drm/i915: Avoid dereference past end of page array in gen6_ppgtt_insert_entries()
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33 typedef uint64_t gen8_gtt_pte_t;
34 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
35
36 /* PPGTT stuff */
37 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
38 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
39
40 #define GEN6_PDE_VALID (1 << 0)
41 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
42 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
43
44 #define GEN6_PTE_VALID (1 << 0)
45 #define GEN6_PTE_UNCACHED (1 << 1)
46 #define HSW_PTE_UNCACHED (0)
47 #define GEN6_PTE_CACHE_LLC (2 << 1)
48 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
49 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
51
52 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
53 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
54 */
55 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
56 (((bits) & 0x8) << (11 - 3)))
57 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
58 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
59 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
60 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
61
62 #define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
63 #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
64 #define GEN8_LEGACY_PDPS 4
65
66 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
67 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
68 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
69 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
70
71 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
72 enum i915_cache_level level,
73 bool valid)
74 {
75 gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
76 pte |= addr;
77 if (level != I915_CACHE_NONE)
78 pte |= PPAT_CACHED_INDEX;
79 else
80 pte |= PPAT_UNCACHED_INDEX;
81 return pte;
82 }
83
84 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
85 dma_addr_t addr,
86 enum i915_cache_level level)
87 {
88 gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
89 pde |= addr;
90 if (level != I915_CACHE_NONE)
91 pde |= PPAT_CACHED_PDE_INDEX;
92 else
93 pde |= PPAT_UNCACHED_INDEX;
94 return pde;
95 }
96
97 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
98 enum i915_cache_level level,
99 bool valid)
100 {
101 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
102 pte |= GEN6_PTE_ADDR_ENCODE(addr);
103
104 switch (level) {
105 case I915_CACHE_L3_LLC:
106 case I915_CACHE_LLC:
107 pte |= GEN6_PTE_CACHE_LLC;
108 break;
109 case I915_CACHE_NONE:
110 pte |= GEN6_PTE_UNCACHED;
111 break;
112 default:
113 WARN_ON(1);
114 }
115
116 return pte;
117 }
118
119 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
120 enum i915_cache_level level,
121 bool valid)
122 {
123 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
124 pte |= GEN6_PTE_ADDR_ENCODE(addr);
125
126 switch (level) {
127 case I915_CACHE_L3_LLC:
128 pte |= GEN7_PTE_CACHE_L3_LLC;
129 break;
130 case I915_CACHE_LLC:
131 pte |= GEN6_PTE_CACHE_LLC;
132 break;
133 case I915_CACHE_NONE:
134 pte |= GEN6_PTE_UNCACHED;
135 break;
136 default:
137 WARN_ON(1);
138 }
139
140 return pte;
141 }
142
143 #define BYT_PTE_WRITEABLE (1 << 1)
144 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
145
146 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
147 enum i915_cache_level level,
148 bool valid)
149 {
150 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
151 pte |= GEN6_PTE_ADDR_ENCODE(addr);
152
153 /* Mark the page as writeable. Other platforms don't have a
154 * setting for read-only/writable, so this matches that behavior.
155 */
156 pte |= BYT_PTE_WRITEABLE;
157
158 if (level != I915_CACHE_NONE)
159 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
160
161 return pte;
162 }
163
164 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
165 enum i915_cache_level level,
166 bool valid)
167 {
168 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
169 pte |= HSW_PTE_ADDR_ENCODE(addr);
170
171 if (level != I915_CACHE_NONE)
172 pte |= HSW_WB_LLC_AGE3;
173
174 return pte;
175 }
176
177 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
178 enum i915_cache_level level,
179 bool valid)
180 {
181 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
182 pte |= HSW_PTE_ADDR_ENCODE(addr);
183
184 switch (level) {
185 case I915_CACHE_NONE:
186 break;
187 case I915_CACHE_WT:
188 pte |= HSW_WT_ELLC_LLC_AGE0;
189 break;
190 default:
191 pte |= HSW_WB_ELLC_LLC_AGE0;
192 break;
193 }
194
195 return pte;
196 }
197
198 /* Broadwell Page Directory Pointer Descriptors */
199 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
200 uint64_t val)
201 {
202 int ret;
203
204 BUG_ON(entry >= 4);
205
206 ret = intel_ring_begin(ring, 6);
207 if (ret)
208 return ret;
209
210 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
211 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
212 intel_ring_emit(ring, (u32)(val >> 32));
213 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
214 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
215 intel_ring_emit(ring, (u32)(val));
216 intel_ring_advance(ring);
217
218 return 0;
219 }
220
221 static int gen8_ppgtt_enable(struct drm_device *dev)
222 {
223 struct drm_i915_private *dev_priv = dev->dev_private;
224 struct intel_ring_buffer *ring;
225 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
226 int i, j, ret;
227
228 /* bit of a hack to find the actual last used pd */
229 int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
230
231 for_each_ring(ring, dev_priv, j) {
232 I915_WRITE(RING_MODE_GEN7(ring),
233 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
234 }
235
236 for (i = used_pd - 1; i >= 0; i--) {
237 dma_addr_t addr = ppgtt->pd_dma_addr[i];
238 for_each_ring(ring, dev_priv, j) {
239 ret = gen8_write_pdp(ring, i, addr);
240 if (ret)
241 goto err_out;
242 }
243 }
244 return 0;
245
246 err_out:
247 for_each_ring(ring, dev_priv, j)
248 I915_WRITE(RING_MODE_GEN7(ring),
249 _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
250 return ret;
251 }
252
253 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
254 unsigned first_entry,
255 unsigned num_entries,
256 bool use_scratch)
257 {
258 struct i915_hw_ppgtt *ppgtt =
259 container_of(vm, struct i915_hw_ppgtt, base);
260 gen8_gtt_pte_t *pt_vaddr, scratch_pte;
261 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
262 unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
263 unsigned last_pte, i;
264
265 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
266 I915_CACHE_LLC, use_scratch);
267
268 while (num_entries) {
269 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
270
271 last_pte = first_pte + num_entries;
272 if (last_pte > GEN8_PTES_PER_PAGE)
273 last_pte = GEN8_PTES_PER_PAGE;
274
275 pt_vaddr = kmap_atomic(page_table);
276
277 for (i = first_pte; i < last_pte; i++)
278 pt_vaddr[i] = scratch_pte;
279
280 kunmap_atomic(pt_vaddr);
281
282 num_entries -= last_pte - first_pte;
283 first_pte = 0;
284 act_pt++;
285 }
286 }
287
288 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
289 struct sg_table *pages,
290 unsigned first_entry,
291 enum i915_cache_level cache_level)
292 {
293 struct i915_hw_ppgtt *ppgtt =
294 container_of(vm, struct i915_hw_ppgtt, base);
295 gen8_gtt_pte_t *pt_vaddr;
296 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
297 unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
298 struct sg_page_iter sg_iter;
299
300 pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
301 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
302 dma_addr_t page_addr;
303
304 page_addr = sg_dma_address(sg_iter.sg) +
305 (sg_iter.sg_pgoffset << PAGE_SHIFT);
306 pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
307 true);
308 if (++act_pte == GEN8_PTES_PER_PAGE) {
309 kunmap_atomic(pt_vaddr);
310 act_pt++;
311 pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
312 act_pte = 0;
313
314 }
315 }
316 kunmap_atomic(pt_vaddr);
317 }
318
319 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
320 {
321 struct i915_hw_ppgtt *ppgtt =
322 container_of(vm, struct i915_hw_ppgtt, base);
323 int i, j;
324
325 drm_mm_takedown(&vm->mm);
326
327 for (i = 0; i < ppgtt->num_pd_pages ; i++) {
328 if (ppgtt->pd_dma_addr[i]) {
329 pci_unmap_page(ppgtt->base.dev->pdev,
330 ppgtt->pd_dma_addr[i],
331 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
332
333 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
334 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
335 if (addr)
336 pci_unmap_page(ppgtt->base.dev->pdev,
337 addr,
338 PAGE_SIZE,
339 PCI_DMA_BIDIRECTIONAL);
340
341 }
342 }
343 kfree(ppgtt->gen8_pt_dma_addr[i]);
344 }
345
346 __free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
347 __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
348 }
349
350 /**
351 * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
352 * net effect resembling a 2-level page table in normal x86 terms. Each PDP
353 * represents 1GB of memory
354 * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
355 *
356 * TODO: Do something with the size parameter
357 **/
358 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
359 {
360 struct page *pt_pages;
361 int i, j, ret = -ENOMEM;
362 const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
363 const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
364
365 if (size % (1<<30))
366 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
367
368 /* FIXME: split allocation into smaller pieces. For now we only ever do
369 * this once, but with full PPGTT, the multiple contiguous allocations
370 * will be bad.
371 */
372 ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
373 if (!ppgtt->pd_pages)
374 return -ENOMEM;
375
376 pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
377 if (!pt_pages) {
378 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
379 return -ENOMEM;
380 }
381
382 ppgtt->gen8_pt_pages = pt_pages;
383 ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
384 ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
385 ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
386 ppgtt->enable = gen8_ppgtt_enable;
387 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
388 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
389 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
390 ppgtt->base.start = 0;
391 ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
392
393 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
394
395 /*
396 * - Create a mapping for the page directories.
397 * - For each page directory:
398 * allocate space for page table mappings.
399 * map each page table
400 */
401 for (i = 0; i < max_pdp; i++) {
402 dma_addr_t temp;
403 temp = pci_map_page(ppgtt->base.dev->pdev,
404 &ppgtt->pd_pages[i], 0,
405 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
406 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
407 goto err_out;
408
409 ppgtt->pd_dma_addr[i] = temp;
410
411 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
412 if (!ppgtt->gen8_pt_dma_addr[i])
413 goto err_out;
414
415 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
416 struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
417 temp = pci_map_page(ppgtt->base.dev->pdev,
418 p, 0, PAGE_SIZE,
419 PCI_DMA_BIDIRECTIONAL);
420
421 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
422 goto err_out;
423
424 ppgtt->gen8_pt_dma_addr[i][j] = temp;
425 }
426 }
427
428 /* For now, the PPGTT helper functions all require that the PDEs are
429 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
430 * will never need to touch the PDEs again */
431 for (i = 0; i < max_pdp; i++) {
432 gen8_ppgtt_pde_t *pd_vaddr;
433 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
434 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
435 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
436 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
437 I915_CACHE_LLC);
438 }
439 kunmap_atomic(pd_vaddr);
440 }
441
442 ppgtt->base.clear_range(&ppgtt->base, 0,
443 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
444 true);
445
446 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
447 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
448 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
449 ppgtt->num_pt_pages,
450 (ppgtt->num_pt_pages - num_pt_pages) +
451 size % (1<<30));
452 return 0;
453
454 err_out:
455 ppgtt->base.cleanup(&ppgtt->base);
456 return ret;
457 }
458
459 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
460 {
461 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
462 gen6_gtt_pte_t __iomem *pd_addr;
463 uint32_t pd_entry;
464 int i;
465
466 WARN_ON(ppgtt->pd_offset & 0x3f);
467 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
468 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
469 for (i = 0; i < ppgtt->num_pd_entries; i++) {
470 dma_addr_t pt_addr;
471
472 pt_addr = ppgtt->pt_dma_addr[i];
473 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
474 pd_entry |= GEN6_PDE_VALID;
475
476 writel(pd_entry, pd_addr + i);
477 }
478 readl(pd_addr);
479 }
480
481 static int gen6_ppgtt_enable(struct drm_device *dev)
482 {
483 drm_i915_private_t *dev_priv = dev->dev_private;
484 uint32_t pd_offset;
485 struct intel_ring_buffer *ring;
486 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
487 int i;
488
489 BUG_ON(ppgtt->pd_offset & 0x3f);
490
491 gen6_write_pdes(ppgtt);
492
493 pd_offset = ppgtt->pd_offset;
494 pd_offset /= 64; /* in cachelines, */
495 pd_offset <<= 16;
496
497 if (INTEL_INFO(dev)->gen == 6) {
498 uint32_t ecochk, gab_ctl, ecobits;
499
500 ecobits = I915_READ(GAC_ECO_BITS);
501 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
502 ECOBITS_PPGTT_CACHE64B);
503
504 gab_ctl = I915_READ(GAB_CTL);
505 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
506
507 ecochk = I915_READ(GAM_ECOCHK);
508 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
509 ECOCHK_PPGTT_CACHE64B);
510 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
511 } else if (INTEL_INFO(dev)->gen >= 7) {
512 uint32_t ecochk, ecobits;
513
514 ecobits = I915_READ(GAC_ECO_BITS);
515 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
516
517 ecochk = I915_READ(GAM_ECOCHK);
518 if (IS_HASWELL(dev)) {
519 ecochk |= ECOCHK_PPGTT_WB_HSW;
520 } else {
521 ecochk |= ECOCHK_PPGTT_LLC_IVB;
522 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
523 }
524 I915_WRITE(GAM_ECOCHK, ecochk);
525 /* GFX_MODE is per-ring on gen7+ */
526 }
527
528 for_each_ring(ring, dev_priv, i) {
529 if (INTEL_INFO(dev)->gen >= 7)
530 I915_WRITE(RING_MODE_GEN7(ring),
531 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
532
533 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
534 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
535 }
536 return 0;
537 }
538
539 /* PPGTT support for Sandybdrige/Gen6 and later */
540 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
541 unsigned first_entry,
542 unsigned num_entries,
543 bool use_scratch)
544 {
545 struct i915_hw_ppgtt *ppgtt =
546 container_of(vm, struct i915_hw_ppgtt, base);
547 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
548 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
549 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
550 unsigned last_pte, i;
551
552 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
553
554 while (num_entries) {
555 last_pte = first_pte + num_entries;
556 if (last_pte > I915_PPGTT_PT_ENTRIES)
557 last_pte = I915_PPGTT_PT_ENTRIES;
558
559 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
560
561 for (i = first_pte; i < last_pte; i++)
562 pt_vaddr[i] = scratch_pte;
563
564 kunmap_atomic(pt_vaddr);
565
566 num_entries -= last_pte - first_pte;
567 first_pte = 0;
568 act_pt++;
569 }
570 }
571
572 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
573 struct sg_table *pages,
574 unsigned first_entry,
575 enum i915_cache_level cache_level)
576 {
577 struct i915_hw_ppgtt *ppgtt =
578 container_of(vm, struct i915_hw_ppgtt, base);
579 gen6_gtt_pte_t *pt_vaddr;
580 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
581 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
582 struct sg_page_iter sg_iter;
583
584 pt_vaddr = NULL;
585 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
586 if (pt_vaddr == NULL)
587 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
588
589 pt_vaddr[act_pte] =
590 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
591 cache_level, true);
592 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
593 kunmap_atomic(pt_vaddr);
594 pt_vaddr = NULL;
595 act_pt++;
596 act_pte = 0;
597 }
598 }
599 if (pt_vaddr)
600 kunmap_atomic(pt_vaddr);
601 }
602
603 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
604 {
605 struct i915_hw_ppgtt *ppgtt =
606 container_of(vm, struct i915_hw_ppgtt, base);
607 int i;
608
609 drm_mm_takedown(&ppgtt->base.mm);
610
611 if (ppgtt->pt_dma_addr) {
612 for (i = 0; i < ppgtt->num_pd_entries; i++)
613 pci_unmap_page(ppgtt->base.dev->pdev,
614 ppgtt->pt_dma_addr[i],
615 4096, PCI_DMA_BIDIRECTIONAL);
616 }
617
618 kfree(ppgtt->pt_dma_addr);
619 for (i = 0; i < ppgtt->num_pd_entries; i++)
620 __free_page(ppgtt->pt_pages[i]);
621 kfree(ppgtt->pt_pages);
622 kfree(ppgtt);
623 }
624
625 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
626 {
627 struct drm_device *dev = ppgtt->base.dev;
628 struct drm_i915_private *dev_priv = dev->dev_private;
629 unsigned first_pd_entry_in_global_pt;
630 int i;
631 int ret = -ENOMEM;
632
633 /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
634 * entries. For aliasing ppgtt support we just steal them at the end for
635 * now. */
636 first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
637
638 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
639 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
640 ppgtt->enable = gen6_ppgtt_enable;
641 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
642 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
643 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
644 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
645 ppgtt->base.start = 0;
646 ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
647 ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
648 GFP_KERNEL);
649 if (!ppgtt->pt_pages)
650 return -ENOMEM;
651
652 for (i = 0; i < ppgtt->num_pd_entries; i++) {
653 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
654 if (!ppgtt->pt_pages[i])
655 goto err_pt_alloc;
656 }
657
658 ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
659 GFP_KERNEL);
660 if (!ppgtt->pt_dma_addr)
661 goto err_pt_alloc;
662
663 for (i = 0; i < ppgtt->num_pd_entries; i++) {
664 dma_addr_t pt_addr;
665
666 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
667 PCI_DMA_BIDIRECTIONAL);
668
669 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
670 ret = -EIO;
671 goto err_pd_pin;
672
673 }
674 ppgtt->pt_dma_addr[i] = pt_addr;
675 }
676
677 ppgtt->base.clear_range(&ppgtt->base, 0,
678 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
679
680 ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
681
682 return 0;
683
684 err_pd_pin:
685 if (ppgtt->pt_dma_addr) {
686 for (i--; i >= 0; i--)
687 pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
688 4096, PCI_DMA_BIDIRECTIONAL);
689 }
690 err_pt_alloc:
691 kfree(ppgtt->pt_dma_addr);
692 for (i = 0; i < ppgtt->num_pd_entries; i++) {
693 if (ppgtt->pt_pages[i])
694 __free_page(ppgtt->pt_pages[i]);
695 }
696 kfree(ppgtt->pt_pages);
697
698 return ret;
699 }
700
701 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
702 {
703 struct drm_i915_private *dev_priv = dev->dev_private;
704 struct i915_hw_ppgtt *ppgtt;
705 int ret;
706
707 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
708 if (!ppgtt)
709 return -ENOMEM;
710
711 ppgtt->base.dev = dev;
712
713 if (INTEL_INFO(dev)->gen < 8)
714 ret = gen6_ppgtt_init(ppgtt);
715 else if (IS_GEN8(dev))
716 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
717 else
718 BUG();
719
720 if (ret)
721 kfree(ppgtt);
722 else {
723 dev_priv->mm.aliasing_ppgtt = ppgtt;
724 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
725 ppgtt->base.total);
726 }
727
728 return ret;
729 }
730
731 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
732 {
733 struct drm_i915_private *dev_priv = dev->dev_private;
734 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
735
736 if (!ppgtt)
737 return;
738
739 ppgtt->base.cleanup(&ppgtt->base);
740 dev_priv->mm.aliasing_ppgtt = NULL;
741 }
742
743 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
744 struct drm_i915_gem_object *obj,
745 enum i915_cache_level cache_level)
746 {
747 ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
748 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
749 cache_level);
750 }
751
752 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
753 struct drm_i915_gem_object *obj)
754 {
755 ppgtt->base.clear_range(&ppgtt->base,
756 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
757 obj->base.size >> PAGE_SHIFT,
758 true);
759 }
760
761 extern int intel_iommu_gfx_mapped;
762 /* Certain Gen5 chipsets require require idling the GPU before
763 * unmapping anything from the GTT when VT-d is enabled.
764 */
765 static inline bool needs_idle_maps(struct drm_device *dev)
766 {
767 #ifdef CONFIG_INTEL_IOMMU
768 /* Query intel_iommu to see if we need the workaround. Presumably that
769 * was loaded first.
770 */
771 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
772 return true;
773 #endif
774 return false;
775 }
776
777 static bool do_idling(struct drm_i915_private *dev_priv)
778 {
779 bool ret = dev_priv->mm.interruptible;
780
781 if (unlikely(dev_priv->gtt.do_idle_maps)) {
782 dev_priv->mm.interruptible = false;
783 if (i915_gpu_idle(dev_priv->dev)) {
784 DRM_ERROR("Couldn't idle GPU\n");
785 /* Wait a bit, in hopes it avoids the hang */
786 udelay(10);
787 }
788 }
789
790 return ret;
791 }
792
793 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
794 {
795 if (unlikely(dev_priv->gtt.do_idle_maps))
796 dev_priv->mm.interruptible = interruptible;
797 }
798
799 void i915_check_and_clear_faults(struct drm_device *dev)
800 {
801 struct drm_i915_private *dev_priv = dev->dev_private;
802 struct intel_ring_buffer *ring;
803 int i;
804
805 if (INTEL_INFO(dev)->gen < 6)
806 return;
807
808 for_each_ring(ring, dev_priv, i) {
809 u32 fault_reg;
810 fault_reg = I915_READ(RING_FAULT_REG(ring));
811 if (fault_reg & RING_FAULT_VALID) {
812 DRM_DEBUG_DRIVER("Unexpected fault\n"
813 "\tAddr: 0x%08lx\\n"
814 "\tAddress space: %s\n"
815 "\tSource ID: %d\n"
816 "\tType: %d\n",
817 fault_reg & PAGE_MASK,
818 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
819 RING_FAULT_SRCID(fault_reg),
820 RING_FAULT_FAULT_TYPE(fault_reg));
821 I915_WRITE(RING_FAULT_REG(ring),
822 fault_reg & ~RING_FAULT_VALID);
823 }
824 }
825 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
826 }
827
828 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
829 {
830 struct drm_i915_private *dev_priv = dev->dev_private;
831
832 /* Don't bother messing with faults pre GEN6 as we have little
833 * documentation supporting that it's a good idea.
834 */
835 if (INTEL_INFO(dev)->gen < 6)
836 return;
837
838 i915_check_and_clear_faults(dev);
839
840 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
841 dev_priv->gtt.base.start / PAGE_SIZE,
842 dev_priv->gtt.base.total / PAGE_SIZE,
843 false);
844 }
845
846 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
847 {
848 struct drm_i915_private *dev_priv = dev->dev_private;
849 struct drm_i915_gem_object *obj;
850
851 i915_check_and_clear_faults(dev);
852
853 /* First fill our portion of the GTT with scratch pages */
854 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
855 dev_priv->gtt.base.start / PAGE_SIZE,
856 dev_priv->gtt.base.total / PAGE_SIZE,
857 true);
858
859 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
860 i915_gem_clflush_object(obj, obj->pin_display);
861 i915_gem_gtt_bind_object(obj, obj->cache_level);
862 }
863
864 i915_gem_chipset_flush(dev);
865 }
866
867 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
868 {
869 if (obj->has_dma_mapping)
870 return 0;
871
872 if (!dma_map_sg(&obj->base.dev->pdev->dev,
873 obj->pages->sgl, obj->pages->nents,
874 PCI_DMA_BIDIRECTIONAL))
875 return -ENOSPC;
876
877 return 0;
878 }
879
880 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
881 {
882 #ifdef writeq
883 writeq(pte, addr);
884 #else
885 iowrite32((u32)pte, addr);
886 iowrite32(pte >> 32, addr + 4);
887 #endif
888 }
889
890 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
891 struct sg_table *st,
892 unsigned int first_entry,
893 enum i915_cache_level level)
894 {
895 struct drm_i915_private *dev_priv = vm->dev->dev_private;
896 gen8_gtt_pte_t __iomem *gtt_entries =
897 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
898 int i = 0;
899 struct sg_page_iter sg_iter;
900 dma_addr_t addr;
901
902 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
903 addr = sg_dma_address(sg_iter.sg) +
904 (sg_iter.sg_pgoffset << PAGE_SHIFT);
905 gen8_set_pte(&gtt_entries[i],
906 gen8_pte_encode(addr, level, true));
907 i++;
908 }
909
910 /*
911 * XXX: This serves as a posting read to make sure that the PTE has
912 * actually been updated. There is some concern that even though
913 * registers and PTEs are within the same BAR that they are potentially
914 * of NUMA access patterns. Therefore, even with the way we assume
915 * hardware should work, we must keep this posting read for paranoia.
916 */
917 if (i != 0)
918 WARN_ON(readq(&gtt_entries[i-1])
919 != gen8_pte_encode(addr, level, true));
920
921 #if 0 /* TODO: Still needed on GEN8? */
922 /* This next bit makes the above posting read even more important. We
923 * want to flush the TLBs only after we're certain all the PTE updates
924 * have finished.
925 */
926 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
927 POSTING_READ(GFX_FLSH_CNTL_GEN6);
928 #endif
929 }
930
931 /*
932 * Binds an object into the global gtt with the specified cache level. The object
933 * will be accessible to the GPU via commands whose operands reference offsets
934 * within the global GTT as well as accessible by the GPU through the GMADR
935 * mapped BAR (dev_priv->mm.gtt->gtt).
936 */
937 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
938 struct sg_table *st,
939 unsigned int first_entry,
940 enum i915_cache_level level)
941 {
942 struct drm_i915_private *dev_priv = vm->dev->dev_private;
943 gen6_gtt_pte_t __iomem *gtt_entries =
944 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
945 int i = 0;
946 struct sg_page_iter sg_iter;
947 dma_addr_t addr;
948
949 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
950 addr = sg_page_iter_dma_address(&sg_iter);
951 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
952 i++;
953 }
954
955 /* XXX: This serves as a posting read to make sure that the PTE has
956 * actually been updated. There is some concern that even though
957 * registers and PTEs are within the same BAR that they are potentially
958 * of NUMA access patterns. Therefore, even with the way we assume
959 * hardware should work, we must keep this posting read for paranoia.
960 */
961 if (i != 0)
962 WARN_ON(readl(&gtt_entries[i-1]) !=
963 vm->pte_encode(addr, level, true));
964
965 /* This next bit makes the above posting read even more important. We
966 * want to flush the TLBs only after we're certain all the PTE updates
967 * have finished.
968 */
969 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
970 POSTING_READ(GFX_FLSH_CNTL_GEN6);
971 }
972
973 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
974 unsigned int first_entry,
975 unsigned int num_entries,
976 bool use_scratch)
977 {
978 struct drm_i915_private *dev_priv = vm->dev->dev_private;
979 gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
980 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
981 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
982 int i;
983
984 if (WARN(num_entries > max_entries,
985 "First entry = %d; Num entries = %d (max=%d)\n",
986 first_entry, num_entries, max_entries))
987 num_entries = max_entries;
988
989 scratch_pte = gen8_pte_encode(vm->scratch.addr,
990 I915_CACHE_LLC,
991 use_scratch);
992 for (i = 0; i < num_entries; i++)
993 gen8_set_pte(&gtt_base[i], scratch_pte);
994 readl(gtt_base);
995 }
996
997 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
998 unsigned int first_entry,
999 unsigned int num_entries,
1000 bool use_scratch)
1001 {
1002 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1003 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1004 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1005 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1006 int i;
1007
1008 if (WARN(num_entries > max_entries,
1009 "First entry = %d; Num entries = %d (max=%d)\n",
1010 first_entry, num_entries, max_entries))
1011 num_entries = max_entries;
1012
1013 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1014
1015 for (i = 0; i < num_entries; i++)
1016 iowrite32(scratch_pte, &gtt_base[i]);
1017 readl(gtt_base);
1018 }
1019
1020 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1021 struct sg_table *st,
1022 unsigned int pg_start,
1023 enum i915_cache_level cache_level)
1024 {
1025 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1026 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1027
1028 intel_gtt_insert_sg_entries(st, pg_start, flags);
1029
1030 }
1031
1032 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1033 unsigned int first_entry,
1034 unsigned int num_entries,
1035 bool unused)
1036 {
1037 intel_gtt_clear_range(first_entry, num_entries);
1038 }
1039
1040
1041 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
1042 enum i915_cache_level cache_level)
1043 {
1044 struct drm_device *dev = obj->base.dev;
1045 struct drm_i915_private *dev_priv = dev->dev_private;
1046 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1047
1048 dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
1049 entry,
1050 cache_level);
1051
1052 obj->has_global_gtt_mapping = 1;
1053 }
1054
1055 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
1056 {
1057 struct drm_device *dev = obj->base.dev;
1058 struct drm_i915_private *dev_priv = dev->dev_private;
1059 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1060
1061 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1062 entry,
1063 obj->base.size >> PAGE_SHIFT,
1064 true);
1065
1066 obj->has_global_gtt_mapping = 0;
1067 }
1068
1069 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1070 {
1071 struct drm_device *dev = obj->base.dev;
1072 struct drm_i915_private *dev_priv = dev->dev_private;
1073 bool interruptible;
1074
1075 interruptible = do_idling(dev_priv);
1076
1077 if (!obj->has_dma_mapping)
1078 dma_unmap_sg(&dev->pdev->dev,
1079 obj->pages->sgl, obj->pages->nents,
1080 PCI_DMA_BIDIRECTIONAL);
1081
1082 undo_idling(dev_priv, interruptible);
1083 }
1084
1085 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1086 unsigned long color,
1087 unsigned long *start,
1088 unsigned long *end)
1089 {
1090 if (node->color != color)
1091 *start += 4096;
1092
1093 if (!list_empty(&node->node_list)) {
1094 node = list_entry(node->node_list.next,
1095 struct drm_mm_node,
1096 node_list);
1097 if (node->allocated && node->color != color)
1098 *end -= 4096;
1099 }
1100 }
1101
1102 void i915_gem_setup_global_gtt(struct drm_device *dev,
1103 unsigned long start,
1104 unsigned long mappable_end,
1105 unsigned long end)
1106 {
1107 /* Let GEM Manage all of the aperture.
1108 *
1109 * However, leave one page at the end still bound to the scratch page.
1110 * There are a number of places where the hardware apparently prefetches
1111 * past the end of the object, and we've seen multiple hangs with the
1112 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1113 * aperture. One page should be enough to keep any prefetching inside
1114 * of the aperture.
1115 */
1116 struct drm_i915_private *dev_priv = dev->dev_private;
1117 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1118 struct drm_mm_node *entry;
1119 struct drm_i915_gem_object *obj;
1120 unsigned long hole_start, hole_end;
1121
1122 BUG_ON(mappable_end > end);
1123
1124 /* Subtract the guard page ... */
1125 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1126 if (!HAS_LLC(dev))
1127 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1128
1129 /* Mark any preallocated objects as occupied */
1130 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1131 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1132 int ret;
1133 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1134 i915_gem_obj_ggtt_offset(obj), obj->base.size);
1135
1136 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1137 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1138 if (ret)
1139 DRM_DEBUG_KMS("Reservation failed\n");
1140 obj->has_global_gtt_mapping = 1;
1141 }
1142
1143 dev_priv->gtt.base.start = start;
1144 dev_priv->gtt.base.total = end - start;
1145
1146 /* Clear any non-preallocated blocks */
1147 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1148 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1149 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1150 hole_start, hole_end);
1151 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1152 }
1153
1154 /* And finally clear the reserved guard page */
1155 ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1156 }
1157
1158 static bool
1159 intel_enable_ppgtt(struct drm_device *dev)
1160 {
1161 if (i915_enable_ppgtt >= 0)
1162 return i915_enable_ppgtt;
1163
1164 #ifdef CONFIG_INTEL_IOMMU
1165 /* Disable ppgtt on SNB if VT-d is on. */
1166 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
1167 return false;
1168 #endif
1169
1170 return true;
1171 }
1172
1173 void i915_gem_init_global_gtt(struct drm_device *dev)
1174 {
1175 struct drm_i915_private *dev_priv = dev->dev_private;
1176 unsigned long gtt_size, mappable_size;
1177
1178 gtt_size = dev_priv->gtt.base.total;
1179 mappable_size = dev_priv->gtt.mappable_end;
1180
1181 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
1182 int ret;
1183
1184 if (INTEL_INFO(dev)->gen <= 7) {
1185 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
1186 * aperture accordingly when using aliasing ppgtt. */
1187 gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
1188 }
1189
1190 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1191
1192 ret = i915_gem_init_aliasing_ppgtt(dev);
1193 if (!ret)
1194 return;
1195
1196 DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
1197 drm_mm_takedown(&dev_priv->gtt.base.mm);
1198 if (INTEL_INFO(dev)->gen < 8)
1199 gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
1200 }
1201 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1202 }
1203
1204 static int setup_scratch_page(struct drm_device *dev)
1205 {
1206 struct drm_i915_private *dev_priv = dev->dev_private;
1207 struct page *page;
1208 dma_addr_t dma_addr;
1209
1210 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1211 if (page == NULL)
1212 return -ENOMEM;
1213 get_page(page);
1214 set_pages_uc(page, 1);
1215
1216 #ifdef CONFIG_INTEL_IOMMU
1217 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1218 PCI_DMA_BIDIRECTIONAL);
1219 if (pci_dma_mapping_error(dev->pdev, dma_addr))
1220 return -EINVAL;
1221 #else
1222 dma_addr = page_to_phys(page);
1223 #endif
1224 dev_priv->gtt.base.scratch.page = page;
1225 dev_priv->gtt.base.scratch.addr = dma_addr;
1226
1227 return 0;
1228 }
1229
1230 static void teardown_scratch_page(struct drm_device *dev)
1231 {
1232 struct drm_i915_private *dev_priv = dev->dev_private;
1233 struct page *page = dev_priv->gtt.base.scratch.page;
1234
1235 set_pages_wb(page, 1);
1236 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1237 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1238 put_page(page);
1239 __free_page(page);
1240 }
1241
1242 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1243 {
1244 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1245 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1246 return snb_gmch_ctl << 20;
1247 }
1248
1249 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1250 {
1251 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1252 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1253 if (bdw_gmch_ctl)
1254 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1255 if (bdw_gmch_ctl > 4) {
1256 WARN_ON(!i915_preliminary_hw_support);
1257 return 4<<20;
1258 }
1259
1260 return bdw_gmch_ctl << 20;
1261 }
1262
1263 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1264 {
1265 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1266 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1267 return snb_gmch_ctl << 25; /* 32 MB units */
1268 }
1269
1270 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1271 {
1272 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1273 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1274 return bdw_gmch_ctl << 25; /* 32 MB units */
1275 }
1276
1277 static int ggtt_probe_common(struct drm_device *dev,
1278 size_t gtt_size)
1279 {
1280 struct drm_i915_private *dev_priv = dev->dev_private;
1281 phys_addr_t gtt_bus_addr;
1282 int ret;
1283
1284 /* For Modern GENs the PTEs and register space are split in the BAR */
1285 gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1286 (pci_resource_len(dev->pdev, 0) / 2);
1287
1288 dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1289 if (!dev_priv->gtt.gsm) {
1290 DRM_ERROR("Failed to map the gtt page table\n");
1291 return -ENOMEM;
1292 }
1293
1294 ret = setup_scratch_page(dev);
1295 if (ret) {
1296 DRM_ERROR("Scratch setup failed\n");
1297 /* iounmap will also get called at remove, but meh */
1298 iounmap(dev_priv->gtt.gsm);
1299 }
1300
1301 return ret;
1302 }
1303
1304 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1305 * bits. When using advanced contexts each context stores its own PAT, but
1306 * writing this data shouldn't be harmful even in those cases. */
1307 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1308 {
1309 #define GEN8_PPAT_UC (0<<0)
1310 #define GEN8_PPAT_WC (1<<0)
1311 #define GEN8_PPAT_WT (2<<0)
1312 #define GEN8_PPAT_WB (3<<0)
1313 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1314 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1315 #define GEN8_PPAT_LLC (1<<2)
1316 #define GEN8_PPAT_LLCELLC (2<<2)
1317 #define GEN8_PPAT_LLCeLLC (3<<2)
1318 #define GEN8_PPAT_AGE(x) (x<<4)
1319 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1320 uint64_t pat;
1321
1322 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
1323 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1324 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1325 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
1326 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1327 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1328 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1329 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1330
1331 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1332 * write would work. */
1333 I915_WRITE(GEN8_PRIVATE_PAT, pat);
1334 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1335 }
1336
1337 static int gen8_gmch_probe(struct drm_device *dev,
1338 size_t *gtt_total,
1339 size_t *stolen,
1340 phys_addr_t *mappable_base,
1341 unsigned long *mappable_end)
1342 {
1343 struct drm_i915_private *dev_priv = dev->dev_private;
1344 unsigned int gtt_size;
1345 u16 snb_gmch_ctl;
1346 int ret;
1347
1348 /* TODO: We're not aware of mappable constraints on gen8 yet */
1349 *mappable_base = pci_resource_start(dev->pdev, 2);
1350 *mappable_end = pci_resource_len(dev->pdev, 2);
1351
1352 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1353 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1354
1355 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1356
1357 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1358
1359 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1360 *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1361
1362 gen8_setup_private_ppat(dev_priv);
1363
1364 ret = ggtt_probe_common(dev, gtt_size);
1365
1366 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1367 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1368
1369 return ret;
1370 }
1371
1372 static int gen6_gmch_probe(struct drm_device *dev,
1373 size_t *gtt_total,
1374 size_t *stolen,
1375 phys_addr_t *mappable_base,
1376 unsigned long *mappable_end)
1377 {
1378 struct drm_i915_private *dev_priv = dev->dev_private;
1379 unsigned int gtt_size;
1380 u16 snb_gmch_ctl;
1381 int ret;
1382
1383 *mappable_base = pci_resource_start(dev->pdev, 2);
1384 *mappable_end = pci_resource_len(dev->pdev, 2);
1385
1386 /* 64/512MB is the current min/max we actually know of, but this is just
1387 * a coarse sanity check.
1388 */
1389 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1390 DRM_ERROR("Unknown GMADR size (%lx)\n",
1391 dev_priv->gtt.mappable_end);
1392 return -ENXIO;
1393 }
1394
1395 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1396 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1397 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1398
1399 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1400
1401 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1402 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1403
1404 ret = ggtt_probe_common(dev, gtt_size);
1405
1406 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1407 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1408
1409 return ret;
1410 }
1411
1412 static void gen6_gmch_remove(struct i915_address_space *vm)
1413 {
1414
1415 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1416
1417 drm_mm_takedown(&vm->mm);
1418 iounmap(gtt->gsm);
1419 teardown_scratch_page(vm->dev);
1420 }
1421
1422 static int i915_gmch_probe(struct drm_device *dev,
1423 size_t *gtt_total,
1424 size_t *stolen,
1425 phys_addr_t *mappable_base,
1426 unsigned long *mappable_end)
1427 {
1428 struct drm_i915_private *dev_priv = dev->dev_private;
1429 int ret;
1430
1431 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1432 if (!ret) {
1433 DRM_ERROR("failed to set up gmch\n");
1434 return -EIO;
1435 }
1436
1437 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1438
1439 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1440 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1441 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
1442
1443 if (unlikely(dev_priv->gtt.do_idle_maps))
1444 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
1445
1446 return 0;
1447 }
1448
1449 static void i915_gmch_remove(struct i915_address_space *vm)
1450 {
1451 intel_gmch_remove();
1452 }
1453
1454 int i915_gem_gtt_init(struct drm_device *dev)
1455 {
1456 struct drm_i915_private *dev_priv = dev->dev_private;
1457 struct i915_gtt *gtt = &dev_priv->gtt;
1458 int ret;
1459
1460 if (INTEL_INFO(dev)->gen <= 5) {
1461 gtt->gtt_probe = i915_gmch_probe;
1462 gtt->base.cleanup = i915_gmch_remove;
1463 } else if (INTEL_INFO(dev)->gen < 8) {
1464 gtt->gtt_probe = gen6_gmch_probe;
1465 gtt->base.cleanup = gen6_gmch_remove;
1466 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1467 gtt->base.pte_encode = iris_pte_encode;
1468 else if (IS_HASWELL(dev))
1469 gtt->base.pte_encode = hsw_pte_encode;
1470 else if (IS_VALLEYVIEW(dev))
1471 gtt->base.pte_encode = byt_pte_encode;
1472 else if (INTEL_INFO(dev)->gen >= 7)
1473 gtt->base.pte_encode = ivb_pte_encode;
1474 else
1475 gtt->base.pte_encode = snb_pte_encode;
1476 } else {
1477 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1478 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1479 }
1480
1481 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1482 &gtt->mappable_base, &gtt->mappable_end);
1483 if (ret)
1484 return ret;
1485
1486 gtt->base.dev = dev;
1487
1488 /* GMADR is the PCI mmio aperture into the global GTT. */
1489 DRM_INFO("Memory usable by graphics device = %zdM\n",
1490 gtt->base.total >> 20);
1491 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1492 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1493
1494 return 0;
1495 }
This page took 0.063633 seconds and 6 git commands to generate.