Merge tag 'dmaengine-fixes-3.13-rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33 typedef uint64_t gen8_gtt_pte_t;
34 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
35
36 /* PPGTT stuff */
37 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
38 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
39
40 #define GEN6_PDE_VALID (1 << 0)
41 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
42 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
43
44 #define GEN6_PTE_VALID (1 << 0)
45 #define GEN6_PTE_UNCACHED (1 << 1)
46 #define HSW_PTE_UNCACHED (0)
47 #define GEN6_PTE_CACHE_LLC (2 << 1)
48 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
49 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
51
52 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
53 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
54 */
55 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
56 (((bits) & 0x8) << (11 - 3)))
57 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
58 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
59 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
60 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
61 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
62 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
63
64 #define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
65 #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
66 #define GEN8_LEGACY_PDPS 4
67
68 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
69 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
70 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
71 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
72
73 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
74 enum i915_cache_level level,
75 bool valid)
76 {
77 gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
78 pte |= addr;
79 if (level != I915_CACHE_NONE)
80 pte |= PPAT_CACHED_INDEX;
81 else
82 pte |= PPAT_UNCACHED_INDEX;
83 return pte;
84 }
85
86 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
87 dma_addr_t addr,
88 enum i915_cache_level level)
89 {
90 gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
91 pde |= addr;
92 if (level != I915_CACHE_NONE)
93 pde |= PPAT_CACHED_PDE_INDEX;
94 else
95 pde |= PPAT_UNCACHED_INDEX;
96 return pde;
97 }
98
99 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
100 enum i915_cache_level level,
101 bool valid)
102 {
103 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
104 pte |= GEN6_PTE_ADDR_ENCODE(addr);
105
106 switch (level) {
107 case I915_CACHE_L3_LLC:
108 case I915_CACHE_LLC:
109 pte |= GEN6_PTE_CACHE_LLC;
110 break;
111 case I915_CACHE_NONE:
112 pte |= GEN6_PTE_UNCACHED;
113 break;
114 default:
115 WARN_ON(1);
116 }
117
118 return pte;
119 }
120
121 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
122 enum i915_cache_level level,
123 bool valid)
124 {
125 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
126 pte |= GEN6_PTE_ADDR_ENCODE(addr);
127
128 switch (level) {
129 case I915_CACHE_L3_LLC:
130 pte |= GEN7_PTE_CACHE_L3_LLC;
131 break;
132 case I915_CACHE_LLC:
133 pte |= GEN6_PTE_CACHE_LLC;
134 break;
135 case I915_CACHE_NONE:
136 pte |= GEN6_PTE_UNCACHED;
137 break;
138 default:
139 WARN_ON(1);
140 }
141
142 return pte;
143 }
144
145 #define BYT_PTE_WRITEABLE (1 << 1)
146 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
147
148 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
149 enum i915_cache_level level,
150 bool valid)
151 {
152 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
153 pte |= GEN6_PTE_ADDR_ENCODE(addr);
154
155 /* Mark the page as writeable. Other platforms don't have a
156 * setting for read-only/writable, so this matches that behavior.
157 */
158 pte |= BYT_PTE_WRITEABLE;
159
160 if (level != I915_CACHE_NONE)
161 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
162
163 return pte;
164 }
165
166 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
167 enum i915_cache_level level,
168 bool valid)
169 {
170 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
171 pte |= HSW_PTE_ADDR_ENCODE(addr);
172
173 if (level != I915_CACHE_NONE)
174 pte |= HSW_WB_LLC_AGE3;
175
176 return pte;
177 }
178
179 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
180 enum i915_cache_level level,
181 bool valid)
182 {
183 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
184 pte |= HSW_PTE_ADDR_ENCODE(addr);
185
186 switch (level) {
187 case I915_CACHE_NONE:
188 break;
189 case I915_CACHE_WT:
190 pte |= HSW_WT_ELLC_LLC_AGE3;
191 break;
192 default:
193 pte |= HSW_WB_ELLC_LLC_AGE3;
194 break;
195 }
196
197 return pte;
198 }
199
200 /* Broadwell Page Directory Pointer Descriptors */
201 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
202 uint64_t val)
203 {
204 int ret;
205
206 BUG_ON(entry >= 4);
207
208 ret = intel_ring_begin(ring, 6);
209 if (ret)
210 return ret;
211
212 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
213 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
214 intel_ring_emit(ring, (u32)(val >> 32));
215 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
216 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
217 intel_ring_emit(ring, (u32)(val));
218 intel_ring_advance(ring);
219
220 return 0;
221 }
222
223 static int gen8_ppgtt_enable(struct drm_device *dev)
224 {
225 struct drm_i915_private *dev_priv = dev->dev_private;
226 struct intel_ring_buffer *ring;
227 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
228 int i, j, ret;
229
230 /* bit of a hack to find the actual last used pd */
231 int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
232
233 for_each_ring(ring, dev_priv, j) {
234 I915_WRITE(RING_MODE_GEN7(ring),
235 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
236 }
237
238 for (i = used_pd - 1; i >= 0; i--) {
239 dma_addr_t addr = ppgtt->pd_dma_addr[i];
240 for_each_ring(ring, dev_priv, j) {
241 ret = gen8_write_pdp(ring, i, addr);
242 if (ret)
243 return ret;
244 }
245 }
246 return 0;
247 }
248
249 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
250 unsigned first_entry,
251 unsigned num_entries,
252 bool use_scratch)
253 {
254 struct i915_hw_ppgtt *ppgtt =
255 container_of(vm, struct i915_hw_ppgtt, base);
256 gen8_gtt_pte_t *pt_vaddr, scratch_pte;
257 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
258 unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
259 unsigned last_pte, i;
260
261 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
262 I915_CACHE_LLC, use_scratch);
263
264 while (num_entries) {
265 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
266
267 last_pte = first_pte + num_entries;
268 if (last_pte > GEN8_PTES_PER_PAGE)
269 last_pte = GEN8_PTES_PER_PAGE;
270
271 pt_vaddr = kmap_atomic(page_table);
272
273 for (i = first_pte; i < last_pte; i++)
274 pt_vaddr[i] = scratch_pte;
275
276 kunmap_atomic(pt_vaddr);
277
278 num_entries -= last_pte - first_pte;
279 first_pte = 0;
280 act_pt++;
281 }
282 }
283
284 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
285 struct sg_table *pages,
286 unsigned first_entry,
287 enum i915_cache_level cache_level)
288 {
289 struct i915_hw_ppgtt *ppgtt =
290 container_of(vm, struct i915_hw_ppgtt, base);
291 gen8_gtt_pte_t *pt_vaddr;
292 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
293 unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
294 struct sg_page_iter sg_iter;
295
296 pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
297 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
298 dma_addr_t page_addr;
299
300 page_addr = sg_dma_address(sg_iter.sg) +
301 (sg_iter.sg_pgoffset << PAGE_SHIFT);
302 pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
303 true);
304 if (++act_pte == GEN8_PTES_PER_PAGE) {
305 kunmap_atomic(pt_vaddr);
306 act_pt++;
307 pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
308 act_pte = 0;
309
310 }
311 }
312 kunmap_atomic(pt_vaddr);
313 }
314
315 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
316 {
317 struct i915_hw_ppgtt *ppgtt =
318 container_of(vm, struct i915_hw_ppgtt, base);
319 int i, j;
320
321 for (i = 0; i < ppgtt->num_pd_pages ; i++) {
322 if (ppgtt->pd_dma_addr[i]) {
323 pci_unmap_page(ppgtt->base.dev->pdev,
324 ppgtt->pd_dma_addr[i],
325 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
326
327 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
328 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
329 if (addr)
330 pci_unmap_page(ppgtt->base.dev->pdev,
331 addr,
332 PAGE_SIZE,
333 PCI_DMA_BIDIRECTIONAL);
334
335 }
336 }
337 kfree(ppgtt->gen8_pt_dma_addr[i]);
338 }
339
340 __free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
341 __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
342 }
343
344 /**
345 * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
346 * net effect resembling a 2-level page table in normal x86 terms. Each PDP
347 * represents 1GB of memory
348 * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
349 *
350 * TODO: Do something with the size parameter
351 **/
352 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
353 {
354 struct page *pt_pages;
355 int i, j, ret = -ENOMEM;
356 const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
357 const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
358
359 if (size % (1<<30))
360 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
361
362 /* FIXME: split allocation into smaller pieces. For now we only ever do
363 * this once, but with full PPGTT, the multiple contiguous allocations
364 * will be bad.
365 */
366 ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
367 if (!ppgtt->pd_pages)
368 return -ENOMEM;
369
370 pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
371 if (!pt_pages) {
372 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
373 return -ENOMEM;
374 }
375
376 ppgtt->gen8_pt_pages = pt_pages;
377 ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
378 ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
379 ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
380 ppgtt->enable = gen8_ppgtt_enable;
381 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
382 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
383 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
384
385 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
386
387 /*
388 * - Create a mapping for the page directories.
389 * - For each page directory:
390 * allocate space for page table mappings.
391 * map each page table
392 */
393 for (i = 0; i < max_pdp; i++) {
394 dma_addr_t temp;
395 temp = pci_map_page(ppgtt->base.dev->pdev,
396 &ppgtt->pd_pages[i], 0,
397 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
398 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
399 goto err_out;
400
401 ppgtt->pd_dma_addr[i] = temp;
402
403 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
404 if (!ppgtt->gen8_pt_dma_addr[i])
405 goto err_out;
406
407 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
408 struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
409 temp = pci_map_page(ppgtt->base.dev->pdev,
410 p, 0, PAGE_SIZE,
411 PCI_DMA_BIDIRECTIONAL);
412
413 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
414 goto err_out;
415
416 ppgtt->gen8_pt_dma_addr[i][j] = temp;
417 }
418 }
419
420 /* For now, the PPGTT helper functions all require that the PDEs are
421 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
422 * will never need to touch the PDEs again */
423 for (i = 0; i < max_pdp; i++) {
424 gen8_ppgtt_pde_t *pd_vaddr;
425 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
426 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
427 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
428 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
429 I915_CACHE_LLC);
430 }
431 kunmap_atomic(pd_vaddr);
432 }
433
434 ppgtt->base.clear_range(&ppgtt->base, 0,
435 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
436 true);
437
438 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
439 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
440 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
441 ppgtt->num_pt_pages,
442 (ppgtt->num_pt_pages - num_pt_pages) +
443 size % (1<<30));
444 return 0;
445
446 err_out:
447 ppgtt->base.cleanup(&ppgtt->base);
448 return ret;
449 }
450
451 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
452 {
453 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
454 gen6_gtt_pte_t __iomem *pd_addr;
455 uint32_t pd_entry;
456 int i;
457
458 WARN_ON(ppgtt->pd_offset & 0x3f);
459 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
460 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
461 for (i = 0; i < ppgtt->num_pd_entries; i++) {
462 dma_addr_t pt_addr;
463
464 pt_addr = ppgtt->pt_dma_addr[i];
465 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
466 pd_entry |= GEN6_PDE_VALID;
467
468 writel(pd_entry, pd_addr + i);
469 }
470 readl(pd_addr);
471 }
472
473 static int gen6_ppgtt_enable(struct drm_device *dev)
474 {
475 drm_i915_private_t *dev_priv = dev->dev_private;
476 uint32_t pd_offset;
477 struct intel_ring_buffer *ring;
478 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
479 int i;
480
481 BUG_ON(ppgtt->pd_offset & 0x3f);
482
483 gen6_write_pdes(ppgtt);
484
485 pd_offset = ppgtt->pd_offset;
486 pd_offset /= 64; /* in cachelines, */
487 pd_offset <<= 16;
488
489 if (INTEL_INFO(dev)->gen == 6) {
490 uint32_t ecochk, gab_ctl, ecobits;
491
492 ecobits = I915_READ(GAC_ECO_BITS);
493 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
494 ECOBITS_PPGTT_CACHE64B);
495
496 gab_ctl = I915_READ(GAB_CTL);
497 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
498
499 ecochk = I915_READ(GAM_ECOCHK);
500 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
501 ECOCHK_PPGTT_CACHE64B);
502 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
503 } else if (INTEL_INFO(dev)->gen >= 7) {
504 uint32_t ecochk, ecobits;
505
506 ecobits = I915_READ(GAC_ECO_BITS);
507 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
508
509 ecochk = I915_READ(GAM_ECOCHK);
510 if (IS_HASWELL(dev)) {
511 ecochk |= ECOCHK_PPGTT_WB_HSW;
512 } else {
513 ecochk |= ECOCHK_PPGTT_LLC_IVB;
514 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
515 }
516 I915_WRITE(GAM_ECOCHK, ecochk);
517 /* GFX_MODE is per-ring on gen7+ */
518 }
519
520 for_each_ring(ring, dev_priv, i) {
521 if (INTEL_INFO(dev)->gen >= 7)
522 I915_WRITE(RING_MODE_GEN7(ring),
523 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
524
525 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
526 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
527 }
528 return 0;
529 }
530
531 /* PPGTT support for Sandybdrige/Gen6 and later */
532 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
533 unsigned first_entry,
534 unsigned num_entries,
535 bool use_scratch)
536 {
537 struct i915_hw_ppgtt *ppgtt =
538 container_of(vm, struct i915_hw_ppgtt, base);
539 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
540 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
541 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
542 unsigned last_pte, i;
543
544 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
545
546 while (num_entries) {
547 last_pte = first_pte + num_entries;
548 if (last_pte > I915_PPGTT_PT_ENTRIES)
549 last_pte = I915_PPGTT_PT_ENTRIES;
550
551 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
552
553 for (i = first_pte; i < last_pte; i++)
554 pt_vaddr[i] = scratch_pte;
555
556 kunmap_atomic(pt_vaddr);
557
558 num_entries -= last_pte - first_pte;
559 first_pte = 0;
560 act_pt++;
561 }
562 }
563
564 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
565 struct sg_table *pages,
566 unsigned first_entry,
567 enum i915_cache_level cache_level)
568 {
569 struct i915_hw_ppgtt *ppgtt =
570 container_of(vm, struct i915_hw_ppgtt, base);
571 gen6_gtt_pte_t *pt_vaddr;
572 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
573 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
574 struct sg_page_iter sg_iter;
575
576 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
577 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
578 dma_addr_t page_addr;
579
580 page_addr = sg_page_iter_dma_address(&sg_iter);
581 pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
582 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
583 kunmap_atomic(pt_vaddr);
584 act_pt++;
585 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
586 act_pte = 0;
587
588 }
589 }
590 kunmap_atomic(pt_vaddr);
591 }
592
593 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
594 {
595 struct i915_hw_ppgtt *ppgtt =
596 container_of(vm, struct i915_hw_ppgtt, base);
597 int i;
598
599 drm_mm_takedown(&ppgtt->base.mm);
600
601 if (ppgtt->pt_dma_addr) {
602 for (i = 0; i < ppgtt->num_pd_entries; i++)
603 pci_unmap_page(ppgtt->base.dev->pdev,
604 ppgtt->pt_dma_addr[i],
605 4096, PCI_DMA_BIDIRECTIONAL);
606 }
607
608 kfree(ppgtt->pt_dma_addr);
609 for (i = 0; i < ppgtt->num_pd_entries; i++)
610 __free_page(ppgtt->pt_pages[i]);
611 kfree(ppgtt->pt_pages);
612 kfree(ppgtt);
613 }
614
615 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
616 {
617 struct drm_device *dev = ppgtt->base.dev;
618 struct drm_i915_private *dev_priv = dev->dev_private;
619 unsigned first_pd_entry_in_global_pt;
620 int i;
621 int ret = -ENOMEM;
622
623 /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
624 * entries. For aliasing ppgtt support we just steal them at the end for
625 * now. */
626 first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
627
628 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
629 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
630 ppgtt->enable = gen6_ppgtt_enable;
631 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
632 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
633 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
634 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
635 ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
636 GFP_KERNEL);
637 if (!ppgtt->pt_pages)
638 return -ENOMEM;
639
640 for (i = 0; i < ppgtt->num_pd_entries; i++) {
641 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
642 if (!ppgtt->pt_pages[i])
643 goto err_pt_alloc;
644 }
645
646 ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
647 GFP_KERNEL);
648 if (!ppgtt->pt_dma_addr)
649 goto err_pt_alloc;
650
651 for (i = 0; i < ppgtt->num_pd_entries; i++) {
652 dma_addr_t pt_addr;
653
654 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
655 PCI_DMA_BIDIRECTIONAL);
656
657 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
658 ret = -EIO;
659 goto err_pd_pin;
660
661 }
662 ppgtt->pt_dma_addr[i] = pt_addr;
663 }
664
665 ppgtt->base.clear_range(&ppgtt->base, 0,
666 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
667
668 ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
669
670 return 0;
671
672 err_pd_pin:
673 if (ppgtt->pt_dma_addr) {
674 for (i--; i >= 0; i--)
675 pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
676 4096, PCI_DMA_BIDIRECTIONAL);
677 }
678 err_pt_alloc:
679 kfree(ppgtt->pt_dma_addr);
680 for (i = 0; i < ppgtt->num_pd_entries; i++) {
681 if (ppgtt->pt_pages[i])
682 __free_page(ppgtt->pt_pages[i]);
683 }
684 kfree(ppgtt->pt_pages);
685
686 return ret;
687 }
688
689 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
690 {
691 struct drm_i915_private *dev_priv = dev->dev_private;
692 struct i915_hw_ppgtt *ppgtt;
693 int ret;
694
695 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
696 if (!ppgtt)
697 return -ENOMEM;
698
699 ppgtt->base.dev = dev;
700
701 if (INTEL_INFO(dev)->gen < 8)
702 ret = gen6_ppgtt_init(ppgtt);
703 else if (IS_GEN8(dev))
704 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
705 else
706 BUG();
707
708 if (ret)
709 kfree(ppgtt);
710 else {
711 dev_priv->mm.aliasing_ppgtt = ppgtt;
712 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
713 ppgtt->base.total);
714 }
715
716 return ret;
717 }
718
719 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
720 {
721 struct drm_i915_private *dev_priv = dev->dev_private;
722 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
723
724 if (!ppgtt)
725 return;
726
727 ppgtt->base.cleanup(&ppgtt->base);
728 dev_priv->mm.aliasing_ppgtt = NULL;
729 }
730
731 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
732 struct drm_i915_gem_object *obj,
733 enum i915_cache_level cache_level)
734 {
735 ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
736 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
737 cache_level);
738 }
739
740 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
741 struct drm_i915_gem_object *obj)
742 {
743 ppgtt->base.clear_range(&ppgtt->base,
744 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
745 obj->base.size >> PAGE_SHIFT,
746 true);
747 }
748
749 extern int intel_iommu_gfx_mapped;
750 /* Certain Gen5 chipsets require require idling the GPU before
751 * unmapping anything from the GTT when VT-d is enabled.
752 */
753 static inline bool needs_idle_maps(struct drm_device *dev)
754 {
755 #ifdef CONFIG_INTEL_IOMMU
756 /* Query intel_iommu to see if we need the workaround. Presumably that
757 * was loaded first.
758 */
759 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
760 return true;
761 #endif
762 return false;
763 }
764
765 static bool do_idling(struct drm_i915_private *dev_priv)
766 {
767 bool ret = dev_priv->mm.interruptible;
768
769 if (unlikely(dev_priv->gtt.do_idle_maps)) {
770 dev_priv->mm.interruptible = false;
771 if (i915_gpu_idle(dev_priv->dev)) {
772 DRM_ERROR("Couldn't idle GPU\n");
773 /* Wait a bit, in hopes it avoids the hang */
774 udelay(10);
775 }
776 }
777
778 return ret;
779 }
780
781 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
782 {
783 if (unlikely(dev_priv->gtt.do_idle_maps))
784 dev_priv->mm.interruptible = interruptible;
785 }
786
787 void i915_check_and_clear_faults(struct drm_device *dev)
788 {
789 struct drm_i915_private *dev_priv = dev->dev_private;
790 struct intel_ring_buffer *ring;
791 int i;
792
793 if (INTEL_INFO(dev)->gen < 6)
794 return;
795
796 for_each_ring(ring, dev_priv, i) {
797 u32 fault_reg;
798 fault_reg = I915_READ(RING_FAULT_REG(ring));
799 if (fault_reg & RING_FAULT_VALID) {
800 DRM_DEBUG_DRIVER("Unexpected fault\n"
801 "\tAddr: 0x%08lx\\n"
802 "\tAddress space: %s\n"
803 "\tSource ID: %d\n"
804 "\tType: %d\n",
805 fault_reg & PAGE_MASK,
806 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
807 RING_FAULT_SRCID(fault_reg),
808 RING_FAULT_FAULT_TYPE(fault_reg));
809 I915_WRITE(RING_FAULT_REG(ring),
810 fault_reg & ~RING_FAULT_VALID);
811 }
812 }
813 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
814 }
815
816 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
817 {
818 struct drm_i915_private *dev_priv = dev->dev_private;
819
820 /* Don't bother messing with faults pre GEN6 as we have little
821 * documentation supporting that it's a good idea.
822 */
823 if (INTEL_INFO(dev)->gen < 6)
824 return;
825
826 i915_check_and_clear_faults(dev);
827
828 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
829 dev_priv->gtt.base.start / PAGE_SIZE,
830 dev_priv->gtt.base.total / PAGE_SIZE,
831 false);
832 }
833
834 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
835 {
836 struct drm_i915_private *dev_priv = dev->dev_private;
837 struct drm_i915_gem_object *obj;
838
839 i915_check_and_clear_faults(dev);
840
841 /* First fill our portion of the GTT with scratch pages */
842 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
843 dev_priv->gtt.base.start / PAGE_SIZE,
844 dev_priv->gtt.base.total / PAGE_SIZE,
845 true);
846
847 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
848 i915_gem_clflush_object(obj, obj->pin_display);
849 i915_gem_gtt_bind_object(obj, obj->cache_level);
850 }
851
852 i915_gem_chipset_flush(dev);
853 }
854
855 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
856 {
857 if (obj->has_dma_mapping)
858 return 0;
859
860 if (!dma_map_sg(&obj->base.dev->pdev->dev,
861 obj->pages->sgl, obj->pages->nents,
862 PCI_DMA_BIDIRECTIONAL))
863 return -ENOSPC;
864
865 return 0;
866 }
867
868 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
869 {
870 #ifdef writeq
871 writeq(pte, addr);
872 #else
873 iowrite32((u32)pte, addr);
874 iowrite32(pte >> 32, addr + 4);
875 #endif
876 }
877
878 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
879 struct sg_table *st,
880 unsigned int first_entry,
881 enum i915_cache_level level)
882 {
883 struct drm_i915_private *dev_priv = vm->dev->dev_private;
884 gen8_gtt_pte_t __iomem *gtt_entries =
885 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
886 int i = 0;
887 struct sg_page_iter sg_iter;
888 dma_addr_t addr;
889
890 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
891 addr = sg_dma_address(sg_iter.sg) +
892 (sg_iter.sg_pgoffset << PAGE_SHIFT);
893 gen8_set_pte(&gtt_entries[i],
894 gen8_pte_encode(addr, level, true));
895 i++;
896 }
897
898 /*
899 * XXX: This serves as a posting read to make sure that the PTE has
900 * actually been updated. There is some concern that even though
901 * registers and PTEs are within the same BAR that they are potentially
902 * of NUMA access patterns. Therefore, even with the way we assume
903 * hardware should work, we must keep this posting read for paranoia.
904 */
905 if (i != 0)
906 WARN_ON(readq(&gtt_entries[i-1])
907 != gen8_pte_encode(addr, level, true));
908
909 #if 0 /* TODO: Still needed on GEN8? */
910 /* This next bit makes the above posting read even more important. We
911 * want to flush the TLBs only after we're certain all the PTE updates
912 * have finished.
913 */
914 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
915 POSTING_READ(GFX_FLSH_CNTL_GEN6);
916 #endif
917 }
918
919 /*
920 * Binds an object into the global gtt with the specified cache level. The object
921 * will be accessible to the GPU via commands whose operands reference offsets
922 * within the global GTT as well as accessible by the GPU through the GMADR
923 * mapped BAR (dev_priv->mm.gtt->gtt).
924 */
925 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
926 struct sg_table *st,
927 unsigned int first_entry,
928 enum i915_cache_level level)
929 {
930 struct drm_i915_private *dev_priv = vm->dev->dev_private;
931 gen6_gtt_pte_t __iomem *gtt_entries =
932 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
933 int i = 0;
934 struct sg_page_iter sg_iter;
935 dma_addr_t addr;
936
937 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
938 addr = sg_page_iter_dma_address(&sg_iter);
939 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
940 i++;
941 }
942
943 /* XXX: This serves as a posting read to make sure that the PTE has
944 * actually been updated. There is some concern that even though
945 * registers and PTEs are within the same BAR that they are potentially
946 * of NUMA access patterns. Therefore, even with the way we assume
947 * hardware should work, we must keep this posting read for paranoia.
948 */
949 if (i != 0)
950 WARN_ON(readl(&gtt_entries[i-1]) !=
951 vm->pte_encode(addr, level, true));
952
953 /* This next bit makes the above posting read even more important. We
954 * want to flush the TLBs only after we're certain all the PTE updates
955 * have finished.
956 */
957 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
958 POSTING_READ(GFX_FLSH_CNTL_GEN6);
959 }
960
961 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
962 unsigned int first_entry,
963 unsigned int num_entries,
964 bool use_scratch)
965 {
966 struct drm_i915_private *dev_priv = vm->dev->dev_private;
967 gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
968 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
969 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
970 int i;
971
972 if (WARN(num_entries > max_entries,
973 "First entry = %d; Num entries = %d (max=%d)\n",
974 first_entry, num_entries, max_entries))
975 num_entries = max_entries;
976
977 scratch_pte = gen8_pte_encode(vm->scratch.addr,
978 I915_CACHE_LLC,
979 use_scratch);
980 for (i = 0; i < num_entries; i++)
981 gen8_set_pte(&gtt_base[i], scratch_pte);
982 readl(gtt_base);
983 }
984
985 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
986 unsigned int first_entry,
987 unsigned int num_entries,
988 bool use_scratch)
989 {
990 struct drm_i915_private *dev_priv = vm->dev->dev_private;
991 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
992 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
993 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
994 int i;
995
996 if (WARN(num_entries > max_entries,
997 "First entry = %d; Num entries = %d (max=%d)\n",
998 first_entry, num_entries, max_entries))
999 num_entries = max_entries;
1000
1001 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1002
1003 for (i = 0; i < num_entries; i++)
1004 iowrite32(scratch_pte, &gtt_base[i]);
1005 readl(gtt_base);
1006 }
1007
1008 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1009 struct sg_table *st,
1010 unsigned int pg_start,
1011 enum i915_cache_level cache_level)
1012 {
1013 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1014 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1015
1016 intel_gtt_insert_sg_entries(st, pg_start, flags);
1017
1018 }
1019
1020 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1021 unsigned int first_entry,
1022 unsigned int num_entries,
1023 bool unused)
1024 {
1025 intel_gtt_clear_range(first_entry, num_entries);
1026 }
1027
1028
1029 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
1030 enum i915_cache_level cache_level)
1031 {
1032 struct drm_device *dev = obj->base.dev;
1033 struct drm_i915_private *dev_priv = dev->dev_private;
1034 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1035
1036 dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
1037 entry,
1038 cache_level);
1039
1040 obj->has_global_gtt_mapping = 1;
1041 }
1042
1043 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
1044 {
1045 struct drm_device *dev = obj->base.dev;
1046 struct drm_i915_private *dev_priv = dev->dev_private;
1047 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1048
1049 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1050 entry,
1051 obj->base.size >> PAGE_SHIFT,
1052 true);
1053
1054 obj->has_global_gtt_mapping = 0;
1055 }
1056
1057 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1058 {
1059 struct drm_device *dev = obj->base.dev;
1060 struct drm_i915_private *dev_priv = dev->dev_private;
1061 bool interruptible;
1062
1063 interruptible = do_idling(dev_priv);
1064
1065 if (!obj->has_dma_mapping)
1066 dma_unmap_sg(&dev->pdev->dev,
1067 obj->pages->sgl, obj->pages->nents,
1068 PCI_DMA_BIDIRECTIONAL);
1069
1070 undo_idling(dev_priv, interruptible);
1071 }
1072
1073 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1074 unsigned long color,
1075 unsigned long *start,
1076 unsigned long *end)
1077 {
1078 if (node->color != color)
1079 *start += 4096;
1080
1081 if (!list_empty(&node->node_list)) {
1082 node = list_entry(node->node_list.next,
1083 struct drm_mm_node,
1084 node_list);
1085 if (node->allocated && node->color != color)
1086 *end -= 4096;
1087 }
1088 }
1089
1090 void i915_gem_setup_global_gtt(struct drm_device *dev,
1091 unsigned long start,
1092 unsigned long mappable_end,
1093 unsigned long end)
1094 {
1095 /* Let GEM Manage all of the aperture.
1096 *
1097 * However, leave one page at the end still bound to the scratch page.
1098 * There are a number of places where the hardware apparently prefetches
1099 * past the end of the object, and we've seen multiple hangs with the
1100 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1101 * aperture. One page should be enough to keep any prefetching inside
1102 * of the aperture.
1103 */
1104 struct drm_i915_private *dev_priv = dev->dev_private;
1105 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1106 struct drm_mm_node *entry;
1107 struct drm_i915_gem_object *obj;
1108 unsigned long hole_start, hole_end;
1109
1110 BUG_ON(mappable_end > end);
1111
1112 /* Subtract the guard page ... */
1113 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1114 if (!HAS_LLC(dev))
1115 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1116
1117 /* Mark any preallocated objects as occupied */
1118 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1119 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1120 int ret;
1121 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1122 i915_gem_obj_ggtt_offset(obj), obj->base.size);
1123
1124 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1125 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1126 if (ret)
1127 DRM_DEBUG_KMS("Reservation failed\n");
1128 obj->has_global_gtt_mapping = 1;
1129 list_add(&vma->vma_link, &obj->vma_list);
1130 }
1131
1132 dev_priv->gtt.base.start = start;
1133 dev_priv->gtt.base.total = end - start;
1134
1135 /* Clear any non-preallocated blocks */
1136 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1137 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1138 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1139 hole_start, hole_end);
1140 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1141 }
1142
1143 /* And finally clear the reserved guard page */
1144 ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1145 }
1146
1147 static bool
1148 intel_enable_ppgtt(struct drm_device *dev)
1149 {
1150 if (i915_enable_ppgtt >= 0)
1151 return i915_enable_ppgtt;
1152
1153 #ifdef CONFIG_INTEL_IOMMU
1154 /* Disable ppgtt on SNB if VT-d is on. */
1155 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
1156 return false;
1157 #endif
1158
1159 return true;
1160 }
1161
1162 void i915_gem_init_global_gtt(struct drm_device *dev)
1163 {
1164 struct drm_i915_private *dev_priv = dev->dev_private;
1165 unsigned long gtt_size, mappable_size;
1166
1167 gtt_size = dev_priv->gtt.base.total;
1168 mappable_size = dev_priv->gtt.mappable_end;
1169
1170 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
1171 int ret;
1172
1173 if (INTEL_INFO(dev)->gen <= 7) {
1174 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
1175 * aperture accordingly when using aliasing ppgtt. */
1176 gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
1177 }
1178
1179 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1180
1181 ret = i915_gem_init_aliasing_ppgtt(dev);
1182 if (!ret)
1183 return;
1184
1185 DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
1186 drm_mm_takedown(&dev_priv->gtt.base.mm);
1187 if (INTEL_INFO(dev)->gen < 8)
1188 gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
1189 }
1190 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1191 }
1192
1193 static int setup_scratch_page(struct drm_device *dev)
1194 {
1195 struct drm_i915_private *dev_priv = dev->dev_private;
1196 struct page *page;
1197 dma_addr_t dma_addr;
1198
1199 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1200 if (page == NULL)
1201 return -ENOMEM;
1202 get_page(page);
1203 set_pages_uc(page, 1);
1204
1205 #ifdef CONFIG_INTEL_IOMMU
1206 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1207 PCI_DMA_BIDIRECTIONAL);
1208 if (pci_dma_mapping_error(dev->pdev, dma_addr))
1209 return -EINVAL;
1210 #else
1211 dma_addr = page_to_phys(page);
1212 #endif
1213 dev_priv->gtt.base.scratch.page = page;
1214 dev_priv->gtt.base.scratch.addr = dma_addr;
1215
1216 return 0;
1217 }
1218
1219 static void teardown_scratch_page(struct drm_device *dev)
1220 {
1221 struct drm_i915_private *dev_priv = dev->dev_private;
1222 struct page *page = dev_priv->gtt.base.scratch.page;
1223
1224 set_pages_wb(page, 1);
1225 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1226 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1227 put_page(page);
1228 __free_page(page);
1229 }
1230
1231 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1232 {
1233 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1234 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1235 return snb_gmch_ctl << 20;
1236 }
1237
1238 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1239 {
1240 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1241 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1242 if (bdw_gmch_ctl)
1243 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1244 if (bdw_gmch_ctl > 4) {
1245 WARN_ON(!i915_preliminary_hw_support);
1246 return 4<<20;
1247 }
1248
1249 return bdw_gmch_ctl << 20;
1250 }
1251
1252 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1253 {
1254 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1255 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1256 return snb_gmch_ctl << 25; /* 32 MB units */
1257 }
1258
1259 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1260 {
1261 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1262 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1263 return bdw_gmch_ctl << 25; /* 32 MB units */
1264 }
1265
1266 static int ggtt_probe_common(struct drm_device *dev,
1267 size_t gtt_size)
1268 {
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270 phys_addr_t gtt_bus_addr;
1271 int ret;
1272
1273 /* For Modern GENs the PTEs and register space are split in the BAR */
1274 gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1275 (pci_resource_len(dev->pdev, 0) / 2);
1276
1277 dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1278 if (!dev_priv->gtt.gsm) {
1279 DRM_ERROR("Failed to map the gtt page table\n");
1280 return -ENOMEM;
1281 }
1282
1283 ret = setup_scratch_page(dev);
1284 if (ret) {
1285 DRM_ERROR("Scratch setup failed\n");
1286 /* iounmap will also get called at remove, but meh */
1287 iounmap(dev_priv->gtt.gsm);
1288 }
1289
1290 return ret;
1291 }
1292
1293 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1294 * bits. When using advanced contexts each context stores its own PAT, but
1295 * writing this data shouldn't be harmful even in those cases. */
1296 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1297 {
1298 #define GEN8_PPAT_UC (0<<0)
1299 #define GEN8_PPAT_WC (1<<0)
1300 #define GEN8_PPAT_WT (2<<0)
1301 #define GEN8_PPAT_WB (3<<0)
1302 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1303 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1304 #define GEN8_PPAT_LLC (1<<2)
1305 #define GEN8_PPAT_LLCELLC (2<<2)
1306 #define GEN8_PPAT_LLCeLLC (3<<2)
1307 #define GEN8_PPAT_AGE(x) (x<<4)
1308 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1309 uint64_t pat;
1310
1311 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
1312 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1313 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1314 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
1315 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1316 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1317 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1318 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1319
1320 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1321 * write would work. */
1322 I915_WRITE(GEN8_PRIVATE_PAT, pat);
1323 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1324 }
1325
1326 static int gen8_gmch_probe(struct drm_device *dev,
1327 size_t *gtt_total,
1328 size_t *stolen,
1329 phys_addr_t *mappable_base,
1330 unsigned long *mappable_end)
1331 {
1332 struct drm_i915_private *dev_priv = dev->dev_private;
1333 unsigned int gtt_size;
1334 u16 snb_gmch_ctl;
1335 int ret;
1336
1337 /* TODO: We're not aware of mappable constraints on gen8 yet */
1338 *mappable_base = pci_resource_start(dev->pdev, 2);
1339 *mappable_end = pci_resource_len(dev->pdev, 2);
1340
1341 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1342 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1343
1344 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1345
1346 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1347
1348 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1349 *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1350
1351 gen8_setup_private_ppat(dev_priv);
1352
1353 ret = ggtt_probe_common(dev, gtt_size);
1354
1355 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1356 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1357
1358 return ret;
1359 }
1360
1361 static int gen6_gmch_probe(struct drm_device *dev,
1362 size_t *gtt_total,
1363 size_t *stolen,
1364 phys_addr_t *mappable_base,
1365 unsigned long *mappable_end)
1366 {
1367 struct drm_i915_private *dev_priv = dev->dev_private;
1368 unsigned int gtt_size;
1369 u16 snb_gmch_ctl;
1370 int ret;
1371
1372 *mappable_base = pci_resource_start(dev->pdev, 2);
1373 *mappable_end = pci_resource_len(dev->pdev, 2);
1374
1375 /* 64/512MB is the current min/max we actually know of, but this is just
1376 * a coarse sanity check.
1377 */
1378 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1379 DRM_ERROR("Unknown GMADR size (%lx)\n",
1380 dev_priv->gtt.mappable_end);
1381 return -ENXIO;
1382 }
1383
1384 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1385 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1386 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1387
1388 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1389
1390 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1391 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1392
1393 ret = ggtt_probe_common(dev, gtt_size);
1394
1395 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1396 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1397
1398 return ret;
1399 }
1400
1401 static void gen6_gmch_remove(struct i915_address_space *vm)
1402 {
1403
1404 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1405 iounmap(gtt->gsm);
1406 teardown_scratch_page(vm->dev);
1407 }
1408
1409 static int i915_gmch_probe(struct drm_device *dev,
1410 size_t *gtt_total,
1411 size_t *stolen,
1412 phys_addr_t *mappable_base,
1413 unsigned long *mappable_end)
1414 {
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416 int ret;
1417
1418 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1419 if (!ret) {
1420 DRM_ERROR("failed to set up gmch\n");
1421 return -EIO;
1422 }
1423
1424 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1425
1426 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1427 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1428 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
1429
1430 return 0;
1431 }
1432
1433 static void i915_gmch_remove(struct i915_address_space *vm)
1434 {
1435 intel_gmch_remove();
1436 }
1437
1438 int i915_gem_gtt_init(struct drm_device *dev)
1439 {
1440 struct drm_i915_private *dev_priv = dev->dev_private;
1441 struct i915_gtt *gtt = &dev_priv->gtt;
1442 int ret;
1443
1444 if (INTEL_INFO(dev)->gen <= 5) {
1445 gtt->gtt_probe = i915_gmch_probe;
1446 gtt->base.cleanup = i915_gmch_remove;
1447 } else if (INTEL_INFO(dev)->gen < 8) {
1448 gtt->gtt_probe = gen6_gmch_probe;
1449 gtt->base.cleanup = gen6_gmch_remove;
1450 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1451 gtt->base.pte_encode = iris_pte_encode;
1452 else if (IS_HASWELL(dev))
1453 gtt->base.pte_encode = hsw_pte_encode;
1454 else if (IS_VALLEYVIEW(dev))
1455 gtt->base.pte_encode = byt_pte_encode;
1456 else if (INTEL_INFO(dev)->gen >= 7)
1457 gtt->base.pte_encode = ivb_pte_encode;
1458 else
1459 gtt->base.pte_encode = snb_pte_encode;
1460 } else {
1461 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1462 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1463 }
1464
1465 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1466 &gtt->mappable_base, &gtt->mappable_end);
1467 if (ret)
1468 return ret;
1469
1470 gtt->base.dev = dev;
1471
1472 /* GMADR is the PCI mmio aperture into the global GTT. */
1473 DRM_INFO("Memory usable by graphics device = %zdM\n",
1474 gtt->base.total >> 20);
1475 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1476 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1477
1478 return 0;
1479 }
This page took 0.060519 seconds and 6 git commands to generate.