Merge branch 'bdw-fixes' into backlight-rework
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33 typedef uint64_t gen8_gtt_pte_t;
34 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
35
36 /* PPGTT stuff */
37 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
38 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
39
40 #define GEN6_PDE_VALID (1 << 0)
41 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
42 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
43
44 #define GEN6_PTE_VALID (1 << 0)
45 #define GEN6_PTE_UNCACHED (1 << 1)
46 #define HSW_PTE_UNCACHED (0)
47 #define GEN6_PTE_CACHE_LLC (2 << 1)
48 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
49 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
51
52 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
53 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
54 */
55 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
56 (((bits) & 0x8) << (11 - 3)))
57 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
58 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
59 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
60 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
61
62 #define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
63 #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
64 #define GEN8_LEGACY_PDPS 4
65
66 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
67 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
68 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
69 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
70
71 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
72 enum i915_cache_level level,
73 bool valid)
74 {
75 gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
76 pte |= addr;
77 if (level != I915_CACHE_NONE)
78 pte |= PPAT_CACHED_INDEX;
79 else
80 pte |= PPAT_UNCACHED_INDEX;
81 return pte;
82 }
83
84 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
85 dma_addr_t addr,
86 enum i915_cache_level level)
87 {
88 gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
89 pde |= addr;
90 if (level != I915_CACHE_NONE)
91 pde |= PPAT_CACHED_PDE_INDEX;
92 else
93 pde |= PPAT_UNCACHED_INDEX;
94 return pde;
95 }
96
97 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
98 enum i915_cache_level level,
99 bool valid)
100 {
101 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
102 pte |= GEN6_PTE_ADDR_ENCODE(addr);
103
104 switch (level) {
105 case I915_CACHE_L3_LLC:
106 case I915_CACHE_LLC:
107 pte |= GEN6_PTE_CACHE_LLC;
108 break;
109 case I915_CACHE_NONE:
110 pte |= GEN6_PTE_UNCACHED;
111 break;
112 default:
113 WARN_ON(1);
114 }
115
116 return pte;
117 }
118
119 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
120 enum i915_cache_level level,
121 bool valid)
122 {
123 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
124 pte |= GEN6_PTE_ADDR_ENCODE(addr);
125
126 switch (level) {
127 case I915_CACHE_L3_LLC:
128 pte |= GEN7_PTE_CACHE_L3_LLC;
129 break;
130 case I915_CACHE_LLC:
131 pte |= GEN6_PTE_CACHE_LLC;
132 break;
133 case I915_CACHE_NONE:
134 pte |= GEN6_PTE_UNCACHED;
135 break;
136 default:
137 WARN_ON(1);
138 }
139
140 return pte;
141 }
142
143 #define BYT_PTE_WRITEABLE (1 << 1)
144 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
145
146 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
147 enum i915_cache_level level,
148 bool valid)
149 {
150 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
151 pte |= GEN6_PTE_ADDR_ENCODE(addr);
152
153 /* Mark the page as writeable. Other platforms don't have a
154 * setting for read-only/writable, so this matches that behavior.
155 */
156 pte |= BYT_PTE_WRITEABLE;
157
158 if (level != I915_CACHE_NONE)
159 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
160
161 return pte;
162 }
163
164 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
165 enum i915_cache_level level,
166 bool valid)
167 {
168 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
169 pte |= HSW_PTE_ADDR_ENCODE(addr);
170
171 if (level != I915_CACHE_NONE)
172 pte |= HSW_WB_LLC_AGE3;
173
174 return pte;
175 }
176
177 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
178 enum i915_cache_level level,
179 bool valid)
180 {
181 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
182 pte |= HSW_PTE_ADDR_ENCODE(addr);
183
184 switch (level) {
185 case I915_CACHE_NONE:
186 break;
187 case I915_CACHE_WT:
188 pte |= HSW_WT_ELLC_LLC_AGE0;
189 break;
190 default:
191 pte |= HSW_WB_ELLC_LLC_AGE0;
192 break;
193 }
194
195 return pte;
196 }
197
198 /* Broadwell Page Directory Pointer Descriptors */
199 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
200 uint64_t val)
201 {
202 int ret;
203
204 BUG_ON(entry >= 4);
205
206 ret = intel_ring_begin(ring, 6);
207 if (ret)
208 return ret;
209
210 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
211 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
212 intel_ring_emit(ring, (u32)(val >> 32));
213 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
214 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
215 intel_ring_emit(ring, (u32)(val));
216 intel_ring_advance(ring);
217
218 return 0;
219 }
220
221 static int gen8_ppgtt_enable(struct drm_device *dev)
222 {
223 struct drm_i915_private *dev_priv = dev->dev_private;
224 struct intel_ring_buffer *ring;
225 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
226 int i, j, ret;
227
228 /* bit of a hack to find the actual last used pd */
229 int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
230
231 for_each_ring(ring, dev_priv, j) {
232 I915_WRITE(RING_MODE_GEN7(ring),
233 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
234 }
235
236 for (i = used_pd - 1; i >= 0; i--) {
237 dma_addr_t addr = ppgtt->pd_dma_addr[i];
238 for_each_ring(ring, dev_priv, j) {
239 ret = gen8_write_pdp(ring, i, addr);
240 if (ret)
241 return ret;
242 }
243 }
244 return 0;
245 }
246
247 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
248 unsigned first_entry,
249 unsigned num_entries,
250 bool use_scratch)
251 {
252 struct i915_hw_ppgtt *ppgtt =
253 container_of(vm, struct i915_hw_ppgtt, base);
254 gen8_gtt_pte_t *pt_vaddr, scratch_pte;
255 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
256 unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
257 unsigned last_pte, i;
258
259 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
260 I915_CACHE_LLC, use_scratch);
261
262 while (num_entries) {
263 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
264
265 last_pte = first_pte + num_entries;
266 if (last_pte > GEN8_PTES_PER_PAGE)
267 last_pte = GEN8_PTES_PER_PAGE;
268
269 pt_vaddr = kmap_atomic(page_table);
270
271 for (i = first_pte; i < last_pte; i++)
272 pt_vaddr[i] = scratch_pte;
273
274 kunmap_atomic(pt_vaddr);
275
276 num_entries -= last_pte - first_pte;
277 first_pte = 0;
278 act_pt++;
279 }
280 }
281
282 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
283 struct sg_table *pages,
284 unsigned first_entry,
285 enum i915_cache_level cache_level)
286 {
287 struct i915_hw_ppgtt *ppgtt =
288 container_of(vm, struct i915_hw_ppgtt, base);
289 gen8_gtt_pte_t *pt_vaddr;
290 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
291 unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
292 struct sg_page_iter sg_iter;
293
294 pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
295 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
296 dma_addr_t page_addr;
297
298 page_addr = sg_dma_address(sg_iter.sg) +
299 (sg_iter.sg_pgoffset << PAGE_SHIFT);
300 pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
301 true);
302 if (++act_pte == GEN8_PTES_PER_PAGE) {
303 kunmap_atomic(pt_vaddr);
304 act_pt++;
305 pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
306 act_pte = 0;
307
308 }
309 }
310 kunmap_atomic(pt_vaddr);
311 }
312
313 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
314 {
315 struct i915_hw_ppgtt *ppgtt =
316 container_of(vm, struct i915_hw_ppgtt, base);
317 int i, j;
318
319 for (i = 0; i < ppgtt->num_pd_pages ; i++) {
320 if (ppgtt->pd_dma_addr[i]) {
321 pci_unmap_page(ppgtt->base.dev->pdev,
322 ppgtt->pd_dma_addr[i],
323 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
324
325 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
326 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
327 if (addr)
328 pci_unmap_page(ppgtt->base.dev->pdev,
329 addr,
330 PAGE_SIZE,
331 PCI_DMA_BIDIRECTIONAL);
332
333 }
334 }
335 kfree(ppgtt->gen8_pt_dma_addr[i]);
336 }
337
338 __free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
339 __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
340 }
341
342 /**
343 * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
344 * net effect resembling a 2-level page table in normal x86 terms. Each PDP
345 * represents 1GB of memory
346 * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
347 *
348 * TODO: Do something with the size parameter
349 **/
350 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
351 {
352 struct page *pt_pages;
353 int i, j, ret = -ENOMEM;
354 const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
355 const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
356
357 if (size % (1<<30))
358 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
359
360 /* FIXME: split allocation into smaller pieces. For now we only ever do
361 * this once, but with full PPGTT, the multiple contiguous allocations
362 * will be bad.
363 */
364 ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
365 if (!ppgtt->pd_pages)
366 return -ENOMEM;
367
368 pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
369 if (!pt_pages) {
370 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
371 return -ENOMEM;
372 }
373
374 ppgtt->gen8_pt_pages = pt_pages;
375 ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
376 ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
377 ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
378 ppgtt->enable = gen8_ppgtt_enable;
379 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
380 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
381 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
382
383 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
384
385 /*
386 * - Create a mapping for the page directories.
387 * - For each page directory:
388 * allocate space for page table mappings.
389 * map each page table
390 */
391 for (i = 0; i < max_pdp; i++) {
392 dma_addr_t temp;
393 temp = pci_map_page(ppgtt->base.dev->pdev,
394 &ppgtt->pd_pages[i], 0,
395 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
396 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
397 goto err_out;
398
399 ppgtt->pd_dma_addr[i] = temp;
400
401 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
402 if (!ppgtt->gen8_pt_dma_addr[i])
403 goto err_out;
404
405 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
406 struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
407 temp = pci_map_page(ppgtt->base.dev->pdev,
408 p, 0, PAGE_SIZE,
409 PCI_DMA_BIDIRECTIONAL);
410
411 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
412 goto err_out;
413
414 ppgtt->gen8_pt_dma_addr[i][j] = temp;
415 }
416 }
417
418 /* For now, the PPGTT helper functions all require that the PDEs are
419 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
420 * will never need to touch the PDEs again */
421 for (i = 0; i < max_pdp; i++) {
422 gen8_ppgtt_pde_t *pd_vaddr;
423 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
424 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
425 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
426 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
427 I915_CACHE_LLC);
428 }
429 kunmap_atomic(pd_vaddr);
430 }
431
432 ppgtt->base.clear_range(&ppgtt->base, 0,
433 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
434 true);
435
436 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
437 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
438 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
439 ppgtt->num_pt_pages,
440 (ppgtt->num_pt_pages - num_pt_pages) +
441 size % (1<<30));
442 return 0;
443
444 err_out:
445 ppgtt->base.cleanup(&ppgtt->base);
446 return ret;
447 }
448
449 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
450 {
451 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
452 gen6_gtt_pte_t __iomem *pd_addr;
453 uint32_t pd_entry;
454 int i;
455
456 WARN_ON(ppgtt->pd_offset & 0x3f);
457 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
458 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
459 for (i = 0; i < ppgtt->num_pd_entries; i++) {
460 dma_addr_t pt_addr;
461
462 pt_addr = ppgtt->pt_dma_addr[i];
463 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
464 pd_entry |= GEN6_PDE_VALID;
465
466 writel(pd_entry, pd_addr + i);
467 }
468 readl(pd_addr);
469 }
470
471 static int gen6_ppgtt_enable(struct drm_device *dev)
472 {
473 drm_i915_private_t *dev_priv = dev->dev_private;
474 uint32_t pd_offset;
475 struct intel_ring_buffer *ring;
476 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
477 int i;
478
479 BUG_ON(ppgtt->pd_offset & 0x3f);
480
481 gen6_write_pdes(ppgtt);
482
483 pd_offset = ppgtt->pd_offset;
484 pd_offset /= 64; /* in cachelines, */
485 pd_offset <<= 16;
486
487 if (INTEL_INFO(dev)->gen == 6) {
488 uint32_t ecochk, gab_ctl, ecobits;
489
490 ecobits = I915_READ(GAC_ECO_BITS);
491 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
492 ECOBITS_PPGTT_CACHE64B);
493
494 gab_ctl = I915_READ(GAB_CTL);
495 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
496
497 ecochk = I915_READ(GAM_ECOCHK);
498 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
499 ECOCHK_PPGTT_CACHE64B);
500 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
501 } else if (INTEL_INFO(dev)->gen >= 7) {
502 uint32_t ecochk, ecobits;
503
504 ecobits = I915_READ(GAC_ECO_BITS);
505 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
506
507 ecochk = I915_READ(GAM_ECOCHK);
508 if (IS_HASWELL(dev)) {
509 ecochk |= ECOCHK_PPGTT_WB_HSW;
510 } else {
511 ecochk |= ECOCHK_PPGTT_LLC_IVB;
512 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
513 }
514 I915_WRITE(GAM_ECOCHK, ecochk);
515 /* GFX_MODE is per-ring on gen7+ */
516 }
517
518 for_each_ring(ring, dev_priv, i) {
519 if (INTEL_INFO(dev)->gen >= 7)
520 I915_WRITE(RING_MODE_GEN7(ring),
521 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
522
523 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
524 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
525 }
526 return 0;
527 }
528
529 /* PPGTT support for Sandybdrige/Gen6 and later */
530 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
531 unsigned first_entry,
532 unsigned num_entries,
533 bool use_scratch)
534 {
535 struct i915_hw_ppgtt *ppgtt =
536 container_of(vm, struct i915_hw_ppgtt, base);
537 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
538 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
539 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
540 unsigned last_pte, i;
541
542 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
543
544 while (num_entries) {
545 last_pte = first_pte + num_entries;
546 if (last_pte > I915_PPGTT_PT_ENTRIES)
547 last_pte = I915_PPGTT_PT_ENTRIES;
548
549 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
550
551 for (i = first_pte; i < last_pte; i++)
552 pt_vaddr[i] = scratch_pte;
553
554 kunmap_atomic(pt_vaddr);
555
556 num_entries -= last_pte - first_pte;
557 first_pte = 0;
558 act_pt++;
559 }
560 }
561
562 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
563 struct sg_table *pages,
564 unsigned first_entry,
565 enum i915_cache_level cache_level)
566 {
567 struct i915_hw_ppgtt *ppgtt =
568 container_of(vm, struct i915_hw_ppgtt, base);
569 gen6_gtt_pte_t *pt_vaddr;
570 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
571 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
572 struct sg_page_iter sg_iter;
573
574 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
575 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
576 dma_addr_t page_addr;
577
578 page_addr = sg_page_iter_dma_address(&sg_iter);
579 pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
580 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
581 kunmap_atomic(pt_vaddr);
582 act_pt++;
583 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
584 act_pte = 0;
585
586 }
587 }
588 kunmap_atomic(pt_vaddr);
589 }
590
591 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
592 {
593 struct i915_hw_ppgtt *ppgtt =
594 container_of(vm, struct i915_hw_ppgtt, base);
595 int i;
596
597 drm_mm_takedown(&ppgtt->base.mm);
598
599 if (ppgtt->pt_dma_addr) {
600 for (i = 0; i < ppgtt->num_pd_entries; i++)
601 pci_unmap_page(ppgtt->base.dev->pdev,
602 ppgtt->pt_dma_addr[i],
603 4096, PCI_DMA_BIDIRECTIONAL);
604 }
605
606 kfree(ppgtt->pt_dma_addr);
607 for (i = 0; i < ppgtt->num_pd_entries; i++)
608 __free_page(ppgtt->pt_pages[i]);
609 kfree(ppgtt->pt_pages);
610 kfree(ppgtt);
611 }
612
613 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
614 {
615 struct drm_device *dev = ppgtt->base.dev;
616 struct drm_i915_private *dev_priv = dev->dev_private;
617 unsigned first_pd_entry_in_global_pt;
618 int i;
619 int ret = -ENOMEM;
620
621 /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
622 * entries. For aliasing ppgtt support we just steal them at the end for
623 * now. */
624 first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
625
626 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
627 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
628 ppgtt->enable = gen6_ppgtt_enable;
629 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
630 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
631 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
632 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
633 ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
634 GFP_KERNEL);
635 if (!ppgtt->pt_pages)
636 return -ENOMEM;
637
638 for (i = 0; i < ppgtt->num_pd_entries; i++) {
639 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
640 if (!ppgtt->pt_pages[i])
641 goto err_pt_alloc;
642 }
643
644 ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
645 GFP_KERNEL);
646 if (!ppgtt->pt_dma_addr)
647 goto err_pt_alloc;
648
649 for (i = 0; i < ppgtt->num_pd_entries; i++) {
650 dma_addr_t pt_addr;
651
652 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
653 PCI_DMA_BIDIRECTIONAL);
654
655 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
656 ret = -EIO;
657 goto err_pd_pin;
658
659 }
660 ppgtt->pt_dma_addr[i] = pt_addr;
661 }
662
663 ppgtt->base.clear_range(&ppgtt->base, 0,
664 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
665
666 ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
667
668 return 0;
669
670 err_pd_pin:
671 if (ppgtt->pt_dma_addr) {
672 for (i--; i >= 0; i--)
673 pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
674 4096, PCI_DMA_BIDIRECTIONAL);
675 }
676 err_pt_alloc:
677 kfree(ppgtt->pt_dma_addr);
678 for (i = 0; i < ppgtt->num_pd_entries; i++) {
679 if (ppgtt->pt_pages[i])
680 __free_page(ppgtt->pt_pages[i]);
681 }
682 kfree(ppgtt->pt_pages);
683
684 return ret;
685 }
686
687 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
688 {
689 struct drm_i915_private *dev_priv = dev->dev_private;
690 struct i915_hw_ppgtt *ppgtt;
691 int ret;
692
693 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
694 if (!ppgtt)
695 return -ENOMEM;
696
697 ppgtt->base.dev = dev;
698
699 if (INTEL_INFO(dev)->gen < 8)
700 ret = gen6_ppgtt_init(ppgtt);
701 else if (IS_GEN8(dev))
702 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
703 else
704 BUG();
705
706 if (ret)
707 kfree(ppgtt);
708 else {
709 dev_priv->mm.aliasing_ppgtt = ppgtt;
710 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
711 ppgtt->base.total);
712 }
713
714 return ret;
715 }
716
717 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
718 {
719 struct drm_i915_private *dev_priv = dev->dev_private;
720 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
721
722 if (!ppgtt)
723 return;
724
725 ppgtt->base.cleanup(&ppgtt->base);
726 dev_priv->mm.aliasing_ppgtt = NULL;
727 }
728
729 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
730 struct drm_i915_gem_object *obj,
731 enum i915_cache_level cache_level)
732 {
733 ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
734 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
735 cache_level);
736 }
737
738 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
739 struct drm_i915_gem_object *obj)
740 {
741 ppgtt->base.clear_range(&ppgtt->base,
742 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
743 obj->base.size >> PAGE_SHIFT,
744 true);
745 }
746
747 extern int intel_iommu_gfx_mapped;
748 /* Certain Gen5 chipsets require require idling the GPU before
749 * unmapping anything from the GTT when VT-d is enabled.
750 */
751 static inline bool needs_idle_maps(struct drm_device *dev)
752 {
753 #ifdef CONFIG_INTEL_IOMMU
754 /* Query intel_iommu to see if we need the workaround. Presumably that
755 * was loaded first.
756 */
757 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
758 return true;
759 #endif
760 return false;
761 }
762
763 static bool do_idling(struct drm_i915_private *dev_priv)
764 {
765 bool ret = dev_priv->mm.interruptible;
766
767 if (unlikely(dev_priv->gtt.do_idle_maps)) {
768 dev_priv->mm.interruptible = false;
769 if (i915_gpu_idle(dev_priv->dev)) {
770 DRM_ERROR("Couldn't idle GPU\n");
771 /* Wait a bit, in hopes it avoids the hang */
772 udelay(10);
773 }
774 }
775
776 return ret;
777 }
778
779 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
780 {
781 if (unlikely(dev_priv->gtt.do_idle_maps))
782 dev_priv->mm.interruptible = interruptible;
783 }
784
785 void i915_check_and_clear_faults(struct drm_device *dev)
786 {
787 struct drm_i915_private *dev_priv = dev->dev_private;
788 struct intel_ring_buffer *ring;
789 int i;
790
791 if (INTEL_INFO(dev)->gen < 6)
792 return;
793
794 for_each_ring(ring, dev_priv, i) {
795 u32 fault_reg;
796 fault_reg = I915_READ(RING_FAULT_REG(ring));
797 if (fault_reg & RING_FAULT_VALID) {
798 DRM_DEBUG_DRIVER("Unexpected fault\n"
799 "\tAddr: 0x%08lx\\n"
800 "\tAddress space: %s\n"
801 "\tSource ID: %d\n"
802 "\tType: %d\n",
803 fault_reg & PAGE_MASK,
804 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
805 RING_FAULT_SRCID(fault_reg),
806 RING_FAULT_FAULT_TYPE(fault_reg));
807 I915_WRITE(RING_FAULT_REG(ring),
808 fault_reg & ~RING_FAULT_VALID);
809 }
810 }
811 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
812 }
813
814 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
815 {
816 struct drm_i915_private *dev_priv = dev->dev_private;
817
818 /* Don't bother messing with faults pre GEN6 as we have little
819 * documentation supporting that it's a good idea.
820 */
821 if (INTEL_INFO(dev)->gen < 6)
822 return;
823
824 i915_check_and_clear_faults(dev);
825
826 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
827 dev_priv->gtt.base.start / PAGE_SIZE,
828 dev_priv->gtt.base.total / PAGE_SIZE,
829 false);
830 }
831
832 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
833 {
834 struct drm_i915_private *dev_priv = dev->dev_private;
835 struct drm_i915_gem_object *obj;
836
837 i915_check_and_clear_faults(dev);
838
839 /* First fill our portion of the GTT with scratch pages */
840 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
841 dev_priv->gtt.base.start / PAGE_SIZE,
842 dev_priv->gtt.base.total / PAGE_SIZE,
843 true);
844
845 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
846 i915_gem_clflush_object(obj, obj->pin_display);
847 i915_gem_gtt_bind_object(obj, obj->cache_level);
848 }
849
850 i915_gem_chipset_flush(dev);
851 }
852
853 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
854 {
855 if (obj->has_dma_mapping)
856 return 0;
857
858 if (!dma_map_sg(&obj->base.dev->pdev->dev,
859 obj->pages->sgl, obj->pages->nents,
860 PCI_DMA_BIDIRECTIONAL))
861 return -ENOSPC;
862
863 return 0;
864 }
865
866 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
867 {
868 #ifdef writeq
869 writeq(pte, addr);
870 #else
871 iowrite32((u32)pte, addr);
872 iowrite32(pte >> 32, addr + 4);
873 #endif
874 }
875
876 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
877 struct sg_table *st,
878 unsigned int first_entry,
879 enum i915_cache_level level)
880 {
881 struct drm_i915_private *dev_priv = vm->dev->dev_private;
882 gen8_gtt_pte_t __iomem *gtt_entries =
883 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
884 int i = 0;
885 struct sg_page_iter sg_iter;
886 dma_addr_t addr;
887
888 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
889 addr = sg_dma_address(sg_iter.sg) +
890 (sg_iter.sg_pgoffset << PAGE_SHIFT);
891 gen8_set_pte(&gtt_entries[i],
892 gen8_pte_encode(addr, level, true));
893 i++;
894 }
895
896 /*
897 * XXX: This serves as a posting read to make sure that the PTE has
898 * actually been updated. There is some concern that even though
899 * registers and PTEs are within the same BAR that they are potentially
900 * of NUMA access patterns. Therefore, even with the way we assume
901 * hardware should work, we must keep this posting read for paranoia.
902 */
903 if (i != 0)
904 WARN_ON(readq(&gtt_entries[i-1])
905 != gen8_pte_encode(addr, level, true));
906
907 #if 0 /* TODO: Still needed on GEN8? */
908 /* This next bit makes the above posting read even more important. We
909 * want to flush the TLBs only after we're certain all the PTE updates
910 * have finished.
911 */
912 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
913 POSTING_READ(GFX_FLSH_CNTL_GEN6);
914 #endif
915 }
916
917 /*
918 * Binds an object into the global gtt with the specified cache level. The object
919 * will be accessible to the GPU via commands whose operands reference offsets
920 * within the global GTT as well as accessible by the GPU through the GMADR
921 * mapped BAR (dev_priv->mm.gtt->gtt).
922 */
923 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
924 struct sg_table *st,
925 unsigned int first_entry,
926 enum i915_cache_level level)
927 {
928 struct drm_i915_private *dev_priv = vm->dev->dev_private;
929 gen6_gtt_pte_t __iomem *gtt_entries =
930 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
931 int i = 0;
932 struct sg_page_iter sg_iter;
933 dma_addr_t addr;
934
935 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
936 addr = sg_page_iter_dma_address(&sg_iter);
937 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
938 i++;
939 }
940
941 /* XXX: This serves as a posting read to make sure that the PTE has
942 * actually been updated. There is some concern that even though
943 * registers and PTEs are within the same BAR that they are potentially
944 * of NUMA access patterns. Therefore, even with the way we assume
945 * hardware should work, we must keep this posting read for paranoia.
946 */
947 if (i != 0)
948 WARN_ON(readl(&gtt_entries[i-1]) !=
949 vm->pte_encode(addr, level, true));
950
951 /* This next bit makes the above posting read even more important. We
952 * want to flush the TLBs only after we're certain all the PTE updates
953 * have finished.
954 */
955 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
956 POSTING_READ(GFX_FLSH_CNTL_GEN6);
957 }
958
959 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
960 unsigned int first_entry,
961 unsigned int num_entries,
962 bool use_scratch)
963 {
964 struct drm_i915_private *dev_priv = vm->dev->dev_private;
965 gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
966 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
967 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
968 int i;
969
970 if (WARN(num_entries > max_entries,
971 "First entry = %d; Num entries = %d (max=%d)\n",
972 first_entry, num_entries, max_entries))
973 num_entries = max_entries;
974
975 scratch_pte = gen8_pte_encode(vm->scratch.addr,
976 I915_CACHE_LLC,
977 use_scratch);
978 for (i = 0; i < num_entries; i++)
979 gen8_set_pte(&gtt_base[i], scratch_pte);
980 readl(gtt_base);
981 }
982
983 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
984 unsigned int first_entry,
985 unsigned int num_entries,
986 bool use_scratch)
987 {
988 struct drm_i915_private *dev_priv = vm->dev->dev_private;
989 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
990 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
991 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
992 int i;
993
994 if (WARN(num_entries > max_entries,
995 "First entry = %d; Num entries = %d (max=%d)\n",
996 first_entry, num_entries, max_entries))
997 num_entries = max_entries;
998
999 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1000
1001 for (i = 0; i < num_entries; i++)
1002 iowrite32(scratch_pte, &gtt_base[i]);
1003 readl(gtt_base);
1004 }
1005
1006 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1007 struct sg_table *st,
1008 unsigned int pg_start,
1009 enum i915_cache_level cache_level)
1010 {
1011 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1012 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1013
1014 intel_gtt_insert_sg_entries(st, pg_start, flags);
1015
1016 }
1017
1018 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1019 unsigned int first_entry,
1020 unsigned int num_entries,
1021 bool unused)
1022 {
1023 intel_gtt_clear_range(first_entry, num_entries);
1024 }
1025
1026
1027 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
1028 enum i915_cache_level cache_level)
1029 {
1030 struct drm_device *dev = obj->base.dev;
1031 struct drm_i915_private *dev_priv = dev->dev_private;
1032 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1033
1034 dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
1035 entry,
1036 cache_level);
1037
1038 obj->has_global_gtt_mapping = 1;
1039 }
1040
1041 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
1042 {
1043 struct drm_device *dev = obj->base.dev;
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1046
1047 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1048 entry,
1049 obj->base.size >> PAGE_SHIFT,
1050 true);
1051
1052 obj->has_global_gtt_mapping = 0;
1053 }
1054
1055 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1056 {
1057 struct drm_device *dev = obj->base.dev;
1058 struct drm_i915_private *dev_priv = dev->dev_private;
1059 bool interruptible;
1060
1061 interruptible = do_idling(dev_priv);
1062
1063 if (!obj->has_dma_mapping)
1064 dma_unmap_sg(&dev->pdev->dev,
1065 obj->pages->sgl, obj->pages->nents,
1066 PCI_DMA_BIDIRECTIONAL);
1067
1068 undo_idling(dev_priv, interruptible);
1069 }
1070
1071 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1072 unsigned long color,
1073 unsigned long *start,
1074 unsigned long *end)
1075 {
1076 if (node->color != color)
1077 *start += 4096;
1078
1079 if (!list_empty(&node->node_list)) {
1080 node = list_entry(node->node_list.next,
1081 struct drm_mm_node,
1082 node_list);
1083 if (node->allocated && node->color != color)
1084 *end -= 4096;
1085 }
1086 }
1087
1088 void i915_gem_setup_global_gtt(struct drm_device *dev,
1089 unsigned long start,
1090 unsigned long mappable_end,
1091 unsigned long end)
1092 {
1093 /* Let GEM Manage all of the aperture.
1094 *
1095 * However, leave one page at the end still bound to the scratch page.
1096 * There are a number of places where the hardware apparently prefetches
1097 * past the end of the object, and we've seen multiple hangs with the
1098 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1099 * aperture. One page should be enough to keep any prefetching inside
1100 * of the aperture.
1101 */
1102 struct drm_i915_private *dev_priv = dev->dev_private;
1103 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1104 struct drm_mm_node *entry;
1105 struct drm_i915_gem_object *obj;
1106 unsigned long hole_start, hole_end;
1107
1108 BUG_ON(mappable_end > end);
1109
1110 /* Subtract the guard page ... */
1111 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1112 if (!HAS_LLC(dev))
1113 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1114
1115 /* Mark any preallocated objects as occupied */
1116 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1117 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1118 int ret;
1119 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1120 i915_gem_obj_ggtt_offset(obj), obj->base.size);
1121
1122 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1123 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1124 if (ret)
1125 DRM_DEBUG_KMS("Reservation failed\n");
1126 obj->has_global_gtt_mapping = 1;
1127 list_add(&vma->vma_link, &obj->vma_list);
1128 }
1129
1130 dev_priv->gtt.base.start = start;
1131 dev_priv->gtt.base.total = end - start;
1132
1133 /* Clear any non-preallocated blocks */
1134 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1135 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1136 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1137 hole_start, hole_end);
1138 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1139 }
1140
1141 /* And finally clear the reserved guard page */
1142 ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1143 }
1144
1145 static bool
1146 intel_enable_ppgtt(struct drm_device *dev)
1147 {
1148 if (i915_enable_ppgtt >= 0)
1149 return i915_enable_ppgtt;
1150
1151 #ifdef CONFIG_INTEL_IOMMU
1152 /* Disable ppgtt on SNB if VT-d is on. */
1153 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
1154 return false;
1155 #endif
1156
1157 return true;
1158 }
1159
1160 void i915_gem_init_global_gtt(struct drm_device *dev)
1161 {
1162 struct drm_i915_private *dev_priv = dev->dev_private;
1163 unsigned long gtt_size, mappable_size;
1164
1165 gtt_size = dev_priv->gtt.base.total;
1166 mappable_size = dev_priv->gtt.mappable_end;
1167
1168 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
1169 int ret;
1170
1171 if (INTEL_INFO(dev)->gen <= 7) {
1172 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
1173 * aperture accordingly when using aliasing ppgtt. */
1174 gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
1175 }
1176
1177 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1178
1179 ret = i915_gem_init_aliasing_ppgtt(dev);
1180 if (!ret)
1181 return;
1182
1183 DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
1184 drm_mm_takedown(&dev_priv->gtt.base.mm);
1185 if (INTEL_INFO(dev)->gen < 8)
1186 gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
1187 }
1188 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1189 }
1190
1191 static int setup_scratch_page(struct drm_device *dev)
1192 {
1193 struct drm_i915_private *dev_priv = dev->dev_private;
1194 struct page *page;
1195 dma_addr_t dma_addr;
1196
1197 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1198 if (page == NULL)
1199 return -ENOMEM;
1200 get_page(page);
1201 set_pages_uc(page, 1);
1202
1203 #ifdef CONFIG_INTEL_IOMMU
1204 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1205 PCI_DMA_BIDIRECTIONAL);
1206 if (pci_dma_mapping_error(dev->pdev, dma_addr))
1207 return -EINVAL;
1208 #else
1209 dma_addr = page_to_phys(page);
1210 #endif
1211 dev_priv->gtt.base.scratch.page = page;
1212 dev_priv->gtt.base.scratch.addr = dma_addr;
1213
1214 return 0;
1215 }
1216
1217 static void teardown_scratch_page(struct drm_device *dev)
1218 {
1219 struct drm_i915_private *dev_priv = dev->dev_private;
1220 struct page *page = dev_priv->gtt.base.scratch.page;
1221
1222 set_pages_wb(page, 1);
1223 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1224 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1225 put_page(page);
1226 __free_page(page);
1227 }
1228
1229 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1230 {
1231 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1232 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1233 return snb_gmch_ctl << 20;
1234 }
1235
1236 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1237 {
1238 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1239 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1240 if (bdw_gmch_ctl)
1241 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1242 if (bdw_gmch_ctl > 4) {
1243 WARN_ON(!i915_preliminary_hw_support);
1244 return 4<<20;
1245 }
1246
1247 return bdw_gmch_ctl << 20;
1248 }
1249
1250 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1251 {
1252 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1253 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1254 return snb_gmch_ctl << 25; /* 32 MB units */
1255 }
1256
1257 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1258 {
1259 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1260 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1261 return bdw_gmch_ctl << 25; /* 32 MB units */
1262 }
1263
1264 static int ggtt_probe_common(struct drm_device *dev,
1265 size_t gtt_size)
1266 {
1267 struct drm_i915_private *dev_priv = dev->dev_private;
1268 phys_addr_t gtt_bus_addr;
1269 int ret;
1270
1271 /* For Modern GENs the PTEs and register space are split in the BAR */
1272 gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1273 (pci_resource_len(dev->pdev, 0) / 2);
1274
1275 dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1276 if (!dev_priv->gtt.gsm) {
1277 DRM_ERROR("Failed to map the gtt page table\n");
1278 return -ENOMEM;
1279 }
1280
1281 ret = setup_scratch_page(dev);
1282 if (ret) {
1283 DRM_ERROR("Scratch setup failed\n");
1284 /* iounmap will also get called at remove, but meh */
1285 iounmap(dev_priv->gtt.gsm);
1286 }
1287
1288 return ret;
1289 }
1290
1291 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1292 * bits. When using advanced contexts each context stores its own PAT, but
1293 * writing this data shouldn't be harmful even in those cases. */
1294 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1295 {
1296 #define GEN8_PPAT_UC (0<<0)
1297 #define GEN8_PPAT_WC (1<<0)
1298 #define GEN8_PPAT_WT (2<<0)
1299 #define GEN8_PPAT_WB (3<<0)
1300 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1301 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1302 #define GEN8_PPAT_LLC (1<<2)
1303 #define GEN8_PPAT_LLCELLC (2<<2)
1304 #define GEN8_PPAT_LLCeLLC (3<<2)
1305 #define GEN8_PPAT_AGE(x) (x<<4)
1306 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1307 uint64_t pat;
1308
1309 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
1310 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1311 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1312 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
1313 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1314 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1315 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1316 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1317
1318 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1319 * write would work. */
1320 I915_WRITE(GEN8_PRIVATE_PAT, pat);
1321 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1322 }
1323
1324 static int gen8_gmch_probe(struct drm_device *dev,
1325 size_t *gtt_total,
1326 size_t *stolen,
1327 phys_addr_t *mappable_base,
1328 unsigned long *mappable_end)
1329 {
1330 struct drm_i915_private *dev_priv = dev->dev_private;
1331 unsigned int gtt_size;
1332 u16 snb_gmch_ctl;
1333 int ret;
1334
1335 /* TODO: We're not aware of mappable constraints on gen8 yet */
1336 *mappable_base = pci_resource_start(dev->pdev, 2);
1337 *mappable_end = pci_resource_len(dev->pdev, 2);
1338
1339 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1340 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1341
1342 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1343
1344 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1345
1346 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1347 *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1348
1349 gen8_setup_private_ppat(dev_priv);
1350
1351 ret = ggtt_probe_common(dev, gtt_size);
1352
1353 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1354 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1355
1356 return ret;
1357 }
1358
1359 static int gen6_gmch_probe(struct drm_device *dev,
1360 size_t *gtt_total,
1361 size_t *stolen,
1362 phys_addr_t *mappable_base,
1363 unsigned long *mappable_end)
1364 {
1365 struct drm_i915_private *dev_priv = dev->dev_private;
1366 unsigned int gtt_size;
1367 u16 snb_gmch_ctl;
1368 int ret;
1369
1370 *mappable_base = pci_resource_start(dev->pdev, 2);
1371 *mappable_end = pci_resource_len(dev->pdev, 2);
1372
1373 /* 64/512MB is the current min/max we actually know of, but this is just
1374 * a coarse sanity check.
1375 */
1376 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1377 DRM_ERROR("Unknown GMADR size (%lx)\n",
1378 dev_priv->gtt.mappable_end);
1379 return -ENXIO;
1380 }
1381
1382 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1383 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1384 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1385
1386 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1387
1388 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1389 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1390
1391 ret = ggtt_probe_common(dev, gtt_size);
1392
1393 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1394 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1395
1396 return ret;
1397 }
1398
1399 static void gen6_gmch_remove(struct i915_address_space *vm)
1400 {
1401
1402 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1403 iounmap(gtt->gsm);
1404 teardown_scratch_page(vm->dev);
1405 }
1406
1407 static int i915_gmch_probe(struct drm_device *dev,
1408 size_t *gtt_total,
1409 size_t *stolen,
1410 phys_addr_t *mappable_base,
1411 unsigned long *mappable_end)
1412 {
1413 struct drm_i915_private *dev_priv = dev->dev_private;
1414 int ret;
1415
1416 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1417 if (!ret) {
1418 DRM_ERROR("failed to set up gmch\n");
1419 return -EIO;
1420 }
1421
1422 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1423
1424 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1425 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1426 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
1427
1428 return 0;
1429 }
1430
1431 static void i915_gmch_remove(struct i915_address_space *vm)
1432 {
1433 intel_gmch_remove();
1434 }
1435
1436 int i915_gem_gtt_init(struct drm_device *dev)
1437 {
1438 struct drm_i915_private *dev_priv = dev->dev_private;
1439 struct i915_gtt *gtt = &dev_priv->gtt;
1440 int ret;
1441
1442 if (INTEL_INFO(dev)->gen <= 5) {
1443 gtt->gtt_probe = i915_gmch_probe;
1444 gtt->base.cleanup = i915_gmch_remove;
1445 } else if (INTEL_INFO(dev)->gen < 8) {
1446 gtt->gtt_probe = gen6_gmch_probe;
1447 gtt->base.cleanup = gen6_gmch_remove;
1448 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1449 gtt->base.pte_encode = iris_pte_encode;
1450 else if (IS_HASWELL(dev))
1451 gtt->base.pte_encode = hsw_pte_encode;
1452 else if (IS_VALLEYVIEW(dev))
1453 gtt->base.pte_encode = byt_pte_encode;
1454 else if (INTEL_INFO(dev)->gen >= 7)
1455 gtt->base.pte_encode = ivb_pte_encode;
1456 else
1457 gtt->base.pte_encode = snb_pte_encode;
1458 } else {
1459 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1460 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1461 }
1462
1463 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1464 &gtt->mappable_base, &gtt->mappable_end);
1465 if (ret)
1466 return ret;
1467
1468 gtt->base.dev = dev;
1469
1470 /* GMADR is the PCI mmio aperture into the global GTT. */
1471 DRM_INFO("Memory usable by graphics device = %zdM\n",
1472 gtt->base.total >> 20);
1473 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1474 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1475
1476 return 0;
1477 }
This page took 0.061061 seconds and 6 git commands to generate.