drm/i915: Fold vGPU active check into inner functions
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34
35 /**
36 * DOC: Global GTT views
37 *
38 * Background and previous state
39 *
40 * Historically objects could exists (be bound) in global GTT space only as
41 * singular instances with a view representing all of the object's backing pages
42 * in a linear fashion. This view will be called a normal view.
43 *
44 * To support multiple views of the same object, where the number of mapped
45 * pages is not equal to the backing store, or where the layout of the pages
46 * is not linear, concept of a GGTT view was added.
47 *
48 * One example of an alternative view is a stereo display driven by a single
49 * image. In this case we would have a framebuffer looking like this
50 * (2x2 pages):
51 *
52 * 12
53 * 34
54 *
55 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56 * rendering. In contrast, fed to the display engine would be an alternative
57 * view which could look something like this:
58 *
59 * 1212
60 * 3434
61 *
62 * In this example both the size and layout of pages in the alternative view is
63 * different from the normal view.
64 *
65 * Implementation and usage
66 *
67 * GGTT views are implemented using VMAs and are distinguished via enum
68 * i915_ggtt_view_type and struct i915_ggtt_view.
69 *
70 * A new flavour of core GEM functions which work with GGTT bound objects were
71 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72 * renaming in large amounts of code. They take the struct i915_ggtt_view
73 * parameter encapsulating all metadata required to implement a view.
74 *
75 * As a helper for callers which are only interested in the normal view,
76 * globally const i915_ggtt_view_normal singleton instance exists. All old core
77 * GEM API functions, the ones not taking the view parameter, are operating on,
78 * or with the normal GGTT view.
79 *
80 * Code wanting to add or use a new GGTT view needs to:
81 *
82 * 1. Add a new enum with a suitable name.
83 * 2. Extend the metadata in the i915_ggtt_view structure if required.
84 * 3. Add support to i915_get_vma_pages().
85 *
86 * New views are required to build a scatter-gather table from within the
87 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88 * exists for the lifetime of an VMA.
89 *
90 * Core API is designed to have copy semantics which means that passed in
91 * struct i915_ggtt_view does not need to be persistent (left around after
92 * calling the core API functions).
93 *
94 */
95
96 static inline struct i915_ggtt *
97 i915_vm_to_ggtt(struct i915_address_space *vm)
98 {
99 GEM_BUG_ON(!i915_is_ggtt(vm));
100 return container_of(vm, struct i915_ggtt, base);
101 }
102
103 static int
104 i915_get_ggtt_vma_pages(struct i915_vma *vma);
105
106 const struct i915_ggtt_view i915_ggtt_view_normal = {
107 .type = I915_GGTT_VIEW_NORMAL,
108 };
109 const struct i915_ggtt_view i915_ggtt_view_rotated = {
110 .type = I915_GGTT_VIEW_ROTATED,
111 };
112
113 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
114 int enable_ppgtt)
115 {
116 bool has_aliasing_ppgtt;
117 bool has_full_ppgtt;
118 bool has_full_48bit_ppgtt;
119
120 has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
121 has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
122 has_full_48bit_ppgtt =
123 IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
124
125 if (intel_vgpu_active(dev_priv))
126 has_full_ppgtt = false; /* emulation is too hard */
127
128 if (!has_aliasing_ppgtt)
129 return 0;
130
131 /*
132 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
133 * execlists, the sole mechanism available to submit work.
134 */
135 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
136 return 0;
137
138 if (enable_ppgtt == 1)
139 return 1;
140
141 if (enable_ppgtt == 2 && has_full_ppgtt)
142 return 2;
143
144 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
145 return 3;
146
147 #ifdef CONFIG_INTEL_IOMMU
148 /* Disable ppgtt on SNB if VT-d is on. */
149 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
150 DRM_INFO("Disabling PPGTT because VT-d is on\n");
151 return 0;
152 }
153 #endif
154
155 /* Early VLV doesn't have this */
156 if (IS_VALLEYVIEW(dev_priv) && dev_priv->dev->pdev->revision < 0xb) {
157 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
158 return 0;
159 }
160
161 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists)
162 return has_full_48bit_ppgtt ? 3 : 2;
163 else
164 return has_aliasing_ppgtt ? 1 : 0;
165 }
166
167 static int ppgtt_bind_vma(struct i915_vma *vma,
168 enum i915_cache_level cache_level,
169 u32 unused)
170 {
171 u32 pte_flags = 0;
172
173 /* Currently applicable only to VLV */
174 if (vma->obj->gt_ro)
175 pte_flags |= PTE_READ_ONLY;
176
177 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
178 cache_level, pte_flags);
179
180 return 0;
181 }
182
183 static void ppgtt_unbind_vma(struct i915_vma *vma)
184 {
185 vma->vm->clear_range(vma->vm,
186 vma->node.start,
187 vma->obj->base.size,
188 true);
189 }
190
191 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
192 enum i915_cache_level level,
193 bool valid)
194 {
195 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
196 pte |= addr;
197
198 switch (level) {
199 case I915_CACHE_NONE:
200 pte |= PPAT_UNCACHED_INDEX;
201 break;
202 case I915_CACHE_WT:
203 pte |= PPAT_DISPLAY_ELLC_INDEX;
204 break;
205 default:
206 pte |= PPAT_CACHED_INDEX;
207 break;
208 }
209
210 return pte;
211 }
212
213 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
214 const enum i915_cache_level level)
215 {
216 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
217 pde |= addr;
218 if (level != I915_CACHE_NONE)
219 pde |= PPAT_CACHED_PDE_INDEX;
220 else
221 pde |= PPAT_UNCACHED_INDEX;
222 return pde;
223 }
224
225 #define gen8_pdpe_encode gen8_pde_encode
226 #define gen8_pml4e_encode gen8_pde_encode
227
228 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
229 enum i915_cache_level level,
230 bool valid, u32 unused)
231 {
232 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
233 pte |= GEN6_PTE_ADDR_ENCODE(addr);
234
235 switch (level) {
236 case I915_CACHE_L3_LLC:
237 case I915_CACHE_LLC:
238 pte |= GEN6_PTE_CACHE_LLC;
239 break;
240 case I915_CACHE_NONE:
241 pte |= GEN6_PTE_UNCACHED;
242 break;
243 default:
244 MISSING_CASE(level);
245 }
246
247 return pte;
248 }
249
250 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
251 enum i915_cache_level level,
252 bool valid, u32 unused)
253 {
254 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
255 pte |= GEN6_PTE_ADDR_ENCODE(addr);
256
257 switch (level) {
258 case I915_CACHE_L3_LLC:
259 pte |= GEN7_PTE_CACHE_L3_LLC;
260 break;
261 case I915_CACHE_LLC:
262 pte |= GEN6_PTE_CACHE_LLC;
263 break;
264 case I915_CACHE_NONE:
265 pte |= GEN6_PTE_UNCACHED;
266 break;
267 default:
268 MISSING_CASE(level);
269 }
270
271 return pte;
272 }
273
274 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
275 enum i915_cache_level level,
276 bool valid, u32 flags)
277 {
278 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
279 pte |= GEN6_PTE_ADDR_ENCODE(addr);
280
281 if (!(flags & PTE_READ_ONLY))
282 pte |= BYT_PTE_WRITEABLE;
283
284 if (level != I915_CACHE_NONE)
285 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
286
287 return pte;
288 }
289
290 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
291 enum i915_cache_level level,
292 bool valid, u32 unused)
293 {
294 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
295 pte |= HSW_PTE_ADDR_ENCODE(addr);
296
297 if (level != I915_CACHE_NONE)
298 pte |= HSW_WB_LLC_AGE3;
299
300 return pte;
301 }
302
303 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
304 enum i915_cache_level level,
305 bool valid, u32 unused)
306 {
307 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
308 pte |= HSW_PTE_ADDR_ENCODE(addr);
309
310 switch (level) {
311 case I915_CACHE_NONE:
312 break;
313 case I915_CACHE_WT:
314 pte |= HSW_WT_ELLC_LLC_AGE3;
315 break;
316 default:
317 pte |= HSW_WB_ELLC_LLC_AGE3;
318 break;
319 }
320
321 return pte;
322 }
323
324 static int __setup_page_dma(struct drm_device *dev,
325 struct i915_page_dma *p, gfp_t flags)
326 {
327 struct device *device = &dev->pdev->dev;
328
329 p->page = alloc_page(flags);
330 if (!p->page)
331 return -ENOMEM;
332
333 p->daddr = dma_map_page(device,
334 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
335
336 if (dma_mapping_error(device, p->daddr)) {
337 __free_page(p->page);
338 return -EINVAL;
339 }
340
341 return 0;
342 }
343
344 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
345 {
346 return __setup_page_dma(dev, p, GFP_KERNEL);
347 }
348
349 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
350 {
351 if (WARN_ON(!p->page))
352 return;
353
354 dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
355 __free_page(p->page);
356 memset(p, 0, sizeof(*p));
357 }
358
359 static void *kmap_page_dma(struct i915_page_dma *p)
360 {
361 return kmap_atomic(p->page);
362 }
363
364 /* We use the flushing unmap only with ppgtt structures:
365 * page directories, page tables and scratch pages.
366 */
367 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
368 {
369 /* There are only few exceptions for gen >=6. chv and bxt.
370 * And we are not sure about the latter so play safe for now.
371 */
372 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
373 drm_clflush_virt_range(vaddr, PAGE_SIZE);
374
375 kunmap_atomic(vaddr);
376 }
377
378 #define kmap_px(px) kmap_page_dma(px_base(px))
379 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
380
381 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
382 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
383 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
384 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
385
386 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
387 const uint64_t val)
388 {
389 int i;
390 uint64_t * const vaddr = kmap_page_dma(p);
391
392 for (i = 0; i < 512; i++)
393 vaddr[i] = val;
394
395 kunmap_page_dma(dev, vaddr);
396 }
397
398 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
399 const uint32_t val32)
400 {
401 uint64_t v = val32;
402
403 v = v << 32 | val32;
404
405 fill_page_dma(dev, p, v);
406 }
407
408 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
409 {
410 struct i915_page_scratch *sp;
411 int ret;
412
413 sp = kzalloc(sizeof(*sp), GFP_KERNEL);
414 if (sp == NULL)
415 return ERR_PTR(-ENOMEM);
416
417 ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
418 if (ret) {
419 kfree(sp);
420 return ERR_PTR(ret);
421 }
422
423 set_pages_uc(px_page(sp), 1);
424
425 return sp;
426 }
427
428 static void free_scratch_page(struct drm_device *dev,
429 struct i915_page_scratch *sp)
430 {
431 set_pages_wb(px_page(sp), 1);
432
433 cleanup_px(dev, sp);
434 kfree(sp);
435 }
436
437 static struct i915_page_table *alloc_pt(struct drm_device *dev)
438 {
439 struct i915_page_table *pt;
440 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
441 GEN8_PTES : GEN6_PTES;
442 int ret = -ENOMEM;
443
444 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
445 if (!pt)
446 return ERR_PTR(-ENOMEM);
447
448 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
449 GFP_KERNEL);
450
451 if (!pt->used_ptes)
452 goto fail_bitmap;
453
454 ret = setup_px(dev, pt);
455 if (ret)
456 goto fail_page_m;
457
458 return pt;
459
460 fail_page_m:
461 kfree(pt->used_ptes);
462 fail_bitmap:
463 kfree(pt);
464
465 return ERR_PTR(ret);
466 }
467
468 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
469 {
470 cleanup_px(dev, pt);
471 kfree(pt->used_ptes);
472 kfree(pt);
473 }
474
475 static void gen8_initialize_pt(struct i915_address_space *vm,
476 struct i915_page_table *pt)
477 {
478 gen8_pte_t scratch_pte;
479
480 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
481 I915_CACHE_LLC, true);
482
483 fill_px(vm->dev, pt, scratch_pte);
484 }
485
486 static void gen6_initialize_pt(struct i915_address_space *vm,
487 struct i915_page_table *pt)
488 {
489 gen6_pte_t scratch_pte;
490
491 WARN_ON(px_dma(vm->scratch_page) == 0);
492
493 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
494 I915_CACHE_LLC, true, 0);
495
496 fill32_px(vm->dev, pt, scratch_pte);
497 }
498
499 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
500 {
501 struct i915_page_directory *pd;
502 int ret = -ENOMEM;
503
504 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
505 if (!pd)
506 return ERR_PTR(-ENOMEM);
507
508 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
509 sizeof(*pd->used_pdes), GFP_KERNEL);
510 if (!pd->used_pdes)
511 goto fail_bitmap;
512
513 ret = setup_px(dev, pd);
514 if (ret)
515 goto fail_page_m;
516
517 return pd;
518
519 fail_page_m:
520 kfree(pd->used_pdes);
521 fail_bitmap:
522 kfree(pd);
523
524 return ERR_PTR(ret);
525 }
526
527 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
528 {
529 if (px_page(pd)) {
530 cleanup_px(dev, pd);
531 kfree(pd->used_pdes);
532 kfree(pd);
533 }
534 }
535
536 static void gen8_initialize_pd(struct i915_address_space *vm,
537 struct i915_page_directory *pd)
538 {
539 gen8_pde_t scratch_pde;
540
541 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
542
543 fill_px(vm->dev, pd, scratch_pde);
544 }
545
546 static int __pdp_init(struct drm_device *dev,
547 struct i915_page_directory_pointer *pdp)
548 {
549 size_t pdpes = I915_PDPES_PER_PDP(dev);
550
551 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
552 sizeof(unsigned long),
553 GFP_KERNEL);
554 if (!pdp->used_pdpes)
555 return -ENOMEM;
556
557 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
558 GFP_KERNEL);
559 if (!pdp->page_directory) {
560 kfree(pdp->used_pdpes);
561 /* the PDP might be the statically allocated top level. Keep it
562 * as clean as possible */
563 pdp->used_pdpes = NULL;
564 return -ENOMEM;
565 }
566
567 return 0;
568 }
569
570 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
571 {
572 kfree(pdp->used_pdpes);
573 kfree(pdp->page_directory);
574 pdp->page_directory = NULL;
575 }
576
577 static struct
578 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
579 {
580 struct i915_page_directory_pointer *pdp;
581 int ret = -ENOMEM;
582
583 WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
584
585 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
586 if (!pdp)
587 return ERR_PTR(-ENOMEM);
588
589 ret = __pdp_init(dev, pdp);
590 if (ret)
591 goto fail_bitmap;
592
593 ret = setup_px(dev, pdp);
594 if (ret)
595 goto fail_page_m;
596
597 return pdp;
598
599 fail_page_m:
600 __pdp_fini(pdp);
601 fail_bitmap:
602 kfree(pdp);
603
604 return ERR_PTR(ret);
605 }
606
607 static void free_pdp(struct drm_device *dev,
608 struct i915_page_directory_pointer *pdp)
609 {
610 __pdp_fini(pdp);
611 if (USES_FULL_48BIT_PPGTT(dev)) {
612 cleanup_px(dev, pdp);
613 kfree(pdp);
614 }
615 }
616
617 static void gen8_initialize_pdp(struct i915_address_space *vm,
618 struct i915_page_directory_pointer *pdp)
619 {
620 gen8_ppgtt_pdpe_t scratch_pdpe;
621
622 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
623
624 fill_px(vm->dev, pdp, scratch_pdpe);
625 }
626
627 static void gen8_initialize_pml4(struct i915_address_space *vm,
628 struct i915_pml4 *pml4)
629 {
630 gen8_ppgtt_pml4e_t scratch_pml4e;
631
632 scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
633 I915_CACHE_LLC);
634
635 fill_px(vm->dev, pml4, scratch_pml4e);
636 }
637
638 static void
639 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
640 struct i915_page_directory_pointer *pdp,
641 struct i915_page_directory *pd,
642 int index)
643 {
644 gen8_ppgtt_pdpe_t *page_directorypo;
645
646 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
647 return;
648
649 page_directorypo = kmap_px(pdp);
650 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
651 kunmap_px(ppgtt, page_directorypo);
652 }
653
654 static void
655 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
656 struct i915_pml4 *pml4,
657 struct i915_page_directory_pointer *pdp,
658 int index)
659 {
660 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
661
662 WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
663 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
664 kunmap_px(ppgtt, pagemap);
665 }
666
667 /* Broadwell Page Directory Pointer Descriptors */
668 static int gen8_write_pdp(struct drm_i915_gem_request *req,
669 unsigned entry,
670 dma_addr_t addr)
671 {
672 struct intel_engine_cs *engine = req->engine;
673 int ret;
674
675 BUG_ON(entry >= 4);
676
677 ret = intel_ring_begin(req, 6);
678 if (ret)
679 return ret;
680
681 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
682 intel_ring_emit_reg(engine, GEN8_RING_PDP_UDW(engine, entry));
683 intel_ring_emit(engine, upper_32_bits(addr));
684 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
685 intel_ring_emit_reg(engine, GEN8_RING_PDP_LDW(engine, entry));
686 intel_ring_emit(engine, lower_32_bits(addr));
687 intel_ring_advance(engine);
688
689 return 0;
690 }
691
692 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
693 struct drm_i915_gem_request *req)
694 {
695 int i, ret;
696
697 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
698 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
699
700 ret = gen8_write_pdp(req, i, pd_daddr);
701 if (ret)
702 return ret;
703 }
704
705 return 0;
706 }
707
708 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
709 struct drm_i915_gem_request *req)
710 {
711 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
712 }
713
714 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
715 struct i915_page_directory_pointer *pdp,
716 uint64_t start,
717 uint64_t length,
718 gen8_pte_t scratch_pte)
719 {
720 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
721 gen8_pte_t *pt_vaddr;
722 unsigned pdpe = gen8_pdpe_index(start);
723 unsigned pde = gen8_pde_index(start);
724 unsigned pte = gen8_pte_index(start);
725 unsigned num_entries = length >> PAGE_SHIFT;
726 unsigned last_pte, i;
727
728 if (WARN_ON(!pdp))
729 return;
730
731 while (num_entries) {
732 struct i915_page_directory *pd;
733 struct i915_page_table *pt;
734
735 if (WARN_ON(!pdp->page_directory[pdpe]))
736 break;
737
738 pd = pdp->page_directory[pdpe];
739
740 if (WARN_ON(!pd->page_table[pde]))
741 break;
742
743 pt = pd->page_table[pde];
744
745 if (WARN_ON(!px_page(pt)))
746 break;
747
748 last_pte = pte + num_entries;
749 if (last_pte > GEN8_PTES)
750 last_pte = GEN8_PTES;
751
752 pt_vaddr = kmap_px(pt);
753
754 for (i = pte; i < last_pte; i++) {
755 pt_vaddr[i] = scratch_pte;
756 num_entries--;
757 }
758
759 kunmap_px(ppgtt, pt_vaddr);
760
761 pte = 0;
762 if (++pde == I915_PDES) {
763 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
764 break;
765 pde = 0;
766 }
767 }
768 }
769
770 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
771 uint64_t start,
772 uint64_t length,
773 bool use_scratch)
774 {
775 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
776 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
777 I915_CACHE_LLC, use_scratch);
778
779 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
780 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
781 scratch_pte);
782 } else {
783 uint64_t pml4e;
784 struct i915_page_directory_pointer *pdp;
785
786 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
787 gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
788 scratch_pte);
789 }
790 }
791 }
792
793 static void
794 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
795 struct i915_page_directory_pointer *pdp,
796 struct sg_page_iter *sg_iter,
797 uint64_t start,
798 enum i915_cache_level cache_level)
799 {
800 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
801 gen8_pte_t *pt_vaddr;
802 unsigned pdpe = gen8_pdpe_index(start);
803 unsigned pde = gen8_pde_index(start);
804 unsigned pte = gen8_pte_index(start);
805
806 pt_vaddr = NULL;
807
808 while (__sg_page_iter_next(sg_iter)) {
809 if (pt_vaddr == NULL) {
810 struct i915_page_directory *pd = pdp->page_directory[pdpe];
811 struct i915_page_table *pt = pd->page_table[pde];
812 pt_vaddr = kmap_px(pt);
813 }
814
815 pt_vaddr[pte] =
816 gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
817 cache_level, true);
818 if (++pte == GEN8_PTES) {
819 kunmap_px(ppgtt, pt_vaddr);
820 pt_vaddr = NULL;
821 if (++pde == I915_PDES) {
822 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
823 break;
824 pde = 0;
825 }
826 pte = 0;
827 }
828 }
829
830 if (pt_vaddr)
831 kunmap_px(ppgtt, pt_vaddr);
832 }
833
834 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
835 struct sg_table *pages,
836 uint64_t start,
837 enum i915_cache_level cache_level,
838 u32 unused)
839 {
840 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
841 struct sg_page_iter sg_iter;
842
843 __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
844
845 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
846 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
847 cache_level);
848 } else {
849 struct i915_page_directory_pointer *pdp;
850 uint64_t pml4e;
851 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
852
853 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
854 gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
855 start, cache_level);
856 }
857 }
858 }
859
860 static void gen8_free_page_tables(struct drm_device *dev,
861 struct i915_page_directory *pd)
862 {
863 int i;
864
865 if (!px_page(pd))
866 return;
867
868 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
869 if (WARN_ON(!pd->page_table[i]))
870 continue;
871
872 free_pt(dev, pd->page_table[i]);
873 pd->page_table[i] = NULL;
874 }
875 }
876
877 static int gen8_init_scratch(struct i915_address_space *vm)
878 {
879 struct drm_device *dev = vm->dev;
880 int ret;
881
882 vm->scratch_page = alloc_scratch_page(dev);
883 if (IS_ERR(vm->scratch_page))
884 return PTR_ERR(vm->scratch_page);
885
886 vm->scratch_pt = alloc_pt(dev);
887 if (IS_ERR(vm->scratch_pt)) {
888 ret = PTR_ERR(vm->scratch_pt);
889 goto free_scratch_page;
890 }
891
892 vm->scratch_pd = alloc_pd(dev);
893 if (IS_ERR(vm->scratch_pd)) {
894 ret = PTR_ERR(vm->scratch_pd);
895 goto free_pt;
896 }
897
898 if (USES_FULL_48BIT_PPGTT(dev)) {
899 vm->scratch_pdp = alloc_pdp(dev);
900 if (IS_ERR(vm->scratch_pdp)) {
901 ret = PTR_ERR(vm->scratch_pdp);
902 goto free_pd;
903 }
904 }
905
906 gen8_initialize_pt(vm, vm->scratch_pt);
907 gen8_initialize_pd(vm, vm->scratch_pd);
908 if (USES_FULL_48BIT_PPGTT(dev))
909 gen8_initialize_pdp(vm, vm->scratch_pdp);
910
911 return 0;
912
913 free_pd:
914 free_pd(dev, vm->scratch_pd);
915 free_pt:
916 free_pt(dev, vm->scratch_pt);
917 free_scratch_page:
918 free_scratch_page(dev, vm->scratch_page);
919
920 return ret;
921 }
922
923 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
924 {
925 enum vgt_g2v_type msg;
926 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
927 int i;
928
929 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
930 u64 daddr = px_dma(&ppgtt->pml4);
931
932 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
933 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
934
935 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
936 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
937 } else {
938 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
939 u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
940
941 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
942 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
943 }
944
945 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
946 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
947 }
948
949 I915_WRITE(vgtif_reg(g2v_notify), msg);
950
951 return 0;
952 }
953
954 static void gen8_free_scratch(struct i915_address_space *vm)
955 {
956 struct drm_device *dev = vm->dev;
957
958 if (USES_FULL_48BIT_PPGTT(dev))
959 free_pdp(dev, vm->scratch_pdp);
960 free_pd(dev, vm->scratch_pd);
961 free_pt(dev, vm->scratch_pt);
962 free_scratch_page(dev, vm->scratch_page);
963 }
964
965 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
966 struct i915_page_directory_pointer *pdp)
967 {
968 int i;
969
970 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
971 if (WARN_ON(!pdp->page_directory[i]))
972 continue;
973
974 gen8_free_page_tables(dev, pdp->page_directory[i]);
975 free_pd(dev, pdp->page_directory[i]);
976 }
977
978 free_pdp(dev, pdp);
979 }
980
981 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
982 {
983 int i;
984
985 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
986 if (WARN_ON(!ppgtt->pml4.pdps[i]))
987 continue;
988
989 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
990 }
991
992 cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
993 }
994
995 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
996 {
997 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
998
999 if (intel_vgpu_active(to_i915(vm->dev)))
1000 gen8_ppgtt_notify_vgt(ppgtt, false);
1001
1002 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
1003 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
1004 else
1005 gen8_ppgtt_cleanup_4lvl(ppgtt);
1006
1007 gen8_free_scratch(vm);
1008 }
1009
1010 /**
1011 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1012 * @vm: Master vm structure.
1013 * @pd: Page directory for this address range.
1014 * @start: Starting virtual address to begin allocations.
1015 * @length: Size of the allocations.
1016 * @new_pts: Bitmap set by function with new allocations. Likely used by the
1017 * caller to free on error.
1018 *
1019 * Allocate the required number of page tables. Extremely similar to
1020 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1021 * the page directory boundary (instead of the page directory pointer). That
1022 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1023 * possible, and likely that the caller will need to use multiple calls of this
1024 * function to achieve the appropriate allocation.
1025 *
1026 * Return: 0 if success; negative error code otherwise.
1027 */
1028 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1029 struct i915_page_directory *pd,
1030 uint64_t start,
1031 uint64_t length,
1032 unsigned long *new_pts)
1033 {
1034 struct drm_device *dev = vm->dev;
1035 struct i915_page_table *pt;
1036 uint32_t pde;
1037
1038 gen8_for_each_pde(pt, pd, start, length, pde) {
1039 /* Don't reallocate page tables */
1040 if (test_bit(pde, pd->used_pdes)) {
1041 /* Scratch is never allocated this way */
1042 WARN_ON(pt == vm->scratch_pt);
1043 continue;
1044 }
1045
1046 pt = alloc_pt(dev);
1047 if (IS_ERR(pt))
1048 goto unwind_out;
1049
1050 gen8_initialize_pt(vm, pt);
1051 pd->page_table[pde] = pt;
1052 __set_bit(pde, new_pts);
1053 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1054 }
1055
1056 return 0;
1057
1058 unwind_out:
1059 for_each_set_bit(pde, new_pts, I915_PDES)
1060 free_pt(dev, pd->page_table[pde]);
1061
1062 return -ENOMEM;
1063 }
1064
1065 /**
1066 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1067 * @vm: Master vm structure.
1068 * @pdp: Page directory pointer for this address range.
1069 * @start: Starting virtual address to begin allocations.
1070 * @length: Size of the allocations.
1071 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1072 * caller to free on error.
1073 *
1074 * Allocate the required number of page directories starting at the pde index of
1075 * @start, and ending at the pde index @start + @length. This function will skip
1076 * over already allocated page directories within the range, and only allocate
1077 * new ones, setting the appropriate pointer within the pdp as well as the
1078 * correct position in the bitmap @new_pds.
1079 *
1080 * The function will only allocate the pages within the range for a give page
1081 * directory pointer. In other words, if @start + @length straddles a virtually
1082 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1083 * required by the caller, This is not currently possible, and the BUG in the
1084 * code will prevent it.
1085 *
1086 * Return: 0 if success; negative error code otherwise.
1087 */
1088 static int
1089 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1090 struct i915_page_directory_pointer *pdp,
1091 uint64_t start,
1092 uint64_t length,
1093 unsigned long *new_pds)
1094 {
1095 struct drm_device *dev = vm->dev;
1096 struct i915_page_directory *pd;
1097 uint32_t pdpe;
1098 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1099
1100 WARN_ON(!bitmap_empty(new_pds, pdpes));
1101
1102 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1103 if (test_bit(pdpe, pdp->used_pdpes))
1104 continue;
1105
1106 pd = alloc_pd(dev);
1107 if (IS_ERR(pd))
1108 goto unwind_out;
1109
1110 gen8_initialize_pd(vm, pd);
1111 pdp->page_directory[pdpe] = pd;
1112 __set_bit(pdpe, new_pds);
1113 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1114 }
1115
1116 return 0;
1117
1118 unwind_out:
1119 for_each_set_bit(pdpe, new_pds, pdpes)
1120 free_pd(dev, pdp->page_directory[pdpe]);
1121
1122 return -ENOMEM;
1123 }
1124
1125 /**
1126 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1127 * @vm: Master vm structure.
1128 * @pml4: Page map level 4 for this address range.
1129 * @start: Starting virtual address to begin allocations.
1130 * @length: Size of the allocations.
1131 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1132 * caller to free on error.
1133 *
1134 * Allocate the required number of page directory pointers. Extremely similar to
1135 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1136 * The main difference is here we are limited by the pml4 boundary (instead of
1137 * the page directory pointer).
1138 *
1139 * Return: 0 if success; negative error code otherwise.
1140 */
1141 static int
1142 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1143 struct i915_pml4 *pml4,
1144 uint64_t start,
1145 uint64_t length,
1146 unsigned long *new_pdps)
1147 {
1148 struct drm_device *dev = vm->dev;
1149 struct i915_page_directory_pointer *pdp;
1150 uint32_t pml4e;
1151
1152 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1153
1154 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1155 if (!test_bit(pml4e, pml4->used_pml4es)) {
1156 pdp = alloc_pdp(dev);
1157 if (IS_ERR(pdp))
1158 goto unwind_out;
1159
1160 gen8_initialize_pdp(vm, pdp);
1161 pml4->pdps[pml4e] = pdp;
1162 __set_bit(pml4e, new_pdps);
1163 trace_i915_page_directory_pointer_entry_alloc(vm,
1164 pml4e,
1165 start,
1166 GEN8_PML4E_SHIFT);
1167 }
1168 }
1169
1170 return 0;
1171
1172 unwind_out:
1173 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1174 free_pdp(dev, pml4->pdps[pml4e]);
1175
1176 return -ENOMEM;
1177 }
1178
1179 static void
1180 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1181 {
1182 kfree(new_pts);
1183 kfree(new_pds);
1184 }
1185
1186 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1187 * of these are based on the number of PDPEs in the system.
1188 */
1189 static
1190 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1191 unsigned long **new_pts,
1192 uint32_t pdpes)
1193 {
1194 unsigned long *pds;
1195 unsigned long *pts;
1196
1197 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1198 if (!pds)
1199 return -ENOMEM;
1200
1201 pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1202 GFP_TEMPORARY);
1203 if (!pts)
1204 goto err_out;
1205
1206 *new_pds = pds;
1207 *new_pts = pts;
1208
1209 return 0;
1210
1211 err_out:
1212 free_gen8_temp_bitmaps(pds, pts);
1213 return -ENOMEM;
1214 }
1215
1216 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1217 * the page table structures, we mark them dirty so that
1218 * context switching/execlist queuing code takes extra steps
1219 * to ensure that tlbs are flushed.
1220 */
1221 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1222 {
1223 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1224 }
1225
1226 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1227 struct i915_page_directory_pointer *pdp,
1228 uint64_t start,
1229 uint64_t length)
1230 {
1231 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1232 unsigned long *new_page_dirs, *new_page_tables;
1233 struct drm_device *dev = vm->dev;
1234 struct i915_page_directory *pd;
1235 const uint64_t orig_start = start;
1236 const uint64_t orig_length = length;
1237 uint32_t pdpe;
1238 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1239 int ret;
1240
1241 /* Wrap is never okay since we can only represent 48b, and we don't
1242 * actually use the other side of the canonical address space.
1243 */
1244 if (WARN_ON(start + length < start))
1245 return -ENODEV;
1246
1247 if (WARN_ON(start + length > vm->total))
1248 return -ENODEV;
1249
1250 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1251 if (ret)
1252 return ret;
1253
1254 /* Do the allocations first so we can easily bail out */
1255 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1256 new_page_dirs);
1257 if (ret) {
1258 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1259 return ret;
1260 }
1261
1262 /* For every page directory referenced, allocate page tables */
1263 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1264 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1265 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1266 if (ret)
1267 goto err_out;
1268 }
1269
1270 start = orig_start;
1271 length = orig_length;
1272
1273 /* Allocations have completed successfully, so set the bitmaps, and do
1274 * the mappings. */
1275 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1276 gen8_pde_t *const page_directory = kmap_px(pd);
1277 struct i915_page_table *pt;
1278 uint64_t pd_len = length;
1279 uint64_t pd_start = start;
1280 uint32_t pde;
1281
1282 /* Every pd should be allocated, we just did that above. */
1283 WARN_ON(!pd);
1284
1285 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1286 /* Same reasoning as pd */
1287 WARN_ON(!pt);
1288 WARN_ON(!pd_len);
1289 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1290
1291 /* Set our used ptes within the page table */
1292 bitmap_set(pt->used_ptes,
1293 gen8_pte_index(pd_start),
1294 gen8_pte_count(pd_start, pd_len));
1295
1296 /* Our pde is now pointing to the pagetable, pt */
1297 __set_bit(pde, pd->used_pdes);
1298
1299 /* Map the PDE to the page table */
1300 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1301 I915_CACHE_LLC);
1302 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1303 gen8_pte_index(start),
1304 gen8_pte_count(start, length),
1305 GEN8_PTES);
1306
1307 /* NB: We haven't yet mapped ptes to pages. At this
1308 * point we're still relying on insert_entries() */
1309 }
1310
1311 kunmap_px(ppgtt, page_directory);
1312 __set_bit(pdpe, pdp->used_pdpes);
1313 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1314 }
1315
1316 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1317 mark_tlbs_dirty(ppgtt);
1318 return 0;
1319
1320 err_out:
1321 while (pdpe--) {
1322 unsigned long temp;
1323
1324 for_each_set_bit(temp, new_page_tables + pdpe *
1325 BITS_TO_LONGS(I915_PDES), I915_PDES)
1326 free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1327 }
1328
1329 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1330 free_pd(dev, pdp->page_directory[pdpe]);
1331
1332 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1333 mark_tlbs_dirty(ppgtt);
1334 return ret;
1335 }
1336
1337 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1338 struct i915_pml4 *pml4,
1339 uint64_t start,
1340 uint64_t length)
1341 {
1342 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1343 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1344 struct i915_page_directory_pointer *pdp;
1345 uint64_t pml4e;
1346 int ret = 0;
1347
1348 /* Do the pml4 allocations first, so we don't need to track the newly
1349 * allocated tables below the pdp */
1350 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1351
1352 /* The pagedirectory and pagetable allocations are done in the shared 3
1353 * and 4 level code. Just allocate the pdps.
1354 */
1355 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1356 new_pdps);
1357 if (ret)
1358 return ret;
1359
1360 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1361 "The allocation has spanned more than 512GB. "
1362 "It is highly likely this is incorrect.");
1363
1364 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1365 WARN_ON(!pdp);
1366
1367 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1368 if (ret)
1369 goto err_out;
1370
1371 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1372 }
1373
1374 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1375 GEN8_PML4ES_PER_PML4);
1376
1377 return 0;
1378
1379 err_out:
1380 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1381 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1382
1383 return ret;
1384 }
1385
1386 static int gen8_alloc_va_range(struct i915_address_space *vm,
1387 uint64_t start, uint64_t length)
1388 {
1389 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1390
1391 if (USES_FULL_48BIT_PPGTT(vm->dev))
1392 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1393 else
1394 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1395 }
1396
1397 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1398 uint64_t start, uint64_t length,
1399 gen8_pte_t scratch_pte,
1400 struct seq_file *m)
1401 {
1402 struct i915_page_directory *pd;
1403 uint32_t pdpe;
1404
1405 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1406 struct i915_page_table *pt;
1407 uint64_t pd_len = length;
1408 uint64_t pd_start = start;
1409 uint32_t pde;
1410
1411 if (!test_bit(pdpe, pdp->used_pdpes))
1412 continue;
1413
1414 seq_printf(m, "\tPDPE #%d\n", pdpe);
1415 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1416 uint32_t pte;
1417 gen8_pte_t *pt_vaddr;
1418
1419 if (!test_bit(pde, pd->used_pdes))
1420 continue;
1421
1422 pt_vaddr = kmap_px(pt);
1423 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1424 uint64_t va =
1425 (pdpe << GEN8_PDPE_SHIFT) |
1426 (pde << GEN8_PDE_SHIFT) |
1427 (pte << GEN8_PTE_SHIFT);
1428 int i;
1429 bool found = false;
1430
1431 for (i = 0; i < 4; i++)
1432 if (pt_vaddr[pte + i] != scratch_pte)
1433 found = true;
1434 if (!found)
1435 continue;
1436
1437 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1438 for (i = 0; i < 4; i++) {
1439 if (pt_vaddr[pte + i] != scratch_pte)
1440 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1441 else
1442 seq_puts(m, " SCRATCH ");
1443 }
1444 seq_puts(m, "\n");
1445 }
1446 /* don't use kunmap_px, it could trigger
1447 * an unnecessary flush.
1448 */
1449 kunmap_atomic(pt_vaddr);
1450 }
1451 }
1452 }
1453
1454 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1455 {
1456 struct i915_address_space *vm = &ppgtt->base;
1457 uint64_t start = ppgtt->base.start;
1458 uint64_t length = ppgtt->base.total;
1459 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1460 I915_CACHE_LLC, true);
1461
1462 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1463 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1464 } else {
1465 uint64_t pml4e;
1466 struct i915_pml4 *pml4 = &ppgtt->pml4;
1467 struct i915_page_directory_pointer *pdp;
1468
1469 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1470 if (!test_bit(pml4e, pml4->used_pml4es))
1471 continue;
1472
1473 seq_printf(m, " PML4E #%llu\n", pml4e);
1474 gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1475 }
1476 }
1477 }
1478
1479 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1480 {
1481 unsigned long *new_page_dirs, *new_page_tables;
1482 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1483 int ret;
1484
1485 /* We allocate temp bitmap for page tables for no gain
1486 * but as this is for init only, lets keep the things simple
1487 */
1488 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1489 if (ret)
1490 return ret;
1491
1492 /* Allocate for all pdps regardless of how the ppgtt
1493 * was defined.
1494 */
1495 ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1496 0, 1ULL << 32,
1497 new_page_dirs);
1498 if (!ret)
1499 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1500
1501 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1502
1503 return ret;
1504 }
1505
1506 /*
1507 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1508 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1509 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1510 * space.
1511 *
1512 */
1513 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1514 {
1515 int ret;
1516
1517 ret = gen8_init_scratch(&ppgtt->base);
1518 if (ret)
1519 return ret;
1520
1521 ppgtt->base.start = 0;
1522 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1523 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1524 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1525 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1526 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1527 ppgtt->base.bind_vma = ppgtt_bind_vma;
1528 ppgtt->debug_dump = gen8_dump_ppgtt;
1529
1530 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1531 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1532 if (ret)
1533 goto free_scratch;
1534
1535 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1536
1537 ppgtt->base.total = 1ULL << 48;
1538 ppgtt->switch_mm = gen8_48b_mm_switch;
1539 } else {
1540 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1541 if (ret)
1542 goto free_scratch;
1543
1544 ppgtt->base.total = 1ULL << 32;
1545 ppgtt->switch_mm = gen8_legacy_mm_switch;
1546 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1547 0, 0,
1548 GEN8_PML4E_SHIFT);
1549
1550 if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1551 ret = gen8_preallocate_top_level_pdps(ppgtt);
1552 if (ret)
1553 goto free_scratch;
1554 }
1555 }
1556
1557 if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1558 gen8_ppgtt_notify_vgt(ppgtt, true);
1559
1560 return 0;
1561
1562 free_scratch:
1563 gen8_free_scratch(&ppgtt->base);
1564 return ret;
1565 }
1566
1567 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1568 {
1569 struct i915_address_space *vm = &ppgtt->base;
1570 struct i915_page_table *unused;
1571 gen6_pte_t scratch_pte;
1572 uint32_t pd_entry;
1573 uint32_t pte, pde, temp;
1574 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1575
1576 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1577 I915_CACHE_LLC, true, 0);
1578
1579 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1580 u32 expected;
1581 gen6_pte_t *pt_vaddr;
1582 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1583 pd_entry = readl(ppgtt->pd_addr + pde);
1584 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1585
1586 if (pd_entry != expected)
1587 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1588 pde,
1589 pd_entry,
1590 expected);
1591 seq_printf(m, "\tPDE: %x\n", pd_entry);
1592
1593 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1594
1595 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1596 unsigned long va =
1597 (pde * PAGE_SIZE * GEN6_PTES) +
1598 (pte * PAGE_SIZE);
1599 int i;
1600 bool found = false;
1601 for (i = 0; i < 4; i++)
1602 if (pt_vaddr[pte + i] != scratch_pte)
1603 found = true;
1604 if (!found)
1605 continue;
1606
1607 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1608 for (i = 0; i < 4; i++) {
1609 if (pt_vaddr[pte + i] != scratch_pte)
1610 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1611 else
1612 seq_puts(m, " SCRATCH ");
1613 }
1614 seq_puts(m, "\n");
1615 }
1616 kunmap_px(ppgtt, pt_vaddr);
1617 }
1618 }
1619
1620 /* Write pde (index) from the page directory @pd to the page table @pt */
1621 static void gen6_write_pde(struct i915_page_directory *pd,
1622 const int pde, struct i915_page_table *pt)
1623 {
1624 /* Caller needs to make sure the write completes if necessary */
1625 struct i915_hw_ppgtt *ppgtt =
1626 container_of(pd, struct i915_hw_ppgtt, pd);
1627 u32 pd_entry;
1628
1629 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1630 pd_entry |= GEN6_PDE_VALID;
1631
1632 writel(pd_entry, ppgtt->pd_addr + pde);
1633 }
1634
1635 /* Write all the page tables found in the ppgtt structure to incrementing page
1636 * directories. */
1637 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1638 struct i915_page_directory *pd,
1639 uint32_t start, uint32_t length)
1640 {
1641 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1642 struct i915_page_table *pt;
1643 uint32_t pde, temp;
1644
1645 gen6_for_each_pde(pt, pd, start, length, temp, pde)
1646 gen6_write_pde(pd, pde, pt);
1647
1648 /* Make sure write is complete before other code can use this page
1649 * table. Also require for WC mapped PTEs */
1650 readl(ggtt->gsm);
1651 }
1652
1653 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1654 {
1655 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1656
1657 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1658 }
1659
1660 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1661 struct drm_i915_gem_request *req)
1662 {
1663 struct intel_engine_cs *engine = req->engine;
1664 int ret;
1665
1666 /* NB: TLBs must be flushed and invalidated before a switch */
1667 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1668 if (ret)
1669 return ret;
1670
1671 ret = intel_ring_begin(req, 6);
1672 if (ret)
1673 return ret;
1674
1675 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1676 intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1677 intel_ring_emit(engine, PP_DIR_DCLV_2G);
1678 intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1679 intel_ring_emit(engine, get_pd_offset(ppgtt));
1680 intel_ring_emit(engine, MI_NOOP);
1681 intel_ring_advance(engine);
1682
1683 return 0;
1684 }
1685
1686 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1687 struct drm_i915_gem_request *req)
1688 {
1689 struct intel_engine_cs *engine = req->engine;
1690 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1691
1692 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1693 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1694 return 0;
1695 }
1696
1697 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1698 struct drm_i915_gem_request *req)
1699 {
1700 struct intel_engine_cs *engine = req->engine;
1701 int ret;
1702
1703 /* NB: TLBs must be flushed and invalidated before a switch */
1704 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1705 if (ret)
1706 return ret;
1707
1708 ret = intel_ring_begin(req, 6);
1709 if (ret)
1710 return ret;
1711
1712 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1713 intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1714 intel_ring_emit(engine, PP_DIR_DCLV_2G);
1715 intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1716 intel_ring_emit(engine, get_pd_offset(ppgtt));
1717 intel_ring_emit(engine, MI_NOOP);
1718 intel_ring_advance(engine);
1719
1720 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1721 if (engine->id != RCS) {
1722 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1723 if (ret)
1724 return ret;
1725 }
1726
1727 return 0;
1728 }
1729
1730 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1731 struct drm_i915_gem_request *req)
1732 {
1733 struct intel_engine_cs *engine = req->engine;
1734 struct drm_device *dev = ppgtt->base.dev;
1735 struct drm_i915_private *dev_priv = dev->dev_private;
1736
1737
1738 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1739 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1740
1741 POSTING_READ(RING_PP_DIR_DCLV(engine));
1742
1743 return 0;
1744 }
1745
1746 static void gen8_ppgtt_enable(struct drm_device *dev)
1747 {
1748 struct drm_i915_private *dev_priv = dev->dev_private;
1749 struct intel_engine_cs *engine;
1750
1751 for_each_engine(engine, dev_priv) {
1752 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1753 I915_WRITE(RING_MODE_GEN7(engine),
1754 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1755 }
1756 }
1757
1758 static void gen7_ppgtt_enable(struct drm_device *dev)
1759 {
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 struct intel_engine_cs *engine;
1762 uint32_t ecochk, ecobits;
1763
1764 ecobits = I915_READ(GAC_ECO_BITS);
1765 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1766
1767 ecochk = I915_READ(GAM_ECOCHK);
1768 if (IS_HASWELL(dev)) {
1769 ecochk |= ECOCHK_PPGTT_WB_HSW;
1770 } else {
1771 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1772 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1773 }
1774 I915_WRITE(GAM_ECOCHK, ecochk);
1775
1776 for_each_engine(engine, dev_priv) {
1777 /* GFX_MODE is per-ring on gen7+ */
1778 I915_WRITE(RING_MODE_GEN7(engine),
1779 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1780 }
1781 }
1782
1783 static void gen6_ppgtt_enable(struct drm_device *dev)
1784 {
1785 struct drm_i915_private *dev_priv = dev->dev_private;
1786 uint32_t ecochk, gab_ctl, ecobits;
1787
1788 ecobits = I915_READ(GAC_ECO_BITS);
1789 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1790 ECOBITS_PPGTT_CACHE64B);
1791
1792 gab_ctl = I915_READ(GAB_CTL);
1793 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1794
1795 ecochk = I915_READ(GAM_ECOCHK);
1796 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1797
1798 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1799 }
1800
1801 /* PPGTT support for Sandybdrige/Gen6 and later */
1802 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1803 uint64_t start,
1804 uint64_t length,
1805 bool use_scratch)
1806 {
1807 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1808 gen6_pte_t *pt_vaddr, scratch_pte;
1809 unsigned first_entry = start >> PAGE_SHIFT;
1810 unsigned num_entries = length >> PAGE_SHIFT;
1811 unsigned act_pt = first_entry / GEN6_PTES;
1812 unsigned first_pte = first_entry % GEN6_PTES;
1813 unsigned last_pte, i;
1814
1815 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1816 I915_CACHE_LLC, true, 0);
1817
1818 while (num_entries) {
1819 last_pte = first_pte + num_entries;
1820 if (last_pte > GEN6_PTES)
1821 last_pte = GEN6_PTES;
1822
1823 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1824
1825 for (i = first_pte; i < last_pte; i++)
1826 pt_vaddr[i] = scratch_pte;
1827
1828 kunmap_px(ppgtt, pt_vaddr);
1829
1830 num_entries -= last_pte - first_pte;
1831 first_pte = 0;
1832 act_pt++;
1833 }
1834 }
1835
1836 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1837 struct sg_table *pages,
1838 uint64_t start,
1839 enum i915_cache_level cache_level, u32 flags)
1840 {
1841 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1842 unsigned first_entry = start >> PAGE_SHIFT;
1843 unsigned act_pt = first_entry / GEN6_PTES;
1844 unsigned act_pte = first_entry % GEN6_PTES;
1845 gen6_pte_t *pt_vaddr = NULL;
1846 struct sgt_iter sgt_iter;
1847 dma_addr_t addr;
1848
1849 for_each_sgt_dma(addr, sgt_iter, pages) {
1850 if (pt_vaddr == NULL)
1851 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1852
1853 pt_vaddr[act_pte] =
1854 vm->pte_encode(addr, cache_level, true, flags);
1855
1856 if (++act_pte == GEN6_PTES) {
1857 kunmap_px(ppgtt, pt_vaddr);
1858 pt_vaddr = NULL;
1859 act_pt++;
1860 act_pte = 0;
1861 }
1862 }
1863
1864 if (pt_vaddr)
1865 kunmap_px(ppgtt, pt_vaddr);
1866 }
1867
1868 static int gen6_alloc_va_range(struct i915_address_space *vm,
1869 uint64_t start_in, uint64_t length_in)
1870 {
1871 DECLARE_BITMAP(new_page_tables, I915_PDES);
1872 struct drm_device *dev = vm->dev;
1873 struct drm_i915_private *dev_priv = to_i915(dev);
1874 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1875 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1876 struct i915_page_table *pt;
1877 uint32_t start, length, start_save, length_save;
1878 uint32_t pde, temp;
1879 int ret;
1880
1881 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1882 return -ENODEV;
1883
1884 start = start_save = start_in;
1885 length = length_save = length_in;
1886
1887 bitmap_zero(new_page_tables, I915_PDES);
1888
1889 /* The allocation is done in two stages so that we can bail out with
1890 * minimal amount of pain. The first stage finds new page tables that
1891 * need allocation. The second stage marks use ptes within the page
1892 * tables.
1893 */
1894 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1895 if (pt != vm->scratch_pt) {
1896 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1897 continue;
1898 }
1899
1900 /* We've already allocated a page table */
1901 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1902
1903 pt = alloc_pt(dev);
1904 if (IS_ERR(pt)) {
1905 ret = PTR_ERR(pt);
1906 goto unwind_out;
1907 }
1908
1909 gen6_initialize_pt(vm, pt);
1910
1911 ppgtt->pd.page_table[pde] = pt;
1912 __set_bit(pde, new_page_tables);
1913 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1914 }
1915
1916 start = start_save;
1917 length = length_save;
1918
1919 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1920 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1921
1922 bitmap_zero(tmp_bitmap, GEN6_PTES);
1923 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1924 gen6_pte_count(start, length));
1925
1926 if (__test_and_clear_bit(pde, new_page_tables))
1927 gen6_write_pde(&ppgtt->pd, pde, pt);
1928
1929 trace_i915_page_table_entry_map(vm, pde, pt,
1930 gen6_pte_index(start),
1931 gen6_pte_count(start, length),
1932 GEN6_PTES);
1933 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1934 GEN6_PTES);
1935 }
1936
1937 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1938
1939 /* Make sure write is complete before other code can use this page
1940 * table. Also require for WC mapped PTEs */
1941 readl(ggtt->gsm);
1942
1943 mark_tlbs_dirty(ppgtt);
1944 return 0;
1945
1946 unwind_out:
1947 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1948 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1949
1950 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1951 free_pt(vm->dev, pt);
1952 }
1953
1954 mark_tlbs_dirty(ppgtt);
1955 return ret;
1956 }
1957
1958 static int gen6_init_scratch(struct i915_address_space *vm)
1959 {
1960 struct drm_device *dev = vm->dev;
1961
1962 vm->scratch_page = alloc_scratch_page(dev);
1963 if (IS_ERR(vm->scratch_page))
1964 return PTR_ERR(vm->scratch_page);
1965
1966 vm->scratch_pt = alloc_pt(dev);
1967 if (IS_ERR(vm->scratch_pt)) {
1968 free_scratch_page(dev, vm->scratch_page);
1969 return PTR_ERR(vm->scratch_pt);
1970 }
1971
1972 gen6_initialize_pt(vm, vm->scratch_pt);
1973
1974 return 0;
1975 }
1976
1977 static void gen6_free_scratch(struct i915_address_space *vm)
1978 {
1979 struct drm_device *dev = vm->dev;
1980
1981 free_pt(dev, vm->scratch_pt);
1982 free_scratch_page(dev, vm->scratch_page);
1983 }
1984
1985 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1986 {
1987 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1988 struct i915_page_table *pt;
1989 uint32_t pde;
1990
1991 drm_mm_remove_node(&ppgtt->node);
1992
1993 gen6_for_all_pdes(pt, ppgtt, pde) {
1994 if (pt != vm->scratch_pt)
1995 free_pt(ppgtt->base.dev, pt);
1996 }
1997
1998 gen6_free_scratch(vm);
1999 }
2000
2001 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2002 {
2003 struct i915_address_space *vm = &ppgtt->base;
2004 struct drm_device *dev = ppgtt->base.dev;
2005 struct drm_i915_private *dev_priv = to_i915(dev);
2006 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2007 bool retried = false;
2008 int ret;
2009
2010 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2011 * allocator works in address space sizes, so it's multiplied by page
2012 * size. We allocate at the top of the GTT to avoid fragmentation.
2013 */
2014 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2015
2016 ret = gen6_init_scratch(vm);
2017 if (ret)
2018 return ret;
2019
2020 alloc:
2021 ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2022 &ppgtt->node, GEN6_PD_SIZE,
2023 GEN6_PD_ALIGN, 0,
2024 0, ggtt->base.total,
2025 DRM_MM_TOPDOWN);
2026 if (ret == -ENOSPC && !retried) {
2027 ret = i915_gem_evict_something(dev, &ggtt->base,
2028 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2029 I915_CACHE_NONE,
2030 0, ggtt->base.total,
2031 0);
2032 if (ret)
2033 goto err_out;
2034
2035 retried = true;
2036 goto alloc;
2037 }
2038
2039 if (ret)
2040 goto err_out;
2041
2042
2043 if (ppgtt->node.start < ggtt->mappable_end)
2044 DRM_DEBUG("Forced to use aperture for PDEs\n");
2045
2046 return 0;
2047
2048 err_out:
2049 gen6_free_scratch(vm);
2050 return ret;
2051 }
2052
2053 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2054 {
2055 return gen6_ppgtt_allocate_page_directories(ppgtt);
2056 }
2057
2058 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2059 uint64_t start, uint64_t length)
2060 {
2061 struct i915_page_table *unused;
2062 uint32_t pde, temp;
2063
2064 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2065 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2066 }
2067
2068 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2069 {
2070 struct drm_device *dev = ppgtt->base.dev;
2071 struct drm_i915_private *dev_priv = to_i915(dev);
2072 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2073 int ret;
2074
2075 ppgtt->base.pte_encode = ggtt->base.pte_encode;
2076 if (IS_GEN6(dev)) {
2077 ppgtt->switch_mm = gen6_mm_switch;
2078 } else if (IS_HASWELL(dev)) {
2079 ppgtt->switch_mm = hsw_mm_switch;
2080 } else if (IS_GEN7(dev)) {
2081 ppgtt->switch_mm = gen7_mm_switch;
2082 } else
2083 BUG();
2084
2085 if (intel_vgpu_active(dev_priv))
2086 ppgtt->switch_mm = vgpu_mm_switch;
2087
2088 ret = gen6_ppgtt_alloc(ppgtt);
2089 if (ret)
2090 return ret;
2091
2092 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2093 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2094 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2095 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2096 ppgtt->base.bind_vma = ppgtt_bind_vma;
2097 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2098 ppgtt->base.start = 0;
2099 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2100 ppgtt->debug_dump = gen6_dump_ppgtt;
2101
2102 ppgtt->pd.base.ggtt_offset =
2103 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2104
2105 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2106 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2107
2108 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2109
2110 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2111
2112 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2113 ppgtt->node.size >> 20,
2114 ppgtt->node.start / PAGE_SIZE);
2115
2116 DRM_DEBUG("Adding PPGTT at offset %x\n",
2117 ppgtt->pd.base.ggtt_offset << 10);
2118
2119 return 0;
2120 }
2121
2122 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2123 {
2124 ppgtt->base.dev = dev;
2125
2126 if (INTEL_INFO(dev)->gen < 8)
2127 return gen6_ppgtt_init(ppgtt);
2128 else
2129 return gen8_ppgtt_init(ppgtt);
2130 }
2131
2132 static void i915_address_space_init(struct i915_address_space *vm,
2133 struct drm_i915_private *dev_priv)
2134 {
2135 drm_mm_init(&vm->mm, vm->start, vm->total);
2136 vm->dev = dev_priv->dev;
2137 INIT_LIST_HEAD(&vm->active_list);
2138 INIT_LIST_HEAD(&vm->inactive_list);
2139 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2140 }
2141
2142 static void gtt_write_workarounds(struct drm_device *dev)
2143 {
2144 struct drm_i915_private *dev_priv = dev->dev_private;
2145
2146 /* This function is for gtt related workarounds. This function is
2147 * called on driver load and after a GPU reset, so you can place
2148 * workarounds here even if they get overwritten by GPU reset.
2149 */
2150 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2151 if (IS_BROADWELL(dev))
2152 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2153 else if (IS_CHERRYVIEW(dev))
2154 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2155 else if (IS_SKYLAKE(dev))
2156 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2157 else if (IS_BROXTON(dev))
2158 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2159 }
2160
2161 static int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2162 {
2163 struct drm_i915_private *dev_priv = dev->dev_private;
2164 int ret = 0;
2165
2166 ret = __hw_ppgtt_init(dev, ppgtt);
2167 if (ret == 0) {
2168 kref_init(&ppgtt->ref);
2169 i915_address_space_init(&ppgtt->base, dev_priv);
2170 }
2171
2172 return ret;
2173 }
2174
2175 int i915_ppgtt_init_hw(struct drm_device *dev)
2176 {
2177 gtt_write_workarounds(dev);
2178
2179 /* In the case of execlists, PPGTT is enabled by the context descriptor
2180 * and the PDPs are contained within the context itself. We don't
2181 * need to do anything here. */
2182 if (i915.enable_execlists)
2183 return 0;
2184
2185 if (!USES_PPGTT(dev))
2186 return 0;
2187
2188 if (IS_GEN6(dev))
2189 gen6_ppgtt_enable(dev);
2190 else if (IS_GEN7(dev))
2191 gen7_ppgtt_enable(dev);
2192 else if (INTEL_INFO(dev)->gen >= 8)
2193 gen8_ppgtt_enable(dev);
2194 else
2195 MISSING_CASE(INTEL_INFO(dev)->gen);
2196
2197 return 0;
2198 }
2199
2200 struct i915_hw_ppgtt *
2201 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2202 {
2203 struct i915_hw_ppgtt *ppgtt;
2204 int ret;
2205
2206 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2207 if (!ppgtt)
2208 return ERR_PTR(-ENOMEM);
2209
2210 ret = i915_ppgtt_init(dev, ppgtt);
2211 if (ret) {
2212 kfree(ppgtt);
2213 return ERR_PTR(ret);
2214 }
2215
2216 ppgtt->file_priv = fpriv;
2217
2218 trace_i915_ppgtt_create(&ppgtt->base);
2219
2220 return ppgtt;
2221 }
2222
2223 void i915_ppgtt_release(struct kref *kref)
2224 {
2225 struct i915_hw_ppgtt *ppgtt =
2226 container_of(kref, struct i915_hw_ppgtt, ref);
2227
2228 trace_i915_ppgtt_release(&ppgtt->base);
2229
2230 /* vmas should already be unbound */
2231 WARN_ON(!list_empty(&ppgtt->base.active_list));
2232 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2233
2234 list_del(&ppgtt->base.global_link);
2235 drm_mm_takedown(&ppgtt->base.mm);
2236
2237 ppgtt->base.cleanup(&ppgtt->base);
2238 kfree(ppgtt);
2239 }
2240
2241 extern int intel_iommu_gfx_mapped;
2242 /* Certain Gen5 chipsets require require idling the GPU before
2243 * unmapping anything from the GTT when VT-d is enabled.
2244 */
2245 static bool needs_idle_maps(struct drm_device *dev)
2246 {
2247 #ifdef CONFIG_INTEL_IOMMU
2248 /* Query intel_iommu to see if we need the workaround. Presumably that
2249 * was loaded first.
2250 */
2251 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2252 return true;
2253 #endif
2254 return false;
2255 }
2256
2257 static bool do_idling(struct drm_i915_private *dev_priv)
2258 {
2259 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2260 bool ret = dev_priv->mm.interruptible;
2261
2262 if (unlikely(ggtt->do_idle_maps)) {
2263 dev_priv->mm.interruptible = false;
2264 if (i915_gpu_idle(dev_priv->dev)) {
2265 DRM_ERROR("Couldn't idle GPU\n");
2266 /* Wait a bit, in hopes it avoids the hang */
2267 udelay(10);
2268 }
2269 }
2270
2271 return ret;
2272 }
2273
2274 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2275 {
2276 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2277
2278 if (unlikely(ggtt->do_idle_maps))
2279 dev_priv->mm.interruptible = interruptible;
2280 }
2281
2282 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2283 {
2284 struct intel_engine_cs *engine;
2285
2286 if (INTEL_INFO(dev_priv)->gen < 6)
2287 return;
2288
2289 for_each_engine(engine, dev_priv) {
2290 u32 fault_reg;
2291 fault_reg = I915_READ(RING_FAULT_REG(engine));
2292 if (fault_reg & RING_FAULT_VALID) {
2293 DRM_DEBUG_DRIVER("Unexpected fault\n"
2294 "\tAddr: 0x%08lx\n"
2295 "\tAddress space: %s\n"
2296 "\tSource ID: %d\n"
2297 "\tType: %d\n",
2298 fault_reg & PAGE_MASK,
2299 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2300 RING_FAULT_SRCID(fault_reg),
2301 RING_FAULT_FAULT_TYPE(fault_reg));
2302 I915_WRITE(RING_FAULT_REG(engine),
2303 fault_reg & ~RING_FAULT_VALID);
2304 }
2305 }
2306 POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2307 }
2308
2309 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2310 {
2311 if (INTEL_INFO(dev_priv)->gen < 6) {
2312 intel_gtt_chipset_flush();
2313 } else {
2314 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2315 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2316 }
2317 }
2318
2319 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2320 {
2321 struct drm_i915_private *dev_priv = to_i915(dev);
2322 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2323
2324 /* Don't bother messing with faults pre GEN6 as we have little
2325 * documentation supporting that it's a good idea.
2326 */
2327 if (INTEL_INFO(dev)->gen < 6)
2328 return;
2329
2330 i915_check_and_clear_faults(dev_priv);
2331
2332 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2333 true);
2334
2335 i915_ggtt_flush(dev_priv);
2336 }
2337
2338 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2339 {
2340 if (!dma_map_sg(&obj->base.dev->pdev->dev,
2341 obj->pages->sgl, obj->pages->nents,
2342 PCI_DMA_BIDIRECTIONAL))
2343 return -ENOSPC;
2344
2345 return 0;
2346 }
2347
2348 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2349 {
2350 #ifdef writeq
2351 writeq(pte, addr);
2352 #else
2353 iowrite32((u32)pte, addr);
2354 iowrite32(pte >> 32, addr + 4);
2355 #endif
2356 }
2357
2358 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2359 dma_addr_t addr,
2360 uint64_t offset,
2361 enum i915_cache_level level,
2362 u32 unused)
2363 {
2364 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2365 gen8_pte_t __iomem *pte =
2366 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2367 (offset >> PAGE_SHIFT);
2368 int rpm_atomic_seq;
2369
2370 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2371
2372 gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2373
2374 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2375 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2376
2377 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2378 }
2379
2380 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2381 struct sg_table *st,
2382 uint64_t start,
2383 enum i915_cache_level level, u32 unused)
2384 {
2385 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2386 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2387 struct sgt_iter sgt_iter;
2388 gen8_pte_t __iomem *gtt_entries;
2389 gen8_pte_t gtt_entry;
2390 dma_addr_t addr;
2391 int rpm_atomic_seq;
2392 int i = 0;
2393
2394 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2395
2396 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2397
2398 for_each_sgt_dma(addr, sgt_iter, st) {
2399 gtt_entry = gen8_pte_encode(addr, level, true);
2400 gen8_set_pte(&gtt_entries[i++], gtt_entry);
2401 }
2402
2403 /*
2404 * XXX: This serves as a posting read to make sure that the PTE has
2405 * actually been updated. There is some concern that even though
2406 * registers and PTEs are within the same BAR that they are potentially
2407 * of NUMA access patterns. Therefore, even with the way we assume
2408 * hardware should work, we must keep this posting read for paranoia.
2409 */
2410 if (i != 0)
2411 WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2412
2413 /* This next bit makes the above posting read even more important. We
2414 * want to flush the TLBs only after we're certain all the PTE updates
2415 * have finished.
2416 */
2417 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2418 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2419
2420 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2421 }
2422
2423 struct insert_entries {
2424 struct i915_address_space *vm;
2425 struct sg_table *st;
2426 uint64_t start;
2427 enum i915_cache_level level;
2428 u32 flags;
2429 };
2430
2431 static int gen8_ggtt_insert_entries__cb(void *_arg)
2432 {
2433 struct insert_entries *arg = _arg;
2434 gen8_ggtt_insert_entries(arg->vm, arg->st,
2435 arg->start, arg->level, arg->flags);
2436 return 0;
2437 }
2438
2439 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2440 struct sg_table *st,
2441 uint64_t start,
2442 enum i915_cache_level level,
2443 u32 flags)
2444 {
2445 struct insert_entries arg = { vm, st, start, level, flags };
2446 stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2447 }
2448
2449 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2450 dma_addr_t addr,
2451 uint64_t offset,
2452 enum i915_cache_level level,
2453 u32 flags)
2454 {
2455 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2456 gen6_pte_t __iomem *pte =
2457 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2458 (offset >> PAGE_SHIFT);
2459 int rpm_atomic_seq;
2460
2461 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2462
2463 iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2464
2465 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2466 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2467
2468 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2469 }
2470
2471 /*
2472 * Binds an object into the global gtt with the specified cache level. The object
2473 * will be accessible to the GPU via commands whose operands reference offsets
2474 * within the global GTT as well as accessible by the GPU through the GMADR
2475 * mapped BAR (dev_priv->mm.gtt->gtt).
2476 */
2477 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2478 struct sg_table *st,
2479 uint64_t start,
2480 enum i915_cache_level level, u32 flags)
2481 {
2482 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2483 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2484 struct sgt_iter sgt_iter;
2485 gen6_pte_t __iomem *gtt_entries;
2486 gen6_pte_t gtt_entry;
2487 dma_addr_t addr;
2488 int rpm_atomic_seq;
2489 int i = 0;
2490
2491 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2492
2493 gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2494
2495 for_each_sgt_dma(addr, sgt_iter, st) {
2496 gtt_entry = vm->pte_encode(addr, level, true, flags);
2497 iowrite32(gtt_entry, &gtt_entries[i++]);
2498 }
2499
2500 /* XXX: This serves as a posting read to make sure that the PTE has
2501 * actually been updated. There is some concern that even though
2502 * registers and PTEs are within the same BAR that they are potentially
2503 * of NUMA access patterns. Therefore, even with the way we assume
2504 * hardware should work, we must keep this posting read for paranoia.
2505 */
2506 if (i != 0)
2507 WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2508
2509 /* This next bit makes the above posting read even more important. We
2510 * want to flush the TLBs only after we're certain all the PTE updates
2511 * have finished.
2512 */
2513 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2514 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2515
2516 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2517 }
2518
2519 static void nop_clear_range(struct i915_address_space *vm,
2520 uint64_t start,
2521 uint64_t length,
2522 bool use_scratch)
2523 {
2524 }
2525
2526 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2527 uint64_t start,
2528 uint64_t length,
2529 bool use_scratch)
2530 {
2531 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2532 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2533 unsigned first_entry = start >> PAGE_SHIFT;
2534 unsigned num_entries = length >> PAGE_SHIFT;
2535 gen8_pte_t scratch_pte, __iomem *gtt_base =
2536 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2537 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2538 int i;
2539 int rpm_atomic_seq;
2540
2541 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2542
2543 if (WARN(num_entries > max_entries,
2544 "First entry = %d; Num entries = %d (max=%d)\n",
2545 first_entry, num_entries, max_entries))
2546 num_entries = max_entries;
2547
2548 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2549 I915_CACHE_LLC,
2550 use_scratch);
2551 for (i = 0; i < num_entries; i++)
2552 gen8_set_pte(&gtt_base[i], scratch_pte);
2553 readl(gtt_base);
2554
2555 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2556 }
2557
2558 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2559 uint64_t start,
2560 uint64_t length,
2561 bool use_scratch)
2562 {
2563 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2564 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2565 unsigned first_entry = start >> PAGE_SHIFT;
2566 unsigned num_entries = length >> PAGE_SHIFT;
2567 gen6_pte_t scratch_pte, __iomem *gtt_base =
2568 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2569 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2570 int i;
2571 int rpm_atomic_seq;
2572
2573 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2574
2575 if (WARN(num_entries > max_entries,
2576 "First entry = %d; Num entries = %d (max=%d)\n",
2577 first_entry, num_entries, max_entries))
2578 num_entries = max_entries;
2579
2580 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2581 I915_CACHE_LLC, use_scratch, 0);
2582
2583 for (i = 0; i < num_entries; i++)
2584 iowrite32(scratch_pte, &gtt_base[i]);
2585 readl(gtt_base);
2586
2587 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2588 }
2589
2590 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2591 dma_addr_t addr,
2592 uint64_t offset,
2593 enum i915_cache_level cache_level,
2594 u32 unused)
2595 {
2596 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2597 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2598 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2599 int rpm_atomic_seq;
2600
2601 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2602
2603 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2604
2605 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2606 }
2607
2608 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2609 struct sg_table *pages,
2610 uint64_t start,
2611 enum i915_cache_level cache_level, u32 unused)
2612 {
2613 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2614 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2615 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2616 int rpm_atomic_seq;
2617
2618 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2619
2620 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2621
2622 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2623
2624 }
2625
2626 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2627 uint64_t start,
2628 uint64_t length,
2629 bool unused)
2630 {
2631 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2632 unsigned first_entry = start >> PAGE_SHIFT;
2633 unsigned num_entries = length >> PAGE_SHIFT;
2634 int rpm_atomic_seq;
2635
2636 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2637
2638 intel_gtt_clear_range(first_entry, num_entries);
2639
2640 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2641 }
2642
2643 static int ggtt_bind_vma(struct i915_vma *vma,
2644 enum i915_cache_level cache_level,
2645 u32 flags)
2646 {
2647 struct drm_i915_gem_object *obj = vma->obj;
2648 u32 pte_flags = 0;
2649 int ret;
2650
2651 ret = i915_get_ggtt_vma_pages(vma);
2652 if (ret)
2653 return ret;
2654
2655 /* Currently applicable only to VLV */
2656 if (obj->gt_ro)
2657 pte_flags |= PTE_READ_ONLY;
2658
2659 vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2660 vma->node.start,
2661 cache_level, pte_flags);
2662
2663 /*
2664 * Without aliasing PPGTT there's no difference between
2665 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2666 * upgrade to both bound if we bind either to avoid double-binding.
2667 */
2668 vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2669
2670 return 0;
2671 }
2672
2673 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2674 enum i915_cache_level cache_level,
2675 u32 flags)
2676 {
2677 u32 pte_flags;
2678 int ret;
2679
2680 ret = i915_get_ggtt_vma_pages(vma);
2681 if (ret)
2682 return ret;
2683
2684 /* Currently applicable only to VLV */
2685 pte_flags = 0;
2686 if (vma->obj->gt_ro)
2687 pte_flags |= PTE_READ_ONLY;
2688
2689
2690 if (flags & GLOBAL_BIND) {
2691 vma->vm->insert_entries(vma->vm,
2692 vma->ggtt_view.pages,
2693 vma->node.start,
2694 cache_level, pte_flags);
2695 }
2696
2697 if (flags & LOCAL_BIND) {
2698 struct i915_hw_ppgtt *appgtt =
2699 to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2700 appgtt->base.insert_entries(&appgtt->base,
2701 vma->ggtt_view.pages,
2702 vma->node.start,
2703 cache_level, pte_flags);
2704 }
2705
2706 return 0;
2707 }
2708
2709 static void ggtt_unbind_vma(struct i915_vma *vma)
2710 {
2711 struct drm_device *dev = vma->vm->dev;
2712 struct drm_i915_private *dev_priv = dev->dev_private;
2713 struct drm_i915_gem_object *obj = vma->obj;
2714 const uint64_t size = min_t(uint64_t,
2715 obj->base.size,
2716 vma->node.size);
2717
2718 if (vma->bound & GLOBAL_BIND) {
2719 vma->vm->clear_range(vma->vm,
2720 vma->node.start,
2721 size,
2722 true);
2723 }
2724
2725 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2726 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2727
2728 appgtt->base.clear_range(&appgtt->base,
2729 vma->node.start,
2730 size,
2731 true);
2732 }
2733 }
2734
2735 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2736 {
2737 struct drm_device *dev = obj->base.dev;
2738 struct drm_i915_private *dev_priv = dev->dev_private;
2739 bool interruptible;
2740
2741 interruptible = do_idling(dev_priv);
2742
2743 dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2744 PCI_DMA_BIDIRECTIONAL);
2745
2746 undo_idling(dev_priv, interruptible);
2747 }
2748
2749 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2750 unsigned long color,
2751 u64 *start,
2752 u64 *end)
2753 {
2754 if (node->color != color)
2755 *start += 4096;
2756
2757 if (!list_empty(&node->node_list)) {
2758 node = list_entry(node->node_list.next,
2759 struct drm_mm_node,
2760 node_list);
2761 if (node->allocated && node->color != color)
2762 *end -= 4096;
2763 }
2764 }
2765
2766 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2767 u64 start,
2768 u64 mappable_end,
2769 u64 end)
2770 {
2771 /* Let GEM Manage all of the aperture.
2772 *
2773 * However, leave one page at the end still bound to the scratch page.
2774 * There are a number of places where the hardware apparently prefetches
2775 * past the end of the object, and we've seen multiple hangs with the
2776 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2777 * aperture. One page should be enough to keep any prefetching inside
2778 * of the aperture.
2779 */
2780 struct drm_i915_private *dev_priv = to_i915(dev);
2781 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2782 struct drm_mm_node *entry;
2783 struct drm_i915_gem_object *obj;
2784 unsigned long hole_start, hole_end;
2785 int ret;
2786
2787 BUG_ON(mappable_end > end);
2788
2789 ggtt->base.start = start;
2790
2791 /* Subtract the guard page before address space initialization to
2792 * shrink the range used by drm_mm */
2793 ggtt->base.total = end - start - PAGE_SIZE;
2794 i915_address_space_init(&ggtt->base, dev_priv);
2795 ggtt->base.total += PAGE_SIZE;
2796
2797 ret = intel_vgt_balloon(dev_priv);
2798 if (ret)
2799 return ret;
2800
2801 if (!HAS_LLC(dev))
2802 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2803
2804 /* Mark any preallocated objects as occupied */
2805 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2806 struct i915_vma *vma = i915_gem_obj_to_vma(obj, &ggtt->base);
2807
2808 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2809 i915_gem_obj_ggtt_offset(obj), obj->base.size);
2810
2811 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2812 ret = drm_mm_reserve_node(&ggtt->base.mm, &vma->node);
2813 if (ret) {
2814 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2815 return ret;
2816 }
2817 vma->bound |= GLOBAL_BIND;
2818 __i915_vma_set_map_and_fenceable(vma);
2819 list_add_tail(&vma->vm_link, &ggtt->base.inactive_list);
2820 }
2821
2822 /* Clear any non-preallocated blocks */
2823 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2824 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2825 hole_start, hole_end);
2826 ggtt->base.clear_range(&ggtt->base, hole_start,
2827 hole_end - hole_start, true);
2828 }
2829
2830 /* And finally clear the reserved guard page */
2831 ggtt->base.clear_range(&ggtt->base, end - PAGE_SIZE, PAGE_SIZE, true);
2832
2833 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2834 struct i915_hw_ppgtt *ppgtt;
2835
2836 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2837 if (!ppgtt)
2838 return -ENOMEM;
2839
2840 ret = __hw_ppgtt_init(dev, ppgtt);
2841 if (ret) {
2842 ppgtt->base.cleanup(&ppgtt->base);
2843 kfree(ppgtt);
2844 return ret;
2845 }
2846
2847 if (ppgtt->base.allocate_va_range)
2848 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2849 ppgtt->base.total);
2850 if (ret) {
2851 ppgtt->base.cleanup(&ppgtt->base);
2852 kfree(ppgtt);
2853 return ret;
2854 }
2855
2856 ppgtt->base.clear_range(&ppgtt->base,
2857 ppgtt->base.start,
2858 ppgtt->base.total,
2859 true);
2860
2861 dev_priv->mm.aliasing_ppgtt = ppgtt;
2862 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2863 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2864 }
2865
2866 return 0;
2867 }
2868
2869 /**
2870 * i915_gem_init_ggtt - Initialize GEM for Global GTT
2871 * @dev: DRM device
2872 */
2873 void i915_gem_init_ggtt(struct drm_device *dev)
2874 {
2875 struct drm_i915_private *dev_priv = to_i915(dev);
2876 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2877
2878 i915_gem_setup_global_gtt(dev, 0, ggtt->mappable_end, ggtt->base.total);
2879 }
2880
2881 /**
2882 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2883 * @dev: DRM device
2884 */
2885 void i915_ggtt_cleanup_hw(struct drm_device *dev)
2886 {
2887 struct drm_i915_private *dev_priv = to_i915(dev);
2888 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2889
2890 if (dev_priv->mm.aliasing_ppgtt) {
2891 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2892
2893 ppgtt->base.cleanup(&ppgtt->base);
2894 }
2895
2896 i915_gem_cleanup_stolen(dev);
2897
2898 if (drm_mm_initialized(&ggtt->base.mm)) {
2899 intel_vgt_deballoon(dev_priv);
2900
2901 drm_mm_takedown(&ggtt->base.mm);
2902 list_del(&ggtt->base.global_link);
2903 }
2904
2905 ggtt->base.cleanup(&ggtt->base);
2906 }
2907
2908 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2909 {
2910 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2911 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2912 return snb_gmch_ctl << 20;
2913 }
2914
2915 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2916 {
2917 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2918 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2919 if (bdw_gmch_ctl)
2920 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2921
2922 #ifdef CONFIG_X86_32
2923 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2924 if (bdw_gmch_ctl > 4)
2925 bdw_gmch_ctl = 4;
2926 #endif
2927
2928 return bdw_gmch_ctl << 20;
2929 }
2930
2931 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2932 {
2933 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2934 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2935
2936 if (gmch_ctrl)
2937 return 1 << (20 + gmch_ctrl);
2938
2939 return 0;
2940 }
2941
2942 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2943 {
2944 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2945 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2946 return snb_gmch_ctl << 25; /* 32 MB units */
2947 }
2948
2949 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2950 {
2951 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2952 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2953 return bdw_gmch_ctl << 25; /* 32 MB units */
2954 }
2955
2956 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2957 {
2958 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2959 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2960
2961 /*
2962 * 0x0 to 0x10: 32MB increments starting at 0MB
2963 * 0x11 to 0x16: 4MB increments starting at 8MB
2964 * 0x17 to 0x1d: 4MB increments start at 36MB
2965 */
2966 if (gmch_ctrl < 0x11)
2967 return gmch_ctrl << 25;
2968 else if (gmch_ctrl < 0x17)
2969 return (gmch_ctrl - 0x11 + 2) << 22;
2970 else
2971 return (gmch_ctrl - 0x17 + 9) << 22;
2972 }
2973
2974 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2975 {
2976 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2977 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2978
2979 if (gen9_gmch_ctl < 0xf0)
2980 return gen9_gmch_ctl << 25; /* 32 MB units */
2981 else
2982 /* 4MB increments starting at 0xf0 for 4MB */
2983 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2984 }
2985
2986 static int ggtt_probe_common(struct drm_device *dev,
2987 size_t gtt_size)
2988 {
2989 struct drm_i915_private *dev_priv = to_i915(dev);
2990 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2991 struct i915_page_scratch *scratch_page;
2992 phys_addr_t ggtt_phys_addr;
2993
2994 /* For Modern GENs the PTEs and register space are split in the BAR */
2995 ggtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2996 (pci_resource_len(dev->pdev, 0) / 2);
2997
2998 /*
2999 * On BXT writes larger than 64 bit to the GTT pagetable range will be
3000 * dropped. For WC mappings in general we have 64 byte burst writes
3001 * when the WC buffer is flushed, so we can't use it, but have to
3002 * resort to an uncached mapping. The WC issue is easily caught by the
3003 * readback check when writing GTT PTE entries.
3004 */
3005 if (IS_BROXTON(dev))
3006 ggtt->gsm = ioremap_nocache(ggtt_phys_addr, gtt_size);
3007 else
3008 ggtt->gsm = ioremap_wc(ggtt_phys_addr, gtt_size);
3009 if (!ggtt->gsm) {
3010 DRM_ERROR("Failed to map the gtt page table\n");
3011 return -ENOMEM;
3012 }
3013
3014 scratch_page = alloc_scratch_page(dev);
3015 if (IS_ERR(scratch_page)) {
3016 DRM_ERROR("Scratch setup failed\n");
3017 /* iounmap will also get called at remove, but meh */
3018 iounmap(ggtt->gsm);
3019 return PTR_ERR(scratch_page);
3020 }
3021
3022 ggtt->base.scratch_page = scratch_page;
3023
3024 return 0;
3025 }
3026
3027 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3028 * bits. When using advanced contexts each context stores its own PAT, but
3029 * writing this data shouldn't be harmful even in those cases. */
3030 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
3031 {
3032 uint64_t pat;
3033
3034 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
3035 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
3036 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
3037 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
3038 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
3039 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
3040 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
3041 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3042
3043 if (!USES_PPGTT(dev_priv))
3044 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3045 * so RTL will always use the value corresponding to
3046 * pat_sel = 000".
3047 * So let's disable cache for GGTT to avoid screen corruptions.
3048 * MOCS still can be used though.
3049 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3050 * before this patch, i.e. the same uncached + snooping access
3051 * like on gen6/7 seems to be in effect.
3052 * - So this just fixes blitter/render access. Again it looks
3053 * like it's not just uncached access, but uncached + snooping.
3054 * So we can still hold onto all our assumptions wrt cpu
3055 * clflushing on LLC machines.
3056 */
3057 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
3058
3059 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
3060 * write would work. */
3061 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3062 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3063 }
3064
3065 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3066 {
3067 uint64_t pat;
3068
3069 /*
3070 * Map WB on BDW to snooped on CHV.
3071 *
3072 * Only the snoop bit has meaning for CHV, the rest is
3073 * ignored.
3074 *
3075 * The hardware will never snoop for certain types of accesses:
3076 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3077 * - PPGTT page tables
3078 * - some other special cycles
3079 *
3080 * As with BDW, we also need to consider the following for GT accesses:
3081 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3082 * so RTL will always use the value corresponding to
3083 * pat_sel = 000".
3084 * Which means we must set the snoop bit in PAT entry 0
3085 * in order to keep the global status page working.
3086 */
3087 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3088 GEN8_PPAT(1, 0) |
3089 GEN8_PPAT(2, 0) |
3090 GEN8_PPAT(3, 0) |
3091 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3092 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3093 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3094 GEN8_PPAT(7, CHV_PPAT_SNOOP);
3095
3096 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3097 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3098 }
3099
3100 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3101 {
3102 struct drm_device *dev = ggtt->base.dev;
3103 struct drm_i915_private *dev_priv = to_i915(dev);
3104 u16 snb_gmch_ctl;
3105 int ret;
3106
3107 /* TODO: We're not aware of mappable constraints on gen8 yet */
3108 ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3109 ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3110
3111 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3112 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3113
3114 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3115
3116 if (INTEL_INFO(dev)->gen >= 9) {
3117 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3118 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3119 } else if (IS_CHERRYVIEW(dev)) {
3120 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3121 ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
3122 } else {
3123 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3124 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3125 }
3126
3127 ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3128
3129 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3130 chv_setup_private_ppat(dev_priv);
3131 else
3132 bdw_setup_private_ppat(dev_priv);
3133
3134 ret = ggtt_probe_common(dev, ggtt->size);
3135
3136 ggtt->base.bind_vma = ggtt_bind_vma;
3137 ggtt->base.unbind_vma = ggtt_unbind_vma;
3138 ggtt->base.insert_page = gen8_ggtt_insert_page;
3139 ggtt->base.clear_range = nop_clear_range;
3140 if (!USES_FULL_PPGTT(dev_priv))
3141 ggtt->base.clear_range = gen8_ggtt_clear_range;
3142
3143 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3144 if (IS_CHERRYVIEW(dev_priv))
3145 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3146
3147 return ret;
3148 }
3149
3150 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3151 {
3152 struct drm_device *dev = ggtt->base.dev;
3153 u16 snb_gmch_ctl;
3154 int ret;
3155
3156 ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3157 ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3158
3159 /* 64/512MB is the current min/max we actually know of, but this is just
3160 * a coarse sanity check.
3161 */
3162 if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
3163 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3164 return -ENXIO;
3165 }
3166
3167 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3168 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3169 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3170
3171 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3172 ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
3173 ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3174
3175 ret = ggtt_probe_common(dev, ggtt->size);
3176
3177 ggtt->base.clear_range = gen6_ggtt_clear_range;
3178 ggtt->base.insert_page = gen6_ggtt_insert_page;
3179 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3180 ggtt->base.bind_vma = ggtt_bind_vma;
3181 ggtt->base.unbind_vma = ggtt_unbind_vma;
3182
3183 return ret;
3184 }
3185
3186 static void gen6_gmch_remove(struct i915_address_space *vm)
3187 {
3188 struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
3189
3190 iounmap(ggtt->gsm);
3191 free_scratch_page(vm->dev, vm->scratch_page);
3192 }
3193
3194 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3195 {
3196 struct drm_device *dev = ggtt->base.dev;
3197 struct drm_i915_private *dev_priv = to_i915(dev);
3198 int ret;
3199
3200 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3201 if (!ret) {
3202 DRM_ERROR("failed to set up gmch\n");
3203 return -EIO;
3204 }
3205
3206 intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3207 &ggtt->mappable_base, &ggtt->mappable_end);
3208
3209 ggtt->do_idle_maps = needs_idle_maps(dev_priv->dev);
3210 ggtt->base.insert_page = i915_ggtt_insert_page;
3211 ggtt->base.insert_entries = i915_ggtt_insert_entries;
3212 ggtt->base.clear_range = i915_ggtt_clear_range;
3213 ggtt->base.bind_vma = ggtt_bind_vma;
3214 ggtt->base.unbind_vma = ggtt_unbind_vma;
3215
3216 if (unlikely(ggtt->do_idle_maps))
3217 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3218
3219 return 0;
3220 }
3221
3222 static void i915_gmch_remove(struct i915_address_space *vm)
3223 {
3224 intel_gmch_remove();
3225 }
3226
3227 /**
3228 * i915_ggtt_init_hw - Initialize GGTT hardware
3229 * @dev: DRM device
3230 */
3231 int i915_ggtt_init_hw(struct drm_device *dev)
3232 {
3233 struct drm_i915_private *dev_priv = to_i915(dev);
3234 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3235 int ret;
3236
3237 if (INTEL_INFO(dev)->gen <= 5) {
3238 ggtt->probe = i915_gmch_probe;
3239 ggtt->base.cleanup = i915_gmch_remove;
3240 } else if (INTEL_INFO(dev)->gen < 8) {
3241 ggtt->probe = gen6_gmch_probe;
3242 ggtt->base.cleanup = gen6_gmch_remove;
3243
3244 if (HAS_EDRAM(dev))
3245 ggtt->base.pte_encode = iris_pte_encode;
3246 else if (IS_HASWELL(dev))
3247 ggtt->base.pte_encode = hsw_pte_encode;
3248 else if (IS_VALLEYVIEW(dev))
3249 ggtt->base.pte_encode = byt_pte_encode;
3250 else if (INTEL_INFO(dev)->gen >= 7)
3251 ggtt->base.pte_encode = ivb_pte_encode;
3252 else
3253 ggtt->base.pte_encode = snb_pte_encode;
3254 } else {
3255 ggtt->probe = gen8_gmch_probe;
3256 ggtt->base.cleanup = gen6_gmch_remove;
3257 }
3258
3259 ggtt->base.dev = dev;
3260 ggtt->base.is_ggtt = true;
3261
3262 ret = ggtt->probe(ggtt);
3263 if (ret)
3264 return ret;
3265
3266 if ((ggtt->base.total - 1) >> 32) {
3267 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3268 "of address space! Found %lldM!\n",
3269 ggtt->base.total >> 20);
3270 ggtt->base.total = 1ULL << 32;
3271 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3272 }
3273
3274 /*
3275 * Initialise stolen early so that we may reserve preallocated
3276 * objects for the BIOS to KMS transition.
3277 */
3278 ret = i915_gem_init_stolen(dev);
3279 if (ret)
3280 goto out_gtt_cleanup;
3281
3282 /* GMADR is the PCI mmio aperture into the global GTT. */
3283 DRM_INFO("Memory usable by graphics device = %lluM\n",
3284 ggtt->base.total >> 20);
3285 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3286 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3287 #ifdef CONFIG_INTEL_IOMMU
3288 if (intel_iommu_gfx_mapped)
3289 DRM_INFO("VT-d active for gfx access\n");
3290 #endif
3291
3292 return 0;
3293
3294 out_gtt_cleanup:
3295 ggtt->base.cleanup(&ggtt->base);
3296
3297 return ret;
3298 }
3299
3300 int i915_ggtt_enable_hw(struct drm_device *dev)
3301 {
3302 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3303 return -EIO;
3304
3305 return 0;
3306 }
3307
3308 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3309 {
3310 struct drm_i915_private *dev_priv = to_i915(dev);
3311 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3312 struct drm_i915_gem_object *obj;
3313 struct i915_vma *vma;
3314
3315 i915_check_and_clear_faults(dev_priv);
3316
3317 /* First fill our portion of the GTT with scratch pages */
3318 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3319 true);
3320
3321 /* Cache flush objects bound into GGTT and rebind them. */
3322 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3323 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3324 if (vma->vm != &ggtt->base)
3325 continue;
3326
3327 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3328 PIN_UPDATE));
3329 }
3330
3331 if (obj->pin_display)
3332 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3333 }
3334
3335 if (INTEL_INFO(dev)->gen >= 8) {
3336 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3337 chv_setup_private_ppat(dev_priv);
3338 else
3339 bdw_setup_private_ppat(dev_priv);
3340
3341 return;
3342 }
3343
3344 if (USES_PPGTT(dev)) {
3345 struct i915_address_space *vm;
3346
3347 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3348 /* TODO: Perhaps it shouldn't be gen6 specific */
3349
3350 struct i915_hw_ppgtt *ppgtt;
3351
3352 if (vm->is_ggtt)
3353 ppgtt = dev_priv->mm.aliasing_ppgtt;
3354 else
3355 ppgtt = i915_vm_to_ppgtt(vm);
3356
3357 gen6_write_page_range(dev_priv, &ppgtt->pd,
3358 0, ppgtt->base.total);
3359 }
3360 }
3361
3362 i915_ggtt_flush(dev_priv);
3363 }
3364
3365 static struct i915_vma *
3366 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3367 struct i915_address_space *vm,
3368 const struct i915_ggtt_view *ggtt_view)
3369 {
3370 struct i915_vma *vma;
3371
3372 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3373 return ERR_PTR(-EINVAL);
3374
3375 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3376 if (vma == NULL)
3377 return ERR_PTR(-ENOMEM);
3378
3379 INIT_LIST_HEAD(&vma->vm_link);
3380 INIT_LIST_HEAD(&vma->obj_link);
3381 INIT_LIST_HEAD(&vma->exec_list);
3382 vma->vm = vm;
3383 vma->obj = obj;
3384 vma->is_ggtt = i915_is_ggtt(vm);
3385
3386 if (i915_is_ggtt(vm))
3387 vma->ggtt_view = *ggtt_view;
3388 else
3389 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3390
3391 list_add_tail(&vma->obj_link, &obj->vma_list);
3392
3393 return vma;
3394 }
3395
3396 struct i915_vma *
3397 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3398 struct i915_address_space *vm)
3399 {
3400 struct i915_vma *vma;
3401
3402 vma = i915_gem_obj_to_vma(obj, vm);
3403 if (!vma)
3404 vma = __i915_gem_vma_create(obj, vm,
3405 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3406
3407 return vma;
3408 }
3409
3410 struct i915_vma *
3411 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3412 const struct i915_ggtt_view *view)
3413 {
3414 struct drm_device *dev = obj->base.dev;
3415 struct drm_i915_private *dev_priv = to_i915(dev);
3416 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3417 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3418
3419 if (!vma)
3420 vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3421
3422 return vma;
3423
3424 }
3425
3426 static struct scatterlist *
3427 rotate_pages(const dma_addr_t *in, unsigned int offset,
3428 unsigned int width, unsigned int height,
3429 unsigned int stride,
3430 struct sg_table *st, struct scatterlist *sg)
3431 {
3432 unsigned int column, row;
3433 unsigned int src_idx;
3434
3435 for (column = 0; column < width; column++) {
3436 src_idx = stride * (height - 1) + column;
3437 for (row = 0; row < height; row++) {
3438 st->nents++;
3439 /* We don't need the pages, but need to initialize
3440 * the entries so the sg list can be happily traversed.
3441 * The only thing we need are DMA addresses.
3442 */
3443 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3444 sg_dma_address(sg) = in[offset + src_idx];
3445 sg_dma_len(sg) = PAGE_SIZE;
3446 sg = sg_next(sg);
3447 src_idx -= stride;
3448 }
3449 }
3450
3451 return sg;
3452 }
3453
3454 static struct sg_table *
3455 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3456 struct drm_i915_gem_object *obj)
3457 {
3458 const size_t n_pages = obj->base.size / PAGE_SIZE;
3459 unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3460 unsigned int size_pages_uv;
3461 struct sgt_iter sgt_iter;
3462 dma_addr_t dma_addr;
3463 unsigned long i;
3464 dma_addr_t *page_addr_list;
3465 struct sg_table *st;
3466 unsigned int uv_start_page;
3467 struct scatterlist *sg;
3468 int ret = -ENOMEM;
3469
3470 /* Allocate a temporary list of source pages for random access. */
3471 page_addr_list = drm_malloc_gfp(n_pages,
3472 sizeof(dma_addr_t),
3473 GFP_TEMPORARY);
3474 if (!page_addr_list)
3475 return ERR_PTR(ret);
3476
3477 /* Account for UV plane with NV12. */
3478 if (rot_info->pixel_format == DRM_FORMAT_NV12)
3479 size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3480 else
3481 size_pages_uv = 0;
3482
3483 /* Allocate target SG list. */
3484 st = kmalloc(sizeof(*st), GFP_KERNEL);
3485 if (!st)
3486 goto err_st_alloc;
3487
3488 ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3489 if (ret)
3490 goto err_sg_alloc;
3491
3492 /* Populate source page list from the object. */
3493 i = 0;
3494 for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3495 page_addr_list[i++] = dma_addr;
3496
3497 GEM_BUG_ON(i != n_pages);
3498 st->nents = 0;
3499 sg = st->sgl;
3500
3501 /* Rotate the pages. */
3502 sg = rotate_pages(page_addr_list, 0,
3503 rot_info->plane[0].width, rot_info->plane[0].height,
3504 rot_info->plane[0].width,
3505 st, sg);
3506
3507 /* Append the UV plane if NV12. */
3508 if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3509 uv_start_page = size_pages;
3510
3511 /* Check for tile-row un-alignment. */
3512 if (offset_in_page(rot_info->uv_offset))
3513 uv_start_page--;
3514
3515 rot_info->uv_start_page = uv_start_page;
3516
3517 sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3518 rot_info->plane[1].width, rot_info->plane[1].height,
3519 rot_info->plane[1].width,
3520 st, sg);
3521 }
3522
3523 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3524 obj->base.size, rot_info->plane[0].width,
3525 rot_info->plane[0].height, size_pages + size_pages_uv,
3526 size_pages);
3527
3528 drm_free_large(page_addr_list);
3529
3530 return st;
3531
3532 err_sg_alloc:
3533 kfree(st);
3534 err_st_alloc:
3535 drm_free_large(page_addr_list);
3536
3537 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3538 obj->base.size, ret, rot_info->plane[0].width,
3539 rot_info->plane[0].height, size_pages + size_pages_uv,
3540 size_pages);
3541 return ERR_PTR(ret);
3542 }
3543
3544 static struct sg_table *
3545 intel_partial_pages(const struct i915_ggtt_view *view,
3546 struct drm_i915_gem_object *obj)
3547 {
3548 struct sg_table *st;
3549 struct scatterlist *sg;
3550 struct sg_page_iter obj_sg_iter;
3551 int ret = -ENOMEM;
3552
3553 st = kmalloc(sizeof(*st), GFP_KERNEL);
3554 if (!st)
3555 goto err_st_alloc;
3556
3557 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3558 if (ret)
3559 goto err_sg_alloc;
3560
3561 sg = st->sgl;
3562 st->nents = 0;
3563 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3564 view->params.partial.offset)
3565 {
3566 if (st->nents >= view->params.partial.size)
3567 break;
3568
3569 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3570 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3571 sg_dma_len(sg) = PAGE_SIZE;
3572
3573 sg = sg_next(sg);
3574 st->nents++;
3575 }
3576
3577 return st;
3578
3579 err_sg_alloc:
3580 kfree(st);
3581 err_st_alloc:
3582 return ERR_PTR(ret);
3583 }
3584
3585 static int
3586 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3587 {
3588 int ret = 0;
3589
3590 if (vma->ggtt_view.pages)
3591 return 0;
3592
3593 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3594 vma->ggtt_view.pages = vma->obj->pages;
3595 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3596 vma->ggtt_view.pages =
3597 intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3598 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3599 vma->ggtt_view.pages =
3600 intel_partial_pages(&vma->ggtt_view, vma->obj);
3601 else
3602 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3603 vma->ggtt_view.type);
3604
3605 if (!vma->ggtt_view.pages) {
3606 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3607 vma->ggtt_view.type);
3608 ret = -EINVAL;
3609 } else if (IS_ERR(vma->ggtt_view.pages)) {
3610 ret = PTR_ERR(vma->ggtt_view.pages);
3611 vma->ggtt_view.pages = NULL;
3612 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3613 vma->ggtt_view.type, ret);
3614 }
3615
3616 return ret;
3617 }
3618
3619 /**
3620 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3621 * @vma: VMA to map
3622 * @cache_level: mapping cache level
3623 * @flags: flags like global or local mapping
3624 *
3625 * DMA addresses are taken from the scatter-gather table of this object (or of
3626 * this VMA in case of non-default GGTT views) and PTE entries set up.
3627 * Note that DMA addresses are also the only part of the SG table we care about.
3628 */
3629 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3630 u32 flags)
3631 {
3632 int ret;
3633 u32 bind_flags;
3634
3635 if (WARN_ON(flags == 0))
3636 return -EINVAL;
3637
3638 bind_flags = 0;
3639 if (flags & PIN_GLOBAL)
3640 bind_flags |= GLOBAL_BIND;
3641 if (flags & PIN_USER)
3642 bind_flags |= LOCAL_BIND;
3643
3644 if (flags & PIN_UPDATE)
3645 bind_flags |= vma->bound;
3646 else
3647 bind_flags &= ~vma->bound;
3648
3649 if (bind_flags == 0)
3650 return 0;
3651
3652 if (vma->bound == 0 && vma->vm->allocate_va_range) {
3653 /* XXX: i915_vma_pin() will fix this +- hack */
3654 vma->pin_count++;
3655 trace_i915_va_alloc(vma);
3656 ret = vma->vm->allocate_va_range(vma->vm,
3657 vma->node.start,
3658 vma->node.size);
3659 vma->pin_count--;
3660 if (ret)
3661 return ret;
3662 }
3663
3664 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3665 if (ret)
3666 return ret;
3667
3668 vma->bound |= bind_flags;
3669
3670 return 0;
3671 }
3672
3673 /**
3674 * i915_ggtt_view_size - Get the size of a GGTT view.
3675 * @obj: Object the view is of.
3676 * @view: The view in question.
3677 *
3678 * @return The size of the GGTT view in bytes.
3679 */
3680 size_t
3681 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3682 const struct i915_ggtt_view *view)
3683 {
3684 if (view->type == I915_GGTT_VIEW_NORMAL) {
3685 return obj->base.size;
3686 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3687 return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
3688 } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3689 return view->params.partial.size << PAGE_SHIFT;
3690 } else {
3691 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3692 return obj->base.size;
3693 }
3694 }
3695
3696 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3697 {
3698 void __iomem *ptr;
3699
3700 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3701 if (WARN_ON(!vma->obj->map_and_fenceable))
3702 return ERR_PTR(-ENODEV);
3703
3704 GEM_BUG_ON(!vma->is_ggtt);
3705 GEM_BUG_ON((vma->bound & GLOBAL_BIND) == 0);
3706
3707 ptr = vma->iomap;
3708 if (ptr == NULL) {
3709 ptr = io_mapping_map_wc(i915_vm_to_ggtt(vma->vm)->mappable,
3710 vma->node.start,
3711 vma->node.size);
3712 if (ptr == NULL)
3713 return ERR_PTR(-ENOMEM);
3714
3715 vma->iomap = ptr;
3716 }
3717
3718 vma->pin_count++;
3719 return ptr;
3720 }
This page took 0.121143 seconds and 6 git commands to generate.