drm/i915/dp/mst: Add source port info to debugfs output
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: Global GTT views
37 *
38 * Background and previous state
39 *
40 * Historically objects could exists (be bound) in global GTT space only as
41 * singular instances with a view representing all of the object's backing pages
42 * in a linear fashion. This view will be called a normal view.
43 *
44 * To support multiple views of the same object, where the number of mapped
45 * pages is not equal to the backing store, or where the layout of the pages
46 * is not linear, concept of a GGTT view was added.
47 *
48 * One example of an alternative view is a stereo display driven by a single
49 * image. In this case we would have a framebuffer looking like this
50 * (2x2 pages):
51 *
52 * 12
53 * 34
54 *
55 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56 * rendering. In contrast, fed to the display engine would be an alternative
57 * view which could look something like this:
58 *
59 * 1212
60 * 3434
61 *
62 * In this example both the size and layout of pages in the alternative view is
63 * different from the normal view.
64 *
65 * Implementation and usage
66 *
67 * GGTT views are implemented using VMAs and are distinguished via enum
68 * i915_ggtt_view_type and struct i915_ggtt_view.
69 *
70 * A new flavour of core GEM functions which work with GGTT bound objects were
71 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72 * renaming in large amounts of code. They take the struct i915_ggtt_view
73 * parameter encapsulating all metadata required to implement a view.
74 *
75 * As a helper for callers which are only interested in the normal view,
76 * globally const i915_ggtt_view_normal singleton instance exists. All old core
77 * GEM API functions, the ones not taking the view parameter, are operating on,
78 * or with the normal GGTT view.
79 *
80 * Code wanting to add or use a new GGTT view needs to:
81 *
82 * 1. Add a new enum with a suitable name.
83 * 2. Extend the metadata in the i915_ggtt_view structure if required.
84 * 3. Add support to i915_get_vma_pages().
85 *
86 * New views are required to build a scatter-gather table from within the
87 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88 * exists for the lifetime of an VMA.
89 *
90 * Core API is designed to have copy semantics which means that passed in
91 * struct i915_ggtt_view does not need to be persistent (left around after
92 * calling the core API functions).
93 *
94 */
95
96 static int
97 i915_get_ggtt_vma_pages(struct i915_vma *vma);
98
99 const struct i915_ggtt_view i915_ggtt_view_normal = {
100 .type = I915_GGTT_VIEW_NORMAL,
101 };
102 const struct i915_ggtt_view i915_ggtt_view_rotated = {
103 .type = I915_GGTT_VIEW_ROTATED,
104 };
105
106 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
107 {
108 bool has_aliasing_ppgtt;
109 bool has_full_ppgtt;
110 bool has_full_48bit_ppgtt;
111
112 has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
113 has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
114 has_full_48bit_ppgtt = IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9;
115
116 if (intel_vgpu_active(dev))
117 has_full_ppgtt = false; /* emulation is too hard */
118
119 /*
120 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
121 * execlists, the sole mechanism available to submit work.
122 */
123 if (INTEL_INFO(dev)->gen < 9 &&
124 (enable_ppgtt == 0 || !has_aliasing_ppgtt))
125 return 0;
126
127 if (enable_ppgtt == 1)
128 return 1;
129
130 if (enable_ppgtt == 2 && has_full_ppgtt)
131 return 2;
132
133 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
134 return 3;
135
136 #ifdef CONFIG_INTEL_IOMMU
137 /* Disable ppgtt on SNB if VT-d is on. */
138 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
139 DRM_INFO("Disabling PPGTT because VT-d is on\n");
140 return 0;
141 }
142 #endif
143
144 /* Early VLV doesn't have this */
145 if (IS_VALLEYVIEW(dev) && dev->pdev->revision < 0xb) {
146 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
147 return 0;
148 }
149
150 if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
151 return has_full_48bit_ppgtt ? 3 : 2;
152 else
153 return has_aliasing_ppgtt ? 1 : 0;
154 }
155
156 static int ppgtt_bind_vma(struct i915_vma *vma,
157 enum i915_cache_level cache_level,
158 u32 unused)
159 {
160 u32 pte_flags = 0;
161
162 /* Currently applicable only to VLV */
163 if (vma->obj->gt_ro)
164 pte_flags |= PTE_READ_ONLY;
165
166 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
167 cache_level, pte_flags);
168
169 return 0;
170 }
171
172 static void ppgtt_unbind_vma(struct i915_vma *vma)
173 {
174 vma->vm->clear_range(vma->vm,
175 vma->node.start,
176 vma->obj->base.size,
177 true);
178 }
179
180 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
181 enum i915_cache_level level,
182 bool valid)
183 {
184 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
185 pte |= addr;
186
187 switch (level) {
188 case I915_CACHE_NONE:
189 pte |= PPAT_UNCACHED_INDEX;
190 break;
191 case I915_CACHE_WT:
192 pte |= PPAT_DISPLAY_ELLC_INDEX;
193 break;
194 default:
195 pte |= PPAT_CACHED_INDEX;
196 break;
197 }
198
199 return pte;
200 }
201
202 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
203 const enum i915_cache_level level)
204 {
205 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
206 pde |= addr;
207 if (level != I915_CACHE_NONE)
208 pde |= PPAT_CACHED_PDE_INDEX;
209 else
210 pde |= PPAT_UNCACHED_INDEX;
211 return pde;
212 }
213
214 #define gen8_pdpe_encode gen8_pde_encode
215 #define gen8_pml4e_encode gen8_pde_encode
216
217 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
218 enum i915_cache_level level,
219 bool valid, u32 unused)
220 {
221 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
222 pte |= GEN6_PTE_ADDR_ENCODE(addr);
223
224 switch (level) {
225 case I915_CACHE_L3_LLC:
226 case I915_CACHE_LLC:
227 pte |= GEN6_PTE_CACHE_LLC;
228 break;
229 case I915_CACHE_NONE:
230 pte |= GEN6_PTE_UNCACHED;
231 break;
232 default:
233 MISSING_CASE(level);
234 }
235
236 return pte;
237 }
238
239 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
240 enum i915_cache_level level,
241 bool valid, u32 unused)
242 {
243 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
244 pte |= GEN6_PTE_ADDR_ENCODE(addr);
245
246 switch (level) {
247 case I915_CACHE_L3_LLC:
248 pte |= GEN7_PTE_CACHE_L3_LLC;
249 break;
250 case I915_CACHE_LLC:
251 pte |= GEN6_PTE_CACHE_LLC;
252 break;
253 case I915_CACHE_NONE:
254 pte |= GEN6_PTE_UNCACHED;
255 break;
256 default:
257 MISSING_CASE(level);
258 }
259
260 return pte;
261 }
262
263 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
264 enum i915_cache_level level,
265 bool valid, u32 flags)
266 {
267 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
268 pte |= GEN6_PTE_ADDR_ENCODE(addr);
269
270 if (!(flags & PTE_READ_ONLY))
271 pte |= BYT_PTE_WRITEABLE;
272
273 if (level != I915_CACHE_NONE)
274 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
275
276 return pte;
277 }
278
279 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
280 enum i915_cache_level level,
281 bool valid, u32 unused)
282 {
283 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
284 pte |= HSW_PTE_ADDR_ENCODE(addr);
285
286 if (level != I915_CACHE_NONE)
287 pte |= HSW_WB_LLC_AGE3;
288
289 return pte;
290 }
291
292 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
293 enum i915_cache_level level,
294 bool valid, u32 unused)
295 {
296 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
297 pte |= HSW_PTE_ADDR_ENCODE(addr);
298
299 switch (level) {
300 case I915_CACHE_NONE:
301 break;
302 case I915_CACHE_WT:
303 pte |= HSW_WT_ELLC_LLC_AGE3;
304 break;
305 default:
306 pte |= HSW_WB_ELLC_LLC_AGE3;
307 break;
308 }
309
310 return pte;
311 }
312
313 static int __setup_page_dma(struct drm_device *dev,
314 struct i915_page_dma *p, gfp_t flags)
315 {
316 struct device *device = &dev->pdev->dev;
317
318 p->page = alloc_page(flags);
319 if (!p->page)
320 return -ENOMEM;
321
322 p->daddr = dma_map_page(device,
323 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
324
325 if (dma_mapping_error(device, p->daddr)) {
326 __free_page(p->page);
327 return -EINVAL;
328 }
329
330 return 0;
331 }
332
333 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
334 {
335 return __setup_page_dma(dev, p, GFP_KERNEL);
336 }
337
338 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
339 {
340 if (WARN_ON(!p->page))
341 return;
342
343 dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
344 __free_page(p->page);
345 memset(p, 0, sizeof(*p));
346 }
347
348 static void *kmap_page_dma(struct i915_page_dma *p)
349 {
350 return kmap_atomic(p->page);
351 }
352
353 /* We use the flushing unmap only with ppgtt structures:
354 * page directories, page tables and scratch pages.
355 */
356 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
357 {
358 /* There are only few exceptions for gen >=6. chv and bxt.
359 * And we are not sure about the latter so play safe for now.
360 */
361 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
362 drm_clflush_virt_range(vaddr, PAGE_SIZE);
363
364 kunmap_atomic(vaddr);
365 }
366
367 #define kmap_px(px) kmap_page_dma(px_base(px))
368 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
369
370 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
371 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
372 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
373 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
374
375 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
376 const uint64_t val)
377 {
378 int i;
379 uint64_t * const vaddr = kmap_page_dma(p);
380
381 for (i = 0; i < 512; i++)
382 vaddr[i] = val;
383
384 kunmap_page_dma(dev, vaddr);
385 }
386
387 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
388 const uint32_t val32)
389 {
390 uint64_t v = val32;
391
392 v = v << 32 | val32;
393
394 fill_page_dma(dev, p, v);
395 }
396
397 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
398 {
399 struct i915_page_scratch *sp;
400 int ret;
401
402 sp = kzalloc(sizeof(*sp), GFP_KERNEL);
403 if (sp == NULL)
404 return ERR_PTR(-ENOMEM);
405
406 ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
407 if (ret) {
408 kfree(sp);
409 return ERR_PTR(ret);
410 }
411
412 set_pages_uc(px_page(sp), 1);
413
414 return sp;
415 }
416
417 static void free_scratch_page(struct drm_device *dev,
418 struct i915_page_scratch *sp)
419 {
420 set_pages_wb(px_page(sp), 1);
421
422 cleanup_px(dev, sp);
423 kfree(sp);
424 }
425
426 static struct i915_page_table *alloc_pt(struct drm_device *dev)
427 {
428 struct i915_page_table *pt;
429 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
430 GEN8_PTES : GEN6_PTES;
431 int ret = -ENOMEM;
432
433 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
434 if (!pt)
435 return ERR_PTR(-ENOMEM);
436
437 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
438 GFP_KERNEL);
439
440 if (!pt->used_ptes)
441 goto fail_bitmap;
442
443 ret = setup_px(dev, pt);
444 if (ret)
445 goto fail_page_m;
446
447 return pt;
448
449 fail_page_m:
450 kfree(pt->used_ptes);
451 fail_bitmap:
452 kfree(pt);
453
454 return ERR_PTR(ret);
455 }
456
457 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
458 {
459 cleanup_px(dev, pt);
460 kfree(pt->used_ptes);
461 kfree(pt);
462 }
463
464 static void gen8_initialize_pt(struct i915_address_space *vm,
465 struct i915_page_table *pt)
466 {
467 gen8_pte_t scratch_pte;
468
469 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
470 I915_CACHE_LLC, true);
471
472 fill_px(vm->dev, pt, scratch_pte);
473 }
474
475 static void gen6_initialize_pt(struct i915_address_space *vm,
476 struct i915_page_table *pt)
477 {
478 gen6_pte_t scratch_pte;
479
480 WARN_ON(px_dma(vm->scratch_page) == 0);
481
482 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
483 I915_CACHE_LLC, true, 0);
484
485 fill32_px(vm->dev, pt, scratch_pte);
486 }
487
488 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
489 {
490 struct i915_page_directory *pd;
491 int ret = -ENOMEM;
492
493 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
494 if (!pd)
495 return ERR_PTR(-ENOMEM);
496
497 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
498 sizeof(*pd->used_pdes), GFP_KERNEL);
499 if (!pd->used_pdes)
500 goto fail_bitmap;
501
502 ret = setup_px(dev, pd);
503 if (ret)
504 goto fail_page_m;
505
506 return pd;
507
508 fail_page_m:
509 kfree(pd->used_pdes);
510 fail_bitmap:
511 kfree(pd);
512
513 return ERR_PTR(ret);
514 }
515
516 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
517 {
518 if (px_page(pd)) {
519 cleanup_px(dev, pd);
520 kfree(pd->used_pdes);
521 kfree(pd);
522 }
523 }
524
525 static void gen8_initialize_pd(struct i915_address_space *vm,
526 struct i915_page_directory *pd)
527 {
528 gen8_pde_t scratch_pde;
529
530 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
531
532 fill_px(vm->dev, pd, scratch_pde);
533 }
534
535 static int __pdp_init(struct drm_device *dev,
536 struct i915_page_directory_pointer *pdp)
537 {
538 size_t pdpes = I915_PDPES_PER_PDP(dev);
539
540 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
541 sizeof(unsigned long),
542 GFP_KERNEL);
543 if (!pdp->used_pdpes)
544 return -ENOMEM;
545
546 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
547 GFP_KERNEL);
548 if (!pdp->page_directory) {
549 kfree(pdp->used_pdpes);
550 /* the PDP might be the statically allocated top level. Keep it
551 * as clean as possible */
552 pdp->used_pdpes = NULL;
553 return -ENOMEM;
554 }
555
556 return 0;
557 }
558
559 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
560 {
561 kfree(pdp->used_pdpes);
562 kfree(pdp->page_directory);
563 pdp->page_directory = NULL;
564 }
565
566 static struct
567 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
568 {
569 struct i915_page_directory_pointer *pdp;
570 int ret = -ENOMEM;
571
572 WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
573
574 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
575 if (!pdp)
576 return ERR_PTR(-ENOMEM);
577
578 ret = __pdp_init(dev, pdp);
579 if (ret)
580 goto fail_bitmap;
581
582 ret = setup_px(dev, pdp);
583 if (ret)
584 goto fail_page_m;
585
586 return pdp;
587
588 fail_page_m:
589 __pdp_fini(pdp);
590 fail_bitmap:
591 kfree(pdp);
592
593 return ERR_PTR(ret);
594 }
595
596 static void free_pdp(struct drm_device *dev,
597 struct i915_page_directory_pointer *pdp)
598 {
599 __pdp_fini(pdp);
600 if (USES_FULL_48BIT_PPGTT(dev)) {
601 cleanup_px(dev, pdp);
602 kfree(pdp);
603 }
604 }
605
606 static void gen8_initialize_pdp(struct i915_address_space *vm,
607 struct i915_page_directory_pointer *pdp)
608 {
609 gen8_ppgtt_pdpe_t scratch_pdpe;
610
611 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
612
613 fill_px(vm->dev, pdp, scratch_pdpe);
614 }
615
616 static void gen8_initialize_pml4(struct i915_address_space *vm,
617 struct i915_pml4 *pml4)
618 {
619 gen8_ppgtt_pml4e_t scratch_pml4e;
620
621 scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
622 I915_CACHE_LLC);
623
624 fill_px(vm->dev, pml4, scratch_pml4e);
625 }
626
627 static void
628 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
629 struct i915_page_directory_pointer *pdp,
630 struct i915_page_directory *pd,
631 int index)
632 {
633 gen8_ppgtt_pdpe_t *page_directorypo;
634
635 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
636 return;
637
638 page_directorypo = kmap_px(pdp);
639 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
640 kunmap_px(ppgtt, page_directorypo);
641 }
642
643 static void
644 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
645 struct i915_pml4 *pml4,
646 struct i915_page_directory_pointer *pdp,
647 int index)
648 {
649 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
650
651 WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
652 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
653 kunmap_px(ppgtt, pagemap);
654 }
655
656 /* Broadwell Page Directory Pointer Descriptors */
657 static int gen8_write_pdp(struct drm_i915_gem_request *req,
658 unsigned entry,
659 dma_addr_t addr)
660 {
661 struct intel_engine_cs *engine = req->engine;
662 int ret;
663
664 BUG_ON(entry >= 4);
665
666 ret = intel_ring_begin(req, 6);
667 if (ret)
668 return ret;
669
670 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
671 intel_ring_emit_reg(engine, GEN8_RING_PDP_UDW(engine, entry));
672 intel_ring_emit(engine, upper_32_bits(addr));
673 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
674 intel_ring_emit_reg(engine, GEN8_RING_PDP_LDW(engine, entry));
675 intel_ring_emit(engine, lower_32_bits(addr));
676 intel_ring_advance(engine);
677
678 return 0;
679 }
680
681 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
682 struct drm_i915_gem_request *req)
683 {
684 int i, ret;
685
686 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
687 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
688
689 ret = gen8_write_pdp(req, i, pd_daddr);
690 if (ret)
691 return ret;
692 }
693
694 return 0;
695 }
696
697 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
698 struct drm_i915_gem_request *req)
699 {
700 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
701 }
702
703 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
704 struct i915_page_directory_pointer *pdp,
705 uint64_t start,
706 uint64_t length,
707 gen8_pte_t scratch_pte)
708 {
709 struct i915_hw_ppgtt *ppgtt =
710 container_of(vm, struct i915_hw_ppgtt, base);
711 gen8_pte_t *pt_vaddr;
712 unsigned pdpe = gen8_pdpe_index(start);
713 unsigned pde = gen8_pde_index(start);
714 unsigned pte = gen8_pte_index(start);
715 unsigned num_entries = length >> PAGE_SHIFT;
716 unsigned last_pte, i;
717
718 if (WARN_ON(!pdp))
719 return;
720
721 while (num_entries) {
722 struct i915_page_directory *pd;
723 struct i915_page_table *pt;
724
725 if (WARN_ON(!pdp->page_directory[pdpe]))
726 break;
727
728 pd = pdp->page_directory[pdpe];
729
730 if (WARN_ON(!pd->page_table[pde]))
731 break;
732
733 pt = pd->page_table[pde];
734
735 if (WARN_ON(!px_page(pt)))
736 break;
737
738 last_pte = pte + num_entries;
739 if (last_pte > GEN8_PTES)
740 last_pte = GEN8_PTES;
741
742 pt_vaddr = kmap_px(pt);
743
744 for (i = pte; i < last_pte; i++) {
745 pt_vaddr[i] = scratch_pte;
746 num_entries--;
747 }
748
749 kunmap_px(ppgtt, pt);
750
751 pte = 0;
752 if (++pde == I915_PDES) {
753 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
754 break;
755 pde = 0;
756 }
757 }
758 }
759
760 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
761 uint64_t start,
762 uint64_t length,
763 bool use_scratch)
764 {
765 struct i915_hw_ppgtt *ppgtt =
766 container_of(vm, struct i915_hw_ppgtt, base);
767 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
768 I915_CACHE_LLC, use_scratch);
769
770 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
771 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
772 scratch_pte);
773 } else {
774 uint64_t pml4e;
775 struct i915_page_directory_pointer *pdp;
776
777 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
778 gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
779 scratch_pte);
780 }
781 }
782 }
783
784 static void
785 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
786 struct i915_page_directory_pointer *pdp,
787 struct sg_page_iter *sg_iter,
788 uint64_t start,
789 enum i915_cache_level cache_level)
790 {
791 struct i915_hw_ppgtt *ppgtt =
792 container_of(vm, struct i915_hw_ppgtt, base);
793 gen8_pte_t *pt_vaddr;
794 unsigned pdpe = gen8_pdpe_index(start);
795 unsigned pde = gen8_pde_index(start);
796 unsigned pte = gen8_pte_index(start);
797
798 pt_vaddr = NULL;
799
800 while (__sg_page_iter_next(sg_iter)) {
801 if (pt_vaddr == NULL) {
802 struct i915_page_directory *pd = pdp->page_directory[pdpe];
803 struct i915_page_table *pt = pd->page_table[pde];
804 pt_vaddr = kmap_px(pt);
805 }
806
807 pt_vaddr[pte] =
808 gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
809 cache_level, true);
810 if (++pte == GEN8_PTES) {
811 kunmap_px(ppgtt, pt_vaddr);
812 pt_vaddr = NULL;
813 if (++pde == I915_PDES) {
814 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
815 break;
816 pde = 0;
817 }
818 pte = 0;
819 }
820 }
821
822 if (pt_vaddr)
823 kunmap_px(ppgtt, pt_vaddr);
824 }
825
826 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
827 struct sg_table *pages,
828 uint64_t start,
829 enum i915_cache_level cache_level,
830 u32 unused)
831 {
832 struct i915_hw_ppgtt *ppgtt =
833 container_of(vm, struct i915_hw_ppgtt, base);
834 struct sg_page_iter sg_iter;
835
836 __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
837
838 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
839 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
840 cache_level);
841 } else {
842 struct i915_page_directory_pointer *pdp;
843 uint64_t pml4e;
844 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
845
846 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
847 gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
848 start, cache_level);
849 }
850 }
851 }
852
853 static void gen8_free_page_tables(struct drm_device *dev,
854 struct i915_page_directory *pd)
855 {
856 int i;
857
858 if (!px_page(pd))
859 return;
860
861 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
862 if (WARN_ON(!pd->page_table[i]))
863 continue;
864
865 free_pt(dev, pd->page_table[i]);
866 pd->page_table[i] = NULL;
867 }
868 }
869
870 static int gen8_init_scratch(struct i915_address_space *vm)
871 {
872 struct drm_device *dev = vm->dev;
873
874 vm->scratch_page = alloc_scratch_page(dev);
875 if (IS_ERR(vm->scratch_page))
876 return PTR_ERR(vm->scratch_page);
877
878 vm->scratch_pt = alloc_pt(dev);
879 if (IS_ERR(vm->scratch_pt)) {
880 free_scratch_page(dev, vm->scratch_page);
881 return PTR_ERR(vm->scratch_pt);
882 }
883
884 vm->scratch_pd = alloc_pd(dev);
885 if (IS_ERR(vm->scratch_pd)) {
886 free_pt(dev, vm->scratch_pt);
887 free_scratch_page(dev, vm->scratch_page);
888 return PTR_ERR(vm->scratch_pd);
889 }
890
891 if (USES_FULL_48BIT_PPGTT(dev)) {
892 vm->scratch_pdp = alloc_pdp(dev);
893 if (IS_ERR(vm->scratch_pdp)) {
894 free_pd(dev, vm->scratch_pd);
895 free_pt(dev, vm->scratch_pt);
896 free_scratch_page(dev, vm->scratch_page);
897 return PTR_ERR(vm->scratch_pdp);
898 }
899 }
900
901 gen8_initialize_pt(vm, vm->scratch_pt);
902 gen8_initialize_pd(vm, vm->scratch_pd);
903 if (USES_FULL_48BIT_PPGTT(dev))
904 gen8_initialize_pdp(vm, vm->scratch_pdp);
905
906 return 0;
907 }
908
909 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
910 {
911 enum vgt_g2v_type msg;
912 struct drm_device *dev = ppgtt->base.dev;
913 struct drm_i915_private *dev_priv = dev->dev_private;
914 int i;
915
916 if (USES_FULL_48BIT_PPGTT(dev)) {
917 u64 daddr = px_dma(&ppgtt->pml4);
918
919 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
920 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
921
922 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
923 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
924 } else {
925 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
926 u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
927
928 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
929 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
930 }
931
932 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
933 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
934 }
935
936 I915_WRITE(vgtif_reg(g2v_notify), msg);
937
938 return 0;
939 }
940
941 static void gen8_free_scratch(struct i915_address_space *vm)
942 {
943 struct drm_device *dev = vm->dev;
944
945 if (USES_FULL_48BIT_PPGTT(dev))
946 free_pdp(dev, vm->scratch_pdp);
947 free_pd(dev, vm->scratch_pd);
948 free_pt(dev, vm->scratch_pt);
949 free_scratch_page(dev, vm->scratch_page);
950 }
951
952 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
953 struct i915_page_directory_pointer *pdp)
954 {
955 int i;
956
957 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
958 if (WARN_ON(!pdp->page_directory[i]))
959 continue;
960
961 gen8_free_page_tables(dev, pdp->page_directory[i]);
962 free_pd(dev, pdp->page_directory[i]);
963 }
964
965 free_pdp(dev, pdp);
966 }
967
968 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
969 {
970 int i;
971
972 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
973 if (WARN_ON(!ppgtt->pml4.pdps[i]))
974 continue;
975
976 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
977 }
978
979 cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
980 }
981
982 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
983 {
984 struct i915_hw_ppgtt *ppgtt =
985 container_of(vm, struct i915_hw_ppgtt, base);
986
987 if (intel_vgpu_active(vm->dev))
988 gen8_ppgtt_notify_vgt(ppgtt, false);
989
990 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
991 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
992 else
993 gen8_ppgtt_cleanup_4lvl(ppgtt);
994
995 gen8_free_scratch(vm);
996 }
997
998 /**
999 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1000 * @vm: Master vm structure.
1001 * @pd: Page directory for this address range.
1002 * @start: Starting virtual address to begin allocations.
1003 * @length: Size of the allocations.
1004 * @new_pts: Bitmap set by function with new allocations. Likely used by the
1005 * caller to free on error.
1006 *
1007 * Allocate the required number of page tables. Extremely similar to
1008 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1009 * the page directory boundary (instead of the page directory pointer). That
1010 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1011 * possible, and likely that the caller will need to use multiple calls of this
1012 * function to achieve the appropriate allocation.
1013 *
1014 * Return: 0 if success; negative error code otherwise.
1015 */
1016 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1017 struct i915_page_directory *pd,
1018 uint64_t start,
1019 uint64_t length,
1020 unsigned long *new_pts)
1021 {
1022 struct drm_device *dev = vm->dev;
1023 struct i915_page_table *pt;
1024 uint32_t pde;
1025
1026 gen8_for_each_pde(pt, pd, start, length, pde) {
1027 /* Don't reallocate page tables */
1028 if (test_bit(pde, pd->used_pdes)) {
1029 /* Scratch is never allocated this way */
1030 WARN_ON(pt == vm->scratch_pt);
1031 continue;
1032 }
1033
1034 pt = alloc_pt(dev);
1035 if (IS_ERR(pt))
1036 goto unwind_out;
1037
1038 gen8_initialize_pt(vm, pt);
1039 pd->page_table[pde] = pt;
1040 __set_bit(pde, new_pts);
1041 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1042 }
1043
1044 return 0;
1045
1046 unwind_out:
1047 for_each_set_bit(pde, new_pts, I915_PDES)
1048 free_pt(dev, pd->page_table[pde]);
1049
1050 return -ENOMEM;
1051 }
1052
1053 /**
1054 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1055 * @vm: Master vm structure.
1056 * @pdp: Page directory pointer for this address range.
1057 * @start: Starting virtual address to begin allocations.
1058 * @length: Size of the allocations.
1059 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1060 * caller to free on error.
1061 *
1062 * Allocate the required number of page directories starting at the pde index of
1063 * @start, and ending at the pde index @start + @length. This function will skip
1064 * over already allocated page directories within the range, and only allocate
1065 * new ones, setting the appropriate pointer within the pdp as well as the
1066 * correct position in the bitmap @new_pds.
1067 *
1068 * The function will only allocate the pages within the range for a give page
1069 * directory pointer. In other words, if @start + @length straddles a virtually
1070 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1071 * required by the caller, This is not currently possible, and the BUG in the
1072 * code will prevent it.
1073 *
1074 * Return: 0 if success; negative error code otherwise.
1075 */
1076 static int
1077 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1078 struct i915_page_directory_pointer *pdp,
1079 uint64_t start,
1080 uint64_t length,
1081 unsigned long *new_pds)
1082 {
1083 struct drm_device *dev = vm->dev;
1084 struct i915_page_directory *pd;
1085 uint32_t pdpe;
1086 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1087
1088 WARN_ON(!bitmap_empty(new_pds, pdpes));
1089
1090 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1091 if (test_bit(pdpe, pdp->used_pdpes))
1092 continue;
1093
1094 pd = alloc_pd(dev);
1095 if (IS_ERR(pd))
1096 goto unwind_out;
1097
1098 gen8_initialize_pd(vm, pd);
1099 pdp->page_directory[pdpe] = pd;
1100 __set_bit(pdpe, new_pds);
1101 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1102 }
1103
1104 return 0;
1105
1106 unwind_out:
1107 for_each_set_bit(pdpe, new_pds, pdpes)
1108 free_pd(dev, pdp->page_directory[pdpe]);
1109
1110 return -ENOMEM;
1111 }
1112
1113 /**
1114 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1115 * @vm: Master vm structure.
1116 * @pml4: Page map level 4 for this address range.
1117 * @start: Starting virtual address to begin allocations.
1118 * @length: Size of the allocations.
1119 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1120 * caller to free on error.
1121 *
1122 * Allocate the required number of page directory pointers. Extremely similar to
1123 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1124 * The main difference is here we are limited by the pml4 boundary (instead of
1125 * the page directory pointer).
1126 *
1127 * Return: 0 if success; negative error code otherwise.
1128 */
1129 static int
1130 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1131 struct i915_pml4 *pml4,
1132 uint64_t start,
1133 uint64_t length,
1134 unsigned long *new_pdps)
1135 {
1136 struct drm_device *dev = vm->dev;
1137 struct i915_page_directory_pointer *pdp;
1138 uint32_t pml4e;
1139
1140 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1141
1142 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1143 if (!test_bit(pml4e, pml4->used_pml4es)) {
1144 pdp = alloc_pdp(dev);
1145 if (IS_ERR(pdp))
1146 goto unwind_out;
1147
1148 gen8_initialize_pdp(vm, pdp);
1149 pml4->pdps[pml4e] = pdp;
1150 __set_bit(pml4e, new_pdps);
1151 trace_i915_page_directory_pointer_entry_alloc(vm,
1152 pml4e,
1153 start,
1154 GEN8_PML4E_SHIFT);
1155 }
1156 }
1157
1158 return 0;
1159
1160 unwind_out:
1161 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1162 free_pdp(dev, pml4->pdps[pml4e]);
1163
1164 return -ENOMEM;
1165 }
1166
1167 static void
1168 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1169 {
1170 kfree(new_pts);
1171 kfree(new_pds);
1172 }
1173
1174 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1175 * of these are based on the number of PDPEs in the system.
1176 */
1177 static
1178 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1179 unsigned long **new_pts,
1180 uint32_t pdpes)
1181 {
1182 unsigned long *pds;
1183 unsigned long *pts;
1184
1185 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1186 if (!pds)
1187 return -ENOMEM;
1188
1189 pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1190 GFP_TEMPORARY);
1191 if (!pts)
1192 goto err_out;
1193
1194 *new_pds = pds;
1195 *new_pts = pts;
1196
1197 return 0;
1198
1199 err_out:
1200 free_gen8_temp_bitmaps(pds, pts);
1201 return -ENOMEM;
1202 }
1203
1204 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1205 * the page table structures, we mark them dirty so that
1206 * context switching/execlist queuing code takes extra steps
1207 * to ensure that tlbs are flushed.
1208 */
1209 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1210 {
1211 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1212 }
1213
1214 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1215 struct i915_page_directory_pointer *pdp,
1216 uint64_t start,
1217 uint64_t length)
1218 {
1219 struct i915_hw_ppgtt *ppgtt =
1220 container_of(vm, struct i915_hw_ppgtt, base);
1221 unsigned long *new_page_dirs, *new_page_tables;
1222 struct drm_device *dev = vm->dev;
1223 struct i915_page_directory *pd;
1224 const uint64_t orig_start = start;
1225 const uint64_t orig_length = length;
1226 uint32_t pdpe;
1227 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1228 int ret;
1229
1230 /* Wrap is never okay since we can only represent 48b, and we don't
1231 * actually use the other side of the canonical address space.
1232 */
1233 if (WARN_ON(start + length < start))
1234 return -ENODEV;
1235
1236 if (WARN_ON(start + length > vm->total))
1237 return -ENODEV;
1238
1239 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1240 if (ret)
1241 return ret;
1242
1243 /* Do the allocations first so we can easily bail out */
1244 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1245 new_page_dirs);
1246 if (ret) {
1247 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1248 return ret;
1249 }
1250
1251 /* For every page directory referenced, allocate page tables */
1252 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1253 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1254 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1255 if (ret)
1256 goto err_out;
1257 }
1258
1259 start = orig_start;
1260 length = orig_length;
1261
1262 /* Allocations have completed successfully, so set the bitmaps, and do
1263 * the mappings. */
1264 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1265 gen8_pde_t *const page_directory = kmap_px(pd);
1266 struct i915_page_table *pt;
1267 uint64_t pd_len = length;
1268 uint64_t pd_start = start;
1269 uint32_t pde;
1270
1271 /* Every pd should be allocated, we just did that above. */
1272 WARN_ON(!pd);
1273
1274 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1275 /* Same reasoning as pd */
1276 WARN_ON(!pt);
1277 WARN_ON(!pd_len);
1278 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1279
1280 /* Set our used ptes within the page table */
1281 bitmap_set(pt->used_ptes,
1282 gen8_pte_index(pd_start),
1283 gen8_pte_count(pd_start, pd_len));
1284
1285 /* Our pde is now pointing to the pagetable, pt */
1286 __set_bit(pde, pd->used_pdes);
1287
1288 /* Map the PDE to the page table */
1289 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1290 I915_CACHE_LLC);
1291 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1292 gen8_pte_index(start),
1293 gen8_pte_count(start, length),
1294 GEN8_PTES);
1295
1296 /* NB: We haven't yet mapped ptes to pages. At this
1297 * point we're still relying on insert_entries() */
1298 }
1299
1300 kunmap_px(ppgtt, page_directory);
1301 __set_bit(pdpe, pdp->used_pdpes);
1302 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1303 }
1304
1305 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1306 mark_tlbs_dirty(ppgtt);
1307 return 0;
1308
1309 err_out:
1310 while (pdpe--) {
1311 unsigned long temp;
1312
1313 for_each_set_bit(temp, new_page_tables + pdpe *
1314 BITS_TO_LONGS(I915_PDES), I915_PDES)
1315 free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1316 }
1317
1318 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1319 free_pd(dev, pdp->page_directory[pdpe]);
1320
1321 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1322 mark_tlbs_dirty(ppgtt);
1323 return ret;
1324 }
1325
1326 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1327 struct i915_pml4 *pml4,
1328 uint64_t start,
1329 uint64_t length)
1330 {
1331 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1332 struct i915_hw_ppgtt *ppgtt =
1333 container_of(vm, struct i915_hw_ppgtt, base);
1334 struct i915_page_directory_pointer *pdp;
1335 uint64_t pml4e;
1336 int ret = 0;
1337
1338 /* Do the pml4 allocations first, so we don't need to track the newly
1339 * allocated tables below the pdp */
1340 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1341
1342 /* The pagedirectory and pagetable allocations are done in the shared 3
1343 * and 4 level code. Just allocate the pdps.
1344 */
1345 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1346 new_pdps);
1347 if (ret)
1348 return ret;
1349
1350 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1351 "The allocation has spanned more than 512GB. "
1352 "It is highly likely this is incorrect.");
1353
1354 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1355 WARN_ON(!pdp);
1356
1357 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1358 if (ret)
1359 goto err_out;
1360
1361 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1362 }
1363
1364 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1365 GEN8_PML4ES_PER_PML4);
1366
1367 return 0;
1368
1369 err_out:
1370 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1371 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1372
1373 return ret;
1374 }
1375
1376 static int gen8_alloc_va_range(struct i915_address_space *vm,
1377 uint64_t start, uint64_t length)
1378 {
1379 struct i915_hw_ppgtt *ppgtt =
1380 container_of(vm, struct i915_hw_ppgtt, base);
1381
1382 if (USES_FULL_48BIT_PPGTT(vm->dev))
1383 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1384 else
1385 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1386 }
1387
1388 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1389 uint64_t start, uint64_t length,
1390 gen8_pte_t scratch_pte,
1391 struct seq_file *m)
1392 {
1393 struct i915_page_directory *pd;
1394 uint32_t pdpe;
1395
1396 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1397 struct i915_page_table *pt;
1398 uint64_t pd_len = length;
1399 uint64_t pd_start = start;
1400 uint32_t pde;
1401
1402 if (!test_bit(pdpe, pdp->used_pdpes))
1403 continue;
1404
1405 seq_printf(m, "\tPDPE #%d\n", pdpe);
1406 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1407 uint32_t pte;
1408 gen8_pte_t *pt_vaddr;
1409
1410 if (!test_bit(pde, pd->used_pdes))
1411 continue;
1412
1413 pt_vaddr = kmap_px(pt);
1414 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1415 uint64_t va =
1416 (pdpe << GEN8_PDPE_SHIFT) |
1417 (pde << GEN8_PDE_SHIFT) |
1418 (pte << GEN8_PTE_SHIFT);
1419 int i;
1420 bool found = false;
1421
1422 for (i = 0; i < 4; i++)
1423 if (pt_vaddr[pte + i] != scratch_pte)
1424 found = true;
1425 if (!found)
1426 continue;
1427
1428 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1429 for (i = 0; i < 4; i++) {
1430 if (pt_vaddr[pte + i] != scratch_pte)
1431 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1432 else
1433 seq_puts(m, " SCRATCH ");
1434 }
1435 seq_puts(m, "\n");
1436 }
1437 /* don't use kunmap_px, it could trigger
1438 * an unnecessary flush.
1439 */
1440 kunmap_atomic(pt_vaddr);
1441 }
1442 }
1443 }
1444
1445 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1446 {
1447 struct i915_address_space *vm = &ppgtt->base;
1448 uint64_t start = ppgtt->base.start;
1449 uint64_t length = ppgtt->base.total;
1450 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1451 I915_CACHE_LLC, true);
1452
1453 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1454 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1455 } else {
1456 uint64_t pml4e;
1457 struct i915_pml4 *pml4 = &ppgtt->pml4;
1458 struct i915_page_directory_pointer *pdp;
1459
1460 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1461 if (!test_bit(pml4e, pml4->used_pml4es))
1462 continue;
1463
1464 seq_printf(m, " PML4E #%llu\n", pml4e);
1465 gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1466 }
1467 }
1468 }
1469
1470 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1471 {
1472 unsigned long *new_page_dirs, *new_page_tables;
1473 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1474 int ret;
1475
1476 /* We allocate temp bitmap for page tables for no gain
1477 * but as this is for init only, lets keep the things simple
1478 */
1479 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1480 if (ret)
1481 return ret;
1482
1483 /* Allocate for all pdps regardless of how the ppgtt
1484 * was defined.
1485 */
1486 ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1487 0, 1ULL << 32,
1488 new_page_dirs);
1489 if (!ret)
1490 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1491
1492 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1493
1494 return ret;
1495 }
1496
1497 /*
1498 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1499 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1500 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1501 * space.
1502 *
1503 */
1504 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1505 {
1506 int ret;
1507
1508 ret = gen8_init_scratch(&ppgtt->base);
1509 if (ret)
1510 return ret;
1511
1512 ppgtt->base.start = 0;
1513 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1514 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1515 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1516 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1517 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1518 ppgtt->base.bind_vma = ppgtt_bind_vma;
1519 ppgtt->debug_dump = gen8_dump_ppgtt;
1520
1521 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1522 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1523 if (ret)
1524 goto free_scratch;
1525
1526 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1527
1528 ppgtt->base.total = 1ULL << 48;
1529 ppgtt->switch_mm = gen8_48b_mm_switch;
1530 } else {
1531 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1532 if (ret)
1533 goto free_scratch;
1534
1535 ppgtt->base.total = 1ULL << 32;
1536 ppgtt->switch_mm = gen8_legacy_mm_switch;
1537 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1538 0, 0,
1539 GEN8_PML4E_SHIFT);
1540
1541 if (intel_vgpu_active(ppgtt->base.dev)) {
1542 ret = gen8_preallocate_top_level_pdps(ppgtt);
1543 if (ret)
1544 goto free_scratch;
1545 }
1546 }
1547
1548 if (intel_vgpu_active(ppgtt->base.dev))
1549 gen8_ppgtt_notify_vgt(ppgtt, true);
1550
1551 return 0;
1552
1553 free_scratch:
1554 gen8_free_scratch(&ppgtt->base);
1555 return ret;
1556 }
1557
1558 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1559 {
1560 struct i915_address_space *vm = &ppgtt->base;
1561 struct i915_page_table *unused;
1562 gen6_pte_t scratch_pte;
1563 uint32_t pd_entry;
1564 uint32_t pte, pde, temp;
1565 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1566
1567 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1568 I915_CACHE_LLC, true, 0);
1569
1570 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1571 u32 expected;
1572 gen6_pte_t *pt_vaddr;
1573 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1574 pd_entry = readl(ppgtt->pd_addr + pde);
1575 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1576
1577 if (pd_entry != expected)
1578 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1579 pde,
1580 pd_entry,
1581 expected);
1582 seq_printf(m, "\tPDE: %x\n", pd_entry);
1583
1584 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1585
1586 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1587 unsigned long va =
1588 (pde * PAGE_SIZE * GEN6_PTES) +
1589 (pte * PAGE_SIZE);
1590 int i;
1591 bool found = false;
1592 for (i = 0; i < 4; i++)
1593 if (pt_vaddr[pte + i] != scratch_pte)
1594 found = true;
1595 if (!found)
1596 continue;
1597
1598 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1599 for (i = 0; i < 4; i++) {
1600 if (pt_vaddr[pte + i] != scratch_pte)
1601 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1602 else
1603 seq_puts(m, " SCRATCH ");
1604 }
1605 seq_puts(m, "\n");
1606 }
1607 kunmap_px(ppgtt, pt_vaddr);
1608 }
1609 }
1610
1611 /* Write pde (index) from the page directory @pd to the page table @pt */
1612 static void gen6_write_pde(struct i915_page_directory *pd,
1613 const int pde, struct i915_page_table *pt)
1614 {
1615 /* Caller needs to make sure the write completes if necessary */
1616 struct i915_hw_ppgtt *ppgtt =
1617 container_of(pd, struct i915_hw_ppgtt, pd);
1618 u32 pd_entry;
1619
1620 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1621 pd_entry |= GEN6_PDE_VALID;
1622
1623 writel(pd_entry, ppgtt->pd_addr + pde);
1624 }
1625
1626 /* Write all the page tables found in the ppgtt structure to incrementing page
1627 * directories. */
1628 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1629 struct i915_page_directory *pd,
1630 uint32_t start, uint32_t length)
1631 {
1632 struct i915_page_table *pt;
1633 uint32_t pde, temp;
1634
1635 gen6_for_each_pde(pt, pd, start, length, temp, pde)
1636 gen6_write_pde(pd, pde, pt);
1637
1638 /* Make sure write is complete before other code can use this page
1639 * table. Also require for WC mapped PTEs */
1640 readl(dev_priv->ggtt.gsm);
1641 }
1642
1643 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1644 {
1645 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1646
1647 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1648 }
1649
1650 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1651 struct drm_i915_gem_request *req)
1652 {
1653 struct intel_engine_cs *engine = req->engine;
1654 int ret;
1655
1656 /* NB: TLBs must be flushed and invalidated before a switch */
1657 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1658 if (ret)
1659 return ret;
1660
1661 ret = intel_ring_begin(req, 6);
1662 if (ret)
1663 return ret;
1664
1665 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1666 intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1667 intel_ring_emit(engine, PP_DIR_DCLV_2G);
1668 intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1669 intel_ring_emit(engine, get_pd_offset(ppgtt));
1670 intel_ring_emit(engine, MI_NOOP);
1671 intel_ring_advance(engine);
1672
1673 return 0;
1674 }
1675
1676 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1677 struct drm_i915_gem_request *req)
1678 {
1679 struct intel_engine_cs *engine = req->engine;
1680 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1681
1682 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1683 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1684 return 0;
1685 }
1686
1687 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1688 struct drm_i915_gem_request *req)
1689 {
1690 struct intel_engine_cs *engine = req->engine;
1691 int ret;
1692
1693 /* NB: TLBs must be flushed and invalidated before a switch */
1694 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1695 if (ret)
1696 return ret;
1697
1698 ret = intel_ring_begin(req, 6);
1699 if (ret)
1700 return ret;
1701
1702 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1703 intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1704 intel_ring_emit(engine, PP_DIR_DCLV_2G);
1705 intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1706 intel_ring_emit(engine, get_pd_offset(ppgtt));
1707 intel_ring_emit(engine, MI_NOOP);
1708 intel_ring_advance(engine);
1709
1710 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1711 if (engine->id != RCS) {
1712 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1713 if (ret)
1714 return ret;
1715 }
1716
1717 return 0;
1718 }
1719
1720 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1721 struct drm_i915_gem_request *req)
1722 {
1723 struct intel_engine_cs *engine = req->engine;
1724 struct drm_device *dev = ppgtt->base.dev;
1725 struct drm_i915_private *dev_priv = dev->dev_private;
1726
1727
1728 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1729 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1730
1731 POSTING_READ(RING_PP_DIR_DCLV(engine));
1732
1733 return 0;
1734 }
1735
1736 static void gen8_ppgtt_enable(struct drm_device *dev)
1737 {
1738 struct drm_i915_private *dev_priv = dev->dev_private;
1739 struct intel_engine_cs *engine;
1740
1741 for_each_engine(engine, dev_priv) {
1742 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1743 I915_WRITE(RING_MODE_GEN7(engine),
1744 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1745 }
1746 }
1747
1748 static void gen7_ppgtt_enable(struct drm_device *dev)
1749 {
1750 struct drm_i915_private *dev_priv = dev->dev_private;
1751 struct intel_engine_cs *engine;
1752 uint32_t ecochk, ecobits;
1753
1754 ecobits = I915_READ(GAC_ECO_BITS);
1755 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1756
1757 ecochk = I915_READ(GAM_ECOCHK);
1758 if (IS_HASWELL(dev)) {
1759 ecochk |= ECOCHK_PPGTT_WB_HSW;
1760 } else {
1761 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1762 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1763 }
1764 I915_WRITE(GAM_ECOCHK, ecochk);
1765
1766 for_each_engine(engine, dev_priv) {
1767 /* GFX_MODE is per-ring on gen7+ */
1768 I915_WRITE(RING_MODE_GEN7(engine),
1769 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1770 }
1771 }
1772
1773 static void gen6_ppgtt_enable(struct drm_device *dev)
1774 {
1775 struct drm_i915_private *dev_priv = dev->dev_private;
1776 uint32_t ecochk, gab_ctl, ecobits;
1777
1778 ecobits = I915_READ(GAC_ECO_BITS);
1779 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1780 ECOBITS_PPGTT_CACHE64B);
1781
1782 gab_ctl = I915_READ(GAB_CTL);
1783 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1784
1785 ecochk = I915_READ(GAM_ECOCHK);
1786 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1787
1788 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1789 }
1790
1791 /* PPGTT support for Sandybdrige/Gen6 and later */
1792 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1793 uint64_t start,
1794 uint64_t length,
1795 bool use_scratch)
1796 {
1797 struct i915_hw_ppgtt *ppgtt =
1798 container_of(vm, struct i915_hw_ppgtt, base);
1799 gen6_pte_t *pt_vaddr, scratch_pte;
1800 unsigned first_entry = start >> PAGE_SHIFT;
1801 unsigned num_entries = length >> PAGE_SHIFT;
1802 unsigned act_pt = first_entry / GEN6_PTES;
1803 unsigned first_pte = first_entry % GEN6_PTES;
1804 unsigned last_pte, i;
1805
1806 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1807 I915_CACHE_LLC, true, 0);
1808
1809 while (num_entries) {
1810 last_pte = first_pte + num_entries;
1811 if (last_pte > GEN6_PTES)
1812 last_pte = GEN6_PTES;
1813
1814 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1815
1816 for (i = first_pte; i < last_pte; i++)
1817 pt_vaddr[i] = scratch_pte;
1818
1819 kunmap_px(ppgtt, pt_vaddr);
1820
1821 num_entries -= last_pte - first_pte;
1822 first_pte = 0;
1823 act_pt++;
1824 }
1825 }
1826
1827 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1828 struct sg_table *pages,
1829 uint64_t start,
1830 enum i915_cache_level cache_level, u32 flags)
1831 {
1832 struct i915_hw_ppgtt *ppgtt =
1833 container_of(vm, struct i915_hw_ppgtt, base);
1834 gen6_pte_t *pt_vaddr;
1835 unsigned first_entry = start >> PAGE_SHIFT;
1836 unsigned act_pt = first_entry / GEN6_PTES;
1837 unsigned act_pte = first_entry % GEN6_PTES;
1838 struct sg_page_iter sg_iter;
1839
1840 pt_vaddr = NULL;
1841 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1842 if (pt_vaddr == NULL)
1843 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1844
1845 pt_vaddr[act_pte] =
1846 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1847 cache_level, true, flags);
1848
1849 if (++act_pte == GEN6_PTES) {
1850 kunmap_px(ppgtt, pt_vaddr);
1851 pt_vaddr = NULL;
1852 act_pt++;
1853 act_pte = 0;
1854 }
1855 }
1856 if (pt_vaddr)
1857 kunmap_px(ppgtt, pt_vaddr);
1858 }
1859
1860 static int gen6_alloc_va_range(struct i915_address_space *vm,
1861 uint64_t start_in, uint64_t length_in)
1862 {
1863 DECLARE_BITMAP(new_page_tables, I915_PDES);
1864 struct drm_device *dev = vm->dev;
1865 struct drm_i915_private *dev_priv = dev->dev_private;
1866 struct i915_hw_ppgtt *ppgtt =
1867 container_of(vm, struct i915_hw_ppgtt, base);
1868 struct i915_page_table *pt;
1869 uint32_t start, length, start_save, length_save;
1870 uint32_t pde, temp;
1871 int ret;
1872
1873 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1874 return -ENODEV;
1875
1876 start = start_save = start_in;
1877 length = length_save = length_in;
1878
1879 bitmap_zero(new_page_tables, I915_PDES);
1880
1881 /* The allocation is done in two stages so that we can bail out with
1882 * minimal amount of pain. The first stage finds new page tables that
1883 * need allocation. The second stage marks use ptes within the page
1884 * tables.
1885 */
1886 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1887 if (pt != vm->scratch_pt) {
1888 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1889 continue;
1890 }
1891
1892 /* We've already allocated a page table */
1893 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1894
1895 pt = alloc_pt(dev);
1896 if (IS_ERR(pt)) {
1897 ret = PTR_ERR(pt);
1898 goto unwind_out;
1899 }
1900
1901 gen6_initialize_pt(vm, pt);
1902
1903 ppgtt->pd.page_table[pde] = pt;
1904 __set_bit(pde, new_page_tables);
1905 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1906 }
1907
1908 start = start_save;
1909 length = length_save;
1910
1911 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1912 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1913
1914 bitmap_zero(tmp_bitmap, GEN6_PTES);
1915 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1916 gen6_pte_count(start, length));
1917
1918 if (__test_and_clear_bit(pde, new_page_tables))
1919 gen6_write_pde(&ppgtt->pd, pde, pt);
1920
1921 trace_i915_page_table_entry_map(vm, pde, pt,
1922 gen6_pte_index(start),
1923 gen6_pte_count(start, length),
1924 GEN6_PTES);
1925 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1926 GEN6_PTES);
1927 }
1928
1929 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1930
1931 /* Make sure write is complete before other code can use this page
1932 * table. Also require for WC mapped PTEs */
1933 readl(dev_priv->ggtt.gsm);
1934
1935 mark_tlbs_dirty(ppgtt);
1936 return 0;
1937
1938 unwind_out:
1939 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1940 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1941
1942 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1943 free_pt(vm->dev, pt);
1944 }
1945
1946 mark_tlbs_dirty(ppgtt);
1947 return ret;
1948 }
1949
1950 static int gen6_init_scratch(struct i915_address_space *vm)
1951 {
1952 struct drm_device *dev = vm->dev;
1953
1954 vm->scratch_page = alloc_scratch_page(dev);
1955 if (IS_ERR(vm->scratch_page))
1956 return PTR_ERR(vm->scratch_page);
1957
1958 vm->scratch_pt = alloc_pt(dev);
1959 if (IS_ERR(vm->scratch_pt)) {
1960 free_scratch_page(dev, vm->scratch_page);
1961 return PTR_ERR(vm->scratch_pt);
1962 }
1963
1964 gen6_initialize_pt(vm, vm->scratch_pt);
1965
1966 return 0;
1967 }
1968
1969 static void gen6_free_scratch(struct i915_address_space *vm)
1970 {
1971 struct drm_device *dev = vm->dev;
1972
1973 free_pt(dev, vm->scratch_pt);
1974 free_scratch_page(dev, vm->scratch_page);
1975 }
1976
1977 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1978 {
1979 struct i915_hw_ppgtt *ppgtt =
1980 container_of(vm, struct i915_hw_ppgtt, base);
1981 struct i915_page_table *pt;
1982 uint32_t pde;
1983
1984 drm_mm_remove_node(&ppgtt->node);
1985
1986 gen6_for_all_pdes(pt, ppgtt, pde) {
1987 if (pt != vm->scratch_pt)
1988 free_pt(ppgtt->base.dev, pt);
1989 }
1990
1991 gen6_free_scratch(vm);
1992 }
1993
1994 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1995 {
1996 struct i915_address_space *vm = &ppgtt->base;
1997 struct drm_device *dev = ppgtt->base.dev;
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 bool retried = false;
2000 int ret;
2001
2002 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2003 * allocator works in address space sizes, so it's multiplied by page
2004 * size. We allocate at the top of the GTT to avoid fragmentation.
2005 */
2006 BUG_ON(!drm_mm_initialized(&dev_priv->ggtt.base.mm));
2007
2008 ret = gen6_init_scratch(vm);
2009 if (ret)
2010 return ret;
2011
2012 alloc:
2013 ret = drm_mm_insert_node_in_range_generic(&dev_priv->ggtt.base.mm,
2014 &ppgtt->node, GEN6_PD_SIZE,
2015 GEN6_PD_ALIGN, 0,
2016 0, dev_priv->ggtt.base.total,
2017 DRM_MM_TOPDOWN);
2018 if (ret == -ENOSPC && !retried) {
2019 ret = i915_gem_evict_something(dev, &dev_priv->ggtt.base,
2020 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2021 I915_CACHE_NONE,
2022 0, dev_priv->ggtt.base.total,
2023 0);
2024 if (ret)
2025 goto err_out;
2026
2027 retried = true;
2028 goto alloc;
2029 }
2030
2031 if (ret)
2032 goto err_out;
2033
2034
2035 if (ppgtt->node.start < dev_priv->ggtt.mappable_end)
2036 DRM_DEBUG("Forced to use aperture for PDEs\n");
2037
2038 return 0;
2039
2040 err_out:
2041 gen6_free_scratch(vm);
2042 return ret;
2043 }
2044
2045 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2046 {
2047 return gen6_ppgtt_allocate_page_directories(ppgtt);
2048 }
2049
2050 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2051 uint64_t start, uint64_t length)
2052 {
2053 struct i915_page_table *unused;
2054 uint32_t pde, temp;
2055
2056 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2057 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2058 }
2059
2060 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2061 {
2062 struct drm_device *dev = ppgtt->base.dev;
2063 struct drm_i915_private *dev_priv = dev->dev_private;
2064 int ret;
2065
2066 ppgtt->base.pte_encode = dev_priv->ggtt.base.pte_encode;
2067 if (IS_GEN6(dev)) {
2068 ppgtt->switch_mm = gen6_mm_switch;
2069 } else if (IS_HASWELL(dev)) {
2070 ppgtt->switch_mm = hsw_mm_switch;
2071 } else if (IS_GEN7(dev)) {
2072 ppgtt->switch_mm = gen7_mm_switch;
2073 } else
2074 BUG();
2075
2076 if (intel_vgpu_active(dev))
2077 ppgtt->switch_mm = vgpu_mm_switch;
2078
2079 ret = gen6_ppgtt_alloc(ppgtt);
2080 if (ret)
2081 return ret;
2082
2083 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2084 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2085 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2086 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2087 ppgtt->base.bind_vma = ppgtt_bind_vma;
2088 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2089 ppgtt->base.start = 0;
2090 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2091 ppgtt->debug_dump = gen6_dump_ppgtt;
2092
2093 ppgtt->pd.base.ggtt_offset =
2094 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2095
2096 ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2097 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2098
2099 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2100
2101 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2102
2103 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2104 ppgtt->node.size >> 20,
2105 ppgtt->node.start / PAGE_SIZE);
2106
2107 DRM_DEBUG("Adding PPGTT at offset %x\n",
2108 ppgtt->pd.base.ggtt_offset << 10);
2109
2110 return 0;
2111 }
2112
2113 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2114 {
2115 ppgtt->base.dev = dev;
2116
2117 if (INTEL_INFO(dev)->gen < 8)
2118 return gen6_ppgtt_init(ppgtt);
2119 else
2120 return gen8_ppgtt_init(ppgtt);
2121 }
2122
2123 static void i915_address_space_init(struct i915_address_space *vm,
2124 struct drm_i915_private *dev_priv)
2125 {
2126 drm_mm_init(&vm->mm, vm->start, vm->total);
2127 vm->dev = dev_priv->dev;
2128 INIT_LIST_HEAD(&vm->active_list);
2129 INIT_LIST_HEAD(&vm->inactive_list);
2130 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2131 }
2132
2133 static void gtt_write_workarounds(struct drm_device *dev)
2134 {
2135 struct drm_i915_private *dev_priv = dev->dev_private;
2136
2137 /* This function is for gtt related workarounds. This function is
2138 * called on driver load and after a GPU reset, so you can place
2139 * workarounds here even if they get overwritten by GPU reset.
2140 */
2141 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2142 if (IS_BROADWELL(dev))
2143 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2144 else if (IS_CHERRYVIEW(dev))
2145 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2146 else if (IS_SKYLAKE(dev))
2147 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2148 else if (IS_BROXTON(dev))
2149 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2150 }
2151
2152 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2153 {
2154 struct drm_i915_private *dev_priv = dev->dev_private;
2155 int ret = 0;
2156
2157 ret = __hw_ppgtt_init(dev, ppgtt);
2158 if (ret == 0) {
2159 kref_init(&ppgtt->ref);
2160 i915_address_space_init(&ppgtt->base, dev_priv);
2161 }
2162
2163 return ret;
2164 }
2165
2166 int i915_ppgtt_init_hw(struct drm_device *dev)
2167 {
2168 gtt_write_workarounds(dev);
2169
2170 /* In the case of execlists, PPGTT is enabled by the context descriptor
2171 * and the PDPs are contained within the context itself. We don't
2172 * need to do anything here. */
2173 if (i915.enable_execlists)
2174 return 0;
2175
2176 if (!USES_PPGTT(dev))
2177 return 0;
2178
2179 if (IS_GEN6(dev))
2180 gen6_ppgtt_enable(dev);
2181 else if (IS_GEN7(dev))
2182 gen7_ppgtt_enable(dev);
2183 else if (INTEL_INFO(dev)->gen >= 8)
2184 gen8_ppgtt_enable(dev);
2185 else
2186 MISSING_CASE(INTEL_INFO(dev)->gen);
2187
2188 return 0;
2189 }
2190
2191 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2192 {
2193 struct drm_i915_private *dev_priv = req->i915;
2194 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2195
2196 if (i915.enable_execlists)
2197 return 0;
2198
2199 if (!ppgtt)
2200 return 0;
2201
2202 return ppgtt->switch_mm(ppgtt, req);
2203 }
2204
2205 struct i915_hw_ppgtt *
2206 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2207 {
2208 struct i915_hw_ppgtt *ppgtt;
2209 int ret;
2210
2211 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2212 if (!ppgtt)
2213 return ERR_PTR(-ENOMEM);
2214
2215 ret = i915_ppgtt_init(dev, ppgtt);
2216 if (ret) {
2217 kfree(ppgtt);
2218 return ERR_PTR(ret);
2219 }
2220
2221 ppgtt->file_priv = fpriv;
2222
2223 trace_i915_ppgtt_create(&ppgtt->base);
2224
2225 return ppgtt;
2226 }
2227
2228 void i915_ppgtt_release(struct kref *kref)
2229 {
2230 struct i915_hw_ppgtt *ppgtt =
2231 container_of(kref, struct i915_hw_ppgtt, ref);
2232
2233 trace_i915_ppgtt_release(&ppgtt->base);
2234
2235 /* vmas should already be unbound */
2236 WARN_ON(!list_empty(&ppgtt->base.active_list));
2237 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2238
2239 list_del(&ppgtt->base.global_link);
2240 drm_mm_takedown(&ppgtt->base.mm);
2241
2242 ppgtt->base.cleanup(&ppgtt->base);
2243 kfree(ppgtt);
2244 }
2245
2246 extern int intel_iommu_gfx_mapped;
2247 /* Certain Gen5 chipsets require require idling the GPU before
2248 * unmapping anything from the GTT when VT-d is enabled.
2249 */
2250 static bool needs_idle_maps(struct drm_device *dev)
2251 {
2252 #ifdef CONFIG_INTEL_IOMMU
2253 /* Query intel_iommu to see if we need the workaround. Presumably that
2254 * was loaded first.
2255 */
2256 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2257 return true;
2258 #endif
2259 return false;
2260 }
2261
2262 static bool do_idling(struct drm_i915_private *dev_priv)
2263 {
2264 bool ret = dev_priv->mm.interruptible;
2265
2266 if (unlikely(dev_priv->ggtt.do_idle_maps)) {
2267 dev_priv->mm.interruptible = false;
2268 if (i915_gpu_idle(dev_priv->dev)) {
2269 DRM_ERROR("Couldn't idle GPU\n");
2270 /* Wait a bit, in hopes it avoids the hang */
2271 udelay(10);
2272 }
2273 }
2274
2275 return ret;
2276 }
2277
2278 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2279 {
2280 if (unlikely(dev_priv->ggtt.do_idle_maps))
2281 dev_priv->mm.interruptible = interruptible;
2282 }
2283
2284 void i915_check_and_clear_faults(struct drm_device *dev)
2285 {
2286 struct drm_i915_private *dev_priv = dev->dev_private;
2287 struct intel_engine_cs *engine;
2288
2289 if (INTEL_INFO(dev)->gen < 6)
2290 return;
2291
2292 for_each_engine(engine, dev_priv) {
2293 u32 fault_reg;
2294 fault_reg = I915_READ(RING_FAULT_REG(engine));
2295 if (fault_reg & RING_FAULT_VALID) {
2296 DRM_DEBUG_DRIVER("Unexpected fault\n"
2297 "\tAddr: 0x%08lx\n"
2298 "\tAddress space: %s\n"
2299 "\tSource ID: %d\n"
2300 "\tType: %d\n",
2301 fault_reg & PAGE_MASK,
2302 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2303 RING_FAULT_SRCID(fault_reg),
2304 RING_FAULT_FAULT_TYPE(fault_reg));
2305 I915_WRITE(RING_FAULT_REG(engine),
2306 fault_reg & ~RING_FAULT_VALID);
2307 }
2308 }
2309 POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2310 }
2311
2312 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2313 {
2314 if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2315 intel_gtt_chipset_flush();
2316 } else {
2317 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2318 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2319 }
2320 }
2321
2322 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2323 {
2324 struct drm_i915_private *dev_priv = dev->dev_private;
2325
2326 /* Don't bother messing with faults pre GEN6 as we have little
2327 * documentation supporting that it's a good idea.
2328 */
2329 if (INTEL_INFO(dev)->gen < 6)
2330 return;
2331
2332 i915_check_and_clear_faults(dev);
2333
2334 dev_priv->ggtt.base.clear_range(&dev_priv->ggtt.base,
2335 dev_priv->ggtt.base.start,
2336 dev_priv->ggtt.base.total,
2337 true);
2338
2339 i915_ggtt_flush(dev_priv);
2340 }
2341
2342 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2343 {
2344 if (!dma_map_sg(&obj->base.dev->pdev->dev,
2345 obj->pages->sgl, obj->pages->nents,
2346 PCI_DMA_BIDIRECTIONAL))
2347 return -ENOSPC;
2348
2349 return 0;
2350 }
2351
2352 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2353 {
2354 #ifdef writeq
2355 writeq(pte, addr);
2356 #else
2357 iowrite32((u32)pte, addr);
2358 iowrite32(pte >> 32, addr + 4);
2359 #endif
2360 }
2361
2362 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2363 struct sg_table *st,
2364 uint64_t start,
2365 enum i915_cache_level level, u32 unused)
2366 {
2367 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2368 unsigned first_entry = start >> PAGE_SHIFT;
2369 gen8_pte_t __iomem *gtt_entries =
2370 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + first_entry;
2371 int i = 0;
2372 struct sg_page_iter sg_iter;
2373 dma_addr_t addr = 0; /* shut up gcc */
2374 int rpm_atomic_seq;
2375
2376 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2377
2378 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2379 addr = sg_dma_address(sg_iter.sg) +
2380 (sg_iter.sg_pgoffset << PAGE_SHIFT);
2381 gen8_set_pte(&gtt_entries[i],
2382 gen8_pte_encode(addr, level, true));
2383 i++;
2384 }
2385
2386 /*
2387 * XXX: This serves as a posting read to make sure that the PTE has
2388 * actually been updated. There is some concern that even though
2389 * registers and PTEs are within the same BAR that they are potentially
2390 * of NUMA access patterns. Therefore, even with the way we assume
2391 * hardware should work, we must keep this posting read for paranoia.
2392 */
2393 if (i != 0)
2394 WARN_ON(readq(&gtt_entries[i-1])
2395 != gen8_pte_encode(addr, level, true));
2396
2397 /* This next bit makes the above posting read even more important. We
2398 * want to flush the TLBs only after we're certain all the PTE updates
2399 * have finished.
2400 */
2401 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2402 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2403
2404 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2405 }
2406
2407 struct insert_entries {
2408 struct i915_address_space *vm;
2409 struct sg_table *st;
2410 uint64_t start;
2411 enum i915_cache_level level;
2412 u32 flags;
2413 };
2414
2415 static int gen8_ggtt_insert_entries__cb(void *_arg)
2416 {
2417 struct insert_entries *arg = _arg;
2418 gen8_ggtt_insert_entries(arg->vm, arg->st,
2419 arg->start, arg->level, arg->flags);
2420 return 0;
2421 }
2422
2423 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2424 struct sg_table *st,
2425 uint64_t start,
2426 enum i915_cache_level level,
2427 u32 flags)
2428 {
2429 struct insert_entries arg = { vm, st, start, level, flags };
2430 stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2431 }
2432
2433 /*
2434 * Binds an object into the global gtt with the specified cache level. The object
2435 * will be accessible to the GPU via commands whose operands reference offsets
2436 * within the global GTT as well as accessible by the GPU through the GMADR
2437 * mapped BAR (dev_priv->mm.gtt->gtt).
2438 */
2439 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2440 struct sg_table *st,
2441 uint64_t start,
2442 enum i915_cache_level level, u32 flags)
2443 {
2444 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2445 unsigned first_entry = start >> PAGE_SHIFT;
2446 gen6_pte_t __iomem *gtt_entries =
2447 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm + first_entry;
2448 int i = 0;
2449 struct sg_page_iter sg_iter;
2450 dma_addr_t addr = 0;
2451 int rpm_atomic_seq;
2452
2453 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2454
2455 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2456 addr = sg_page_iter_dma_address(&sg_iter);
2457 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2458 i++;
2459 }
2460
2461 /* XXX: This serves as a posting read to make sure that the PTE has
2462 * actually been updated. There is some concern that even though
2463 * registers and PTEs are within the same BAR that they are potentially
2464 * of NUMA access patterns. Therefore, even with the way we assume
2465 * hardware should work, we must keep this posting read for paranoia.
2466 */
2467 if (i != 0) {
2468 unsigned long gtt = readl(&gtt_entries[i-1]);
2469 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2470 }
2471
2472 /* This next bit makes the above posting read even more important. We
2473 * want to flush the TLBs only after we're certain all the PTE updates
2474 * have finished.
2475 */
2476 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2477 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2478
2479 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2480 }
2481
2482 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2483 uint64_t start,
2484 uint64_t length,
2485 bool use_scratch)
2486 {
2487 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2488 unsigned first_entry = start >> PAGE_SHIFT;
2489 unsigned num_entries = length >> PAGE_SHIFT;
2490 gen8_pte_t scratch_pte, __iomem *gtt_base =
2491 (gen8_pte_t __iomem *) dev_priv->ggtt.gsm + first_entry;
2492 const int max_entries = gtt_total_entries(dev_priv->ggtt) - first_entry;
2493 int i;
2494 int rpm_atomic_seq;
2495
2496 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2497
2498 if (WARN(num_entries > max_entries,
2499 "First entry = %d; Num entries = %d (max=%d)\n",
2500 first_entry, num_entries, max_entries))
2501 num_entries = max_entries;
2502
2503 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2504 I915_CACHE_LLC,
2505 use_scratch);
2506 for (i = 0; i < num_entries; i++)
2507 gen8_set_pte(&gtt_base[i], scratch_pte);
2508 readl(gtt_base);
2509
2510 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2511 }
2512
2513 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2514 uint64_t start,
2515 uint64_t length,
2516 bool use_scratch)
2517 {
2518 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2519 unsigned first_entry = start >> PAGE_SHIFT;
2520 unsigned num_entries = length >> PAGE_SHIFT;
2521 gen6_pte_t scratch_pte, __iomem *gtt_base =
2522 (gen6_pte_t __iomem *) dev_priv->ggtt.gsm + first_entry;
2523 const int max_entries = gtt_total_entries(dev_priv->ggtt) - first_entry;
2524 int i;
2525 int rpm_atomic_seq;
2526
2527 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2528
2529 if (WARN(num_entries > max_entries,
2530 "First entry = %d; Num entries = %d (max=%d)\n",
2531 first_entry, num_entries, max_entries))
2532 num_entries = max_entries;
2533
2534 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2535 I915_CACHE_LLC, use_scratch, 0);
2536
2537 for (i = 0; i < num_entries; i++)
2538 iowrite32(scratch_pte, &gtt_base[i]);
2539 readl(gtt_base);
2540
2541 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2542 }
2543
2544 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2545 struct sg_table *pages,
2546 uint64_t start,
2547 enum i915_cache_level cache_level, u32 unused)
2548 {
2549 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2550 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2551 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2552 int rpm_atomic_seq;
2553
2554 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2555
2556 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2557
2558 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2559
2560 }
2561
2562 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2563 uint64_t start,
2564 uint64_t length,
2565 bool unused)
2566 {
2567 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2568 unsigned first_entry = start >> PAGE_SHIFT;
2569 unsigned num_entries = length >> PAGE_SHIFT;
2570 int rpm_atomic_seq;
2571
2572 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2573
2574 intel_gtt_clear_range(first_entry, num_entries);
2575
2576 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2577 }
2578
2579 static int ggtt_bind_vma(struct i915_vma *vma,
2580 enum i915_cache_level cache_level,
2581 u32 flags)
2582 {
2583 struct drm_i915_gem_object *obj = vma->obj;
2584 u32 pte_flags = 0;
2585 int ret;
2586
2587 ret = i915_get_ggtt_vma_pages(vma);
2588 if (ret)
2589 return ret;
2590
2591 /* Currently applicable only to VLV */
2592 if (obj->gt_ro)
2593 pte_flags |= PTE_READ_ONLY;
2594
2595 vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2596 vma->node.start,
2597 cache_level, pte_flags);
2598
2599 /*
2600 * Without aliasing PPGTT there's no difference between
2601 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2602 * upgrade to both bound if we bind either to avoid double-binding.
2603 */
2604 vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2605
2606 return 0;
2607 }
2608
2609 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2610 enum i915_cache_level cache_level,
2611 u32 flags)
2612 {
2613 u32 pte_flags;
2614 int ret;
2615
2616 ret = i915_get_ggtt_vma_pages(vma);
2617 if (ret)
2618 return ret;
2619
2620 /* Currently applicable only to VLV */
2621 pte_flags = 0;
2622 if (vma->obj->gt_ro)
2623 pte_flags |= PTE_READ_ONLY;
2624
2625
2626 if (flags & GLOBAL_BIND) {
2627 vma->vm->insert_entries(vma->vm,
2628 vma->ggtt_view.pages,
2629 vma->node.start,
2630 cache_level, pte_flags);
2631 }
2632
2633 if (flags & LOCAL_BIND) {
2634 struct i915_hw_ppgtt *appgtt =
2635 to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2636 appgtt->base.insert_entries(&appgtt->base,
2637 vma->ggtt_view.pages,
2638 vma->node.start,
2639 cache_level, pte_flags);
2640 }
2641
2642 return 0;
2643 }
2644
2645 static void ggtt_unbind_vma(struct i915_vma *vma)
2646 {
2647 struct drm_device *dev = vma->vm->dev;
2648 struct drm_i915_private *dev_priv = dev->dev_private;
2649 struct drm_i915_gem_object *obj = vma->obj;
2650 const uint64_t size = min_t(uint64_t,
2651 obj->base.size,
2652 vma->node.size);
2653
2654 if (vma->bound & GLOBAL_BIND) {
2655 vma->vm->clear_range(vma->vm,
2656 vma->node.start,
2657 size,
2658 true);
2659 }
2660
2661 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2662 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2663
2664 appgtt->base.clear_range(&appgtt->base,
2665 vma->node.start,
2666 size,
2667 true);
2668 }
2669 }
2670
2671 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2672 {
2673 struct drm_device *dev = obj->base.dev;
2674 struct drm_i915_private *dev_priv = dev->dev_private;
2675 bool interruptible;
2676
2677 interruptible = do_idling(dev_priv);
2678
2679 dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2680 PCI_DMA_BIDIRECTIONAL);
2681
2682 undo_idling(dev_priv, interruptible);
2683 }
2684
2685 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2686 unsigned long color,
2687 u64 *start,
2688 u64 *end)
2689 {
2690 if (node->color != color)
2691 *start += 4096;
2692
2693 if (!list_empty(&node->node_list)) {
2694 node = list_entry(node->node_list.next,
2695 struct drm_mm_node,
2696 node_list);
2697 if (node->allocated && node->color != color)
2698 *end -= 4096;
2699 }
2700 }
2701
2702 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2703 u64 start,
2704 u64 mappable_end,
2705 u64 end)
2706 {
2707 /* Let GEM Manage all of the aperture.
2708 *
2709 * However, leave one page at the end still bound to the scratch page.
2710 * There are a number of places where the hardware apparently prefetches
2711 * past the end of the object, and we've seen multiple hangs with the
2712 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2713 * aperture. One page should be enough to keep any prefetching inside
2714 * of the aperture.
2715 */
2716 struct drm_i915_private *dev_priv = dev->dev_private;
2717 struct i915_address_space *ggtt_vm = &dev_priv->ggtt.base;
2718 struct drm_mm_node *entry;
2719 struct drm_i915_gem_object *obj;
2720 unsigned long hole_start, hole_end;
2721 int ret;
2722
2723 BUG_ON(mappable_end > end);
2724
2725 ggtt_vm->start = start;
2726
2727 /* Subtract the guard page before address space initialization to
2728 * shrink the range used by drm_mm */
2729 ggtt_vm->total = end - start - PAGE_SIZE;
2730 i915_address_space_init(ggtt_vm, dev_priv);
2731 ggtt_vm->total += PAGE_SIZE;
2732
2733 if (intel_vgpu_active(dev)) {
2734 ret = intel_vgt_balloon(dev);
2735 if (ret)
2736 return ret;
2737 }
2738
2739 if (!HAS_LLC(dev))
2740 ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2741
2742 /* Mark any preallocated objects as occupied */
2743 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2744 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2745
2746 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2747 i915_gem_obj_ggtt_offset(obj), obj->base.size);
2748
2749 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2750 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2751 if (ret) {
2752 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2753 return ret;
2754 }
2755 vma->bound |= GLOBAL_BIND;
2756 __i915_vma_set_map_and_fenceable(vma);
2757 list_add_tail(&vma->vm_link, &ggtt_vm->inactive_list);
2758 }
2759
2760 /* Clear any non-preallocated blocks */
2761 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2762 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2763 hole_start, hole_end);
2764 ggtt_vm->clear_range(ggtt_vm, hole_start,
2765 hole_end - hole_start, true);
2766 }
2767
2768 /* And finally clear the reserved guard page */
2769 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2770
2771 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2772 struct i915_hw_ppgtt *ppgtt;
2773
2774 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2775 if (!ppgtt)
2776 return -ENOMEM;
2777
2778 ret = __hw_ppgtt_init(dev, ppgtt);
2779 if (ret) {
2780 ppgtt->base.cleanup(&ppgtt->base);
2781 kfree(ppgtt);
2782 return ret;
2783 }
2784
2785 if (ppgtt->base.allocate_va_range)
2786 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2787 ppgtt->base.total);
2788 if (ret) {
2789 ppgtt->base.cleanup(&ppgtt->base);
2790 kfree(ppgtt);
2791 return ret;
2792 }
2793
2794 ppgtt->base.clear_range(&ppgtt->base,
2795 ppgtt->base.start,
2796 ppgtt->base.total,
2797 true);
2798
2799 dev_priv->mm.aliasing_ppgtt = ppgtt;
2800 WARN_ON(dev_priv->ggtt.base.bind_vma != ggtt_bind_vma);
2801 dev_priv->ggtt.base.bind_vma = aliasing_gtt_bind_vma;
2802 }
2803
2804 return 0;
2805 }
2806
2807 void i915_gem_init_global_gtt(struct drm_device *dev)
2808 {
2809 struct drm_i915_private *dev_priv = dev->dev_private;
2810 u64 gtt_size, mappable_size;
2811
2812 gtt_size = dev_priv->ggtt.base.total;
2813 mappable_size = dev_priv->ggtt.mappable_end;
2814
2815 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2816 }
2817
2818 void i915_global_gtt_cleanup(struct drm_device *dev)
2819 {
2820 struct drm_i915_private *dev_priv = dev->dev_private;
2821 struct i915_address_space *vm = &dev_priv->ggtt.base;
2822
2823 if (dev_priv->mm.aliasing_ppgtt) {
2824 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2825
2826 ppgtt->base.cleanup(&ppgtt->base);
2827 }
2828
2829 i915_gem_cleanup_stolen(dev);
2830
2831 if (drm_mm_initialized(&vm->mm)) {
2832 if (intel_vgpu_active(dev))
2833 intel_vgt_deballoon();
2834
2835 drm_mm_takedown(&vm->mm);
2836 list_del(&vm->global_link);
2837 }
2838
2839 vm->cleanup(vm);
2840 }
2841
2842 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2843 {
2844 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2845 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2846 return snb_gmch_ctl << 20;
2847 }
2848
2849 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2850 {
2851 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2852 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2853 if (bdw_gmch_ctl)
2854 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2855
2856 #ifdef CONFIG_X86_32
2857 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2858 if (bdw_gmch_ctl > 4)
2859 bdw_gmch_ctl = 4;
2860 #endif
2861
2862 return bdw_gmch_ctl << 20;
2863 }
2864
2865 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2866 {
2867 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2868 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2869
2870 if (gmch_ctrl)
2871 return 1 << (20 + gmch_ctrl);
2872
2873 return 0;
2874 }
2875
2876 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2877 {
2878 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2879 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2880 return snb_gmch_ctl << 25; /* 32 MB units */
2881 }
2882
2883 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2884 {
2885 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2886 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2887 return bdw_gmch_ctl << 25; /* 32 MB units */
2888 }
2889
2890 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2891 {
2892 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2893 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2894
2895 /*
2896 * 0x0 to 0x10: 32MB increments starting at 0MB
2897 * 0x11 to 0x16: 4MB increments starting at 8MB
2898 * 0x17 to 0x1d: 4MB increments start at 36MB
2899 */
2900 if (gmch_ctrl < 0x11)
2901 return gmch_ctrl << 25;
2902 else if (gmch_ctrl < 0x17)
2903 return (gmch_ctrl - 0x11 + 2) << 22;
2904 else
2905 return (gmch_ctrl - 0x17 + 9) << 22;
2906 }
2907
2908 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2909 {
2910 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2911 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2912
2913 if (gen9_gmch_ctl < 0xf0)
2914 return gen9_gmch_ctl << 25; /* 32 MB units */
2915 else
2916 /* 4MB increments starting at 0xf0 for 4MB */
2917 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2918 }
2919
2920 static int ggtt_probe_common(struct drm_device *dev,
2921 size_t gtt_size)
2922 {
2923 struct drm_i915_private *dev_priv = dev->dev_private;
2924 struct i915_page_scratch *scratch_page;
2925 phys_addr_t gtt_phys_addr;
2926
2927 /* For Modern GENs the PTEs and register space are split in the BAR */
2928 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2929 (pci_resource_len(dev->pdev, 0) / 2);
2930
2931 /*
2932 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2933 * dropped. For WC mappings in general we have 64 byte burst writes
2934 * when the WC buffer is flushed, so we can't use it, but have to
2935 * resort to an uncached mapping. The WC issue is easily caught by the
2936 * readback check when writing GTT PTE entries.
2937 */
2938 if (IS_BROXTON(dev))
2939 dev_priv->ggtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2940 else
2941 dev_priv->ggtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2942 if (!dev_priv->ggtt.gsm) {
2943 DRM_ERROR("Failed to map the gtt page table\n");
2944 return -ENOMEM;
2945 }
2946
2947 scratch_page = alloc_scratch_page(dev);
2948 if (IS_ERR(scratch_page)) {
2949 DRM_ERROR("Scratch setup failed\n");
2950 /* iounmap will also get called at remove, but meh */
2951 iounmap(dev_priv->ggtt.gsm);
2952 return PTR_ERR(scratch_page);
2953 }
2954
2955 dev_priv->ggtt.base.scratch_page = scratch_page;
2956
2957 return 0;
2958 }
2959
2960 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2961 * bits. When using advanced contexts each context stores its own PAT, but
2962 * writing this data shouldn't be harmful even in those cases. */
2963 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2964 {
2965 uint64_t pat;
2966
2967 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2968 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2969 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2970 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2971 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2972 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2973 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2974 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2975
2976 if (!USES_PPGTT(dev_priv->dev))
2977 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2978 * so RTL will always use the value corresponding to
2979 * pat_sel = 000".
2980 * So let's disable cache for GGTT to avoid screen corruptions.
2981 * MOCS still can be used though.
2982 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2983 * before this patch, i.e. the same uncached + snooping access
2984 * like on gen6/7 seems to be in effect.
2985 * - So this just fixes blitter/render access. Again it looks
2986 * like it's not just uncached access, but uncached + snooping.
2987 * So we can still hold onto all our assumptions wrt cpu
2988 * clflushing on LLC machines.
2989 */
2990 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2991
2992 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2993 * write would work. */
2994 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2995 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2996 }
2997
2998 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2999 {
3000 uint64_t pat;
3001
3002 /*
3003 * Map WB on BDW to snooped on CHV.
3004 *
3005 * Only the snoop bit has meaning for CHV, the rest is
3006 * ignored.
3007 *
3008 * The hardware will never snoop for certain types of accesses:
3009 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3010 * - PPGTT page tables
3011 * - some other special cycles
3012 *
3013 * As with BDW, we also need to consider the following for GT accesses:
3014 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3015 * so RTL will always use the value corresponding to
3016 * pat_sel = 000".
3017 * Which means we must set the snoop bit in PAT entry 0
3018 * in order to keep the global status page working.
3019 */
3020 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3021 GEN8_PPAT(1, 0) |
3022 GEN8_PPAT(2, 0) |
3023 GEN8_PPAT(3, 0) |
3024 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3025 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3026 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3027 GEN8_PPAT(7, CHV_PPAT_SNOOP);
3028
3029 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3030 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3031 }
3032
3033 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3034 {
3035 struct drm_device *dev = ggtt->base.dev;
3036 struct drm_i915_private *dev_priv = dev->dev_private;
3037 u16 snb_gmch_ctl;
3038 int ret;
3039
3040 /* TODO: We're not aware of mappable constraints on gen8 yet */
3041 ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3042 ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3043
3044 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3045 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3046
3047 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3048
3049 if (INTEL_INFO(dev)->gen >= 9) {
3050 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3051 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3052 } else if (IS_CHERRYVIEW(dev)) {
3053 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3054 ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
3055 } else {
3056 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3057 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3058 }
3059
3060 ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3061
3062 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3063 chv_setup_private_ppat(dev_priv);
3064 else
3065 bdw_setup_private_ppat(dev_priv);
3066
3067 ret = ggtt_probe_common(dev, ggtt->size);
3068
3069 ggtt->base.clear_range = gen8_ggtt_clear_range;
3070 if (IS_CHERRYVIEW(dev_priv))
3071 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3072 else
3073 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3074 ggtt->base.bind_vma = ggtt_bind_vma;
3075 ggtt->base.unbind_vma = ggtt_unbind_vma;
3076
3077
3078 return ret;
3079 }
3080
3081 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3082 {
3083 struct drm_device *dev = ggtt->base.dev;
3084 u16 snb_gmch_ctl;
3085 int ret;
3086
3087 ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3088 ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3089
3090 /* 64/512MB is the current min/max we actually know of, but this is just
3091 * a coarse sanity check.
3092 */
3093 if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
3094 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3095 return -ENXIO;
3096 }
3097
3098 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3099 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3100 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3101
3102 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3103 ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
3104 ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3105
3106 ret = ggtt_probe_common(dev, ggtt->size);
3107
3108 ggtt->base.clear_range = gen6_ggtt_clear_range;
3109 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3110 ggtt->base.bind_vma = ggtt_bind_vma;
3111 ggtt->base.unbind_vma = ggtt_unbind_vma;
3112
3113 return ret;
3114 }
3115
3116 static void gen6_gmch_remove(struct i915_address_space *vm)
3117 {
3118 struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
3119
3120 iounmap(ggtt->gsm);
3121 free_scratch_page(vm->dev, vm->scratch_page);
3122 }
3123
3124 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3125 {
3126 struct drm_device *dev = ggtt->base.dev;
3127 struct drm_i915_private *dev_priv = dev->dev_private;
3128 int ret;
3129
3130 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3131 if (!ret) {
3132 DRM_ERROR("failed to set up gmch\n");
3133 return -EIO;
3134 }
3135
3136 intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3137 &ggtt->mappable_base, &ggtt->mappable_end);
3138
3139 ggtt->do_idle_maps = needs_idle_maps(dev_priv->dev);
3140 ggtt->base.insert_entries = i915_ggtt_insert_entries;
3141 ggtt->base.clear_range = i915_ggtt_clear_range;
3142 ggtt->base.bind_vma = ggtt_bind_vma;
3143 ggtt->base.unbind_vma = ggtt_unbind_vma;
3144
3145 if (unlikely(ggtt->do_idle_maps))
3146 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3147
3148 return 0;
3149 }
3150
3151 static void i915_gmch_remove(struct i915_address_space *vm)
3152 {
3153 intel_gmch_remove();
3154 }
3155
3156 int i915_gem_gtt_init(struct drm_device *dev)
3157 {
3158 struct drm_i915_private *dev_priv = dev->dev_private;
3159 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3160 int ret;
3161
3162 if (INTEL_INFO(dev)->gen <= 5) {
3163 ggtt->probe = i915_gmch_probe;
3164 ggtt->base.cleanup = i915_gmch_remove;
3165 } else if (INTEL_INFO(dev)->gen < 8) {
3166 ggtt->probe = gen6_gmch_probe;
3167 ggtt->base.cleanup = gen6_gmch_remove;
3168 if (IS_HASWELL(dev) && dev_priv->ellc_size)
3169 ggtt->base.pte_encode = iris_pte_encode;
3170 else if (IS_HASWELL(dev))
3171 ggtt->base.pte_encode = hsw_pte_encode;
3172 else if (IS_VALLEYVIEW(dev))
3173 ggtt->base.pte_encode = byt_pte_encode;
3174 else if (INTEL_INFO(dev)->gen >= 7)
3175 ggtt->base.pte_encode = ivb_pte_encode;
3176 else
3177 ggtt->base.pte_encode = snb_pte_encode;
3178 } else {
3179 ggtt->probe = gen8_gmch_probe;
3180 ggtt->base.cleanup = gen6_gmch_remove;
3181 }
3182
3183 ggtt->base.dev = dev;
3184 ggtt->base.is_ggtt = true;
3185
3186 ret = ggtt->probe(ggtt);
3187 if (ret)
3188 return ret;
3189
3190 if ((ggtt->base.total - 1) >> 32) {
3191 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3192 "of address space! Found %lldM!\n",
3193 ggtt->base.total >> 20);
3194 ggtt->base.total = 1ULL << 32;
3195 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3196 }
3197
3198 /*
3199 * Initialise stolen early so that we may reserve preallocated
3200 * objects for the BIOS to KMS transition.
3201 */
3202 ret = i915_gem_init_stolen(dev);
3203 if (ret)
3204 goto out_gtt_cleanup;
3205
3206 /* GMADR is the PCI mmio aperture into the global GTT. */
3207 DRM_INFO("Memory usable by graphics device = %lluM\n",
3208 ggtt->base.total >> 20);
3209 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3210 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3211 #ifdef CONFIG_INTEL_IOMMU
3212 if (intel_iommu_gfx_mapped)
3213 DRM_INFO("VT-d active for gfx access\n");
3214 #endif
3215 /*
3216 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3217 * user's requested state against the hardware/driver capabilities. We
3218 * do this now so that we can print out any log messages once rather
3219 * than every time we check intel_enable_ppgtt().
3220 */
3221 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3222 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3223
3224 return 0;
3225
3226 out_gtt_cleanup:
3227 ggtt->base.cleanup(&dev_priv->ggtt.base);
3228
3229 return ret;
3230 }
3231
3232 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3233 {
3234 struct drm_i915_private *dev_priv = dev->dev_private;
3235 struct drm_i915_gem_object *obj;
3236 struct i915_address_space *vm;
3237 struct i915_vma *vma;
3238 bool flush;
3239
3240 i915_check_and_clear_faults(dev);
3241
3242 /* First fill our portion of the GTT with scratch pages */
3243 dev_priv->ggtt.base.clear_range(&dev_priv->ggtt.base,
3244 dev_priv->ggtt.base.start,
3245 dev_priv->ggtt.base.total,
3246 true);
3247
3248 /* Cache flush objects bound into GGTT and rebind them. */
3249 vm = &dev_priv->ggtt.base;
3250 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3251 flush = false;
3252 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3253 if (vma->vm != vm)
3254 continue;
3255
3256 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3257 PIN_UPDATE));
3258
3259 flush = true;
3260 }
3261
3262 if (flush)
3263 i915_gem_clflush_object(obj, obj->pin_display);
3264 }
3265
3266 if (INTEL_INFO(dev)->gen >= 8) {
3267 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3268 chv_setup_private_ppat(dev_priv);
3269 else
3270 bdw_setup_private_ppat(dev_priv);
3271
3272 return;
3273 }
3274
3275 if (USES_PPGTT(dev)) {
3276 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3277 /* TODO: Perhaps it shouldn't be gen6 specific */
3278
3279 struct i915_hw_ppgtt *ppgtt =
3280 container_of(vm, struct i915_hw_ppgtt,
3281 base);
3282
3283 if (i915_is_ggtt(vm))
3284 ppgtt = dev_priv->mm.aliasing_ppgtt;
3285
3286 gen6_write_page_range(dev_priv, &ppgtt->pd,
3287 0, ppgtt->base.total);
3288 }
3289 }
3290
3291 i915_ggtt_flush(dev_priv);
3292 }
3293
3294 static struct i915_vma *
3295 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3296 struct i915_address_space *vm,
3297 const struct i915_ggtt_view *ggtt_view)
3298 {
3299 struct i915_vma *vma;
3300
3301 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3302 return ERR_PTR(-EINVAL);
3303
3304 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3305 if (vma == NULL)
3306 return ERR_PTR(-ENOMEM);
3307
3308 INIT_LIST_HEAD(&vma->vm_link);
3309 INIT_LIST_HEAD(&vma->obj_link);
3310 INIT_LIST_HEAD(&vma->exec_list);
3311 vma->vm = vm;
3312 vma->obj = obj;
3313 vma->is_ggtt = i915_is_ggtt(vm);
3314
3315 if (i915_is_ggtt(vm))
3316 vma->ggtt_view = *ggtt_view;
3317 else
3318 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3319
3320 list_add_tail(&vma->obj_link, &obj->vma_list);
3321
3322 return vma;
3323 }
3324
3325 struct i915_vma *
3326 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3327 struct i915_address_space *vm)
3328 {
3329 struct i915_vma *vma;
3330
3331 vma = i915_gem_obj_to_vma(obj, vm);
3332 if (!vma)
3333 vma = __i915_gem_vma_create(obj, vm,
3334 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3335
3336 return vma;
3337 }
3338
3339 struct i915_vma *
3340 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3341 const struct i915_ggtt_view *view)
3342 {
3343 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3344 struct i915_vma *vma;
3345
3346 if (WARN_ON(!view))
3347 return ERR_PTR(-EINVAL);
3348
3349 vma = i915_gem_obj_to_ggtt_view(obj, view);
3350
3351 if (IS_ERR(vma))
3352 return vma;
3353
3354 if (!vma)
3355 vma = __i915_gem_vma_create(obj, ggtt, view);
3356
3357 return vma;
3358
3359 }
3360
3361 static struct scatterlist *
3362 rotate_pages(const dma_addr_t *in, unsigned int offset,
3363 unsigned int width, unsigned int height,
3364 unsigned int stride,
3365 struct sg_table *st, struct scatterlist *sg)
3366 {
3367 unsigned int column, row;
3368 unsigned int src_idx;
3369
3370 for (column = 0; column < width; column++) {
3371 src_idx = stride * (height - 1) + column;
3372 for (row = 0; row < height; row++) {
3373 st->nents++;
3374 /* We don't need the pages, but need to initialize
3375 * the entries so the sg list can be happily traversed.
3376 * The only thing we need are DMA addresses.
3377 */
3378 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3379 sg_dma_address(sg) = in[offset + src_idx];
3380 sg_dma_len(sg) = PAGE_SIZE;
3381 sg = sg_next(sg);
3382 src_idx -= stride;
3383 }
3384 }
3385
3386 return sg;
3387 }
3388
3389 static struct sg_table *
3390 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3391 struct drm_i915_gem_object *obj)
3392 {
3393 unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3394 unsigned int size_pages_uv;
3395 struct sg_page_iter sg_iter;
3396 unsigned long i;
3397 dma_addr_t *page_addr_list;
3398 struct sg_table *st;
3399 unsigned int uv_start_page;
3400 struct scatterlist *sg;
3401 int ret = -ENOMEM;
3402
3403 /* Allocate a temporary list of source pages for random access. */
3404 page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3405 sizeof(dma_addr_t));
3406 if (!page_addr_list)
3407 return ERR_PTR(ret);
3408
3409 /* Account for UV plane with NV12. */
3410 if (rot_info->pixel_format == DRM_FORMAT_NV12)
3411 size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3412 else
3413 size_pages_uv = 0;
3414
3415 /* Allocate target SG list. */
3416 st = kmalloc(sizeof(*st), GFP_KERNEL);
3417 if (!st)
3418 goto err_st_alloc;
3419
3420 ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3421 if (ret)
3422 goto err_sg_alloc;
3423
3424 /* Populate source page list from the object. */
3425 i = 0;
3426 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3427 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3428 i++;
3429 }
3430
3431 st->nents = 0;
3432 sg = st->sgl;
3433
3434 /* Rotate the pages. */
3435 sg = rotate_pages(page_addr_list, 0,
3436 rot_info->plane[0].width, rot_info->plane[0].height,
3437 rot_info->plane[0].width,
3438 st, sg);
3439
3440 /* Append the UV plane if NV12. */
3441 if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3442 uv_start_page = size_pages;
3443
3444 /* Check for tile-row un-alignment. */
3445 if (offset_in_page(rot_info->uv_offset))
3446 uv_start_page--;
3447
3448 rot_info->uv_start_page = uv_start_page;
3449
3450 sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3451 rot_info->plane[1].width, rot_info->plane[1].height,
3452 rot_info->plane[1].width,
3453 st, sg);
3454 }
3455
3456 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3457 obj->base.size, rot_info->plane[0].width,
3458 rot_info->plane[0].height, size_pages + size_pages_uv,
3459 size_pages);
3460
3461 drm_free_large(page_addr_list);
3462
3463 return st;
3464
3465 err_sg_alloc:
3466 kfree(st);
3467 err_st_alloc:
3468 drm_free_large(page_addr_list);
3469
3470 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3471 obj->base.size, ret, rot_info->plane[0].width,
3472 rot_info->plane[0].height, size_pages + size_pages_uv,
3473 size_pages);
3474 return ERR_PTR(ret);
3475 }
3476
3477 static struct sg_table *
3478 intel_partial_pages(const struct i915_ggtt_view *view,
3479 struct drm_i915_gem_object *obj)
3480 {
3481 struct sg_table *st;
3482 struct scatterlist *sg;
3483 struct sg_page_iter obj_sg_iter;
3484 int ret = -ENOMEM;
3485
3486 st = kmalloc(sizeof(*st), GFP_KERNEL);
3487 if (!st)
3488 goto err_st_alloc;
3489
3490 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3491 if (ret)
3492 goto err_sg_alloc;
3493
3494 sg = st->sgl;
3495 st->nents = 0;
3496 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3497 view->params.partial.offset)
3498 {
3499 if (st->nents >= view->params.partial.size)
3500 break;
3501
3502 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3503 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3504 sg_dma_len(sg) = PAGE_SIZE;
3505
3506 sg = sg_next(sg);
3507 st->nents++;
3508 }
3509
3510 return st;
3511
3512 err_sg_alloc:
3513 kfree(st);
3514 err_st_alloc:
3515 return ERR_PTR(ret);
3516 }
3517
3518 static int
3519 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3520 {
3521 int ret = 0;
3522
3523 if (vma->ggtt_view.pages)
3524 return 0;
3525
3526 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3527 vma->ggtt_view.pages = vma->obj->pages;
3528 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3529 vma->ggtt_view.pages =
3530 intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3531 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3532 vma->ggtt_view.pages =
3533 intel_partial_pages(&vma->ggtt_view, vma->obj);
3534 else
3535 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3536 vma->ggtt_view.type);
3537
3538 if (!vma->ggtt_view.pages) {
3539 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3540 vma->ggtt_view.type);
3541 ret = -EINVAL;
3542 } else if (IS_ERR(vma->ggtt_view.pages)) {
3543 ret = PTR_ERR(vma->ggtt_view.pages);
3544 vma->ggtt_view.pages = NULL;
3545 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3546 vma->ggtt_view.type, ret);
3547 }
3548
3549 return ret;
3550 }
3551
3552 /**
3553 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3554 * @vma: VMA to map
3555 * @cache_level: mapping cache level
3556 * @flags: flags like global or local mapping
3557 *
3558 * DMA addresses are taken from the scatter-gather table of this object (or of
3559 * this VMA in case of non-default GGTT views) and PTE entries set up.
3560 * Note that DMA addresses are also the only part of the SG table we care about.
3561 */
3562 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3563 u32 flags)
3564 {
3565 int ret;
3566 u32 bind_flags;
3567
3568 if (WARN_ON(flags == 0))
3569 return -EINVAL;
3570
3571 bind_flags = 0;
3572 if (flags & PIN_GLOBAL)
3573 bind_flags |= GLOBAL_BIND;
3574 if (flags & PIN_USER)
3575 bind_flags |= LOCAL_BIND;
3576
3577 if (flags & PIN_UPDATE)
3578 bind_flags |= vma->bound;
3579 else
3580 bind_flags &= ~vma->bound;
3581
3582 if (bind_flags == 0)
3583 return 0;
3584
3585 if (vma->bound == 0 && vma->vm->allocate_va_range) {
3586 /* XXX: i915_vma_pin() will fix this +- hack */
3587 vma->pin_count++;
3588 trace_i915_va_alloc(vma);
3589 ret = vma->vm->allocate_va_range(vma->vm,
3590 vma->node.start,
3591 vma->node.size);
3592 vma->pin_count--;
3593 if (ret)
3594 return ret;
3595 }
3596
3597 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3598 if (ret)
3599 return ret;
3600
3601 vma->bound |= bind_flags;
3602
3603 return 0;
3604 }
3605
3606 /**
3607 * i915_ggtt_view_size - Get the size of a GGTT view.
3608 * @obj: Object the view is of.
3609 * @view: The view in question.
3610 *
3611 * @return The size of the GGTT view in bytes.
3612 */
3613 size_t
3614 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3615 const struct i915_ggtt_view *view)
3616 {
3617 if (view->type == I915_GGTT_VIEW_NORMAL) {
3618 return obj->base.size;
3619 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3620 return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
3621 } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3622 return view->params.partial.size << PAGE_SHIFT;
3623 } else {
3624 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3625 return obj->base.size;
3626 }
3627 }
This page took 0.114214 seconds and 5 git commands to generate.