Merge branch 'for-3.17/core' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_trace.h"
31 #include "intel_drv.h"
32
33 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
34 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
35
36 bool intel_enable_ppgtt(struct drm_device *dev, bool full)
37 {
38 if (i915.enable_ppgtt == 0)
39 return false;
40
41 if (i915.enable_ppgtt == 1 && full)
42 return false;
43
44 return true;
45 }
46
47 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
48 {
49 if (enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
50 return 0;
51
52 if (enable_ppgtt == 1)
53 return 1;
54
55 if (enable_ppgtt == 2 && HAS_PPGTT(dev))
56 return 2;
57
58 #ifdef CONFIG_INTEL_IOMMU
59 /* Disable ppgtt on SNB if VT-d is on. */
60 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
61 DRM_INFO("Disabling PPGTT because VT-d is on\n");
62 return 0;
63 }
64 #endif
65
66 /* Early VLV doesn't have this */
67 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
68 dev->pdev->revision < 0xb) {
69 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
70 return 0;
71 }
72
73 return HAS_ALIASING_PPGTT(dev) ? 1 : 0;
74 }
75
76
77 static void ppgtt_bind_vma(struct i915_vma *vma,
78 enum i915_cache_level cache_level,
79 u32 flags);
80 static void ppgtt_unbind_vma(struct i915_vma *vma);
81 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
82
83 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
84 enum i915_cache_level level,
85 bool valid)
86 {
87 gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
88 pte |= addr;
89
90 switch (level) {
91 case I915_CACHE_NONE:
92 pte |= PPAT_UNCACHED_INDEX;
93 break;
94 case I915_CACHE_WT:
95 pte |= PPAT_DISPLAY_ELLC_INDEX;
96 break;
97 default:
98 pte |= PPAT_CACHED_INDEX;
99 break;
100 }
101
102 return pte;
103 }
104
105 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
106 dma_addr_t addr,
107 enum i915_cache_level level)
108 {
109 gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
110 pde |= addr;
111 if (level != I915_CACHE_NONE)
112 pde |= PPAT_CACHED_PDE_INDEX;
113 else
114 pde |= PPAT_UNCACHED_INDEX;
115 return pde;
116 }
117
118 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
119 enum i915_cache_level level,
120 bool valid, u32 unused)
121 {
122 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
123 pte |= GEN6_PTE_ADDR_ENCODE(addr);
124
125 switch (level) {
126 case I915_CACHE_L3_LLC:
127 case I915_CACHE_LLC:
128 pte |= GEN6_PTE_CACHE_LLC;
129 break;
130 case I915_CACHE_NONE:
131 pte |= GEN6_PTE_UNCACHED;
132 break;
133 default:
134 WARN_ON(1);
135 }
136
137 return pte;
138 }
139
140 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
141 enum i915_cache_level level,
142 bool valid, u32 unused)
143 {
144 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
145 pte |= GEN6_PTE_ADDR_ENCODE(addr);
146
147 switch (level) {
148 case I915_CACHE_L3_LLC:
149 pte |= GEN7_PTE_CACHE_L3_LLC;
150 break;
151 case I915_CACHE_LLC:
152 pte |= GEN6_PTE_CACHE_LLC;
153 break;
154 case I915_CACHE_NONE:
155 pte |= GEN6_PTE_UNCACHED;
156 break;
157 default:
158 WARN_ON(1);
159 }
160
161 return pte;
162 }
163
164 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
165 enum i915_cache_level level,
166 bool valid, u32 flags)
167 {
168 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
169 pte |= GEN6_PTE_ADDR_ENCODE(addr);
170
171 /* Mark the page as writeable. Other platforms don't have a
172 * setting for read-only/writable, so this matches that behavior.
173 */
174 if (!(flags & PTE_READ_ONLY))
175 pte |= BYT_PTE_WRITEABLE;
176
177 if (level != I915_CACHE_NONE)
178 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
179
180 return pte;
181 }
182
183 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
184 enum i915_cache_level level,
185 bool valid, u32 unused)
186 {
187 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
188 pte |= HSW_PTE_ADDR_ENCODE(addr);
189
190 if (level != I915_CACHE_NONE)
191 pte |= HSW_WB_LLC_AGE3;
192
193 return pte;
194 }
195
196 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
197 enum i915_cache_level level,
198 bool valid, u32 unused)
199 {
200 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
201 pte |= HSW_PTE_ADDR_ENCODE(addr);
202
203 switch (level) {
204 case I915_CACHE_NONE:
205 break;
206 case I915_CACHE_WT:
207 pte |= HSW_WT_ELLC_LLC_AGE3;
208 break;
209 default:
210 pte |= HSW_WB_ELLC_LLC_AGE3;
211 break;
212 }
213
214 return pte;
215 }
216
217 /* Broadwell Page Directory Pointer Descriptors */
218 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
219 uint64_t val, bool synchronous)
220 {
221 struct drm_i915_private *dev_priv = ring->dev->dev_private;
222 int ret;
223
224 BUG_ON(entry >= 4);
225
226 if (synchronous) {
227 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
228 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
229 return 0;
230 }
231
232 ret = intel_ring_begin(ring, 6);
233 if (ret)
234 return ret;
235
236 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
237 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
238 intel_ring_emit(ring, (u32)(val >> 32));
239 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
240 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
241 intel_ring_emit(ring, (u32)(val));
242 intel_ring_advance(ring);
243
244 return 0;
245 }
246
247 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
248 struct intel_engine_cs *ring,
249 bool synchronous)
250 {
251 int i, ret;
252
253 /* bit of a hack to find the actual last used pd */
254 int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
255
256 for (i = used_pd - 1; i >= 0; i--) {
257 dma_addr_t addr = ppgtt->pd_dma_addr[i];
258 ret = gen8_write_pdp(ring, i, addr, synchronous);
259 if (ret)
260 return ret;
261 }
262
263 return 0;
264 }
265
266 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
267 uint64_t start,
268 uint64_t length,
269 bool use_scratch)
270 {
271 struct i915_hw_ppgtt *ppgtt =
272 container_of(vm, struct i915_hw_ppgtt, base);
273 gen8_gtt_pte_t *pt_vaddr, scratch_pte;
274 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
275 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
276 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
277 unsigned num_entries = length >> PAGE_SHIFT;
278 unsigned last_pte, i;
279
280 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
281 I915_CACHE_LLC, use_scratch);
282
283 while (num_entries) {
284 struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
285
286 last_pte = pte + num_entries;
287 if (last_pte > GEN8_PTES_PER_PAGE)
288 last_pte = GEN8_PTES_PER_PAGE;
289
290 pt_vaddr = kmap_atomic(page_table);
291
292 for (i = pte; i < last_pte; i++) {
293 pt_vaddr[i] = scratch_pte;
294 num_entries--;
295 }
296
297 if (!HAS_LLC(ppgtt->base.dev))
298 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
299 kunmap_atomic(pt_vaddr);
300
301 pte = 0;
302 if (++pde == GEN8_PDES_PER_PAGE) {
303 pdpe++;
304 pde = 0;
305 }
306 }
307 }
308
309 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
310 struct sg_table *pages,
311 uint64_t start,
312 enum i915_cache_level cache_level, u32 unused)
313 {
314 struct i915_hw_ppgtt *ppgtt =
315 container_of(vm, struct i915_hw_ppgtt, base);
316 gen8_gtt_pte_t *pt_vaddr;
317 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
318 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
319 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
320 struct sg_page_iter sg_iter;
321
322 pt_vaddr = NULL;
323
324 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
325 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
326 break;
327
328 if (pt_vaddr == NULL)
329 pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
330
331 pt_vaddr[pte] =
332 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
333 cache_level, true);
334 if (++pte == GEN8_PTES_PER_PAGE) {
335 if (!HAS_LLC(ppgtt->base.dev))
336 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
337 kunmap_atomic(pt_vaddr);
338 pt_vaddr = NULL;
339 if (++pde == GEN8_PDES_PER_PAGE) {
340 pdpe++;
341 pde = 0;
342 }
343 pte = 0;
344 }
345 }
346 if (pt_vaddr) {
347 if (!HAS_LLC(ppgtt->base.dev))
348 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
349 kunmap_atomic(pt_vaddr);
350 }
351 }
352
353 static void gen8_free_page_tables(struct page **pt_pages)
354 {
355 int i;
356
357 if (pt_pages == NULL)
358 return;
359
360 for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
361 if (pt_pages[i])
362 __free_pages(pt_pages[i], 0);
363 }
364
365 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
366 {
367 int i;
368
369 for (i = 0; i < ppgtt->num_pd_pages; i++) {
370 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
371 kfree(ppgtt->gen8_pt_pages[i]);
372 kfree(ppgtt->gen8_pt_dma_addr[i]);
373 }
374
375 __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
376 }
377
378 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
379 {
380 struct pci_dev *hwdev = ppgtt->base.dev->pdev;
381 int i, j;
382
383 for (i = 0; i < ppgtt->num_pd_pages; i++) {
384 /* TODO: In the future we'll support sparse mappings, so this
385 * will have to change. */
386 if (!ppgtt->pd_dma_addr[i])
387 continue;
388
389 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
390 PCI_DMA_BIDIRECTIONAL);
391
392 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
393 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
394 if (addr)
395 pci_unmap_page(hwdev, addr, PAGE_SIZE,
396 PCI_DMA_BIDIRECTIONAL);
397 }
398 }
399 }
400
401 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
402 {
403 struct i915_hw_ppgtt *ppgtt =
404 container_of(vm, struct i915_hw_ppgtt, base);
405
406 list_del(&vm->global_link);
407 drm_mm_takedown(&vm->mm);
408
409 gen8_ppgtt_unmap_pages(ppgtt);
410 gen8_ppgtt_free(ppgtt);
411 }
412
413 static struct page **__gen8_alloc_page_tables(void)
414 {
415 struct page **pt_pages;
416 int i;
417
418 pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
419 if (!pt_pages)
420 return ERR_PTR(-ENOMEM);
421
422 for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
423 pt_pages[i] = alloc_page(GFP_KERNEL);
424 if (!pt_pages[i])
425 goto bail;
426 }
427
428 return pt_pages;
429
430 bail:
431 gen8_free_page_tables(pt_pages);
432 kfree(pt_pages);
433 return ERR_PTR(-ENOMEM);
434 }
435
436 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
437 const int max_pdp)
438 {
439 struct page **pt_pages[GEN8_LEGACY_PDPS];
440 int i, ret;
441
442 for (i = 0; i < max_pdp; i++) {
443 pt_pages[i] = __gen8_alloc_page_tables();
444 if (IS_ERR(pt_pages[i])) {
445 ret = PTR_ERR(pt_pages[i]);
446 goto unwind_out;
447 }
448 }
449
450 /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
451 * "atomic" - for cleanup purposes.
452 */
453 for (i = 0; i < max_pdp; i++)
454 ppgtt->gen8_pt_pages[i] = pt_pages[i];
455
456 return 0;
457
458 unwind_out:
459 while (i--) {
460 gen8_free_page_tables(pt_pages[i]);
461 kfree(pt_pages[i]);
462 }
463
464 return ret;
465 }
466
467 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
468 {
469 int i;
470
471 for (i = 0; i < ppgtt->num_pd_pages; i++) {
472 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
473 sizeof(dma_addr_t),
474 GFP_KERNEL);
475 if (!ppgtt->gen8_pt_dma_addr[i])
476 return -ENOMEM;
477 }
478
479 return 0;
480 }
481
482 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
483 const int max_pdp)
484 {
485 ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
486 if (!ppgtt->pd_pages)
487 return -ENOMEM;
488
489 ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
490 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
491
492 return 0;
493 }
494
495 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
496 const int max_pdp)
497 {
498 int ret;
499
500 ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
501 if (ret)
502 return ret;
503
504 ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
505 if (ret) {
506 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
507 return ret;
508 }
509
510 ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
511
512 ret = gen8_ppgtt_allocate_dma(ppgtt);
513 if (ret)
514 gen8_ppgtt_free(ppgtt);
515
516 return ret;
517 }
518
519 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
520 const int pd)
521 {
522 dma_addr_t pd_addr;
523 int ret;
524
525 pd_addr = pci_map_page(ppgtt->base.dev->pdev,
526 &ppgtt->pd_pages[pd], 0,
527 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
528
529 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
530 if (ret)
531 return ret;
532
533 ppgtt->pd_dma_addr[pd] = pd_addr;
534
535 return 0;
536 }
537
538 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
539 const int pd,
540 const int pt)
541 {
542 dma_addr_t pt_addr;
543 struct page *p;
544 int ret;
545
546 p = ppgtt->gen8_pt_pages[pd][pt];
547 pt_addr = pci_map_page(ppgtt->base.dev->pdev,
548 p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
549 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
550 if (ret)
551 return ret;
552
553 ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
554
555 return 0;
556 }
557
558 /**
559 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
560 * with a net effect resembling a 2-level page table in normal x86 terms. Each
561 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
562 * space.
563 *
564 * FIXME: split allocation into smaller pieces. For now we only ever do this
565 * once, but with full PPGTT, the multiple contiguous allocations will be bad.
566 * TODO: Do something with the size parameter
567 */
568 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
569 {
570 const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
571 const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
572 int i, j, ret;
573
574 if (size % (1<<30))
575 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
576
577 /* 1. Do all our allocations for page directories and page tables. */
578 ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
579 if (ret)
580 return ret;
581
582 /*
583 * 2. Create DMA mappings for the page directories and page tables.
584 */
585 for (i = 0; i < max_pdp; i++) {
586 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
587 if (ret)
588 goto bail;
589
590 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
591 ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
592 if (ret)
593 goto bail;
594 }
595 }
596
597 /*
598 * 3. Map all the page directory entires to point to the page tables
599 * we've allocated.
600 *
601 * For now, the PPGTT helper functions all require that the PDEs are
602 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
603 * will never need to touch the PDEs again.
604 */
605 for (i = 0; i < max_pdp; i++) {
606 gen8_ppgtt_pde_t *pd_vaddr;
607 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
608 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
609 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
610 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
611 I915_CACHE_LLC);
612 }
613 if (!HAS_LLC(ppgtt->base.dev))
614 drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
615 kunmap_atomic(pd_vaddr);
616 }
617
618 ppgtt->enable = gen8_ppgtt_enable;
619 ppgtt->switch_mm = gen8_mm_switch;
620 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
621 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
622 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
623 ppgtt->base.start = 0;
624 ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
625
626 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
627
628 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
629 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
630 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
631 ppgtt->num_pd_entries,
632 (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
633 return 0;
634
635 bail:
636 gen8_ppgtt_unmap_pages(ppgtt);
637 gen8_ppgtt_free(ppgtt);
638 return ret;
639 }
640
641 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
642 {
643 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
644 struct i915_address_space *vm = &ppgtt->base;
645 gen6_gtt_pte_t __iomem *pd_addr;
646 gen6_gtt_pte_t scratch_pte;
647 uint32_t pd_entry;
648 int pte, pde;
649
650 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
651
652 pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
653 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
654
655 seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm,
656 ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
657 for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
658 u32 expected;
659 gen6_gtt_pte_t *pt_vaddr;
660 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
661 pd_entry = readl(pd_addr + pde);
662 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
663
664 if (pd_entry != expected)
665 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
666 pde,
667 pd_entry,
668 expected);
669 seq_printf(m, "\tPDE: %x\n", pd_entry);
670
671 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
672 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
673 unsigned long va =
674 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
675 (pte * PAGE_SIZE);
676 int i;
677 bool found = false;
678 for (i = 0; i < 4; i++)
679 if (pt_vaddr[pte + i] != scratch_pte)
680 found = true;
681 if (!found)
682 continue;
683
684 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
685 for (i = 0; i < 4; i++) {
686 if (pt_vaddr[pte + i] != scratch_pte)
687 seq_printf(m, " %08x", pt_vaddr[pte + i]);
688 else
689 seq_puts(m, " SCRATCH ");
690 }
691 seq_puts(m, "\n");
692 }
693 kunmap_atomic(pt_vaddr);
694 }
695 }
696
697 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
698 {
699 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
700 gen6_gtt_pte_t __iomem *pd_addr;
701 uint32_t pd_entry;
702 int i;
703
704 WARN_ON(ppgtt->pd_offset & 0x3f);
705 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
706 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
707 for (i = 0; i < ppgtt->num_pd_entries; i++) {
708 dma_addr_t pt_addr;
709
710 pt_addr = ppgtt->pt_dma_addr[i];
711 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
712 pd_entry |= GEN6_PDE_VALID;
713
714 writel(pd_entry, pd_addr + i);
715 }
716 readl(pd_addr);
717 }
718
719 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
720 {
721 BUG_ON(ppgtt->pd_offset & 0x3f);
722
723 return (ppgtt->pd_offset / 64) << 16;
724 }
725
726 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
727 struct intel_engine_cs *ring,
728 bool synchronous)
729 {
730 struct drm_device *dev = ppgtt->base.dev;
731 struct drm_i915_private *dev_priv = dev->dev_private;
732 int ret;
733
734 /* If we're in reset, we can assume the GPU is sufficiently idle to
735 * manually frob these bits. Ideally we could use the ring functions,
736 * except our error handling makes it quite difficult (can't use
737 * intel_ring_begin, ring->flush, or intel_ring_advance)
738 *
739 * FIXME: We should try not to special case reset
740 */
741 if (synchronous ||
742 i915_reset_in_progress(&dev_priv->gpu_error)) {
743 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
744 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
745 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
746 POSTING_READ(RING_PP_DIR_BASE(ring));
747 return 0;
748 }
749
750 /* NB: TLBs must be flushed and invalidated before a switch */
751 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
752 if (ret)
753 return ret;
754
755 ret = intel_ring_begin(ring, 6);
756 if (ret)
757 return ret;
758
759 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
760 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
761 intel_ring_emit(ring, PP_DIR_DCLV_2G);
762 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
763 intel_ring_emit(ring, get_pd_offset(ppgtt));
764 intel_ring_emit(ring, MI_NOOP);
765 intel_ring_advance(ring);
766
767 return 0;
768 }
769
770 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
771 struct intel_engine_cs *ring,
772 bool synchronous)
773 {
774 struct drm_device *dev = ppgtt->base.dev;
775 struct drm_i915_private *dev_priv = dev->dev_private;
776 int ret;
777
778 /* If we're in reset, we can assume the GPU is sufficiently idle to
779 * manually frob these bits. Ideally we could use the ring functions,
780 * except our error handling makes it quite difficult (can't use
781 * intel_ring_begin, ring->flush, or intel_ring_advance)
782 *
783 * FIXME: We should try not to special case reset
784 */
785 if (synchronous ||
786 i915_reset_in_progress(&dev_priv->gpu_error)) {
787 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
788 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
789 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
790 POSTING_READ(RING_PP_DIR_BASE(ring));
791 return 0;
792 }
793
794 /* NB: TLBs must be flushed and invalidated before a switch */
795 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
796 if (ret)
797 return ret;
798
799 ret = intel_ring_begin(ring, 6);
800 if (ret)
801 return ret;
802
803 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
804 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
805 intel_ring_emit(ring, PP_DIR_DCLV_2G);
806 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
807 intel_ring_emit(ring, get_pd_offset(ppgtt));
808 intel_ring_emit(ring, MI_NOOP);
809 intel_ring_advance(ring);
810
811 /* XXX: RCS is the only one to auto invalidate the TLBs? */
812 if (ring->id != RCS) {
813 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
814 if (ret)
815 return ret;
816 }
817
818 return 0;
819 }
820
821 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
822 struct intel_engine_cs *ring,
823 bool synchronous)
824 {
825 struct drm_device *dev = ppgtt->base.dev;
826 struct drm_i915_private *dev_priv = dev->dev_private;
827
828 if (!synchronous)
829 return 0;
830
831 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
832 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
833
834 POSTING_READ(RING_PP_DIR_DCLV(ring));
835
836 return 0;
837 }
838
839 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
840 {
841 struct drm_device *dev = ppgtt->base.dev;
842 struct drm_i915_private *dev_priv = dev->dev_private;
843 struct intel_engine_cs *ring;
844 int j, ret;
845
846 for_each_ring(ring, dev_priv, j) {
847 I915_WRITE(RING_MODE_GEN7(ring),
848 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
849
850 /* We promise to do a switch later with FULL PPGTT. If this is
851 * aliasing, this is the one and only switch we'll do */
852 if (USES_FULL_PPGTT(dev))
853 continue;
854
855 ret = ppgtt->switch_mm(ppgtt, ring, true);
856 if (ret)
857 goto err_out;
858 }
859
860 return 0;
861
862 err_out:
863 for_each_ring(ring, dev_priv, j)
864 I915_WRITE(RING_MODE_GEN7(ring),
865 _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
866 return ret;
867 }
868
869 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
870 {
871 struct drm_device *dev = ppgtt->base.dev;
872 struct drm_i915_private *dev_priv = dev->dev_private;
873 struct intel_engine_cs *ring;
874 uint32_t ecochk, ecobits;
875 int i;
876
877 ecobits = I915_READ(GAC_ECO_BITS);
878 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
879
880 ecochk = I915_READ(GAM_ECOCHK);
881 if (IS_HASWELL(dev)) {
882 ecochk |= ECOCHK_PPGTT_WB_HSW;
883 } else {
884 ecochk |= ECOCHK_PPGTT_LLC_IVB;
885 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
886 }
887 I915_WRITE(GAM_ECOCHK, ecochk);
888
889 for_each_ring(ring, dev_priv, i) {
890 int ret;
891 /* GFX_MODE is per-ring on gen7+ */
892 I915_WRITE(RING_MODE_GEN7(ring),
893 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
894
895 /* We promise to do a switch later with FULL PPGTT. If this is
896 * aliasing, this is the one and only switch we'll do */
897 if (USES_FULL_PPGTT(dev))
898 continue;
899
900 ret = ppgtt->switch_mm(ppgtt, ring, true);
901 if (ret)
902 return ret;
903 }
904
905 return 0;
906 }
907
908 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
909 {
910 struct drm_device *dev = ppgtt->base.dev;
911 struct drm_i915_private *dev_priv = dev->dev_private;
912 struct intel_engine_cs *ring;
913 uint32_t ecochk, gab_ctl, ecobits;
914 int i;
915
916 ecobits = I915_READ(GAC_ECO_BITS);
917 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
918 ECOBITS_PPGTT_CACHE64B);
919
920 gab_ctl = I915_READ(GAB_CTL);
921 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
922
923 ecochk = I915_READ(GAM_ECOCHK);
924 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
925
926 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
927
928 for_each_ring(ring, dev_priv, i) {
929 int ret = ppgtt->switch_mm(ppgtt, ring, true);
930 if (ret)
931 return ret;
932 }
933
934 return 0;
935 }
936
937 /* PPGTT support for Sandybdrige/Gen6 and later */
938 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
939 uint64_t start,
940 uint64_t length,
941 bool use_scratch)
942 {
943 struct i915_hw_ppgtt *ppgtt =
944 container_of(vm, struct i915_hw_ppgtt, base);
945 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
946 unsigned first_entry = start >> PAGE_SHIFT;
947 unsigned num_entries = length >> PAGE_SHIFT;
948 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
949 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
950 unsigned last_pte, i;
951
952 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
953
954 while (num_entries) {
955 last_pte = first_pte + num_entries;
956 if (last_pte > I915_PPGTT_PT_ENTRIES)
957 last_pte = I915_PPGTT_PT_ENTRIES;
958
959 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
960
961 for (i = first_pte; i < last_pte; i++)
962 pt_vaddr[i] = scratch_pte;
963
964 kunmap_atomic(pt_vaddr);
965
966 num_entries -= last_pte - first_pte;
967 first_pte = 0;
968 act_pt++;
969 }
970 }
971
972 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
973 struct sg_table *pages,
974 uint64_t start,
975 enum i915_cache_level cache_level, u32 flags)
976 {
977 struct i915_hw_ppgtt *ppgtt =
978 container_of(vm, struct i915_hw_ppgtt, base);
979 gen6_gtt_pte_t *pt_vaddr;
980 unsigned first_entry = start >> PAGE_SHIFT;
981 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
982 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
983 struct sg_page_iter sg_iter;
984
985 pt_vaddr = NULL;
986 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
987 if (pt_vaddr == NULL)
988 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
989
990 pt_vaddr[act_pte] =
991 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
992 cache_level, true, flags);
993
994 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
995 kunmap_atomic(pt_vaddr);
996 pt_vaddr = NULL;
997 act_pt++;
998 act_pte = 0;
999 }
1000 }
1001 if (pt_vaddr)
1002 kunmap_atomic(pt_vaddr);
1003 }
1004
1005 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
1006 {
1007 int i;
1008
1009 if (ppgtt->pt_dma_addr) {
1010 for (i = 0; i < ppgtt->num_pd_entries; i++)
1011 pci_unmap_page(ppgtt->base.dev->pdev,
1012 ppgtt->pt_dma_addr[i],
1013 4096, PCI_DMA_BIDIRECTIONAL);
1014 }
1015 }
1016
1017 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1018 {
1019 int i;
1020
1021 kfree(ppgtt->pt_dma_addr);
1022 for (i = 0; i < ppgtt->num_pd_entries; i++)
1023 __free_page(ppgtt->pt_pages[i]);
1024 kfree(ppgtt->pt_pages);
1025 }
1026
1027 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1028 {
1029 struct i915_hw_ppgtt *ppgtt =
1030 container_of(vm, struct i915_hw_ppgtt, base);
1031
1032 list_del(&vm->global_link);
1033 drm_mm_takedown(&ppgtt->base.mm);
1034 drm_mm_remove_node(&ppgtt->node);
1035
1036 gen6_ppgtt_unmap_pages(ppgtt);
1037 gen6_ppgtt_free(ppgtt);
1038 }
1039
1040 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1041 {
1042 struct drm_device *dev = ppgtt->base.dev;
1043 struct drm_i915_private *dev_priv = dev->dev_private;
1044 bool retried = false;
1045 int ret;
1046
1047 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1048 * allocator works in address space sizes, so it's multiplied by page
1049 * size. We allocate at the top of the GTT to avoid fragmentation.
1050 */
1051 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1052 alloc:
1053 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1054 &ppgtt->node, GEN6_PD_SIZE,
1055 GEN6_PD_ALIGN, 0,
1056 0, dev_priv->gtt.base.total,
1057 DRM_MM_TOPDOWN);
1058 if (ret == -ENOSPC && !retried) {
1059 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1060 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1061 I915_CACHE_NONE,
1062 0, dev_priv->gtt.base.total,
1063 0);
1064 if (ret)
1065 return ret;
1066
1067 retried = true;
1068 goto alloc;
1069 }
1070
1071 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1072 DRM_DEBUG("Forced to use aperture for PDEs\n");
1073
1074 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1075 return ret;
1076 }
1077
1078 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1079 {
1080 int i;
1081
1082 ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1083 GFP_KERNEL);
1084
1085 if (!ppgtt->pt_pages)
1086 return -ENOMEM;
1087
1088 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1089 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1090 if (!ppgtt->pt_pages[i]) {
1091 gen6_ppgtt_free(ppgtt);
1092 return -ENOMEM;
1093 }
1094 }
1095
1096 return 0;
1097 }
1098
1099 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1100 {
1101 int ret;
1102
1103 ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1104 if (ret)
1105 return ret;
1106
1107 ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1108 if (ret) {
1109 drm_mm_remove_node(&ppgtt->node);
1110 return ret;
1111 }
1112
1113 ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1114 GFP_KERNEL);
1115 if (!ppgtt->pt_dma_addr) {
1116 drm_mm_remove_node(&ppgtt->node);
1117 gen6_ppgtt_free(ppgtt);
1118 return -ENOMEM;
1119 }
1120
1121 return 0;
1122 }
1123
1124 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1125 {
1126 struct drm_device *dev = ppgtt->base.dev;
1127 int i;
1128
1129 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1130 dma_addr_t pt_addr;
1131
1132 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1133 PCI_DMA_BIDIRECTIONAL);
1134
1135 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1136 gen6_ppgtt_unmap_pages(ppgtt);
1137 return -EIO;
1138 }
1139
1140 ppgtt->pt_dma_addr[i] = pt_addr;
1141 }
1142
1143 return 0;
1144 }
1145
1146 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1147 {
1148 struct drm_device *dev = ppgtt->base.dev;
1149 struct drm_i915_private *dev_priv = dev->dev_private;
1150 int ret;
1151
1152 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1153 if (IS_GEN6(dev)) {
1154 ppgtt->enable = gen6_ppgtt_enable;
1155 ppgtt->switch_mm = gen6_mm_switch;
1156 } else if (IS_HASWELL(dev)) {
1157 ppgtt->enable = gen7_ppgtt_enable;
1158 ppgtt->switch_mm = hsw_mm_switch;
1159 } else if (IS_GEN7(dev)) {
1160 ppgtt->enable = gen7_ppgtt_enable;
1161 ppgtt->switch_mm = gen7_mm_switch;
1162 } else
1163 BUG();
1164
1165 ret = gen6_ppgtt_alloc(ppgtt);
1166 if (ret)
1167 return ret;
1168
1169 ret = gen6_ppgtt_setup_page_tables(ppgtt);
1170 if (ret) {
1171 gen6_ppgtt_free(ppgtt);
1172 return ret;
1173 }
1174
1175 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1176 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1177 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1178 ppgtt->base.start = 0;
1179 ppgtt->base.total = ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1180 ppgtt->debug_dump = gen6_dump_ppgtt;
1181
1182 ppgtt->pd_offset =
1183 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1184
1185 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1186
1187 DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1188 ppgtt->node.size >> 20,
1189 ppgtt->node.start / PAGE_SIZE);
1190
1191 return 0;
1192 }
1193
1194 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1195 {
1196 struct drm_i915_private *dev_priv = dev->dev_private;
1197 int ret = 0;
1198
1199 ppgtt->base.dev = dev;
1200 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1201
1202 if (INTEL_INFO(dev)->gen < 8)
1203 ret = gen6_ppgtt_init(ppgtt);
1204 else if (IS_GEN8(dev))
1205 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1206 else
1207 BUG();
1208
1209 if (!ret) {
1210 struct drm_i915_private *dev_priv = dev->dev_private;
1211 kref_init(&ppgtt->ref);
1212 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1213 ppgtt->base.total);
1214 i915_init_vm(dev_priv, &ppgtt->base);
1215 if (INTEL_INFO(dev)->gen < 8) {
1216 gen6_write_pdes(ppgtt);
1217 DRM_DEBUG("Adding PPGTT at offset %x\n",
1218 ppgtt->pd_offset << 10);
1219 }
1220 }
1221
1222 return ret;
1223 }
1224
1225 static void
1226 ppgtt_bind_vma(struct i915_vma *vma,
1227 enum i915_cache_level cache_level,
1228 u32 flags)
1229 {
1230 /* Currently applicable only to VLV */
1231 if (vma->obj->gt_ro)
1232 flags |= PTE_READ_ONLY;
1233
1234 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1235 cache_level, flags);
1236 }
1237
1238 static void ppgtt_unbind_vma(struct i915_vma *vma)
1239 {
1240 vma->vm->clear_range(vma->vm,
1241 vma->node.start,
1242 vma->obj->base.size,
1243 true);
1244 }
1245
1246 extern int intel_iommu_gfx_mapped;
1247 /* Certain Gen5 chipsets require require idling the GPU before
1248 * unmapping anything from the GTT when VT-d is enabled.
1249 */
1250 static inline bool needs_idle_maps(struct drm_device *dev)
1251 {
1252 #ifdef CONFIG_INTEL_IOMMU
1253 /* Query intel_iommu to see if we need the workaround. Presumably that
1254 * was loaded first.
1255 */
1256 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1257 return true;
1258 #endif
1259 return false;
1260 }
1261
1262 static bool do_idling(struct drm_i915_private *dev_priv)
1263 {
1264 bool ret = dev_priv->mm.interruptible;
1265
1266 if (unlikely(dev_priv->gtt.do_idle_maps)) {
1267 dev_priv->mm.interruptible = false;
1268 if (i915_gpu_idle(dev_priv->dev)) {
1269 DRM_ERROR("Couldn't idle GPU\n");
1270 /* Wait a bit, in hopes it avoids the hang */
1271 udelay(10);
1272 }
1273 }
1274
1275 return ret;
1276 }
1277
1278 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1279 {
1280 if (unlikely(dev_priv->gtt.do_idle_maps))
1281 dev_priv->mm.interruptible = interruptible;
1282 }
1283
1284 void i915_check_and_clear_faults(struct drm_device *dev)
1285 {
1286 struct drm_i915_private *dev_priv = dev->dev_private;
1287 struct intel_engine_cs *ring;
1288 int i;
1289
1290 if (INTEL_INFO(dev)->gen < 6)
1291 return;
1292
1293 for_each_ring(ring, dev_priv, i) {
1294 u32 fault_reg;
1295 fault_reg = I915_READ(RING_FAULT_REG(ring));
1296 if (fault_reg & RING_FAULT_VALID) {
1297 DRM_DEBUG_DRIVER("Unexpected fault\n"
1298 "\tAddr: 0x%08lx\\n"
1299 "\tAddress space: %s\n"
1300 "\tSource ID: %d\n"
1301 "\tType: %d\n",
1302 fault_reg & PAGE_MASK,
1303 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1304 RING_FAULT_SRCID(fault_reg),
1305 RING_FAULT_FAULT_TYPE(fault_reg));
1306 I915_WRITE(RING_FAULT_REG(ring),
1307 fault_reg & ~RING_FAULT_VALID);
1308 }
1309 }
1310 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1311 }
1312
1313 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1314 {
1315 struct drm_i915_private *dev_priv = dev->dev_private;
1316
1317 /* Don't bother messing with faults pre GEN6 as we have little
1318 * documentation supporting that it's a good idea.
1319 */
1320 if (INTEL_INFO(dev)->gen < 6)
1321 return;
1322
1323 i915_check_and_clear_faults(dev);
1324
1325 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1326 dev_priv->gtt.base.start,
1327 dev_priv->gtt.base.total,
1328 true);
1329 }
1330
1331 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1332 {
1333 struct drm_i915_private *dev_priv = dev->dev_private;
1334 struct drm_i915_gem_object *obj;
1335 struct i915_address_space *vm;
1336
1337 i915_check_and_clear_faults(dev);
1338
1339 /* First fill our portion of the GTT with scratch pages */
1340 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1341 dev_priv->gtt.base.start,
1342 dev_priv->gtt.base.total,
1343 true);
1344
1345 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1346 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1347 &dev_priv->gtt.base);
1348 if (!vma)
1349 continue;
1350
1351 i915_gem_clflush_object(obj, obj->pin_display);
1352 /* The bind_vma code tries to be smart about tracking mappings.
1353 * Unfortunately above, we've just wiped out the mappings
1354 * without telling our object about it. So we need to fake it.
1355 */
1356 obj->has_global_gtt_mapping = 0;
1357 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1358 }
1359
1360
1361 if (INTEL_INFO(dev)->gen >= 8) {
1362 if (IS_CHERRYVIEW(dev))
1363 chv_setup_private_ppat(dev_priv);
1364 else
1365 bdw_setup_private_ppat(dev_priv);
1366
1367 return;
1368 }
1369
1370 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1371 /* TODO: Perhaps it shouldn't be gen6 specific */
1372 if (i915_is_ggtt(vm)) {
1373 if (dev_priv->mm.aliasing_ppgtt)
1374 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1375 continue;
1376 }
1377
1378 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1379 }
1380
1381 i915_gem_chipset_flush(dev);
1382 }
1383
1384 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1385 {
1386 if (obj->has_dma_mapping)
1387 return 0;
1388
1389 if (!dma_map_sg(&obj->base.dev->pdev->dev,
1390 obj->pages->sgl, obj->pages->nents,
1391 PCI_DMA_BIDIRECTIONAL))
1392 return -ENOSPC;
1393
1394 return 0;
1395 }
1396
1397 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1398 {
1399 #ifdef writeq
1400 writeq(pte, addr);
1401 #else
1402 iowrite32((u32)pte, addr);
1403 iowrite32(pte >> 32, addr + 4);
1404 #endif
1405 }
1406
1407 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1408 struct sg_table *st,
1409 uint64_t start,
1410 enum i915_cache_level level, u32 unused)
1411 {
1412 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1413 unsigned first_entry = start >> PAGE_SHIFT;
1414 gen8_gtt_pte_t __iomem *gtt_entries =
1415 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1416 int i = 0;
1417 struct sg_page_iter sg_iter;
1418 dma_addr_t addr = 0; /* shut up gcc */
1419
1420 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1421 addr = sg_dma_address(sg_iter.sg) +
1422 (sg_iter.sg_pgoffset << PAGE_SHIFT);
1423 gen8_set_pte(&gtt_entries[i],
1424 gen8_pte_encode(addr, level, true));
1425 i++;
1426 }
1427
1428 /*
1429 * XXX: This serves as a posting read to make sure that the PTE has
1430 * actually been updated. There is some concern that even though
1431 * registers and PTEs are within the same BAR that they are potentially
1432 * of NUMA access patterns. Therefore, even with the way we assume
1433 * hardware should work, we must keep this posting read for paranoia.
1434 */
1435 if (i != 0)
1436 WARN_ON(readq(&gtt_entries[i-1])
1437 != gen8_pte_encode(addr, level, true));
1438
1439 /* This next bit makes the above posting read even more important. We
1440 * want to flush the TLBs only after we're certain all the PTE updates
1441 * have finished.
1442 */
1443 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1444 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1445 }
1446
1447 /*
1448 * Binds an object into the global gtt with the specified cache level. The object
1449 * will be accessible to the GPU via commands whose operands reference offsets
1450 * within the global GTT as well as accessible by the GPU through the GMADR
1451 * mapped BAR (dev_priv->mm.gtt->gtt).
1452 */
1453 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1454 struct sg_table *st,
1455 uint64_t start,
1456 enum i915_cache_level level, u32 flags)
1457 {
1458 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1459 unsigned first_entry = start >> PAGE_SHIFT;
1460 gen6_gtt_pte_t __iomem *gtt_entries =
1461 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1462 int i = 0;
1463 struct sg_page_iter sg_iter;
1464 dma_addr_t addr = 0;
1465
1466 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1467 addr = sg_page_iter_dma_address(&sg_iter);
1468 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1469 i++;
1470 }
1471
1472 /* XXX: This serves as a posting read to make sure that the PTE has
1473 * actually been updated. There is some concern that even though
1474 * registers and PTEs are within the same BAR that they are potentially
1475 * of NUMA access patterns. Therefore, even with the way we assume
1476 * hardware should work, we must keep this posting read for paranoia.
1477 */
1478 if (i != 0) {
1479 unsigned long gtt = readl(&gtt_entries[i-1]);
1480 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1481 }
1482
1483 /* This next bit makes the above posting read even more important. We
1484 * want to flush the TLBs only after we're certain all the PTE updates
1485 * have finished.
1486 */
1487 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1488 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1489 }
1490
1491 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1492 uint64_t start,
1493 uint64_t length,
1494 bool use_scratch)
1495 {
1496 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1497 unsigned first_entry = start >> PAGE_SHIFT;
1498 unsigned num_entries = length >> PAGE_SHIFT;
1499 gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1500 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1501 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1502 int i;
1503
1504 if (WARN(num_entries > max_entries,
1505 "First entry = %d; Num entries = %d (max=%d)\n",
1506 first_entry, num_entries, max_entries))
1507 num_entries = max_entries;
1508
1509 scratch_pte = gen8_pte_encode(vm->scratch.addr,
1510 I915_CACHE_LLC,
1511 use_scratch);
1512 for (i = 0; i < num_entries; i++)
1513 gen8_set_pte(&gtt_base[i], scratch_pte);
1514 readl(gtt_base);
1515 }
1516
1517 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1518 uint64_t start,
1519 uint64_t length,
1520 bool use_scratch)
1521 {
1522 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1523 unsigned first_entry = start >> PAGE_SHIFT;
1524 unsigned num_entries = length >> PAGE_SHIFT;
1525 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1526 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1527 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1528 int i;
1529
1530 if (WARN(num_entries > max_entries,
1531 "First entry = %d; Num entries = %d (max=%d)\n",
1532 first_entry, num_entries, max_entries))
1533 num_entries = max_entries;
1534
1535 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1536
1537 for (i = 0; i < num_entries; i++)
1538 iowrite32(scratch_pte, &gtt_base[i]);
1539 readl(gtt_base);
1540 }
1541
1542
1543 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1544 enum i915_cache_level cache_level,
1545 u32 unused)
1546 {
1547 const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1548 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1549 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1550
1551 BUG_ON(!i915_is_ggtt(vma->vm));
1552 intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1553 vma->obj->has_global_gtt_mapping = 1;
1554 }
1555
1556 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1557 uint64_t start,
1558 uint64_t length,
1559 bool unused)
1560 {
1561 unsigned first_entry = start >> PAGE_SHIFT;
1562 unsigned num_entries = length >> PAGE_SHIFT;
1563 intel_gtt_clear_range(first_entry, num_entries);
1564 }
1565
1566 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1567 {
1568 const unsigned int first = vma->node.start >> PAGE_SHIFT;
1569 const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1570
1571 BUG_ON(!i915_is_ggtt(vma->vm));
1572 vma->obj->has_global_gtt_mapping = 0;
1573 intel_gtt_clear_range(first, size);
1574 }
1575
1576 static void ggtt_bind_vma(struct i915_vma *vma,
1577 enum i915_cache_level cache_level,
1578 u32 flags)
1579 {
1580 struct drm_device *dev = vma->vm->dev;
1581 struct drm_i915_private *dev_priv = dev->dev_private;
1582 struct drm_i915_gem_object *obj = vma->obj;
1583
1584 /* Currently applicable only to VLV */
1585 if (obj->gt_ro)
1586 flags |= PTE_READ_ONLY;
1587
1588 /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1589 * or we have a global mapping already but the cacheability flags have
1590 * changed, set the global PTEs.
1591 *
1592 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1593 * instead if none of the above hold true.
1594 *
1595 * NB: A global mapping should only be needed for special regions like
1596 * "gtt mappable", SNB errata, or if specified via special execbuf
1597 * flags. At all other times, the GPU will use the aliasing PPGTT.
1598 */
1599 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1600 if (!obj->has_global_gtt_mapping ||
1601 (cache_level != obj->cache_level)) {
1602 vma->vm->insert_entries(vma->vm, obj->pages,
1603 vma->node.start,
1604 cache_level, flags);
1605 obj->has_global_gtt_mapping = 1;
1606 }
1607 }
1608
1609 if (dev_priv->mm.aliasing_ppgtt &&
1610 (!obj->has_aliasing_ppgtt_mapping ||
1611 (cache_level != obj->cache_level))) {
1612 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1613 appgtt->base.insert_entries(&appgtt->base,
1614 vma->obj->pages,
1615 vma->node.start,
1616 cache_level, flags);
1617 vma->obj->has_aliasing_ppgtt_mapping = 1;
1618 }
1619 }
1620
1621 static void ggtt_unbind_vma(struct i915_vma *vma)
1622 {
1623 struct drm_device *dev = vma->vm->dev;
1624 struct drm_i915_private *dev_priv = dev->dev_private;
1625 struct drm_i915_gem_object *obj = vma->obj;
1626
1627 if (obj->has_global_gtt_mapping) {
1628 vma->vm->clear_range(vma->vm,
1629 vma->node.start,
1630 obj->base.size,
1631 true);
1632 obj->has_global_gtt_mapping = 0;
1633 }
1634
1635 if (obj->has_aliasing_ppgtt_mapping) {
1636 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1637 appgtt->base.clear_range(&appgtt->base,
1638 vma->node.start,
1639 obj->base.size,
1640 true);
1641 obj->has_aliasing_ppgtt_mapping = 0;
1642 }
1643 }
1644
1645 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1646 {
1647 struct drm_device *dev = obj->base.dev;
1648 struct drm_i915_private *dev_priv = dev->dev_private;
1649 bool interruptible;
1650
1651 interruptible = do_idling(dev_priv);
1652
1653 if (!obj->has_dma_mapping)
1654 dma_unmap_sg(&dev->pdev->dev,
1655 obj->pages->sgl, obj->pages->nents,
1656 PCI_DMA_BIDIRECTIONAL);
1657
1658 undo_idling(dev_priv, interruptible);
1659 }
1660
1661 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1662 unsigned long color,
1663 unsigned long *start,
1664 unsigned long *end)
1665 {
1666 if (node->color != color)
1667 *start += 4096;
1668
1669 if (!list_empty(&node->node_list)) {
1670 node = list_entry(node->node_list.next,
1671 struct drm_mm_node,
1672 node_list);
1673 if (node->allocated && node->color != color)
1674 *end -= 4096;
1675 }
1676 }
1677
1678 void i915_gem_setup_global_gtt(struct drm_device *dev,
1679 unsigned long start,
1680 unsigned long mappable_end,
1681 unsigned long end)
1682 {
1683 /* Let GEM Manage all of the aperture.
1684 *
1685 * However, leave one page at the end still bound to the scratch page.
1686 * There are a number of places where the hardware apparently prefetches
1687 * past the end of the object, and we've seen multiple hangs with the
1688 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1689 * aperture. One page should be enough to keep any prefetching inside
1690 * of the aperture.
1691 */
1692 struct drm_i915_private *dev_priv = dev->dev_private;
1693 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1694 struct drm_mm_node *entry;
1695 struct drm_i915_gem_object *obj;
1696 unsigned long hole_start, hole_end;
1697
1698 BUG_ON(mappable_end > end);
1699
1700 /* Subtract the guard page ... */
1701 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1702 if (!HAS_LLC(dev))
1703 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1704
1705 /* Mark any preallocated objects as occupied */
1706 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1707 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1708 int ret;
1709 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1710 i915_gem_obj_ggtt_offset(obj), obj->base.size);
1711
1712 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1713 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1714 if (ret)
1715 DRM_DEBUG_KMS("Reservation failed\n");
1716 obj->has_global_gtt_mapping = 1;
1717 }
1718
1719 dev_priv->gtt.base.start = start;
1720 dev_priv->gtt.base.total = end - start;
1721
1722 /* Clear any non-preallocated blocks */
1723 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1724 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1725 hole_start, hole_end);
1726 ggtt_vm->clear_range(ggtt_vm, hole_start,
1727 hole_end - hole_start, true);
1728 }
1729
1730 /* And finally clear the reserved guard page */
1731 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1732 }
1733
1734 void i915_gem_init_global_gtt(struct drm_device *dev)
1735 {
1736 struct drm_i915_private *dev_priv = dev->dev_private;
1737 unsigned long gtt_size, mappable_size;
1738
1739 gtt_size = dev_priv->gtt.base.total;
1740 mappable_size = dev_priv->gtt.mappable_end;
1741
1742 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1743 }
1744
1745 static int setup_scratch_page(struct drm_device *dev)
1746 {
1747 struct drm_i915_private *dev_priv = dev->dev_private;
1748 struct page *page;
1749 dma_addr_t dma_addr;
1750
1751 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1752 if (page == NULL)
1753 return -ENOMEM;
1754 get_page(page);
1755 set_pages_uc(page, 1);
1756
1757 #ifdef CONFIG_INTEL_IOMMU
1758 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1759 PCI_DMA_BIDIRECTIONAL);
1760 if (pci_dma_mapping_error(dev->pdev, dma_addr))
1761 return -EINVAL;
1762 #else
1763 dma_addr = page_to_phys(page);
1764 #endif
1765 dev_priv->gtt.base.scratch.page = page;
1766 dev_priv->gtt.base.scratch.addr = dma_addr;
1767
1768 return 0;
1769 }
1770
1771 static void teardown_scratch_page(struct drm_device *dev)
1772 {
1773 struct drm_i915_private *dev_priv = dev->dev_private;
1774 struct page *page = dev_priv->gtt.base.scratch.page;
1775
1776 set_pages_wb(page, 1);
1777 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1778 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1779 put_page(page);
1780 __free_page(page);
1781 }
1782
1783 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1784 {
1785 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1786 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1787 return snb_gmch_ctl << 20;
1788 }
1789
1790 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1791 {
1792 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1793 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1794 if (bdw_gmch_ctl)
1795 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1796
1797 #ifdef CONFIG_X86_32
1798 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
1799 if (bdw_gmch_ctl > 4)
1800 bdw_gmch_ctl = 4;
1801 #endif
1802
1803 return bdw_gmch_ctl << 20;
1804 }
1805
1806 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1807 {
1808 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1809 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1810
1811 if (gmch_ctrl)
1812 return 1 << (20 + gmch_ctrl);
1813
1814 return 0;
1815 }
1816
1817 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1818 {
1819 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1820 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1821 return snb_gmch_ctl << 25; /* 32 MB units */
1822 }
1823
1824 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1825 {
1826 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1827 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1828 return bdw_gmch_ctl << 25; /* 32 MB units */
1829 }
1830
1831 static size_t chv_get_stolen_size(u16 gmch_ctrl)
1832 {
1833 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
1834 gmch_ctrl &= SNB_GMCH_GMS_MASK;
1835
1836 /*
1837 * 0x0 to 0x10: 32MB increments starting at 0MB
1838 * 0x11 to 0x16: 4MB increments starting at 8MB
1839 * 0x17 to 0x1d: 4MB increments start at 36MB
1840 */
1841 if (gmch_ctrl < 0x11)
1842 return gmch_ctrl << 25;
1843 else if (gmch_ctrl < 0x17)
1844 return (gmch_ctrl - 0x11 + 2) << 22;
1845 else
1846 return (gmch_ctrl - 0x17 + 9) << 22;
1847 }
1848
1849 static int ggtt_probe_common(struct drm_device *dev,
1850 size_t gtt_size)
1851 {
1852 struct drm_i915_private *dev_priv = dev->dev_private;
1853 phys_addr_t gtt_phys_addr;
1854 int ret;
1855
1856 /* For Modern GENs the PTEs and register space are split in the BAR */
1857 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1858 (pci_resource_len(dev->pdev, 0) / 2);
1859
1860 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1861 if (!dev_priv->gtt.gsm) {
1862 DRM_ERROR("Failed to map the gtt page table\n");
1863 return -ENOMEM;
1864 }
1865
1866 ret = setup_scratch_page(dev);
1867 if (ret) {
1868 DRM_ERROR("Scratch setup failed\n");
1869 /* iounmap will also get called at remove, but meh */
1870 iounmap(dev_priv->gtt.gsm);
1871 }
1872
1873 return ret;
1874 }
1875
1876 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1877 * bits. When using advanced contexts each context stores its own PAT, but
1878 * writing this data shouldn't be harmful even in those cases. */
1879 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
1880 {
1881 uint64_t pat;
1882
1883 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
1884 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1885 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1886 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
1887 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1888 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1889 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1890 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1891
1892 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1893 * write would work. */
1894 I915_WRITE(GEN8_PRIVATE_PAT, pat);
1895 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1896 }
1897
1898 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
1899 {
1900 uint64_t pat;
1901
1902 /*
1903 * Map WB on BDW to snooped on CHV.
1904 *
1905 * Only the snoop bit has meaning for CHV, the rest is
1906 * ignored.
1907 *
1908 * Note that the harware enforces snooping for all page
1909 * table accesses. The snoop bit is actually ignored for
1910 * PDEs.
1911 */
1912 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1913 GEN8_PPAT(1, 0) |
1914 GEN8_PPAT(2, 0) |
1915 GEN8_PPAT(3, 0) |
1916 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1917 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1918 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1919 GEN8_PPAT(7, CHV_PPAT_SNOOP);
1920
1921 I915_WRITE(GEN8_PRIVATE_PAT, pat);
1922 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1923 }
1924
1925 static int gen8_gmch_probe(struct drm_device *dev,
1926 size_t *gtt_total,
1927 size_t *stolen,
1928 phys_addr_t *mappable_base,
1929 unsigned long *mappable_end)
1930 {
1931 struct drm_i915_private *dev_priv = dev->dev_private;
1932 unsigned int gtt_size;
1933 u16 snb_gmch_ctl;
1934 int ret;
1935
1936 /* TODO: We're not aware of mappable constraints on gen8 yet */
1937 *mappable_base = pci_resource_start(dev->pdev, 2);
1938 *mappable_end = pci_resource_len(dev->pdev, 2);
1939
1940 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1941 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1942
1943 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1944
1945 if (IS_CHERRYVIEW(dev)) {
1946 *stolen = chv_get_stolen_size(snb_gmch_ctl);
1947 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
1948 } else {
1949 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1950 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1951 }
1952
1953 *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1954
1955 if (IS_CHERRYVIEW(dev))
1956 chv_setup_private_ppat(dev_priv);
1957 else
1958 bdw_setup_private_ppat(dev_priv);
1959
1960 ret = ggtt_probe_common(dev, gtt_size);
1961
1962 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1963 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1964
1965 return ret;
1966 }
1967
1968 static int gen6_gmch_probe(struct drm_device *dev,
1969 size_t *gtt_total,
1970 size_t *stolen,
1971 phys_addr_t *mappable_base,
1972 unsigned long *mappable_end)
1973 {
1974 struct drm_i915_private *dev_priv = dev->dev_private;
1975 unsigned int gtt_size;
1976 u16 snb_gmch_ctl;
1977 int ret;
1978
1979 *mappable_base = pci_resource_start(dev->pdev, 2);
1980 *mappable_end = pci_resource_len(dev->pdev, 2);
1981
1982 /* 64/512MB is the current min/max we actually know of, but this is just
1983 * a coarse sanity check.
1984 */
1985 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1986 DRM_ERROR("Unknown GMADR size (%lx)\n",
1987 dev_priv->gtt.mappable_end);
1988 return -ENXIO;
1989 }
1990
1991 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1992 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1993 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1994
1995 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1996
1997 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1998 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1999
2000 ret = ggtt_probe_common(dev, gtt_size);
2001
2002 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2003 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2004
2005 return ret;
2006 }
2007
2008 static void gen6_gmch_remove(struct i915_address_space *vm)
2009 {
2010
2011 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2012
2013 if (drm_mm_initialized(&vm->mm)) {
2014 drm_mm_takedown(&vm->mm);
2015 list_del(&vm->global_link);
2016 }
2017 iounmap(gtt->gsm);
2018 teardown_scratch_page(vm->dev);
2019 }
2020
2021 static int i915_gmch_probe(struct drm_device *dev,
2022 size_t *gtt_total,
2023 size_t *stolen,
2024 phys_addr_t *mappable_base,
2025 unsigned long *mappable_end)
2026 {
2027 struct drm_i915_private *dev_priv = dev->dev_private;
2028 int ret;
2029
2030 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2031 if (!ret) {
2032 DRM_ERROR("failed to set up gmch\n");
2033 return -EIO;
2034 }
2035
2036 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2037
2038 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2039 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2040
2041 if (unlikely(dev_priv->gtt.do_idle_maps))
2042 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2043
2044 return 0;
2045 }
2046
2047 static void i915_gmch_remove(struct i915_address_space *vm)
2048 {
2049 if (drm_mm_initialized(&vm->mm)) {
2050 drm_mm_takedown(&vm->mm);
2051 list_del(&vm->global_link);
2052 }
2053 intel_gmch_remove();
2054 }
2055
2056 int i915_gem_gtt_init(struct drm_device *dev)
2057 {
2058 struct drm_i915_private *dev_priv = dev->dev_private;
2059 struct i915_gtt *gtt = &dev_priv->gtt;
2060 int ret;
2061
2062 if (INTEL_INFO(dev)->gen <= 5) {
2063 gtt->gtt_probe = i915_gmch_probe;
2064 gtt->base.cleanup = i915_gmch_remove;
2065 } else if (INTEL_INFO(dev)->gen < 8) {
2066 gtt->gtt_probe = gen6_gmch_probe;
2067 gtt->base.cleanup = gen6_gmch_remove;
2068 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2069 gtt->base.pte_encode = iris_pte_encode;
2070 else if (IS_HASWELL(dev))
2071 gtt->base.pte_encode = hsw_pte_encode;
2072 else if (IS_VALLEYVIEW(dev))
2073 gtt->base.pte_encode = byt_pte_encode;
2074 else if (INTEL_INFO(dev)->gen >= 7)
2075 gtt->base.pte_encode = ivb_pte_encode;
2076 else
2077 gtt->base.pte_encode = snb_pte_encode;
2078 } else {
2079 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2080 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2081 }
2082
2083 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2084 &gtt->mappable_base, &gtt->mappable_end);
2085 if (ret)
2086 return ret;
2087
2088 gtt->base.dev = dev;
2089
2090 /* GMADR is the PCI mmio aperture into the global GTT. */
2091 DRM_INFO("Memory usable by graphics device = %zdM\n",
2092 gtt->base.total >> 20);
2093 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2094 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2095 #ifdef CONFIG_INTEL_IOMMU
2096 if (intel_iommu_gfx_mapped)
2097 DRM_INFO("VT-d active for gfx access\n");
2098 #endif
2099 /*
2100 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2101 * user's requested state against the hardware/driver capabilities. We
2102 * do this now so that we can print out any log messages once rather
2103 * than every time we check intel_enable_ppgtt().
2104 */
2105 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2106 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2107
2108 return 0;
2109 }
2110
2111 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2112 struct i915_address_space *vm)
2113 {
2114 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2115 if (vma == NULL)
2116 return ERR_PTR(-ENOMEM);
2117
2118 INIT_LIST_HEAD(&vma->vma_link);
2119 INIT_LIST_HEAD(&vma->mm_list);
2120 INIT_LIST_HEAD(&vma->exec_list);
2121 vma->vm = vm;
2122 vma->obj = obj;
2123
2124 switch (INTEL_INFO(vm->dev)->gen) {
2125 case 8:
2126 case 7:
2127 case 6:
2128 if (i915_is_ggtt(vm)) {
2129 vma->unbind_vma = ggtt_unbind_vma;
2130 vma->bind_vma = ggtt_bind_vma;
2131 } else {
2132 vma->unbind_vma = ppgtt_unbind_vma;
2133 vma->bind_vma = ppgtt_bind_vma;
2134 }
2135 break;
2136 case 5:
2137 case 4:
2138 case 3:
2139 case 2:
2140 BUG_ON(!i915_is_ggtt(vm));
2141 vma->unbind_vma = i915_ggtt_unbind_vma;
2142 vma->bind_vma = i915_ggtt_bind_vma;
2143 break;
2144 default:
2145 BUG();
2146 }
2147
2148 /* Keep GGTT vmas first to make debug easier */
2149 if (i915_is_ggtt(vm))
2150 list_add(&vma->vma_link, &obj->vma_list);
2151 else
2152 list_add_tail(&vma->vma_link, &obj->vma_list);
2153
2154 return vma;
2155 }
2156
2157 struct i915_vma *
2158 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2159 struct i915_address_space *vm)
2160 {
2161 struct i915_vma *vma;
2162
2163 vma = i915_gem_obj_to_vma(obj, vm);
2164 if (!vma)
2165 vma = __i915_gem_vma_create(obj, vm);
2166
2167 return vma;
2168 }
This page took 0.073823 seconds and 6 git commands to generate.