931b906f292a95e12d0884cc85d0650f8904d962
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_trace.h"
31 #include "intel_drv.h"
32
33 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
34 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
35
36 bool intel_enable_ppgtt(struct drm_device *dev, bool full)
37 {
38 if (i915.enable_ppgtt == 0)
39 return false;
40
41 if (i915.enable_ppgtt == 1 && full)
42 return false;
43
44 return true;
45 }
46
47 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
48 {
49 if (enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
50 return 0;
51
52 if (enable_ppgtt == 1)
53 return 1;
54
55 if (enable_ppgtt == 2 && HAS_PPGTT(dev))
56 return 2;
57
58 #ifdef CONFIG_INTEL_IOMMU
59 /* Disable ppgtt on SNB if VT-d is on. */
60 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
61 DRM_INFO("Disabling PPGTT because VT-d is on\n");
62 return 0;
63 }
64 #endif
65
66 return HAS_ALIASING_PPGTT(dev) ? 1 : 0;
67 }
68
69
70 static void ppgtt_bind_vma(struct i915_vma *vma,
71 enum i915_cache_level cache_level,
72 u32 flags);
73 static void ppgtt_unbind_vma(struct i915_vma *vma);
74 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
75
76 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
77 enum i915_cache_level level,
78 bool valid)
79 {
80 gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
81 pte |= addr;
82
83 switch (level) {
84 case I915_CACHE_NONE:
85 pte |= PPAT_UNCACHED_INDEX;
86 break;
87 case I915_CACHE_WT:
88 pte |= PPAT_DISPLAY_ELLC_INDEX;
89 break;
90 default:
91 pte |= PPAT_CACHED_INDEX;
92 break;
93 }
94
95 return pte;
96 }
97
98 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
99 dma_addr_t addr,
100 enum i915_cache_level level)
101 {
102 gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
103 pde |= addr;
104 if (level != I915_CACHE_NONE)
105 pde |= PPAT_CACHED_PDE_INDEX;
106 else
107 pde |= PPAT_UNCACHED_INDEX;
108 return pde;
109 }
110
111 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
112 enum i915_cache_level level,
113 bool valid)
114 {
115 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
116 pte |= GEN6_PTE_ADDR_ENCODE(addr);
117
118 switch (level) {
119 case I915_CACHE_L3_LLC:
120 case I915_CACHE_LLC:
121 pte |= GEN6_PTE_CACHE_LLC;
122 break;
123 case I915_CACHE_NONE:
124 pte |= GEN6_PTE_UNCACHED;
125 break;
126 default:
127 WARN_ON(1);
128 }
129
130 return pte;
131 }
132
133 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
134 enum i915_cache_level level,
135 bool valid)
136 {
137 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
138 pte |= GEN6_PTE_ADDR_ENCODE(addr);
139
140 switch (level) {
141 case I915_CACHE_L3_LLC:
142 pte |= GEN7_PTE_CACHE_L3_LLC;
143 break;
144 case I915_CACHE_LLC:
145 pte |= GEN6_PTE_CACHE_LLC;
146 break;
147 case I915_CACHE_NONE:
148 pte |= GEN6_PTE_UNCACHED;
149 break;
150 default:
151 WARN_ON(1);
152 }
153
154 return pte;
155 }
156
157 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
158 enum i915_cache_level level,
159 bool valid)
160 {
161 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
162 pte |= GEN6_PTE_ADDR_ENCODE(addr);
163
164 /* Mark the page as writeable. Other platforms don't have a
165 * setting for read-only/writable, so this matches that behavior.
166 */
167 pte |= BYT_PTE_WRITEABLE;
168
169 if (level != I915_CACHE_NONE)
170 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
171
172 return pte;
173 }
174
175 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
176 enum i915_cache_level level,
177 bool valid)
178 {
179 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
180 pte |= HSW_PTE_ADDR_ENCODE(addr);
181
182 if (level != I915_CACHE_NONE)
183 pte |= HSW_WB_LLC_AGE3;
184
185 return pte;
186 }
187
188 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
189 enum i915_cache_level level,
190 bool valid)
191 {
192 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
193 pte |= HSW_PTE_ADDR_ENCODE(addr);
194
195 switch (level) {
196 case I915_CACHE_NONE:
197 break;
198 case I915_CACHE_WT:
199 pte |= HSW_WT_ELLC_LLC_AGE3;
200 break;
201 default:
202 pte |= HSW_WB_ELLC_LLC_AGE3;
203 break;
204 }
205
206 return pte;
207 }
208
209 /* Broadwell Page Directory Pointer Descriptors */
210 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
211 uint64_t val, bool synchronous)
212 {
213 struct drm_i915_private *dev_priv = ring->dev->dev_private;
214 int ret;
215
216 BUG_ON(entry >= 4);
217
218 if (synchronous) {
219 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
220 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
221 return 0;
222 }
223
224 ret = intel_ring_begin(ring, 6);
225 if (ret)
226 return ret;
227
228 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
229 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
230 intel_ring_emit(ring, (u32)(val >> 32));
231 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
232 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
233 intel_ring_emit(ring, (u32)(val));
234 intel_ring_advance(ring);
235
236 return 0;
237 }
238
239 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
240 struct intel_engine_cs *ring,
241 bool synchronous)
242 {
243 int i, ret;
244
245 /* bit of a hack to find the actual last used pd */
246 int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
247
248 for (i = used_pd - 1; i >= 0; i--) {
249 dma_addr_t addr = ppgtt->pd_dma_addr[i];
250 ret = gen8_write_pdp(ring, i, addr, synchronous);
251 if (ret)
252 return ret;
253 }
254
255 return 0;
256 }
257
258 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
259 uint64_t start,
260 uint64_t length,
261 bool use_scratch)
262 {
263 struct i915_hw_ppgtt *ppgtt =
264 container_of(vm, struct i915_hw_ppgtt, base);
265 gen8_gtt_pte_t *pt_vaddr, scratch_pte;
266 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
267 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
268 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
269 unsigned num_entries = length >> PAGE_SHIFT;
270 unsigned last_pte, i;
271
272 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
273 I915_CACHE_LLC, use_scratch);
274
275 while (num_entries) {
276 struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
277
278 last_pte = pte + num_entries;
279 if (last_pte > GEN8_PTES_PER_PAGE)
280 last_pte = GEN8_PTES_PER_PAGE;
281
282 pt_vaddr = kmap_atomic(page_table);
283
284 for (i = pte; i < last_pte; i++) {
285 pt_vaddr[i] = scratch_pte;
286 num_entries--;
287 }
288
289 if (!HAS_LLC(ppgtt->base.dev))
290 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
291 kunmap_atomic(pt_vaddr);
292
293 pte = 0;
294 if (++pde == GEN8_PDES_PER_PAGE) {
295 pdpe++;
296 pde = 0;
297 }
298 }
299 }
300
301 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
302 struct sg_table *pages,
303 uint64_t start,
304 enum i915_cache_level cache_level)
305 {
306 struct i915_hw_ppgtt *ppgtt =
307 container_of(vm, struct i915_hw_ppgtt, base);
308 gen8_gtt_pte_t *pt_vaddr;
309 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
310 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
311 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
312 struct sg_page_iter sg_iter;
313
314 pt_vaddr = NULL;
315
316 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
317 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
318 break;
319
320 if (pt_vaddr == NULL)
321 pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
322
323 pt_vaddr[pte] =
324 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
325 cache_level, true);
326 if (++pte == GEN8_PTES_PER_PAGE) {
327 if (!HAS_LLC(ppgtt->base.dev))
328 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
329 kunmap_atomic(pt_vaddr);
330 pt_vaddr = NULL;
331 if (++pde == GEN8_PDES_PER_PAGE) {
332 pdpe++;
333 pde = 0;
334 }
335 pte = 0;
336 }
337 }
338 if (pt_vaddr) {
339 if (!HAS_LLC(ppgtt->base.dev))
340 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
341 kunmap_atomic(pt_vaddr);
342 }
343 }
344
345 static void gen8_free_page_tables(struct page **pt_pages)
346 {
347 int i;
348
349 if (pt_pages == NULL)
350 return;
351
352 for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
353 if (pt_pages[i])
354 __free_pages(pt_pages[i], 0);
355 }
356
357 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
358 {
359 int i;
360
361 for (i = 0; i < ppgtt->num_pd_pages; i++) {
362 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
363 kfree(ppgtt->gen8_pt_pages[i]);
364 kfree(ppgtt->gen8_pt_dma_addr[i]);
365 }
366
367 __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
368 }
369
370 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
371 {
372 struct pci_dev *hwdev = ppgtt->base.dev->pdev;
373 int i, j;
374
375 for (i = 0; i < ppgtt->num_pd_pages; i++) {
376 /* TODO: In the future we'll support sparse mappings, so this
377 * will have to change. */
378 if (!ppgtt->pd_dma_addr[i])
379 continue;
380
381 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
382 PCI_DMA_BIDIRECTIONAL);
383
384 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
385 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
386 if (addr)
387 pci_unmap_page(hwdev, addr, PAGE_SIZE,
388 PCI_DMA_BIDIRECTIONAL);
389 }
390 }
391 }
392
393 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
394 {
395 struct i915_hw_ppgtt *ppgtt =
396 container_of(vm, struct i915_hw_ppgtt, base);
397
398 list_del(&vm->global_link);
399 drm_mm_takedown(&vm->mm);
400
401 gen8_ppgtt_unmap_pages(ppgtt);
402 gen8_ppgtt_free(ppgtt);
403 }
404
405 static struct page **__gen8_alloc_page_tables(void)
406 {
407 struct page **pt_pages;
408 int i;
409
410 pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
411 if (!pt_pages)
412 return ERR_PTR(-ENOMEM);
413
414 for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
415 pt_pages[i] = alloc_page(GFP_KERNEL);
416 if (!pt_pages[i])
417 goto bail;
418 }
419
420 return pt_pages;
421
422 bail:
423 gen8_free_page_tables(pt_pages);
424 kfree(pt_pages);
425 return ERR_PTR(-ENOMEM);
426 }
427
428 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
429 const int max_pdp)
430 {
431 struct page **pt_pages[GEN8_LEGACY_PDPS];
432 int i, ret;
433
434 for (i = 0; i < max_pdp; i++) {
435 pt_pages[i] = __gen8_alloc_page_tables();
436 if (IS_ERR(pt_pages[i])) {
437 ret = PTR_ERR(pt_pages[i]);
438 goto unwind_out;
439 }
440 }
441
442 /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
443 * "atomic" - for cleanup purposes.
444 */
445 for (i = 0; i < max_pdp; i++)
446 ppgtt->gen8_pt_pages[i] = pt_pages[i];
447
448 return 0;
449
450 unwind_out:
451 while (i--) {
452 gen8_free_page_tables(pt_pages[i]);
453 kfree(pt_pages[i]);
454 }
455
456 return ret;
457 }
458
459 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
460 {
461 int i;
462
463 for (i = 0; i < ppgtt->num_pd_pages; i++) {
464 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
465 sizeof(dma_addr_t),
466 GFP_KERNEL);
467 if (!ppgtt->gen8_pt_dma_addr[i])
468 return -ENOMEM;
469 }
470
471 return 0;
472 }
473
474 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
475 const int max_pdp)
476 {
477 ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
478 if (!ppgtt->pd_pages)
479 return -ENOMEM;
480
481 ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
482 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
483
484 return 0;
485 }
486
487 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
488 const int max_pdp)
489 {
490 int ret;
491
492 ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
493 if (ret)
494 return ret;
495
496 ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
497 if (ret) {
498 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
499 return ret;
500 }
501
502 ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
503
504 ret = gen8_ppgtt_allocate_dma(ppgtt);
505 if (ret)
506 gen8_ppgtt_free(ppgtt);
507
508 return ret;
509 }
510
511 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
512 const int pd)
513 {
514 dma_addr_t pd_addr;
515 int ret;
516
517 pd_addr = pci_map_page(ppgtt->base.dev->pdev,
518 &ppgtt->pd_pages[pd], 0,
519 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
520
521 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
522 if (ret)
523 return ret;
524
525 ppgtt->pd_dma_addr[pd] = pd_addr;
526
527 return 0;
528 }
529
530 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
531 const int pd,
532 const int pt)
533 {
534 dma_addr_t pt_addr;
535 struct page *p;
536 int ret;
537
538 p = ppgtt->gen8_pt_pages[pd][pt];
539 pt_addr = pci_map_page(ppgtt->base.dev->pdev,
540 p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
541 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
542 if (ret)
543 return ret;
544
545 ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
546
547 return 0;
548 }
549
550 /**
551 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
552 * with a net effect resembling a 2-level page table in normal x86 terms. Each
553 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
554 * space.
555 *
556 * FIXME: split allocation into smaller pieces. For now we only ever do this
557 * once, but with full PPGTT, the multiple contiguous allocations will be bad.
558 * TODO: Do something with the size parameter
559 */
560 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
561 {
562 const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
563 const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
564 int i, j, ret;
565
566 if (size % (1<<30))
567 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
568
569 /* 1. Do all our allocations for page directories and page tables. */
570 ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
571 if (ret)
572 return ret;
573
574 /*
575 * 2. Create DMA mappings for the page directories and page tables.
576 */
577 for (i = 0; i < max_pdp; i++) {
578 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
579 if (ret)
580 goto bail;
581
582 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
583 ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
584 if (ret)
585 goto bail;
586 }
587 }
588
589 /*
590 * 3. Map all the page directory entires to point to the page tables
591 * we've allocated.
592 *
593 * For now, the PPGTT helper functions all require that the PDEs are
594 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
595 * will never need to touch the PDEs again.
596 */
597 for (i = 0; i < max_pdp; i++) {
598 gen8_ppgtt_pde_t *pd_vaddr;
599 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
600 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
601 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
602 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
603 I915_CACHE_LLC);
604 }
605 if (!HAS_LLC(ppgtt->base.dev))
606 drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
607 kunmap_atomic(pd_vaddr);
608 }
609
610 ppgtt->enable = gen8_ppgtt_enable;
611 ppgtt->switch_mm = gen8_mm_switch;
612 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
613 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
614 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
615 ppgtt->base.start = 0;
616 ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
617
618 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
619
620 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
621 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
622 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
623 ppgtt->num_pd_entries,
624 (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
625 return 0;
626
627 bail:
628 gen8_ppgtt_unmap_pages(ppgtt);
629 gen8_ppgtt_free(ppgtt);
630 return ret;
631 }
632
633 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
634 {
635 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
636 struct i915_address_space *vm = &ppgtt->base;
637 gen6_gtt_pte_t __iomem *pd_addr;
638 gen6_gtt_pte_t scratch_pte;
639 uint32_t pd_entry;
640 int pte, pde;
641
642 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
643
644 pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
645 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
646
647 seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm,
648 ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
649 for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
650 u32 expected;
651 gen6_gtt_pte_t *pt_vaddr;
652 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
653 pd_entry = readl(pd_addr + pde);
654 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
655
656 if (pd_entry != expected)
657 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
658 pde,
659 pd_entry,
660 expected);
661 seq_printf(m, "\tPDE: %x\n", pd_entry);
662
663 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
664 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
665 unsigned long va =
666 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
667 (pte * PAGE_SIZE);
668 int i;
669 bool found = false;
670 for (i = 0; i < 4; i++)
671 if (pt_vaddr[pte + i] != scratch_pte)
672 found = true;
673 if (!found)
674 continue;
675
676 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
677 for (i = 0; i < 4; i++) {
678 if (pt_vaddr[pte + i] != scratch_pte)
679 seq_printf(m, " %08x", pt_vaddr[pte + i]);
680 else
681 seq_puts(m, " SCRATCH ");
682 }
683 seq_puts(m, "\n");
684 }
685 kunmap_atomic(pt_vaddr);
686 }
687 }
688
689 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
690 {
691 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
692 gen6_gtt_pte_t __iomem *pd_addr;
693 uint32_t pd_entry;
694 int i;
695
696 WARN_ON(ppgtt->pd_offset & 0x3f);
697 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
698 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
699 for (i = 0; i < ppgtt->num_pd_entries; i++) {
700 dma_addr_t pt_addr;
701
702 pt_addr = ppgtt->pt_dma_addr[i];
703 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
704 pd_entry |= GEN6_PDE_VALID;
705
706 writel(pd_entry, pd_addr + i);
707 }
708 readl(pd_addr);
709 }
710
711 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
712 {
713 BUG_ON(ppgtt->pd_offset & 0x3f);
714
715 return (ppgtt->pd_offset / 64) << 16;
716 }
717
718 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
719 struct intel_engine_cs *ring,
720 bool synchronous)
721 {
722 struct drm_device *dev = ppgtt->base.dev;
723 struct drm_i915_private *dev_priv = dev->dev_private;
724 int ret;
725
726 /* If we're in reset, we can assume the GPU is sufficiently idle to
727 * manually frob these bits. Ideally we could use the ring functions,
728 * except our error handling makes it quite difficult (can't use
729 * intel_ring_begin, ring->flush, or intel_ring_advance)
730 *
731 * FIXME: We should try not to special case reset
732 */
733 if (synchronous ||
734 i915_reset_in_progress(&dev_priv->gpu_error)) {
735 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
736 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
737 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
738 POSTING_READ(RING_PP_DIR_BASE(ring));
739 return 0;
740 }
741
742 /* NB: TLBs must be flushed and invalidated before a switch */
743 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
744 if (ret)
745 return ret;
746
747 ret = intel_ring_begin(ring, 6);
748 if (ret)
749 return ret;
750
751 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
752 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
753 intel_ring_emit(ring, PP_DIR_DCLV_2G);
754 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
755 intel_ring_emit(ring, get_pd_offset(ppgtt));
756 intel_ring_emit(ring, MI_NOOP);
757 intel_ring_advance(ring);
758
759 return 0;
760 }
761
762 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
763 struct intel_engine_cs *ring,
764 bool synchronous)
765 {
766 struct drm_device *dev = ppgtt->base.dev;
767 struct drm_i915_private *dev_priv = dev->dev_private;
768 int ret;
769
770 /* If we're in reset, we can assume the GPU is sufficiently idle to
771 * manually frob these bits. Ideally we could use the ring functions,
772 * except our error handling makes it quite difficult (can't use
773 * intel_ring_begin, ring->flush, or intel_ring_advance)
774 *
775 * FIXME: We should try not to special case reset
776 */
777 if (synchronous ||
778 i915_reset_in_progress(&dev_priv->gpu_error)) {
779 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
780 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
781 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
782 POSTING_READ(RING_PP_DIR_BASE(ring));
783 return 0;
784 }
785
786 /* NB: TLBs must be flushed and invalidated before a switch */
787 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
788 if (ret)
789 return ret;
790
791 ret = intel_ring_begin(ring, 6);
792 if (ret)
793 return ret;
794
795 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
796 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
797 intel_ring_emit(ring, PP_DIR_DCLV_2G);
798 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
799 intel_ring_emit(ring, get_pd_offset(ppgtt));
800 intel_ring_emit(ring, MI_NOOP);
801 intel_ring_advance(ring);
802
803 /* XXX: RCS is the only one to auto invalidate the TLBs? */
804 if (ring->id != RCS) {
805 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
806 if (ret)
807 return ret;
808 }
809
810 return 0;
811 }
812
813 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
814 struct intel_engine_cs *ring,
815 bool synchronous)
816 {
817 struct drm_device *dev = ppgtt->base.dev;
818 struct drm_i915_private *dev_priv = dev->dev_private;
819
820 if (!synchronous)
821 return 0;
822
823 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
824 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
825
826 POSTING_READ(RING_PP_DIR_DCLV(ring));
827
828 return 0;
829 }
830
831 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
832 {
833 struct drm_device *dev = ppgtt->base.dev;
834 struct drm_i915_private *dev_priv = dev->dev_private;
835 struct intel_engine_cs *ring;
836 int j, ret;
837
838 for_each_ring(ring, dev_priv, j) {
839 I915_WRITE(RING_MODE_GEN7(ring),
840 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
841
842 /* We promise to do a switch later with FULL PPGTT. If this is
843 * aliasing, this is the one and only switch we'll do */
844 if (USES_FULL_PPGTT(dev))
845 continue;
846
847 ret = ppgtt->switch_mm(ppgtt, ring, true);
848 if (ret)
849 goto err_out;
850 }
851
852 return 0;
853
854 err_out:
855 for_each_ring(ring, dev_priv, j)
856 I915_WRITE(RING_MODE_GEN7(ring),
857 _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
858 return ret;
859 }
860
861 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
862 {
863 struct drm_device *dev = ppgtt->base.dev;
864 struct drm_i915_private *dev_priv = dev->dev_private;
865 struct intel_engine_cs *ring;
866 uint32_t ecochk, ecobits;
867 int i;
868
869 ecobits = I915_READ(GAC_ECO_BITS);
870 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
871
872 ecochk = I915_READ(GAM_ECOCHK);
873 if (IS_HASWELL(dev)) {
874 ecochk |= ECOCHK_PPGTT_WB_HSW;
875 } else {
876 ecochk |= ECOCHK_PPGTT_LLC_IVB;
877 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
878 }
879 I915_WRITE(GAM_ECOCHK, ecochk);
880
881 for_each_ring(ring, dev_priv, i) {
882 int ret;
883 /* GFX_MODE is per-ring on gen7+ */
884 I915_WRITE(RING_MODE_GEN7(ring),
885 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
886
887 /* We promise to do a switch later with FULL PPGTT. If this is
888 * aliasing, this is the one and only switch we'll do */
889 if (USES_FULL_PPGTT(dev))
890 continue;
891
892 ret = ppgtt->switch_mm(ppgtt, ring, true);
893 if (ret)
894 return ret;
895 }
896
897 return 0;
898 }
899
900 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
901 {
902 struct drm_device *dev = ppgtt->base.dev;
903 struct drm_i915_private *dev_priv = dev->dev_private;
904 struct intel_engine_cs *ring;
905 uint32_t ecochk, gab_ctl, ecobits;
906 int i;
907
908 ecobits = I915_READ(GAC_ECO_BITS);
909 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
910 ECOBITS_PPGTT_CACHE64B);
911
912 gab_ctl = I915_READ(GAB_CTL);
913 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
914
915 ecochk = I915_READ(GAM_ECOCHK);
916 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
917
918 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
919
920 for_each_ring(ring, dev_priv, i) {
921 int ret = ppgtt->switch_mm(ppgtt, ring, true);
922 if (ret)
923 return ret;
924 }
925
926 return 0;
927 }
928
929 /* PPGTT support for Sandybdrige/Gen6 and later */
930 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
931 uint64_t start,
932 uint64_t length,
933 bool use_scratch)
934 {
935 struct i915_hw_ppgtt *ppgtt =
936 container_of(vm, struct i915_hw_ppgtt, base);
937 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
938 unsigned first_entry = start >> PAGE_SHIFT;
939 unsigned num_entries = length >> PAGE_SHIFT;
940 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
941 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
942 unsigned last_pte, i;
943
944 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
945
946 while (num_entries) {
947 last_pte = first_pte + num_entries;
948 if (last_pte > I915_PPGTT_PT_ENTRIES)
949 last_pte = I915_PPGTT_PT_ENTRIES;
950
951 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
952
953 for (i = first_pte; i < last_pte; i++)
954 pt_vaddr[i] = scratch_pte;
955
956 kunmap_atomic(pt_vaddr);
957
958 num_entries -= last_pte - first_pte;
959 first_pte = 0;
960 act_pt++;
961 }
962 }
963
964 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
965 struct sg_table *pages,
966 uint64_t start,
967 enum i915_cache_level cache_level)
968 {
969 struct i915_hw_ppgtt *ppgtt =
970 container_of(vm, struct i915_hw_ppgtt, base);
971 gen6_gtt_pte_t *pt_vaddr;
972 unsigned first_entry = start >> PAGE_SHIFT;
973 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
974 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
975 struct sg_page_iter sg_iter;
976
977 pt_vaddr = NULL;
978 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
979 if (pt_vaddr == NULL)
980 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
981
982 pt_vaddr[act_pte] =
983 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
984 cache_level, true);
985 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
986 kunmap_atomic(pt_vaddr);
987 pt_vaddr = NULL;
988 act_pt++;
989 act_pte = 0;
990 }
991 }
992 if (pt_vaddr)
993 kunmap_atomic(pt_vaddr);
994 }
995
996 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
997 {
998 int i;
999
1000 if (ppgtt->pt_dma_addr) {
1001 for (i = 0; i < ppgtt->num_pd_entries; i++)
1002 pci_unmap_page(ppgtt->base.dev->pdev,
1003 ppgtt->pt_dma_addr[i],
1004 4096, PCI_DMA_BIDIRECTIONAL);
1005 }
1006 }
1007
1008 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1009 {
1010 int i;
1011
1012 kfree(ppgtt->pt_dma_addr);
1013 for (i = 0; i < ppgtt->num_pd_entries; i++)
1014 __free_page(ppgtt->pt_pages[i]);
1015 kfree(ppgtt->pt_pages);
1016 }
1017
1018 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1019 {
1020 struct i915_hw_ppgtt *ppgtt =
1021 container_of(vm, struct i915_hw_ppgtt, base);
1022
1023 list_del(&vm->global_link);
1024 drm_mm_takedown(&ppgtt->base.mm);
1025 drm_mm_remove_node(&ppgtt->node);
1026
1027 gen6_ppgtt_unmap_pages(ppgtt);
1028 gen6_ppgtt_free(ppgtt);
1029 }
1030
1031 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1032 {
1033 struct drm_device *dev = ppgtt->base.dev;
1034 struct drm_i915_private *dev_priv = dev->dev_private;
1035 bool retried = false;
1036 int ret;
1037
1038 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1039 * allocator works in address space sizes, so it's multiplied by page
1040 * size. We allocate at the top of the GTT to avoid fragmentation.
1041 */
1042 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1043 alloc:
1044 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1045 &ppgtt->node, GEN6_PD_SIZE,
1046 GEN6_PD_ALIGN, 0,
1047 0, dev_priv->gtt.base.total,
1048 DRM_MM_TOPDOWN);
1049 if (ret == -ENOSPC && !retried) {
1050 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1051 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1052 I915_CACHE_NONE,
1053 0, dev_priv->gtt.base.total,
1054 0);
1055 if (ret)
1056 return ret;
1057
1058 retried = true;
1059 goto alloc;
1060 }
1061
1062 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1063 DRM_DEBUG("Forced to use aperture for PDEs\n");
1064
1065 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1066 return ret;
1067 }
1068
1069 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1070 {
1071 int i;
1072
1073 ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1074 GFP_KERNEL);
1075
1076 if (!ppgtt->pt_pages)
1077 return -ENOMEM;
1078
1079 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1080 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1081 if (!ppgtt->pt_pages[i]) {
1082 gen6_ppgtt_free(ppgtt);
1083 return -ENOMEM;
1084 }
1085 }
1086
1087 return 0;
1088 }
1089
1090 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1091 {
1092 int ret;
1093
1094 ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1095 if (ret)
1096 return ret;
1097
1098 ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1099 if (ret) {
1100 drm_mm_remove_node(&ppgtt->node);
1101 return ret;
1102 }
1103
1104 ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1105 GFP_KERNEL);
1106 if (!ppgtt->pt_dma_addr) {
1107 drm_mm_remove_node(&ppgtt->node);
1108 gen6_ppgtt_free(ppgtt);
1109 return -ENOMEM;
1110 }
1111
1112 return 0;
1113 }
1114
1115 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1116 {
1117 struct drm_device *dev = ppgtt->base.dev;
1118 int i;
1119
1120 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1121 dma_addr_t pt_addr;
1122
1123 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1124 PCI_DMA_BIDIRECTIONAL);
1125
1126 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1127 gen6_ppgtt_unmap_pages(ppgtt);
1128 return -EIO;
1129 }
1130
1131 ppgtt->pt_dma_addr[i] = pt_addr;
1132 }
1133
1134 return 0;
1135 }
1136
1137 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1138 {
1139 struct drm_device *dev = ppgtt->base.dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 int ret;
1142
1143 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1144 if (IS_GEN6(dev)) {
1145 ppgtt->enable = gen6_ppgtt_enable;
1146 ppgtt->switch_mm = gen6_mm_switch;
1147 } else if (IS_HASWELL(dev)) {
1148 ppgtt->enable = gen7_ppgtt_enable;
1149 ppgtt->switch_mm = hsw_mm_switch;
1150 } else if (IS_GEN7(dev)) {
1151 ppgtt->enable = gen7_ppgtt_enable;
1152 ppgtt->switch_mm = gen7_mm_switch;
1153 } else
1154 BUG();
1155
1156 ret = gen6_ppgtt_alloc(ppgtt);
1157 if (ret)
1158 return ret;
1159
1160 ret = gen6_ppgtt_setup_page_tables(ppgtt);
1161 if (ret) {
1162 gen6_ppgtt_free(ppgtt);
1163 return ret;
1164 }
1165
1166 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1167 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1168 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1169 ppgtt->base.start = 0;
1170 ppgtt->base.total = ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1171 ppgtt->debug_dump = gen6_dump_ppgtt;
1172
1173 ppgtt->pd_offset =
1174 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1175
1176 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1177
1178 DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1179 ppgtt->node.size >> 20,
1180 ppgtt->node.start / PAGE_SIZE);
1181
1182 return 0;
1183 }
1184
1185 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1186 {
1187 struct drm_i915_private *dev_priv = dev->dev_private;
1188 int ret = 0;
1189
1190 ppgtt->base.dev = dev;
1191 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1192
1193 if (INTEL_INFO(dev)->gen < 8)
1194 ret = gen6_ppgtt_init(ppgtt);
1195 else if (IS_GEN8(dev))
1196 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1197 else
1198 BUG();
1199
1200 if (!ret) {
1201 struct drm_i915_private *dev_priv = dev->dev_private;
1202 kref_init(&ppgtt->ref);
1203 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1204 ppgtt->base.total);
1205 i915_init_vm(dev_priv, &ppgtt->base);
1206 if (INTEL_INFO(dev)->gen < 8) {
1207 gen6_write_pdes(ppgtt);
1208 DRM_DEBUG("Adding PPGTT at offset %x\n",
1209 ppgtt->pd_offset << 10);
1210 }
1211 }
1212
1213 return ret;
1214 }
1215
1216 static void
1217 ppgtt_bind_vma(struct i915_vma *vma,
1218 enum i915_cache_level cache_level,
1219 u32 flags)
1220 {
1221 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1222 cache_level);
1223 }
1224
1225 static void ppgtt_unbind_vma(struct i915_vma *vma)
1226 {
1227 vma->vm->clear_range(vma->vm,
1228 vma->node.start,
1229 vma->obj->base.size,
1230 true);
1231 }
1232
1233 extern int intel_iommu_gfx_mapped;
1234 /* Certain Gen5 chipsets require require idling the GPU before
1235 * unmapping anything from the GTT when VT-d is enabled.
1236 */
1237 static inline bool needs_idle_maps(struct drm_device *dev)
1238 {
1239 #ifdef CONFIG_INTEL_IOMMU
1240 /* Query intel_iommu to see if we need the workaround. Presumably that
1241 * was loaded first.
1242 */
1243 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1244 return true;
1245 #endif
1246 return false;
1247 }
1248
1249 static bool do_idling(struct drm_i915_private *dev_priv)
1250 {
1251 bool ret = dev_priv->mm.interruptible;
1252
1253 if (unlikely(dev_priv->gtt.do_idle_maps)) {
1254 dev_priv->mm.interruptible = false;
1255 if (i915_gpu_idle(dev_priv->dev)) {
1256 DRM_ERROR("Couldn't idle GPU\n");
1257 /* Wait a bit, in hopes it avoids the hang */
1258 udelay(10);
1259 }
1260 }
1261
1262 return ret;
1263 }
1264
1265 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1266 {
1267 if (unlikely(dev_priv->gtt.do_idle_maps))
1268 dev_priv->mm.interruptible = interruptible;
1269 }
1270
1271 void i915_check_and_clear_faults(struct drm_device *dev)
1272 {
1273 struct drm_i915_private *dev_priv = dev->dev_private;
1274 struct intel_engine_cs *ring;
1275 int i;
1276
1277 if (INTEL_INFO(dev)->gen < 6)
1278 return;
1279
1280 for_each_ring(ring, dev_priv, i) {
1281 u32 fault_reg;
1282 fault_reg = I915_READ(RING_FAULT_REG(ring));
1283 if (fault_reg & RING_FAULT_VALID) {
1284 DRM_DEBUG_DRIVER("Unexpected fault\n"
1285 "\tAddr: 0x%08lx\\n"
1286 "\tAddress space: %s\n"
1287 "\tSource ID: %d\n"
1288 "\tType: %d\n",
1289 fault_reg & PAGE_MASK,
1290 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1291 RING_FAULT_SRCID(fault_reg),
1292 RING_FAULT_FAULT_TYPE(fault_reg));
1293 I915_WRITE(RING_FAULT_REG(ring),
1294 fault_reg & ~RING_FAULT_VALID);
1295 }
1296 }
1297 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1298 }
1299
1300 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1301 {
1302 struct drm_i915_private *dev_priv = dev->dev_private;
1303
1304 /* Don't bother messing with faults pre GEN6 as we have little
1305 * documentation supporting that it's a good idea.
1306 */
1307 if (INTEL_INFO(dev)->gen < 6)
1308 return;
1309
1310 i915_check_and_clear_faults(dev);
1311
1312 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1313 dev_priv->gtt.base.start,
1314 dev_priv->gtt.base.total,
1315 true);
1316 }
1317
1318 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1319 {
1320 struct drm_i915_private *dev_priv = dev->dev_private;
1321 struct drm_i915_gem_object *obj;
1322 struct i915_address_space *vm;
1323
1324 i915_check_and_clear_faults(dev);
1325
1326 /* First fill our portion of the GTT with scratch pages */
1327 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1328 dev_priv->gtt.base.start,
1329 dev_priv->gtt.base.total,
1330 true);
1331
1332 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1333 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1334 &dev_priv->gtt.base);
1335 if (!vma)
1336 continue;
1337
1338 i915_gem_clflush_object(obj, obj->pin_display);
1339 /* The bind_vma code tries to be smart about tracking mappings.
1340 * Unfortunately above, we've just wiped out the mappings
1341 * without telling our object about it. So we need to fake it.
1342 */
1343 obj->has_global_gtt_mapping = 0;
1344 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1345 }
1346
1347
1348 if (INTEL_INFO(dev)->gen >= 8) {
1349 if (IS_CHERRYVIEW(dev))
1350 chv_setup_private_ppat(dev_priv);
1351 else
1352 bdw_setup_private_ppat(dev_priv);
1353
1354 return;
1355 }
1356
1357 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1358 /* TODO: Perhaps it shouldn't be gen6 specific */
1359 if (i915_is_ggtt(vm)) {
1360 if (dev_priv->mm.aliasing_ppgtt)
1361 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1362 continue;
1363 }
1364
1365 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1366 }
1367
1368 i915_gem_chipset_flush(dev);
1369 }
1370
1371 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1372 {
1373 if (obj->has_dma_mapping)
1374 return 0;
1375
1376 if (!dma_map_sg(&obj->base.dev->pdev->dev,
1377 obj->pages->sgl, obj->pages->nents,
1378 PCI_DMA_BIDIRECTIONAL))
1379 return -ENOSPC;
1380
1381 return 0;
1382 }
1383
1384 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1385 {
1386 #ifdef writeq
1387 writeq(pte, addr);
1388 #else
1389 iowrite32((u32)pte, addr);
1390 iowrite32(pte >> 32, addr + 4);
1391 #endif
1392 }
1393
1394 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1395 struct sg_table *st,
1396 uint64_t start,
1397 enum i915_cache_level level)
1398 {
1399 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1400 unsigned first_entry = start >> PAGE_SHIFT;
1401 gen8_gtt_pte_t __iomem *gtt_entries =
1402 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1403 int i = 0;
1404 struct sg_page_iter sg_iter;
1405 dma_addr_t addr = 0;
1406
1407 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1408 addr = sg_dma_address(sg_iter.sg) +
1409 (sg_iter.sg_pgoffset << PAGE_SHIFT);
1410 gen8_set_pte(&gtt_entries[i],
1411 gen8_pte_encode(addr, level, true));
1412 i++;
1413 }
1414
1415 /*
1416 * XXX: This serves as a posting read to make sure that the PTE has
1417 * actually been updated. There is some concern that even though
1418 * registers and PTEs are within the same BAR that they are potentially
1419 * of NUMA access patterns. Therefore, even with the way we assume
1420 * hardware should work, we must keep this posting read for paranoia.
1421 */
1422 if (i != 0)
1423 WARN_ON(readq(&gtt_entries[i-1])
1424 != gen8_pte_encode(addr, level, true));
1425
1426 /* This next bit makes the above posting read even more important. We
1427 * want to flush the TLBs only after we're certain all the PTE updates
1428 * have finished.
1429 */
1430 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1431 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1432 }
1433
1434 /*
1435 * Binds an object into the global gtt with the specified cache level. The object
1436 * will be accessible to the GPU via commands whose operands reference offsets
1437 * within the global GTT as well as accessible by the GPU through the GMADR
1438 * mapped BAR (dev_priv->mm.gtt->gtt).
1439 */
1440 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1441 struct sg_table *st,
1442 uint64_t start,
1443 enum i915_cache_level level)
1444 {
1445 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1446 unsigned first_entry = start >> PAGE_SHIFT;
1447 gen6_gtt_pte_t __iomem *gtt_entries =
1448 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1449 int i = 0;
1450 struct sg_page_iter sg_iter;
1451 dma_addr_t addr;
1452
1453 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1454 addr = sg_page_iter_dma_address(&sg_iter);
1455 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1456 i++;
1457 }
1458
1459 /* XXX: This serves as a posting read to make sure that the PTE has
1460 * actually been updated. There is some concern that even though
1461 * registers and PTEs are within the same BAR that they are potentially
1462 * of NUMA access patterns. Therefore, even with the way we assume
1463 * hardware should work, we must keep this posting read for paranoia.
1464 */
1465 if (i != 0)
1466 WARN_ON(readl(&gtt_entries[i-1]) !=
1467 vm->pte_encode(addr, level, true));
1468
1469 /* This next bit makes the above posting read even more important. We
1470 * want to flush the TLBs only after we're certain all the PTE updates
1471 * have finished.
1472 */
1473 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1474 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1475 }
1476
1477 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1478 uint64_t start,
1479 uint64_t length,
1480 bool use_scratch)
1481 {
1482 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1483 unsigned first_entry = start >> PAGE_SHIFT;
1484 unsigned num_entries = length >> PAGE_SHIFT;
1485 gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1486 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1487 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1488 int i;
1489
1490 if (WARN(num_entries > max_entries,
1491 "First entry = %d; Num entries = %d (max=%d)\n",
1492 first_entry, num_entries, max_entries))
1493 num_entries = max_entries;
1494
1495 scratch_pte = gen8_pte_encode(vm->scratch.addr,
1496 I915_CACHE_LLC,
1497 use_scratch);
1498 for (i = 0; i < num_entries; i++)
1499 gen8_set_pte(&gtt_base[i], scratch_pte);
1500 readl(gtt_base);
1501 }
1502
1503 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1504 uint64_t start,
1505 uint64_t length,
1506 bool use_scratch)
1507 {
1508 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1509 unsigned first_entry = start >> PAGE_SHIFT;
1510 unsigned num_entries = length >> PAGE_SHIFT;
1511 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1512 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1513 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1514 int i;
1515
1516 if (WARN(num_entries > max_entries,
1517 "First entry = %d; Num entries = %d (max=%d)\n",
1518 first_entry, num_entries, max_entries))
1519 num_entries = max_entries;
1520
1521 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1522
1523 for (i = 0; i < num_entries; i++)
1524 iowrite32(scratch_pte, &gtt_base[i]);
1525 readl(gtt_base);
1526 }
1527
1528
1529 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1530 enum i915_cache_level cache_level,
1531 u32 unused)
1532 {
1533 const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1534 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1535 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1536
1537 BUG_ON(!i915_is_ggtt(vma->vm));
1538 intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1539 vma->obj->has_global_gtt_mapping = 1;
1540 }
1541
1542 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1543 uint64_t start,
1544 uint64_t length,
1545 bool unused)
1546 {
1547 unsigned first_entry = start >> PAGE_SHIFT;
1548 unsigned num_entries = length >> PAGE_SHIFT;
1549 intel_gtt_clear_range(first_entry, num_entries);
1550 }
1551
1552 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1553 {
1554 const unsigned int first = vma->node.start >> PAGE_SHIFT;
1555 const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1556
1557 BUG_ON(!i915_is_ggtt(vma->vm));
1558 vma->obj->has_global_gtt_mapping = 0;
1559 intel_gtt_clear_range(first, size);
1560 }
1561
1562 static void ggtt_bind_vma(struct i915_vma *vma,
1563 enum i915_cache_level cache_level,
1564 u32 flags)
1565 {
1566 struct drm_device *dev = vma->vm->dev;
1567 struct drm_i915_private *dev_priv = dev->dev_private;
1568 struct drm_i915_gem_object *obj = vma->obj;
1569
1570 /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1571 * or we have a global mapping already but the cacheability flags have
1572 * changed, set the global PTEs.
1573 *
1574 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1575 * instead if none of the above hold true.
1576 *
1577 * NB: A global mapping should only be needed for special regions like
1578 * "gtt mappable", SNB errata, or if specified via special execbuf
1579 * flags. At all other times, the GPU will use the aliasing PPGTT.
1580 */
1581 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1582 if (!obj->has_global_gtt_mapping ||
1583 (cache_level != obj->cache_level)) {
1584 vma->vm->insert_entries(vma->vm, obj->pages,
1585 vma->node.start,
1586 cache_level);
1587 obj->has_global_gtt_mapping = 1;
1588 }
1589 }
1590
1591 if (dev_priv->mm.aliasing_ppgtt &&
1592 (!obj->has_aliasing_ppgtt_mapping ||
1593 (cache_level != obj->cache_level))) {
1594 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1595 appgtt->base.insert_entries(&appgtt->base,
1596 vma->obj->pages,
1597 vma->node.start,
1598 cache_level);
1599 vma->obj->has_aliasing_ppgtt_mapping = 1;
1600 }
1601 }
1602
1603 static void ggtt_unbind_vma(struct i915_vma *vma)
1604 {
1605 struct drm_device *dev = vma->vm->dev;
1606 struct drm_i915_private *dev_priv = dev->dev_private;
1607 struct drm_i915_gem_object *obj = vma->obj;
1608
1609 if (obj->has_global_gtt_mapping) {
1610 vma->vm->clear_range(vma->vm,
1611 vma->node.start,
1612 obj->base.size,
1613 true);
1614 obj->has_global_gtt_mapping = 0;
1615 }
1616
1617 if (obj->has_aliasing_ppgtt_mapping) {
1618 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1619 appgtt->base.clear_range(&appgtt->base,
1620 vma->node.start,
1621 obj->base.size,
1622 true);
1623 obj->has_aliasing_ppgtt_mapping = 0;
1624 }
1625 }
1626
1627 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1628 {
1629 struct drm_device *dev = obj->base.dev;
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 bool interruptible;
1632
1633 interruptible = do_idling(dev_priv);
1634
1635 if (!obj->has_dma_mapping)
1636 dma_unmap_sg(&dev->pdev->dev,
1637 obj->pages->sgl, obj->pages->nents,
1638 PCI_DMA_BIDIRECTIONAL);
1639
1640 undo_idling(dev_priv, interruptible);
1641 }
1642
1643 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1644 unsigned long color,
1645 unsigned long *start,
1646 unsigned long *end)
1647 {
1648 if (node->color != color)
1649 *start += 4096;
1650
1651 if (!list_empty(&node->node_list)) {
1652 node = list_entry(node->node_list.next,
1653 struct drm_mm_node,
1654 node_list);
1655 if (node->allocated && node->color != color)
1656 *end -= 4096;
1657 }
1658 }
1659
1660 void i915_gem_setup_global_gtt(struct drm_device *dev,
1661 unsigned long start,
1662 unsigned long mappable_end,
1663 unsigned long end)
1664 {
1665 /* Let GEM Manage all of the aperture.
1666 *
1667 * However, leave one page at the end still bound to the scratch page.
1668 * There are a number of places where the hardware apparently prefetches
1669 * past the end of the object, and we've seen multiple hangs with the
1670 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1671 * aperture. One page should be enough to keep any prefetching inside
1672 * of the aperture.
1673 */
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1676 struct drm_mm_node *entry;
1677 struct drm_i915_gem_object *obj;
1678 unsigned long hole_start, hole_end;
1679
1680 BUG_ON(mappable_end > end);
1681
1682 /* Subtract the guard page ... */
1683 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1684 if (!HAS_LLC(dev))
1685 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1686
1687 /* Mark any preallocated objects as occupied */
1688 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1689 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1690 int ret;
1691 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1692 i915_gem_obj_ggtt_offset(obj), obj->base.size);
1693
1694 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1695 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1696 if (ret)
1697 DRM_DEBUG_KMS("Reservation failed\n");
1698 obj->has_global_gtt_mapping = 1;
1699 }
1700
1701 dev_priv->gtt.base.start = start;
1702 dev_priv->gtt.base.total = end - start;
1703
1704 /* Clear any non-preallocated blocks */
1705 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1706 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1707 hole_start, hole_end);
1708 ggtt_vm->clear_range(ggtt_vm, hole_start,
1709 hole_end - hole_start, true);
1710 }
1711
1712 /* And finally clear the reserved guard page */
1713 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1714 }
1715
1716 void i915_gem_init_global_gtt(struct drm_device *dev)
1717 {
1718 struct drm_i915_private *dev_priv = dev->dev_private;
1719 unsigned long gtt_size, mappable_size;
1720
1721 gtt_size = dev_priv->gtt.base.total;
1722 mappable_size = dev_priv->gtt.mappable_end;
1723
1724 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1725 }
1726
1727 static int setup_scratch_page(struct drm_device *dev)
1728 {
1729 struct drm_i915_private *dev_priv = dev->dev_private;
1730 struct page *page;
1731 dma_addr_t dma_addr;
1732
1733 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1734 if (page == NULL)
1735 return -ENOMEM;
1736 get_page(page);
1737 set_pages_uc(page, 1);
1738
1739 #ifdef CONFIG_INTEL_IOMMU
1740 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1741 PCI_DMA_BIDIRECTIONAL);
1742 if (pci_dma_mapping_error(dev->pdev, dma_addr))
1743 return -EINVAL;
1744 #else
1745 dma_addr = page_to_phys(page);
1746 #endif
1747 dev_priv->gtt.base.scratch.page = page;
1748 dev_priv->gtt.base.scratch.addr = dma_addr;
1749
1750 return 0;
1751 }
1752
1753 static void teardown_scratch_page(struct drm_device *dev)
1754 {
1755 struct drm_i915_private *dev_priv = dev->dev_private;
1756 struct page *page = dev_priv->gtt.base.scratch.page;
1757
1758 set_pages_wb(page, 1);
1759 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1760 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1761 put_page(page);
1762 __free_page(page);
1763 }
1764
1765 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1766 {
1767 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1768 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1769 return snb_gmch_ctl << 20;
1770 }
1771
1772 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1773 {
1774 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1775 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1776 if (bdw_gmch_ctl)
1777 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1778 return bdw_gmch_ctl << 20;
1779 }
1780
1781 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1782 {
1783 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1784 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1785
1786 if (gmch_ctrl)
1787 return 1 << (20 + gmch_ctrl);
1788
1789 return 0;
1790 }
1791
1792 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1793 {
1794 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1795 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1796 return snb_gmch_ctl << 25; /* 32 MB units */
1797 }
1798
1799 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1800 {
1801 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1802 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1803 return bdw_gmch_ctl << 25; /* 32 MB units */
1804 }
1805
1806 static size_t chv_get_stolen_size(u16 gmch_ctrl)
1807 {
1808 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
1809 gmch_ctrl &= SNB_GMCH_GMS_MASK;
1810
1811 /*
1812 * 0x0 to 0x10: 32MB increments starting at 0MB
1813 * 0x11 to 0x16: 4MB increments starting at 8MB
1814 * 0x17 to 0x1d: 4MB increments start at 36MB
1815 */
1816 if (gmch_ctrl < 0x11)
1817 return gmch_ctrl << 25;
1818 else if (gmch_ctrl < 0x17)
1819 return (gmch_ctrl - 0x11 + 2) << 22;
1820 else
1821 return (gmch_ctrl - 0x17 + 9) << 22;
1822 }
1823
1824 static int ggtt_probe_common(struct drm_device *dev,
1825 size_t gtt_size)
1826 {
1827 struct drm_i915_private *dev_priv = dev->dev_private;
1828 phys_addr_t gtt_phys_addr;
1829 int ret;
1830
1831 /* For Modern GENs the PTEs and register space are split in the BAR */
1832 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1833 (pci_resource_len(dev->pdev, 0) / 2);
1834
1835 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1836 if (!dev_priv->gtt.gsm) {
1837 DRM_ERROR("Failed to map the gtt page table\n");
1838 return -ENOMEM;
1839 }
1840
1841 ret = setup_scratch_page(dev);
1842 if (ret) {
1843 DRM_ERROR("Scratch setup failed\n");
1844 /* iounmap will also get called at remove, but meh */
1845 iounmap(dev_priv->gtt.gsm);
1846 }
1847
1848 return ret;
1849 }
1850
1851 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1852 * bits. When using advanced contexts each context stores its own PAT, but
1853 * writing this data shouldn't be harmful even in those cases. */
1854 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
1855 {
1856 uint64_t pat;
1857
1858 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
1859 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1860 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1861 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
1862 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1863 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1864 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1865 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1866
1867 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1868 * write would work. */
1869 I915_WRITE(GEN8_PRIVATE_PAT, pat);
1870 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1871 }
1872
1873 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
1874 {
1875 uint64_t pat;
1876
1877 /*
1878 * Map WB on BDW to snooped on CHV.
1879 *
1880 * Only the snoop bit has meaning for CHV, the rest is
1881 * ignored.
1882 *
1883 * Note that the harware enforces snooping for all page
1884 * table accesses. The snoop bit is actually ignored for
1885 * PDEs.
1886 */
1887 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1888 GEN8_PPAT(1, 0) |
1889 GEN8_PPAT(2, 0) |
1890 GEN8_PPAT(3, 0) |
1891 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1892 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1893 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1894 GEN8_PPAT(7, CHV_PPAT_SNOOP);
1895
1896 I915_WRITE(GEN8_PRIVATE_PAT, pat);
1897 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1898 }
1899
1900 static int gen8_gmch_probe(struct drm_device *dev,
1901 size_t *gtt_total,
1902 size_t *stolen,
1903 phys_addr_t *mappable_base,
1904 unsigned long *mappable_end)
1905 {
1906 struct drm_i915_private *dev_priv = dev->dev_private;
1907 unsigned int gtt_size;
1908 u16 snb_gmch_ctl;
1909 int ret;
1910
1911 /* TODO: We're not aware of mappable constraints on gen8 yet */
1912 *mappable_base = pci_resource_start(dev->pdev, 2);
1913 *mappable_end = pci_resource_len(dev->pdev, 2);
1914
1915 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1916 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1917
1918 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1919
1920 if (IS_CHERRYVIEW(dev)) {
1921 *stolen = chv_get_stolen_size(snb_gmch_ctl);
1922 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
1923 } else {
1924 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1925 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1926 }
1927
1928 *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1929
1930 if (IS_CHERRYVIEW(dev))
1931 chv_setup_private_ppat(dev_priv);
1932 else
1933 bdw_setup_private_ppat(dev_priv);
1934
1935 ret = ggtt_probe_common(dev, gtt_size);
1936
1937 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1938 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1939
1940 return ret;
1941 }
1942
1943 static int gen6_gmch_probe(struct drm_device *dev,
1944 size_t *gtt_total,
1945 size_t *stolen,
1946 phys_addr_t *mappable_base,
1947 unsigned long *mappable_end)
1948 {
1949 struct drm_i915_private *dev_priv = dev->dev_private;
1950 unsigned int gtt_size;
1951 u16 snb_gmch_ctl;
1952 int ret;
1953
1954 *mappable_base = pci_resource_start(dev->pdev, 2);
1955 *mappable_end = pci_resource_len(dev->pdev, 2);
1956
1957 /* 64/512MB is the current min/max we actually know of, but this is just
1958 * a coarse sanity check.
1959 */
1960 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1961 DRM_ERROR("Unknown GMADR size (%lx)\n",
1962 dev_priv->gtt.mappable_end);
1963 return -ENXIO;
1964 }
1965
1966 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1967 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1968 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1969
1970 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1971
1972 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1973 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1974
1975 ret = ggtt_probe_common(dev, gtt_size);
1976
1977 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1978 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1979
1980 return ret;
1981 }
1982
1983 static void gen6_gmch_remove(struct i915_address_space *vm)
1984 {
1985
1986 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1987
1988 drm_mm_takedown(&vm->mm);
1989 iounmap(gtt->gsm);
1990 teardown_scratch_page(vm->dev);
1991 }
1992
1993 static int i915_gmch_probe(struct drm_device *dev,
1994 size_t *gtt_total,
1995 size_t *stolen,
1996 phys_addr_t *mappable_base,
1997 unsigned long *mappable_end)
1998 {
1999 struct drm_i915_private *dev_priv = dev->dev_private;
2000 int ret;
2001
2002 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2003 if (!ret) {
2004 DRM_ERROR("failed to set up gmch\n");
2005 return -EIO;
2006 }
2007
2008 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2009
2010 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2011 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2012
2013 if (unlikely(dev_priv->gtt.do_idle_maps))
2014 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2015
2016 return 0;
2017 }
2018
2019 static void i915_gmch_remove(struct i915_address_space *vm)
2020 {
2021 intel_gmch_remove();
2022 }
2023
2024 int i915_gem_gtt_init(struct drm_device *dev)
2025 {
2026 struct drm_i915_private *dev_priv = dev->dev_private;
2027 struct i915_gtt *gtt = &dev_priv->gtt;
2028 int ret;
2029
2030 if (INTEL_INFO(dev)->gen <= 5) {
2031 gtt->gtt_probe = i915_gmch_probe;
2032 gtt->base.cleanup = i915_gmch_remove;
2033 } else if (INTEL_INFO(dev)->gen < 8) {
2034 gtt->gtt_probe = gen6_gmch_probe;
2035 gtt->base.cleanup = gen6_gmch_remove;
2036 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2037 gtt->base.pte_encode = iris_pte_encode;
2038 else if (IS_HASWELL(dev))
2039 gtt->base.pte_encode = hsw_pte_encode;
2040 else if (IS_VALLEYVIEW(dev))
2041 gtt->base.pte_encode = byt_pte_encode;
2042 else if (INTEL_INFO(dev)->gen >= 7)
2043 gtt->base.pte_encode = ivb_pte_encode;
2044 else
2045 gtt->base.pte_encode = snb_pte_encode;
2046 } else {
2047 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2048 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2049 }
2050
2051 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2052 &gtt->mappable_base, &gtt->mappable_end);
2053 if (ret)
2054 return ret;
2055
2056 gtt->base.dev = dev;
2057
2058 /* GMADR is the PCI mmio aperture into the global GTT. */
2059 DRM_INFO("Memory usable by graphics device = %zdM\n",
2060 gtt->base.total >> 20);
2061 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2062 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2063 #ifdef CONFIG_INTEL_IOMMU
2064 if (intel_iommu_gfx_mapped)
2065 DRM_INFO("VT-d active for gfx access\n");
2066 #endif
2067 /*
2068 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2069 * user's requested state against the hardware/driver capabilities. We
2070 * do this now so that we can print out any log messages once rather
2071 * than every time we check intel_enable_ppgtt().
2072 */
2073 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2074 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2075
2076 return 0;
2077 }
2078
2079 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2080 struct i915_address_space *vm)
2081 {
2082 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2083 if (vma == NULL)
2084 return ERR_PTR(-ENOMEM);
2085
2086 INIT_LIST_HEAD(&vma->vma_link);
2087 INIT_LIST_HEAD(&vma->mm_list);
2088 INIT_LIST_HEAD(&vma->exec_list);
2089 vma->vm = vm;
2090 vma->obj = obj;
2091
2092 switch (INTEL_INFO(vm->dev)->gen) {
2093 case 8:
2094 case 7:
2095 case 6:
2096 if (i915_is_ggtt(vm)) {
2097 vma->unbind_vma = ggtt_unbind_vma;
2098 vma->bind_vma = ggtt_bind_vma;
2099 } else {
2100 vma->unbind_vma = ppgtt_unbind_vma;
2101 vma->bind_vma = ppgtt_bind_vma;
2102 }
2103 break;
2104 case 5:
2105 case 4:
2106 case 3:
2107 case 2:
2108 BUG_ON(!i915_is_ggtt(vm));
2109 vma->unbind_vma = i915_ggtt_unbind_vma;
2110 vma->bind_vma = i915_ggtt_bind_vma;
2111 break;
2112 default:
2113 BUG();
2114 }
2115
2116 /* Keep GGTT vmas first to make debug easier */
2117 if (i915_is_ggtt(vm))
2118 list_add(&vma->vma_link, &obj->vma_list);
2119 else
2120 list_add_tail(&vma->vma_link, &obj->vma_list);
2121
2122 return vma;
2123 }
2124
2125 struct i915_vma *
2126 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2127 struct i915_address_space *vm)
2128 {
2129 struct i915_vma *vma;
2130
2131 vma = i915_gem_obj_to_vma(obj, vm);
2132 if (!vma)
2133 vma = __i915_gem_vma_create(obj, vm);
2134
2135 return vma;
2136 }
This page took 0.080837 seconds and 4 git commands to generate.