Merge tag 'rdma-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33
34 /* PPGTT stuff */
35 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
36 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
37
38 #define GEN6_PDE_VALID (1 << 0)
39 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
40 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
41
42 #define GEN6_PTE_VALID (1 << 0)
43 #define GEN6_PTE_UNCACHED (1 << 1)
44 #define HSW_PTE_UNCACHED (0)
45 #define GEN6_PTE_CACHE_LLC (2 << 1)
46 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
47 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
48 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
49
50 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
51 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
52 */
53 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
54 (((bits) & 0x8) << (11 - 3)))
55 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
56 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
57 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
58 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
59
60 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
61 enum i915_cache_level level,
62 bool valid)
63 {
64 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
65 pte |= GEN6_PTE_ADDR_ENCODE(addr);
66
67 switch (level) {
68 case I915_CACHE_L3_LLC:
69 case I915_CACHE_LLC:
70 pte |= GEN6_PTE_CACHE_LLC;
71 break;
72 case I915_CACHE_NONE:
73 pte |= GEN6_PTE_UNCACHED;
74 break;
75 default:
76 WARN_ON(1);
77 }
78
79 return pte;
80 }
81
82 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
83 enum i915_cache_level level,
84 bool valid)
85 {
86 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
87 pte |= GEN6_PTE_ADDR_ENCODE(addr);
88
89 switch (level) {
90 case I915_CACHE_L3_LLC:
91 pte |= GEN7_PTE_CACHE_L3_LLC;
92 break;
93 case I915_CACHE_LLC:
94 pte |= GEN6_PTE_CACHE_LLC;
95 break;
96 case I915_CACHE_NONE:
97 pte |= GEN6_PTE_UNCACHED;
98 break;
99 default:
100 WARN_ON(1);
101 }
102
103 return pte;
104 }
105
106 #define BYT_PTE_WRITEABLE (1 << 1)
107 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
108
109 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
110 enum i915_cache_level level,
111 bool valid)
112 {
113 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
114 pte |= GEN6_PTE_ADDR_ENCODE(addr);
115
116 /* Mark the page as writeable. Other platforms don't have a
117 * setting for read-only/writable, so this matches that behavior.
118 */
119 pte |= BYT_PTE_WRITEABLE;
120
121 if (level != I915_CACHE_NONE)
122 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
123
124 return pte;
125 }
126
127 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
128 enum i915_cache_level level,
129 bool valid)
130 {
131 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
132 pte |= HSW_PTE_ADDR_ENCODE(addr);
133
134 if (level != I915_CACHE_NONE)
135 pte |= HSW_WB_LLC_AGE3;
136
137 return pte;
138 }
139
140 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
141 enum i915_cache_level level,
142 bool valid)
143 {
144 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
145 pte |= HSW_PTE_ADDR_ENCODE(addr);
146
147 switch (level) {
148 case I915_CACHE_NONE:
149 break;
150 case I915_CACHE_WT:
151 pte |= HSW_WT_ELLC_LLC_AGE0;
152 break;
153 default:
154 pte |= HSW_WB_ELLC_LLC_AGE0;
155 break;
156 }
157
158 return pte;
159 }
160
161 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
162 {
163 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
164 gen6_gtt_pte_t __iomem *pd_addr;
165 uint32_t pd_entry;
166 int i;
167
168 WARN_ON(ppgtt->pd_offset & 0x3f);
169 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
170 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
171 for (i = 0; i < ppgtt->num_pd_entries; i++) {
172 dma_addr_t pt_addr;
173
174 pt_addr = ppgtt->pt_dma_addr[i];
175 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
176 pd_entry |= GEN6_PDE_VALID;
177
178 writel(pd_entry, pd_addr + i);
179 }
180 readl(pd_addr);
181 }
182
183 static int gen6_ppgtt_enable(struct drm_device *dev)
184 {
185 drm_i915_private_t *dev_priv = dev->dev_private;
186 uint32_t pd_offset;
187 struct intel_ring_buffer *ring;
188 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
189 int i;
190
191 BUG_ON(ppgtt->pd_offset & 0x3f);
192
193 gen6_write_pdes(ppgtt);
194
195 pd_offset = ppgtt->pd_offset;
196 pd_offset /= 64; /* in cachelines, */
197 pd_offset <<= 16;
198
199 if (INTEL_INFO(dev)->gen == 6) {
200 uint32_t ecochk, gab_ctl, ecobits;
201
202 ecobits = I915_READ(GAC_ECO_BITS);
203 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
204 ECOBITS_PPGTT_CACHE64B);
205
206 gab_ctl = I915_READ(GAB_CTL);
207 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
208
209 ecochk = I915_READ(GAM_ECOCHK);
210 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
211 ECOCHK_PPGTT_CACHE64B);
212 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
213 } else if (INTEL_INFO(dev)->gen >= 7) {
214 uint32_t ecochk, ecobits;
215
216 ecobits = I915_READ(GAC_ECO_BITS);
217 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
218
219 ecochk = I915_READ(GAM_ECOCHK);
220 if (IS_HASWELL(dev)) {
221 ecochk |= ECOCHK_PPGTT_WB_HSW;
222 } else {
223 ecochk |= ECOCHK_PPGTT_LLC_IVB;
224 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
225 }
226 I915_WRITE(GAM_ECOCHK, ecochk);
227 /* GFX_MODE is per-ring on gen7+ */
228 }
229
230 for_each_ring(ring, dev_priv, i) {
231 if (INTEL_INFO(dev)->gen >= 7)
232 I915_WRITE(RING_MODE_GEN7(ring),
233 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
234
235 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
236 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
237 }
238 return 0;
239 }
240
241 /* PPGTT support for Sandybdrige/Gen6 and later */
242 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
243 unsigned first_entry,
244 unsigned num_entries,
245 bool use_scratch)
246 {
247 struct i915_hw_ppgtt *ppgtt =
248 container_of(vm, struct i915_hw_ppgtt, base);
249 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
250 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
251 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
252 unsigned last_pte, i;
253
254 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
255
256 while (num_entries) {
257 last_pte = first_pte + num_entries;
258 if (last_pte > I915_PPGTT_PT_ENTRIES)
259 last_pte = I915_PPGTT_PT_ENTRIES;
260
261 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
262
263 for (i = first_pte; i < last_pte; i++)
264 pt_vaddr[i] = scratch_pte;
265
266 kunmap_atomic(pt_vaddr);
267
268 num_entries -= last_pte - first_pte;
269 first_pte = 0;
270 act_pt++;
271 }
272 }
273
274 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
275 struct sg_table *pages,
276 unsigned first_entry,
277 enum i915_cache_level cache_level)
278 {
279 struct i915_hw_ppgtt *ppgtt =
280 container_of(vm, struct i915_hw_ppgtt, base);
281 gen6_gtt_pte_t *pt_vaddr;
282 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
283 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
284 struct sg_page_iter sg_iter;
285
286 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
287 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
288 dma_addr_t page_addr;
289
290 page_addr = sg_page_iter_dma_address(&sg_iter);
291 pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
292 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
293 kunmap_atomic(pt_vaddr);
294 act_pt++;
295 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
296 act_pte = 0;
297
298 }
299 }
300 kunmap_atomic(pt_vaddr);
301 }
302
303 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
304 {
305 struct i915_hw_ppgtt *ppgtt =
306 container_of(vm, struct i915_hw_ppgtt, base);
307 int i;
308
309 drm_mm_takedown(&ppgtt->base.mm);
310
311 if (ppgtt->pt_dma_addr) {
312 for (i = 0; i < ppgtt->num_pd_entries; i++)
313 pci_unmap_page(ppgtt->base.dev->pdev,
314 ppgtt->pt_dma_addr[i],
315 4096, PCI_DMA_BIDIRECTIONAL);
316 }
317
318 kfree(ppgtt->pt_dma_addr);
319 for (i = 0; i < ppgtt->num_pd_entries; i++)
320 __free_page(ppgtt->pt_pages[i]);
321 kfree(ppgtt->pt_pages);
322 kfree(ppgtt);
323 }
324
325 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
326 {
327 struct drm_device *dev = ppgtt->base.dev;
328 struct drm_i915_private *dev_priv = dev->dev_private;
329 unsigned first_pd_entry_in_global_pt;
330 int i;
331 int ret = -ENOMEM;
332
333 /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
334 * entries. For aliasing ppgtt support we just steal them at the end for
335 * now. */
336 first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
337
338 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
339 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
340 ppgtt->enable = gen6_ppgtt_enable;
341 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
342 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
343 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
344 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
345 ppgtt->pt_pages = kzalloc(sizeof(struct page *)*ppgtt->num_pd_entries,
346 GFP_KERNEL);
347 if (!ppgtt->pt_pages)
348 return -ENOMEM;
349
350 for (i = 0; i < ppgtt->num_pd_entries; i++) {
351 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
352 if (!ppgtt->pt_pages[i])
353 goto err_pt_alloc;
354 }
355
356 ppgtt->pt_dma_addr = kzalloc(sizeof(dma_addr_t) *ppgtt->num_pd_entries,
357 GFP_KERNEL);
358 if (!ppgtt->pt_dma_addr)
359 goto err_pt_alloc;
360
361 for (i = 0; i < ppgtt->num_pd_entries; i++) {
362 dma_addr_t pt_addr;
363
364 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
365 PCI_DMA_BIDIRECTIONAL);
366
367 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
368 ret = -EIO;
369 goto err_pd_pin;
370
371 }
372 ppgtt->pt_dma_addr[i] = pt_addr;
373 }
374
375 ppgtt->base.clear_range(&ppgtt->base, 0,
376 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
377
378 ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
379
380 return 0;
381
382 err_pd_pin:
383 if (ppgtt->pt_dma_addr) {
384 for (i--; i >= 0; i--)
385 pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
386 4096, PCI_DMA_BIDIRECTIONAL);
387 }
388 err_pt_alloc:
389 kfree(ppgtt->pt_dma_addr);
390 for (i = 0; i < ppgtt->num_pd_entries; i++) {
391 if (ppgtt->pt_pages[i])
392 __free_page(ppgtt->pt_pages[i]);
393 }
394 kfree(ppgtt->pt_pages);
395
396 return ret;
397 }
398
399 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
400 {
401 struct drm_i915_private *dev_priv = dev->dev_private;
402 struct i915_hw_ppgtt *ppgtt;
403 int ret;
404
405 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
406 if (!ppgtt)
407 return -ENOMEM;
408
409 ppgtt->base.dev = dev;
410
411 if (INTEL_INFO(dev)->gen < 8)
412 ret = gen6_ppgtt_init(ppgtt);
413 else
414 BUG();
415
416 if (ret)
417 kfree(ppgtt);
418 else {
419 dev_priv->mm.aliasing_ppgtt = ppgtt;
420 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
421 ppgtt->base.total);
422 }
423
424 return ret;
425 }
426
427 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
428 {
429 struct drm_i915_private *dev_priv = dev->dev_private;
430 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
431
432 if (!ppgtt)
433 return;
434
435 ppgtt->base.cleanup(&ppgtt->base);
436 dev_priv->mm.aliasing_ppgtt = NULL;
437 }
438
439 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
440 struct drm_i915_gem_object *obj,
441 enum i915_cache_level cache_level)
442 {
443 ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
444 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
445 cache_level);
446 }
447
448 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
449 struct drm_i915_gem_object *obj)
450 {
451 ppgtt->base.clear_range(&ppgtt->base,
452 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
453 obj->base.size >> PAGE_SHIFT,
454 true);
455 }
456
457 extern int intel_iommu_gfx_mapped;
458 /* Certain Gen5 chipsets require require idling the GPU before
459 * unmapping anything from the GTT when VT-d is enabled.
460 */
461 static inline bool needs_idle_maps(struct drm_device *dev)
462 {
463 #ifdef CONFIG_INTEL_IOMMU
464 /* Query intel_iommu to see if we need the workaround. Presumably that
465 * was loaded first.
466 */
467 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
468 return true;
469 #endif
470 return false;
471 }
472
473 static bool do_idling(struct drm_i915_private *dev_priv)
474 {
475 bool ret = dev_priv->mm.interruptible;
476
477 if (unlikely(dev_priv->gtt.do_idle_maps)) {
478 dev_priv->mm.interruptible = false;
479 if (i915_gpu_idle(dev_priv->dev)) {
480 DRM_ERROR("Couldn't idle GPU\n");
481 /* Wait a bit, in hopes it avoids the hang */
482 udelay(10);
483 }
484 }
485
486 return ret;
487 }
488
489 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
490 {
491 if (unlikely(dev_priv->gtt.do_idle_maps))
492 dev_priv->mm.interruptible = interruptible;
493 }
494
495 void i915_check_and_clear_faults(struct drm_device *dev)
496 {
497 struct drm_i915_private *dev_priv = dev->dev_private;
498 struct intel_ring_buffer *ring;
499 int i;
500
501 if (INTEL_INFO(dev)->gen < 6)
502 return;
503
504 for_each_ring(ring, dev_priv, i) {
505 u32 fault_reg;
506 fault_reg = I915_READ(RING_FAULT_REG(ring));
507 if (fault_reg & RING_FAULT_VALID) {
508 DRM_DEBUG_DRIVER("Unexpected fault\n"
509 "\tAddr: 0x%08lx\\n"
510 "\tAddress space: %s\n"
511 "\tSource ID: %d\n"
512 "\tType: %d\n",
513 fault_reg & PAGE_MASK,
514 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
515 RING_FAULT_SRCID(fault_reg),
516 RING_FAULT_FAULT_TYPE(fault_reg));
517 I915_WRITE(RING_FAULT_REG(ring),
518 fault_reg & ~RING_FAULT_VALID);
519 }
520 }
521 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
522 }
523
524 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
525 {
526 struct drm_i915_private *dev_priv = dev->dev_private;
527
528 /* Don't bother messing with faults pre GEN6 as we have little
529 * documentation supporting that it's a good idea.
530 */
531 if (INTEL_INFO(dev)->gen < 6)
532 return;
533
534 i915_check_and_clear_faults(dev);
535
536 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
537 dev_priv->gtt.base.start / PAGE_SIZE,
538 dev_priv->gtt.base.total / PAGE_SIZE,
539 false);
540 }
541
542 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
543 {
544 struct drm_i915_private *dev_priv = dev->dev_private;
545 struct drm_i915_gem_object *obj;
546
547 i915_check_and_clear_faults(dev);
548
549 /* First fill our portion of the GTT with scratch pages */
550 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
551 dev_priv->gtt.base.start / PAGE_SIZE,
552 dev_priv->gtt.base.total / PAGE_SIZE,
553 true);
554
555 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
556 i915_gem_clflush_object(obj, obj->pin_display);
557 i915_gem_gtt_bind_object(obj, obj->cache_level);
558 }
559
560 i915_gem_chipset_flush(dev);
561 }
562
563 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
564 {
565 if (obj->has_dma_mapping)
566 return 0;
567
568 if (!dma_map_sg(&obj->base.dev->pdev->dev,
569 obj->pages->sgl, obj->pages->nents,
570 PCI_DMA_BIDIRECTIONAL))
571 return -ENOSPC;
572
573 return 0;
574 }
575
576 /*
577 * Binds an object into the global gtt with the specified cache level. The object
578 * will be accessible to the GPU via commands whose operands reference offsets
579 * within the global GTT as well as accessible by the GPU through the GMADR
580 * mapped BAR (dev_priv->mm.gtt->gtt).
581 */
582 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
583 struct sg_table *st,
584 unsigned int first_entry,
585 enum i915_cache_level level)
586 {
587 struct drm_i915_private *dev_priv = vm->dev->dev_private;
588 gen6_gtt_pte_t __iomem *gtt_entries =
589 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
590 int i = 0;
591 struct sg_page_iter sg_iter;
592 dma_addr_t addr;
593
594 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
595 addr = sg_page_iter_dma_address(&sg_iter);
596 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
597 i++;
598 }
599
600 /* XXX: This serves as a posting read to make sure that the PTE has
601 * actually been updated. There is some concern that even though
602 * registers and PTEs are within the same BAR that they are potentially
603 * of NUMA access patterns. Therefore, even with the way we assume
604 * hardware should work, we must keep this posting read for paranoia.
605 */
606 if (i != 0)
607 WARN_ON(readl(&gtt_entries[i-1]) !=
608 vm->pte_encode(addr, level, true));
609
610 /* This next bit makes the above posting read even more important. We
611 * want to flush the TLBs only after we're certain all the PTE updates
612 * have finished.
613 */
614 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
615 POSTING_READ(GFX_FLSH_CNTL_GEN6);
616 }
617
618 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
619 unsigned int first_entry,
620 unsigned int num_entries,
621 bool use_scratch)
622 {
623 struct drm_i915_private *dev_priv = vm->dev->dev_private;
624 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
625 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
626 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
627 int i;
628
629 if (WARN(num_entries > max_entries,
630 "First entry = %d; Num entries = %d (max=%d)\n",
631 first_entry, num_entries, max_entries))
632 num_entries = max_entries;
633
634 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
635
636 for (i = 0; i < num_entries; i++)
637 iowrite32(scratch_pte, &gtt_base[i]);
638 readl(gtt_base);
639 }
640
641
642 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
643 struct sg_table *st,
644 unsigned int pg_start,
645 enum i915_cache_level cache_level)
646 {
647 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
648 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
649
650 intel_gtt_insert_sg_entries(st, pg_start, flags);
651
652 }
653
654 static void i915_ggtt_clear_range(struct i915_address_space *vm,
655 unsigned int first_entry,
656 unsigned int num_entries,
657 bool unused)
658 {
659 intel_gtt_clear_range(first_entry, num_entries);
660 }
661
662
663 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
664 enum i915_cache_level cache_level)
665 {
666 struct drm_device *dev = obj->base.dev;
667 struct drm_i915_private *dev_priv = dev->dev_private;
668 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
669
670 dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
671 entry,
672 cache_level);
673
674 obj->has_global_gtt_mapping = 1;
675 }
676
677 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
678 {
679 struct drm_device *dev = obj->base.dev;
680 struct drm_i915_private *dev_priv = dev->dev_private;
681 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
682
683 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
684 entry,
685 obj->base.size >> PAGE_SHIFT,
686 true);
687
688 obj->has_global_gtt_mapping = 0;
689 }
690
691 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
692 {
693 struct drm_device *dev = obj->base.dev;
694 struct drm_i915_private *dev_priv = dev->dev_private;
695 bool interruptible;
696
697 interruptible = do_idling(dev_priv);
698
699 if (!obj->has_dma_mapping)
700 dma_unmap_sg(&dev->pdev->dev,
701 obj->pages->sgl, obj->pages->nents,
702 PCI_DMA_BIDIRECTIONAL);
703
704 undo_idling(dev_priv, interruptible);
705 }
706
707 static void i915_gtt_color_adjust(struct drm_mm_node *node,
708 unsigned long color,
709 unsigned long *start,
710 unsigned long *end)
711 {
712 if (node->color != color)
713 *start += 4096;
714
715 if (!list_empty(&node->node_list)) {
716 node = list_entry(node->node_list.next,
717 struct drm_mm_node,
718 node_list);
719 if (node->allocated && node->color != color)
720 *end -= 4096;
721 }
722 }
723 void i915_gem_setup_global_gtt(struct drm_device *dev,
724 unsigned long start,
725 unsigned long mappable_end,
726 unsigned long end)
727 {
728 /* Let GEM Manage all of the aperture.
729 *
730 * However, leave one page at the end still bound to the scratch page.
731 * There are a number of places where the hardware apparently prefetches
732 * past the end of the object, and we've seen multiple hangs with the
733 * GPU head pointer stuck in a batchbuffer bound at the last page of the
734 * aperture. One page should be enough to keep any prefetching inside
735 * of the aperture.
736 */
737 struct drm_i915_private *dev_priv = dev->dev_private;
738 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
739 struct drm_mm_node *entry;
740 struct drm_i915_gem_object *obj;
741 unsigned long hole_start, hole_end;
742
743 BUG_ON(mappable_end > end);
744
745 /* Subtract the guard page ... */
746 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
747 if (!HAS_LLC(dev))
748 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
749
750 /* Mark any preallocated objects as occupied */
751 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
752 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
753 int ret;
754 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
755 i915_gem_obj_ggtt_offset(obj), obj->base.size);
756
757 WARN_ON(i915_gem_obj_ggtt_bound(obj));
758 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
759 if (ret)
760 DRM_DEBUG_KMS("Reservation failed\n");
761 obj->has_global_gtt_mapping = 1;
762 list_add(&vma->vma_link, &obj->vma_list);
763 }
764
765 dev_priv->gtt.base.start = start;
766 dev_priv->gtt.base.total = end - start;
767
768 /* Clear any non-preallocated blocks */
769 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
770 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
771 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
772 hole_start, hole_end);
773 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
774 }
775
776 /* And finally clear the reserved guard page */
777 ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
778 }
779
780 static bool
781 intel_enable_ppgtt(struct drm_device *dev)
782 {
783 if (i915_enable_ppgtt >= 0)
784 return i915_enable_ppgtt;
785
786 #ifdef CONFIG_INTEL_IOMMU
787 /* Disable ppgtt on SNB if VT-d is on. */
788 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
789 return false;
790 #endif
791
792 return true;
793 }
794
795 void i915_gem_init_global_gtt(struct drm_device *dev)
796 {
797 struct drm_i915_private *dev_priv = dev->dev_private;
798 unsigned long gtt_size, mappable_size;
799
800 gtt_size = dev_priv->gtt.base.total;
801 mappable_size = dev_priv->gtt.mappable_end;
802
803 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
804 int ret;
805
806 if (INTEL_INFO(dev)->gen <= 7) {
807 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
808 * aperture accordingly when using aliasing ppgtt. */
809 gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
810 }
811
812 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
813
814 ret = i915_gem_init_aliasing_ppgtt(dev);
815 if (!ret)
816 return;
817
818 DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
819 drm_mm_takedown(&dev_priv->gtt.base.mm);
820 gtt_size += GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
821 }
822 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
823 }
824
825 static int setup_scratch_page(struct drm_device *dev)
826 {
827 struct drm_i915_private *dev_priv = dev->dev_private;
828 struct page *page;
829 dma_addr_t dma_addr;
830
831 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
832 if (page == NULL)
833 return -ENOMEM;
834 get_page(page);
835 set_pages_uc(page, 1);
836
837 #ifdef CONFIG_INTEL_IOMMU
838 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
839 PCI_DMA_BIDIRECTIONAL);
840 if (pci_dma_mapping_error(dev->pdev, dma_addr))
841 return -EINVAL;
842 #else
843 dma_addr = page_to_phys(page);
844 #endif
845 dev_priv->gtt.base.scratch.page = page;
846 dev_priv->gtt.base.scratch.addr = dma_addr;
847
848 return 0;
849 }
850
851 static void teardown_scratch_page(struct drm_device *dev)
852 {
853 struct drm_i915_private *dev_priv = dev->dev_private;
854 struct page *page = dev_priv->gtt.base.scratch.page;
855
856 set_pages_wb(page, 1);
857 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
858 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
859 put_page(page);
860 __free_page(page);
861 }
862
863 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
864 {
865 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
866 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
867 return snb_gmch_ctl << 20;
868 }
869
870 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
871 {
872 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
873 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
874 return snb_gmch_ctl << 25; /* 32 MB units */
875 }
876
877 static int gen6_gmch_probe(struct drm_device *dev,
878 size_t *gtt_total,
879 size_t *stolen,
880 phys_addr_t *mappable_base,
881 unsigned long *mappable_end)
882 {
883 struct drm_i915_private *dev_priv = dev->dev_private;
884 phys_addr_t gtt_bus_addr;
885 unsigned int gtt_size;
886 u16 snb_gmch_ctl;
887 int ret;
888
889 *mappable_base = pci_resource_start(dev->pdev, 2);
890 *mappable_end = pci_resource_len(dev->pdev, 2);
891
892 /* 64/512MB is the current min/max we actually know of, but this is just
893 * a coarse sanity check.
894 */
895 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
896 DRM_ERROR("Unknown GMADR size (%lx)\n",
897 dev_priv->gtt.mappable_end);
898 return -ENXIO;
899 }
900
901 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
902 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
903 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
904 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
905
906 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
907 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
908
909 /* For Modern GENs the PTEs and register space are split in the BAR */
910 gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
911 (pci_resource_len(dev->pdev, 0) / 2);
912
913 dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
914 if (!dev_priv->gtt.gsm) {
915 DRM_ERROR("Failed to map the gtt page table\n");
916 return -ENOMEM;
917 }
918
919 ret = setup_scratch_page(dev);
920 if (ret)
921 DRM_ERROR("Scratch setup failed\n");
922
923 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
924 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
925
926 return ret;
927 }
928
929 static void gen6_gmch_remove(struct i915_address_space *vm)
930 {
931
932 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
933 iounmap(gtt->gsm);
934 teardown_scratch_page(vm->dev);
935 }
936
937 static int i915_gmch_probe(struct drm_device *dev,
938 size_t *gtt_total,
939 size_t *stolen,
940 phys_addr_t *mappable_base,
941 unsigned long *mappable_end)
942 {
943 struct drm_i915_private *dev_priv = dev->dev_private;
944 int ret;
945
946 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
947 if (!ret) {
948 DRM_ERROR("failed to set up gmch\n");
949 return -EIO;
950 }
951
952 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
953
954 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
955 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
956 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
957
958 return 0;
959 }
960
961 static void i915_gmch_remove(struct i915_address_space *vm)
962 {
963 intel_gmch_remove();
964 }
965
966 int i915_gem_gtt_init(struct drm_device *dev)
967 {
968 struct drm_i915_private *dev_priv = dev->dev_private;
969 struct i915_gtt *gtt = &dev_priv->gtt;
970 int ret;
971
972 if (INTEL_INFO(dev)->gen <= 5) {
973 gtt->gtt_probe = i915_gmch_probe;
974 gtt->base.cleanup = i915_gmch_remove;
975 } else {
976 gtt->gtt_probe = gen6_gmch_probe;
977 gtt->base.cleanup = gen6_gmch_remove;
978 if (IS_HASWELL(dev) && dev_priv->ellc_size)
979 gtt->base.pte_encode = iris_pte_encode;
980 else if (IS_HASWELL(dev))
981 gtt->base.pte_encode = hsw_pte_encode;
982 else if (IS_VALLEYVIEW(dev))
983 gtt->base.pte_encode = byt_pte_encode;
984 else if (INTEL_INFO(dev)->gen >= 7)
985 gtt->base.pte_encode = ivb_pte_encode;
986 else
987 gtt->base.pte_encode = snb_pte_encode;
988 }
989
990 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
991 &gtt->mappable_base, &gtt->mappable_end);
992 if (ret)
993 return ret;
994
995 gtt->base.dev = dev;
996
997 /* GMADR is the PCI mmio aperture into the global GTT. */
998 DRM_INFO("Memory usable by graphics device = %zdM\n",
999 gtt->base.total >> 20);
1000 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1001 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1002
1003 return 0;
1004 }
This page took 0.051122 seconds and 6 git commands to generate.