drm/i915: Prevent out of range pt in gen6_for_each_pde
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36
37 struct drm_i915_file_private;
38
39 typedef uint32_t gen6_pte_t;
40 typedef uint64_t gen8_pte_t;
41 typedef uint64_t gen8_pde_t;
42
43 #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44
45
46 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
48 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
49 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50 #define GEN6_PTE_CACHE_LLC (2 << 1)
51 #define GEN6_PTE_UNCACHED (1 << 1)
52 #define GEN6_PTE_VALID (1 << 0)
53
54 #define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
55 #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
56 #define I915_PDES 512
57 #define I915_PDE_MASK (I915_PDES - 1)
58 #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
59
60 #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
61 #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
62 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
63 #define GEN6_PDE_SHIFT 22
64 #define GEN6_PDE_VALID (1 << 0)
65
66 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
67
68 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
69 #define BYT_PTE_WRITEABLE (1 << 1)
70
71 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
72 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
73 */
74 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
75 (((bits) & 0x8) << (11 - 3)))
76 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
77 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
78 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
79 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
80 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
81 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
82 #define HSW_PTE_UNCACHED (0)
83 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
84 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
85
86 /* GEN8 legacy style address is defined as a 3 level page table:
87 * 31:30 | 29:21 | 20:12 | 11:0
88 * PDPE | PDE | PTE | offset
89 * The difference as compared to normal x86 3 level page table is the PDPEs are
90 * programmed via register.
91 */
92 #define GEN8_PDPE_SHIFT 30
93 #define GEN8_PDPE_MASK 0x3
94 #define GEN8_PDE_SHIFT 21
95 #define GEN8_PDE_MASK 0x1ff
96 #define GEN8_PTE_SHIFT 12
97 #define GEN8_PTE_MASK 0x1ff
98 #define GEN8_LEGACY_PDPES 4
99 #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
100
101 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
102 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
103 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
104 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
105
106 #define CHV_PPAT_SNOOP (1<<6)
107 #define GEN8_PPAT_AGE(x) (x<<4)
108 #define GEN8_PPAT_LLCeLLC (3<<2)
109 #define GEN8_PPAT_LLCELLC (2<<2)
110 #define GEN8_PPAT_LLC (1<<2)
111 #define GEN8_PPAT_WB (3<<0)
112 #define GEN8_PPAT_WT (2<<0)
113 #define GEN8_PPAT_WC (1<<0)
114 #define GEN8_PPAT_UC (0<<0)
115 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
116 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
117
118 enum i915_ggtt_view_type {
119 I915_GGTT_VIEW_NORMAL = 0,
120 I915_GGTT_VIEW_ROTATED
121 };
122
123 struct intel_rotation_info {
124 unsigned int height;
125 unsigned int pitch;
126 uint32_t pixel_format;
127 uint64_t fb_modifier;
128 };
129
130 struct i915_ggtt_view {
131 enum i915_ggtt_view_type type;
132
133 struct sg_table *pages;
134
135 union {
136 struct intel_rotation_info rotation_info;
137 };
138 };
139
140 extern const struct i915_ggtt_view i915_ggtt_view_normal;
141
142 enum i915_cache_level;
143
144 /**
145 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
146 * VMA's presence cannot be guaranteed before binding, or after unbinding the
147 * object into/from the address space.
148 *
149 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
150 * will always be <= an objects lifetime. So object refcounting should cover us.
151 */
152 struct i915_vma {
153 struct drm_mm_node node;
154 struct drm_i915_gem_object *obj;
155 struct i915_address_space *vm;
156
157 /** Flags and address space this VMA is bound to */
158 #define GLOBAL_BIND (1<<0)
159 #define LOCAL_BIND (1<<1)
160 #define PTE_READ_ONLY (1<<2)
161 unsigned int bound : 4;
162
163 /**
164 * Support different GGTT views into the same object.
165 * This means there can be multiple VMA mappings per object and per VM.
166 * i915_ggtt_view_type is used to distinguish between those entries.
167 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
168 * assumed in GEM functions which take no ggtt view parameter.
169 */
170 struct i915_ggtt_view ggtt_view;
171
172 /** This object's place on the active/inactive lists */
173 struct list_head mm_list;
174
175 struct list_head vma_link; /* Link in the object's VMA list */
176
177 /** This vma's place in the batchbuffer or on the eviction list */
178 struct list_head exec_list;
179
180 /**
181 * Used for performing relocations during execbuffer insertion.
182 */
183 struct hlist_node exec_node;
184 unsigned long exec_handle;
185 struct drm_i915_gem_exec_object2 *exec_entry;
186
187 /**
188 * How many users have pinned this object in GTT space. The following
189 * users can each hold at most one reference: pwrite/pread, execbuffer
190 * (objects are not allowed multiple times for the same batchbuffer),
191 * and the framebuffer code. When switching/pageflipping, the
192 * framebuffer code has at most two buffers pinned per crtc.
193 *
194 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
195 * bits with absolutely no headroom. So use 4 bits. */
196 unsigned int pin_count:4;
197 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
198
199 /** Unmap an object from an address space. This usually consists of
200 * setting the valid PTE entries to a reserved scratch page. */
201 void (*unbind_vma)(struct i915_vma *vma);
202 /* Map an object into an address space with the given cache flags. */
203 void (*bind_vma)(struct i915_vma *vma,
204 enum i915_cache_level cache_level,
205 u32 flags);
206 };
207
208 struct i915_page_table_entry {
209 struct page *page;
210 dma_addr_t daddr;
211
212 unsigned long *used_ptes;
213 };
214
215 struct i915_page_directory_entry {
216 struct page *page; /* NULL for GEN6-GEN7 */
217 union {
218 uint32_t pd_offset;
219 dma_addr_t daddr;
220 };
221
222 struct i915_page_table_entry *page_table[I915_PDES]; /* PDEs */
223 };
224
225 struct i915_page_directory_pointer_entry {
226 /* struct page *page; */
227 struct i915_page_directory_entry *page_directory[GEN8_LEGACY_PDPES];
228 };
229
230 struct i915_address_space {
231 struct drm_mm mm;
232 struct drm_device *dev;
233 struct list_head global_link;
234 unsigned long start; /* Start offset always 0 for dri2 */
235 size_t total; /* size addr space maps (ex. 2GB for ggtt) */
236
237 struct {
238 dma_addr_t addr;
239 struct page *page;
240 } scratch;
241
242 /**
243 * List of objects currently involved in rendering.
244 *
245 * Includes buffers having the contents of their GPU caches
246 * flushed, not necessarily primitives. last_read_req
247 * represents when the rendering involved will be completed.
248 *
249 * A reference is held on the buffer while on this list.
250 */
251 struct list_head active_list;
252
253 /**
254 * LRU list of objects which are not in the ringbuffer and
255 * are ready to unbind, but are still in the GTT.
256 *
257 * last_read_req is NULL while an object is in this list.
258 *
259 * A reference is not held on the buffer while on this list,
260 * as merely being GTT-bound shouldn't prevent its being
261 * freed, and we'll pull it off the list in the free path.
262 */
263 struct list_head inactive_list;
264
265 /* FIXME: Need a more generic return type */
266 gen6_pte_t (*pte_encode)(dma_addr_t addr,
267 enum i915_cache_level level,
268 bool valid, u32 flags); /* Create a valid PTE */
269 int (*allocate_va_range)(struct i915_address_space *vm,
270 uint64_t start,
271 uint64_t length);
272 void (*clear_range)(struct i915_address_space *vm,
273 uint64_t start,
274 uint64_t length,
275 bool use_scratch);
276 void (*insert_entries)(struct i915_address_space *vm,
277 struct sg_table *st,
278 uint64_t start,
279 enum i915_cache_level cache_level, u32 flags);
280 void (*cleanup)(struct i915_address_space *vm);
281 };
282
283 /* The Graphics Translation Table is the way in which GEN hardware translates a
284 * Graphics Virtual Address into a Physical Address. In addition to the normal
285 * collateral associated with any va->pa translations GEN hardware also has a
286 * portion of the GTT which can be mapped by the CPU and remain both coherent
287 * and correct (in cases like swizzling). That region is referred to as GMADR in
288 * the spec.
289 */
290 struct i915_gtt {
291 struct i915_address_space base;
292 size_t stolen_size; /* Total size of stolen memory */
293
294 unsigned long mappable_end; /* End offset that we can CPU map */
295 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
296 phys_addr_t mappable_base; /* PA of our GMADR */
297
298 /** "Graphics Stolen Memory" holds the global PTEs */
299 void __iomem *gsm;
300
301 bool do_idle_maps;
302
303 int mtrr;
304
305 /* global gtt ops */
306 int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
307 size_t *stolen, phys_addr_t *mappable_base,
308 unsigned long *mappable_end);
309 };
310
311 struct i915_hw_ppgtt {
312 struct i915_address_space base;
313 struct kref ref;
314 struct drm_mm_node node;
315 unsigned long pd_dirty_rings;
316 unsigned num_pd_entries;
317 unsigned num_pd_pages; /* gen8+ */
318 union {
319 struct i915_page_directory_pointer_entry pdp;
320 struct i915_page_directory_entry pd;
321 };
322
323 struct drm_i915_file_private *file_priv;
324
325 gen6_pte_t __iomem *pd_addr;
326
327 int (*enable)(struct i915_hw_ppgtt *ppgtt);
328 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
329 struct intel_engine_cs *ring);
330 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
331 };
332
333 /* For each pde iterates over every pde between from start until start + length.
334 * If start, and start+length are not perfectly divisible, the macro will round
335 * down, and up as needed. The macro modifies pde, start, and length. Dev is
336 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
337 * and length = 2G effectively iterates over every PDE in the system.
338 *
339 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
340 */
341 #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
342 for (iter = gen6_pde_index(start); \
343 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
344 iter++, \
345 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
346 temp = min_t(unsigned, temp, length), \
347 start += temp, length -= temp)
348
349 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
350 {
351 const uint32_t mask = NUM_PTE(pde_shift) - 1;
352
353 return (address >> PAGE_SHIFT) & mask;
354 }
355
356 /* Helper to counts the number of PTEs within the given length. This count
357 * does not cross a page table boundary, so the max value would be
358 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
359 */
360 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
361 uint32_t pde_shift)
362 {
363 const uint64_t mask = ~((1 << pde_shift) - 1);
364 uint64_t end;
365
366 WARN_ON(length == 0);
367 WARN_ON(offset_in_page(addr|length));
368
369 end = addr + length;
370
371 if ((addr & mask) != (end & mask))
372 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
373
374 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
375 }
376
377 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
378 {
379 return (addr >> shift) & I915_PDE_MASK;
380 }
381
382 static inline uint32_t gen6_pte_index(uint32_t addr)
383 {
384 return i915_pte_index(addr, GEN6_PDE_SHIFT);
385 }
386
387 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
388 {
389 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
390 }
391
392 static inline uint32_t gen6_pde_index(uint32_t addr)
393 {
394 return i915_pde_index(addr, GEN6_PDE_SHIFT);
395 }
396
397 int i915_gem_gtt_init(struct drm_device *dev);
398 void i915_gem_init_global_gtt(struct drm_device *dev);
399 void i915_global_gtt_cleanup(struct drm_device *dev);
400
401
402 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
403 int i915_ppgtt_init_hw(struct drm_device *dev);
404 void i915_ppgtt_release(struct kref *kref);
405 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
406 struct drm_i915_file_private *fpriv);
407 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
408 {
409 if (ppgtt)
410 kref_get(&ppgtt->ref);
411 }
412 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
413 {
414 if (ppgtt)
415 kref_put(&ppgtt->ref, i915_ppgtt_release);
416 }
417
418 void i915_check_and_clear_faults(struct drm_device *dev);
419 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
420 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
421
422 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
423 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
424
425 #endif
This page took 0.105748 seconds and 5 git commands to generate.