drm/i915/gtt: Allow >= 4GB offsets in X86_32
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35 * DOC: Global GTT views
36 *
37 * Background and previous state
38 *
39 * Historically objects could exists (be bound) in global GTT space only as
40 * singular instances with a view representing all of the object's backing pages
41 * in a linear fashion. This view will be called a normal view.
42 *
43 * To support multiple views of the same object, where the number of mapped
44 * pages is not equal to the backing store, or where the layout of the pages
45 * is not linear, concept of a GGTT view was added.
46 *
47 * One example of an alternative view is a stereo display driven by a single
48 * image. In this case we would have a framebuffer looking like this
49 * (2x2 pages):
50 *
51 * 12
52 * 34
53 *
54 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55 * rendering. In contrast, fed to the display engine would be an alternative
56 * view which could look something like this:
57 *
58 * 1212
59 * 3434
60 *
61 * In this example both the size and layout of pages in the alternative view is
62 * different from the normal view.
63 *
64 * Implementation and usage
65 *
66 * GGTT views are implemented using VMAs and are distinguished via enum
67 * i915_ggtt_view_type and struct i915_ggtt_view.
68 *
69 * A new flavour of core GEM functions which work with GGTT bound objects were
70 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71 * renaming in large amounts of code. They take the struct i915_ggtt_view
72 * parameter encapsulating all metadata required to implement a view.
73 *
74 * As a helper for callers which are only interested in the normal view,
75 * globally const i915_ggtt_view_normal singleton instance exists. All old core
76 * GEM API functions, the ones not taking the view parameter, are operating on,
77 * or with the normal GGTT view.
78 *
79 * Code wanting to add or use a new GGTT view needs to:
80 *
81 * 1. Add a new enum with a suitable name.
82 * 2. Extend the metadata in the i915_ggtt_view structure if required.
83 * 3. Add support to i915_get_vma_pages().
84 *
85 * New views are required to build a scatter-gather table from within the
86 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87 * exists for the lifetime of an VMA.
88 *
89 * Core API is designed to have copy semantics which means that passed in
90 * struct i915_ggtt_view does not need to be persistent (left around after
91 * calling the core API functions).
92 *
93 */
94
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100 .type = I915_GGTT_VIEW_ROTATED
101 };
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105 bool has_aliasing_ppgtt;
106 bool has_full_ppgtt;
107
108 has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109 has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111 if (intel_vgpu_active(dev))
112 has_full_ppgtt = false; /* emulation is too hard */
113
114 /*
115 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116 * execlists, the sole mechanism available to submit work.
117 */
118 if (INTEL_INFO(dev)->gen < 9 &&
119 (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120 return 0;
121
122 if (enable_ppgtt == 1)
123 return 1;
124
125 if (enable_ppgtt == 2 && has_full_ppgtt)
126 return 2;
127
128 #ifdef CONFIG_INTEL_IOMMU
129 /* Disable ppgtt on SNB if VT-d is on. */
130 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132 return 0;
133 }
134 #endif
135
136 /* Early VLV doesn't have this */
137 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138 dev->pdev->revision < 0xb) {
139 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140 return 0;
141 }
142
143 if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144 return 2;
145 else
146 return has_aliasing_ppgtt ? 1 : 0;
147 }
148
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150 enum i915_cache_level cache_level,
151 u32 unused)
152 {
153 u32 pte_flags = 0;
154
155 /* Currently applicable only to VLV */
156 if (vma->obj->gt_ro)
157 pte_flags |= PTE_READ_ONLY;
158
159 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160 cache_level, pte_flags);
161
162 return 0;
163 }
164
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167 vma->vm->clear_range(vma->vm,
168 vma->node.start,
169 vma->obj->base.size,
170 true);
171 }
172
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174 enum i915_cache_level level,
175 bool valid)
176 {
177 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178 pte |= addr;
179
180 switch (level) {
181 case I915_CACHE_NONE:
182 pte |= PPAT_UNCACHED_INDEX;
183 break;
184 case I915_CACHE_WT:
185 pte |= PPAT_DISPLAY_ELLC_INDEX;
186 break;
187 default:
188 pte |= PPAT_CACHED_INDEX;
189 break;
190 }
191
192 return pte;
193 }
194
195 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
196 const enum i915_cache_level level)
197 {
198 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
199 pde |= addr;
200 if (level != I915_CACHE_NONE)
201 pde |= PPAT_CACHED_PDE_INDEX;
202 else
203 pde |= PPAT_UNCACHED_INDEX;
204 return pde;
205 }
206
207 #define gen8_pdpe_encode gen8_pde_encode
208 #define gen8_pml4e_encode gen8_pde_encode
209
210 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
211 enum i915_cache_level level,
212 bool valid, u32 unused)
213 {
214 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
215 pte |= GEN6_PTE_ADDR_ENCODE(addr);
216
217 switch (level) {
218 case I915_CACHE_L3_LLC:
219 case I915_CACHE_LLC:
220 pte |= GEN6_PTE_CACHE_LLC;
221 break;
222 case I915_CACHE_NONE:
223 pte |= GEN6_PTE_UNCACHED;
224 break;
225 default:
226 MISSING_CASE(level);
227 }
228
229 return pte;
230 }
231
232 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
233 enum i915_cache_level level,
234 bool valid, u32 unused)
235 {
236 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
237 pte |= GEN6_PTE_ADDR_ENCODE(addr);
238
239 switch (level) {
240 case I915_CACHE_L3_LLC:
241 pte |= GEN7_PTE_CACHE_L3_LLC;
242 break;
243 case I915_CACHE_LLC:
244 pte |= GEN6_PTE_CACHE_LLC;
245 break;
246 case I915_CACHE_NONE:
247 pte |= GEN6_PTE_UNCACHED;
248 break;
249 default:
250 MISSING_CASE(level);
251 }
252
253 return pte;
254 }
255
256 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
257 enum i915_cache_level level,
258 bool valid, u32 flags)
259 {
260 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
261 pte |= GEN6_PTE_ADDR_ENCODE(addr);
262
263 if (!(flags & PTE_READ_ONLY))
264 pte |= BYT_PTE_WRITEABLE;
265
266 if (level != I915_CACHE_NONE)
267 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
268
269 return pte;
270 }
271
272 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
273 enum i915_cache_level level,
274 bool valid, u32 unused)
275 {
276 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
277 pte |= HSW_PTE_ADDR_ENCODE(addr);
278
279 if (level != I915_CACHE_NONE)
280 pte |= HSW_WB_LLC_AGE3;
281
282 return pte;
283 }
284
285 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
286 enum i915_cache_level level,
287 bool valid, u32 unused)
288 {
289 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
290 pte |= HSW_PTE_ADDR_ENCODE(addr);
291
292 switch (level) {
293 case I915_CACHE_NONE:
294 break;
295 case I915_CACHE_WT:
296 pte |= HSW_WT_ELLC_LLC_AGE3;
297 break;
298 default:
299 pte |= HSW_WB_ELLC_LLC_AGE3;
300 break;
301 }
302
303 return pte;
304 }
305
306 static int __setup_page_dma(struct drm_device *dev,
307 struct i915_page_dma *p, gfp_t flags)
308 {
309 struct device *device = &dev->pdev->dev;
310
311 p->page = alloc_page(flags);
312 if (!p->page)
313 return -ENOMEM;
314
315 p->daddr = dma_map_page(device,
316 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
317
318 if (dma_mapping_error(device, p->daddr)) {
319 __free_page(p->page);
320 return -EINVAL;
321 }
322
323 return 0;
324 }
325
326 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
327 {
328 return __setup_page_dma(dev, p, GFP_KERNEL);
329 }
330
331 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
332 {
333 if (WARN_ON(!p->page))
334 return;
335
336 dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
337 __free_page(p->page);
338 memset(p, 0, sizeof(*p));
339 }
340
341 static void *kmap_page_dma(struct i915_page_dma *p)
342 {
343 return kmap_atomic(p->page);
344 }
345
346 /* We use the flushing unmap only with ppgtt structures:
347 * page directories, page tables and scratch pages.
348 */
349 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
350 {
351 /* There are only few exceptions for gen >=6. chv and bxt.
352 * And we are not sure about the latter so play safe for now.
353 */
354 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
355 drm_clflush_virt_range(vaddr, PAGE_SIZE);
356
357 kunmap_atomic(vaddr);
358 }
359
360 #define kmap_px(px) kmap_page_dma(px_base(px))
361 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
362
363 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
364 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
365 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
366 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
367
368 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
369 const uint64_t val)
370 {
371 int i;
372 uint64_t * const vaddr = kmap_page_dma(p);
373
374 for (i = 0; i < 512; i++)
375 vaddr[i] = val;
376
377 kunmap_page_dma(dev, vaddr);
378 }
379
380 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
381 const uint32_t val32)
382 {
383 uint64_t v = val32;
384
385 v = v << 32 | val32;
386
387 fill_page_dma(dev, p, v);
388 }
389
390 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
391 {
392 struct i915_page_scratch *sp;
393 int ret;
394
395 sp = kzalloc(sizeof(*sp), GFP_KERNEL);
396 if (sp == NULL)
397 return ERR_PTR(-ENOMEM);
398
399 ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
400 if (ret) {
401 kfree(sp);
402 return ERR_PTR(ret);
403 }
404
405 set_pages_uc(px_page(sp), 1);
406
407 return sp;
408 }
409
410 static void free_scratch_page(struct drm_device *dev,
411 struct i915_page_scratch *sp)
412 {
413 set_pages_wb(px_page(sp), 1);
414
415 cleanup_px(dev, sp);
416 kfree(sp);
417 }
418
419 static struct i915_page_table *alloc_pt(struct drm_device *dev)
420 {
421 struct i915_page_table *pt;
422 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
423 GEN8_PTES : GEN6_PTES;
424 int ret = -ENOMEM;
425
426 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
427 if (!pt)
428 return ERR_PTR(-ENOMEM);
429
430 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
431 GFP_KERNEL);
432
433 if (!pt->used_ptes)
434 goto fail_bitmap;
435
436 ret = setup_px(dev, pt);
437 if (ret)
438 goto fail_page_m;
439
440 return pt;
441
442 fail_page_m:
443 kfree(pt->used_ptes);
444 fail_bitmap:
445 kfree(pt);
446
447 return ERR_PTR(ret);
448 }
449
450 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
451 {
452 cleanup_px(dev, pt);
453 kfree(pt->used_ptes);
454 kfree(pt);
455 }
456
457 static void gen8_initialize_pt(struct i915_address_space *vm,
458 struct i915_page_table *pt)
459 {
460 gen8_pte_t scratch_pte;
461
462 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
463 I915_CACHE_LLC, true);
464
465 fill_px(vm->dev, pt, scratch_pte);
466 }
467
468 static void gen6_initialize_pt(struct i915_address_space *vm,
469 struct i915_page_table *pt)
470 {
471 gen6_pte_t scratch_pte;
472
473 WARN_ON(px_dma(vm->scratch_page) == 0);
474
475 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
476 I915_CACHE_LLC, true, 0);
477
478 fill32_px(vm->dev, pt, scratch_pte);
479 }
480
481 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
482 {
483 struct i915_page_directory *pd;
484 int ret = -ENOMEM;
485
486 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
487 if (!pd)
488 return ERR_PTR(-ENOMEM);
489
490 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
491 sizeof(*pd->used_pdes), GFP_KERNEL);
492 if (!pd->used_pdes)
493 goto fail_bitmap;
494
495 ret = setup_px(dev, pd);
496 if (ret)
497 goto fail_page_m;
498
499 return pd;
500
501 fail_page_m:
502 kfree(pd->used_pdes);
503 fail_bitmap:
504 kfree(pd);
505
506 return ERR_PTR(ret);
507 }
508
509 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
510 {
511 if (px_page(pd)) {
512 cleanup_px(dev, pd);
513 kfree(pd->used_pdes);
514 kfree(pd);
515 }
516 }
517
518 static void gen8_initialize_pd(struct i915_address_space *vm,
519 struct i915_page_directory *pd)
520 {
521 gen8_pde_t scratch_pde;
522
523 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
524
525 fill_px(vm->dev, pd, scratch_pde);
526 }
527
528 static int __pdp_init(struct drm_device *dev,
529 struct i915_page_directory_pointer *pdp)
530 {
531 size_t pdpes = I915_PDPES_PER_PDP(dev);
532
533 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
534 sizeof(unsigned long),
535 GFP_KERNEL);
536 if (!pdp->used_pdpes)
537 return -ENOMEM;
538
539 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
540 GFP_KERNEL);
541 if (!pdp->page_directory) {
542 kfree(pdp->used_pdpes);
543 /* the PDP might be the statically allocated top level. Keep it
544 * as clean as possible */
545 pdp->used_pdpes = NULL;
546 return -ENOMEM;
547 }
548
549 return 0;
550 }
551
552 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
553 {
554 kfree(pdp->used_pdpes);
555 kfree(pdp->page_directory);
556 pdp->page_directory = NULL;
557 }
558
559 static struct
560 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
561 {
562 struct i915_page_directory_pointer *pdp;
563 int ret = -ENOMEM;
564
565 WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
566
567 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
568 if (!pdp)
569 return ERR_PTR(-ENOMEM);
570
571 ret = __pdp_init(dev, pdp);
572 if (ret)
573 goto fail_bitmap;
574
575 ret = setup_px(dev, pdp);
576 if (ret)
577 goto fail_page_m;
578
579 return pdp;
580
581 fail_page_m:
582 __pdp_fini(pdp);
583 fail_bitmap:
584 kfree(pdp);
585
586 return ERR_PTR(ret);
587 }
588
589 static void free_pdp(struct drm_device *dev,
590 struct i915_page_directory_pointer *pdp)
591 {
592 __pdp_fini(pdp);
593 if (USES_FULL_48BIT_PPGTT(dev)) {
594 cleanup_px(dev, pdp);
595 kfree(pdp);
596 }
597 }
598
599 static void gen8_initialize_pdp(struct i915_address_space *vm,
600 struct i915_page_directory_pointer *pdp)
601 {
602 gen8_ppgtt_pdpe_t scratch_pdpe;
603
604 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
605
606 fill_px(vm->dev, pdp, scratch_pdpe);
607 }
608
609 static void gen8_initialize_pml4(struct i915_address_space *vm,
610 struct i915_pml4 *pml4)
611 {
612 gen8_ppgtt_pml4e_t scratch_pml4e;
613
614 scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
615 I915_CACHE_LLC);
616
617 fill_px(vm->dev, pml4, scratch_pml4e);
618 }
619
620 static void
621 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
622 struct i915_page_directory_pointer *pdp,
623 struct i915_page_directory *pd,
624 int index)
625 {
626 gen8_ppgtt_pdpe_t *page_directorypo;
627
628 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
629 return;
630
631 page_directorypo = kmap_px(pdp);
632 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
633 kunmap_px(ppgtt, page_directorypo);
634 }
635
636 static void
637 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
638 struct i915_pml4 *pml4,
639 struct i915_page_directory_pointer *pdp,
640 int index)
641 {
642 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
643
644 WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
645 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
646 kunmap_px(ppgtt, pagemap);
647 }
648
649 /* Broadwell Page Directory Pointer Descriptors */
650 static int gen8_write_pdp(struct drm_i915_gem_request *req,
651 unsigned entry,
652 dma_addr_t addr)
653 {
654 struct intel_engine_cs *ring = req->ring;
655 int ret;
656
657 BUG_ON(entry >= 4);
658
659 ret = intel_ring_begin(req, 6);
660 if (ret)
661 return ret;
662
663 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
664 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
665 intel_ring_emit(ring, upper_32_bits(addr));
666 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
667 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
668 intel_ring_emit(ring, lower_32_bits(addr));
669 intel_ring_advance(ring);
670
671 return 0;
672 }
673
674 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
675 struct drm_i915_gem_request *req)
676 {
677 int i, ret;
678
679 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
680 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
681
682 ret = gen8_write_pdp(req, i, pd_daddr);
683 if (ret)
684 return ret;
685 }
686
687 return 0;
688 }
689
690 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
691 struct drm_i915_gem_request *req)
692 {
693 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
694 }
695
696 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
697 struct i915_page_directory_pointer *pdp,
698 uint64_t start,
699 uint64_t length,
700 gen8_pte_t scratch_pte)
701 {
702 struct i915_hw_ppgtt *ppgtt =
703 container_of(vm, struct i915_hw_ppgtt, base);
704 gen8_pte_t *pt_vaddr;
705 unsigned pdpe = gen8_pdpe_index(start);
706 unsigned pde = gen8_pde_index(start);
707 unsigned pte = gen8_pte_index(start);
708 unsigned num_entries = length >> PAGE_SHIFT;
709 unsigned last_pte, i;
710
711 if (WARN_ON(!pdp))
712 return;
713
714 while (num_entries) {
715 struct i915_page_directory *pd;
716 struct i915_page_table *pt;
717
718 if (WARN_ON(!pdp->page_directory[pdpe]))
719 break;
720
721 pd = pdp->page_directory[pdpe];
722
723 if (WARN_ON(!pd->page_table[pde]))
724 break;
725
726 pt = pd->page_table[pde];
727
728 if (WARN_ON(!px_page(pt)))
729 break;
730
731 last_pte = pte + num_entries;
732 if (last_pte > GEN8_PTES)
733 last_pte = GEN8_PTES;
734
735 pt_vaddr = kmap_px(pt);
736
737 for (i = pte; i < last_pte; i++) {
738 pt_vaddr[i] = scratch_pte;
739 num_entries--;
740 }
741
742 kunmap_px(ppgtt, pt);
743
744 pte = 0;
745 if (++pde == I915_PDES) {
746 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
747 break;
748 pde = 0;
749 }
750 }
751 }
752
753 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
754 uint64_t start,
755 uint64_t length,
756 bool use_scratch)
757 {
758 struct i915_hw_ppgtt *ppgtt =
759 container_of(vm, struct i915_hw_ppgtt, base);
760 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
761 I915_CACHE_LLC, use_scratch);
762
763 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
764 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
765 scratch_pte);
766 } else {
767 uint64_t templ4, pml4e;
768 struct i915_page_directory_pointer *pdp;
769
770 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
771 gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
772 scratch_pte);
773 }
774 }
775 }
776
777 static void
778 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
779 struct i915_page_directory_pointer *pdp,
780 struct sg_page_iter *sg_iter,
781 uint64_t start,
782 enum i915_cache_level cache_level)
783 {
784 struct i915_hw_ppgtt *ppgtt =
785 container_of(vm, struct i915_hw_ppgtt, base);
786 gen8_pte_t *pt_vaddr;
787 unsigned pdpe = gen8_pdpe_index(start);
788 unsigned pde = gen8_pde_index(start);
789 unsigned pte = gen8_pte_index(start);
790
791 pt_vaddr = NULL;
792
793 while (__sg_page_iter_next(sg_iter)) {
794 if (pt_vaddr == NULL) {
795 struct i915_page_directory *pd = pdp->page_directory[pdpe];
796 struct i915_page_table *pt = pd->page_table[pde];
797 pt_vaddr = kmap_px(pt);
798 }
799
800 pt_vaddr[pte] =
801 gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
802 cache_level, true);
803 if (++pte == GEN8_PTES) {
804 kunmap_px(ppgtt, pt_vaddr);
805 pt_vaddr = NULL;
806 if (++pde == I915_PDES) {
807 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
808 break;
809 pde = 0;
810 }
811 pte = 0;
812 }
813 }
814
815 if (pt_vaddr)
816 kunmap_px(ppgtt, pt_vaddr);
817 }
818
819 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
820 struct sg_table *pages,
821 uint64_t start,
822 enum i915_cache_level cache_level,
823 u32 unused)
824 {
825 struct i915_hw_ppgtt *ppgtt =
826 container_of(vm, struct i915_hw_ppgtt, base);
827 struct sg_page_iter sg_iter;
828
829 __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
830
831 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
832 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
833 cache_level);
834 } else {
835 struct i915_page_directory_pointer *pdp;
836 uint64_t templ4, pml4e;
837 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
838
839 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
840 gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
841 start, cache_level);
842 }
843 }
844 }
845
846 static void gen8_free_page_tables(struct drm_device *dev,
847 struct i915_page_directory *pd)
848 {
849 int i;
850
851 if (!px_page(pd))
852 return;
853
854 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
855 if (WARN_ON(!pd->page_table[i]))
856 continue;
857
858 free_pt(dev, pd->page_table[i]);
859 pd->page_table[i] = NULL;
860 }
861 }
862
863 static int gen8_init_scratch(struct i915_address_space *vm)
864 {
865 struct drm_device *dev = vm->dev;
866
867 vm->scratch_page = alloc_scratch_page(dev);
868 if (IS_ERR(vm->scratch_page))
869 return PTR_ERR(vm->scratch_page);
870
871 vm->scratch_pt = alloc_pt(dev);
872 if (IS_ERR(vm->scratch_pt)) {
873 free_scratch_page(dev, vm->scratch_page);
874 return PTR_ERR(vm->scratch_pt);
875 }
876
877 vm->scratch_pd = alloc_pd(dev);
878 if (IS_ERR(vm->scratch_pd)) {
879 free_pt(dev, vm->scratch_pt);
880 free_scratch_page(dev, vm->scratch_page);
881 return PTR_ERR(vm->scratch_pd);
882 }
883
884 if (USES_FULL_48BIT_PPGTT(dev)) {
885 vm->scratch_pdp = alloc_pdp(dev);
886 if (IS_ERR(vm->scratch_pdp)) {
887 free_pd(dev, vm->scratch_pd);
888 free_pt(dev, vm->scratch_pt);
889 free_scratch_page(dev, vm->scratch_page);
890 return PTR_ERR(vm->scratch_pdp);
891 }
892 }
893
894 gen8_initialize_pt(vm, vm->scratch_pt);
895 gen8_initialize_pd(vm, vm->scratch_pd);
896 if (USES_FULL_48BIT_PPGTT(dev))
897 gen8_initialize_pdp(vm, vm->scratch_pdp);
898
899 return 0;
900 }
901
902 static void gen8_free_scratch(struct i915_address_space *vm)
903 {
904 struct drm_device *dev = vm->dev;
905
906 if (USES_FULL_48BIT_PPGTT(dev))
907 free_pdp(dev, vm->scratch_pdp);
908 free_pd(dev, vm->scratch_pd);
909 free_pt(dev, vm->scratch_pt);
910 free_scratch_page(dev, vm->scratch_page);
911 }
912
913 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
914 struct i915_page_directory_pointer *pdp)
915 {
916 int i;
917
918 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
919 if (WARN_ON(!pdp->page_directory[i]))
920 continue;
921
922 gen8_free_page_tables(dev, pdp->page_directory[i]);
923 free_pd(dev, pdp->page_directory[i]);
924 }
925
926 free_pdp(dev, pdp);
927 }
928
929 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
930 {
931 int i;
932
933 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
934 if (WARN_ON(!ppgtt->pml4.pdps[i]))
935 continue;
936
937 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
938 }
939
940 cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
941 }
942
943 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
944 {
945 struct i915_hw_ppgtt *ppgtt =
946 container_of(vm, struct i915_hw_ppgtt, base);
947
948 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
949 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
950 else
951 gen8_ppgtt_cleanup_4lvl(ppgtt);
952
953 gen8_free_scratch(vm);
954 }
955
956 /**
957 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
958 * @vm: Master vm structure.
959 * @pd: Page directory for this address range.
960 * @start: Starting virtual address to begin allocations.
961 * @length: Size of the allocations.
962 * @new_pts: Bitmap set by function with new allocations. Likely used by the
963 * caller to free on error.
964 *
965 * Allocate the required number of page tables. Extremely similar to
966 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
967 * the page directory boundary (instead of the page directory pointer). That
968 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
969 * possible, and likely that the caller will need to use multiple calls of this
970 * function to achieve the appropriate allocation.
971 *
972 * Return: 0 if success; negative error code otherwise.
973 */
974 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
975 struct i915_page_directory *pd,
976 uint64_t start,
977 uint64_t length,
978 unsigned long *new_pts)
979 {
980 struct drm_device *dev = vm->dev;
981 struct i915_page_table *pt;
982 uint64_t temp;
983 uint32_t pde;
984
985 gen8_for_each_pde(pt, pd, start, length, temp, pde) {
986 /* Don't reallocate page tables */
987 if (test_bit(pde, pd->used_pdes)) {
988 /* Scratch is never allocated this way */
989 WARN_ON(pt == vm->scratch_pt);
990 continue;
991 }
992
993 pt = alloc_pt(dev);
994 if (IS_ERR(pt))
995 goto unwind_out;
996
997 gen8_initialize_pt(vm, pt);
998 pd->page_table[pde] = pt;
999 __set_bit(pde, new_pts);
1000 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1001 }
1002
1003 return 0;
1004
1005 unwind_out:
1006 for_each_set_bit(pde, new_pts, I915_PDES)
1007 free_pt(dev, pd->page_table[pde]);
1008
1009 return -ENOMEM;
1010 }
1011
1012 /**
1013 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1014 * @vm: Master vm structure.
1015 * @pdp: Page directory pointer for this address range.
1016 * @start: Starting virtual address to begin allocations.
1017 * @length: Size of the allocations.
1018 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1019 * caller to free on error.
1020 *
1021 * Allocate the required number of page directories starting at the pde index of
1022 * @start, and ending at the pde index @start + @length. This function will skip
1023 * over already allocated page directories within the range, and only allocate
1024 * new ones, setting the appropriate pointer within the pdp as well as the
1025 * correct position in the bitmap @new_pds.
1026 *
1027 * The function will only allocate the pages within the range for a give page
1028 * directory pointer. In other words, if @start + @length straddles a virtually
1029 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1030 * required by the caller, This is not currently possible, and the BUG in the
1031 * code will prevent it.
1032 *
1033 * Return: 0 if success; negative error code otherwise.
1034 */
1035 static int
1036 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1037 struct i915_page_directory_pointer *pdp,
1038 uint64_t start,
1039 uint64_t length,
1040 unsigned long *new_pds)
1041 {
1042 struct drm_device *dev = vm->dev;
1043 struct i915_page_directory *pd;
1044 uint64_t temp;
1045 uint32_t pdpe;
1046 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1047
1048 WARN_ON(!bitmap_empty(new_pds, pdpes));
1049
1050 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1051 if (test_bit(pdpe, pdp->used_pdpes))
1052 continue;
1053
1054 pd = alloc_pd(dev);
1055 if (IS_ERR(pd))
1056 goto unwind_out;
1057
1058 gen8_initialize_pd(vm, pd);
1059 pdp->page_directory[pdpe] = pd;
1060 __set_bit(pdpe, new_pds);
1061 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1062 }
1063
1064 return 0;
1065
1066 unwind_out:
1067 for_each_set_bit(pdpe, new_pds, pdpes)
1068 free_pd(dev, pdp->page_directory[pdpe]);
1069
1070 return -ENOMEM;
1071 }
1072
1073 /**
1074 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1075 * @vm: Master vm structure.
1076 * @pml4: Page map level 4 for this address range.
1077 * @start: Starting virtual address to begin allocations.
1078 * @length: Size of the allocations.
1079 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1080 * caller to free on error.
1081 *
1082 * Allocate the required number of page directory pointers. Extremely similar to
1083 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1084 * The main difference is here we are limited by the pml4 boundary (instead of
1085 * the page directory pointer).
1086 *
1087 * Return: 0 if success; negative error code otherwise.
1088 */
1089 static int
1090 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1091 struct i915_pml4 *pml4,
1092 uint64_t start,
1093 uint64_t length,
1094 unsigned long *new_pdps)
1095 {
1096 struct drm_device *dev = vm->dev;
1097 struct i915_page_directory_pointer *pdp;
1098 uint64_t temp;
1099 uint32_t pml4e;
1100
1101 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1102
1103 gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1104 if (!test_bit(pml4e, pml4->used_pml4es)) {
1105 pdp = alloc_pdp(dev);
1106 if (IS_ERR(pdp))
1107 goto unwind_out;
1108
1109 gen8_initialize_pdp(vm, pdp);
1110 pml4->pdps[pml4e] = pdp;
1111 __set_bit(pml4e, new_pdps);
1112 trace_i915_page_directory_pointer_entry_alloc(vm,
1113 pml4e,
1114 start,
1115 GEN8_PML4E_SHIFT);
1116 }
1117 }
1118
1119 return 0;
1120
1121 unwind_out:
1122 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1123 free_pdp(dev, pml4->pdps[pml4e]);
1124
1125 return -ENOMEM;
1126 }
1127
1128 static void
1129 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts,
1130 uint32_t pdpes)
1131 {
1132 int i;
1133
1134 for (i = 0; i < pdpes; i++)
1135 kfree(new_pts[i]);
1136 kfree(new_pts);
1137 kfree(new_pds);
1138 }
1139
1140 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1141 * of these are based on the number of PDPEs in the system.
1142 */
1143 static
1144 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1145 unsigned long ***new_pts,
1146 uint32_t pdpes)
1147 {
1148 int i;
1149 unsigned long *pds;
1150 unsigned long **pts;
1151
1152 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_KERNEL);
1153 if (!pds)
1154 return -ENOMEM;
1155
1156 pts = kcalloc(pdpes, sizeof(unsigned long *), GFP_KERNEL);
1157 if (!pts) {
1158 kfree(pds);
1159 return -ENOMEM;
1160 }
1161
1162 for (i = 0; i < pdpes; i++) {
1163 pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
1164 sizeof(unsigned long), GFP_KERNEL);
1165 if (!pts[i])
1166 goto err_out;
1167 }
1168
1169 *new_pds = pds;
1170 *new_pts = pts;
1171
1172 return 0;
1173
1174 err_out:
1175 free_gen8_temp_bitmaps(pds, pts, pdpes);
1176 return -ENOMEM;
1177 }
1178
1179 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1180 * the page table structures, we mark them dirty so that
1181 * context switching/execlist queuing code takes extra steps
1182 * to ensure that tlbs are flushed.
1183 */
1184 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1185 {
1186 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1187 }
1188
1189 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1190 struct i915_page_directory_pointer *pdp,
1191 uint64_t start,
1192 uint64_t length)
1193 {
1194 struct i915_hw_ppgtt *ppgtt =
1195 container_of(vm, struct i915_hw_ppgtt, base);
1196 unsigned long *new_page_dirs, **new_page_tables;
1197 struct drm_device *dev = vm->dev;
1198 struct i915_page_directory *pd;
1199 const uint64_t orig_start = start;
1200 const uint64_t orig_length = length;
1201 uint64_t temp;
1202 uint32_t pdpe;
1203 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1204 int ret;
1205
1206 /* Wrap is never okay since we can only represent 48b, and we don't
1207 * actually use the other side of the canonical address space.
1208 */
1209 if (WARN_ON(start + length < start))
1210 return -ENODEV;
1211
1212 if (WARN_ON(start + length > vm->total))
1213 return -ENODEV;
1214
1215 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1216 if (ret)
1217 return ret;
1218
1219 /* Do the allocations first so we can easily bail out */
1220 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1221 new_page_dirs);
1222 if (ret) {
1223 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables, pdpes);
1224 return ret;
1225 }
1226
1227 /* For every page directory referenced, allocate page tables */
1228 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1229 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1230 new_page_tables[pdpe]);
1231 if (ret)
1232 goto err_out;
1233 }
1234
1235 start = orig_start;
1236 length = orig_length;
1237
1238 /* Allocations have completed successfully, so set the bitmaps, and do
1239 * the mappings. */
1240 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1241 gen8_pde_t *const page_directory = kmap_px(pd);
1242 struct i915_page_table *pt;
1243 uint64_t pd_len = length;
1244 uint64_t pd_start = start;
1245 uint32_t pde;
1246
1247 /* Every pd should be allocated, we just did that above. */
1248 WARN_ON(!pd);
1249
1250 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1251 /* Same reasoning as pd */
1252 WARN_ON(!pt);
1253 WARN_ON(!pd_len);
1254 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1255
1256 /* Set our used ptes within the page table */
1257 bitmap_set(pt->used_ptes,
1258 gen8_pte_index(pd_start),
1259 gen8_pte_count(pd_start, pd_len));
1260
1261 /* Our pde is now pointing to the pagetable, pt */
1262 __set_bit(pde, pd->used_pdes);
1263
1264 /* Map the PDE to the page table */
1265 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1266 I915_CACHE_LLC);
1267 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1268 gen8_pte_index(start),
1269 gen8_pte_count(start, length),
1270 GEN8_PTES);
1271
1272 /* NB: We haven't yet mapped ptes to pages. At this
1273 * point we're still relying on insert_entries() */
1274 }
1275
1276 kunmap_px(ppgtt, page_directory);
1277 __set_bit(pdpe, pdp->used_pdpes);
1278 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1279 }
1280
1281 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables, pdpes);
1282 mark_tlbs_dirty(ppgtt);
1283 return 0;
1284
1285 err_out:
1286 while (pdpe--) {
1287 for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
1288 free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1289 }
1290
1291 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1292 free_pd(dev, pdp->page_directory[pdpe]);
1293
1294 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables, pdpes);
1295 mark_tlbs_dirty(ppgtt);
1296 return ret;
1297 }
1298
1299 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1300 struct i915_pml4 *pml4,
1301 uint64_t start,
1302 uint64_t length)
1303 {
1304 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1305 struct i915_hw_ppgtt *ppgtt =
1306 container_of(vm, struct i915_hw_ppgtt, base);
1307 struct i915_page_directory_pointer *pdp;
1308 uint64_t temp, pml4e;
1309 int ret = 0;
1310
1311 /* Do the pml4 allocations first, so we don't need to track the newly
1312 * allocated tables below the pdp */
1313 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1314
1315 /* The pagedirectory and pagetable allocations are done in the shared 3
1316 * and 4 level code. Just allocate the pdps.
1317 */
1318 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1319 new_pdps);
1320 if (ret)
1321 return ret;
1322
1323 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1324 "The allocation has spanned more than 512GB. "
1325 "It is highly likely this is incorrect.");
1326
1327 gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1328 WARN_ON(!pdp);
1329
1330 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1331 if (ret)
1332 goto err_out;
1333
1334 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1335 }
1336
1337 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1338 GEN8_PML4ES_PER_PML4);
1339
1340 return 0;
1341
1342 err_out:
1343 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1344 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1345
1346 return ret;
1347 }
1348
1349 static int gen8_alloc_va_range(struct i915_address_space *vm,
1350 uint64_t start, uint64_t length)
1351 {
1352 struct i915_hw_ppgtt *ppgtt =
1353 container_of(vm, struct i915_hw_ppgtt, base);
1354
1355 if (USES_FULL_48BIT_PPGTT(vm->dev))
1356 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1357 else
1358 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1359 }
1360
1361 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1362 uint64_t start, uint64_t length,
1363 gen8_pte_t scratch_pte,
1364 struct seq_file *m)
1365 {
1366 struct i915_page_directory *pd;
1367 uint64_t temp;
1368 uint32_t pdpe;
1369
1370 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1371 struct i915_page_table *pt;
1372 uint64_t pd_len = length;
1373 uint64_t pd_start = start;
1374 uint32_t pde;
1375
1376 if (!test_bit(pdpe, pdp->used_pdpes))
1377 continue;
1378
1379 seq_printf(m, "\tPDPE #%d\n", pdpe);
1380 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1381 uint32_t pte;
1382 gen8_pte_t *pt_vaddr;
1383
1384 if (!test_bit(pde, pd->used_pdes))
1385 continue;
1386
1387 pt_vaddr = kmap_px(pt);
1388 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1389 uint64_t va =
1390 (pdpe << GEN8_PDPE_SHIFT) |
1391 (pde << GEN8_PDE_SHIFT) |
1392 (pte << GEN8_PTE_SHIFT);
1393 int i;
1394 bool found = false;
1395
1396 for (i = 0; i < 4; i++)
1397 if (pt_vaddr[pte + i] != scratch_pte)
1398 found = true;
1399 if (!found)
1400 continue;
1401
1402 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1403 for (i = 0; i < 4; i++) {
1404 if (pt_vaddr[pte + i] != scratch_pte)
1405 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1406 else
1407 seq_puts(m, " SCRATCH ");
1408 }
1409 seq_puts(m, "\n");
1410 }
1411 /* don't use kunmap_px, it could trigger
1412 * an unnecessary flush.
1413 */
1414 kunmap_atomic(pt_vaddr);
1415 }
1416 }
1417 }
1418
1419 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1420 {
1421 struct i915_address_space *vm = &ppgtt->base;
1422 uint64_t start = ppgtt->base.start;
1423 uint64_t length = ppgtt->base.total;
1424 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1425 I915_CACHE_LLC, true);
1426
1427 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1428 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1429 } else {
1430 uint64_t templ4, pml4e;
1431 struct i915_pml4 *pml4 = &ppgtt->pml4;
1432 struct i915_page_directory_pointer *pdp;
1433
1434 gen8_for_each_pml4e(pdp, pml4, start, length, templ4, pml4e) {
1435 if (!test_bit(pml4e, pml4->used_pml4es))
1436 continue;
1437
1438 seq_printf(m, " PML4E #%llu\n", pml4e);
1439 gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1440 }
1441 }
1442 }
1443
1444 /*
1445 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1446 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1447 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1448 * space.
1449 *
1450 */
1451 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1452 {
1453 int ret;
1454
1455 ret = gen8_init_scratch(&ppgtt->base);
1456 if (ret)
1457 return ret;
1458
1459 ppgtt->base.start = 0;
1460 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1461 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1462 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1463 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1464 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1465 ppgtt->base.bind_vma = ppgtt_bind_vma;
1466 ppgtt->debug_dump = gen8_dump_ppgtt;
1467
1468 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1469 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1470 if (ret)
1471 goto free_scratch;
1472
1473 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1474
1475 ppgtt->base.total = 1ULL << 48;
1476 ppgtt->switch_mm = gen8_48b_mm_switch;
1477 } else {
1478 ret = __pdp_init(false, &ppgtt->pdp);
1479 if (ret)
1480 goto free_scratch;
1481
1482 ppgtt->base.total = 1ULL << 32;
1483 if (IS_ENABLED(CONFIG_X86_32))
1484 /* While we have a proliferation of size_t variables
1485 * we cannot represent the full ppgtt size on 32bit,
1486 * so limit it to the same size as the GGTT (currently
1487 * 2GiB).
1488 */
1489 ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
1490
1491 ppgtt->switch_mm = gen8_legacy_mm_switch;
1492 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1493 0, 0,
1494 GEN8_PML4E_SHIFT);
1495 }
1496
1497 return 0;
1498
1499 free_scratch:
1500 gen8_free_scratch(&ppgtt->base);
1501 return ret;
1502 }
1503
1504 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1505 {
1506 struct i915_address_space *vm = &ppgtt->base;
1507 struct i915_page_table *unused;
1508 gen6_pte_t scratch_pte;
1509 uint32_t pd_entry;
1510 uint32_t pte, pde, temp;
1511 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1512
1513 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1514 I915_CACHE_LLC, true, 0);
1515
1516 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1517 u32 expected;
1518 gen6_pte_t *pt_vaddr;
1519 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1520 pd_entry = readl(ppgtt->pd_addr + pde);
1521 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1522
1523 if (pd_entry != expected)
1524 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1525 pde,
1526 pd_entry,
1527 expected);
1528 seq_printf(m, "\tPDE: %x\n", pd_entry);
1529
1530 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1531
1532 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1533 unsigned long va =
1534 (pde * PAGE_SIZE * GEN6_PTES) +
1535 (pte * PAGE_SIZE);
1536 int i;
1537 bool found = false;
1538 for (i = 0; i < 4; i++)
1539 if (pt_vaddr[pte + i] != scratch_pte)
1540 found = true;
1541 if (!found)
1542 continue;
1543
1544 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1545 for (i = 0; i < 4; i++) {
1546 if (pt_vaddr[pte + i] != scratch_pte)
1547 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1548 else
1549 seq_puts(m, " SCRATCH ");
1550 }
1551 seq_puts(m, "\n");
1552 }
1553 kunmap_px(ppgtt, pt_vaddr);
1554 }
1555 }
1556
1557 /* Write pde (index) from the page directory @pd to the page table @pt */
1558 static void gen6_write_pde(struct i915_page_directory *pd,
1559 const int pde, struct i915_page_table *pt)
1560 {
1561 /* Caller needs to make sure the write completes if necessary */
1562 struct i915_hw_ppgtt *ppgtt =
1563 container_of(pd, struct i915_hw_ppgtt, pd);
1564 u32 pd_entry;
1565
1566 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1567 pd_entry |= GEN6_PDE_VALID;
1568
1569 writel(pd_entry, ppgtt->pd_addr + pde);
1570 }
1571
1572 /* Write all the page tables found in the ppgtt structure to incrementing page
1573 * directories. */
1574 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1575 struct i915_page_directory *pd,
1576 uint32_t start, uint32_t length)
1577 {
1578 struct i915_page_table *pt;
1579 uint32_t pde, temp;
1580
1581 gen6_for_each_pde(pt, pd, start, length, temp, pde)
1582 gen6_write_pde(pd, pde, pt);
1583
1584 /* Make sure write is complete before other code can use this page
1585 * table. Also require for WC mapped PTEs */
1586 readl(dev_priv->gtt.gsm);
1587 }
1588
1589 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1590 {
1591 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1592
1593 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1594 }
1595
1596 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1597 struct drm_i915_gem_request *req)
1598 {
1599 struct intel_engine_cs *ring = req->ring;
1600 int ret;
1601
1602 /* NB: TLBs must be flushed and invalidated before a switch */
1603 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1604 if (ret)
1605 return ret;
1606
1607 ret = intel_ring_begin(req, 6);
1608 if (ret)
1609 return ret;
1610
1611 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1612 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1613 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1614 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1615 intel_ring_emit(ring, get_pd_offset(ppgtt));
1616 intel_ring_emit(ring, MI_NOOP);
1617 intel_ring_advance(ring);
1618
1619 return 0;
1620 }
1621
1622 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1623 struct drm_i915_gem_request *req)
1624 {
1625 struct intel_engine_cs *ring = req->ring;
1626 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1627
1628 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1629 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1630 return 0;
1631 }
1632
1633 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1634 struct drm_i915_gem_request *req)
1635 {
1636 struct intel_engine_cs *ring = req->ring;
1637 int ret;
1638
1639 /* NB: TLBs must be flushed and invalidated before a switch */
1640 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1641 if (ret)
1642 return ret;
1643
1644 ret = intel_ring_begin(req, 6);
1645 if (ret)
1646 return ret;
1647
1648 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1649 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1650 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1651 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1652 intel_ring_emit(ring, get_pd_offset(ppgtt));
1653 intel_ring_emit(ring, MI_NOOP);
1654 intel_ring_advance(ring);
1655
1656 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1657 if (ring->id != RCS) {
1658 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1659 if (ret)
1660 return ret;
1661 }
1662
1663 return 0;
1664 }
1665
1666 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1667 struct drm_i915_gem_request *req)
1668 {
1669 struct intel_engine_cs *ring = req->ring;
1670 struct drm_device *dev = ppgtt->base.dev;
1671 struct drm_i915_private *dev_priv = dev->dev_private;
1672
1673
1674 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1675 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1676
1677 POSTING_READ(RING_PP_DIR_DCLV(ring));
1678
1679 return 0;
1680 }
1681
1682 static void gen8_ppgtt_enable(struct drm_device *dev)
1683 {
1684 struct drm_i915_private *dev_priv = dev->dev_private;
1685 struct intel_engine_cs *ring;
1686 int j;
1687
1688 for_each_ring(ring, dev_priv, j) {
1689 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1690 I915_WRITE(RING_MODE_GEN7(ring),
1691 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1692 }
1693 }
1694
1695 static void gen7_ppgtt_enable(struct drm_device *dev)
1696 {
1697 struct drm_i915_private *dev_priv = dev->dev_private;
1698 struct intel_engine_cs *ring;
1699 uint32_t ecochk, ecobits;
1700 int i;
1701
1702 ecobits = I915_READ(GAC_ECO_BITS);
1703 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1704
1705 ecochk = I915_READ(GAM_ECOCHK);
1706 if (IS_HASWELL(dev)) {
1707 ecochk |= ECOCHK_PPGTT_WB_HSW;
1708 } else {
1709 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1710 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1711 }
1712 I915_WRITE(GAM_ECOCHK, ecochk);
1713
1714 for_each_ring(ring, dev_priv, i) {
1715 /* GFX_MODE is per-ring on gen7+ */
1716 I915_WRITE(RING_MODE_GEN7(ring),
1717 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1718 }
1719 }
1720
1721 static void gen6_ppgtt_enable(struct drm_device *dev)
1722 {
1723 struct drm_i915_private *dev_priv = dev->dev_private;
1724 uint32_t ecochk, gab_ctl, ecobits;
1725
1726 ecobits = I915_READ(GAC_ECO_BITS);
1727 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1728 ECOBITS_PPGTT_CACHE64B);
1729
1730 gab_ctl = I915_READ(GAB_CTL);
1731 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1732
1733 ecochk = I915_READ(GAM_ECOCHK);
1734 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1735
1736 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1737 }
1738
1739 /* PPGTT support for Sandybdrige/Gen6 and later */
1740 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1741 uint64_t start,
1742 uint64_t length,
1743 bool use_scratch)
1744 {
1745 struct i915_hw_ppgtt *ppgtt =
1746 container_of(vm, struct i915_hw_ppgtt, base);
1747 gen6_pte_t *pt_vaddr, scratch_pte;
1748 unsigned first_entry = start >> PAGE_SHIFT;
1749 unsigned num_entries = length >> PAGE_SHIFT;
1750 unsigned act_pt = first_entry / GEN6_PTES;
1751 unsigned first_pte = first_entry % GEN6_PTES;
1752 unsigned last_pte, i;
1753
1754 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1755 I915_CACHE_LLC, true, 0);
1756
1757 while (num_entries) {
1758 last_pte = first_pte + num_entries;
1759 if (last_pte > GEN6_PTES)
1760 last_pte = GEN6_PTES;
1761
1762 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1763
1764 for (i = first_pte; i < last_pte; i++)
1765 pt_vaddr[i] = scratch_pte;
1766
1767 kunmap_px(ppgtt, pt_vaddr);
1768
1769 num_entries -= last_pte - first_pte;
1770 first_pte = 0;
1771 act_pt++;
1772 }
1773 }
1774
1775 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1776 struct sg_table *pages,
1777 uint64_t start,
1778 enum i915_cache_level cache_level, u32 flags)
1779 {
1780 struct i915_hw_ppgtt *ppgtt =
1781 container_of(vm, struct i915_hw_ppgtt, base);
1782 gen6_pte_t *pt_vaddr;
1783 unsigned first_entry = start >> PAGE_SHIFT;
1784 unsigned act_pt = first_entry / GEN6_PTES;
1785 unsigned act_pte = first_entry % GEN6_PTES;
1786 struct sg_page_iter sg_iter;
1787
1788 pt_vaddr = NULL;
1789 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1790 if (pt_vaddr == NULL)
1791 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1792
1793 pt_vaddr[act_pte] =
1794 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1795 cache_level, true, flags);
1796
1797 if (++act_pte == GEN6_PTES) {
1798 kunmap_px(ppgtt, pt_vaddr);
1799 pt_vaddr = NULL;
1800 act_pt++;
1801 act_pte = 0;
1802 }
1803 }
1804 if (pt_vaddr)
1805 kunmap_px(ppgtt, pt_vaddr);
1806 }
1807
1808 static int gen6_alloc_va_range(struct i915_address_space *vm,
1809 uint64_t start_in, uint64_t length_in)
1810 {
1811 DECLARE_BITMAP(new_page_tables, I915_PDES);
1812 struct drm_device *dev = vm->dev;
1813 struct drm_i915_private *dev_priv = dev->dev_private;
1814 struct i915_hw_ppgtt *ppgtt =
1815 container_of(vm, struct i915_hw_ppgtt, base);
1816 struct i915_page_table *pt;
1817 uint32_t start, length, start_save, length_save;
1818 uint32_t pde, temp;
1819 int ret;
1820
1821 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1822 return -ENODEV;
1823
1824 start = start_save = start_in;
1825 length = length_save = length_in;
1826
1827 bitmap_zero(new_page_tables, I915_PDES);
1828
1829 /* The allocation is done in two stages so that we can bail out with
1830 * minimal amount of pain. The first stage finds new page tables that
1831 * need allocation. The second stage marks use ptes within the page
1832 * tables.
1833 */
1834 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1835 if (pt != vm->scratch_pt) {
1836 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1837 continue;
1838 }
1839
1840 /* We've already allocated a page table */
1841 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1842
1843 pt = alloc_pt(dev);
1844 if (IS_ERR(pt)) {
1845 ret = PTR_ERR(pt);
1846 goto unwind_out;
1847 }
1848
1849 gen6_initialize_pt(vm, pt);
1850
1851 ppgtt->pd.page_table[pde] = pt;
1852 __set_bit(pde, new_page_tables);
1853 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1854 }
1855
1856 start = start_save;
1857 length = length_save;
1858
1859 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1860 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1861
1862 bitmap_zero(tmp_bitmap, GEN6_PTES);
1863 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1864 gen6_pte_count(start, length));
1865
1866 if (__test_and_clear_bit(pde, new_page_tables))
1867 gen6_write_pde(&ppgtt->pd, pde, pt);
1868
1869 trace_i915_page_table_entry_map(vm, pde, pt,
1870 gen6_pte_index(start),
1871 gen6_pte_count(start, length),
1872 GEN6_PTES);
1873 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1874 GEN6_PTES);
1875 }
1876
1877 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1878
1879 /* Make sure write is complete before other code can use this page
1880 * table. Also require for WC mapped PTEs */
1881 readl(dev_priv->gtt.gsm);
1882
1883 mark_tlbs_dirty(ppgtt);
1884 return 0;
1885
1886 unwind_out:
1887 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1888 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1889
1890 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1891 free_pt(vm->dev, pt);
1892 }
1893
1894 mark_tlbs_dirty(ppgtt);
1895 return ret;
1896 }
1897
1898 static int gen6_init_scratch(struct i915_address_space *vm)
1899 {
1900 struct drm_device *dev = vm->dev;
1901
1902 vm->scratch_page = alloc_scratch_page(dev);
1903 if (IS_ERR(vm->scratch_page))
1904 return PTR_ERR(vm->scratch_page);
1905
1906 vm->scratch_pt = alloc_pt(dev);
1907 if (IS_ERR(vm->scratch_pt)) {
1908 free_scratch_page(dev, vm->scratch_page);
1909 return PTR_ERR(vm->scratch_pt);
1910 }
1911
1912 gen6_initialize_pt(vm, vm->scratch_pt);
1913
1914 return 0;
1915 }
1916
1917 static void gen6_free_scratch(struct i915_address_space *vm)
1918 {
1919 struct drm_device *dev = vm->dev;
1920
1921 free_pt(dev, vm->scratch_pt);
1922 free_scratch_page(dev, vm->scratch_page);
1923 }
1924
1925 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1926 {
1927 struct i915_hw_ppgtt *ppgtt =
1928 container_of(vm, struct i915_hw_ppgtt, base);
1929 struct i915_page_table *pt;
1930 uint32_t pde;
1931
1932 drm_mm_remove_node(&ppgtt->node);
1933
1934 gen6_for_all_pdes(pt, ppgtt, pde) {
1935 if (pt != vm->scratch_pt)
1936 free_pt(ppgtt->base.dev, pt);
1937 }
1938
1939 gen6_free_scratch(vm);
1940 }
1941
1942 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1943 {
1944 struct i915_address_space *vm = &ppgtt->base;
1945 struct drm_device *dev = ppgtt->base.dev;
1946 struct drm_i915_private *dev_priv = dev->dev_private;
1947 bool retried = false;
1948 int ret;
1949
1950 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1951 * allocator works in address space sizes, so it's multiplied by page
1952 * size. We allocate at the top of the GTT to avoid fragmentation.
1953 */
1954 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1955
1956 ret = gen6_init_scratch(vm);
1957 if (ret)
1958 return ret;
1959
1960 alloc:
1961 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1962 &ppgtt->node, GEN6_PD_SIZE,
1963 GEN6_PD_ALIGN, 0,
1964 0, dev_priv->gtt.base.total,
1965 DRM_MM_TOPDOWN);
1966 if (ret == -ENOSPC && !retried) {
1967 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1968 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1969 I915_CACHE_NONE,
1970 0, dev_priv->gtt.base.total,
1971 0);
1972 if (ret)
1973 goto err_out;
1974
1975 retried = true;
1976 goto alloc;
1977 }
1978
1979 if (ret)
1980 goto err_out;
1981
1982
1983 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1984 DRM_DEBUG("Forced to use aperture for PDEs\n");
1985
1986 return 0;
1987
1988 err_out:
1989 gen6_free_scratch(vm);
1990 return ret;
1991 }
1992
1993 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1994 {
1995 return gen6_ppgtt_allocate_page_directories(ppgtt);
1996 }
1997
1998 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1999 uint64_t start, uint64_t length)
2000 {
2001 struct i915_page_table *unused;
2002 uint32_t pde, temp;
2003
2004 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2005 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2006 }
2007
2008 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2009 {
2010 struct drm_device *dev = ppgtt->base.dev;
2011 struct drm_i915_private *dev_priv = dev->dev_private;
2012 int ret;
2013
2014 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2015 if (IS_GEN6(dev)) {
2016 ppgtt->switch_mm = gen6_mm_switch;
2017 } else if (IS_HASWELL(dev)) {
2018 ppgtt->switch_mm = hsw_mm_switch;
2019 } else if (IS_GEN7(dev)) {
2020 ppgtt->switch_mm = gen7_mm_switch;
2021 } else
2022 BUG();
2023
2024 if (intel_vgpu_active(dev))
2025 ppgtt->switch_mm = vgpu_mm_switch;
2026
2027 ret = gen6_ppgtt_alloc(ppgtt);
2028 if (ret)
2029 return ret;
2030
2031 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2032 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2033 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2034 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2035 ppgtt->base.bind_vma = ppgtt_bind_vma;
2036 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2037 ppgtt->base.start = 0;
2038 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2039 ppgtt->debug_dump = gen6_dump_ppgtt;
2040
2041 ppgtt->pd.base.ggtt_offset =
2042 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2043
2044 ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2045 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2046
2047 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2048
2049 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2050
2051 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2052 ppgtt->node.size >> 20,
2053 ppgtt->node.start / PAGE_SIZE);
2054
2055 DRM_DEBUG("Adding PPGTT at offset %x\n",
2056 ppgtt->pd.base.ggtt_offset << 10);
2057
2058 return 0;
2059 }
2060
2061 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2062 {
2063 ppgtt->base.dev = dev;
2064
2065 if (INTEL_INFO(dev)->gen < 8)
2066 return gen6_ppgtt_init(ppgtt);
2067 else
2068 return gen8_ppgtt_init(ppgtt);
2069 }
2070
2071 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2072 {
2073 struct drm_i915_private *dev_priv = dev->dev_private;
2074 int ret = 0;
2075
2076 ret = __hw_ppgtt_init(dev, ppgtt);
2077 if (ret == 0) {
2078 kref_init(&ppgtt->ref);
2079 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
2080 ppgtt->base.total);
2081 i915_init_vm(dev_priv, &ppgtt->base);
2082 }
2083
2084 return ret;
2085 }
2086
2087 int i915_ppgtt_init_hw(struct drm_device *dev)
2088 {
2089 /* In the case of execlists, PPGTT is enabled by the context descriptor
2090 * and the PDPs are contained within the context itself. We don't
2091 * need to do anything here. */
2092 if (i915.enable_execlists)
2093 return 0;
2094
2095 if (!USES_PPGTT(dev))
2096 return 0;
2097
2098 if (IS_GEN6(dev))
2099 gen6_ppgtt_enable(dev);
2100 else if (IS_GEN7(dev))
2101 gen7_ppgtt_enable(dev);
2102 else if (INTEL_INFO(dev)->gen >= 8)
2103 gen8_ppgtt_enable(dev);
2104 else
2105 MISSING_CASE(INTEL_INFO(dev)->gen);
2106
2107 return 0;
2108 }
2109
2110 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2111 {
2112 struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2113 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2114
2115 if (i915.enable_execlists)
2116 return 0;
2117
2118 if (!ppgtt)
2119 return 0;
2120
2121 return ppgtt->switch_mm(ppgtt, req);
2122 }
2123
2124 struct i915_hw_ppgtt *
2125 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2126 {
2127 struct i915_hw_ppgtt *ppgtt;
2128 int ret;
2129
2130 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2131 if (!ppgtt)
2132 return ERR_PTR(-ENOMEM);
2133
2134 ret = i915_ppgtt_init(dev, ppgtt);
2135 if (ret) {
2136 kfree(ppgtt);
2137 return ERR_PTR(ret);
2138 }
2139
2140 ppgtt->file_priv = fpriv;
2141
2142 trace_i915_ppgtt_create(&ppgtt->base);
2143
2144 return ppgtt;
2145 }
2146
2147 void i915_ppgtt_release(struct kref *kref)
2148 {
2149 struct i915_hw_ppgtt *ppgtt =
2150 container_of(kref, struct i915_hw_ppgtt, ref);
2151
2152 trace_i915_ppgtt_release(&ppgtt->base);
2153
2154 /* vmas should already be unbound */
2155 WARN_ON(!list_empty(&ppgtt->base.active_list));
2156 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2157
2158 list_del(&ppgtt->base.global_link);
2159 drm_mm_takedown(&ppgtt->base.mm);
2160
2161 ppgtt->base.cleanup(&ppgtt->base);
2162 kfree(ppgtt);
2163 }
2164
2165 extern int intel_iommu_gfx_mapped;
2166 /* Certain Gen5 chipsets require require idling the GPU before
2167 * unmapping anything from the GTT when VT-d is enabled.
2168 */
2169 static bool needs_idle_maps(struct drm_device *dev)
2170 {
2171 #ifdef CONFIG_INTEL_IOMMU
2172 /* Query intel_iommu to see if we need the workaround. Presumably that
2173 * was loaded first.
2174 */
2175 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2176 return true;
2177 #endif
2178 return false;
2179 }
2180
2181 static bool do_idling(struct drm_i915_private *dev_priv)
2182 {
2183 bool ret = dev_priv->mm.interruptible;
2184
2185 if (unlikely(dev_priv->gtt.do_idle_maps)) {
2186 dev_priv->mm.interruptible = false;
2187 if (i915_gpu_idle(dev_priv->dev)) {
2188 DRM_ERROR("Couldn't idle GPU\n");
2189 /* Wait a bit, in hopes it avoids the hang */
2190 udelay(10);
2191 }
2192 }
2193
2194 return ret;
2195 }
2196
2197 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2198 {
2199 if (unlikely(dev_priv->gtt.do_idle_maps))
2200 dev_priv->mm.interruptible = interruptible;
2201 }
2202
2203 void i915_check_and_clear_faults(struct drm_device *dev)
2204 {
2205 struct drm_i915_private *dev_priv = dev->dev_private;
2206 struct intel_engine_cs *ring;
2207 int i;
2208
2209 if (INTEL_INFO(dev)->gen < 6)
2210 return;
2211
2212 for_each_ring(ring, dev_priv, i) {
2213 u32 fault_reg;
2214 fault_reg = I915_READ(RING_FAULT_REG(ring));
2215 if (fault_reg & RING_FAULT_VALID) {
2216 DRM_DEBUG_DRIVER("Unexpected fault\n"
2217 "\tAddr: 0x%08lx\n"
2218 "\tAddress space: %s\n"
2219 "\tSource ID: %d\n"
2220 "\tType: %d\n",
2221 fault_reg & PAGE_MASK,
2222 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2223 RING_FAULT_SRCID(fault_reg),
2224 RING_FAULT_FAULT_TYPE(fault_reg));
2225 I915_WRITE(RING_FAULT_REG(ring),
2226 fault_reg & ~RING_FAULT_VALID);
2227 }
2228 }
2229 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2230 }
2231
2232 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2233 {
2234 if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2235 intel_gtt_chipset_flush();
2236 } else {
2237 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2238 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2239 }
2240 }
2241
2242 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2243 {
2244 struct drm_i915_private *dev_priv = dev->dev_private;
2245
2246 /* Don't bother messing with faults pre GEN6 as we have little
2247 * documentation supporting that it's a good idea.
2248 */
2249 if (INTEL_INFO(dev)->gen < 6)
2250 return;
2251
2252 i915_check_and_clear_faults(dev);
2253
2254 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2255 dev_priv->gtt.base.start,
2256 dev_priv->gtt.base.total,
2257 true);
2258
2259 i915_ggtt_flush(dev_priv);
2260 }
2261
2262 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2263 {
2264 if (!dma_map_sg(&obj->base.dev->pdev->dev,
2265 obj->pages->sgl, obj->pages->nents,
2266 PCI_DMA_BIDIRECTIONAL))
2267 return -ENOSPC;
2268
2269 return 0;
2270 }
2271
2272 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2273 {
2274 #ifdef writeq
2275 writeq(pte, addr);
2276 #else
2277 iowrite32((u32)pte, addr);
2278 iowrite32(pte >> 32, addr + 4);
2279 #endif
2280 }
2281
2282 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2283 struct sg_table *st,
2284 uint64_t start,
2285 enum i915_cache_level level, u32 unused)
2286 {
2287 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2288 unsigned first_entry = start >> PAGE_SHIFT;
2289 gen8_pte_t __iomem *gtt_entries =
2290 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2291 int i = 0;
2292 struct sg_page_iter sg_iter;
2293 dma_addr_t addr = 0; /* shut up gcc */
2294
2295 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2296 addr = sg_dma_address(sg_iter.sg) +
2297 (sg_iter.sg_pgoffset << PAGE_SHIFT);
2298 gen8_set_pte(&gtt_entries[i],
2299 gen8_pte_encode(addr, level, true));
2300 i++;
2301 }
2302
2303 /*
2304 * XXX: This serves as a posting read to make sure that the PTE has
2305 * actually been updated. There is some concern that even though
2306 * registers and PTEs are within the same BAR that they are potentially
2307 * of NUMA access patterns. Therefore, even with the way we assume
2308 * hardware should work, we must keep this posting read for paranoia.
2309 */
2310 if (i != 0)
2311 WARN_ON(readq(&gtt_entries[i-1])
2312 != gen8_pte_encode(addr, level, true));
2313
2314 /* This next bit makes the above posting read even more important. We
2315 * want to flush the TLBs only after we're certain all the PTE updates
2316 * have finished.
2317 */
2318 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2319 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2320 }
2321
2322 /*
2323 * Binds an object into the global gtt with the specified cache level. The object
2324 * will be accessible to the GPU via commands whose operands reference offsets
2325 * within the global GTT as well as accessible by the GPU through the GMADR
2326 * mapped BAR (dev_priv->mm.gtt->gtt).
2327 */
2328 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2329 struct sg_table *st,
2330 uint64_t start,
2331 enum i915_cache_level level, u32 flags)
2332 {
2333 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2334 unsigned first_entry = start >> PAGE_SHIFT;
2335 gen6_pte_t __iomem *gtt_entries =
2336 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2337 int i = 0;
2338 struct sg_page_iter sg_iter;
2339 dma_addr_t addr = 0;
2340
2341 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2342 addr = sg_page_iter_dma_address(&sg_iter);
2343 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2344 i++;
2345 }
2346
2347 /* XXX: This serves as a posting read to make sure that the PTE has
2348 * actually been updated. There is some concern that even though
2349 * registers and PTEs are within the same BAR that they are potentially
2350 * of NUMA access patterns. Therefore, even with the way we assume
2351 * hardware should work, we must keep this posting read for paranoia.
2352 */
2353 if (i != 0) {
2354 unsigned long gtt = readl(&gtt_entries[i-1]);
2355 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2356 }
2357
2358 /* This next bit makes the above posting read even more important. We
2359 * want to flush the TLBs only after we're certain all the PTE updates
2360 * have finished.
2361 */
2362 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2363 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2364 }
2365
2366 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2367 uint64_t start,
2368 uint64_t length,
2369 bool use_scratch)
2370 {
2371 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2372 unsigned first_entry = start >> PAGE_SHIFT;
2373 unsigned num_entries = length >> PAGE_SHIFT;
2374 gen8_pte_t scratch_pte, __iomem *gtt_base =
2375 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2376 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2377 int i;
2378
2379 if (WARN(num_entries > max_entries,
2380 "First entry = %d; Num entries = %d (max=%d)\n",
2381 first_entry, num_entries, max_entries))
2382 num_entries = max_entries;
2383
2384 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2385 I915_CACHE_LLC,
2386 use_scratch);
2387 for (i = 0; i < num_entries; i++)
2388 gen8_set_pte(&gtt_base[i], scratch_pte);
2389 readl(gtt_base);
2390 }
2391
2392 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2393 uint64_t start,
2394 uint64_t length,
2395 bool use_scratch)
2396 {
2397 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2398 unsigned first_entry = start >> PAGE_SHIFT;
2399 unsigned num_entries = length >> PAGE_SHIFT;
2400 gen6_pte_t scratch_pte, __iomem *gtt_base =
2401 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2402 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2403 int i;
2404
2405 if (WARN(num_entries > max_entries,
2406 "First entry = %d; Num entries = %d (max=%d)\n",
2407 first_entry, num_entries, max_entries))
2408 num_entries = max_entries;
2409
2410 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2411 I915_CACHE_LLC, use_scratch, 0);
2412
2413 for (i = 0; i < num_entries; i++)
2414 iowrite32(scratch_pte, &gtt_base[i]);
2415 readl(gtt_base);
2416 }
2417
2418 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2419 struct sg_table *pages,
2420 uint64_t start,
2421 enum i915_cache_level cache_level, u32 unused)
2422 {
2423 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2424 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2425
2426 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2427
2428 }
2429
2430 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2431 uint64_t start,
2432 uint64_t length,
2433 bool unused)
2434 {
2435 unsigned first_entry = start >> PAGE_SHIFT;
2436 unsigned num_entries = length >> PAGE_SHIFT;
2437 intel_gtt_clear_range(first_entry, num_entries);
2438 }
2439
2440 static int ggtt_bind_vma(struct i915_vma *vma,
2441 enum i915_cache_level cache_level,
2442 u32 flags)
2443 {
2444 struct drm_device *dev = vma->vm->dev;
2445 struct drm_i915_private *dev_priv = dev->dev_private;
2446 struct drm_i915_gem_object *obj = vma->obj;
2447 struct sg_table *pages = obj->pages;
2448 u32 pte_flags = 0;
2449 int ret;
2450
2451 ret = i915_get_ggtt_vma_pages(vma);
2452 if (ret)
2453 return ret;
2454 pages = vma->ggtt_view.pages;
2455
2456 /* Currently applicable only to VLV */
2457 if (obj->gt_ro)
2458 pte_flags |= PTE_READ_ONLY;
2459
2460
2461 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
2462 vma->vm->insert_entries(vma->vm, pages,
2463 vma->node.start,
2464 cache_level, pte_flags);
2465
2466 /* Note the inconsistency here is due to absence of the
2467 * aliasing ppgtt on gen4 and earlier. Though we always
2468 * request PIN_USER for execbuffer (translated to LOCAL_BIND),
2469 * without the appgtt, we cannot honour that request and so
2470 * must substitute it with a global binding. Since we do this
2471 * behind the upper layers back, we need to explicitly set
2472 * the bound flag ourselves.
2473 */
2474 vma->bound |= GLOBAL_BIND;
2475
2476 }
2477
2478 if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
2479 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2480 appgtt->base.insert_entries(&appgtt->base, pages,
2481 vma->node.start,
2482 cache_level, pte_flags);
2483 }
2484
2485 return 0;
2486 }
2487
2488 static void ggtt_unbind_vma(struct i915_vma *vma)
2489 {
2490 struct drm_device *dev = vma->vm->dev;
2491 struct drm_i915_private *dev_priv = dev->dev_private;
2492 struct drm_i915_gem_object *obj = vma->obj;
2493 const uint64_t size = min_t(uint64_t,
2494 obj->base.size,
2495 vma->node.size);
2496
2497 if (vma->bound & GLOBAL_BIND) {
2498 vma->vm->clear_range(vma->vm,
2499 vma->node.start,
2500 size,
2501 true);
2502 }
2503
2504 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2505 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2506
2507 appgtt->base.clear_range(&appgtt->base,
2508 vma->node.start,
2509 size,
2510 true);
2511 }
2512 }
2513
2514 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2515 {
2516 struct drm_device *dev = obj->base.dev;
2517 struct drm_i915_private *dev_priv = dev->dev_private;
2518 bool interruptible;
2519
2520 interruptible = do_idling(dev_priv);
2521
2522 dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2523 PCI_DMA_BIDIRECTIONAL);
2524
2525 undo_idling(dev_priv, interruptible);
2526 }
2527
2528 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2529 unsigned long color,
2530 u64 *start,
2531 u64 *end)
2532 {
2533 if (node->color != color)
2534 *start += 4096;
2535
2536 if (!list_empty(&node->node_list)) {
2537 node = list_entry(node->node_list.next,
2538 struct drm_mm_node,
2539 node_list);
2540 if (node->allocated && node->color != color)
2541 *end -= 4096;
2542 }
2543 }
2544
2545 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2546 u64 start,
2547 u64 mappable_end,
2548 u64 end)
2549 {
2550 /* Let GEM Manage all of the aperture.
2551 *
2552 * However, leave one page at the end still bound to the scratch page.
2553 * There are a number of places where the hardware apparently prefetches
2554 * past the end of the object, and we've seen multiple hangs with the
2555 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2556 * aperture. One page should be enough to keep any prefetching inside
2557 * of the aperture.
2558 */
2559 struct drm_i915_private *dev_priv = dev->dev_private;
2560 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2561 struct drm_mm_node *entry;
2562 struct drm_i915_gem_object *obj;
2563 unsigned long hole_start, hole_end;
2564 int ret;
2565
2566 BUG_ON(mappable_end > end);
2567
2568 /* Subtract the guard page ... */
2569 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2570
2571 dev_priv->gtt.base.start = start;
2572 dev_priv->gtt.base.total = end - start;
2573
2574 if (intel_vgpu_active(dev)) {
2575 ret = intel_vgt_balloon(dev);
2576 if (ret)
2577 return ret;
2578 }
2579
2580 if (!HAS_LLC(dev))
2581 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2582
2583 /* Mark any preallocated objects as occupied */
2584 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2585 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2586
2587 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2588 i915_gem_obj_ggtt_offset(obj), obj->base.size);
2589
2590 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2591 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2592 if (ret) {
2593 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2594 return ret;
2595 }
2596 vma->bound |= GLOBAL_BIND;
2597 }
2598
2599 /* Clear any non-preallocated blocks */
2600 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2601 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2602 hole_start, hole_end);
2603 ggtt_vm->clear_range(ggtt_vm, hole_start,
2604 hole_end - hole_start, true);
2605 }
2606
2607 /* And finally clear the reserved guard page */
2608 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2609
2610 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2611 struct i915_hw_ppgtt *ppgtt;
2612
2613 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2614 if (!ppgtt)
2615 return -ENOMEM;
2616
2617 ret = __hw_ppgtt_init(dev, ppgtt);
2618 if (ret) {
2619 ppgtt->base.cleanup(&ppgtt->base);
2620 kfree(ppgtt);
2621 return ret;
2622 }
2623
2624 if (ppgtt->base.allocate_va_range)
2625 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2626 ppgtt->base.total);
2627 if (ret) {
2628 ppgtt->base.cleanup(&ppgtt->base);
2629 kfree(ppgtt);
2630 return ret;
2631 }
2632
2633 ppgtt->base.clear_range(&ppgtt->base,
2634 ppgtt->base.start,
2635 ppgtt->base.total,
2636 true);
2637
2638 dev_priv->mm.aliasing_ppgtt = ppgtt;
2639 }
2640
2641 return 0;
2642 }
2643
2644 void i915_gem_init_global_gtt(struct drm_device *dev)
2645 {
2646 struct drm_i915_private *dev_priv = dev->dev_private;
2647 u64 gtt_size, mappable_size;
2648
2649 gtt_size = dev_priv->gtt.base.total;
2650 mappable_size = dev_priv->gtt.mappable_end;
2651
2652 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2653 }
2654
2655 void i915_global_gtt_cleanup(struct drm_device *dev)
2656 {
2657 struct drm_i915_private *dev_priv = dev->dev_private;
2658 struct i915_address_space *vm = &dev_priv->gtt.base;
2659
2660 if (dev_priv->mm.aliasing_ppgtt) {
2661 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2662
2663 ppgtt->base.cleanup(&ppgtt->base);
2664 }
2665
2666 if (drm_mm_initialized(&vm->mm)) {
2667 if (intel_vgpu_active(dev))
2668 intel_vgt_deballoon();
2669
2670 drm_mm_takedown(&vm->mm);
2671 list_del(&vm->global_link);
2672 }
2673
2674 vm->cleanup(vm);
2675 }
2676
2677 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2678 {
2679 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2680 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2681 return snb_gmch_ctl << 20;
2682 }
2683
2684 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2685 {
2686 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2687 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2688 if (bdw_gmch_ctl)
2689 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2690
2691 #ifdef CONFIG_X86_32
2692 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2693 if (bdw_gmch_ctl > 4)
2694 bdw_gmch_ctl = 4;
2695 #endif
2696
2697 return bdw_gmch_ctl << 20;
2698 }
2699
2700 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2701 {
2702 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2703 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2704
2705 if (gmch_ctrl)
2706 return 1 << (20 + gmch_ctrl);
2707
2708 return 0;
2709 }
2710
2711 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2712 {
2713 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2714 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2715 return snb_gmch_ctl << 25; /* 32 MB units */
2716 }
2717
2718 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2719 {
2720 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2721 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2722 return bdw_gmch_ctl << 25; /* 32 MB units */
2723 }
2724
2725 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2726 {
2727 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2728 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2729
2730 /*
2731 * 0x0 to 0x10: 32MB increments starting at 0MB
2732 * 0x11 to 0x16: 4MB increments starting at 8MB
2733 * 0x17 to 0x1d: 4MB increments start at 36MB
2734 */
2735 if (gmch_ctrl < 0x11)
2736 return gmch_ctrl << 25;
2737 else if (gmch_ctrl < 0x17)
2738 return (gmch_ctrl - 0x11 + 2) << 22;
2739 else
2740 return (gmch_ctrl - 0x17 + 9) << 22;
2741 }
2742
2743 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2744 {
2745 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2746 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2747
2748 if (gen9_gmch_ctl < 0xf0)
2749 return gen9_gmch_ctl << 25; /* 32 MB units */
2750 else
2751 /* 4MB increments starting at 0xf0 for 4MB */
2752 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2753 }
2754
2755 static int ggtt_probe_common(struct drm_device *dev,
2756 size_t gtt_size)
2757 {
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759 struct i915_page_scratch *scratch_page;
2760 phys_addr_t gtt_phys_addr;
2761
2762 /* For Modern GENs the PTEs and register space are split in the BAR */
2763 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2764 (pci_resource_len(dev->pdev, 0) / 2);
2765
2766 /*
2767 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2768 * dropped. For WC mappings in general we have 64 byte burst writes
2769 * when the WC buffer is flushed, so we can't use it, but have to
2770 * resort to an uncached mapping. The WC issue is easily caught by the
2771 * readback check when writing GTT PTE entries.
2772 */
2773 if (IS_BROXTON(dev))
2774 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2775 else
2776 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2777 if (!dev_priv->gtt.gsm) {
2778 DRM_ERROR("Failed to map the gtt page table\n");
2779 return -ENOMEM;
2780 }
2781
2782 scratch_page = alloc_scratch_page(dev);
2783 if (IS_ERR(scratch_page)) {
2784 DRM_ERROR("Scratch setup failed\n");
2785 /* iounmap will also get called at remove, but meh */
2786 iounmap(dev_priv->gtt.gsm);
2787 return PTR_ERR(scratch_page);
2788 }
2789
2790 dev_priv->gtt.base.scratch_page = scratch_page;
2791
2792 return 0;
2793 }
2794
2795 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2796 * bits. When using advanced contexts each context stores its own PAT, but
2797 * writing this data shouldn't be harmful even in those cases. */
2798 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2799 {
2800 uint64_t pat;
2801
2802 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2803 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2804 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2805 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2806 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2807 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2808 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2809 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2810
2811 if (!USES_PPGTT(dev_priv->dev))
2812 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2813 * so RTL will always use the value corresponding to
2814 * pat_sel = 000".
2815 * So let's disable cache for GGTT to avoid screen corruptions.
2816 * MOCS still can be used though.
2817 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2818 * before this patch, i.e. the same uncached + snooping access
2819 * like on gen6/7 seems to be in effect.
2820 * - So this just fixes blitter/render access. Again it looks
2821 * like it's not just uncached access, but uncached + snooping.
2822 * So we can still hold onto all our assumptions wrt cpu
2823 * clflushing on LLC machines.
2824 */
2825 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2826
2827 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2828 * write would work. */
2829 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2830 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2831 }
2832
2833 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2834 {
2835 uint64_t pat;
2836
2837 /*
2838 * Map WB on BDW to snooped on CHV.
2839 *
2840 * Only the snoop bit has meaning for CHV, the rest is
2841 * ignored.
2842 *
2843 * The hardware will never snoop for certain types of accesses:
2844 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2845 * - PPGTT page tables
2846 * - some other special cycles
2847 *
2848 * As with BDW, we also need to consider the following for GT accesses:
2849 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2850 * so RTL will always use the value corresponding to
2851 * pat_sel = 000".
2852 * Which means we must set the snoop bit in PAT entry 0
2853 * in order to keep the global status page working.
2854 */
2855 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2856 GEN8_PPAT(1, 0) |
2857 GEN8_PPAT(2, 0) |
2858 GEN8_PPAT(3, 0) |
2859 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2860 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2861 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2862 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2863
2864 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2865 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2866 }
2867
2868 static int gen8_gmch_probe(struct drm_device *dev,
2869 u64 *gtt_total,
2870 size_t *stolen,
2871 phys_addr_t *mappable_base,
2872 u64 *mappable_end)
2873 {
2874 struct drm_i915_private *dev_priv = dev->dev_private;
2875 u64 gtt_size;
2876 u16 snb_gmch_ctl;
2877 int ret;
2878
2879 /* TODO: We're not aware of mappable constraints on gen8 yet */
2880 *mappable_base = pci_resource_start(dev->pdev, 2);
2881 *mappable_end = pci_resource_len(dev->pdev, 2);
2882
2883 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2884 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2885
2886 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2887
2888 if (INTEL_INFO(dev)->gen >= 9) {
2889 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2890 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2891 } else if (IS_CHERRYVIEW(dev)) {
2892 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2893 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2894 } else {
2895 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2896 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2897 }
2898
2899 *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2900
2901 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2902 chv_setup_private_ppat(dev_priv);
2903 else
2904 bdw_setup_private_ppat(dev_priv);
2905
2906 ret = ggtt_probe_common(dev, gtt_size);
2907
2908 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2909 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2910 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2911 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2912
2913 return ret;
2914 }
2915
2916 static int gen6_gmch_probe(struct drm_device *dev,
2917 u64 *gtt_total,
2918 size_t *stolen,
2919 phys_addr_t *mappable_base,
2920 u64 *mappable_end)
2921 {
2922 struct drm_i915_private *dev_priv = dev->dev_private;
2923 unsigned int gtt_size;
2924 u16 snb_gmch_ctl;
2925 int ret;
2926
2927 *mappable_base = pci_resource_start(dev->pdev, 2);
2928 *mappable_end = pci_resource_len(dev->pdev, 2);
2929
2930 /* 64/512MB is the current min/max we actually know of, but this is just
2931 * a coarse sanity check.
2932 */
2933 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2934 DRM_ERROR("Unknown GMADR size (%llx)\n",
2935 dev_priv->gtt.mappable_end);
2936 return -ENXIO;
2937 }
2938
2939 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2940 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2941 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2942
2943 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2944
2945 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2946 *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2947
2948 ret = ggtt_probe_common(dev, gtt_size);
2949
2950 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2951 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2952 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2953 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2954
2955 return ret;
2956 }
2957
2958 static void gen6_gmch_remove(struct i915_address_space *vm)
2959 {
2960
2961 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2962
2963 iounmap(gtt->gsm);
2964 free_scratch_page(vm->dev, vm->scratch_page);
2965 }
2966
2967 static int i915_gmch_probe(struct drm_device *dev,
2968 u64 *gtt_total,
2969 size_t *stolen,
2970 phys_addr_t *mappable_base,
2971 u64 *mappable_end)
2972 {
2973 struct drm_i915_private *dev_priv = dev->dev_private;
2974 int ret;
2975
2976 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2977 if (!ret) {
2978 DRM_ERROR("failed to set up gmch\n");
2979 return -EIO;
2980 }
2981
2982 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2983
2984 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2985 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
2986 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2987 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2988 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2989
2990 if (unlikely(dev_priv->gtt.do_idle_maps))
2991 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2992
2993 return 0;
2994 }
2995
2996 static void i915_gmch_remove(struct i915_address_space *vm)
2997 {
2998 intel_gmch_remove();
2999 }
3000
3001 int i915_gem_gtt_init(struct drm_device *dev)
3002 {
3003 struct drm_i915_private *dev_priv = dev->dev_private;
3004 struct i915_gtt *gtt = &dev_priv->gtt;
3005 int ret;
3006
3007 if (INTEL_INFO(dev)->gen <= 5) {
3008 gtt->gtt_probe = i915_gmch_probe;
3009 gtt->base.cleanup = i915_gmch_remove;
3010 } else if (INTEL_INFO(dev)->gen < 8) {
3011 gtt->gtt_probe = gen6_gmch_probe;
3012 gtt->base.cleanup = gen6_gmch_remove;
3013 if (IS_HASWELL(dev) && dev_priv->ellc_size)
3014 gtt->base.pte_encode = iris_pte_encode;
3015 else if (IS_HASWELL(dev))
3016 gtt->base.pte_encode = hsw_pte_encode;
3017 else if (IS_VALLEYVIEW(dev))
3018 gtt->base.pte_encode = byt_pte_encode;
3019 else if (INTEL_INFO(dev)->gen >= 7)
3020 gtt->base.pte_encode = ivb_pte_encode;
3021 else
3022 gtt->base.pte_encode = snb_pte_encode;
3023 } else {
3024 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3025 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3026 }
3027
3028 gtt->base.dev = dev;
3029
3030 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
3031 &gtt->mappable_base, &gtt->mappable_end);
3032 if (ret)
3033 return ret;
3034
3035 /* GMADR is the PCI mmio aperture into the global GTT. */
3036 DRM_INFO("Memory usable by graphics device = %lluM\n",
3037 gtt->base.total >> 20);
3038 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
3039 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3040 #ifdef CONFIG_INTEL_IOMMU
3041 if (intel_iommu_gfx_mapped)
3042 DRM_INFO("VT-d active for gfx access\n");
3043 #endif
3044 /*
3045 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3046 * user's requested state against the hardware/driver capabilities. We
3047 * do this now so that we can print out any log messages once rather
3048 * than every time we check intel_enable_ppgtt().
3049 */
3050 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3051 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3052
3053 return 0;
3054 }
3055
3056 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3057 {
3058 struct drm_i915_private *dev_priv = dev->dev_private;
3059 struct drm_i915_gem_object *obj;
3060 struct i915_address_space *vm;
3061 struct i915_vma *vma;
3062 bool flush;
3063
3064 i915_check_and_clear_faults(dev);
3065
3066 /* First fill our portion of the GTT with scratch pages */
3067 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3068 dev_priv->gtt.base.start,
3069 dev_priv->gtt.base.total,
3070 true);
3071
3072 /* Cache flush objects bound into GGTT and rebind them. */
3073 vm = &dev_priv->gtt.base;
3074 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3075 flush = false;
3076 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3077 if (vma->vm != vm)
3078 continue;
3079
3080 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3081 PIN_UPDATE));
3082
3083 flush = true;
3084 }
3085
3086 if (flush)
3087 i915_gem_clflush_object(obj, obj->pin_display);
3088 }
3089
3090 if (INTEL_INFO(dev)->gen >= 8) {
3091 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3092 chv_setup_private_ppat(dev_priv);
3093 else
3094 bdw_setup_private_ppat(dev_priv);
3095
3096 return;
3097 }
3098
3099 if (USES_PPGTT(dev)) {
3100 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3101 /* TODO: Perhaps it shouldn't be gen6 specific */
3102
3103 struct i915_hw_ppgtt *ppgtt =
3104 container_of(vm, struct i915_hw_ppgtt,
3105 base);
3106
3107 if (i915_is_ggtt(vm))
3108 ppgtt = dev_priv->mm.aliasing_ppgtt;
3109
3110 gen6_write_page_range(dev_priv, &ppgtt->pd,
3111 0, ppgtt->base.total);
3112 }
3113 }
3114
3115 i915_ggtt_flush(dev_priv);
3116 }
3117
3118 static struct i915_vma *
3119 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3120 struct i915_address_space *vm,
3121 const struct i915_ggtt_view *ggtt_view)
3122 {
3123 struct i915_vma *vma;
3124
3125 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3126 return ERR_PTR(-EINVAL);
3127
3128 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3129 if (vma == NULL)
3130 return ERR_PTR(-ENOMEM);
3131
3132 INIT_LIST_HEAD(&vma->vma_link);
3133 INIT_LIST_HEAD(&vma->mm_list);
3134 INIT_LIST_HEAD(&vma->exec_list);
3135 vma->vm = vm;
3136 vma->obj = obj;
3137
3138 if (i915_is_ggtt(vm))
3139 vma->ggtt_view = *ggtt_view;
3140
3141 list_add_tail(&vma->vma_link, &obj->vma_list);
3142 if (!i915_is_ggtt(vm))
3143 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3144
3145 return vma;
3146 }
3147
3148 struct i915_vma *
3149 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3150 struct i915_address_space *vm)
3151 {
3152 struct i915_vma *vma;
3153
3154 vma = i915_gem_obj_to_vma(obj, vm);
3155 if (!vma)
3156 vma = __i915_gem_vma_create(obj, vm,
3157 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3158
3159 return vma;
3160 }
3161
3162 struct i915_vma *
3163 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3164 const struct i915_ggtt_view *view)
3165 {
3166 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3167 struct i915_vma *vma;
3168
3169 if (WARN_ON(!view))
3170 return ERR_PTR(-EINVAL);
3171
3172 vma = i915_gem_obj_to_ggtt_view(obj, view);
3173
3174 if (IS_ERR(vma))
3175 return vma;
3176
3177 if (!vma)
3178 vma = __i915_gem_vma_create(obj, ggtt, view);
3179
3180 return vma;
3181
3182 }
3183
3184 static void
3185 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
3186 struct sg_table *st)
3187 {
3188 unsigned int column, row;
3189 unsigned int src_idx;
3190 struct scatterlist *sg = st->sgl;
3191
3192 st->nents = 0;
3193
3194 for (column = 0; column < width; column++) {
3195 src_idx = width * (height - 1) + column;
3196 for (row = 0; row < height; row++) {
3197 st->nents++;
3198 /* We don't need the pages, but need to initialize
3199 * the entries so the sg list can be happily traversed.
3200 * The only thing we need are DMA addresses.
3201 */
3202 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3203 sg_dma_address(sg) = in[src_idx];
3204 sg_dma_len(sg) = PAGE_SIZE;
3205 sg = sg_next(sg);
3206 src_idx -= width;
3207 }
3208 }
3209 }
3210
3211 static struct sg_table *
3212 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
3213 struct drm_i915_gem_object *obj)
3214 {
3215 struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
3216 unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3217 struct sg_page_iter sg_iter;
3218 unsigned long i;
3219 dma_addr_t *page_addr_list;
3220 struct sg_table *st;
3221 int ret = -ENOMEM;
3222
3223 /* Allocate a temporary list of source pages for random access. */
3224 page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3225 sizeof(dma_addr_t));
3226 if (!page_addr_list)
3227 return ERR_PTR(ret);
3228
3229 /* Allocate target SG list. */
3230 st = kmalloc(sizeof(*st), GFP_KERNEL);
3231 if (!st)
3232 goto err_st_alloc;
3233
3234 ret = sg_alloc_table(st, size_pages, GFP_KERNEL);
3235 if (ret)
3236 goto err_sg_alloc;
3237
3238 /* Populate source page list from the object. */
3239 i = 0;
3240 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3241 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3242 i++;
3243 }
3244
3245 /* Rotate the pages. */
3246 rotate_pages(page_addr_list,
3247 rot_info->width_pages, rot_info->height_pages,
3248 st);
3249
3250 DRM_DEBUG_KMS(
3251 "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages).\n",
3252 obj->base.size, rot_info->pitch, rot_info->height,
3253 rot_info->pixel_format, rot_info->width_pages,
3254 rot_info->height_pages, size_pages);
3255
3256 drm_free_large(page_addr_list);
3257
3258 return st;
3259
3260 err_sg_alloc:
3261 kfree(st);
3262 err_st_alloc:
3263 drm_free_large(page_addr_list);
3264
3265 DRM_DEBUG_KMS(
3266 "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages)\n",
3267 obj->base.size, ret, rot_info->pitch, rot_info->height,
3268 rot_info->pixel_format, rot_info->width_pages,
3269 rot_info->height_pages, size_pages);
3270 return ERR_PTR(ret);
3271 }
3272
3273 static struct sg_table *
3274 intel_partial_pages(const struct i915_ggtt_view *view,
3275 struct drm_i915_gem_object *obj)
3276 {
3277 struct sg_table *st;
3278 struct scatterlist *sg;
3279 struct sg_page_iter obj_sg_iter;
3280 int ret = -ENOMEM;
3281
3282 st = kmalloc(sizeof(*st), GFP_KERNEL);
3283 if (!st)
3284 goto err_st_alloc;
3285
3286 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3287 if (ret)
3288 goto err_sg_alloc;
3289
3290 sg = st->sgl;
3291 st->nents = 0;
3292 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3293 view->params.partial.offset)
3294 {
3295 if (st->nents >= view->params.partial.size)
3296 break;
3297
3298 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3299 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3300 sg_dma_len(sg) = PAGE_SIZE;
3301
3302 sg = sg_next(sg);
3303 st->nents++;
3304 }
3305
3306 return st;
3307
3308 err_sg_alloc:
3309 kfree(st);
3310 err_st_alloc:
3311 return ERR_PTR(ret);
3312 }
3313
3314 static int
3315 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3316 {
3317 int ret = 0;
3318
3319 if (vma->ggtt_view.pages)
3320 return 0;
3321
3322 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3323 vma->ggtt_view.pages = vma->obj->pages;
3324 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3325 vma->ggtt_view.pages =
3326 intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
3327 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3328 vma->ggtt_view.pages =
3329 intel_partial_pages(&vma->ggtt_view, vma->obj);
3330 else
3331 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3332 vma->ggtt_view.type);
3333
3334 if (!vma->ggtt_view.pages) {
3335 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3336 vma->ggtt_view.type);
3337 ret = -EINVAL;
3338 } else if (IS_ERR(vma->ggtt_view.pages)) {
3339 ret = PTR_ERR(vma->ggtt_view.pages);
3340 vma->ggtt_view.pages = NULL;
3341 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3342 vma->ggtt_view.type, ret);
3343 }
3344
3345 return ret;
3346 }
3347
3348 /**
3349 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3350 * @vma: VMA to map
3351 * @cache_level: mapping cache level
3352 * @flags: flags like global or local mapping
3353 *
3354 * DMA addresses are taken from the scatter-gather table of this object (or of
3355 * this VMA in case of non-default GGTT views) and PTE entries set up.
3356 * Note that DMA addresses are also the only part of the SG table we care about.
3357 */
3358 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3359 u32 flags)
3360 {
3361 int ret;
3362 u32 bind_flags;
3363
3364 if (WARN_ON(flags == 0))
3365 return -EINVAL;
3366
3367 bind_flags = 0;
3368 if (flags & PIN_GLOBAL)
3369 bind_flags |= GLOBAL_BIND;
3370 if (flags & PIN_USER)
3371 bind_flags |= LOCAL_BIND;
3372
3373 if (flags & PIN_UPDATE)
3374 bind_flags |= vma->bound;
3375 else
3376 bind_flags &= ~vma->bound;
3377
3378 if (bind_flags == 0)
3379 return 0;
3380
3381 if (vma->bound == 0 && vma->vm->allocate_va_range) {
3382 trace_i915_va_alloc(vma->vm,
3383 vma->node.start,
3384 vma->node.size,
3385 VM_TO_TRACE_NAME(vma->vm));
3386
3387 /* XXX: i915_vma_pin() will fix this +- hack */
3388 vma->pin_count++;
3389 ret = vma->vm->allocate_va_range(vma->vm,
3390 vma->node.start,
3391 vma->node.size);
3392 vma->pin_count--;
3393 if (ret)
3394 return ret;
3395 }
3396
3397 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3398 if (ret)
3399 return ret;
3400
3401 vma->bound |= bind_flags;
3402
3403 return 0;
3404 }
3405
3406 /**
3407 * i915_ggtt_view_size - Get the size of a GGTT view.
3408 * @obj: Object the view is of.
3409 * @view: The view in question.
3410 *
3411 * @return The size of the GGTT view in bytes.
3412 */
3413 size_t
3414 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3415 const struct i915_ggtt_view *view)
3416 {
3417 if (view->type == I915_GGTT_VIEW_NORMAL) {
3418 return obj->base.size;
3419 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3420 return view->rotation_info.size;
3421 } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3422 return view->params.partial.size << PAGE_SHIFT;
3423 } else {
3424 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3425 return obj->base.size;
3426 }
3427 }
This page took 0.282536 seconds and 5 git commands to generate.