_t pte;
1418 gen8_pte_t *pt_vaddr;
1419
1420 if (!test_bit(pde, pd->used_pdes))
1421 continue;
1422
1423 pt_vaddr = kmap_px(pt);
1424 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1425 uint64_t va =
1426 (pdpe << GEN8_PDPE_SHIFT) |
1427 (pde << GEN8_PDE_SHIFT) |
1428 (pte << GEN8_PTE_SHIFT);
1429 int i;
1430 bool found = false;
1431
1432 for (i = 0; i < 4; i++)
1433 if (pt_vaddr[pte + i] != scratch_pte)
1434 found = true;
1435 if (!found)
1436 continue;
1437
1438 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1439 for (i = 0; i < 4; i++) {
1440 if (pt_vaddr[pte + i] != scratch_pte)
1441 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1442 else
1443 seq_puts(m, " SCRATCH ");
1444 }
1445 seq_puts(m, "\n");
1446 }
1447 /* don't use kunmap_px, it could trigger
1448 * an unnecessary flush.
1449 */
1450 kunmap_atomic(pt_vaddr);
1451 }
1452 }
1453 }
1454
1455 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1456 {
1457 struct i915_address_space *vm = &ppgtt->base;
1458 uint64_t start = ppgtt->base.start;
1459 uint64_t length = ppgtt->base.total;
1460 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1461 I915_CACHE_LLC, true);
1462
1463 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1464 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1465 } else {
1466 uint64_t pml4e;
1467 struct i915_pml4 *pml4 = &ppgtt->pml4;
1468 struct i915_page_directory_pointer *pdp;
1469
1470 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1471 if (!test_bit(pml4e, pml4->used_pml4es))
1472 continue;
1473
1474 seq_printf(m, " PML4E #%llu\n", pml4e);
1475 gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1476 }
1477 }
1478 }
1479
1480 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1481 {
1482 unsigned long *new_page_dirs, *new_page_tables;
1483 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1484 int ret;
1485
1486 /* We allocate temp bitmap for page tables for no gain
1487 * but as this is for init only, lets keep the things simple
1488 */
1489 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1490 if (ret)
1491 return ret;
1492
1493 /* Allocate for all pdps regardless of how the ppgtt
1494 * was defined.
1495 */
1496 ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1497 0, 1ULL << 32,
1498 new_page_dirs);
1499 if (!ret)
1500 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1501
1502 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1503
1504 return ret;
1505 }
1506
1507 /*
1508 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1509 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1510 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1511 * space.
1512 *
1513 */
1514 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1515 {
1516 int ret;
1517
1518 ret = gen8_init_scratch(&ppgtt->base);
1519 if (ret)
1520 return ret;
1521
1522 ppgtt->base.start = 0;
1523 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1524 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1525 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1526 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1527 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1528 ppgtt->base.bind_vma = ppgtt_bind_vma;
1529 ppgtt->debug_dump = gen8_dump_ppgtt;
1530
1531 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1532 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1533 if (ret)
1534 goto free_scratch;
1535
1536 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1537
1538 ppgtt->base.total = 1ULL << 48;
1539 ppgtt->switch_mm = gen8_48b_mm_switch;
1540 } else {
1541 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1542 if (ret)
1543 goto free_scratch;
1544
1545 ppgtt->base.total = 1ULL << 32;
1546 ppgtt->switch_mm = gen8_legacy_mm_switch;
1547 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1548 0, 0,
1549 GEN8_PML4E_SHIFT);
1550
1551 if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1552 ret = gen8_preallocate_top_level_pdps(ppgtt);
1553 if (ret)
1554 goto free_scratch;
1555 }
1556 }
1557
1558 if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1559 gen8_ppgtt_notify_vgt(ppgtt, true);
1560
1561 return 0;
1562
1563 free_scratch:
1564 gen8_free_scratch(&ppgtt->base);
1565 return ret;
1566 }
1567
1568 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1569 {
1570 struct i915_address_space *vm = &ppgtt->base;
1571 struct i915_page_table *unused;
1572 gen6_pte_t scratch_pte;
1573 uint32_t pd_entry;
1574 uint32_t pte, pde;
1575 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1576
1577 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1578 I915_CACHE_LLC, true, 0);
1579
1580 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1581 u32 expected;
1582 gen6_pte_t *pt_vaddr;
1583 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1584 pd_entry = readl(ppgtt->pd_addr + pde);
1585 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1586
1587 if (pd_entry != expected)
1588 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1589 pde,
1590 pd_entry,
1591 expected);
1592 seq_printf(m, "\tPDE: %x\n", pd_entry);
1593
1594 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1595
1596 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1597 unsigned long va =
1598 (pde * PAGE_SIZE * GEN6_PTES) +
1599 (pte * PAGE_SIZE);
1600 int i;
1601 bool found = false;
1602 for (i = 0; i < 4; i++)
1603 if (pt_vaddr[pte + i] != scratch_pte)
1604 found = true;
1605 if (!found)
1606 continue;
1607
1608 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1609 for (i = 0; i < 4; i++) {
1610 if (pt_vaddr[pte + i] != scratch_pte)
1611 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1612 else
1613 seq_puts(m, " SCRATCH ");
1614 }
1615 seq_puts(m, "\n");
1616 }
1617 kunmap_px(ppgtt, pt_vaddr);
1618 }
1619 }
1620
1621 /* Write pde (index) from the page directory @pd to the page table @pt */
1622 static void gen6_write_pde(struct i915_page_directory *pd,
1623 const int pde, struct i915_page_table *pt)
1624 {
1625 /* Caller needs to make sure the write completes if necessary */
1626 struct i915_hw_ppgtt *ppgtt =
1627 container_of(pd, struct i915_hw_ppgtt, pd);
1628 u32 pd_entry;
1629
1630 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1631 pd_entry |= GEN6_PDE_VALID;
1632
1633 writel(pd_entry, ppgtt->pd_addr + pde);
1634 }
1635
1636 /* Write all the page tables found in the ppgtt structure to incrementing page
1637 * directories. */
1638 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1639 struct i915_page_directory *pd,
1640 uint32_t start, uint32_t length)
1641 {
1642 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1643 struct i915_page_table *pt;
1644 uint32_t pde;
1645
1646 gen6_for_each_pde(pt, pd, start, length, pde)
1647 gen6_write_pde(pd, pde, pt);
1648
1649 /* Make sure write is complete before other code can use this page
1650 * table. Also require for WC mapped PTEs */
1651 readl(ggtt->gsm);
1652 }
1653
1654 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1655 {
1656 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1657
1658 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1659 }
1660
1661 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1662 struct drm_i915_gem_request *req)
1663 {
1664 struct intel_ring *ring = req->ring;
1665 struct intel_engine_cs *engine = req->engine;
1666 int ret;
1667
1668 /* NB: TLBs must be flushed and invalidated before a switch */
1669 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1670 if (ret)
1671 return ret;
1672
1673 ret = intel_ring_begin(req, 6);
1674 if (ret)
1675 return ret;
1676
1677 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1678 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1679 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1680 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1681 intel_ring_emit(ring, get_pd_offset(ppgtt));
1682 intel_ring_emit(ring, MI_NOOP);
1683 intel_ring_advance(ring);
1684
1685 return 0;
1686 }
1687
1688 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1689 struct drm_i915_gem_request *req)
1690 {
1691 struct intel_ring *ring = req->ring;
1692 struct intel_engine_cs *engine = req->engine;
1693 int ret;
1694
1695 /* NB: TLBs must be flushed and invalidated before a switch */
1696 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1697 if (ret)
1698 return ret;
1699
1700 ret = intel_ring_begin(req, 6);
1701 if (ret)
1702 return ret;
1703
1704 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1705 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1706 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1707 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1708 intel_ring_emit(ring, get_pd_offset(ppgtt));
1709 intel_ring_emit(ring, MI_NOOP);
1710 intel_ring_advance(ring);
1711
1712 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1713 if (engine->id != RCS) {
1714 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1715 if (ret)
1716 return ret;
1717 }
1718
1719 return 0;
1720 }
1721
1722 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1723 struct drm_i915_gem_request *req)
1724 {
1725 struct intel_engine_cs *engine = req->engine;
1726 struct drm_i915_private *dev_priv = req->i915;
1727
1728 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1729 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1730 return 0;
1731 }
1732
1733 static void gen8_ppgtt_enable(struct drm_device *dev)
1734 {
1735 struct drm_i915_private *dev_priv = to_i915(dev);
1736 struct intel_engine_cs *engine;
1737
1738 for_each_engine(engine, dev_priv) {
1739 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1740 I915_WRITE(RING_MODE_GEN7(engine),
1741 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1742 }
1743 }
1744
1745 static void gen7_ppgtt_enable(struct drm_device *dev)
1746 {
1747 struct drm_i915_private *dev_priv = to_i915(dev);
1748 struct intel_engine_cs *engine;
1749 uint32_t ecochk, ecobits;
1750
1751 ecobits = I915_READ(GAC_ECO_BITS);
1752 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1753
1754 ecochk = I915_READ(GAM_ECOCHK);
1755 if (IS_HASWELL(dev)) {
1756 ecochk |= ECOCHK_PPGTT_WB_HSW;
1757 } else {
1758 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1759 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1760 }
1761 I915_WRITE(GAM_ECOCHK, ecochk);
1762
1763 for_each_engine(engine, dev_priv) {
1764 /* GFX_MODE is per-ring on gen7+ */
1765 I915_WRITE(RING_MODE_GEN7(engine),
1766 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1767 }
1768 }
1769
1770 static void gen6_ppgtt_enable(struct drm_device *dev)
1771 {
1772 struct drm_i915_private *dev_priv = to_i915(dev);
1773 uint32_t ecochk, gab_ctl, ecobits;
1774
1775 ecobits = I915_READ(GAC_ECO_BITS);
1776 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1777 ECOBITS_PPGTT_CACHE64B);
1778
1779 gab_ctl = I915_READ(GAB_CTL);
1780 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1781
1782 ecochk = I915_READ(GAM_ECOCHK);
1783 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1784
1785 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1786 }
1787
1788 /* PPGTT support for Sandybdrige/Gen6 and later */
1789 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1790 uint64_t start,
1791 uint64_t length,
1792 bool use_scratch)
1793 {
1794 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1795 gen6_pte_t *pt_vaddr, scratch_pte;
1796 unsigned first_entry = start >> PAGE_SHIFT;
1797 unsigned num_entries = length >> PAGE_SHIFT;
1798 unsigned act_pt = first_entry / GEN6_PTES;
1799 unsigned first_pte = first_entry % GEN6_PTES;
1800 unsigned last_pte, i;
1801
1802 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1803 I915_CACHE_LLC, true, 0);
1804
1805 while (num_entries) {
1806 last_pte = first_pte + num_entries;
1807 if (last_pte > GEN6_PTES)
1808 last_pte = GEN6_PTES;
1809
1810 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1811
1812 for (i = first_pte; i < last_pte; i++)
1813 pt_vaddr[i] = scratch_pte;
1814
1815 kunmap_px(ppgtt, pt_vaddr);
1816
1817 num_entries -= last_pte - first_pte;
1818 first_pte = 0;
1819 act_pt++;
1820 }
1821 }
1822
1823 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1824 struct sg_table *pages,
1825 uint64_t start,
1826 enum i915_cache_level cache_level, u32 flags)
1827 {
1828 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1829 unsigned first_entry = start >> PAGE_SHIFT;
1830 unsigned act_pt = first_entry / GEN6_PTES;
1831 unsigned act_pte = first_entry % GEN6_PTES;
1832 gen6_pte_t *pt_vaddr = NULL;
1833 struct sgt_iter sgt_iter;
1834 dma_addr_t addr;
1835
1836 for_each_sgt_dma(addr, sgt_iter, pages) {
1837 if (pt_vaddr == NULL)
1838 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1839
1840 pt_vaddr[act_pte] =
1841 vm->pte_encode(addr, cache_level, true, flags);
1842
1843 if (++act_pte == GEN6_PTES) {
1844 kunmap_px(ppgtt, pt_vaddr);
1845 pt_vaddr = NULL;
1846 act_pt++;
1847 act_pte = 0;
1848 }
1849 }
1850
1851 if (pt_vaddr)
1852 kunmap_px(ppgtt, pt_vaddr);
1853 }
1854
1855 static int gen6_alloc_va_range(struct i915_address_space *vm,
1856 uint64_t start_in, uint64_t length_in)
1857 {
1858 DECLARE_BITMAP(new_page_tables, I915_PDES);
1859 struct drm_device *dev = vm->dev;
1860 struct drm_i915_private *dev_priv = to_i915(dev);
1861 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1862 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1863 struct i915_page_table *pt;
1864 uint32_t start, length, start_save, length_save;
1865 uint32_t pde;
1866 int ret;
1867
1868 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1869 return -ENODEV;
1870
1871 start = start_save = start_in;
1872 length = length_save = length_in;
1873
1874 bitmap_zero(new_page_tables, I915_PDES);
1875
1876 /* The allocation is done in two stages so that we can bail out with
1877 * minimal amount of pain. The first stage finds new page tables that
1878 * need allocation. The second stage marks use ptes within the page
1879 * tables.
1880 */
1881 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1882 if (pt != vm->scratch_pt) {
1883 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1884 continue;
1885 }
1886
1887 /* We've already allocated a page table */
1888 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1889
1890 pt = alloc_pt(dev);
1891 if (IS_ERR(pt)) {
1892 ret = PTR_ERR(pt);
1893 goto unwind_out;
1894 }
1895
1896 gen6_initialize_pt(vm, pt);
1897
1898 ppgtt->pd.page_table[pde] = pt;
1899 __set_bit(pde, new_page_tables);
1900 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1901 }
1902
1903 start = start_save;
1904 length = length_save;
1905
1906 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1907 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1908
1909 bitmap_zero(tmp_bitmap, GEN6_PTES);
1910 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1911 gen6_pte_count(start, length));
1912
1913 if (__test_and_clear_bit(pde, new_page_tables))
1914 gen6_write_pde(&ppgtt->pd, pde, pt);
1915
1916 trace_i915_page_table_entry_map(vm, pde, pt,
1917 gen6_pte_index(start),
1918 gen6_pte_count(start, length),
1919 GEN6_PTES);
1920 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1921 GEN6_PTES);
1922 }
1923
1924 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1925
1926 /* Make sure write is complete before other code can use this page
1927 * table. Also require for WC mapped PTEs */
1928 readl(ggtt->gsm);
1929
1930 mark_tlbs_dirty(ppgtt);
1931 return 0;
1932
1933 unwind_out:
1934 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1935 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1936
1937 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1938 free_pt(vm->dev, pt);
1939 }
1940
1941 mark_tlbs_dirty(ppgtt);
1942 return ret;
1943 }
1944
1945 static int gen6_init_scratch(struct i915_address_space *vm)
1946 {
1947 struct drm_device *dev = vm->dev;
1948
1949 vm->scratch_page = alloc_scratch_page(dev);
1950 if (IS_ERR(vm->scratch_page))
1951 return PTR_ERR(vm->scratch_page);
1952
1953 vm->scratch_pt = alloc_pt(dev);
1954 if (IS_ERR(vm->scratch_pt)) {
1955 free_scratch_page(dev, vm->scratch_page);
1956 return PTR_ERR(vm->scratch_pt);
1957 }
1958
1959 gen6_initialize_pt(vm, vm->scratch_pt);
1960
1961 return 0;
1962 }
1963
1964 static void gen6_free_scratch(struct i915_address_space *vm)
1965 {
1966 struct drm_device *dev = vm->dev;
1967
1968 free_pt(dev, vm->scratch_pt);
1969 free_scratch_page(dev, vm->scratch_page);
1970 }
1971
1972 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1973 {
1974 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1975 struct i915_page_directory *pd = &ppgtt->pd;
1976 struct drm_device *dev = vm->dev;
1977 struct i915_page_table *pt;
1978 uint32_t pde;
1979
1980 drm_mm_remove_node(&ppgtt->node);
1981
1982 gen6_for_all_pdes(pt, pd, pde)
1983 if (pt != vm->scratch_pt)
1984 free_pt(dev, pt);
1985
1986 gen6_free_scratch(vm);
1987 }
1988
1989 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1990 {
1991 struct i915_address_space *vm = &ppgtt->base;
1992 struct drm_device *dev = ppgtt->base.dev;
1993 struct drm_i915_private *dev_priv = to_i915(dev);
1994 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1995 bool retried = false;
1996 int ret;
1997
1998 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1999 * allocator works in address space sizes, so it's multiplied by page
2000 * size. We allocate at the top of the GTT to avoid fragmentation.
2001 */
2002 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2003
2004 ret = gen6_init_scratch(vm);
2005 if (ret)
2006 return ret;
2007
2008 alloc:
2009 ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2010 &ppgtt->node, GEN6_PD_SIZE,
2011 GEN6_PD_ALIGN, 0,
2012 0, ggtt->base.total,
2013 DRM_MM_TOPDOWN);
2014 if (ret == -ENOSPC && !retried) {
2015 ret = i915_gem_evict_something(dev, &ggtt->base,
2016 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2017 I915_CACHE_NONE,
2018 0, ggtt->base.total,
2019 0);
2020 if (ret)
2021 goto err_out;
2022
2023 retried = true;
2024 goto alloc;
2025 }
2026
2027 if (ret)
2028 goto err_out;
2029
2030
2031 if (ppgtt->node.start < ggtt->mappable_end)
2032 DRM_DEBUG("Forced to use aperture for PDEs\n");
2033
2034 return 0;
2035
2036 err_out:
2037 gen6_free_scratch(vm);
2038 return ret;
2039 }
2040
2041 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2042 {
2043 return gen6_ppgtt_allocate_page_directories(ppgtt);
2044 }
2045
2046 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2047 uint64_t start, uint64_t length)
2048 {
2049 struct i915_page_table *unused;
2050 uint32_t pde;
2051
2052 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2053 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2054 }
2055
2056 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2057 {
2058 struct drm_device *dev = ppgtt->base.dev;
2059 struct drm_i915_private *dev_priv = to_i915(dev);
2060 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2061 int ret;
2062
2063 ppgtt->base.pte_encode = ggtt->base.pte_encode;
2064 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev))
2065 ppgtt->switch_mm = gen6_mm_switch;
2066 else if (IS_HASWELL(dev))
2067 ppgtt->switch_mm = hsw_mm_switch;
2068 else if (IS_GEN7(dev))
2069 ppgtt->switch_mm = gen7_mm_switch;
2070 else
2071 BUG();
2072
2073 ret = gen6_ppgtt_alloc(ppgtt);
2074 if (ret)
2075 return ret;
2076
2077 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2078 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2079 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2080 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2081 ppgtt->base.bind_vma = ppgtt_bind_vma;
2082 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2083 ppgtt->base.start = 0;
2084 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2085 ppgtt->debug_dump = gen6_dump_ppgtt;
2086
2087 ppgtt->pd.base.ggtt_offset =
2088 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2089
2090 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2091 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2092
2093 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2094
2095 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2096
2097 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2098 ppgtt->node.size >> 20,
2099 ppgtt->node.start / PAGE_SIZE);
2100
2101 DRM_DEBUG("Adding PPGTT at offset %x\n",
2102 ppgtt->pd.base.ggtt_offset << 10);
2103
2104 return 0;
2105 }
2106
2107 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2108 {
2109 ppgtt->base.dev = dev;
2110
2111 if (INTEL_INFO(dev)->gen < 8)
2112 return gen6_ppgtt_init(ppgtt);
2113 else
2114 return gen8_ppgtt_init(ppgtt);
2115 }
2116
2117 static void i915_address_space_init(struct i915_address_space *vm,
2118 struct drm_i915_private *dev_priv)
2119 {
2120 drm_mm_init(&vm->mm, vm->start, vm->total);
2121 vm->dev = &dev_priv->drm;
2122 INIT_LIST_HEAD(&vm->active_list);
2123 INIT_LIST_HEAD(&vm->inactive_list);
2124 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2125 }
2126
2127 static void gtt_write_workarounds(struct drm_device *dev)
2128 {
2129 struct drm_i915_private *dev_priv = to_i915(dev);
2130
2131 /* This function is for gtt related workarounds. This function is
2132 * called on driver load and after a GPU reset, so you can place
2133 * workarounds here even if they get overwritten by GPU reset.
2134 */
2135 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2136 if (IS_BROADWELL(dev))
2137 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2138 else if (IS_CHERRYVIEW(dev))
2139 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2140 else if (IS_SKYLAKE(dev))
2141 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2142 else if (IS_BROXTON(dev))
2143 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2144 }
2145
2146 static int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2147 {
2148 struct drm_i915_private *dev_priv = to_i915(dev);
2149 int ret = 0;
2150
2151 ret = __hw_ppgtt_init(dev, ppgtt);
2152 if (ret == 0) {
2153 kref_init(&ppgtt->ref);
2154 i915_address_space_init(&ppgtt->base, dev_priv);
2155 }
2156
2157 return ret;
2158 }
2159
2160 int i915_ppgtt_init_hw(struct drm_device *dev)
2161 {
2162 gtt_write_workarounds(dev);
2163
2164 /* In the case of execlists, PPGTT is enabled by the context descriptor
2165 * and the PDPs are contained within the context itself. We don't
2166 * need to do anything here. */
2167 if (i915.enable_execlists)
2168 return 0;
2169
2170 if (!USES_PPGTT(dev))
2171 return 0;
2172
2173 if (IS_GEN6(dev))
2174 gen6_ppgtt_enable(dev);
2175 else if (IS_GEN7(dev))
2176 gen7_ppgtt_enable(dev);
2177 else if (INTEL_INFO(dev)->gen >= 8)
2178 gen8_ppgtt_enable(dev);
2179 else
2180 MISSING_CASE(INTEL_INFO(dev)->gen);
2181
2182 return 0;
2183 }
2184
2185 struct i915_hw_ppgtt *
2186 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2187 {
2188 struct i915_hw_ppgtt *ppgtt;
2189 int ret;
2190
2191 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2192 if (!ppgtt)
2193 return ERR_PTR(-ENOMEM);
2194
2195 ret = i915_ppgtt_init(dev, ppgtt);
2196 if (ret) {
2197 kfree(ppgtt);
2198 return ERR_PTR(ret);
2199 }
2200
2201 ppgtt->file_priv = fpriv;
2202
2203 trace_i915_ppgtt_create(&ppgtt->base);
2204
2205 return ppgtt;
2206 }
2207
2208 void i915_ppgtt_release(struct kref *kref)
2209 {
2210 struct i915_hw_ppgtt *ppgtt =
2211 container_of(kref, struct i915_hw_ppgtt, ref);
2212
2213 trace_i915_ppgtt_release(&ppgtt->base);
2214
2215 /* vmas should already be unbound */
2216 WARN_ON(!list_empty(&ppgtt->base.active_list));
2217 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2218
2219 list_del(&ppgtt->base.global_link);
2220 drm_mm_takedown(&ppgtt->base.mm);
2221
2222 ppgtt->base.cleanup(&ppgtt->base);
2223 kfree(ppgtt);
2224 }
2225
2226 /* Certain Gen5 chipsets require require idling the GPU before
2227 * unmapping anything from the GTT when VT-d is enabled.
2228 */
2229 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2230 {
2231 #ifdef CONFIG_INTEL_IOMMU
2232 /* Query intel_iommu to see if we need the workaround. Presumably that
2233 * was loaded first.
2234 */
2235 if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2236 return true;
2237 #endif
2238 return false;
2239 }
2240
2241 static bool do_idling(struct drm_i915_private *dev_priv)
2242 {
2243 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2244 bool ret = dev_priv->mm.interruptible;
2245
2246 if (unlikely(ggtt->do_idle_maps)) {
2247 dev_priv->mm.interruptible = false;
2248 if (i915_gem_wait_for_idle(dev_priv)) {
2249 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2250 /* Wait a bit, in hopes it avoids the hang */
2251 udelay(10);
2252 }
2253 }
2254
2255 return ret;
2256 }
2257
2258 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2259 {
2260 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2261
2262 if (unlikely(ggtt->do_idle_maps))
2263 dev_priv->mm.interruptible = interruptible;
2264 }
2265
2266 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2267 {
2268 struct intel_engine_cs *engine;
2269
2270 if (INTEL_INFO(dev_priv)->gen < 6)
2271 return;
2272
2273 for_each_engine(engine, dev_priv) {
2274 u32 fault_reg;
2275 fault_reg = I915_READ(RING_FAULT_REG(engine));
2276 if (fault_reg & RING_FAULT_VALID) {
2277 DRM_DEBUG_DRIVER("Unexpected fault\n"
2278 "\tAddr: 0x%08lx\n"
2279 "\tAddress space: %s\n"
2280 "\tSource ID: %d\n"
2281 "\tType: %d\n",
2282 fault_reg & PAGE_MASK,
2283 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2284 RING_FAULT_SRCID(fault_reg),
2285 RING_FAULT_FAULT_TYPE(fault_reg));
2286 I915_WRITE(RING_FAULT_REG(engine),
2287 fault_reg & ~RING_FAULT_VALID);
2288 }
2289 }
2290 POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2291 }
2292
2293 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2294 {
2295 if (INTEL_INFO(dev_priv)->gen < 6) {
2296 intel_gtt_chipset_flush();
2297 } else {
2298 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2299 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2300 }
2301 }
2302
2303 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2304 {
2305 struct drm_i915_private *dev_priv = to_i915(dev);
2306 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2307
2308 /* Don't bother messing with faults pre GEN6 as we have little
2309 * documentation supporting that it's a good idea.
2310 */
2311 if (INTEL_INFO(dev)->gen < 6)
2312 return;
2313
2314 i915_check_and_clear_faults(dev_priv);
2315
2316 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2317 true);
2318
2319 i915_ggtt_flush(dev_priv);
2320 }
2321
2322 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2323 {
2324 if (!dma_map_sg(&obj->base.dev->pdev->dev,
2325 obj->pages->sgl, obj->pages->nents,
2326 PCI_DMA_BIDIRECTIONAL))
2327 return -ENOSPC;
2328
2329 return 0;
2330 }
2331
2332 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2333 {
2334 #ifdef writeq
2335 writeq(pte, addr);
2336 #else
2337 iowrite32((u32)pte, addr);
2338 iowrite32(pte >> 32, addr + 4);
2339 #endif
2340 }
2341
2342 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2343 dma_addr_t addr,
2344 uint64_t offset,
2345 enum i915_cache_level level,
2346 u32 unused)
2347 {
2348 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2349 gen8_pte_t __iomem *pte =
2350 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2351 (offset >> PAGE_SHIFT);
2352 int rpm_atomic_seq;
2353
2354 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2355
2356 gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2357
2358 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2359 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2360
2361 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2362 }
2363
2364 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2365 struct sg_table *st,
2366 uint64_t start,
2367 enum i915_cache_level level, u32 unused)
2368 {
2369 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2370 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2371 struct sgt_iter sgt_iter;
2372 gen8_pte_t __iomem *gtt_entries;
2373 gen8_pte_t gtt_entry;
2374 dma_addr_t addr;
2375 int rpm_atomic_seq;
2376 int i = 0;
2377
2378 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2379
2380 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2381
2382 for_each_sgt_dma(addr, sgt_iter, st) {
2383 gtt_entry = gen8_pte_encode(addr, level, true);
2384 gen8_set_pte(&gtt_entries[i++], gtt_entry);
2385 }
2386
2387 /*
2388 * XXX: This serves as a posting read to make sure that the PTE has
2389 * actually been updated. There is some concern that even though
2390 * registers and PTEs are within the same BAR that they are potentially
2391 * of NUMA access patterns. Therefore, even with the way we assume
2392 * hardware should work, we must keep this posting read for paranoia.
2393 */
2394 if (i != 0)
2395 WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2396
2397 /* This next bit makes the above posting read even more important. We
2398 * want to flush the TLBs only after we're certain all the PTE updates
2399 * have finished.
2400 */
2401 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2402 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2403
2404 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2405 }
2406
2407 struct insert_entries {
2408 struct i915_address_space *vm;
2409 struct sg_table *st;
2410 uint64_t start;
2411 enum i915_cache_level level;
2412 u32 flags;
2413 };
2414
2415 static int gen8_ggtt_insert_entries__cb(void *_arg)
2416 {
2417 struct insert_entries *arg = _arg;
2418 gen8_ggtt_insert_entries(arg->vm, arg->st,
2419 arg->start, arg->level, arg->flags);
2420 return 0;
2421 }
2422
2423 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2424 struct sg_table *st,
2425 uint64_t start,
2426 enum i915_cache_level level,
2427 u32 flags)
2428 {
2429 struct insert_entries arg = { vm, st, start, level, flags };
2430 stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2431 }
2432
2433 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2434 dma_addr_t addr,
2435 uint64_t offset,
2436 enum i915_cache_level level,
2437 u32 flags)
2438 {
2439 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2440 gen6_pte_t __iomem *pte =
2441 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2442 (offset >> PAGE_SHIFT);
2443 int rpm_atomic_seq;
2444
2445 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2446
2447 iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2448
2449 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2450 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2451
2452 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2453 }
2454
2455 /*
2456 * Binds an object into the global gtt with the specified cache level. The object
2457 * will be accessible to the GPU via commands whose operands reference offsets
2458 * within the global GTT as well as accessible by the GPU through the GMADR
2459 * mapped BAR (dev_priv->mm.gtt->gtt).
2460 */
2461 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2462 struct sg_table *st,
2463 uint64_t start,
2464 enum i915_cache_level level, u32 flags)
2465 {
2466 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2467 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2468 struct sgt_iter sgt_iter;
2469 gen6_pte_t __iomem *gtt_entries;
2470 gen6_pte_t gtt_entry;
2471 dma_addr_t addr;
2472 int rpm_atomic_seq;
2473 int i = 0;
2474
2475 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2476
2477 gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2478
2479 for_each_sgt_dma(addr, sgt_iter, st) {
2480 gtt_entry = vm->pte_encode(addr, level, true, flags);
2481 iowrite32(gtt_entry, &gtt_entries[i++]);
2482 }
2483
2484 /* XXX: This serves as a posting read to make sure that the PTE has
2485 * actually been updated. There is some concern that even though
2486 * registers and PTEs are within the same BAR that they are potentially
2487 * of NUMA access patterns. Therefore, even with the way we assume
2488 * hardware should work, we must keep this posting read for paranoia.
2489 */
2490 if (i != 0)
2491 WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2492
2493 /* This next bit makes the above posting read even more important. We
2494 * want to flush the TLBs only after we're certain all the PTE updates
2495 * have finished.
2496 */
2497 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2498 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2499
2500 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2501 }
2502
2503 static void nop_clear_range(struct i915_address_space *vm,
2504 uint64_t start,
2505 uint64_t length,
2506 bool use_scratch)
2507 {
2508 }
2509
2510 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2511 uint64_t start,
2512 uint64_t length,
2513 bool use_scratch)
2514 {
2515 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2516 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2517 unsigned first_entry = start >> PAGE_SHIFT;
2518 unsigned num_entries = length >> PAGE_SHIFT;
2519 gen8_pte_t scratch_pte, __iomem *gtt_base =
2520 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2521 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2522 int i;
2523 int rpm_atomic_seq;
2524
2525 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2526
2527 if (WARN(num_entries > max_entries,
2528 "First entry = %d; Num entries = %d (max=%d)\n",
2529 first_entry, num_entries, max_entries))
2530 num_entries = max_entries;
2531
2532 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2533 I915_CACHE_LLC,
2534 use_scratch);
2535 for (i = 0; i < num_entries; i++)
2536 gen8_set_pte(&gtt_base[i], scratch_pte);
2537 readl(gtt_base);
2538
2539 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2540 }
2541
2542 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2543 uint64_t start,
2544 uint64_t length,
2545 bool use_scratch)
2546 {
2547 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2548 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2549 unsigned first_entry = start >> PAGE_SHIFT;
2550 unsigned num_entries = length >> PAGE_SHIFT;
2551 gen6_pte_t scratch_pte, __iomem *gtt_base =
2552 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2553 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2554 int i;
2555 int rpm_atomic_seq;
2556
2557 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2558
2559 if (WARN(num_entries > max_entries,
2560 "First entry = %d; Num entries = %d (max=%d)\n",
2561 first_entry, num_entries, max_entries))
2562 num_entries = max_entries;
2563
2564 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2565 I915_CACHE_LLC, use_scratch, 0);
2566
2567 for (i = 0; i < num_entries; i++)
2568 iowrite32(scratch_pte, &gtt_base[i]);
2569 readl(gtt_base);
2570
2571 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2572 }
2573
2574 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2575 dma_addr_t addr,
2576 uint64_t offset,
2577 enum i915_cache_level cache_level,
2578 u32 unused)
2579 {
2580 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2581 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2582 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2583 int rpm_atomic_seq;
2584
2585 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2586
2587 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2588
2589 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2590 }
2591
2592 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2593 struct sg_table *pages,
2594 uint64_t start,
2595 enum i915_cache_level cache_level, u32 unused)
2596 {
2597 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2598 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2599 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2600 int rpm_atomic_seq;
2601
2602 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2603
2604 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2605
2606 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2607
2608 }
2609
2610 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2611 uint64_t start,
2612 uint64_t length,
2613 bool unused)
2614 {
2615 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2616 unsigned first_entry = start >> PAGE_SHIFT;
2617 unsigned num_entries = length >> PAGE_SHIFT;
2618 int rpm_atomic_seq;
2619
2620 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2621
2622 intel_gtt_clear_range(first_entry, num_entries);
2623
2624 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2625 }
2626
2627 static int ggtt_bind_vma(struct i915_vma *vma,
2628 enum i915_cache_level cache_level,
2629 u32 flags)
2630 {
2631 struct drm_i915_gem_object *obj = vma->obj;
2632 u32 pte_flags = 0;
2633 int ret;
2634
2635 ret = i915_get_ggtt_vma_pages(vma);
2636 if (ret)
2637 return ret;
2638
2639 /* Currently applicable only to VLV */
2640 if (obj->gt_ro)
2641 pte_flags |= PTE_READ_ONLY;
2642
2643 vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2644 vma->node.start,
2645 cache_level, pte_flags);
2646
2647 /*
2648 * Without aliasing PPGTT there's no difference between
2649 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2650 * upgrade to both bound if we bind either to avoid double-binding.
2651 */
2652 vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2653
2654 return 0;
2655 }
2656
2657 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2658 enum i915_cache_level cache_level,
2659 u32 flags)
2660 {
2661 u32 pte_flags;
2662 int ret;
2663
2664 ret = i915_get_ggtt_vma_pages(vma);
2665 if (ret)
2666 return ret;
2667
2668 /* Currently applicable only to VLV */
2669 pte_flags = 0;
2670 if (vma->obj->gt_ro)
2671 pte_flags |= PTE_READ_ONLY;
2672
2673
2674 if (flags & GLOBAL_BIND) {
2675 vma->vm->insert_entries(vma->vm,
2676 vma->ggtt_view.pages,
2677 vma->node.start,
2678 cache_level, pte_flags);
2679 }
2680
2681 if (flags & LOCAL_BIND) {
2682 struct i915_hw_ppgtt *appgtt =
2683 to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2684 appgtt->base.insert_entries(&appgtt->base,
2685 vma->ggtt_view.pages,
2686 vma->node.start,
2687 cache_level, pte_flags);
2688 }
2689
2690 return 0;
2691 }
2692
2693 static void ggtt_unbind_vma(struct i915_vma *vma)
2694 {
2695 struct drm_device *dev = vma->vm->dev;
2696 struct drm_i915_private *dev_priv = to_i915(dev);
2697 struct drm_i915_gem_object *obj = vma->obj;
2698 const uint64_t size = min_t(uint64_t,
2699 obj->base.size,
2700 vma->node.size);
2701
2702 if (vma->bound & GLOBAL_BIND) {
2703 vma->vm->clear_range(vma->vm,
2704 vma->node.start,
2705 size,
2706 true);
2707 }
2708
2709 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2710 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2711
2712 appgtt->base.clear_range(&appgtt->base,
2713 vma->node.start,
2714 size,
2715 true);
2716 }
2717 }
2718
2719 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2720 {
2721 struct drm_device *dev = obj->base.dev;
2722 struct drm_i915_private *dev_priv = to_i915(dev);
2723 bool interruptible;
2724
2725 interruptible = do_idling(dev_priv);
2726
2727 dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2728 PCI_DMA_BIDIRECTIONAL);
2729
2730 undo_idling(dev_priv, interruptible);
2731 }
2732
2733 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2734 unsigned long color,
2735 u64 *start,
2736 u64 *end)
2737 {
2738 if (node->color != color)
2739 *start += 4096;
2740
2741 node = list_first_entry_or_null(&node->node_list,
2742 struct drm_mm_node,
2743 node_list);
2744 if (node && node->allocated && node->color != color)
2745 *end -= 4096;
2746 }
2747
2748 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2749 {
2750 /* Let GEM Manage all of the aperture.
2751 *
2752 * However, leave one page at the end still bound to the scratch page.
2753 * There are a number of places where the hardware apparently prefetches
2754 * past the end of the object, and we've seen multiple hangs with the
2755 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2756 * aperture. One page should be enough to keep any prefetching inside
2757 * of the aperture.
2758 */
2759 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2760 unsigned long hole_start, hole_end;
2761 struct drm_mm_node *entry;
2762 int ret;
2763
2764 ret = intel_vgt_balloon(dev_priv);
2765 if (ret)
2766 return ret;
2767
2768 /* Clear any non-preallocated blocks */
2769 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2770 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2771 hole_start, hole_end);
2772 ggtt->base.clear_range(&ggtt->base, hole_start,
2773 hole_end - hole_start, true);
2774 }
2775
2776 /* And finally clear the reserved guard page */
2777 ggtt->base.clear_range(&ggtt->base,
2778 ggtt->base.total - PAGE_SIZE, PAGE_SIZE,
2779 true);
2780
2781 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2782 struct i915_hw_ppgtt *ppgtt;
2783
2784 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2785 if (!ppgtt)
2786 return -ENOMEM;
2787
2788 ret = __hw_ppgtt_init(&dev_priv->drm, ppgtt);
2789 if (ret) {
2790 ppgtt->base.cleanup(&ppgtt->base);
2791 kfree(ppgtt);
2792 return ret;
2793 }
2794
2795 if (ppgtt->base.allocate_va_range)
2796 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2797 ppgtt->base.total);
2798 if (ret) {
2799 ppgtt->base.cleanup(&ppgtt->base);
2800 kfree(ppgtt);
2801 return ret;
2802 }
2803
2804 ppgtt->base.clear_range(&ppgtt->base,
2805 ppgtt->base.start,
2806 ppgtt->base.total,
2807 true);
2808
2809 dev_priv->mm.aliasing_ppgtt = ppgtt;
2810 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2811 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2812 }
2813
2814 return 0;
2815 }
2816
2817 /**
2818 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2819 * @dev_priv: i915 device
2820 */
2821 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2822 {
2823 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2824
2825 if (dev_priv->mm.aliasing_ppgtt) {
2826 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2827
2828 ppgtt->base.cleanup(&ppgtt->base);
2829 }
2830
2831 i915_gem_cleanup_stolen(&dev_priv->drm);
2832
2833 if (drm_mm_initialized(&ggtt->base.mm)) {
2834 intel_vgt_deballoon(dev_priv);
2835
2836 drm_mm_takedown(&ggtt->base.mm);
2837 list_del(&ggtt->base.global_link);
2838 }
2839
2840 ggtt->base.cleanup(&ggtt->base);
2841
2842 arch_phys_wc_del(ggtt->mtrr);
2843 io_mapping_free(ggtt->mappable);
2844 }
2845
2846 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2847 {
2848 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2849 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2850 return snb_gmch_ctl << 20;
2851 }
2852
2853 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2854 {
2855 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2856 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2857 if (bdw_gmch_ctl)
2858 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2859
2860 #ifdef CONFIG_X86_32
2861 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2862 if (bdw_gmch_ctl > 4)
2863 bdw_gmch_ctl = 4;
2864 #endif
2865
2866 return bdw_gmch_ctl << 20;
2867 }
2868
2869 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2870 {
2871 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2872 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2873
2874 if (gmch_ctrl)
2875 return 1 << (20 + gmch_ctrl);
2876
2877 return 0;
2878 }
2879
2880 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2881 {
2882 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2883 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2884 return snb_gmch_ctl << 25; /* 32 MB units */
2885 }
2886
2887 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2888 {
2889 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2890 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2891 return bdw_gmch_ctl << 25; /* 32 MB units */
2892 }
2893
2894 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2895 {
2896 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2897 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2898
2899 /*
2900 * 0x0 to 0x10: 32MB increments starting at 0MB
2901 * 0x11 to 0x16: 4MB increments starting at 8MB
2902 * 0x17 to 0x1d: 4MB increments start at 36MB
2903 */
2904 if (gmch_ctrl < 0x11)
2905 return gmch_ctrl << 25;
2906 else if (gmch_ctrl < 0x17)
2907 return (gmch_ctrl - 0x11 + 2) << 22;
2908 else
2909 return (gmch_ctrl - 0x17 + 9) << 22;
2910 }
2911
2912 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2913 {
2914 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2915 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2916
2917 if (gen9_gmch_ctl < 0xf0)
2918 return gen9_gmch_ctl << 25; /* 32 MB units */
2919 else
2920 /* 4MB increments starting at 0xf0 for 4MB */
2921 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2922 }
2923
2924 static int ggtt_probe_common(struct drm_i915_private *dev_priv, size_t gtt_size)
2925 {
2926 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2927 struct pci_dev *pdev = dev_priv->drm.pdev;
2928 struct i915_page_scratch *scratch_page;
2929 phys_addr_t ggtt_phys_addr;
2930
2931 /* For Modern GENs the PTEs and register space are split in the BAR */
2932 ggtt_phys_addr = pci_resource_start(pdev, 0) +
2933 (pci_resource_len(pdev, 0) / 2);
2934
2935 /*
2936 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2937 * dropped. For WC mappings in general we have 64 byte burst writes
2938 * when the WC buffer is flushed, so we can't use it, but have to
2939 * resort to an uncached mapping. The WC issue is easily caught by the
2940 * readback check when writing GTT PTE entries.
2941 */
2942 if (IS_BROXTON(dev_priv))
2943 ggtt->gsm = ioremap_nocache(ggtt_phys_addr, gtt_size);
2944 else
2945 ggtt->gsm = ioremap_wc(ggtt_phys_addr, gtt_size);
2946 if (!ggtt->gsm) {
2947 DRM_ERROR("Failed to map the gtt page table\n");
2948 return -ENOMEM;
2949 }
2950
2951 scratch_page = alloc_scratch_page(&dev_priv->drm);
2952 if (IS_ERR(scratch_page)) {
2953 DRM_ERROR("Scratch setup failed\n");
2954 /* iounmap will also get called at remove, but meh */
2955 iounmap(ggtt->gsm);
2956 return PTR_ERR(scratch_page);
2957 }
2958
2959 ggtt->base.scratch_page = scratch_page;
2960
2961 return 0;
2962 }
2963
2964 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2965 * bits. When using advanced contexts each context stores its own PAT, but
2966 * writing this data shouldn't be harmful even in those cases. */
2967 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2968 {
2969 uint64_t pat;
2970
2971 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2972 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2973 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2974 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2975 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2976 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2977 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2978 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2979
2980 if (!USES_PPGTT(dev_priv))
2981 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2982 * so RTL will always use the value corresponding to
2983 * pat_sel = 000".
2984 * So let's disable cache for GGTT to avoid screen corruptions.
2985 * MOCS still can be used though.
2986 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2987 * before this patch, i.e. the same uncached + snooping access
2988 * like on gen6/7 seems to be in effect.
2989 * - So this just fixes blitter/render access. Again it looks
2990 * like it's not just uncached access, but uncached + snooping.
2991 * So we can still hold onto all our assumptions wrt cpu
2992 * clflushing on LLC machines.
2993 */
2994 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2995
2996 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2997 * write would work. */
2998 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2999 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3000 }
3001
3002 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3003 {
3004 uint64_t pat;
3005
3006 /*
3007 * Map WB on BDW to snooped on CHV.
3008 *
3009 * Only the snoop bit has meaning for CHV, the rest is
3010 * ignored.
3011 *
3012 * The hardware will never snoop for certain types of accesses:
3013 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3014 * - PPGTT page tables
3015 * - some other special cycles
3016 *
3017 * As with BDW, we also need to consider the following for GT accesses:
3018 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3019 * so RTL will always use the value corresponding to
3020 * pat_sel = 000".
3021 * Which means we must set the snoop bit in PAT entry 0
3022 * in order to keep the global status page working.
3023 */
3024 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3025 GEN8_PPAT(1, 0) |
3026 GEN8_PPAT(2, 0) |
3027 GEN8_PPAT(3, 0) |
3028 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3029 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3030 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3031 GEN8_PPAT(7, CHV_PPAT_SNOOP);
3032
3033 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3034 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3035 }
3036
3037 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3038 {
3039 struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3040 struct pci_dev *pdev = dev_priv->drm.pdev;
3041 u16 snb_gmch_ctl;
3042 int ret;
3043
3044 /* TODO: We're not aware of mappable constraints on gen8 yet */
3045 ggtt->mappable_base = pci_resource_start(pdev, 2);
3046 ggtt->mappable_end = pci_resource_len(pdev, 2);
3047
3048 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3049 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3050
3051 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3052
3053 if (INTEL_GEN(dev_priv) >= 9) {
3054 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3055 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3056 } else if (IS_CHERRYVIEW(dev_priv)) {
3057 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3058 ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
3059 } else {
3060 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3061 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3062 }
3063
3064 ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3065
3066 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3067 chv_setup_private_ppat(dev_priv);
3068 else
3069 bdw_setup_private_ppat(dev_priv);
3070
3071 ret = ggtt_probe_common(dev_priv, ggtt->size);
3072
3073 ggtt->base.bind_vma = ggtt_bind_vma;
3074 ggtt->base.unbind_vma = ggtt_unbind_vma;
3075 ggtt->base.insert_page = gen8_ggtt_insert_page;
3076 ggtt->base.clear_range = nop_clear_range;
3077 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3078 ggtt->base.clear_range = gen8_ggtt_clear_range;
3079
3080 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3081 if (IS_CHERRYVIEW(dev_priv))
3082 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3083
3084 return ret;
3085 }
3086
3087 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3088 {
3089 struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3090 struct pci_dev *pdev = dev_priv->drm.pdev;
3091 u16 snb_gmch_ctl;
3092 int ret;
3093
3094 ggtt->mappable_base = pci_resource_start(pdev, 2);
3095 ggtt->mappable_end = pci_resource_len(pdev, 2);
3096
3097 /* 64/512MB is the current min/max we actually know of, but this is just
3098 * a coarse sanity check.
3099 */
3100 if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
3101 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3102 return -ENXIO;
3103 }
3104
3105 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3106 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3107 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3108
3109 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3110 ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
3111 ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3112
3113 ret = ggtt_probe_common(dev_priv, ggtt->size);
3114
3115 ggtt->base.clear_range = gen6_ggtt_clear_range;
3116 ggtt->base.insert_page = gen6_ggtt_insert_page;
3117 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3118 ggtt->base.bind_vma = ggtt_bind_vma;
3119 ggtt->base.unbind_vma = ggtt_unbind_vma;
3120
3121 return ret;
3122 }
3123
3124 static void gen6_gmch_remove(struct i915_address_space *vm)
3125 {
3126 struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
3127
3128 iounmap(ggtt->gsm);
3129 free_scratch_page(vm->dev, vm->scratch_page);
3130 }
3131
3132 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3133 {
3134 struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3135 int ret;
3136
3137 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3138 if (!ret) {
3139 DRM_ERROR("failed to set up gmch\n");
3140 return -EIO;
3141 }
3142
3143 intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3144 &ggtt->mappable_base, &ggtt->mappable_end);
3145
3146 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3147 ggtt->base.insert_page = i915_ggtt_insert_page;
3148 ggtt->base.insert_entries = i915_ggtt_insert_entries;
3149 ggtt->base.clear_range = i915_ggtt_clear_range;
3150 ggtt->base.bind_vma = ggtt_bind_vma;
3151 ggtt->base.unbind_vma = ggtt_unbind_vma;
3152
3153 if (unlikely(ggtt->do_idle_maps))
3154 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3155
3156 return 0;
3157 }
3158
3159 static void i915_gmch_remove(struct i915_address_space *vm)
3160 {
3161 intel_gmch_remove();
3162 }
3163
3164 /**
3165 * i915_ggtt_probe_hw - Probe GGTT hardware location
3166 * @dev_priv: i915 device
3167 */
3168 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3169 {
3170 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3171 int ret;
3172
3173 if (INTEL_GEN(dev_priv) <= 5) {
3174 ggtt->probe = i915_gmch_probe;
3175 ggtt->base.cleanup = i915_gmch_remove;
3176 } else if (INTEL_GEN(dev_priv) < 8) {
3177 ggtt->probe = gen6_gmch_probe;
3178 ggtt->base.cleanup = gen6_gmch_remove;
3179
3180 if (HAS_EDRAM(dev_priv))
3181 ggtt->base.pte_encode = iris_pte_encode;
3182 else if (IS_HASWELL(dev_priv))
3183 ggtt->base.pte_encode = hsw_pte_encode;
3184 else if (IS_VALLEYVIEW(dev_priv))
3185 ggtt->base.pte_encode = byt_pte_encode;
3186 else if (INTEL_GEN(dev_priv) >= 7)
3187 ggtt->base.pte_encode = ivb_pte_encode;
3188 else
3189 ggtt->base.pte_encode = snb_pte_encode;
3190 } else {
3191 ggtt->probe = gen8_gmch_probe;
3192 ggtt->base.cleanup = gen6_gmch_remove;
3193 }
3194
3195 ggtt->base.dev = &dev_priv->drm;
3196 ggtt->base.is_ggtt = true;
3197
3198 ret = ggtt->probe(ggtt);
3199 if (ret)
3200 return ret;
3201
3202 if ((ggtt->base.total - 1) >> 32) {
3203 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3204 " of address space! Found %lldM!\n",
3205 ggtt->base.total >> 20);
3206 ggtt->base.total = 1ULL << 32;
3207 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3208 }
3209
3210 if (ggtt->mappable_end > ggtt->base.total) {
3211 DRM_ERROR("mappable aperture extends past end of GGTT,"
3212 " aperture=%llx, total=%llx\n",
3213 ggtt->mappable_end, ggtt->base.total);
3214 ggtt->mappable_end = ggtt->base.total;
3215 }
3216
3217 /* GMADR is the PCI mmio aperture into the global GTT. */
3218 DRM_INFO("Memory usable by graphics device = %lluM\n",
3219 ggtt->base.total >> 20);
3220 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3221 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3222 #ifdef CONFIG_INTEL_IOMMU
3223 if (intel_iommu_gfx_mapped)
3224 DRM_INFO("VT-d active for gfx access\n");
3225 #endif
3226
3227 return 0;
3228 }
3229
3230 /**
3231 * i915_ggtt_init_hw - Initialize GGTT hardware
3232 * @dev_priv: i915 device
3233 */
3234 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3235 {
3236 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3237 int ret;
3238
3239 INIT_LIST_HEAD(&dev_priv->vm_list);
3240
3241 /* Subtract the guard page before address space initialization to
3242 * shrink the range used by drm_mm.
3243 */
3244 ggtt->base.total -= PAGE_SIZE;
3245 i915_address_space_init(&ggtt->base, dev_priv);
3246 ggtt->base.total += PAGE_SIZE;
3247 if (!HAS_LLC(dev_priv))
3248 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3249
3250 ggtt->mappable =
3251 io_mapping_create_wc(ggtt->mappable_base, ggtt->mappable_end);
3252 if (!ggtt->mappable) {
3253 ret = -EIO;
3254 goto out_gtt_cleanup;
3255 }
3256
3257 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3258
3259 /*
3260 * Initialise stolen early so that we may reserve preallocated
3261 * objects for the BIOS to KMS transition.
3262 */
3263 ret = i915_gem_init_stolen(&dev_priv->drm);
3264 if (ret)
3265 goto out_gtt_cleanup;
3266
3267 return 0;
3268
3269 out_gtt_cleanup:
3270 ggtt->base.cleanup(&ggtt->base);
3271 return ret;
3272 }
3273
3274 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3275 {
3276 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3277 return -EIO;
3278
3279 return 0;
3280 }
3281
3282 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3283 {
3284 struct drm_i915_private *dev_priv = to_i915(dev);
3285 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3286 struct drm_i915_gem_object *obj;
3287 struct i915_vma *vma;
3288
3289 i915_check_and_clear_faults(dev_priv);
3290
3291 /* First fill our portion of the GTT with scratch pages */
3292 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3293 true);
3294
3295 /* Cache flush objects bound into GGTT and rebind them. */
3296 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3297 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3298 if (vma->vm != &ggtt->base)
3299 continue;
3300
3301 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3302 PIN_UPDATE));
3303 }
3304
3305 if (obj->pin_display)
3306 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3307 }
3308
3309 if (INTEL_INFO(dev)->gen >= 8) {
3310 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3311 chv_setup_private_ppat(dev_priv);
3312 else
3313 bdw_setup_private_ppat(dev_priv);
3314
3315 return;
3316 }
3317
3318 if (USES_PPGTT(dev)) {
3319 struct i915_address_space *vm;
3320
3321 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3322 /* TODO: Perhaps it shouldn't be gen6 specific */
3323
3324 struct i915_hw_ppgtt *ppgtt;
3325
3326 if (vm->is_ggtt)
3327 ppgtt = dev_priv->mm.aliasing_ppgtt;
3328 else
3329 ppgtt = i915_vm_to_ppgtt(vm);
3330
3331 gen6_write_page_range(dev_priv, &ppgtt->pd,
3332 0, ppgtt->base.total);
3333 }
3334 }
3335
3336 i915_ggtt_flush(dev_priv);
3337 }
3338
3339 static struct i915_vma *
3340 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3341 struct i915_address_space *vm,
3342 const struct i915_ggtt_view *ggtt_view)
3343 {
3344 struct i915_vma *vma;
3345
3346 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3347 return ERR_PTR(-EINVAL);
3348
3349 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3350 if (vma == NULL)
3351 return ERR_PTR(-ENOMEM);
3352
3353 INIT_LIST_HEAD(&vma->vm_link);
3354 INIT_LIST_HEAD(&vma->obj_link);
3355 INIT_LIST_HEAD(&vma->exec_list);
3356 vma->vm = vm;
3357 vma->obj = obj;
3358 vma->is_ggtt = i915_is_ggtt(vm);
3359
3360 if (i915_is_ggtt(vm))
3361 vma->ggtt_view = *ggtt_view;
3362 else
3363 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3364
3365 list_add_tail(&vma->obj_link, &obj->vma_list);
3366
3367 return vma;
3368 }
3369
3370 struct i915_vma *
3371 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3372 struct i915_address_space *vm)
3373 {
3374 struct i915_vma *vma;
3375
3376 vma = i915_gem_obj_to_vma(obj, vm);
3377 if (!vma)
3378 vma = __i915_gem_vma_create(obj, vm,
3379 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3380
3381 return vma;
3382 }
3383
3384 struct i915_vma *
3385 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3386 const struct i915_ggtt_view *view)
3387 {
3388 struct drm_device *dev = obj->base.dev;
3389 struct drm_i915_private *dev_priv = to_i915(dev);
3390 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3391 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3392
3393 if (!vma)
3394 vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3395
3396 return vma;
3397
3398 }
3399
3400 static struct scatterlist *
3401 rotate_pages(const dma_addr_t *in, unsigned int offset,
3402 unsigned int width, unsigned int height,
3403 unsigned int stride,
3404 struct sg_table *st, struct scatterlist *sg)
3405 {
3406 unsigned int column, row;
3407 unsigned int src_idx;
3408
3409 for (column = 0; column < width; column++) {
3410 src_idx = stride * (height - 1) + column;
3411 for (row = 0; row < height; row++) {
3412 st->nents++;
3413 /* We don't need the pages, but need to initialize
3414 * the entries so the sg list can be happily traversed.
3415 * The only thing we need are DMA addresses.
3416 */
3417 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3418 sg_dma_address(sg) = in[offset + src_idx];
3419 sg_dma_len(sg) = PAGE_SIZE;
3420 sg = sg_next(sg);
3421 src_idx -= stride;
3422 }
3423 }
3424
3425 return sg;
3426 }
3427
3428 static struct sg_table *
3429 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3430 struct drm_i915_gem_object *obj)
3431 {
3432 const size_t n_pages = obj->base.size / PAGE_SIZE;
3433 unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3434 unsigned int size_pages_uv;
3435 struct sgt_iter sgt_iter;
3436 dma_addr_t dma_addr;
3437 unsigned long i;
3438 dma_addr_t *page_addr_list;
3439 struct sg_table *st;
3440 unsigned int uv_start_page;
3441 struct scatterlist *sg;
3442 int ret = -ENOMEM;
3443
3444 /* Allocate a temporary list of source pages for random access. */
3445 page_addr_list = drm_malloc_gfp(n_pages,
3446 sizeof(dma_addr_t),
3447 GFP_TEMPORARY);
3448 if (!page_addr_list)
3449 return ERR_PTR(ret);
3450
3451 /* Account for UV plane with NV12. */
3452 if (rot_info->pixel_format == DRM_FORMAT_NV12)
3453 size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3454 else
3455 size_pages_uv = 0;
3456
3457 /* Allocate target SG list. */
3458 st = kmalloc(sizeof(*st), GFP_KERNEL);
3459 if (!st)
3460 goto err_st_alloc;
3461
3462 ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3463 if (ret)
3464 goto err_sg_alloc;
3465
3466 /* Populate source page list from the object. */
3467 i = 0;
3468 for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3469 page_addr_list[i++] = dma_addr;
3470
3471 GEM_BUG_ON(i != n_pages);
3472 st->nents = 0;
3473 sg = st->sgl;
3474
3475 /* Rotate the pages. */
3476 sg = rotate_pages(page_addr_list, 0,
3477 rot_info->plane[0].width, rot_info->plane[0].height,
3478 rot_info->plane[0].width,
3479 st, sg);
3480
3481 /* Append the UV plane if NV12. */
3482 if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3483 uv_start_page = size_pages;
3484
3485 /* Check for tile-row un-alignment. */
3486 if (offset_in_page(rot_info->uv_offset))
3487 uv_start_page--;
3488
3489 rot_info->uv_start_page = uv_start_page;
3490
3491 sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3492 rot_info->plane[1].width, rot_info->plane[1].height,
3493 rot_info->plane[1].width,
3494 st, sg);
3495 }
3496
3497 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3498 obj->base.size, rot_info->plane[0].width,
3499 rot_info->plane[0].height, size_pages + size_pages_uv,
3500 size_pages);
3501
3502 drm_free_large(page_addr_list);
3503
3504 return st;
3505
3506 err_sg_alloc:
3507 kfree(st);
3508 err_st_alloc:
3509 drm_free_large(page_addr_list);
3510
3511 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3512 obj->base.size, ret, rot_info->plane[0].width,
3513 rot_info->plane[0].height, size_pages + size_pages_uv,
3514 size_pages);
3515 return ERR_PTR(ret);
3516 }
3517
3518 static struct sg_table *
3519 intel_partial_pages(const struct i915_ggtt_view *view,
3520 struct drm_i915_gem_object *obj)
3521 {
3522 struct sg_table *st;
3523 struct scatterlist *sg;
3524 struct sg_page_iter obj_sg_iter;
3525 int ret = -ENOMEM;
3526
3527 st = kmalloc(sizeof(*st), GFP_KERNEL);
3528 if (!st)
3529 goto err_st_alloc;
3530
3531 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3532 if (ret)
3533 goto err_sg_alloc;
3534
3535 sg = st->sgl;
3536 st->nents = 0;
3537 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3538 view->params.partial.offset)
3539 {
3540 if (st->nents >= view->params.partial.size)
3541 break;
3542
3543 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3544 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3545 sg_dma_len(sg) = PAGE_SIZE;
3546
3547 sg = sg_next(sg);
3548 st->nents++;
3549 }
3550
3551 return st;
3552
3553 err_sg_alloc:
3554 kfree(st);
3555 err_st_alloc:
3556 return ERR_PTR(ret);
3557 }
3558
3559 static int
3560 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3561 {
3562 int ret = 0;
3563
3564 if (vma->ggtt_view.pages)
3565 return 0;
3566
3567 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3568 vma->ggtt_view.pages = vma->obj->pages;
3569 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3570 vma->ggtt_view.pages =
3571 intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3572 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3573 vma->ggtt_view.pages =
3574 intel_partial_pages(&vma->ggtt_view, vma->obj);
3575 else
3576 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3577 vma->ggtt_view.type);
3578
3579 if (!vma->ggtt_view.pages) {
3580 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3581 vma->ggtt_view.type);
3582 ret = -EINVAL;
3583 } else if (IS_ERR(vma->ggtt_view.pages)) {
3584 ret = PTR_ERR(vma->ggtt_view.pages);
3585 vma->ggtt_view.pages = NULL;
3586 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3587 vma->ggtt_view.type, ret);
3588 }
3589
3590 return ret;
3591 }
3592
3593 /**
3594 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3595 * @vma: VMA to map
3596 * @cache_level: mapping cache level
3597 * @flags: flags like global or local mapping
3598 *
3599 * DMA addresses are taken from the scatter-gather table of this object (or of
3600 * this VMA in case of non-default GGTT views) and PTE entries set up.
3601 * Note that DMA addresses are also the only part of the SG table we care about.
3602 */
3603 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3604 u32 flags)
3605 {
3606 int ret;
3607 u32 bind_flags;
3608
3609 if (WARN_ON(flags == 0))
3610 return -EINVAL;
3611
3612 bind_flags = 0;
3613 if (flags & PIN_GLOBAL)
3614 bind_flags |= GLOBAL_BIND;
3615 if (flags & PIN_USER)
3616 bind_flags |= LOCAL_BIND;
3617
3618 if (flags & PIN_UPDATE)
3619 bind_flags |= vma->bound;
3620 else
3621 bind_flags &= ~vma->bound;
3622
3623 if (bind_flags == 0)
3624 return 0;
3625
3626 if (vma->bound == 0 && vma->vm->allocate_va_range) {
3627 /* XXX: i915_vma_pin() will fix this +- hack */
3628 vma->pin_count++;
3629 trace_i915_va_alloc(vma);
3630 ret = vma->vm->allocate_va_range(vma->vm,
3631 vma->node.start,
3632 vma->node.size);
3633 vma->pin_count--;
3634 if (ret)
3635 return ret;
3636 }
3637
3638 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3639 if (ret)
3640 return ret;
3641
3642 vma->bound |= bind_flags;
3643
3644 return 0;
3645 }
3646
3647 /**
3648 * i915_ggtt_view_size - Get the size of a GGTT view.
3649 * @obj: Object the view is of.
3650 * @view: The view in question.
3651 *
3652 * @return The size of the GGTT view in bytes.
3653 */
3654 size_t
3655 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3656 const struct i915_ggtt_view *view)
3657 {
3658 if (view->type == I915_GGTT_VIEW_NORMAL) {
3659 return obj->base.size;
3660 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3661 return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
3662 } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3663 return view->params.partial.size << PAGE_SHIFT;
3664 } else {
3665 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3666 return obj->base.size;
3667 }
3668 }
3669
3670 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3671 {
3672 void __iomem *ptr;
3673
3674 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3675 if (WARN_ON(!vma->obj->map_and_fenceable))
3676 return IO_ERR_PTR(-ENODEV);
3677
3678 GEM_BUG_ON(!vma->is_ggtt);
3679 GEM_BUG_ON((vma->bound & GLOBAL_BIND) == 0);
3680
3681 ptr = vma->iomap;
3682 if (ptr == NULL) {
3683 ptr = io_mapping_map_wc(i915_vm_to_ggtt(vma->vm)->mappable,
3684 vma->node.start,
3685 vma->node.size);
3686 if (ptr == NULL)
3687 return IO_ERR_PTR(-ENOMEM);
3688
3689 vma->iomap = ptr;
3690 }
3691
3692 vma->pin_count++;
3693 return ptr;
3694 }
This page took 0.11275 seconds and 5 git commands to generate.