drm/i915/bdw: Reorganize PT allocations
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/seq_file.h>
26 #include <drm/drmP.h>
27 #include <drm/i915_drm.h>
28 #include "i915_drv.h"
29 #include "i915_trace.h"
30 #include "intel_drv.h"
31
32 #define GEN6_PPGTT_PD_ENTRIES 512
33 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
34 typedef uint64_t gen8_gtt_pte_t;
35 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
36
37 /* PPGTT stuff */
38 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
39 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
40
41 #define GEN6_PDE_VALID (1 << 0)
42 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
43 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
44
45 #define GEN6_PTE_VALID (1 << 0)
46 #define GEN6_PTE_UNCACHED (1 << 1)
47 #define HSW_PTE_UNCACHED (0)
48 #define GEN6_PTE_CACHE_LLC (2 << 1)
49 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
50 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
51 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
52
53 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
54 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
55 */
56 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
57 (((bits) & 0x8) << (11 - 3)))
58 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
59 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
60 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
61 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
62 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
63 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
64
65 #define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
66 #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
67
68 /* GEN8 legacy style addressis defined as a 3 level page table:
69 * 31:30 | 29:21 | 20:12 | 11:0
70 * PDPE | PDE | PTE | offset
71 * The difference as compared to normal x86 3 level page table is the PDPEs are
72 * programmed via register.
73 */
74 #define GEN8_PDPE_SHIFT 30
75 #define GEN8_PDPE_MASK 0x3
76 #define GEN8_PDE_SHIFT 21
77 #define GEN8_PDE_MASK 0x1ff
78 #define GEN8_PTE_SHIFT 12
79 #define GEN8_PTE_MASK 0x1ff
80
81 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
82 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
83 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
84 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
85
86 static void ppgtt_bind_vma(struct i915_vma *vma,
87 enum i915_cache_level cache_level,
88 u32 flags);
89 static void ppgtt_unbind_vma(struct i915_vma *vma);
90 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
91
92 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
93 enum i915_cache_level level,
94 bool valid)
95 {
96 gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
97 pte |= addr;
98 if (level != I915_CACHE_NONE)
99 pte |= PPAT_CACHED_INDEX;
100 else
101 pte |= PPAT_UNCACHED_INDEX;
102 return pte;
103 }
104
105 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
106 dma_addr_t addr,
107 enum i915_cache_level level)
108 {
109 gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
110 pde |= addr;
111 if (level != I915_CACHE_NONE)
112 pde |= PPAT_CACHED_PDE_INDEX;
113 else
114 pde |= PPAT_UNCACHED_INDEX;
115 return pde;
116 }
117
118 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
119 enum i915_cache_level level,
120 bool valid)
121 {
122 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
123 pte |= GEN6_PTE_ADDR_ENCODE(addr);
124
125 switch (level) {
126 case I915_CACHE_L3_LLC:
127 case I915_CACHE_LLC:
128 pte |= GEN6_PTE_CACHE_LLC;
129 break;
130 case I915_CACHE_NONE:
131 pte |= GEN6_PTE_UNCACHED;
132 break;
133 default:
134 WARN_ON(1);
135 }
136
137 return pte;
138 }
139
140 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
141 enum i915_cache_level level,
142 bool valid)
143 {
144 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
145 pte |= GEN6_PTE_ADDR_ENCODE(addr);
146
147 switch (level) {
148 case I915_CACHE_L3_LLC:
149 pte |= GEN7_PTE_CACHE_L3_LLC;
150 break;
151 case I915_CACHE_LLC:
152 pte |= GEN6_PTE_CACHE_LLC;
153 break;
154 case I915_CACHE_NONE:
155 pte |= GEN6_PTE_UNCACHED;
156 break;
157 default:
158 WARN_ON(1);
159 }
160
161 return pte;
162 }
163
164 #define BYT_PTE_WRITEABLE (1 << 1)
165 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
166
167 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
168 enum i915_cache_level level,
169 bool valid)
170 {
171 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
172 pte |= GEN6_PTE_ADDR_ENCODE(addr);
173
174 /* Mark the page as writeable. Other platforms don't have a
175 * setting for read-only/writable, so this matches that behavior.
176 */
177 pte |= BYT_PTE_WRITEABLE;
178
179 if (level != I915_CACHE_NONE)
180 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
181
182 return pte;
183 }
184
185 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
186 enum i915_cache_level level,
187 bool valid)
188 {
189 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
190 pte |= HSW_PTE_ADDR_ENCODE(addr);
191
192 if (level != I915_CACHE_NONE)
193 pte |= HSW_WB_LLC_AGE3;
194
195 return pte;
196 }
197
198 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
199 enum i915_cache_level level,
200 bool valid)
201 {
202 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
203 pte |= HSW_PTE_ADDR_ENCODE(addr);
204
205 switch (level) {
206 case I915_CACHE_NONE:
207 break;
208 case I915_CACHE_WT:
209 pte |= HSW_WT_ELLC_LLC_AGE3;
210 break;
211 default:
212 pte |= HSW_WB_ELLC_LLC_AGE3;
213 break;
214 }
215
216 return pte;
217 }
218
219 /* Broadwell Page Directory Pointer Descriptors */
220 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
221 uint64_t val, bool synchronous)
222 {
223 struct drm_i915_private *dev_priv = ring->dev->dev_private;
224 int ret;
225
226 BUG_ON(entry >= 4);
227
228 if (synchronous) {
229 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
230 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
231 return 0;
232 }
233
234 ret = intel_ring_begin(ring, 6);
235 if (ret)
236 return ret;
237
238 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
239 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
240 intel_ring_emit(ring, (u32)(val >> 32));
241 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
242 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
243 intel_ring_emit(ring, (u32)(val));
244 intel_ring_advance(ring);
245
246 return 0;
247 }
248
249 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
250 struct intel_ring_buffer *ring,
251 bool synchronous)
252 {
253 int i, ret;
254
255 /* bit of a hack to find the actual last used pd */
256 int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
257
258 for (i = used_pd - 1; i >= 0; i--) {
259 dma_addr_t addr = ppgtt->pd_dma_addr[i];
260 ret = gen8_write_pdp(ring, i, addr, synchronous);
261 if (ret)
262 return ret;
263 }
264
265 return 0;
266 }
267
268 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
269 uint64_t start,
270 uint64_t length,
271 bool use_scratch)
272 {
273 struct i915_hw_ppgtt *ppgtt =
274 container_of(vm, struct i915_hw_ppgtt, base);
275 gen8_gtt_pte_t *pt_vaddr, scratch_pte;
276 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
277 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
278 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
279 unsigned num_entries = length >> PAGE_SHIFT;
280 unsigned last_pte, i;
281
282 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
283 I915_CACHE_LLC, use_scratch);
284
285 while (num_entries) {
286 struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
287
288 last_pte = pte + num_entries;
289 if (last_pte > GEN8_PTES_PER_PAGE)
290 last_pte = GEN8_PTES_PER_PAGE;
291
292 pt_vaddr = kmap_atomic(page_table);
293
294 for (i = pte; i < last_pte; i++) {
295 pt_vaddr[i] = scratch_pte;
296 num_entries--;
297 }
298
299 kunmap_atomic(pt_vaddr);
300
301 pte = 0;
302 if (++pde == GEN8_PDES_PER_PAGE) {
303 pdpe++;
304 pde = 0;
305 }
306 }
307 }
308
309 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
310 struct sg_table *pages,
311 uint64_t start,
312 enum i915_cache_level cache_level)
313 {
314 struct i915_hw_ppgtt *ppgtt =
315 container_of(vm, struct i915_hw_ppgtt, base);
316 gen8_gtt_pte_t *pt_vaddr;
317 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
318 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
319 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
320 struct sg_page_iter sg_iter;
321
322 pt_vaddr = NULL;
323
324 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
325 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
326 break;
327
328 if (pt_vaddr == NULL)
329 pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
330
331 pt_vaddr[pte] =
332 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
333 cache_level, true);
334 if (++pte == GEN8_PTES_PER_PAGE) {
335 kunmap_atomic(pt_vaddr);
336 pt_vaddr = NULL;
337 if (++pde == GEN8_PDES_PER_PAGE) {
338 pdpe++;
339 pde = 0;
340 }
341 pte = 0;
342 }
343 }
344 if (pt_vaddr)
345 kunmap_atomic(pt_vaddr);
346 }
347
348 static void gen8_free_page_tables(struct page **pt_pages)
349 {
350 int i;
351
352 if (pt_pages == NULL)
353 return;
354
355 for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
356 if (pt_pages[i])
357 __free_pages(pt_pages[i], 0);
358 }
359
360 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
361 {
362 int i;
363
364 for (i = 0; i < ppgtt->num_pd_pages; i++) {
365 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
366 kfree(ppgtt->gen8_pt_pages[i]);
367 kfree(ppgtt->gen8_pt_dma_addr[i]);
368 }
369
370 __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
371 }
372
373 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
374 {
375 struct pci_dev *hwdev = ppgtt->base.dev->pdev;
376 int i, j;
377
378 for (i = 0; i < ppgtt->num_pd_pages; i++) {
379 /* TODO: In the future we'll support sparse mappings, so this
380 * will have to change. */
381 if (!ppgtt->pd_dma_addr[i])
382 continue;
383
384 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
385 PCI_DMA_BIDIRECTIONAL);
386
387 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
388 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
389 if (addr)
390 pci_unmap_page(hwdev, addr, PAGE_SIZE,
391 PCI_DMA_BIDIRECTIONAL);
392 }
393 }
394 }
395
396 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
397 {
398 struct i915_hw_ppgtt *ppgtt =
399 container_of(vm, struct i915_hw_ppgtt, base);
400
401 list_del(&vm->global_link);
402 drm_mm_takedown(&vm->mm);
403
404 gen8_ppgtt_unmap_pages(ppgtt);
405 gen8_ppgtt_free(ppgtt);
406 }
407
408 static struct page **__gen8_alloc_page_tables(void)
409 {
410 struct page **pt_pages;
411 int i;
412
413 pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
414 if (!pt_pages)
415 return ERR_PTR(-ENOMEM);
416
417 for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
418 pt_pages[i] = alloc_page(GFP_KERNEL);
419 if (!pt_pages[i])
420 goto bail;
421 }
422
423 return pt_pages;
424
425 bail:
426 gen8_free_page_tables(pt_pages);
427 kfree(pt_pages);
428 return ERR_PTR(-ENOMEM);
429 }
430
431 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
432 const int max_pdp)
433 {
434 struct page **pt_pages[GEN8_LEGACY_PDPS];
435 const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
436 int i, ret;
437
438 for (i = 0; i < max_pdp; i++) {
439 pt_pages[i] = __gen8_alloc_page_tables();
440 if (IS_ERR(pt_pages[i])) {
441 ret = PTR_ERR(pt_pages[i]);
442 goto unwind_out;
443 }
444 }
445
446 /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
447 * "atomic" - for cleanup purposes.
448 */
449 for (i = 0; i < max_pdp; i++)
450 ppgtt->gen8_pt_pages[i] = pt_pages[i];
451
452 ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
453
454 return 0;
455
456 unwind_out:
457 while (i--) {
458 gen8_free_page_tables(pt_pages[i]);
459 kfree(pt_pages[i]);
460 }
461
462 return ret;
463 }
464
465 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
466 {
467 int i;
468
469 for (i = 0; i < ppgtt->num_pd_pages; i++) {
470 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
471 sizeof(dma_addr_t),
472 GFP_KERNEL);
473 if (!ppgtt->gen8_pt_dma_addr[i])
474 return -ENOMEM;
475 }
476
477 return 0;
478 }
479
480 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
481 const int max_pdp)
482 {
483 ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
484 if (!ppgtt->pd_pages)
485 return -ENOMEM;
486
487 ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
488 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
489
490 return 0;
491 }
492
493 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
494 const int max_pdp)
495 {
496 int ret;
497
498 ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
499 if (ret)
500 return ret;
501
502 ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
503 if (ret) {
504 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
505 return ret;
506 }
507
508 ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
509
510 ret = gen8_ppgtt_allocate_dma(ppgtt);
511 if (ret)
512 gen8_ppgtt_free(ppgtt);
513
514 return ret;
515 }
516
517 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
518 const int pd)
519 {
520 dma_addr_t pd_addr;
521 int ret;
522
523 pd_addr = pci_map_page(ppgtt->base.dev->pdev,
524 &ppgtt->pd_pages[pd], 0,
525 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
526
527 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
528 if (ret)
529 return ret;
530
531 ppgtt->pd_dma_addr[pd] = pd_addr;
532
533 return 0;
534 }
535
536 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
537 const int pd,
538 const int pt)
539 {
540 dma_addr_t pt_addr;
541 struct page *p;
542 int ret;
543
544 p = ppgtt->gen8_pt_pages[pd][pt];
545 pt_addr = pci_map_page(ppgtt->base.dev->pdev,
546 p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
547 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
548 if (ret)
549 return ret;
550
551 ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
552
553 return 0;
554 }
555
556 /**
557 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
558 * with a net effect resembling a 2-level page table in normal x86 terms. Each
559 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
560 * space.
561 *
562 * FIXME: split allocation into smaller pieces. For now we only ever do this
563 * once, but with full PPGTT, the multiple contiguous allocations will be bad.
564 * TODO: Do something with the size parameter
565 */
566 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
567 {
568 const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
569 const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
570 int i, j, ret;
571
572 if (size % (1<<30))
573 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
574
575 /* 1. Do all our allocations for page directories and page tables. */
576 ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
577 if (ret)
578 return ret;
579
580 /*
581 * 2. Create DMA mappings for the page directories and page tables.
582 */
583 for (i = 0; i < max_pdp; i++) {
584 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
585 if (ret)
586 goto bail;
587
588 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
589 ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
590 if (ret)
591 goto bail;
592 }
593 }
594
595 /*
596 * 3. Map all the page directory entires to point to the page tables
597 * we've allocated.
598 *
599 * For now, the PPGTT helper functions all require that the PDEs are
600 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
601 * will never need to touch the PDEs again.
602 */
603 for (i = 0; i < max_pdp; i++) {
604 gen8_ppgtt_pde_t *pd_vaddr;
605 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
606 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
607 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
608 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
609 I915_CACHE_LLC);
610 }
611 kunmap_atomic(pd_vaddr);
612 }
613
614 ppgtt->enable = gen8_ppgtt_enable;
615 ppgtt->switch_mm = gen8_mm_switch;
616 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
617 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
618 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
619 ppgtt->base.start = 0;
620 ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
621
622 ppgtt->base.clear_range(&ppgtt->base, 0,
623 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE,
624 true);
625
626 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
627 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
628 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
629 ppgtt->num_pt_pages,
630 (ppgtt->num_pt_pages - min_pt_pages) +
631 size % (1<<30));
632 return 0;
633
634 bail:
635 gen8_ppgtt_unmap_pages(ppgtt);
636 gen8_ppgtt_free(ppgtt);
637 return ret;
638 }
639
640 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
641 {
642 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
643 struct i915_address_space *vm = &ppgtt->base;
644 gen6_gtt_pte_t __iomem *pd_addr;
645 gen6_gtt_pte_t scratch_pte;
646 uint32_t pd_entry;
647 int pte, pde;
648
649 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
650
651 pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
652 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
653
654 seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm,
655 ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
656 for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
657 u32 expected;
658 gen6_gtt_pte_t *pt_vaddr;
659 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
660 pd_entry = readl(pd_addr + pde);
661 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
662
663 if (pd_entry != expected)
664 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
665 pde,
666 pd_entry,
667 expected);
668 seq_printf(m, "\tPDE: %x\n", pd_entry);
669
670 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
671 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
672 unsigned long va =
673 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
674 (pte * PAGE_SIZE);
675 int i;
676 bool found = false;
677 for (i = 0; i < 4; i++)
678 if (pt_vaddr[pte + i] != scratch_pte)
679 found = true;
680 if (!found)
681 continue;
682
683 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
684 for (i = 0; i < 4; i++) {
685 if (pt_vaddr[pte + i] != scratch_pte)
686 seq_printf(m, " %08x", pt_vaddr[pte + i]);
687 else
688 seq_puts(m, " SCRATCH ");
689 }
690 seq_puts(m, "\n");
691 }
692 kunmap_atomic(pt_vaddr);
693 }
694 }
695
696 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
697 {
698 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
699 gen6_gtt_pte_t __iomem *pd_addr;
700 uint32_t pd_entry;
701 int i;
702
703 WARN_ON(ppgtt->pd_offset & 0x3f);
704 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
705 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
706 for (i = 0; i < ppgtt->num_pd_entries; i++) {
707 dma_addr_t pt_addr;
708
709 pt_addr = ppgtt->pt_dma_addr[i];
710 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
711 pd_entry |= GEN6_PDE_VALID;
712
713 writel(pd_entry, pd_addr + i);
714 }
715 readl(pd_addr);
716 }
717
718 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
719 {
720 BUG_ON(ppgtt->pd_offset & 0x3f);
721
722 return (ppgtt->pd_offset / 64) << 16;
723 }
724
725 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
726 struct intel_ring_buffer *ring,
727 bool synchronous)
728 {
729 struct drm_device *dev = ppgtt->base.dev;
730 struct drm_i915_private *dev_priv = dev->dev_private;
731 int ret;
732
733 /* If we're in reset, we can assume the GPU is sufficiently idle to
734 * manually frob these bits. Ideally we could use the ring functions,
735 * except our error handling makes it quite difficult (can't use
736 * intel_ring_begin, ring->flush, or intel_ring_advance)
737 *
738 * FIXME: We should try not to special case reset
739 */
740 if (synchronous ||
741 i915_reset_in_progress(&dev_priv->gpu_error)) {
742 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
743 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
744 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
745 POSTING_READ(RING_PP_DIR_BASE(ring));
746 return 0;
747 }
748
749 /* NB: TLBs must be flushed and invalidated before a switch */
750 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
751 if (ret)
752 return ret;
753
754 ret = intel_ring_begin(ring, 6);
755 if (ret)
756 return ret;
757
758 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
759 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
760 intel_ring_emit(ring, PP_DIR_DCLV_2G);
761 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
762 intel_ring_emit(ring, get_pd_offset(ppgtt));
763 intel_ring_emit(ring, MI_NOOP);
764 intel_ring_advance(ring);
765
766 return 0;
767 }
768
769 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
770 struct intel_ring_buffer *ring,
771 bool synchronous)
772 {
773 struct drm_device *dev = ppgtt->base.dev;
774 struct drm_i915_private *dev_priv = dev->dev_private;
775 int ret;
776
777 /* If we're in reset, we can assume the GPU is sufficiently idle to
778 * manually frob these bits. Ideally we could use the ring functions,
779 * except our error handling makes it quite difficult (can't use
780 * intel_ring_begin, ring->flush, or intel_ring_advance)
781 *
782 * FIXME: We should try not to special case reset
783 */
784 if (synchronous ||
785 i915_reset_in_progress(&dev_priv->gpu_error)) {
786 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
787 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
788 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
789 POSTING_READ(RING_PP_DIR_BASE(ring));
790 return 0;
791 }
792
793 /* NB: TLBs must be flushed and invalidated before a switch */
794 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
795 if (ret)
796 return ret;
797
798 ret = intel_ring_begin(ring, 6);
799 if (ret)
800 return ret;
801
802 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
803 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
804 intel_ring_emit(ring, PP_DIR_DCLV_2G);
805 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
806 intel_ring_emit(ring, get_pd_offset(ppgtt));
807 intel_ring_emit(ring, MI_NOOP);
808 intel_ring_advance(ring);
809
810 /* XXX: RCS is the only one to auto invalidate the TLBs? */
811 if (ring->id != RCS) {
812 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
813 if (ret)
814 return ret;
815 }
816
817 return 0;
818 }
819
820 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
821 struct intel_ring_buffer *ring,
822 bool synchronous)
823 {
824 struct drm_device *dev = ppgtt->base.dev;
825 struct drm_i915_private *dev_priv = dev->dev_private;
826
827 if (!synchronous)
828 return 0;
829
830 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
831 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
832
833 POSTING_READ(RING_PP_DIR_DCLV(ring));
834
835 return 0;
836 }
837
838 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
839 {
840 struct drm_device *dev = ppgtt->base.dev;
841 struct drm_i915_private *dev_priv = dev->dev_private;
842 struct intel_ring_buffer *ring;
843 int j, ret;
844
845 for_each_ring(ring, dev_priv, j) {
846 I915_WRITE(RING_MODE_GEN7(ring),
847 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
848
849 /* We promise to do a switch later with FULL PPGTT. If this is
850 * aliasing, this is the one and only switch we'll do */
851 if (USES_FULL_PPGTT(dev))
852 continue;
853
854 ret = ppgtt->switch_mm(ppgtt, ring, true);
855 if (ret)
856 goto err_out;
857 }
858
859 return 0;
860
861 err_out:
862 for_each_ring(ring, dev_priv, j)
863 I915_WRITE(RING_MODE_GEN7(ring),
864 _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
865 return ret;
866 }
867
868 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
869 {
870 struct drm_device *dev = ppgtt->base.dev;
871 drm_i915_private_t *dev_priv = dev->dev_private;
872 struct intel_ring_buffer *ring;
873 uint32_t ecochk, ecobits;
874 int i;
875
876 ecobits = I915_READ(GAC_ECO_BITS);
877 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
878
879 ecochk = I915_READ(GAM_ECOCHK);
880 if (IS_HASWELL(dev)) {
881 ecochk |= ECOCHK_PPGTT_WB_HSW;
882 } else {
883 ecochk |= ECOCHK_PPGTT_LLC_IVB;
884 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
885 }
886 I915_WRITE(GAM_ECOCHK, ecochk);
887
888 for_each_ring(ring, dev_priv, i) {
889 int ret;
890 /* GFX_MODE is per-ring on gen7+ */
891 I915_WRITE(RING_MODE_GEN7(ring),
892 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
893
894 /* We promise to do a switch later with FULL PPGTT. If this is
895 * aliasing, this is the one and only switch we'll do */
896 if (USES_FULL_PPGTT(dev))
897 continue;
898
899 ret = ppgtt->switch_mm(ppgtt, ring, true);
900 if (ret)
901 return ret;
902 }
903
904 return 0;
905 }
906
907 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
908 {
909 struct drm_device *dev = ppgtt->base.dev;
910 drm_i915_private_t *dev_priv = dev->dev_private;
911 struct intel_ring_buffer *ring;
912 uint32_t ecochk, gab_ctl, ecobits;
913 int i;
914
915 ecobits = I915_READ(GAC_ECO_BITS);
916 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
917 ECOBITS_PPGTT_CACHE64B);
918
919 gab_ctl = I915_READ(GAB_CTL);
920 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
921
922 ecochk = I915_READ(GAM_ECOCHK);
923 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
924
925 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
926
927 for_each_ring(ring, dev_priv, i) {
928 int ret = ppgtt->switch_mm(ppgtt, ring, true);
929 if (ret)
930 return ret;
931 }
932
933 return 0;
934 }
935
936 /* PPGTT support for Sandybdrige/Gen6 and later */
937 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
938 uint64_t start,
939 uint64_t length,
940 bool use_scratch)
941 {
942 struct i915_hw_ppgtt *ppgtt =
943 container_of(vm, struct i915_hw_ppgtt, base);
944 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
945 unsigned first_entry = start >> PAGE_SHIFT;
946 unsigned num_entries = length >> PAGE_SHIFT;
947 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
948 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
949 unsigned last_pte, i;
950
951 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
952
953 while (num_entries) {
954 last_pte = first_pte + num_entries;
955 if (last_pte > I915_PPGTT_PT_ENTRIES)
956 last_pte = I915_PPGTT_PT_ENTRIES;
957
958 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
959
960 for (i = first_pte; i < last_pte; i++)
961 pt_vaddr[i] = scratch_pte;
962
963 kunmap_atomic(pt_vaddr);
964
965 num_entries -= last_pte - first_pte;
966 first_pte = 0;
967 act_pt++;
968 }
969 }
970
971 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
972 struct sg_table *pages,
973 uint64_t start,
974 enum i915_cache_level cache_level)
975 {
976 struct i915_hw_ppgtt *ppgtt =
977 container_of(vm, struct i915_hw_ppgtt, base);
978 gen6_gtt_pte_t *pt_vaddr;
979 unsigned first_entry = start >> PAGE_SHIFT;
980 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
981 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
982 struct sg_page_iter sg_iter;
983
984 pt_vaddr = NULL;
985 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
986 if (pt_vaddr == NULL)
987 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
988
989 pt_vaddr[act_pte] =
990 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
991 cache_level, true);
992 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
993 kunmap_atomic(pt_vaddr);
994 pt_vaddr = NULL;
995 act_pt++;
996 act_pte = 0;
997 }
998 }
999 if (pt_vaddr)
1000 kunmap_atomic(pt_vaddr);
1001 }
1002
1003 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1004 {
1005 struct i915_hw_ppgtt *ppgtt =
1006 container_of(vm, struct i915_hw_ppgtt, base);
1007 int i;
1008
1009 list_del(&vm->global_link);
1010 drm_mm_takedown(&ppgtt->base.mm);
1011 drm_mm_remove_node(&ppgtt->node);
1012
1013 if (ppgtt->pt_dma_addr) {
1014 for (i = 0; i < ppgtt->num_pd_entries; i++)
1015 pci_unmap_page(ppgtt->base.dev->pdev,
1016 ppgtt->pt_dma_addr[i],
1017 4096, PCI_DMA_BIDIRECTIONAL);
1018 }
1019
1020 kfree(ppgtt->pt_dma_addr);
1021 for (i = 0; i < ppgtt->num_pd_entries; i++)
1022 __free_page(ppgtt->pt_pages[i]);
1023 kfree(ppgtt->pt_pages);
1024 }
1025
1026 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1027 {
1028 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
1029 #define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
1030 struct drm_device *dev = ppgtt->base.dev;
1031 struct drm_i915_private *dev_priv = dev->dev_private;
1032 bool retried = false;
1033 int i, ret;
1034
1035 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1036 * allocator works in address space sizes, so it's multiplied by page
1037 * size. We allocate at the top of the GTT to avoid fragmentation.
1038 */
1039 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1040 alloc:
1041 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1042 &ppgtt->node, GEN6_PD_SIZE,
1043 GEN6_PD_ALIGN, 0,
1044 0, dev_priv->gtt.base.total,
1045 DRM_MM_SEARCH_DEFAULT);
1046 if (ret == -ENOSPC && !retried) {
1047 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1048 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1049 I915_CACHE_NONE, 0);
1050 if (ret)
1051 return ret;
1052
1053 retried = true;
1054 goto alloc;
1055 }
1056
1057 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1058 DRM_DEBUG("Forced to use aperture for PDEs\n");
1059
1060 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1061 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1062 if (IS_GEN6(dev)) {
1063 ppgtt->enable = gen6_ppgtt_enable;
1064 ppgtt->switch_mm = gen6_mm_switch;
1065 } else if (IS_HASWELL(dev)) {
1066 ppgtt->enable = gen7_ppgtt_enable;
1067 ppgtt->switch_mm = hsw_mm_switch;
1068 } else if (IS_GEN7(dev)) {
1069 ppgtt->enable = gen7_ppgtt_enable;
1070 ppgtt->switch_mm = gen7_mm_switch;
1071 } else
1072 BUG();
1073 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1074 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1075 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1076 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1077 ppgtt->base.start = 0;
1078 ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1079 ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1080 GFP_KERNEL);
1081 if (!ppgtt->pt_pages) {
1082 drm_mm_remove_node(&ppgtt->node);
1083 return -ENOMEM;
1084 }
1085
1086 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1087 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1088 if (!ppgtt->pt_pages[i])
1089 goto err_pt_alloc;
1090 }
1091
1092 ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1093 GFP_KERNEL);
1094 if (!ppgtt->pt_dma_addr)
1095 goto err_pt_alloc;
1096
1097 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1098 dma_addr_t pt_addr;
1099
1100 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1101 PCI_DMA_BIDIRECTIONAL);
1102
1103 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1104 ret = -EIO;
1105 goto err_pd_pin;
1106
1107 }
1108 ppgtt->pt_dma_addr[i] = pt_addr;
1109 }
1110
1111 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1112 ppgtt->debug_dump = gen6_dump_ppgtt;
1113
1114 DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1115 ppgtt->node.size >> 20,
1116 ppgtt->node.start / PAGE_SIZE);
1117 ppgtt->pd_offset =
1118 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1119
1120 return 0;
1121
1122 err_pd_pin:
1123 if (ppgtt->pt_dma_addr) {
1124 for (i--; i >= 0; i--)
1125 pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
1126 4096, PCI_DMA_BIDIRECTIONAL);
1127 }
1128 err_pt_alloc:
1129 kfree(ppgtt->pt_dma_addr);
1130 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1131 if (ppgtt->pt_pages[i])
1132 __free_page(ppgtt->pt_pages[i]);
1133 }
1134 kfree(ppgtt->pt_pages);
1135 drm_mm_remove_node(&ppgtt->node);
1136
1137 return ret;
1138 }
1139
1140 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1141 {
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1143 int ret = 0;
1144
1145 ppgtt->base.dev = dev;
1146
1147 if (INTEL_INFO(dev)->gen < 8)
1148 ret = gen6_ppgtt_init(ppgtt);
1149 else if (IS_GEN8(dev))
1150 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1151 else
1152 BUG();
1153
1154 if (!ret) {
1155 struct drm_i915_private *dev_priv = dev->dev_private;
1156 kref_init(&ppgtt->ref);
1157 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1158 ppgtt->base.total);
1159 i915_init_vm(dev_priv, &ppgtt->base);
1160 if (INTEL_INFO(dev)->gen < 8) {
1161 gen6_write_pdes(ppgtt);
1162 DRM_DEBUG("Adding PPGTT at offset %x\n",
1163 ppgtt->pd_offset << 10);
1164 }
1165 }
1166
1167 return ret;
1168 }
1169
1170 static void
1171 ppgtt_bind_vma(struct i915_vma *vma,
1172 enum i915_cache_level cache_level,
1173 u32 flags)
1174 {
1175 WARN_ON(flags);
1176
1177 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1178 cache_level);
1179 }
1180
1181 static void ppgtt_unbind_vma(struct i915_vma *vma)
1182 {
1183 vma->vm->clear_range(vma->vm,
1184 vma->node.start,
1185 vma->obj->base.size,
1186 true);
1187 }
1188
1189 extern int intel_iommu_gfx_mapped;
1190 /* Certain Gen5 chipsets require require idling the GPU before
1191 * unmapping anything from the GTT when VT-d is enabled.
1192 */
1193 static inline bool needs_idle_maps(struct drm_device *dev)
1194 {
1195 #ifdef CONFIG_INTEL_IOMMU
1196 /* Query intel_iommu to see if we need the workaround. Presumably that
1197 * was loaded first.
1198 */
1199 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1200 return true;
1201 #endif
1202 return false;
1203 }
1204
1205 static bool do_idling(struct drm_i915_private *dev_priv)
1206 {
1207 bool ret = dev_priv->mm.interruptible;
1208
1209 if (unlikely(dev_priv->gtt.do_idle_maps)) {
1210 dev_priv->mm.interruptible = false;
1211 if (i915_gpu_idle(dev_priv->dev)) {
1212 DRM_ERROR("Couldn't idle GPU\n");
1213 /* Wait a bit, in hopes it avoids the hang */
1214 udelay(10);
1215 }
1216 }
1217
1218 return ret;
1219 }
1220
1221 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1222 {
1223 if (unlikely(dev_priv->gtt.do_idle_maps))
1224 dev_priv->mm.interruptible = interruptible;
1225 }
1226
1227 void i915_check_and_clear_faults(struct drm_device *dev)
1228 {
1229 struct drm_i915_private *dev_priv = dev->dev_private;
1230 struct intel_ring_buffer *ring;
1231 int i;
1232
1233 if (INTEL_INFO(dev)->gen < 6)
1234 return;
1235
1236 for_each_ring(ring, dev_priv, i) {
1237 u32 fault_reg;
1238 fault_reg = I915_READ(RING_FAULT_REG(ring));
1239 if (fault_reg & RING_FAULT_VALID) {
1240 DRM_DEBUG_DRIVER("Unexpected fault\n"
1241 "\tAddr: 0x%08lx\\n"
1242 "\tAddress space: %s\n"
1243 "\tSource ID: %d\n"
1244 "\tType: %d\n",
1245 fault_reg & PAGE_MASK,
1246 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1247 RING_FAULT_SRCID(fault_reg),
1248 RING_FAULT_FAULT_TYPE(fault_reg));
1249 I915_WRITE(RING_FAULT_REG(ring),
1250 fault_reg & ~RING_FAULT_VALID);
1251 }
1252 }
1253 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1254 }
1255
1256 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1257 {
1258 struct drm_i915_private *dev_priv = dev->dev_private;
1259
1260 /* Don't bother messing with faults pre GEN6 as we have little
1261 * documentation supporting that it's a good idea.
1262 */
1263 if (INTEL_INFO(dev)->gen < 6)
1264 return;
1265
1266 i915_check_and_clear_faults(dev);
1267
1268 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1269 dev_priv->gtt.base.start,
1270 dev_priv->gtt.base.total,
1271 false);
1272 }
1273
1274 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1275 {
1276 struct drm_i915_private *dev_priv = dev->dev_private;
1277 struct drm_i915_gem_object *obj;
1278 struct i915_address_space *vm;
1279
1280 i915_check_and_clear_faults(dev);
1281
1282 /* First fill our portion of the GTT with scratch pages */
1283 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1284 dev_priv->gtt.base.start,
1285 dev_priv->gtt.base.total,
1286 true);
1287
1288 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1289 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1290 &dev_priv->gtt.base);
1291 if (!vma)
1292 continue;
1293
1294 i915_gem_clflush_object(obj, obj->pin_display);
1295 /* The bind_vma code tries to be smart about tracking mappings.
1296 * Unfortunately above, we've just wiped out the mappings
1297 * without telling our object about it. So we need to fake it.
1298 */
1299 obj->has_global_gtt_mapping = 0;
1300 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1301 }
1302
1303
1304 if (INTEL_INFO(dev)->gen >= 8)
1305 return;
1306
1307 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1308 /* TODO: Perhaps it shouldn't be gen6 specific */
1309 if (i915_is_ggtt(vm)) {
1310 if (dev_priv->mm.aliasing_ppgtt)
1311 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1312 continue;
1313 }
1314
1315 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1316 }
1317
1318 i915_gem_chipset_flush(dev);
1319 }
1320
1321 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1322 {
1323 if (obj->has_dma_mapping)
1324 return 0;
1325
1326 if (!dma_map_sg(&obj->base.dev->pdev->dev,
1327 obj->pages->sgl, obj->pages->nents,
1328 PCI_DMA_BIDIRECTIONAL))
1329 return -ENOSPC;
1330
1331 return 0;
1332 }
1333
1334 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1335 {
1336 #ifdef writeq
1337 writeq(pte, addr);
1338 #else
1339 iowrite32((u32)pte, addr);
1340 iowrite32(pte >> 32, addr + 4);
1341 #endif
1342 }
1343
1344 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1345 struct sg_table *st,
1346 uint64_t start,
1347 enum i915_cache_level level)
1348 {
1349 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1350 unsigned first_entry = start >> PAGE_SHIFT;
1351 gen8_gtt_pte_t __iomem *gtt_entries =
1352 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1353 int i = 0;
1354 struct sg_page_iter sg_iter;
1355 dma_addr_t addr;
1356
1357 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1358 addr = sg_dma_address(sg_iter.sg) +
1359 (sg_iter.sg_pgoffset << PAGE_SHIFT);
1360 gen8_set_pte(&gtt_entries[i],
1361 gen8_pte_encode(addr, level, true));
1362 i++;
1363 }
1364
1365 /*
1366 * XXX: This serves as a posting read to make sure that the PTE has
1367 * actually been updated. There is some concern that even though
1368 * registers and PTEs are within the same BAR that they are potentially
1369 * of NUMA access patterns. Therefore, even with the way we assume
1370 * hardware should work, we must keep this posting read for paranoia.
1371 */
1372 if (i != 0)
1373 WARN_ON(readq(&gtt_entries[i-1])
1374 != gen8_pte_encode(addr, level, true));
1375
1376 /* This next bit makes the above posting read even more important. We
1377 * want to flush the TLBs only after we're certain all the PTE updates
1378 * have finished.
1379 */
1380 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1381 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1382 }
1383
1384 /*
1385 * Binds an object into the global gtt with the specified cache level. The object
1386 * will be accessible to the GPU via commands whose operands reference offsets
1387 * within the global GTT as well as accessible by the GPU through the GMADR
1388 * mapped BAR (dev_priv->mm.gtt->gtt).
1389 */
1390 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1391 struct sg_table *st,
1392 uint64_t start,
1393 enum i915_cache_level level)
1394 {
1395 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1396 unsigned first_entry = start >> PAGE_SHIFT;
1397 gen6_gtt_pte_t __iomem *gtt_entries =
1398 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1399 int i = 0;
1400 struct sg_page_iter sg_iter;
1401 dma_addr_t addr;
1402
1403 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1404 addr = sg_page_iter_dma_address(&sg_iter);
1405 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1406 i++;
1407 }
1408
1409 /* XXX: This serves as a posting read to make sure that the PTE has
1410 * actually been updated. There is some concern that even though
1411 * registers and PTEs are within the same BAR that they are potentially
1412 * of NUMA access patterns. Therefore, even with the way we assume
1413 * hardware should work, we must keep this posting read for paranoia.
1414 */
1415 if (i != 0)
1416 WARN_ON(readl(&gtt_entries[i-1]) !=
1417 vm->pte_encode(addr, level, true));
1418
1419 /* This next bit makes the above posting read even more important. We
1420 * want to flush the TLBs only after we're certain all the PTE updates
1421 * have finished.
1422 */
1423 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1424 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1425 }
1426
1427 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1428 uint64_t start,
1429 uint64_t length,
1430 bool use_scratch)
1431 {
1432 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1433 unsigned first_entry = start >> PAGE_SHIFT;
1434 unsigned num_entries = length >> PAGE_SHIFT;
1435 gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1436 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1437 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1438 int i;
1439
1440 if (WARN(num_entries > max_entries,
1441 "First entry = %d; Num entries = %d (max=%d)\n",
1442 first_entry, num_entries, max_entries))
1443 num_entries = max_entries;
1444
1445 scratch_pte = gen8_pte_encode(vm->scratch.addr,
1446 I915_CACHE_LLC,
1447 use_scratch);
1448 for (i = 0; i < num_entries; i++)
1449 gen8_set_pte(&gtt_base[i], scratch_pte);
1450 readl(gtt_base);
1451 }
1452
1453 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1454 uint64_t start,
1455 uint64_t length,
1456 bool use_scratch)
1457 {
1458 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1459 unsigned first_entry = start >> PAGE_SHIFT;
1460 unsigned num_entries = length >> PAGE_SHIFT;
1461 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1462 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1463 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1464 int i;
1465
1466 if (WARN(num_entries > max_entries,
1467 "First entry = %d; Num entries = %d (max=%d)\n",
1468 first_entry, num_entries, max_entries))
1469 num_entries = max_entries;
1470
1471 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1472
1473 for (i = 0; i < num_entries; i++)
1474 iowrite32(scratch_pte, &gtt_base[i]);
1475 readl(gtt_base);
1476 }
1477
1478
1479 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1480 enum i915_cache_level cache_level,
1481 u32 unused)
1482 {
1483 const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1484 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1485 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1486
1487 BUG_ON(!i915_is_ggtt(vma->vm));
1488 intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1489 vma->obj->has_global_gtt_mapping = 1;
1490 }
1491
1492 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1493 uint64_t start,
1494 uint64_t length,
1495 bool unused)
1496 {
1497 unsigned first_entry = start >> PAGE_SHIFT;
1498 unsigned num_entries = length >> PAGE_SHIFT;
1499 intel_gtt_clear_range(first_entry, num_entries);
1500 }
1501
1502 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1503 {
1504 const unsigned int first = vma->node.start >> PAGE_SHIFT;
1505 const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1506
1507 BUG_ON(!i915_is_ggtt(vma->vm));
1508 vma->obj->has_global_gtt_mapping = 0;
1509 intel_gtt_clear_range(first, size);
1510 }
1511
1512 static void ggtt_bind_vma(struct i915_vma *vma,
1513 enum i915_cache_level cache_level,
1514 u32 flags)
1515 {
1516 struct drm_device *dev = vma->vm->dev;
1517 struct drm_i915_private *dev_priv = dev->dev_private;
1518 struct drm_i915_gem_object *obj = vma->obj;
1519
1520 /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1521 * or we have a global mapping already but the cacheability flags have
1522 * changed, set the global PTEs.
1523 *
1524 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1525 * instead if none of the above hold true.
1526 *
1527 * NB: A global mapping should only be needed for special regions like
1528 * "gtt mappable", SNB errata, or if specified via special execbuf
1529 * flags. At all other times, the GPU will use the aliasing PPGTT.
1530 */
1531 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1532 if (!obj->has_global_gtt_mapping ||
1533 (cache_level != obj->cache_level)) {
1534 vma->vm->insert_entries(vma->vm, obj->pages,
1535 vma->node.start,
1536 cache_level);
1537 obj->has_global_gtt_mapping = 1;
1538 }
1539 }
1540
1541 if (dev_priv->mm.aliasing_ppgtt &&
1542 (!obj->has_aliasing_ppgtt_mapping ||
1543 (cache_level != obj->cache_level))) {
1544 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1545 appgtt->base.insert_entries(&appgtt->base,
1546 vma->obj->pages,
1547 vma->node.start,
1548 cache_level);
1549 vma->obj->has_aliasing_ppgtt_mapping = 1;
1550 }
1551 }
1552
1553 static void ggtt_unbind_vma(struct i915_vma *vma)
1554 {
1555 struct drm_device *dev = vma->vm->dev;
1556 struct drm_i915_private *dev_priv = dev->dev_private;
1557 struct drm_i915_gem_object *obj = vma->obj;
1558
1559 if (obj->has_global_gtt_mapping) {
1560 vma->vm->clear_range(vma->vm,
1561 vma->node.start,
1562 obj->base.size,
1563 true);
1564 obj->has_global_gtt_mapping = 0;
1565 }
1566
1567 if (obj->has_aliasing_ppgtt_mapping) {
1568 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1569 appgtt->base.clear_range(&appgtt->base,
1570 vma->node.start,
1571 obj->base.size,
1572 true);
1573 obj->has_aliasing_ppgtt_mapping = 0;
1574 }
1575 }
1576
1577 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1578 {
1579 struct drm_device *dev = obj->base.dev;
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 bool interruptible;
1582
1583 interruptible = do_idling(dev_priv);
1584
1585 if (!obj->has_dma_mapping)
1586 dma_unmap_sg(&dev->pdev->dev,
1587 obj->pages->sgl, obj->pages->nents,
1588 PCI_DMA_BIDIRECTIONAL);
1589
1590 undo_idling(dev_priv, interruptible);
1591 }
1592
1593 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1594 unsigned long color,
1595 unsigned long *start,
1596 unsigned long *end)
1597 {
1598 if (node->color != color)
1599 *start += 4096;
1600
1601 if (!list_empty(&node->node_list)) {
1602 node = list_entry(node->node_list.next,
1603 struct drm_mm_node,
1604 node_list);
1605 if (node->allocated && node->color != color)
1606 *end -= 4096;
1607 }
1608 }
1609
1610 void i915_gem_setup_global_gtt(struct drm_device *dev,
1611 unsigned long start,
1612 unsigned long mappable_end,
1613 unsigned long end)
1614 {
1615 /* Let GEM Manage all of the aperture.
1616 *
1617 * However, leave one page at the end still bound to the scratch page.
1618 * There are a number of places where the hardware apparently prefetches
1619 * past the end of the object, and we've seen multiple hangs with the
1620 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1621 * aperture. One page should be enough to keep any prefetching inside
1622 * of the aperture.
1623 */
1624 struct drm_i915_private *dev_priv = dev->dev_private;
1625 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1626 struct drm_mm_node *entry;
1627 struct drm_i915_gem_object *obj;
1628 unsigned long hole_start, hole_end;
1629
1630 BUG_ON(mappable_end > end);
1631
1632 /* Subtract the guard page ... */
1633 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1634 if (!HAS_LLC(dev))
1635 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1636
1637 /* Mark any preallocated objects as occupied */
1638 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1639 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1640 int ret;
1641 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1642 i915_gem_obj_ggtt_offset(obj), obj->base.size);
1643
1644 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1645 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1646 if (ret)
1647 DRM_DEBUG_KMS("Reservation failed\n");
1648 obj->has_global_gtt_mapping = 1;
1649 }
1650
1651 dev_priv->gtt.base.start = start;
1652 dev_priv->gtt.base.total = end - start;
1653
1654 /* Clear any non-preallocated blocks */
1655 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1656 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1657 hole_start, hole_end);
1658 ggtt_vm->clear_range(ggtt_vm, hole_start,
1659 hole_end - hole_start, true);
1660 }
1661
1662 /* And finally clear the reserved guard page */
1663 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1664 }
1665
1666 void i915_gem_init_global_gtt(struct drm_device *dev)
1667 {
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 unsigned long gtt_size, mappable_size;
1670
1671 gtt_size = dev_priv->gtt.base.total;
1672 mappable_size = dev_priv->gtt.mappable_end;
1673
1674 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1675 }
1676
1677 static int setup_scratch_page(struct drm_device *dev)
1678 {
1679 struct drm_i915_private *dev_priv = dev->dev_private;
1680 struct page *page;
1681 dma_addr_t dma_addr;
1682
1683 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1684 if (page == NULL)
1685 return -ENOMEM;
1686 get_page(page);
1687 set_pages_uc(page, 1);
1688
1689 #ifdef CONFIG_INTEL_IOMMU
1690 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1691 PCI_DMA_BIDIRECTIONAL);
1692 if (pci_dma_mapping_error(dev->pdev, dma_addr))
1693 return -EINVAL;
1694 #else
1695 dma_addr = page_to_phys(page);
1696 #endif
1697 dev_priv->gtt.base.scratch.page = page;
1698 dev_priv->gtt.base.scratch.addr = dma_addr;
1699
1700 return 0;
1701 }
1702
1703 static void teardown_scratch_page(struct drm_device *dev)
1704 {
1705 struct drm_i915_private *dev_priv = dev->dev_private;
1706 struct page *page = dev_priv->gtt.base.scratch.page;
1707
1708 set_pages_wb(page, 1);
1709 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1710 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1711 put_page(page);
1712 __free_page(page);
1713 }
1714
1715 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1716 {
1717 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1718 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1719 return snb_gmch_ctl << 20;
1720 }
1721
1722 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1723 {
1724 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1725 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1726 if (bdw_gmch_ctl)
1727 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1728 if (bdw_gmch_ctl > 4) {
1729 WARN_ON(!i915.preliminary_hw_support);
1730 return 4<<20;
1731 }
1732
1733 return bdw_gmch_ctl << 20;
1734 }
1735
1736 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1737 {
1738 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1739 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1740 return snb_gmch_ctl << 25; /* 32 MB units */
1741 }
1742
1743 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1744 {
1745 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1746 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1747 return bdw_gmch_ctl << 25; /* 32 MB units */
1748 }
1749
1750 static int ggtt_probe_common(struct drm_device *dev,
1751 size_t gtt_size)
1752 {
1753 struct drm_i915_private *dev_priv = dev->dev_private;
1754 phys_addr_t gtt_bus_addr;
1755 int ret;
1756
1757 /* For Modern GENs the PTEs and register space are split in the BAR */
1758 gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1759 (pci_resource_len(dev->pdev, 0) / 2);
1760
1761 dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1762 if (!dev_priv->gtt.gsm) {
1763 DRM_ERROR("Failed to map the gtt page table\n");
1764 return -ENOMEM;
1765 }
1766
1767 ret = setup_scratch_page(dev);
1768 if (ret) {
1769 DRM_ERROR("Scratch setup failed\n");
1770 /* iounmap will also get called at remove, but meh */
1771 iounmap(dev_priv->gtt.gsm);
1772 }
1773
1774 return ret;
1775 }
1776
1777 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1778 * bits. When using advanced contexts each context stores its own PAT, but
1779 * writing this data shouldn't be harmful even in those cases. */
1780 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1781 {
1782 #define GEN8_PPAT_UC (0<<0)
1783 #define GEN8_PPAT_WC (1<<0)
1784 #define GEN8_PPAT_WT (2<<0)
1785 #define GEN8_PPAT_WB (3<<0)
1786 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1787 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1788 #define GEN8_PPAT_LLC (1<<2)
1789 #define GEN8_PPAT_LLCELLC (2<<2)
1790 #define GEN8_PPAT_LLCeLLC (3<<2)
1791 #define GEN8_PPAT_AGE(x) (x<<4)
1792 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1793 uint64_t pat;
1794
1795 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
1796 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1797 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1798 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
1799 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1800 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1801 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1802 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1803
1804 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1805 * write would work. */
1806 I915_WRITE(GEN8_PRIVATE_PAT, pat);
1807 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1808 }
1809
1810 static int gen8_gmch_probe(struct drm_device *dev,
1811 size_t *gtt_total,
1812 size_t *stolen,
1813 phys_addr_t *mappable_base,
1814 unsigned long *mappable_end)
1815 {
1816 struct drm_i915_private *dev_priv = dev->dev_private;
1817 unsigned int gtt_size;
1818 u16 snb_gmch_ctl;
1819 int ret;
1820
1821 /* TODO: We're not aware of mappable constraints on gen8 yet */
1822 *mappable_base = pci_resource_start(dev->pdev, 2);
1823 *mappable_end = pci_resource_len(dev->pdev, 2);
1824
1825 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1826 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1827
1828 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1829
1830 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1831
1832 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1833 *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1834
1835 gen8_setup_private_ppat(dev_priv);
1836
1837 ret = ggtt_probe_common(dev, gtt_size);
1838
1839 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1840 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1841
1842 return ret;
1843 }
1844
1845 static int gen6_gmch_probe(struct drm_device *dev,
1846 size_t *gtt_total,
1847 size_t *stolen,
1848 phys_addr_t *mappable_base,
1849 unsigned long *mappable_end)
1850 {
1851 struct drm_i915_private *dev_priv = dev->dev_private;
1852 unsigned int gtt_size;
1853 u16 snb_gmch_ctl;
1854 int ret;
1855
1856 *mappable_base = pci_resource_start(dev->pdev, 2);
1857 *mappable_end = pci_resource_len(dev->pdev, 2);
1858
1859 /* 64/512MB is the current min/max we actually know of, but this is just
1860 * a coarse sanity check.
1861 */
1862 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1863 DRM_ERROR("Unknown GMADR size (%lx)\n",
1864 dev_priv->gtt.mappable_end);
1865 return -ENXIO;
1866 }
1867
1868 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1869 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1870 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1871
1872 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1873
1874 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1875 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1876
1877 ret = ggtt_probe_common(dev, gtt_size);
1878
1879 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1880 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1881
1882 return ret;
1883 }
1884
1885 static void gen6_gmch_remove(struct i915_address_space *vm)
1886 {
1887
1888 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1889
1890 drm_mm_takedown(&vm->mm);
1891 iounmap(gtt->gsm);
1892 teardown_scratch_page(vm->dev);
1893 }
1894
1895 static int i915_gmch_probe(struct drm_device *dev,
1896 size_t *gtt_total,
1897 size_t *stolen,
1898 phys_addr_t *mappable_base,
1899 unsigned long *mappable_end)
1900 {
1901 struct drm_i915_private *dev_priv = dev->dev_private;
1902 int ret;
1903
1904 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1905 if (!ret) {
1906 DRM_ERROR("failed to set up gmch\n");
1907 return -EIO;
1908 }
1909
1910 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1911
1912 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1913 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1914
1915 if (unlikely(dev_priv->gtt.do_idle_maps))
1916 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
1917
1918 return 0;
1919 }
1920
1921 static void i915_gmch_remove(struct i915_address_space *vm)
1922 {
1923 intel_gmch_remove();
1924 }
1925
1926 int i915_gem_gtt_init(struct drm_device *dev)
1927 {
1928 struct drm_i915_private *dev_priv = dev->dev_private;
1929 struct i915_gtt *gtt = &dev_priv->gtt;
1930 int ret;
1931
1932 if (INTEL_INFO(dev)->gen <= 5) {
1933 gtt->gtt_probe = i915_gmch_probe;
1934 gtt->base.cleanup = i915_gmch_remove;
1935 } else if (INTEL_INFO(dev)->gen < 8) {
1936 gtt->gtt_probe = gen6_gmch_probe;
1937 gtt->base.cleanup = gen6_gmch_remove;
1938 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1939 gtt->base.pte_encode = iris_pte_encode;
1940 else if (IS_HASWELL(dev))
1941 gtt->base.pte_encode = hsw_pte_encode;
1942 else if (IS_VALLEYVIEW(dev))
1943 gtt->base.pte_encode = byt_pte_encode;
1944 else if (INTEL_INFO(dev)->gen >= 7)
1945 gtt->base.pte_encode = ivb_pte_encode;
1946 else
1947 gtt->base.pte_encode = snb_pte_encode;
1948 } else {
1949 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1950 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1951 }
1952
1953 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1954 &gtt->mappable_base, &gtt->mappable_end);
1955 if (ret)
1956 return ret;
1957
1958 gtt->base.dev = dev;
1959
1960 /* GMADR is the PCI mmio aperture into the global GTT. */
1961 DRM_INFO("Memory usable by graphics device = %zdM\n",
1962 gtt->base.total >> 20);
1963 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1964 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1965
1966 return 0;
1967 }
1968
1969 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
1970 struct i915_address_space *vm)
1971 {
1972 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1973 if (vma == NULL)
1974 return ERR_PTR(-ENOMEM);
1975
1976 INIT_LIST_HEAD(&vma->vma_link);
1977 INIT_LIST_HEAD(&vma->mm_list);
1978 INIT_LIST_HEAD(&vma->exec_list);
1979 vma->vm = vm;
1980 vma->obj = obj;
1981
1982 switch (INTEL_INFO(vm->dev)->gen) {
1983 case 8:
1984 case 7:
1985 case 6:
1986 if (i915_is_ggtt(vm)) {
1987 vma->unbind_vma = ggtt_unbind_vma;
1988 vma->bind_vma = ggtt_bind_vma;
1989 } else {
1990 vma->unbind_vma = ppgtt_unbind_vma;
1991 vma->bind_vma = ppgtt_bind_vma;
1992 }
1993 break;
1994 case 5:
1995 case 4:
1996 case 3:
1997 case 2:
1998 BUG_ON(!i915_is_ggtt(vm));
1999 vma->unbind_vma = i915_ggtt_unbind_vma;
2000 vma->bind_vma = i915_ggtt_bind_vma;
2001 break;
2002 default:
2003 BUG();
2004 }
2005
2006 /* Keep GGTT vmas first to make debug easier */
2007 if (i915_is_ggtt(vm))
2008 list_add(&vma->vma_link, &obj->vma_list);
2009 else
2010 list_add_tail(&vma->vma_link, &obj->vma_list);
2011
2012 return vma;
2013 }
2014
2015 struct i915_vma *
2016 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2017 struct i915_address_space *vm)
2018 {
2019 struct i915_vma *vma;
2020
2021 vma = i915_gem_obj_to_vma(obj, vm);
2022 if (!vma)
2023 vma = __i915_gem_vma_create(obj, vm);
2024
2025 return vma;
2026 }
This page took 0.0732660000000001 seconds and 6 git commands to generate.